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I. Introduction
hile urbanization is competing claims on space in 
cities, it is essential to understand peoples’ move-
ments for the design and management of infrastruc-

ture, safety, mobility, as well as for public and private 
transportation. The new digital layer emerging in cities that 
includes sensors and pervasive mobile systems can help ob-
serve and manage different walking and cycling mobility and 
movement patterns by gathering large amounts of spatiotem-
poral data. Data about pedestrians and cyclists—so-called ac-
tive modes—dynamics in urban environments are essential 
for different types of spatiotemporal analyses, models and 
behavioral theories. Nowadays for instance, stationary sens-
ing systems are used to continuously monitor pedestrians and 
cyclists at fixed locations over time (e.g. camera-systems at 
intersections). Observations about active modes, however, 
could also be collected with spatially distributed sensing plat-
forms and shared among each other. Although a dense net-
work of stationary observers could possibly meet the desired 
objective (i.e. providing spatiotemporal mobility information), 
such large network deployment may require an excessive 
number of sensor nodes in order to achieve satisfactory sens-
ing performance, at high infrastructural costs. In addition, a 
static network is not flexible and would not adapt to unpre-
dictable network dynamics or changes of the physical envi-
ronment. For instance, events due to sensor failure, coverage 
holes, and changes in the infrastructure or mobility behaviors 
that are likely to happen in an urban context.

In the past, a number of studies have used vehicles to mon-
itor the urban environment (e.g. traffic, pollution, road condi-
tions). As the number of sensors in a vehicle has increased 
by the thrive to so-called intelligent vehicles it evolved from 
a purely mechanical to a genuine cyber-physical system that 
continuously streams diverse data in real time. Some of these 
data are essential to the proper working of a vehicle’s com-
ponents and functionalities, but at the same time the cap-
tured surplus of data could be used for other purposes [29]. 
The ever increasing number of sensors in intelligent vehicles 
(e.g. LIDAR, RADAR and vision) enable a wide range of ur-

ban monitoring applications, thanks to their ample sensing, 
storage, processing, and communication (e.g. V2V, V2I) capa-
bilities that have not been utilized for this purpose up till now. 
In the context of this research, an intelligent vehicle can be 
understood as mobile sensing platform, capturing pedestrian 
and cyclist spatiotemporal properties from the number of dis-
tinct signals it generates. In a foreseeable future, large groups 
of connected intelligent vehicles, are expected to be deployed 
in cities and potentially coordinate their actions through com-
munication networks. The promising nature of these con-
nected mobile sensing platforms enables to carry out tasks, 
proven to be difficult when performed by a single vehicle, or 
static sensor.

In this paper, complementing current active mode sensing 
methods, we propose a novel sensing system, called AMSense, 
that grounds on connected intelligent vehicles as mobile sens-
ing nodes in a network, to capture pedestrians/cyclists spa-
tiotemporal properties in cities. In this dynamic, multi-sensor 
approach, real-time data, algorithms, and models are fused to 
estimate spatiotemporal densities, velocities and flows of ac-
tive modes using presence, position, and movement data col-
lected by a fleet of mobile sensing platforms. Active mode data 
shall be extracted, processed, and shared through a mobile 
sensing network.

Contributions. AMSense represents the first pedestrians/
cyclists mobile sensing system that innovates in such a funda-
mental part of active mode research, especially in the provision 
of real-world, and real-time data. Mobile sensing platforms 
that collectively gather active mode information in a network, 
is a rich application domain with many challenges left to be 
resolved. We therefore characterize design constraints and re-
quirements, in terms of sensing performance, processing, and 
control, of such a novel active mode sensing system. Probably 
the most important contributions of this work revolve around 
the combination of data, the extensive temporal and spatial 
scale, and the dynamics of the data collection system. This 
novel sensing paradigm offers a number of advantages over 
more traditional methods using stationary sensor systems or 
more recently available data from mobile or wearable devices, 

Abstract—We present a design for a novel mobile sensing system (AMSense) that uses vehicles as mobile 
sensing nodes in a network to capture spatiotemporal properties of pedestrians and cyclists (active modes) 
in urban environments. In this dynamic, multi-sensor approach, real-time data, algorithms, and models 
are fused to estimate presence, positions and movements of active modes with information generated by 
a fleet of mobile sensing platforms. AMSense offers a number of advantages over the traditional methods 
using stationary sensor systems or more recently crowd-sourced data from mobile and wearable devices, 
as it represents a scalable system that provides answers to spatiotemporal resolution, intrusiveness, and 
dynamic network conditions. In this paper, we motivate the need and show the potential of such a sensing 
paradigm, which supports a host of new research and application development, and illustrate this with a 
practical urban sensing example. We propose a first design, elaborate on a variety of requirements along 
with functional challenges, and outline the research to be performed with the generated data.

W

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2022 at 08:31:25 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  31  •  JANUARY/FEBRUARY 2022IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  30  •  JANUARY/FEBRUARY 2022

as it reduces effort and cost to collect pedestrian/cyclist data, 
at an extensive temporal and spatial scale, while providing an-
swers to intrusiveness and scaling effects. This paper presents 
a theoretical design of such a sensing system.

The remainder of the paper is organized as follows: Sec-
tion II covers different types of active mode research as well 
as their required data, and compares current data collection 
methods. Section III illustrates the proposed work with an ur-
ban sensing example, and addresses main requirements to 
such a novel sensing system. Section IV delivers insight into 
architecture and functions of our proposed mobile sensing 
network, while section V elaborates on how to derive active 
mode spatiotemporal properties in large urban environ-
ments. Section VI concludes this paper and highlights future 
research directions.

II. Problem Formulation
The use of data is not only crucial for the empirical observa-
tion of active mode movement behavior, but at the same time, 
data is decisive for the development of models, their calibra-
tion and validation. Yet, datasets providing comprehensive pe-
destrian and cyclist mobility information on road-, lane-, or 
subject-level, are remarkably rare given the rise of sensors in 
cities. The need for high-quality datasets that capture pedestri-
ans/cyclists in large urban environments is undisputed. This 
section primarily aims to clarify that different tracks of active 
mode research require different types of data. Note that we 
hereby only focus on pedestrian/cyclist movement data col-
lected in urban environments. This section eventually gives 
an overview of current real-world data-collection methods.

A. Different Data for Different Active Mode Research
Pedestrian and cyclist dynamics in cities can be described and 
predicted at three behavioral levels: strategic, tactical and 
operational [15], [18]. Several modelling approaches at three 
behavioral levels have been proposed in the past, both micro- 
and macroscopically. A comprehensive overview of the main 
modelling approaches is described in [12] for pedestrian mod-
els, and [38] for cyclist models.

Various approaches that study active mode flows and be-
haviors require pedestrian/cyclist traffic-related data, provid-
ing information about movements in space and time. Different 
models and behavioral theories require different data; mainly 
varying in spatial scale, accuracy, and granularity. In this con-
text, data granularity represents the scale, or the level of detail 
of a dataset, while data accuracy relies on technical capabili-
ties of the data collection system. Furthermore, the temporal 
character of the data use, or in other words its value loss over 
time, is related to the aspect of real-time. In essence, studies 
at strategic and tactical level usually use movement data that 
was aggregated up to a certain extent, and thus conceivably 
requires data at lower granularity and accuracy. At the opera-
tional level, microscopic models however require particularly 
detailed (i.e. high granularity and accuracy) movement data 

along observed individual trajectories, as they examine, for 
instance, variations in speed, directions, relative positions, or 
headways. Densities, speeds and flows can however also be 
observed as fundamental macroscopic relationships, at higher 
levels of aggregation.

Pedestrian and cyclist data can thus be used in a variety 
forms and types, each satisfying a distinct track of active mode 
research. Data-driven studies vary in spatial scale, either over 
the entire network, a link, or a cross-section, and require 
more or less time-sensitive information.

B. Active Mode Data Collection Methods
Real-world datasets are required for any empirical model of 
active mode behavior and analyses of movement patterns. Hu-
mans are considered to be dynamic by nature as they move 
at varying speeds, have different body postures, and wear a 
range of widely varying clothing that may mask their body 
shape. These static and dynamic traits can be captured by dif-
ferent types of sensors when an active mode is present (e.g. 
shape), or performing an activity (e.g. walking/cycling).

Researchers studying active mode urban mobility have 
largely used data gathered with stationary sampling technolo-
gies. Image based sensors (e.g. camera) and infrared or laser 
sensors are most frequently used for microscopic and macro-
scopic measurements at local scale (e.g. cross-sections) [19], 
[37]. Pedestrian trajectories, for example, are usually collected 
exploiting camera footage [19]. Also active sensors such as 
RADAR and LIDAR are used accordingly to a specific applica-
tion or task. While these sensors gather data at different ac-
curacies, they are able to provide data at a high level of detail, 
mainly used for local level walking and cycling behavior, or 
more aggregated for studying traffic flow. Major difficulties 
however revolve around precise tracking of observed pedes-
trians/cyclists, recognition of the same person between two 
sensors, and challenges related to occlusion that limits the 
continuous sensing of an active mode in space and time. The 
overall cost of such stationary sensor data is not incontestable 
as the installation, service and maintenance cost of infrastruc-
ture sensors (e.g. camera installation as traffic detector) is 
expensive and inefficient for information provision at larger 
spatial scale (e.g. network). It is because of the considerable 
investment in infrastructure and setup, that stationary sensor 
data likely has a low level of spatial resolution (i.e. located at 
main intersections, or roads).

Micro- and macroscopic measurements at greater spatial 
level, however, have become more and more utilized thanks to 
technological advances linked with mobile technologies. Yet, 
the emergence of ubiquitous mobile positioning and track-
ing devices have enabled the gathering of large amounts of 
data, in a technically convenient and economically cheap way. 
The movement of pedestrians/cyclists within a given area can 
be observed from the digital traces generated by a variety of 
sensing sources, and requires lower accuracy. For instance, 
frequently used positioning systems (e.g. GPS), are suited to 
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study mobility patterns and route/activity choice, while the 
variations in their accuracy, where errors can be caused by 
satellite orbit or receiver issues, make them inappropriate for 
microscopic movement behavior analyzes. This technological 
integration hence offers an opportunity to analyze mobility 
patterns, across transportation modes, and potentially in real-
time. Over the last decade, digital footprints of human mobil-
ity patterns have enabled urban planners, computer scientists, 
sociologists and engineers to better understand dynamics in 
cities. Past studies have mostly used GPS location updates 
[35], [42], mobile phone records (i.e. CDR and sightings data) 
[3], [16], Bluetooth [39], Wi-Fi [9], and social media data [5], 
[21]. Still, these data require direct or indirect collaboration 
of the tracked target, and thus has to deal with drawbacks in 
terms of representativity of the sample. But it is the intrusive 
nature of these participatory mobile sensing methods, relying 
on smartphones, wearables and other logging devices, which 
represent a major disadvantage and potential limitation as for 
data sparseness in some areas. In addition, while call records 
data (mining of mobile phone data) has proven to be valuable 
in vehicular traffic, it presents, however, high disadvantages 
due to spatial resolution limitations, as well as accessibility of 
the dataset itself. The spatial resolution may represent a big-
ger issue for pedestrian, than for cyclist mobility, as cyclists 
travel further, and hence more coarse data better describes 
their behavior. Thereby, deriving mode choices remains more 
difficult than inferring route choices [4].

Bluetooth and Wi-Fi are currently referred to as the most 
suitable technology to measure active mode traffic in a broad 

set of traffic conditions: from low traffic volumes to high vol-
ume flows in an urban network. They allow tracking of in-
dividuals through a network, one of their main advantages 
being the low cost of measurements [8]. Wi-Fi, however, ap-
pears to be more generic and thus more suitable. At the same 
time, owing to the pervasive coverage, low latency and high 
bandwidth, the fifth generation (5G) of mobile networks are 
becoming another promising solution for urban scale mobility 
measurement [10], [40].

Overall, employed data collection methods are restricted 
to distinct areas of active mode research as each only gather 
certain types of data. Yet, there is no data collection method 
known that provides information about pedestrian and cyclist 
spatiotemporal properties on at different accuracy, as well as 
various spatial and temporal granularity, in urban settings. 
The need for advanced tools, and scalable systems that pro-
vide answers to spatiotemporal resolution, intrusiveness, and 
dynamic network conditions emerges.

III. Fundamentals
The operational objective that we address with this work is to 
enable researchers and policy makers to “observe active mode 
movements in cities at all time.” Fig. 1 exposes the proposed 
active mode sensing system, AMSense, to an urban traffic set-
ting that represents pedestrians walking on side-/crosswalk, 
and cyclists cycling on a designated bike path/road. In a real-
world situation, however, many other traffic situations can be 
encountered due to the complexity of urban dynamics that 
continuously provoke unpredicted events. Pedestrians are 
usually being described with a normally distributed walking 
speed, whereas cyclists exhibit a greater range of speeds but 
more constant, and thus are being described with a wider dis-
tribution and greater mean velocity. In reality, this flexibility 
of speeds and directions can lead individuals to fully stop their 
motion, carry out less predictable movements (e.g. sidestep-
ping), or disobey traffic rules (e.g. crossing at an unsignalized 
intersection). In addition, large intersections, multilane roads, 
and shared spaces are continuously altering the sensing sys-
tem’s requirements as its mobile sensing platforms dynami-
cally sense the environment while being in motion. Overall, 
following urban mobility patterns, higher densities of individ-
uals lead to a higher sensing demand while higher densities 
of mobile sensing platforms lead to a higher sensing supply.

A. Illustrative Example
To extend the technological and spatiotemporal flexibility of 
today’s data collection systems, we consider the following: ev-
ery vehicle in a city has one or more attached sensors, and 
acts as a mobile sensing platform. These sensors are capable 
(individually or in combination) to capture pedestrians/cy-
clists mobility properties in time and space. The generated 
information of a vehicle’s perceived environment is filtered, 
and relevant data diffuses across a network of mobile sens-
ing platforms. The information collected from each of the 

S6

S4

S2

S1

S5

S3

FIG 1 Urban sensing scenario in which mobile sensing platforms (black 
rectangles) capture pedestrians (red circles) and cyclists (green 
diamonds), and provide information about their presence, positions,  
and movements.
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sensor-equipped vehicles is fused, increasing the amount of 
available data at a certain location, and eventually providing 
much greater local detailed knowledge of a city’s neighbor-
hood, road segment, or sidewalk, and potentially in real-time. 
In Fig. 1, AMSense is exposed to an urban sensing situation in 
which pedestrians and cyclists are observed by one or more 
mobile sensing platforms. The sensor equipped vehicles drive 
along the road network and continuously collect sensor data 
of their surrounding environment. This sensed data can then 
be processed to seek for the information of interest that is 
presence, locations, and movements of observed pedestrians 
and cyclists. These data can be shared among vehicles and 
communicated to a remote monitoring and control unit for 
additional processing, visualization, and analyses. A compre-
hensive perception, in such a dynamic environment, requires 
the interplay of different mobile sensing platforms to obtain a 
detailed representation of the scene, and accurate data about 
sensed targets.

Collecting active mode spatiotemporal information in such 
a way could increase flexibility in space and time, and data 
could be generated at different levels of granularity and ac-
curacy. Ideally, this sensing paradigm enables to perform 
different types of studies ranging from the operational level 
applying very detailed local data along individual pedestrians/
cyclists trajectories, over using data potentially collected with 
lower accuracy and aggregated to a lower degree of represen-
tation that would be applied to study macroscopic phenome-
na, up to studies at the strategic/tactical level using even more 
aggregated data over the entire network.

B. Requirements and Performance Metrics
A major trait of AMSense, is that it has to operate in increas-
ingly unstructured environments, which are inherently uncer-
tain and dynamic. We believe there are significant robustness 
and scalability advantages when using vehicles as a mobile 
sensing platform that collectively achieve a global objective, 
while being less intrusive, and less limited by practical con-
straints (e.g. power consumption), network reliability, and 
local processing capacity, than any data collection method 
presented earlier. For instance, vehicles are typically not af-
fected by strict memory, processing, storage, and energy 
limitations, which enables the integration of various sensors, 
wireless transmitters and processing components. In recent 
years, several advanced technologies such as lightweight vir-
tualization and edge computing have been applied to smart 
vehicles to enable novel applications and dynamic service de-
ployment [25], [31], [32].

We identify four prevailing elements that can generate dif-
ferent types of active mode data by using a network of mo-
bile sensing platforms: network, sensing, processing, and 
communication. These fundamental requirements that make 
AMSense scalable to spatially large urban environments, and 
adequate for real-time implementation on rapidly moving ve-
hicles, are illustrated as follows.

Note that the idea of a system that continuously collects 
data on pedestrians and cyclists requires ethical, privacy, and 
security considerations, which shall be covered in future re-
search. Therefore, this paper only draws the attention to such 
issues and advocates the need for an optional on-demand pri-
vacy component, consisting of tailored algorithms and a series 
of mechanisms for implementing potential privacy policies in 
each of the elements outlined below.

1) Network
Sensor networks are typically deployed in static environments, 
with application specific tasks. A highly dense all-static sensor 
network may possibly meet the Quality of Service (QoS) (i.e. 
service of providing spatiotemporal mobility information) re-
quirements in an urban setting akin to Fig. 1. However, studies 
have shown that sensing and networking performance of wire-
less sensing networks can be improved by integrating sensor 
mobility [27], [36]. This for instance, is coupled with advan-
tages for node deployment, and configuration strategies, sup-
porting coverage and control in vast areas. These are required 
since our sensing paradigm relies upon a minimum coverage 
percentage (i.e. percentage of area sensed by at least one ve-
hicle). The control of a flexible temporal and spatial resolu-
tion schemes can be translated into coverage robustness as to 
maximize the number of vehicles sensing the same location. 
Furthermore, as massive data is generated by diverse sensors 
from each mobile sensing platform in the network, at vehicu-
lar speed, it is required to minimize the congestion probability 
(i.e. traffic load must not surpass the bottleneck capacity of 
the links) when data is shared along the network. In addition, 
the network is required to be robust and energy efficient in 
routing. Meanwhile, potential applications may require data 
to be processed real-time, thus minimal response times (i.e. 
latency) are required within the network. At the same time, 
data needs to be fresh, that is the most current status for every 
measurable feature, requiring low network latency from the 
time of sensing to the time of processing.

2) Sensing
Sensing components serve as fundamental as they generate 
the raw data which is used later to detect, and further inter-
pret active modes spatiotemporal properties. Different types 
of active mode data are required to be collected by the sen-
sors, integrated on the mobile sensing platforms. Although dif-
ferent data can be gathered by diverse sensors that generate 
data at a variety of sampling rates and accuracy, a minimal 
measurement accuracy is required. Thereby, the data quality 
is expressed by means of data accuracy and data granularity. 
The latter refers to temporal and spatial resolution of the data. 
Robustness needs to be maintained to avoid single sensor 
deaths (i.e. sensing robustness), and expands a vehicle’s sens-
ing capabilities (e.g. field of view). In order to generate the 
data, sensing elements require a minimum sensing range and 
power. Note that both sensing range and power have a major 
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influence on the coverage requirements introduced earlier. 
The sensing application must therefore include energy-aware 
adaptation to dynamically adjusted sampling rates as each 
sensor type generates data at a different rate based on the tar-
gets or environment.

3) Processing
On top of sensing, mobile sensing platforms also require 
embedded computational resources for data processing. A 
processing element is key, and can be integrated in many 
ways. While the processing can be performed at a central-
ized server in order to have a lower impact on resources, 
some basic filtering and anonymization of the data can also 
be performed before actually sending it. Especially given a 
proliferating amount of data will be generated, processed 
and stored, edge is becoming part of the processing layer 
besides the on-board car processing and remote cloud pro-
cessing [31]. By using edge, a significant amount of process-
ing can be offloaded before sending information to control 
units. Since it is infeasible to transfer the full amount of 
raw sensor data at all time, on-board processing and edge 
processing are required up to a certain extent before fur-
ther transmission. To effectively perceive the dynamic 
movements of active modes, the sensing system requires to 
continuously feed real-time sensor data into the process-
ing module (i.e. frame-rate), and further understand the 
captured scenes (i.e. processing latency) by extraction of 
only relevant information. Moreover, real-time processing 
speeds are required, as well as pre-processing procedures 
to reduce noise of analyzed signals dynamically depending 
on the application. A successful implementation of such a 
system requires state-of-the-art algorithms.

4) Communication
Data providing information on pedestrians/cyclists is required 
to be shareable around the network, in order to eventually be 
available for further analyses. Vehicular traffic is network-
restricted, mainly following traffic patterns (i.e. commuting 
hours), and travelling at maximum 60 km/h in inner city-
rings. Vehicles require communication capabilities that al-
low them to send and receive information packets to other 
mobile nodes, and potentially to additional control units. 
Some systems use short-range communication not just for 
detection but also for enabling collaboration between sens-
ing platforms. As this sensing network shares time-sensitive 
information, data needs to be fresh (novel) and transferred in 
near real-time. The freshness of that data can vary, depend-
ing on how frequently a sensor is relaying readings, and is 
defined by sensing the correspondent application. A reliable 
communication is therefore required, providing answers to 
both potential bandwidth and latency issues. In a reliable net-
work, the mobile sensing platforms need to transmit updates 
constantly, providing most current status for every sensed 
feature [22]. The aim is therefore to maximize the novelty 

of the data received at any moment, while at the same time 
avoiding data congestion.

IV. Design of an Active Mode Sensing Network
Advances in sensing, computing and communication have 
driven efforts to study sensor networks, composed of a large 
number of densely deployed sensor nodes with self-organiza-
tion, cooperative effort and on-board processing capabilities 
[1]. The vehicular based sensing paradigm we propose in this 
paper, is in-line with the Vehicular Sensor Networks (VSNs) 
for various urban monitoring tasks [2], [20], [26], [30]. In this 
section, we propose the design for AMSense that captures 
pedestrian and cyclist spatiotemporal properties in urban 
areas, where a high concentration of vehicles equipped with 
on-board sensors can be expected, and thereby introduce the 
network model and its functional architecture.

A. Sensor Network Characteristics
The requirements outlined in the previous section lead to the 
description of main characteristics displayed in Table I, based 
on [6], for such a mobile sensing network to be designed.

In a traditional multi-sensor system, large scale networks 
take in different dynamics: with mobile, stationary or aerial 
sensor nodes. We identify two distinct features for a sensing 
network that observes pedestrians/cyclists using vehicles as 
sensing platforms: i) vehicles are highly mobile, moving at 
different speeds along the urban street network, and ii) their 
mobility patterns are, to some extent, predictable due to the 
constraints imposed by roads, speed limits, and commuting 
habits (patterns). While both are typical traits of a vehicular 
ad-hoc network, their mobility extends the spatial and tempo-
ral scale of sensing and networking performance. Data about 
pedestrians and cyclists can thus be collected at many differ-
ent locations within the network along the sensing platforms’ 
trajectories, and responding to dynamic changes induced 
from the urban environment.

Due to mobility, the quantity of sensors in a network can 
thereby vary by several orders of magnitude over a day. As 
we utilize vehicles as mobile sensing platforms, and mobil-
ity patterns are strongly affected by the global mobility de-
mand and the topology of the street network, the number of 
vehicles in cities follow a negative binomial distribution [7]. 
The performance of sensing is eventually directly influenced 
by this characteristic, as the accuracy of estimated traffic flow 
variables increases with the number of operating sensing 
platforms observing that same scene. In addition, the spatial 
dimension becomes feasible, as sensing of multiple areas can 
occur in parallel.

Another closely tied network characteristic, with direct 
impact on the QoS of AMSense, is the deployment of sensing 
nodes. The sooner a pedestrian/cyclist is detected the 
better for the global network information quality. The optimal 
placement of sensors is therefore essential to meet require-
ments for entirely observing an area or a target. We chose 
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to use urban vehicles (e.g. private, fleet), enabling wide 
coverage at reduced cost, as mobile sensing nodes to create 
mobile ad-hoc networks and form an inter-vehicle commu-
nication network.

Coverage builds upon the quantity and deployment strat-
egy of sensors present in a network. While sensing cover-
age can be sparse or dense in urban settings, due to varying 
traffic densities, we assume nodes to be deployed with uni-
form density, q, subject to some temporal traffic and local 
patterns. The capabilities of deployed sensors in dense net-
work vary when used individually versus when employed 
collectively. The coverage ratio (e.g. partial, full), with a 
density q that guarantees redundant coverage of an area 
to be monitored, depends on the sensing application and 
the type of data needed. For instance, besides communi-
cations and processing capabilities, network-wide micro-
scopic sensing task (e.g. trajectories of pedestrians/cyclists 
in a network) can benefit from a high quantity of sensing 
platforms and large coverage ratio, as detailed representa-
tion of pedestrian or cyclist movements. In contrast, local 
macroscopic sensing (e.g. densities of pedestrians/cyclists 
on a road segment), requires less information, thus a lim-
ited coverage is sufficient to provide acceptable traffic 
estimates. Already a small number of fleet vehicles could 
satisfy the coverage requirements [33] for some specific ac-
tive mode sensing tasks at macroscopic scale. We note that 
as traffic patterns contain distinct statistical properties, 
network-wide traffic state may be inferred from a learned 
statistical model.

The composition of a sensor network can be homogeneous 
or heterogeneous. As illustrated in the scenario of Fig. 1, the 
composition of AMSense is heterogeneous as to accommodate 
the interplay of different sensor types.

In addition, sensor nodes need to cooperate by means of 
communication to maintain consistent real-time local infor-
mation, which consists of sending and receiving data via a 
communication medium. This enables the sensing vehicle to 
exchange information with other vehicles in the mobile net-
work. The AMSense communication medium is over wireless 
(e.g. 5G and WiFi) to meet the low latency requirement.

The power source represents an influential limitation as 
various sensors, connectivity components, and computing 
equipment surely have important energy demands. For vehi-
cle networks, a higher consumption of energy could eventual-
ly translate into reduced vehicle range. As this work presents 
the potential of future intelligent vehicles’ “data exhaust,” we 
will not consider issues related to continuous power delivery 
capabilities for the early applications.

Three different types of processing architectures are 
typically defining a mobile sensing network; centralized, 
distributed, or hybrid. Raw collected data needs to undergo 
communication and computation, in order to be further 
processed and aggregated to provide information about pe-
destrian/cyclist presence, positions, or movements. While in 
centralized architectures, all captured sensing data is instantly 
transferred to a central processing unit, this approach suffers 
from potential computational bottlenecks because of the sheer 
size of generated data, and is prone to crash in case of cen-
tral unit failure or death. The inherent spatially distributed 
nature of multi-vehicle networks, which rely on a distributed 
communication and computation architecture, however, in-
validate classic centric approaches. Hybrid processing archi-
tectures, in contrast, use a distributed approach to perform 
some level of local computation at each node, yet, still rely 
on a central unit to perform overall data fusion. We propose 
a multi-layered hybrid architecture that grounds on distrib-
uted and decentralized communication and computation, in 
which vehicle nodes communicate locally with surrounding 
vehicles. This allows the communication overhead to scale 
well with increase in network size and efficiently use paral-
lel processing to process real-time data. This allows complete 
parallelisation of any algorithm, speed increase and proves to 
be a very survivable system.

B. Functional Architecture
Fig. 2 displays a multi-layer mobile sensing architecture with 
its primary functions. Remind that we make use of vehicles’ 
sensing capabilities without interfering with their native 
operation. AMSense can be divided into multiple layers based 
on information hierarchy and computing capabilities. In a top 

Network Characteristics Type Key Performance Metrics 

Dynamics Mobile Spatial resolution 

Quantity Mobility demand Temporal resolution 

Deployment Private vehicles, fleets Deployment strategies 

Coverage Spatio-temporal traffic pattern Redundant coverage, optimal allocation 

Composition Heterogeneous Sensor fusion 

Communication Wireless Low latency, high bandwidth, 5G 

Power source Internal, on-board Energy consumption 

Architecture Multi-layer hybrid, decentralized Scalability, real-time implementation, privacy

Table I. Overview of designated main characteristics based on [6], for a sensing network that uses vehicles as mobile nodes.
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down order, a cloud layer, on top of which diverse applications 
can be developed, governs an edge data processing layer that 
connects physical devices (i.e. mobile sensing platforms) with 
the cloud. Units and modules follow distinct objectives, and 
are represented in the figure to provide functional context.

Cloud Layer. At a governing level, the cloud layer (Online 
Fleet Operation (OFO)) offers resources for monitoring and 
managing the mobile sensing network, along with resources 
for further complex data analyses and long-term storage, 
while streaming information from mobile sensing platforms 
at any given time. This dynamic layer, manages the network, 
and processes less time-sensitive, non-raw data, which is al-
ready preprocessed through filtering and aggregation mech-
anisms by underlying layers. Information reaching the OFO 
can either be used for sensing operations management (e.g. 
data acquisition) or data processing tasks. In the first place, 
this layer enables interactions between many possible ap-
plications, including their collaboration and data exchange, 
potentially in real-time. Applications are developed on top of 
the cloud services and provide users the possibility to further 
analyse the collected datasets through APIs. Those make the 
data available for running additional data analytics, machine 
learning, and visualisations on cloud servers that provide 
deeper insights in the collected data. In addition, the OFO of-
fers various other services, such as coordinating user-defined 
sensing tasks. As such, sensing can either be performed con-
tinuously in the background or triggered by a request via 
cloud-based applications. Requests (i.e. sensing tasks) can be 
defined specifically, including information about possible tar-
gets, planned routes and sensing behaviours, after which, the 
OFO sends task-related information to respective sensing plat-
forms. The data collection and coordination process of those 
sensing tasks is performed autonomously by the cloud and 
underlying edge layers, based on value specific context selec-
tion that is to choose the best data sources for defined sensing 
tasks, without the need to contact the cloud service. A mobile 
sensing platform can thus wait for incoming tasks, start the 
data collection, and return results, or may simply publish pre-
processed data without a specific request, whenever a con-
nection is available. While the freshness of data plays a major 
role, data can be stored locally at the edge (e.g. on-board) or 
globally (e.g. cloud server), before or after pre-processing, and 
can be retrieved for further analyses.

Edge Data Processing Layer. Because of computational 
and QoS requirements and the sheer size of collected data, 
we move and offload computation in the proximity of mobile 
devices by introducing an intermediate layer responsible for 
additional data filtering, aggregation, processing and storage. 
This edge data processing layer entails the computing para-
digm that delivers similar service as cloud computing, but by 
different means to enable a range of new benefits such as low 
latency, context awareness and mobility support. In addition, 
edge processing layer delivers similar utility computing model as 
cloud computing (e.g., SaaS, IaaS, PaaS) but in a decentralized 

manner, where computing power is brought to the networks 
edge infrastructure. Therefore, the processing tasks on the 
gathered data happens at the edge, that is on mobile sensing 
platforms and the edge infrastructure between mobile devices 
and cloud services. This design reduces the load of data on 
the network and the cloud, as sensing, processing, aggrega-
tion and application execution are distributed over the entire 
network, and potentially in real-time. In contrary to a plain 
middle layer solution, our edge layer includes programmabil-
ity and flexibility via software-defined networking (SDN) [24] 
and network function virtualization (NFV) [17] to deliver ubiq-
uitous processing capabilities across a wide range of hetero-
geneous hardware. For instance, the AMSense edge layer will 
provide image processing and raw sensing data pre-process-
ing simultaneously. Given the heterogeneous characteristics 
of various instances deployed in AMSense, the edge data pro-
cessing layer cooperates mutually with both cloud layer and 
physical layer, by acting as a bridge between elements that 
require dedicated interaction.

Physical Layer. Apart from native components and func-
tions that are necessary for a vehicle’s driving, core components 
of a sensing platform include sensing, localisation, processing 
(i.e. perception, decision control) and communication.

The sensing module is based of sensors covering a vehi-
cle’s external sensing capabilities, as well as internal sensors 
that provide information about a vehicle’s internal state. The 
sensing module itself remains configurable, as any vehicle in-
tegrated sensor may be activated, and thus send data, on the 
grounds of the different types of application. Sensor data can 
directly be used for localisation and map provisioning, and 
thus holds a common interface with the localisation module.

Although sensing and localisation are strongly linked and 
together form the core source of data, the latter is an indepen-
dent module that has to provide two types of information on 
higher abstraction level. First, mobile sensing platforms are 
required to localise themselves (ego-localization) on a street 
network. The localisation module therefore requires to per-
form mapping, map updating and provides map information 
to other modules. Second, mobile sensing platforms are re-
quired to localise detected pedestrians and cyclists. Sensors 
thereby provide data input to obtain an absolute, global pose 
from localisation algorithms. Satellite technologies, as tradi-
tional GPS, are largely sufficient on a macroscopic level for 
road localisation. But shrinking down the scale to the order of 
a few centimetres, to perform localisation on lane- or subject-
level in dynamic urban environments, localisation exceeding 
GPS accuracy is required. While some techniques to improve 
the accuracy of a traditional GPS system exists [23], the re-
quired stringent level of accuracy and availability for such 
mobile sensing application can be achieved using additional 
sensing sources (i.e. LIDAR and camera) to produce a more 
accurate, robust and reliable localisation. The accuracy of an 
active mode’s position thus depends on the technical charac-
teristics of the sensing vehicles that capture this individual, 
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but can also be increased with additional positional measure-
ments that capture the individual, fused from different loca-
tions and perspectives.

The sensing module transfers raw sensor data via an in-
terface to the perception module, with additional informa-
tion originating from the localisation module that follows. 
Different types of sensors such as LIDAR, RADAR, long-range 
ultrasonic and forward-facing or surrounding-view camera 
sensors, provide depth information of a vehicle’s surround-
ings. This data aggregate, for instance, can later be used for 
purposes of environment modelling. Note that sensors of each 
mobile sensing platform need to be considered independently, 
as they are subject to a vehicle’s ego-motion. Vehicles have 
different perspectives on a scene, depending on their loca-
tion and the orientation of their sensors. For these reasons, 
data filtering is performed to integrate one vehicle’s captured 
scene (e.g. point cloud), to another vehicle’s local view, ob-
serving that same scene, at the exact same time. With de-
tailed information about a vehicle’s orientation and position, 
a transformation can be performed that brings the data into a 
universal-VSP bound coordinate system by estimating the ego 
motion. In other words, dynamic (e.g. pedestrians) and static 
(e.g. infrastructure) elements from a scene that are output of 
the mentioned sensors, can be associated to three dimensional 
position information, using pre-computed 3D maps of the en-
vironment. Furthermore, several algorithms (e.g. feature ex-
traction, model-based filtering) are executed to perform active 
mode detection, and self-monitoring of surrounding vehicles. 
Algorithms such as for pedestrian/cyclist detection and clas-
sification, or tracking, ground on deep neural networks. While 
they require substantial computing resources, their accuracy 
and speed is proportional to the computing resources avail-
able to them.

The perception module has interfaces to sensing, localisa-
tion, planning and control, as well as to the communication 
module. Perception data can directly, or indirectly, be used 
for broadcasting information via the communication interface 
to other vehicles, as to extend surrounding vehicles field of 
view that may be limited (e.g. visibility) [34]. This perceived 
information is transferred to the decision and control module, 
where the real time map of sensed active modes and their en-
vironment is updated. Note that while the processing module 
is fixed, the storage module can be customised depending on 
application and usage.

The communication module embeds the 5G connectivity 
and spans across three layers, as illustrated in Fig. 1. From 
architectural perspective, this implies that the communica-
tion module integrates the cloud computing, edge computing, 
SDN, NFV, and combines various wireless elements to deal 
with the requirements of AMSense services. As 5G connec-
tivity in the future will be regarded as one of the mandatory 
common-pool resources (CPR) similar to water and electric-
ity, the communication module also cater to the requirements 
from governmental and economical angles. This will establish 

a strong connection on the regulation and management in 
terms of interoperability, safety, cost of maintenance, public-
private ownership, wireless spectrum bidding and allocation, 
which is necessary part of AMSense.

The decision and control module has interfaces to the 
perception and communication modules, as well as towards 
the actuators within the native driving module. Algorithms 
in the decision and control module are the primary users of 
the processed information. While path planning, stabilisation 
and motion control are performed during the native driv-
ing of the vehicle, and thus do not relate to the monitoring 
system, behaviour planning and execution monitoring, how-
ever, use information from perception module to potentially 
perform detection or tracking tasks. Those are based on mes-
sages originating from OFO interface. As mentioned before, 
depending on the application, sensed and perceived data can 
be provided at different temporal and spatial levels for ac-
tive mode movement mapping updates. Behaviour planning 
entails operating for active mode detection or tracking where 
waypoints are targeted between which a route needs to be 
planned. Behaviour planning does however not only select 
the modelled movements, but also plans how it has to be 
executed. This manoeuvre information (e.g. orientation, ve-
locity) may be utilised by succeeding vehicles, and provided 
with lateral and longitudinal trajectory data to best capture 
the targeted active mode. For instance, the knowledge of a 
no-detection field (e.g. occlusion), is valuable and may af-
fect the path planning of following vehicles by changing to 
a lane with better view to capture a pedestrian on the side-
walk. In addition we also include execution monitoring to 
this module. This ensures that assigned tasks are executed as 
planned, and possible deviations lead to adjustments in the 
sensing operations. In the future, it could allow sensing ve-
hicles to actively reposition themselves in order to optimise 
their sensing orientation (i.e. distance, angle), using path 
planning that finds an optimal path when a task is assigned, 
while recalculating positional deviations.

V. Active Mode Sensing Applications With Urban Vehicles
The complexities and edge-cases of scene perception, as well 
as the limitations and imperfections of sensors, make captur-
ing the presence of active modes from a moving sensor plat-
form full of open challenges. Using data from a single sensor 
source, is not necessarily sufficient to differentiate individuals 
from other objects in urban environments. We first categorise 
different sensing technologies before diving into sensor appli-
cations and examining scenario related parameters.

A. Sensor Configuration
To start with, we classify the different sensors into those cap-
turing the internal states of the vehicle and those capturing 
the states of the environment in which the vehicle operates.

The prior are described by the vehicle CAN bus, a serial 
broadcast bus that allow near-real-time management of most 
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sensors and electronic devices embedded in the car. These 
highly integrated sensors measure steering angle, brake pres-
sure, or acceleration rate are input for actuators related to a 
vehicle’s native driving task. Such data may however be used 
to indirectly detect interactions with active modes, and hence 
denote their presence. In the context of driving behaviour 
analysis [14], [28], the identification of changes in a driver’s 
behaviour could not only help recognizing hazardous situa-
tions but may also lead to describing active mode presence 
in real-time. For instance, think of a vehicle firmly braking in 
front of a pedestrian crossing (e.g. zebra). The braking opera-
tion can directly be read from outcoming sensor signals via 
the CAN bus, while the zebra crossing may be identified based 
on combination of position and 3D-map. Fusing the data, we 
could assume that the presence of a pedestrian is likely.

In a second category, we consider active and passive sen-
sors, capturing most points in a vehicle’s surrounding, as 
exemplified in Fig. 3, namely: vision, LIDAR, and RADAR. Ve-
hicles equipped with vision sensors, with embedded stream-
ing capabilities are becoming commonplace. Thereby, setups 
are mainly based on mono, stereo, infrared/thermal cameras. 
Note that mono- and stereo cameras offer a high resolution, 
however are subject to environmental influences, while in-
frared/thermal work well at all lighting/weather conditions 
and raises less privacy concerns. While vision sensors can be 
mounted at multiple locations (e.g. roof, side), the forward-
facing or surrounding-view cameras are used to identify 
active modes and objects in the field of view, by creating a 
composite picture of the surrounding environment. Large 
improvements in computer vision based pedestrian detec-
tion were made in the recent past [11], [13]. LIDAR provides 
highly accurate long-range object detections (up to 250 m), 
by continuously scanning the environment. They are usually 
mounted to the top of a vehicle, and compared with cameras 
can provide accurate information and larger field of view 
(i.e. unobstructed 360-degree view) [41]. While LIDAR exist 
at different wavelength and resolution, high-resolution LI-
DAR are able to pinpoint pedestrians at high accuracy and 
make it even possible for the system to detect human poses. 
RADAR in contrast, output distance, velocity, and typically 
have high measurement accuracy. Typically, 360-horizontal 
coverage using short-range radars (~ 40 m range) and mid-
range-radars (~ 100 m range) can be achieved with 4-6 radars 
mounted at each corner/side of the vehicle. As RADAR is less 
affected by external conditions, they provide redundancy for 
camera and LIDAR.

The detection accuracy and correct localisation can be 
significantly improved by fusing data from a set of sensors. 
This for instance, supports the use of a sensing network with 
multiple sensors, while making use of vehicles’ movements 
to increase detection and measurement performance through 
the extension of different field of views. This capability that 
provides depth perception of the surrounding environment 
is likely to become pervasive in future vehicles. Note that the 

mentioned sensor components all depend on different system 
integration and amount of processing.

B. Active Mode Sensing Scenarios
We further give an overview of urban traffic situations, illus-
trated in Fig. 4, where pedestrians and cyclists can be sensed 
with AMSense. Four situations are used to describe specifics 
on interactions between mobile sensing platforms and active 
mode behaviours in a set of generally representative urban 
traffic settings: a) target is in field of view, b) is not in field of 
view, c) unclear situations due to occlusion, and d) the target 
deviates from his linear trajectory (e.g. crossing). Note that we 
assume active modes not to be restricted by the pedestrian or 
cyclist network (e.g. shared spaces), while vehicles to only use 
the underlying street network.

A pedestrian or cyclist may be identified or tracked in time 
and space by one or more sensing platforms. However, when 
assigned an ID (e.g. “pedestrian 1”) and tracked for a certain 
time interval, the tracked target may loose its temporary ID in 
situations where no target-sensing is possible (e.g. occlusion, 
location not sensed). The target will most likely be assigned 
a new ID, when reentering the field of view of that same (or 
different) vehicle. While a vehicle sensing a target can solely 
be expressed as the estimate detecting that target, the quality 
of collected data depends upon the interplay of the sensing 
system’s technological capabilities and actual urban traffic 
conditions. Overall, the granularity and accuracy of the data 
are typically determined by sensor types, while the accuracy 
also depends upon sensing positioning, node coverage and ex-
ternal conditions (e.g. weather).

In the first scenario (a), the pedestrian and cyclist are in 
unobstructed field of view to their closest vehicle, and can 
thus directly be captured by that vehicle. This situation occurs 
when the target is in detection radius of the sensing vehicle, 

Long-Range Radar ~280 m

Mid-Range Radar ~140 m

Infrared/Thermal
Camera ~120 m

Video
Camera ~80 m

Short-Range
Radar ~40 m

Lidar ~120 m

Video Camera ~80 m

Mid-Range Radar ~100 m

S

FIG 3 Illustration of a possible sensor configuration on a mobile sensing 
platform.
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and in the case that no additional active mode, or object hin-
der a clear view on the target. In this situation we assume 
that data about that captured individual will always be avail-
able by means of at least one sensing vehicle, whether it is in 
motion or not. Collected information about that pedestrian/ 
cyclist could therefore include presence, locations, speeds, and 
movements, generated at each sampling time until moving 

out the detection radius. The measurement accuracy of that 
individual, is affected by the sensing vehicle’s position, that is 
the distance and angle to the target. Furthermore, the effects 
of such sensing network on data quality becomes apparent 
when an active mode is captured by more than one sensing 
platform, as in Fig. 4 vehicles 2 and 6. Both generated data 
are fused (data needs to be fresh), extending the vision on 

FIG 4 Overview of potential traffic situations, where mobile sensing platforms sense their environment while pedestrians (red circles) and cyclists (green 
diamonds) are a) in field of view, b) not in the field of view, c) not or partially detectable, d) crossing.
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that pedestrian while potentially increasing the accuracy and 
granularity of the data.

In a second scenario (b), the pedestrian and cyclist are in 
unobstructed field of view to their closest vehicle, however 
can’t be directly captured as they are not inside the vehicle’s 
detection radius. This situation occurs in case of large distanc-
es or wide angles between the target and sensing vehicle. In 
this situation no data on the present active modes is gener-
ated. Although vehicles may sense their surroundings, no pe-
destrian/cyclist is detected until they reach one of the vehicles’ 
sensing radius. Yet, prior data that was generated at the time 
a pedestrian/cyclist was moving in a vehicle’s sensing radius, 
might still be available in the network (e.g. data storage). Al-
most fresh information (e.g. near real-time) may then be used 
to estimate an active mode’s position for a limited time inter-
val. This situation can be altered by increasing the coverage of 
that sensed area.

In a third scenario (c), the pedestrian and cyclist are in 
obstructed field of view to their closest vehicle, and thus 
can’t be sensed by that vehicle, in the time of sampling. This 
situation occurs when an object (i.e. infrastructure, nature) 
hinders the view, and thus makes perception of the active 
mode impossible, even though the target is in radius of de-
tection. This situation also occurs in settings where crowds 
make individual detection more difficult. Full occlusion 
entirely hinders collecting any data about that individual’s 
presence, location, speed, or movements, until reappearing 
in the same (or another) vehicle’s field of view. Partial occlu-
sion, yet, reduces dramatically the quality of data, however, 
data about that active mode may be processed up to a certain 
extent. The positioning of a mobile sensing platform and its 
sensors influences the occlusion shadow, and therefore, 
the amount of collected information. Thereby, data fusion 
enhances the overall detection and perception, as diverse 
sensors could capture targets differently. At the same time, 
increasing the sensing coverage, is likely to expand the col-
lective field of view on a scene.

In a fourth scenario (d), we show a subset of different cross-
ing situations in urban traffic settings. Active modes may use 
signalised or unsignalised locations to cross a street. Involved 
vehicles adapt their ego-motion to the crossing situation, 
which shall have no effects on sensing capabilities. However, 
less vehicles might be able to see that crossing individual as 
theyll have a different perspective on the environment (par-
allax), e.g. crossing in front of a vehicle create an occlusion 
shadow for the following vehicles. Remember that perception 
data from the first vehicle can then be used to extend the field 
of view of following vehicles.

The quality of collected data is, technological capabilities 
and external conditions aside, mainly influenced by the posi-
tioning of sensing vehicles to their targets, as well as the sens-
ing coverage at a certain location. Likewise, the movement of 
pedestrians and cyclists is equally influencing the collection 
of data quality, due to occlusion introduced by infrastructure, 

vehicles or groups of people. In addition, the movements of 
vehicles in relation to a sensed radius influences the granular-
ity of the data. Remind that, collecting datasets about labeled 
individuals across the network, as for instance needed in route 
choice studies, seems impossible without using additional 
sensing technologies (e.g. Bluetooth).

C. External Operating Conditions
Although we cannot account for all environmental factors that 
might affect the sensing performance, we describe the ones that 
are most likely to adversely affect the correctness of sensors, 
protocols, and algorithms. In the remainder of this section, we 
describe weather effects, occlusion effects, and noise model.

In addition to dealing with internal system failures resourc-
es (e.g. bandwidth), the mobile sensing network, and more 
particularly single sensor nodes may fail or be blocked due 
to physical damage, or environmental interferences. Environ-
mental reliability, denoted as Rk(t), can be modelled using the 
Poisson distribution and represents the probability function-
ing without interruption during sampling time t. Furthermore, 
weather conditions (e.g. low visibility), can directly affect the 
active mode detection, and cause false positives/negatives. In 
scenarios with low lighting conditions, we expect a drastic de-
crease in sensing performance of most vision sensors (infra-
red excluded). Temperature is not expected to have a direct 
effect on overall performance.

Road conditions (e.g. street quality) and the presence of ob-
structing infrastructure or urban greenery can have a negative 
impact on the quality of sensing targets and communication 
between nodes. One of the main concerns when detecting pe-
destrians and cyclists is occlusion, which occurs especially in 
high density scenes or when objects hinder a clear view in an 
observed area. A vehicle’s field of view towards the sidewalk 
may be occluded by trees, parked cars or urban infrastructure. 
This prevents the mobile sensing platform to correctly observe 
the actual scene, and thus missing out possible pedestrians (or 
cyclists). Although some areas might present high risk of oc-
clusion, this occlusion might not be present for very long since 
the active modes and sensing vehicles are moving at differ-
ent relative speed. In an eventual future, in which one could 
think of vehicle manufacturers or fleet operators allowing the 
placement of sensors at various locations on a vehicle, the sur-
rounding environment could be perceived from a multitude of 
distinct points on a mobile sensing platform. It should be noted 
that vehicle-free areas make up a sizeable fraction of most ur-
ban areas. Active modes would therefore have to be monitored 
with other mobile vehicles (e.g. bikes, drones), or static sen-
sors that are equivalent to mobile sensing platforms at speed 0, 
and their fusion would be worth considering in future studies.

Typically, such a mobile sensing network is subject of 
noise-corruption that increases with the quantity of sensor 
nodes involved. As mentioned earlier, the detection of a 
pedestrian/cyclist is only expressible as a probability. All raw 
sensor data come with uncertainties (i.e. sensor efficiency, 
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weather, road conditions) and hence inherit noise. Proba-
bilistic methods, such as Kalman filter, addresses this mar-
gin of error.

VI. Conclusion
In this paper, we presented AMSense, a novel mobile sens-
ing system that uses connected multi-sensor equipped 
vehicles to build a sensing network which captures pedes-
trians and cyclists spatiotemporal properties in urban ar-
eas. The collected data about pedestrian/cyclist presence, 
locations, and movements can be used as input for a variety 
of studies that require active mode information at diverse 
macro- and microscopic levels. Future work will dig into 
challenges of reliability, scalability, as well as ethical, pri-
vacy, and security considerations. Moreover, future work 
will investigate dynamic and context-aware data collection, 
explore the potential of measuring spatiotemporal densi-
ties, speeds and flows using such a mobile sensing system, 
and study active repositioning of sensing vehicles to opti-
mise vehicle allocation.
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