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Abstract
Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of

contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a

patient is significantly inhibited. In these cases, one refers to a contracture. In order to predict the evolution of post-

wounding skin, several mathematical model frameworks have been set up. These frameworks are based on complicated

systems of partial differential equations that need finite element-like discretizations for the approximation of the solution.

Since these computational frameworks can be expensive in terms of computation time and resources, we study the

applicability of neural networks to reproduce the finite element results. Our neural network is able to simulate the evolution

of skin in terms of contraction for over one year. The simulations are based on 25 input parameters that are characteristic

for the patient and the injury. One of such input parameters is the stiffness of the skin. The neural network results have

yielded an average goodness of fit (R2) of 0.9928 (± 0.0013). Further, a tremendous speed-up of 19354X was obtained with

the neural network. We illustrate the applicability by an online medical App that takes into account the age of the patient

and the length of the burn.

Keywords Machine learning � Post-burn scar contraction � Morphoelasticity � Feed-forward neural network �
Medical application � Monte Carlo simulations

Mathematics Subject Classification 35G20 � 35L65 � 35M10 � 35Q74 � 35Q80 � 35Q92 � 35R37 � 68T07 �
74-10 � 74L15 � 92-10 � 92B20 � 92C10 � 92C17 � 92C45

1 Introduction

Burn injuries are a worldwide problem. Yearly, estimates

are around 180 000 deaths, and 11 million burn injuries

need medical care [1]. In the long-term, burn injuries can

cause reduced mobility in the burned body part because of

contraction. During contraction, myofibroblasts pull on the

boundary of the wound, reducing and deforming the

damaged skin. Without medical care, contraction can cause

lifelong disabilities affecting the patient’s quality of life. In

such a case, one refers to the scar as a contracture, for

which we wish to prevent its development. Burn wound

dimensions (size, depth, location) and patient-specific

factors (age, gender, etc.) are factors that influence con-

traction. This dependency is a reason for the growing

interest in personalized health care.

Mathematical modeling contributes to this growing

interest. Detailed models can give insight into which
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elements have a major influence on the contraction [2] can

tune these elements and can access the uncertainty by

performing Monte Carlo simulations. This allows for

patient-based predictions and can help medical staff in

making the optimal treatment choices. However, to achieve

personalized health care, we need many model-based pre-

dictions, with the downside that high-dimensional mathe-

matical models are expensive.

As a result, we need to use and develop alternatives to

predict post-burn contractions, as it makes little sense for

medical staff to wait days or weeks. Neural networks can

reproduce complex relations within a short evaluation time

after enough training [3]. The medical society has benefited

for years from neural networks and deep learning. For

example, computer vision has been used to classify skin

burns [4] and to classify tumors [5]. Furthermore, neural

networks have been used to find diseases, such as the

coronavirus disease, in blood samples [6].

Skin is the largest organ of our body, and it is also a

complicated organ. Skin typically consists of several lay-

ers: The top layer is the epidermis, the second layer is the

dermis and the third layer is the subcutis. Our modeling

framework has been designed for deep tissue injury in

which at least the dermal layer has been damaged. We

focus on post-burn skin contraction, for which we have a

mathematical model. Skin contraction takes place in the

dermal layer of the skin (the dermis). The displacement of

the dermis generates strains, which we assume to be

infinitesimally small. In short, the model comprises a sys-

tem of six coupled, nonlinear partial differential equations.

Four equations represent dermal constituents, and the other

two represent the displacement velocity and the effective

strain. The constituents’ interaction leads to a reduction in

the wound size, which we describe as the relative surface

area (RSA) of the damaged tissue.

In this study, we train a feed-forward neural network to

predict the nonlinear mapping from the patient- and

wound-specific data to the RSA. This is a common

approach. For example, Yang et al. used a convolutional

neural network to speed up the approximation of the stress–

strain curve for materials [7]. Wang et al. considered a long

short-term memory neural network to speed up mechanical

models used for studying the dynamics of biological sys-

tems [8]. Navratil et al. have shown that a neural network

can outperform other, non-intelligent, acceleration tech-

niques on both acceleration and accuracy [9]. In particular,

they compare neural networks to simple procedures,

including up-scaling, to speed up the physics-based simu-

lations in oil reservoir modeling. The results show a pos-

sible speedup of 2000X and two orders of magnitude

reduction in average sequence error concerning the

simulator.

Our goal is to speed up the predictions of post-burn scar

contractions for a medical purpose. In contrast to one-di-

mensional models, more-dimensional models suffer from

long computation times. Hence, as a preliminary study for

more-dimensional models, we consider the application of a

neural network for the one-dimensional model first. We

create many data samples using the numerical approach by

varying parameter values. Then, we fit a two-layer feed-

forward neural network and assess generalization using

cross-validation. To illustrate how we can make use of such

a neural network in the future, we implement the optimized

network in an online application.

We organized this paper as follows. Section 2 presents

the mathematical model and numerical implementation,

and Sect. 3 presents the neural network. Subsequently,

Sect. 4 presents the results and the illustrative (medical)

application. Finally, Sect. 5 presents the conclusions, and

Sect. 6 presents the discussion and further work.

2 The mathematical model

Our study uses the one-dimensional counterpart of the

morphoelastic model for scar contraction [10]. This model

simulates contraction during wound healing and scar mat-

uration by considering a chemical response that induces the

(permanent) displacement of the skin and the effective

(remaining) strain. The model captures the chemical

response using four species: signaling molecules (c),

fibroblasts (N), myofibroblasts (M), and collagen (q). These
equations have the general form

_zþ ðzvÞ0 ¼ �J0z þ Rz; z 2 fc;N;M; qg: ð1Þ

Here, _z denotes the time derivative of z, ðzvÞ0 models

passive convection (as the points in the domain are subject

to displacement), and Jz;Rz denote the flux and the

chemical response of z, respectively. Further, the model

includes the dermal displacement (u), the displacement

velocity (v), and the infinitesimal effective strain (e). The
equation for the displacement velocity is

qt _vþ 2vv0ð Þ ¼ r0 þ f ; ð2Þ

where r represents the stress associated with the dermis,

and f represents the body force working on the dermis

caused by cell traction. Finally, the equation for the

effective strain is

_eþ ve0 þ ðe� 1Þv0 ¼ �G; ð3Þ

where G is a growth contribution that we further see in

growth of tissues (such as tumors). We solve the system of

differential equations using the finite element method with

linear basis functions. For the time integration, we apply
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the backward Euler method, using a monolithic approach

with inner Picard iterations to account for nonlinearity. For

a complete overview of the model (including parameters),

initial and boundary conditions, and further derivations of

the numerical methods, we refer to our earlier study [11],

as they are not essential for this study.

Relative surface area Because myofibroblasts pull on

the surrounding collagen fibers, the scar contracts toward

its center and retracts after these cells disappear. Figure 1

shows an example of the RSA and highlights the minimum

and the asymptotic values. The minimum RSA value cor-

responds with the maximum contraction during healing.

Once the minimum RSA has been reached, the scar retracts

(i.e., myofibroblasts disappear and the scar relaxes). After

remodeling, the scar does not change anymore and ends

with a fixed percentage of contraction. This is the asymp-

totic RSA value, which we refer to as the ‘last RSA value.’

3 A neural network for post-burn scar
contraction

The morphoelastic model for scar contraction consists of

many parameters that differ between patients and wounds.

Because the model is highly nonlinear, the numerical

evaluation of uncertainty in patient- and wound-specific

scar contraction data is expensive. We therefore consider a

feed-forward neural network to replace the numerical

computations. In this section, we define the neural network

applied in our study.

3.1 Formulation

We consider a burn of length L cm. Together with 24 other

independent parameter values, the length makes up the

input vector x. Given this input, the wound/scar changes in

size over time in the course y. Here, y is the non-dimen-

sional RSA, determined by the numerical model that uses a

one-day time step and 365 days as total simulation time.

The goal is to learn f ðx; hÞ � y, with h the learnable

parameters of the feed-forward network. In our network,

we use two hidden layers with 100 neurons each and the

rectified linear unit [12] to describe the features. On the

output layer, we use the sigmoid function, because the RSA

bounds between 0 and 1. We note that this output unit gives

better (significant) results for our study compared with

other output activation functions. Other activation func-

tions give such poor results (R2\0) that returning the

expected value is a better choice. Note that, the numbers of

input and output neurons are 25 and 365. Figure 2 shows a

graphical overview of the method.

3.2 Training, validating and testing

During the training of the neural network, we minimize the

mean squared error (MSE) loss by using the Adamax

algorithm with the standard backpropagation algorithm

[13]. We perform a learning rate range test to discover the

largest learning rate value that can train the model without

divergence. We vary learning rates between 0.0001 and 1

and run for 150 epochs in batches of 64 samples. The

learning rate range test takes around 12.5 minutes on a 64

bit Windows 10 Pro system with 16 GB RAM and 3.59

GHz AMD Rizen 5 3600 6-Core Processor. Figure 3 shows

that the optimizers adaptive moment (Adam) and Adamax,

a variant of Adam, allow larger learning rates than opti-

mizers root-mean-square propagation (RMSprop) and

Nesterov-accelerated adaptive moment (Nadam). Further,

these optimizers reach better scores than optimizers

stochastic gradient descent (SGD), Adadelta, follow the

regularized leader (Ftrl), and adaptive gradient (Adagrad).

We note that a smaller number of epochs (30) yield the

same results. Given these results, we choose an initial

learning rate of 0.015 with a standard decaying factor of

0.99. To avoid model overfitting, we use the early stopping

regularization. We follow the MSE loss and stop training if

30 epochs show no improvement. Changes between MSE

loss smaller than 10�5 are qualified as ‘no improvement.’
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Fig. 1 A typical relative surface

area (RSA) distribution with

minimum and ‘asymptotic’

values highlighted. The

minimum RSA value

corresponds to maximum

contraction during healing, and

the asymptotic RSA value

corresponds to the fixed

percentage of contraction after

scar remodeling
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3.3 Data

To train and test the neural network, we use a dataset of

n ¼ 18000 simulations from the numerical algorithm of

size n� 25� 365. This dataset is well varied, as we define

a range of acceptable values for each of the input param-

eters that vary between patients and simulations. Based on

the ranges, we define uniform statistical distributions from

which we draw parameter samples. We accept samples that

satisfy kc\dc q aIIc , a stability condition of the mathemat-

ical model [11]. Tables S1 and S2 in File S1 show the

values for the varied parameters and the fixed parameters.

Each simulation computes the results on a domain of 10 cm

with a uniform spatial grid of 202 grid points. We split the

large dataset into standardized (using Min-Max scaling)

train- and test sets, with 80%/20% train–test split and run

with tenfold cross-validation.

3.4 Performance measures

We include the goodness of fit (R2) statistic, which depends

on the L2 norm. Let ei ¼ yi � ŷi define the residual for the

true (finite element) value yi and the corresponding pre-

dicted value ŷi. Then, R2 ¼ 1�
PN

i¼1 e
2
i =

PN
i¼1ðyi � yÞ2,

with a positive denominator. Note a small sample standard

deviation does not give lower residuals. Hence, the R2 can

become small (and negative) when the results of the finite

element simulations show a smaller standard deviation than

the mean square error. Further, we compare models

M 2 M, whereM is the set of neural networks suitable for

our problem. Therefore, since
PN

i¼1ðyi � yÞ2 will stay

constant among the models, maximizing R2 is minimizing

the square error loss, or the L2 norm. Next, we include the

average relative root-mean-squared error (aRRMSE), often

used for (multi-target) regression problems [14]. Finally,

we include the average relative error (aRelErr). Although

the aRelErr is easy to interpret, this performance measure

is not suitable for the entire set of targets.

4 Results

We train the neural network for predicting the RSA. Fig-

ure 4 shows the best and the worst prediction in terms of

the MSE, the relative error at each point for the worst

prediction, and the relation between the predicted and

target values for the samples in the test set. Figure 4a

shows that, in the best-case scenario, the prediction is much
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Fig. 3 Results on the learning rate range test/loss values, showing the

moving averages. The Adamax optimizer takes the largest learning

rate value and provides the smallest loss. Here, the abbreviations are

stochastic gradient descent (SGD), follow the regularized leader

(Ftrl), adaptive gradient (Adagrad), root-mean-square propagation

(RMSprop), Nesterov-accelerated adaptive moment (Nadam), and

adaptive moment (Adam). Adadelta extends Adagrad, and Adamax is

a variant of Adam based on the infinity norm
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indistinguishable from the target. Figure 4b shows that, in

the worst-case scenario, the network estimates the greatest

contraction to be around 5% more intensive than the target

value. The relative error of the worst prediction increases

to 22% and converges to less than 1% for the final con-

traction intensity in Fig. 4c. Finally, Fig. 4d shows the

predictions are correct, as the (target, prediction) distribu-

tion is more or less the y ¼ x line, the latter shown in red

for comparison. There are outliers, both above and below

the y ¼ x line. There is a dense distribution of outliers in

the range 0:31� x� 0:39, showing the model could be less

correct for such contraction values exceeding 60%. This is

consistent with Fig. 4b, c. It could be more difficult to

predict these less often occurring cases.

To substantiate our observations, Table 1 shows the

performance measures and the training and validation

times. The cross-validation trials return a mean

R2 ¼ 0:9928, with a standard deviation of 0.0013. For the

test set, we obtained R2 ¼ 0:9950, which fits within the

95% interval of confidence. The R2 results show accurate

predictions. The aRRMSEs are 0.0626 (± 0.0080) and

0.0509 for the folds and test set. These results are smaller

than 0.1 and so, according to Despotovic et al. [15], this

trained neural network shows excellent reproduction of the

finite element data. The aRelErrs of the predictions are

only 0.23% (± 0.03%) and 0.19%, supporting our claim

that the neural network can predict the RSA.

During healing, the RSA reaches a minimum which,

together with the last value, is interesting from a clinical

point of view. Compared to the overall performance,

focusing on these characteristics makes interpreting the

values easier. Table 2 shows the R2 and the mean absolute

error (MAE) for both the minimum and last RSA values

over the test set. We further show the general character-

istics of the distributions to place the MAE in context.
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Fig. 4 Results from the neural network for the relative surface area

(RSA) prediction. The upper two graphs show the best (a) and worst

(b) predictions. The lower two graphs show the relative error of the

worst prediction (c), and the relation between the predictions and the

targets, the line y ¼ x and the R2 (d). Here, we have included the

values of the entire set of time values, hence 3600� 365 data points

Table 1 Performance of the neural network for predicting contraction

Performance measure Cross-validation value Test value

R2 0.9928 ± 0.0013 0.9950

aRRMSE 0.0626 ± 0.0080 0.0509

aRelErr 0.0023 ± 0.0003 0.0019

Training time 156 s –

Validation time – 0.93 s
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The later predictions are better than the early predictions

(not shown here). Therefore, not surprising that the R2 of

both the minimum and last RSA values have a larger score

(0.9984 and 0.9980) than the overall performance score

(0.9928). Both scores differ at least four standard devia-

tions from the overall performance, hence Chebyshev’s

Theorem states the exceeding probability to be bounded

from above by 0.0625. The minimum RSA MAE is 0.55%

of the range of values and 0.50% of the average value,

supporting the network’s performance. However, we note

that the neural network is less accurate for small values,

where differences of 7.5% can occur. Overall, the network

can distinguish between the minima within the range of 30

to 80%. The last RSA value MAE is 0.46% of the range of

values and 0.09% of the average value. Hence, the network

can predict the ‘asymptotic’ contraction intensity as well.

We note the greatest last RSA value prediction absolute

error is less than 0.7%. We conclude that the trained net-

work can predict the RSA at various times and for ranges

of parameter values.

Finally, the validation time is only 0.93 seconds in

which the network predicts 3600 samples, hence, on

average, 0.26 milliseconds per sample. This is significantly

faster than the numerical model, which, on average, takes

about 5 seconds per simulation (about 5 hours for our test

set). Hence, the neural network provides a speedup of

19354X. This shows a spectacular acceleration the neural

network achieves.

4.1 Application of the neural network

The primary asset of the neural network is its quick pre-

diction, a feature that medical staff needs to act on a burn

right away. We assess the parameter uncertainties with

Monte Carlo simulations to give insight into its effect, and

to offer probabilities of contractures. Quick knowledge of

such courses of contractions helps to choose the best

treatment. For this, we designed a computational applica-

tion to show the current network’s potential. In short, the

application reads the patient- and wound-specific infor-

mation, with which it decides the parameter distributions.

Based on our earlier study [2], we use interpolation in

literature data to find age-related parameter values. The

results from the Monte Carlo simulations are post-pro-

cessed and visualized in the application. We published the

application on Heroku [16], a cloud application platform.

The application is available at http://contraction-nn-r1.her

okuapp.com/.

5 Conclusions

The numerical approximations of post-burn contraction are

expensive from a computational point of view, and hence

less suited for applications that need many simulations.

Hence, we aim at a cheap alternative modeling strategy

based on a neural network. Our neural network is easy to

train, and it provides quick predictions for a one-dimen-

sional post-burn scar. On the test set, the network gives

aRellErr = 0.19% and R2 ¼ 0:995. In addition, the network

gives accurate predictions of the important minimum and

last RSA values. For the minimum RSA, it reports MAE =

0.0028 and R2 = 0.9981, and for the last RSA, it reports

MAE = 0.0008 and R2 = 0.9984. Further, the neural net-

work framework is 19354 times faster than the finite ele-

ment implementation. Taken together, our two-layer neural

network performance is excellent. We developed a neural

network-based application that takes patient- and wound-

specific information. The fast computations allow for

Monte Carlo-based predictions to access parameter uncer-

tainty. The application serves as an example of how to

offer clinicians immediate access to scar contraction sim-

ulations. In conclusion, the neural network is effective and

cheap. In addition, it increases the application of parameter

studies and patient-based health care. The goal is to opti-

mize the treatment of post-burn contractions. If we do,

clinicians can adjust therapies depending on complications

that an efficient and reliable computational framework can

predict.

6 Discussion and further work

Parameter values depend on patient- and wound-specific

characteristics, in particular, the patient’s age. We used

linear interpolation to find age-related parameter values,

Table 2 Performances for the

minimum and the last relative

surface area (RSA) values

Characteristic R2 MAE Min Max Range Average

Minimum RSA 0.9981 0.0028 0.3028 0.8095 0.5067 0.5599

Last RSA 0.9984 0.0008 0.7921 0.9649 0.1728 0.9044

The table shows the performance measures of the goodness of fit (R2), the mean average error (MAE), and

the minimum, maximum, range and average of the mentioned RSA values
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which might be too simplistic. Inter-parameter dependency

and patient-specific factors need research. For example, the

skin’s elasticity differs between locations on the body [17].

Hence, the wound’s location is important. Further, the

morphoelastic model needs to consider children’s growth

and elderly excess skin.

Higher-dimensional models account for the wound

shape and depth. The downside, however, is that such

models lead to numerical computational complexity, and

stability is harder to prove for the finite element method.

Rotational symmetry and isogeometric analysis offer

solutions to the curse of dimensionality and the dropping

quality of a moving mesh. For the neural network, we can

fit the wound using a convolutional neural network that

takes in images of the initial wound, such as laser Doppler

images. Pixel-based metrics can extract contours and fea-

tures from these images. Another approach is to use shape

similarity [18] and shape matching [19]. This way, we can

use standard geometrical objects, such as circles and

squares for which contraction prediction is less compli-

cated. The edge error can measure such mapping’s error

[20]. For these standard geometrical objects, we can make

use of factors, such as shape indices.

From a computational point of view, it is interesting to

study machine learning approaches that work with variable

data (e.g., long short-term memory for time series fore-

casting). In real life, burns heal at different paces and

applied treatments resolve contractures, after which a

contracture can develop again. In such cases, we want to

predict over a different period. Hence, hybrid approaches

might be necessary to achieve this, though we need many

clinical data samples to train such a model. Further, we

assumed that the finite element predictions represent the

true, real-life contraction. We can make these predictions

as accurate as we want them to be, but they still remain

approximations. Hence, to draw more detailed conclusions

on the accuracy of the neural network for real-life appli-

cations, numerical accuracy needs to be studied in more

detail.
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