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a b s t r a c t 

Multiple robots are increasingly being considered in a variety of tasks requiring continuous surveillance 

of a dynamic area, examples of which are environmental monitoring, and search and rescue missions. 

Motivated by these applications, in this paper we consider the multi-robot persistent coverage control 

problem over a grid environment. The goal is to ensure a desired lower bound on the coverage level of 

each cell in the grid, that is decreasing at a given rate for unoccupied cells. We consider a finite set of 

candidate poses for the agents and introduce a directed graph with nodes representing their admissible 

poses. We formulate a persistent coverage control problem as a MILP problem that aims to maximize 

the coverage level of the cells over a finite horizon. To solve the problem, we design a receding horizon 

scheme (RHS) and prove its recursive feasibility property by introducing a set of time-varying terminal 

constraints to the problem. These terminal constraints ensure that the agents are always able to terminate 

their plans in pre-determined closed trajectories. A two-step method is proposed for the construction of 

the closed trajectories, guaranteeing the satisfaction of the coverage level lower bound constraint, when 

the resulting closed trajectories are followed repeatedly. Due to the special structure of the problem, 

agents are able to visit every cell in the grid repeatedly within a worst-case visitation period. Finally, we 

provide a computational time analysis of the problem for different simulated scenarios and demonstrate 

the performance of the RHS problem by an illustrative example. 

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1

t

a

t

l

t

a

a

w

[

n

t

p

v

t

v

a

m

l

i

t

a

e

n

a

e

t

h

0

. Introduction 

Recent advances in the capabilities of robotic agents have led 

o an increase in the number of the tasks agents can perform as 

 team. Among others, particular tasks requiring repetitive execu- 

ion have attracted interest, examples of which are area surveil- 

ance [34] , cleaning [10] and forest fire monitoring [8] . In such 

asks agents need to cooperatively plan their moves so that a given 

rea is continuously covered. This problem is known in literature 

s the Persistent Coverage Control (PCC) problem [24] . 

PCC is closely related to the Coverage Control (CC) problem in 

hich an area needs to be covered either once ( sweeping methods 

1,11,23,31,40] ) or until a desired level of coverage is reached ( dy- 

amic coverage methods [12,14,29] ). Sweeping methods are based on 

he decomposition of the area of interest in cells [11] assigned to 
� This research did not receive any specific grant from funding agencies in the 

ublic, commercial, or not-for-profit sectors. 
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he agents either online [31] or prior to the task. Contrary to pre- 

ious approaches, in which coverage was achieved by non-moving 

gents optimally placed in each Voronoi cell of the area [6] , here 

obile agents are considered, covering the assigned cells by fol- 

owing a lawn-mowing pattern [23] . Other methods [1,40] approx- 

mate the area with a grid and construct Spanning Trees connecting 

he centers of the cells such that the maximum distance between 

ny two agents is minimized. 

In all these methods every point in the area is considered 

qually important for coverage. This assumption is relaxed in Dy- 

amic Coverage methods [12,14,29] , where each point has a value 

ssigned to it expressing its coverage priority. Here, the agents are 

quipped with sensors with a known sensor model and the goal is 

o provide a desired level of coverage at fixed points in the area. 

A common characteristic of the aforementioned CC tasks is 

heir finite duration. This differentiates them from PCC tasks as 

he latter are executed repeatedly. In literature several solution ap- 

roaches to the PCC problem are proposed that either decouple 

he sensor deployment problem from trajectory planning [27,36] or 

onsider a motion planning framework under coverage specific 

bjectives ( patrolling methods [25,30,32] , coverage level methods 
rved. 

https://doi.org/10.1016/j.ejcon.2021.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2021.12.005&domain=pdf
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Fig. 1. Representation of the admissible moves for an arbitrary node (x i 1 , y i 2 , θi 3 ) . 

For simplicity we omit x, y, θ and use only the indices i 1 , i 2 , i 3 . 
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26,28,33,35,] ). To overcome the complexity of PCC, authors in 

27,36] propose a multi step method in which closed paths are de- 

igned for guaranteeing periodic coverage of points/sub-areas with 

nown, predetermined periods while maintaining a desired level 

f coverage [27] or respecting frequency of visitation constraints 

36] . In [4] stochastic Petri nets are considered for modelling the 

CC problem under stochastic duration times of the coverage tasks 

hile [3] proposes policies ensuring asymptotic satisfaction of a 

et of given specifications. 

Patrolling methods consider a graph G with vertices defined as 

 finite set of points in the area to be covered and the goal is to

esign paths such that the maximum time elapsed since a point 

as last visited is minimized over the vertex set. In [30] polyno- 

ial time methods are proposed for the design of agents’ paths 

n chain, tree and cyclic graphs. In [25] a greedy policy is intro- 

uced for non-holonomic agents while in [32] closed paths are de- 

igned considering different frequency of visitation constraints for 

ach vertex of G . In all these methods, paths are designed once 

nd possibly offline with the PCC task being considered successful, 

hen agents follow these paths repeatedly. 

While patrolling methods consider a static environment, in cov- 

rage level based methods the ”level of coverage” of a point in 

he area to be covered is considered time-varying with known 

ynamics. Early works consider a finite set of points in the area 

nd assume the existence of a single [19] or multiple closed paths 

33] passing through every point in the set. Then, the goal is to 

esign speed controllers so as the coverage level at these points is 

symptotically driven to a desired value [19] or becomes asymp- 

otically bounded [33] . Infinitesimal Perturbation Analysis was used 

n [20] for designing closed, elliptic trajectories minimizing the 

coverage level loss” over a finite set of points in the area to be 

overed or more recently for allocating agents along linear seg- 

ents minimizing coverage level loss while accounting for dwell 

imes at the points of interest [41–43] . In [26,28] the coverage level 

f every point in the area is considered and the goal is to plan

gents’ actions so that a desired level of coverage is maintained 

ver the area. To that end, authors propose feedback control laws 

teering agents towards less covered points in the area lying in- 

ide the agents’ Voronoi cells. Nevertheless, authors do not con- 

ider frequency of visitation constraints in the area while cases of 

on-uniform coverage are allowed with the coverage level of some 

oints being significantly lower than the desired one or close to 

ero. 

In this paper we consider a grid environment and a team of 

obots responsible for maintaining a desired lower bound on the 

overage level of each cell in the grid at all times. Similar to 

26,28] , the coverage level of each cell is decreasing over time for 

on-visited cells. Nevertheless, in our formulation we allow only 

ne agent per time step to contribute to the coverage level of each 

ell by resetting it to a given constant. As a result, and due to the

ower boundedness of the coverage levels, we can derive our first 

ontribution as a lower bound on the frequency of visits at ev- 

ry cell. This allows us, in contrast to existing literature, to provide 

imultaneously both an upper bound on the worst-case revisiting 

ime interval length and a lower bound on the quality of coverage 

f each cell. The second contribution of this paper is the formu- 

ation of a finite horizon MILP problem, the solution of which de- 

nes the trajectories of the agents satisfying the lower bound con- 

traint over the horizon. To guarantee feasibility when the prob- 

em is solved in a receding horizon scheme (RHS), a set of time- 

arying terminal constraints is added to the problem. These con- 

traints force agents’ final poses to be along a set of predefined, 

losed trajectories and we propose a two step method for their de- 

ign. To the best of our knowledge, this is the first online trajectory 

lanning method with both worst-case frequency of visitation and 

overage level guarantees. 
2 
The remainder of the paper is organized as follows: 

ection 2 introduces the basic elements of the problem. In 

ection 3 the MILP formulation of the problem is established. 

ection 4 presents the RHS-problem and the proposed two-step 

ethod for designing the closed trajectories for the terminal sets. 

inally, in Section 5 numerical simulation results are shown while 

n Section 6 our conclusions are summarized and directions for 

uture research are proposed. 

. Problem formulation 

In this work a known, compact area Q ⊂ R 

2 is considered. The 

rea is decomposed into a grid of n w 

= C × L square cells with

, C denoting the number of rows and columns in the grid respec- 

ively. Without loss of generality a Cartesian coordinate system is 

ssigned to the grid and an index w ∈ I = { 1 , . . . , n w 

} to each cell in

he grid. A team of n r agents is employed for the task. The agents

re equipped with identical sensors of finite and known sensing 

rea. 

emark 1. Grid-based environments have been extensively consid- 

red in robotics for path planning, given a starting and goal posi- 

ion of an agent [2,16,37] . The grid is often abstracted by a graph

ith nodes representing the centers of the cells and edges con- 

ecting the neighboring cells, allowing the use of graph based al- 

orithms such as Dijkstra and A 

∗ [15] for finding the shortest path 

ith respect to a given cost function. Contrary to these approaches, 

here the size of the cells is often chosen arbitrarily small, in (per- 

istent) coverage control problems a coarser grid can be generally 

onsidered, where the size of the cells is at most equal to the sens- 

ng area of the agents. This low resolution choice of grid offers sev- 

ral computational benefits while ensures that no point in the area 

s left uncovered [13] . 

Each agent is assigned to an index r ∈ K = { 1 , . . . , n r } and its

osition and heading at time step k is denoted by p k r and θ k 
r re- 

pectively. In this work, the agents’ allowable poses (positions and 

eadings) are finite and agents’ moves are constrained. At each 

ime step k an agent is placed at the center of a cell w ∈ I, denoted

y c w 

with its heading θ k 
r taking values from the set 

{
0 , π, π2 , 

3 π
2 

}
.

ased on their current position and heading, agents are able to 

erform one of the following actions: 

• Stay at place (position and heading stays the same) 

• Turn at place by 90 ◦

• Move to an adjacent cell in the direction of their heading 

Let the allowable poses of the agents be of the form 

x i 1 , y i 2 , θi 3 
) , i 1 ∈ { 1 , . . . , C} , i 2 ∈ { 1 , . . . , L } , i 3 ∈ { 1 , . . . , 4 } with θ1 =

 , θ2 = 

π
2 , θ3 = π, θ4 = 

3 π
2 . Then, for arbitrary center coordinates 

x i 1 , y i 2 ) depending on the heading θi 3 
, i 3 ∈ { 1 , 2 , 3 , 4 } the admis-

ible moves are defined as in Fig. 1 . 
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To simplify notation we introduce a single-index label q to each 

llowable pose (x i 1 , y i 2 , θi 3 
) with q defined as: 

 = 4 (i 1 − 1) + 4 (i 2 − 1) C + i 3 , (1)

here i 1 ∈ { 1 , . . . , C} , i 2 ∈ { 1 , . . . , L } , i 3 ∈ { 1 , 2 , 3 , 4 } . Based on the

bove definition the index of the cell w is expressed with respect 

o q by the following equation: 

 = 

⌈ 

q 

4 

⌉ 

. 

sing the simplified labelling, we introduce a directed graph 

 (V, E) with V the set of nodes q defined in (1) and E the set of

dmissible moves as presented in Fig. 1 . 

Next, we consider the coverage level at the center of cell w ∈ I

t time step k , denoted by z k (w ) . Depending on the task, the cov-

rage level may express the amount of dust removed in a cleaning 

ask, the temperature in a heating task or the quality of informa- 

ion in an information gathering task. In [26,28] authors consider 

 non-negative coverage level value for each point that increases 

er time step with respect to the contribution of every agent at 

he corresponding point. Here, we allow at most one agent to con- 

ribute to the coverage level increase per time step. More specifi- 

ally, we define the coverage level dynamics as follows: 

 k (w ) = d w 

(1 − σ k 
w 

) z k −1 (w ) + σ k 
w ̄

Z , (2) 

ith d w 

∈ (0 , 1) a known, constant value called the coverage decay 

actor , Z̄ > 0 a known, constant value to which the coverage level 

esets when an agent visits the corresponding cell center and σ k 
w 

a 

inary variable representing occupancy of cell w by an agent, de- 

ned as: 

k 
w 

= 

{
1 , ∃ r ∈ K : 

⌈
q k r 

4 

⌉
= w 

0 , otherwise 
, 

ith q k r the pose of agent r at time instant k . Based on (2) , the

overage level of cell w decreases with a rate proportional to the 

overage decay factor d w 

when w is not covered and resets to Z̄ if 

n agent is placed at its center. 

In many coverage tasks we may require agents to cover the area 

roviding at least a sufficient level of coverage equal to a constant, 

re-defined positive value Z < Z̄ . Therefore, the following should 

old for every k : 

 k (w ) ≥ Z̄ . (3) 

ased on the above, we are now in a position to define the prob-

em considered in this paper as follows: 

roblem 1. Given a planning horizon of N time steps, a team of 

 r agents, the graph G defining the allowable poses and moves 

f the agents and the coverage level dynamics defined by (2) , de- 

ign the agents’ trajectories such that (3) is satisfied for all k ∈ T N =
 1 , . . . , N} . 

If N = ∞ we will refer to Problem 1 as the infinite horizon PCC

roblem and consider T N \{ N} = T N . 

. Formulation of the MILP problem 

In this section we formulate Problem 1 as a Mixed Integer Linear 

rogram (MILP) that aims at maximizing the sum of the coverage 

evels of all cells while penalizing agents’ intention to visit cells 

overed by peers at the previous time instant. A set of binary vari- 

bles x k 
qq ′ is introduced expressing whether a transition from pose 

 ∈ V to q ′ ∈ V is activated or not at time step k . Their exact defi-

ition is the following: 
3 
 

k 
qq ′ = 

{
1 , if at time k ∃ r ∈ K performing transition (q, q ′ ) 
0 , otherwise 

(4) 

here (q, q ′ ) ∈ E, k ∈ T N . 

The above variables capture the change on the agents’ poses 

hile at the same time remain agnostic about the agent perform- 

ng the pose change. Moreover, their number depends on the size 

f the grid and the horizon length, i.e, it is independent of the size 

f the team. 

In order to discourage distinct agents from covering the same 

ell at subsequent time instants, we introduce an extra set of bi- 

ary variables μk 
w 

, depending on x k 
qq ′ such that the following con- 

traints are satisfied: 

k 
w 

−
∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≤ 0 , (5a) 

k 
w 

−
∑ 

(s,s ′ ) ∈ V w \ V ′ w 

x k +1 
ss ′ ≤ 0 , (5b) 

∑ 

q,q ′ ) ∈ V w 
x k qq ′ + 

∑ 

(s,s ′ ) ∈ V w \ V ′ w 

x k +1 
ss ′ − μk 

w 

≤ 1 , (5c) 

∀ w ∈ I, k ∈ T N \{ N} with V w 

= 

{
(q, q ′ ) ∈ E : q ∈ V, q ′ = 4(w −

) + 1 , . . . , 4 w 

}
, V ′ w 

= 

{
(q, q ′ ) ∈ E : q, q ′ = 4(w − 1) + 1 , . . . , 4 w } . 

onstraint (5a) ensures that μk 
w 

≤ 1 if there exists an agent r 1 
overing w at time step k . Similarly, (5b) implies that μk 

w 

≤ 1 if at

ime step k + 1 another agent r 2 enters w . If the agents r 1 , r 2 visit

 at time step k and k + 1 respectively, by (5c) we have μk 
w 

≥ 1 .

ence, μk 
w 

= 1 . In all other cases μk 
w 

= 0 . In many coverage appli-

ations it is often desirable to minimize unnecessary visits at cells 

n order to save resources and minimize costs. Therefore, as we 

iscuss later in (11) , the cost of subsequent visits at each cell w 

s linearly introduced with respect to μk 
w 

and penalized over the 

orizon N. 

In addition to the aforementioned binary variables, we define 

he continuous variables z k (w ) ∈ [0 , ̄Z ] , w ∈ I, k ∈ T N expressing the

overage level of cell w at time step k . 

A direct consequence of the variable definitions stated above is 

he quadratic form of the coverage dynamics in (2) , due to multi- 

lication of decision variables. Addressing this problem, we refor- 

ulate the coverage level dynamics using a set of linear inequali- 

ies as follows: 

z k (w ) + Z̄ 
∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≤ 0 , (6a) 

 k (w ) − d w 

z k −1 (w ) − Z̄ 
∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≤ 0 , (6b) 

 k (w ) − d w 

z k −1 (w ) − (1 − d max ) ̄Z 
∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≥ 0 , (6c) 

 k (w ) ≤ Z̄ , (6d) 

ith w ∈ I, k ∈ T N and d max = max w ∈ I d w 

. Due to (4) , σ k 
w 

=
 

(q,q ′ ) ∈ V w x 
k 
qq ′ , for every k ∈ T N and w ∈ I. If x k 

qq ′ = 0 for all (q, q ′ ) ∈
 w 

(e.g., no agent visits w at time step k ), then due to (6b) and

6c) we have: 

 k (w ) = d w 

z k −1 (w ) . 

n the other hand, if σ k 
w 

= 1 , then, due to (6a), (6d) it holds that

 k (w ) = Z̄ . Therefore, satisfaction of (6a) - (6d) ensures satisfaction 

f the equality constraint (2) . 
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An important consideration for the current problem formula- 

ion is guaranteeing that the variables x k 
qq ′ , k ∈ T N uniquely define 

he trajectory of each agent over the horizon. To achieve this, we 

ntroduce the following constraint: ∑ 

q,q ′ ) ∈ V w 
x k qq ′ ≤ 1 , (7) 

 ∈ I, k ∈ T N . This guarantees that each cell is visited by at most

ne agent per time step. Therefore, given the pose transition his- 

ory, starting at k = N and back-propagating in time returns the 

nitial poses of the agents. Given that agents are initialized at dif- 

erent cells, we may conclude the unique correspondence between 

rajectories and agents. 

The aforementioned result is partially based on the fact that 

gents’ pose transitions are admissible and exist over the horizon. 

o ensure the above, we consider the following constraints: 
 

q ∈ V 

∑ 

q ′ ∈ V 
x k qq ′ = n r , k ∈ T N , (8a) 

 

k 
qq ′ −

∑ 

(q ′ ,q ′′ ) ∈ E 
x k +1 

q ′ q ′′ ≤ 0 , k ∈ T N \{ N} , (q, q ′ ) ∈ E. (8b) 

Constraint (8a) ensures that the number of pose transitions per- 

ormed over the graph G at each time step k ∈ T N is equal to the

umber of agents in the team. Additionally, by (8b) , if x k 
qq ′ = 1 ,

hen there should exist at least one variable x k +1 
q ′ q ′′ with (q ′ , q ′′ ) ∈ E

uch that x k +1 
q ′ q ′′ = 1 . This implies that an agent must perform a tran-

ition from pose q ′ to pose q ′′ at time step k + 1 only if (q ′ , q ′′ ) ∈ E,

.e., only if the transition (q ′ , q ′′ ) is admissible. Finally, constraints 

re introduced to define the initial pose transitions of the agents 

nd initial coverage level of the cells. In addition, we consider 

3) over the horizon and ensure that the problem variables are 

aking values among the admissible. These are summarized by the 

onstraints below: ∑ 

q r ,q ) ∈ E 
x 1 q r q 

= 1 , r ∈ K, (9a) 

 0 (w ) = Z̄ , w ∈ I, (9b) 

 k (w ) ≥ Z̄ , w ∈ I, k ∈ T N , (9c) 

 

k 
qq ′ ∈ { 0 , 1 } , (q, q ′ ) ∈ E, k ∈ T N , (9d) 

k 
w 

∈ { 0 , 1 } , w ∈ I, k ∈ T N \{ N} , (9e) 

here q r ∈ V is the initial pose of agent r, r ∈ K. 

Let x = 

[
b 

T z T μT 
]T 

be the variable vector with b the 

tacked vector of x k 
qq ′ , (q, q ′ ) ∈ E, k ∈ T N , z the stacked vector of

 k (w ) , w ∈ I, k ∈ T N and μ the stacked vector of μk 
w 

, w ∈ I, k ∈
 N \{ N} . In addition, let n̄ b , ̄n z , ̄n μ be the length of the vector

 , z , μ respectively with n̄ b = (n w 

− 2(C + L )) N , n̄ z = n w 

N and n̄ μ =
 w 

(N − 1) . Then, we are in position to define the problem consid-

red in this paper as follows: 

ax 
x 

J(x ) (10) 

ubject to the constraints: 

(5 a ) − (5 c) 

6 a ) − (6 d) 

(7) 
4 
(8 a ) − (8 b) 

(9 a ) − (9 e ) 

ith J(x ) the objective function of the problem defined as: 

(x ) = 

[
0 n̄ b 1 n̄ z −β1 n̄ μ

]
x , (11) 

here 1 ρ = 

[
1 1 . . . 1 

]
is the vector of 1s of length ρ and 

a positive constant expressing the importance/weight of forcing 

gents to avoid cells covered at the previous time step by peers. 

In the above problem revisiting frequency constraints are not 

xplicitly defined. However, based on the coverage level dynamics 

nd the required lower bound of the coverage level of each cell we 

an state the following: 

roposition 1. If problem (10) is feasible, then the resulting trajecto- 

ies guarantee a lower bound f w 

on the frequency at which each cell 

 , w ∈ I is visited, defined as: 

f w 

= 

⌊ 

ln Z̄ − ln Z̄ 

ln d w 

⌋ −1 

. 

roof. The coverage level of w evolves over time based on (2) as 

ollows: 

 k (w ) = d w 

(1 − σ k 
w 

) z k −1 (w ) + σ k 
w ̄

Z . 

ue to (2) , z k (w ) is monotonically decreasing between two sub- 

equent visits at the cell. Assuming that an agent covers cell w at 

ime step k 1 ,we have that z k 1 (w ) = Z̄ . We need (3) to hold until

he next time an agent visits w , thus: 

 

k 
w ̄

Z ≥ Z̄ , k ≥ k 1 . 

olving the inequality above leads to: k ≤ ln ̄Z −ln ̄Z 
ln d w 

and since k ∈ Z 

e have the result. �

. Modified MILP with guaranteed feasibility 

The MILP problem presented above guarantees a desired lower 

ound on the coverage level of the cells for N time steps. However, 

CC is by its nature an infinite horizon problem, in which agents’ 

ctions need to be continuously planned so as the total coverage 

evel of the area is maximized. As solving the infinite horizon PCC 

roblem is computationally intractable, motivated by Model Pre- 

ictive Control schemes [22] , our approach is to implement the fi- 

ite horizon solution of the problem described in Section 3 , in a 

eceding horizon fashion: each agent implements their first move 

rom the solution of (10) , then resolves the problem over a shifted 

ime horizon in the next step, starting from their new pose. How- 

ver, for N < ∞ problem (10) might not be always feasible due to 

ifferent initial conditions, especially when the problem is solved 

ecursively. In order to address this problem, in this Section we 

ropose a modified version of (10) in which a set of time-varying 

erminal constraints is added to the problem as in [17] . These con- 

traints force agents to move at the end of the prediction horizon 

long predefined, closed trajectories that are designed to guaran- 

ee the lower coverage level bound when repeatedly followed. In 

hat way, it is possible to prove the recursive feasibility property 

f the new problem when it is solved under the receding horizon 

cheme. 

emark 2. Model Predictive Control has been extensively con- 

idered for setpoint stabilization [9] and reference tracking [19] . 

he problem involves the solution of a finite horizon optimization 

roblem online and under certain assumptions can ensure stabil- 

ty of the system under consideration. Although initially proposed 

or deterministic systems, it can be efficiently applied to uncertain 

ystems with bounded or unbounded noise ensuring asymptotic 

onvergence to a neighborhood of the goal position or reference 
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rajectory by means of an offline designed controller [18] or con- 

traint tightening techniques [21] . 

Let u ∈ V n r be the stacked vector of the agents’ current poses 

nd z u ∈ [ ̄Z , ̄Z ] n w the vector of the coverage levels of the cells de-

ned by (2) based on u . For M ∈ N , M > 0 consider a sequence of

ets 
{

S 0 , . . . , S M−1 

}
with M the length of the closed trajectories and 

 v , v = 0 , . . . , M − 1 defined as: 

 v = 

{[
z u 

u 

]
∈ [ ̄Z , Z̄ ] n w × V 

n r : z u � z u v , u = u v 

}
, (12) 

here z u v is the vector including the coverage levels of the cells at 

ime step v when the agents’ poses are defined as elements of the 

ector u v . The sets S v are defined such that 
⋃ M−1 

v =0 S v introduces the 

et of the agents’ closed trajectories. Therefore, it holds that: 

(u 

r 
v , u 

r 
v +1 ) ∈ E, v ∈ { 0 , . . . , M − 2 } 

(u 

r 
M−1 , u 

r 
0 ) ∈ E 

, (13) 

or every r ∈ K with u 

r 
v ∈ V defining the pose of agent r at time

tep v . Due to (13) , z u v +1 
(w ) is defined by (2) based on z u v (w ) , u v +1 

or every v ∈ { 0 , . . . , M − 2 } , w ∈ I and z u 
0 
(w ) based on z u 

M−1 
(w ) , u 0 .

 systematic procedure on how to design these trajectories is pre- 

ented later in Section 4.1 . 

Let t i ≥ 0 , i = 0 , 1 , . . . denote the absolute time instants at which

he optimization problem is solved. The team is assumed to be ca- 

able of communicating with a central base or a specific agent 

esponsible for solving the MILP problem. At each time instant 

 i agents communicate with the base/agent receiving information 

bout their planned trajectories. Each agent performs the first pose 

ransition along its recently planned trajectory and the procedure 

s repeated over a shifted planning horizon. 

Let X 
f 

i 
∈ 

{
S 0 , . . . , S M−1 

}
be the terminal constraint set at time

 i . The coverage level constraints defining X 
f 

i 
in (12) are inherently 

inear and thus can be directly incorporated to the modified MILP 

s constraints of the form: 

 N (w ) ≥ z u v (w ) , w ∈ I. (14) 

n the other hand, u = u v is not linear in x . A naive but straight-

orward way to introduce the final pose constraints linearly could 

e the following: ∑ 

q,q v ) ∈ E 
x N q q v 

≥ 1 , ∀ q v , (15) 

here q v ∈ V is an element of u v , v ∈ { 0 , . . . , M − 1 } . Although the

bove constraint forces agents’ poses to be along one of the pre- 

efined closed trajectories, it does not guarantee that agents will 

ave the same initial and final pose. For example, this could hap- 

en when two agents r 1 , r 2 with initial poses q r 1 , q r 2 ∈ V ”flip”

oses at the end of the horizon. To avoid this and drawing in- 

piration from [7] , we introduce an extra set of integer variables 

enoted by κk 
w 

, w ∈ I, k ∈ T N . These variables take values in K ∪ { 0 }
nd are responsible for keeping track of the agents’ moves over the 

orizon. If the cell w is covered by agent r at time step k , κk 
w 

= r .

therwise, we set κk 
w 

= 0 . This is equivalent to the satisfaction of 

he following constraints: 

k 
w 

− n r 

∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≤ 0 , (16a) 

k −1 
w 

− κk 
w 

′ + n r x 
k 
qq ′ ≤ n r , w � = w 

′ , (16b) 

k −1 
w 

− κk 
w 

+ n r 

∑ 

(q,q ′ ) ∈ V ′ w 

x k qq ′ ≤ n r , (16c) 

n w ∑ 

 =1 

κk 
w 

= 

n r (n r + 1) 

2 

, (16d) 
5 
k 
w 

∈ K ∪ { 0 } . (16e) 

Constraints (16a), (16e) guarantee κk 
w 

= 0 for all cells w ∈ I not 

overed at k while (16b) - (16c) introduce n r inequalities of the form 

k 
w c 

≥ r c , c = 1 , . . . , n r . In order for these inequalities to be true in

onjunction with (16d), (16e) κk 
w c 

= r c , c = 1 , . . . , n r should hold.

hus, the new variables are well-defined. 

Considering the newly introduced variables in the modified 

ILP, we may define their initial and final conditions within the 

roblem as follows: 

0 
w 

= 

{
r, w = 

⌈ q r,t i 
4 

⌉
0 , otherwise 

, (17a) 

N 
w 

= 

{
r, w = 

⌈
u r v 
4 

⌉
0 , otherwise 

, (17b) 

here q r,t i ∈ V is the pose of agent r at time t i and u 

r 
v is the r-th

lement of the vector u v . 

Let ˆ x = 

[
x T κT 

]T 
be the new decision variable vector where 

is the stacked vector of the κk 
w 

variables of length n̄ κ = n w 

N. At 

ach time instant t i the base/agent in charge updates the poses 

f the agents and the coverage level of the cells such that q r =
 r,t i 

, r ∈ K and z 0 (w ) = z t i (w ) , w ∈ I and proceeds with the solu-

ion of the modified-MILP problem defined as: 

ax 
ˆ x 

J ′ ( ̂ x ) (18) 

ubject to: 

(5 a ) − (5 c) 

(6 a ) − (6 d) 

(7) 

(8 a ) − (8 b) 

(9 a ) − (9 e ) 

(14) − (15) 

16 a ) − (16 e ) 

17 a ) − (17 b) 

ith z t i (w ) ∈ [ ̄Z , ̄Z ] the coverage level fo cell w at time t i and

 

′ ( ̂ x ) = 

[
0 n̄ b 1 n̄ z −β1 n̄ μ 0 n̄ κ

]
ˆ x the objective function of the 

odified problem for which J ′ ( ̂ x ) = J(x ) holds. 

At time t 0 the terminal constraint set X 
f 

0 
can be chosen as any 

et of the sequence such that (18) is feasible. Suppose X 
f 

0 
= S v .

t follows that X 
f 

1 
= S v +1 , X 

f 
2 

= S v +2 , . . . , X 
f 

M−1 −v = S M−1 , X 
f 

M−v =
 0 , . . . , X 

f 
M−1 

= S v . Then, for any i ∈ N we can obtain the following

ule [17] : 

 

f 
0 

= S v ⇒ X 

f 
i 

:= S (v + i ) mod M 

. (19) 

ased on the above we can state the following theorem: 

heorem 1. Suppose problem (18) is feasible at time t i with ini- 

ial coverage level values z t i (w ) , w ∈ I, initial agents’ poses q r,t i , r ∈
and terminal set X 

f 
i 

as defined in (19) . Suppose u 

∗(t i ) =
u 

∗
t i +1 . . . u 

∗
t i + N 

]
∈ V n r ×N is a feasible sequence of the agents’ 

oses found as a solution of (18) at time t i . Then, the problem will

e feasible at t i +1 with the initial poses of the agents defined by u 

∗
t i +1 

nd the initial coverage level of every cell w computed by (2) based 

n z t i (w ) and u 

∗
t i +1 . 

roof. For any t i ∈ N there exists an index p ∈ { 0 , . . . , M − 1 } such

hat: 

[
z ∗

t i + N 
u 

∗
t i + N 

]
∈ X 

f 
i 

= S (v + i ) mod M 

= S p where z ∗
t i + N , u 

∗
t i + N are the vec-

ors including the feasible poses of the agents and the feasible cov- 

rage levels of the cells at k = t + N respectively. Due to (19) it
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olds that: 

 

f 
i +1 

= 

{
S p+1 , p < M − 1 

S 0 , p = M − 1 

. 

n order for the problem to be feasible at t i +1 a pose sequence 

 (t i +1 ) ∈ V n r ×N should be defined such that: 

[
z t i +1 + N 
u t i +1 + N 

]
∈ X 

f 
i +1 

. 

onsider the input sequence u (t i +1 ) = 

[
u 

∗
t i +2 . . . u 

∗
t i + N u 

]
ith: 

 = 

{
u p+1 , p < M − 1 

u 0 , p = M − 1 

. 

ue to (13) , (u 

∗ r 
t i + N , u 

r ) ∈ E for any r. In addition, z t i +1 + N (w ) is

omputed by (2) based on z ∗
t i + N (w ) , u for all w ∈ I. For the cells

overed at t i +1 + N both the coverage levels at t i +1 + N and the 

overage levels of the terminal set corresponding to these cells 

re equal to Z̄ . For the rest of the cells due to the linear cov-

rage level dynamics of (2) and the construction of the sets, it 

olds that z t i +1 + N (w ) = d w 

z ∗t i + N (w ) ≥ d w 

z u p (w ) = z u 
p ′ (w ) with p ′ =

p + 1 if p < M − 1 or 0 otherwise. Hence, 

[
z t i +1 + N 
u t i +1 + N 

]
∈ X 

f 
i +1 

holds.

his completes the proof. �

.1. Designing the terminal trajectories 

An important question arising at this point is how to design the 

losed trajectories guaranteeing the recursive feasibility of (18) . To- 

ards this goal, we propose a two-step method for designing a set 

f closed trajectories for the agents. These trajectories are jointly 

onstructed to ensure satisfaction of (3) at all times when agents 

ollow their corresponding trajectories repeatedly. In the first step 

f the method the closed trajectories are found as the solution 

o an optimization problem of the form (18) in which we make 

he following modifications: 1) discard the terminal coverage level 

onstraints (14) for every w ∈ I, 2) introduce constraints ensuring 

hat the initial and terminal poses of the agents are the same and 

he corresponding variables κk 
w 

at time steps k = 0 and k = M sat- 

sfy κM 

w 

= κ0 
w 

and 3) add the following constraint to the problem: 

M 

 

k =1 

∑ 

(q,q ′ ) ∈ V w 
x k qq ′ ≥ 1 , w ∈ I 

uaranteeing that each cell of the grid will be covered at least once 

ver the planning horizon of length M. The resulting trajectories 

uarantee the satisfaction of (3) when they are followed by the 

orresponding agents once. However, (3) might be violated when 

he same trajectories are repeatedly followed. To resolve this is- 

ue, we consider a second step and design a Linear Program (LP) is 

esigned aiming at finding the minimum Z̄ value for which (3) is 

lways satisfied when the trajectories of step 1 are followed in- 

nitely many times. This problem is of the following form: 

in Z̄ (20) 

ubject to: 

 k (w ) = d w 

(1 − σ k 
w 

) z k −1 (w ) + σ k 
w ̄

Z , k ∈ T M 

, w ∈ I (20a) 

k 
w 

= 

{
1 , ∃ r ∈ K : 

⌈ u ′ r 
k 

4 

⌉
= w 

0 , otherwise 
, k ∈ T M 

, w ∈ I (20b) 

 

′ 
k = u k,s , k ∈ T M 

(20c) 

 0 (w ) = z M,s (w ) , w ∈ I (20d) 
6 
 

′ 
0 = u M,s , (20e) 

 k (w ) ∈ [ ̄Z , Z̄ ] , k ∈ T M 

, w ∈ I, (20f) 

here T M 

= { 1 , . . . , M} and u k,s , z k,s the vector of the agents’ poses

nd the vector of the coverage level of the cells at time k as found

n step 1, respectively. The optimization problems at step 1 and 2 

re solved over the same, fixed horizon M. If for a given M the 

ILP problem at step 1 is not feasible or a maximum computa- 

ional time limit is reached, a larger M can be chosen [5] . If M

eaches a maximum expected value, then it is possible that Z̄ can 

ot be ensured with the given number of agents n r . Hence, the 

esigner should consider increasing the number of agents in the 

eam or decreasing the worse case visitation frequency of each cell 

y increasing the value Z̄ at step 1. 

. Simulations 

In this section we examine the computational performance of 

10) under different scenarios and validate the effectiveness of the 

ethod presented in Section 4 with an illustrative example. All 

imulations were run on an Intel Xeon W-2145 3.70 GHz CPU, 31GB 

AM computer using MATLAB 2018b while the MILP problems are 

olved using the commercial solver GUROBI 8.0.1. In the follow- 

ng simulation experiments a computational time-limit is set in 

UROBI equal to 5 hours. 

.1. Computational time analysis 

For the computational complexity analysis we consider a closed 

nvironment of size 24 × 24 m 

2 decomposed into a 6 × 6 grid with 

 agents. The agents’ trajectories are planned over a horizon of 

 = 10 steps, unless otherwise stated. Different maps of coverage 

ecay factors are considered with the average decay factor value 

eing lower bounded by 0.85. We set Z̄ = 300 , Z̄ = 20 , β = 0 . 8 .

eeping the other elements of the problem unaltered, we consider 

hanging one of the following: 1) the team size, 2) the planning 

orizon length and 3) the grid resolution when 20 different decay 

actor maps are given. 

In the first experiment we consider teams of size n r = 3 , 4 , 5

ith the agents initially placed at cells w i = 6 i, i ∈ K with headings

qual to π . An example for n r = 4 is shown in Fig. 4 . In the second

xperiment, 4 agents are employed for the task and their trajecto- 

ies are planned over an optimization horizon of N = 7 , 10 , 12 time

teps. In all these experiments we assume that the environment is 

lready decomposed into a 6 × 6 grid. In the last experiment, we 

ntroduce different grid resolutions and plan the 4 agents’ trajec- 

ories over a planning horizon N = 10 . Here, we consider a grid 

esolution α × α with α = 4 , 6 , 8 . Let L α(w 

i 
α) denote the set of

oints (x, y ) ∈ R 

2 belonging to the i-th cell of the grid of resolu-

ion α × α with i ∈ I α, I α = { 1 , . . . , α2 } . In addition, let us introduce

he set J α(w 

i 
α) as: 

 α(w 

i 
α) = 

{
j ∈ I 6 : L α(w 

i 
α) ∩ L 6 (w 

j 
6 
) � = ∅ 

}
his set includes the indices of the cells in the 6 × 6 grid ”sharing”

oints (x, y ) ∈ R 

2 with w 

i 
α . Based on that, we may define the decay

actor d 
w 

i 
α

of the cell w 

i 
α, i ∈ I α in the α × α resolution as follows:

 w 

i 
α

= min 

{
d 

w 

j 
6 

: j ∈ J α(w 

i 
α) 

}
(21) 

or i ∈ I α , α = 4 , 8 . The agents are initially placed at cells with in-

ices iα, i = 1 , . . . , 4 with headings equal to π . As found in practice
¯
 = 300 renders many problems infeasible. Therefore, only for the 

ast experiment Z̄ is chosen equal to 800 as this is the smallest 

alue guaranteeing convergence for all 20 cases within the time 

imit independent of the choice of resolution. 
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Fig. 2. Coverage Level Map and Agents’ Poses at different time instants t i over the simulation horizon. 

Fig. 3. Computational Time to Convergence for a varying (a) number of agents, (b) planning horizon length and (c) grid resolution when coverage level maps with average 

decay factor d̄ w ≥ 0 . 85 are considered. In (3a) a 6 × 6 grid is considered and paths are designed over a horizon N = 10 . In (3b) we consider 4 agents working on a 6 × 6 grid 

while in (3c) a team of 4 agents is employed and paths are designed over an optimization horizon N = 10 . 

Fig. 4. The coverage decay map and the constructed terminal, closed trajectories 

for Scenario 1 a) the map of the coverage decay factors d w b) the resulting terminal 

trajectories. 
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Number of agents In Fig. 3 the computational time required 

y the solver to terminate is presented in seconds. When differ- 

nt team sizes are considered ( Fig. 3 a) 80% of the cases achieve

onvergence before the time limit with the average time increas- 

ng from 8 to 4100 sec when n r is 3 and 5 respectively. This is a di-

ect consequence of the increased number of the cell combinations 

hen the number of agents and consequently the possible transi- 

ions increase. As the number of agents increases, the number of 

on-zero variables x k 
qq ′ increases proportionally allowing more cells 

o be covered per time step. Therefore, the MILP solver, often based 

n a branch and cut method, may require more time to expand the 

ree of possible solutions, evaluate their feasibility and cost with 

espect to the objective function, and possibly cut those that are 

ound non-feasible or costly with respect to the given solution. 

Planning horizon Similarly, an increasing computational time is 

bserved in Fig. 3 b when the horizon length grows with the aver- 

ge time for convergence being 6100 sec for N = 12 . This increase

s partially expected due to the proportional relationship of N with 

he number of binary variables in the problem. We also note that 

nly 50% of the cases converge within the predefined time limit 

ighlighting the difficulty of the solver to cut infeasible nodes and 
7 
ove towards the parts of the decision tree maximizing the objec- 

ive function. 

Number of grid cells In the final experiment, a different rela- 

ion between the computational time and number of grid cells is 

hown. When n w 

= 64 the average time for convergence is 290 sec 

ith the latter reaching 4800 sec for n w 

= 16 . This result may be

xplained with respect to the number of cells with low decay fac- 

ors and the (minimum) distance between the agents and the cen- 

ers of these cells over the graph G . On the one hand, due to

21) the number of cells w with low d w 

factors increases both in 

he 4 × 4 and the 6 × 6 resolution of the grid. It is indicative that

nly 7.64% of the cells in average has a worst case revisiting inter- 

al length ≤ 10 in the 6 × 6 grid with this amount rising to 29.36% 

nd 15.78% in the 4 × 4 and 8 × 8 grid respectively (the number 

f the cells with f −1 
w 

≤ 10 is averaged over the total number of 

ells of the 20 different coverage decay maps of this study). On the 

ther hand, agents may cover every cell in the 4 × 4 grid once after 

 time steps. This gives them the freedom to visit several different 

ells over the horizon with the solver requiring more time to ex- 

mine which combination of plans is the most coverage-effective. 

n the contrary, agents should choose wisely which cells to visit 

n the 8 × 8 grid so as (3) is always satisfied. This may often mean

hat agents will reach cells with low decay factors exactly after 

f −1 
w 

time steps due to the large number of edges in G to be tra-

ersed. Hence, the number of feasible plans in the 8 × 8 grid is 

ignificantly reduced compared to the 4 × 4 case resulting in the 

urprising computational time result shown in Fig. 3 c. 

In general, we may conclude that the computational time in- 

reases with the number of agents and the length of the horizon 

hile the results with respect to the grid resolution are amenable 

o the choice of the decay factors. Nevertheless, as the resolution of 

he grid becomes finer, we expect an increase in the computational 

ime when more coverage decay factor maps are added to the 

tudy. For example, the complexity of the problem may increase 

n the following cases: 1) when for every cell w , under the reset 

alue Z̄ the worst case visitation period of w satisfies f −1 
w 

� 10 , or 
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Fig. 5. Coverage Level of the cell with center coordinates (14,10) as a function of t i , 

obtained by a greedy algorithm and the proposed RHS scheme. 

Fig. 6. Average normalized Coverage Level with respect to the simulation horizon 

for the problem with and without μ variables. 
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) when the reset value Z̄ becomes higher, increasing f −1 
w 

, for ev- 

ry w ∈ I. 

Future work will consider ways to decrease the computational 

omplexity of the problem. A promising way towards reducing the 

curse of dimensionality” is the design of a distributed framework 

n which agents will design their plans based on local information 

xchange among a small number of peers. When large areas are 

onsidered, the problem could also benefit from an initial decom- 

osition of the area and an offline assignment of regions to small 

eams of agents. Finally, with the rapid development of 5G tech- 

ologies and cloud services, the proposed problem could be also 

olved off-board by remote, powerful servers [39] while account- 

ng for problems related to the quality of communication and the 

atency. 

.2. Performance of the RHS scheme 

To validate the feasibility of the modified MILP of Section 4, we 

imulate a persistent coverage task in a grid environment of 6 × 6 

quare cells with 4 agents. We refer to this example as Scenario 1. 

he lower coverage level Z̄ is set equal to 20 and β = 0 . 8 . The cov-

rage decay factors of the cells and the initial poses of the agents 

re shown in Fig. 4 a. Initially, we design the closed trajectories for 

uaranteeing feasibility. The planning horizon of the closed trajec- 

ories is chosen arbitrarily to be M = 18 . The trajectories found in

tep 1 do not satisfy (3) when repeatedly followed. Therefore, step 

 is initiated and Z̄ is found as the solution of (20) and equal to

995.5. The constructed trajectories are shown in Fig. 4 b. 

Given the closed trajectories and Z̄ = 1995 . 5 , we run (18) for a

imulation horizon of 100 steps. The optimization horizon N is set 

qual to 18. Initially, the terminal constraint set X 
f 

0 
is chosen to be 

 0 . In Fig. 2 the coverage level map of the grid and the correspond-

ng poses of the agents are shown at different time instants t i . As

xpected, agents move towards the left part of the area where the 

ells with the lowest d w 

values are. At t 10 the cell with center co-

rdinates (10,10) has a low coverage level. However, due to the ex- 

stence of the terminal constraints an agent can reach it within 4 

ime steps before (3) gets violated. A video of the simulations for 

cenario 1 can be found in [38] . The average computational time 

f the online optimization problem over the simulation horizon of 

00 steps is 115 sec. Observe that the computational time of the 

nline problem is moderate due to the existence of the terminal 

onstraints which most likely decrease the set of feasible solutions. 

he computational time of the closed trajectories is significantly 

igher verifying the results of Section 5.1 but it is performed of- 

ine, hence does not affect the complexity of the online algorithm. 

Comparison with a greedy policy To further illustrate the effi- 

acy of our method, we consider Scenario 1 and compare the re- 

ults of the proposed RHS to those obtained by a greedy algorithm, 

.e., a method that plans the poses of the agents only for the next 

ime step t i . Motivated by [25,26] , where agents move towards the 

east covered areas, we solve (10) for N = 1 without considering 

9c) , i.e., the constraint ensuring a lower coverage level Z̄ . As men- 

ioned in Section 3 , this problem aims at maximizing the total cov- 

rage level of the area while discouraging agents from covering 

ecently visited cells. As expected, the computational time of the 

roblem is significantly lower than the RHS. However, after 12 time 

teps the coverage level of the cell with center coordinates (6,14), 

.e., w = 20 , becomes equal to 19.3341. Hence, it drops below the 

esired lower bound Z̄ = 20 . In Figure ( 5 ) the coverage level of an-

ther cell, namely the one with center coordinates (4,10) is shown. 

hen the greedy algorithm is considered, the cell is visited only 

t time steps t i with i = 3 , 23 while for i ≥ 40 its coverage level is

ess than Z̄ and z t i (16) → 0 as i → 100 . When (9c) is considered in

he greedy algorithm, (10) becomes infeasible at t i with i = 13 as 

o agent performing an admissible pose transition is able to cover 
8 
 = 20 before its coverage level drops below Z̄ . On the other hand,

s shown in Figure (5) and discussed earlier in this Section, the 

roposed RHS scheme ensures that the coverage level of all cells 

s lower bounded by Z̄ and remains feasible for all t i with i ≥ 0 at

he cost of increased computational complexity. 

Comparison with no coverage penalization at subsequent 

imes Next, we study the effect of the objective function in the tra- 

ectory design when the proposed RHS scheme is considered. More 

pecifically, we consider solving (18) without considering the μ
ariables and corresponding constraints (5a) - (5b) . As a result, the 

ew objective function becomes J ′′ ( ̃ x ) = 

[
0 n̄ b 1 n̄ z 0 n̄ μ 0 n̄ κ

]
˜ x , 

here ˜ x = 

[
b 

T z T κT 
]T 

. For the problem without the μ vari- 

bles, the optimal Z̄ value is found using the proposed two-step 

ethod equal to 1995.5 as in (18) . In Figure ( 6 ), the normalized

overage level of the cells, averaged over the simulation horizon of 

00 time steps is shown, when the RHS scheme with and without 

he μ variables and corresponding constraints is solved. Specifi- 

ally, we compute ˜ z as follows: 

˜ 
 = 

1 

100 ̄Z 

100 ∑ 

k =1 

z k (w ) , ∀ w ∈ I 

lthough, there are cells whose coverage level might be higher 

hen the constraints and μ variables are omitted, the average cov- 

rage level in both cases is equal to 0.5822. While the average cov- 

rage level remains the same, the computational time of the prob- 
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em when no μ constraints are considered increases to 143.61 sec 

n average (as opposed to 129.8 sec of (18) ). In both problems the

gents have avoided interchanging cells with only 1 case of ”flip- 

ing” over 100 steps. Finally, the minimum time between two con- 

ecutive visits (excluding the cases when an agent stays at place 

fter coverage) is on average 20% of the worst-case upper bound 

f Proposition 1 . Based on the above, we can conclude that for the 

iven scenario the presence of the μ variables is beneficial both in 

erms of coverage performance and computational complexity. 

. Conclusions 

In this work we introduced an MILP problem for planning the 

rajectories of agents performing a persistent coverage task in a 

rid environment. In this task the goal of the agents is to main- 

ain a predefined lower bound on the coverage level of each cell 

hen the coverage level dynamics are known. Due to the special 

esign of the problem a lower bound on the frequency of visita- 

ion of each cell is also guaranteed. In addition, a modified version 

f the problem is presented that is found to be recursively feasible 

hen solved in a receding horizon scheme. The key difference be- 

ween the aforementioned problems is an extra set of time-varying 

erminal constraints added to the latter problem. These constraints 

orce agents to terminate their plans at closed trajectories at the 

nd of the planning horizon in order to guarantee recursive fea- 

ibility. We proposed a two-step method for the construction of 

hese closed trajectories such that the coverage level lower bound 

onstraint is always satisfied when the trajectories are repeatedly 

ollowed. 
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