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A B S T R A C T

Developing numerical method of fractured porous media is of paramount importance in geoscience applica-
tions. Previous studies have revealed that the discrete fractures and cavities as well as the heterogeneity have
considerable influences on hydraulic property of porous media. This work presents a numerical investigation on
fluid flow in heterogeneous porous media with the consideration of flux connection of fracture–cavity network.
A hybrid-dimensional modeling approach combined with the dual fracture-pore model is presented. Then, the
numerical scheme is derived from Galerkin finite element method. Especially, the numerical treatment on flux
interaction of multiple fractures is elaborated. Next, this model is verified by a benchmark study, and grid
convergence test is performed to show the grid independence. Later, a fractured porous medium is simulated
with different states of cavity. The effects of impermeable and conductive fractures on fluid flow are studied.
In contrast to the homogeneous situation, we consider the effects of heterogeneity. Meanwhile, a comparison
study is conducted to investigate the impacts of heterogeneity, boundary conditions and conductivity of the
fracture–cavity network on fluid flow. Furthermore, pressure deviation induced by heterogeneity is analyzed
with different conductivities of fractures and cavities. It appears that pressure distribution is highly related to
fractures conductivity and the state of cavities, where the influence of heterogeneity on the high-conductivity
fractures is relatively smaller than the low-conductivity.
1. Introduction

Simulation of fluid flow in fractured porous media is a pillar in
geoscience applications, such as reservoir engineering, geothermal ex-
ploration, energy storage and waste disposal (Berkowitz, 2002; Dietrich
et al., 2005), to name but a few. Discrete fractures are randomly
distributed in the subsurface domain, and the size of fractures varies
from fine-scale to large-scale. The heterogeneity and multiscale features
produced by the discrete fractures lead to several challenges on the
simulation of fluid flow (Jing, 2003; Stefansson et al., 2018) and me-
chanical property (Berkowitz, 2002; Wang et al., 2019b). In addition,
some geological fields with complex geomorphic structures, for in-
stance, the carbonate reservoirs, contain many natural cavities (Zhang
et al., 2016; Wei et al., 2020). Therefore, these complex configurations
of discrete fractures and cavities produce significant impacts on the
fluid flow as well as the hydraulic-mechanical behaviors of fractured
porous media. To this end, this work focuses on numerical simulation
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of fluid flow in heterogeneous fractured porous media, in which the
flux interaction of fracture–cavity network is considered.

In practice, the hydraulic conductivity of discrete fractures is al-
lowed to be changed in a large extent (Berkowitz, 2002; Dietrich et al.,
2005). Particularly, in a subsurface aquifer with highly intersected frac-
tures, a careful evaluation on the connectivity of fracture networks as
well as the flux connection between fractures–matrix system should be
addressed. These demands were initially motivated by the requirements
of managing underground water resources (Cacas et al., 1990), nuclear
wastes disposal (Hyman et al., 2015) and reservoir engineering (Karimi-
Fard et al., 2004). In contrast to fractures, natural cavities are another
special geological discontinuity encountered in field. Specially, in car-
bonate reservoir engineering, the cavities and fractures are connected,
therefore the connected fracture–cavity system is created (Yao et al.,
2010; Zhang et al., 2016; Wei et al., 2020). An important difference
between cavities and fractures are the spatial extension. The width and
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length of a cavity are much larger than those of a fracture. It leads to
different treatments on these two objects.

There are different numerical models for simulation of the flow and
transport in porous media. The geological domain can be simplified as
an intact medium if the effect of fractures can be neglected or fractures
are absent from the region. This assumption often leads to the classical
porous media model (Ababou et al., 1989; Layton et al., 2002), wherein
the fluid flow is controlled by the host rock matrix. Thereafter, many
improved versions have been proposed to simulate fractured media,
typically the dual-porosity model (Gerke and van Genuchten, 1993;
Nie et al., 2012). The transfer function is used to capture the con-
nections of fractures and the host matrix. Furthermore, the equivalent
continuum model has been developed for a highly fractured media.
It is able to consider the impact of multiple fractures on fluid flow
using the equivalent permeability tensor (Lang et al., 2014; Hadgu
et al., 2017). Those two classical models, i.e. the porous model and
the dual-porosity model, are implicitly representing each of the frac-
tures. However, in some geoscience applications, where the large scale
fractures and intersected multiple fractures widely exist, the classical
models are oversimplified and inaccurate. To this end, the discrete
fracture network (DFN) has been proposed (Long and Billaux, 1987;
Cacas et al., 1990), such that the discrete fractures can be explicitly
represented. Afterwards, many models have been developed based on
DFN (Zhang and Sheng, 2021; Huang et al., 2021a; Graf and Therrien,
2008; Mustapha et al., 2011; Fumagalli et al., 2019). Nevertheless,
the drawback of this model is that fluid flow is assumed only in the
fracture networks, while the matrix is impermeable. It is failed to
simulate a fractured medium with the consideration of flux interaction
between fractures and matrix. To this end, the discrete fracture model
(DFM) (Karimi-Fard et al., 2004; Stefansson et al., 2018; Sherratt et al.,
2020) and embedded discrete fracture model (EDFM) (Hajibeygi and
Jenny, 2011; HosseiniMehr et al., 2018; Shakiba et al., 2018), have
been proposed in recent decades.

In terms of meshing strategy and the numerical discretization, DFM
and EDFM have different pros and cons. The complex configuration of
multiple fractures leads to a challenge of grid generation (Hyman et al.,
2015). There are many research works of mesh generation focusing on
the DFM-based methods, typically the efficient and fast algorithms to
generate finite element meshes (Berrone et al., 2013; Hyman et al.,
2014; Bahrainian et al., 2015). In this way, an efficient treatment is that
the discrete fractures are considered as the relative low-dimensional
objects placed on the interfaces of matrix cells. Another scheme of
fracture cells is to assign an actual aperture to each fracture cell,
therefore the fracture cells are actually a quadrilateral elements with
very small aperture, as discussed in literature (Cappa and Rutqvist,
2011; Wang et al., 2020). This strategy also has been applied in
different geoscience applications (Rutqvist et al., 2008; Wang et al.,
2019a; Tan et al., 2020). Meanwhile, an alternative numerical method,
EDFM, is developed, in which the grids of fractures and rock matrix
are independent (Hajibeygi and Jenny, 2011; Shakiba et al., 2018).
Recently, an improved version, the projection-based embedded fracture
model (pEDFM) (Ţene et al., 2017), has been developed to enable the
modeling of high contrast hydraulic conductivity between fractures
and matrix. Afterwards, different numerical methods are widely used
in geoscience applications, typically two-phase flow (Huang et al.,
2021b), hydrogen storage (Ratnakar et al., 2020), CO2 capture and
process optimization (Moradi et al., 2014; Atashbeyk et al., 2018;
Hosseini-Ardali et al., 2020). However, the DFM method still enjoys
several attractive features and occupies an important role in reservoir
simulation. The DFM solution is often selected as the reference solution
to other numerical schemes. The accurate simulation of connection
between the matrix and fractures can be guaranteed in the formulations
of finite element and finite volume methods. It provides a basis of the
presented work.

Crucially, investigation of the effects of heterogeneity and fracture–
cavity network on fluid flow in fractured porous media remains im-
portance in geoscience applications. This work focuses on numerical
2

Fig. 1. A porous medium with discrete fractures and cavities.

simulation of fluid flow in heterogeneous porous media. A hybrid-
dimensional modeling approach combined with the dual fracture-pore
model is presented. Moreover, the numerical treatment on flux inter-
action of multiple fractures is elaborated. Based on these, we study
quantitatively the effects of heterogeneity and fracture–cavity network
on pressure distribution. The discrete fractures and cavities are allowed
to be assigned to impermeable or conductive properties.

This paper is structured as follows. First, the formulation of fluid
flow in fractured porous media is presented in Section 2. Then, in
Section 3, the numerical discretization of the governing equation is
introduced. Especially, the numerical treatments of flux interaction
of multiple fractures and the fracture–cavity network are elaborated
in Section 4. Later, in Section 5, the proposed method is verified by
a benchmark study. A heterogeneous fractured porous medium with
different types of cavities is simulated. The effects of heterogeneity and
conductivity of the fracture–cavity network on fluid flow are studied.

2. Problem description

In this section, the formulation of fluid flow in fractured reservoir
is provided. The dual fracture-pore model is introduced, and combined
with the discrete fracture model, to simulate a fracture reservoir with
complex geometry. The domain is decomposed into the porous matrix,
stochastic fractures and natural cavities.

2.1. Physical domain and dual fracture-pore model

A fractured medium with the discrete fractures and cavities is
displayed in Fig. 1. The domain 𝛺 consists of three sub-components,
namely the matrix 𝛺𝑚, fractures 𝛺𝑓 and cavities 𝛺𝑐 :

𝛺 = 𝛺𝑚 ∪
(

∪
𝑁𝑓
𝑖=1𝛺𝑓,𝑖

)

∪
(

∪𝑁𝑐
𝑗=1𝛺𝑐,𝑗

)

(1)

where the numbers of fractures and cavities are 𝑁𝑓 and 𝑁𝑐 , respec-
tively.

In a naturally fractured reservoir, 𝛺𝑓 and 𝛺𝑐 are stochastically
distributed. 𝛺𝑓 is modeled as the low-dimensional objective, and can be
viewed as lines in two dimensional and surfaces in three-dimensional
problems.

However, the situation is different for the cavities. Naturally, 𝛺𝑐
has larger size compared with the fractures. We simulate the empty
cavities 𝛺𝑒𝑚𝑝𝑡𝑦

𝑐 and the filled cavities 𝛺𝑓𝑖𝑙𝑙𝑒𝑑
𝑐 separately. Based on these

concepts, a cavity 𝛺𝑐,𝑖 can be categorized as 𝛺𝑐,𝑖 = 𝛺𝑒𝑚𝑝𝑡𝑦
𝑐,𝑖 ∪𝛺𝑓𝑖𝑙𝑙𝑒𝑑

𝑐,𝑖 , as
shown in Fig. 1.

The fractures and cavities may generate either a conductive channel
or play the role of barrier for fluid flow. In our model, the cavities
are allowed connecting and coalescing to each other. The fractures are
intersected, then a fracture network is constructed, as shown in Fig. 1.

The entire boundary 𝛤 of the domain consists of two main parts
𝜕𝛺 ∶= 𝛤 = 𝛤 ∪ 𝛤 . The external boundary is denoted as 𝛤 . The
𝑒𝑥 𝑖𝑛 𝑒𝑥
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internal boundary related to the cavities and fractures is denoted as
𝛤𝑖𝑛.

The boundaries with Dirichlet and Neumann types are represented
y 𝛤𝐷 and 𝛤𝑁 , respectively. Different types of boundary condition can

be imposed on 𝛤𝑒𝑥 = 𝛤𝐷
𝑒𝑥∪𝛤

𝑁
𝑒𝑥 or 𝛤𝑖𝑛 = 𝛤𝐷

𝑖𝑛 ∪𝛤
𝑁
𝑖𝑛 . Note that 𝛤𝐷∩𝛤𝑁 = ∅.

2.2. Conservation law of fluid flow

The flow equation is derived by the mass conservation law and
the momentum equation (Darcy’s law). For a conserved quantity 𝑞,
he functions of source term 𝑓 and the flux 𝐅 are defined. We intro-
uce the general form of conservation law (LeVeque, 1992; Eymard
t al., 2000), therefore the conservation equation is valid at arbitrary
patial–temporal position (𝐱, 𝑡) inside 𝛺:

𝑡 (𝐱, 𝑡) + ∇ ⋅ 𝐅 (𝐱, 𝑡) = 𝑓 (𝐱, 𝑡) on 𝛺 (2)

Considering a single phase compressible fluid with the porosity of
edium 𝜙, density of fluid 𝜌, mobility 𝜆 and source 𝑞, then applying
q. (2) and substituting 𝐅 (𝐱, 𝑡) = 𝜌𝐮 and 𝑓 (𝐱, 𝑡) = 𝜌𝑞, the governing
quation is written as:
𝜕 (𝜙𝜌)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 𝜌𝑞 on 𝛺 (3)

where 𝜆 is related to viscosity 𝜇 and permeability 𝐊 of the fluid. The
luid velocity 𝐮 is expressed by Darcy’s law 𝐮 = −𝜆∇𝑝. In this work, the
ncompressible assumption is applied. Therefore, Eq. (3) is simplified
s:

∇ ⋅ (𝜆∇𝑝) = 𝑞 on 𝛺 (4)

Eq. (4) is an elliptic partial differential equation (PDE). To propose
well-posed boundary value problem, the boundary conditions should
e given. For the elliptic PDE in flow problem, Eq. (4) is subjected to
he prescribed pressures �̄� or prescribed volumetric flux 𝑞 on 𝛤 :

𝑝 = �̄� on 𝛤𝐷

(𝜆∇𝑝) ⋅ 𝐧 = 𝑞 on 𝛤𝑁 (5)

here 𝐧 is the outward unit vector of the external boundary. Espe-
ially, if a cavity is empty, the inlet boundary can be specified on the
dge of cavity to model the internal pressure.

. Numerical method

In this section, the governing equation is discretized on unstructured
rids, where the local conservation of flux is ensured. The numerical
cheme is derived from the Galerkin finite element method (GFEM), in
hich the test function is a piece-wise constant function. All algorithms
re implemented in our C++ program.

.1. Mesh partition using Delaunay algorithm

To solve the boundary value problem Eqs. (4) and (5), the geometry
f the domain 𝛺 is partitioned into discretized grids with 𝑛𝑒𝑙𝑒 non-
verlapping cells, 𝛺 = ∪𝑛𝑒𝑙𝑒

𝑖=1 𝑒𝑖. We use a Delaunay triangulation to
onduct the geometrical discretization. This method enjoys an attrac-
ive feature of flexible treatment on the complex fractured vuggy
orous medium.

In Delaunay triangulation, the fractures are discretized by the rel-
tive low-dimensional cells compared to the high-dimensional matrix
ells, as shown in Fig. 2. The fracture cells are arranged along the
atrix cells, thereafter the scheme of conformal grids is applied. The

ub-domains of filled cavities are partitioned by triangles, while the
mpty cavities are treated as internal boundaries. Note that each cell
n the grids shares three common edges with its neighbors.

The procedure of generating low-dimensional fracture cells is pre-
ented in Algorithm 1.
3

u

Algorithm 1 Generation of low-dimensional fracture cells
Note that the number of fractures is 𝑁𝑓 ; the number of matrix cells is 𝑛𝑒𝑙𝑒
1: for each 𝑖 ∈ [1, 𝑁𝑓 ] do
2: Fracture 𝑓𝑖 is defined by coordinate

(

𝑋𝑖, 𝑌𝑖
)

3: Calculate the geometrical equation of 𝑓𝑖 according to
(

𝑋𝑖, 𝑌𝑖
)

4: end for
5: for each 𝑖 ∈ [1, 𝑛𝑒𝑙𝑒] do
6: For matrix cell 𝑒𝑚𝑖 , finding its neighbors and constructing cell pairs
7: Based on geometrical equation of each fracture, creating fracture cells
8: end for

Counting the number of all 𝑒𝑓 , noted as 𝑛𝑓

9: for each 𝑖 ∈ [1, 𝑛𝑓 ] do
0: Check grid connectivity of fracture cells, classifying intersected 𝑒𝑓 that

placed on crossed-fracture positions
1: Update node connectivity of intersected positions
2: end for

3.2. Galerkin finite element formulation

In this work, the numerical scheme is originated from Galerkin finite
element method. Combining with the hybrid-dimensional model, the
discretization is valid in both fractures and the matrix. The aperture of
fractures is assumed as a virtual aperture in computation, as shown in
Fig. 2. A discontinuous Galerkin method is then formulated.

The test function is selected as a piece-wise constant function 𝜂.
Based on these, the local conservation of flux is ensured. The solution
satisfies with several requirements defined by function analysis. The so-
lution space is a subset of the square integrable function space 𝐿2 (𝛺) =
{

𝑝 ∶ ∫𝛺 |𝑝|2 𝑑𝛺 < +∞
}

(Jha and Juanes, 2007). Let ℎ ⊂ 𝐿2 (𝛺) be the
unction space of solution for pressure 𝑝. The corresponding subspace
or the test function 𝜂 is defined as 0, therefore 𝜂 ∈ 0. The aim is to
ind a solution 𝑝 ∈ ℎ.

Consequently, 𝑝 is approximated by the Galerkin finite element
pproximation (Jha and Juanes, 2007; Zienkiewicz et al., 2013):

≈ 𝑝ℎ =
𝑛𝑒𝑙𝑒
∑

𝑖=1
𝜂𝑖𝑝𝑖 (6)

here 𝜂 is the shape function, as illustrated in Fig. 3a. The piece-wise
onstant function 𝜂 reads:

𝑖 =

{

1 cell 𝑖
0 other cells

(7)

Therefore, the shape function is defined in the framework of finite
lement approximation. Considering the integral over the entire do-
ain 𝛺 and multiplying test function 𝜂 with each term in Eq. (4), the

integral form reads:
𝑛𝑒𝑙𝑒
∑

𝑖=1
∫𝛺𝑖

−𝜂∇ ⋅ (𝜆∇𝑝) 𝑑𝑉 = ∫𝛺𝑖

𝜂𝑞𝑑𝑉 (8)

For a certain cell 𝛺𝑖, the set of edges for this cell is denoted by 𝛤𝑖.
pplying Gauss theorem, the semi-discretization is expressed as:

𝛤𝑖
−𝜂 (𝜆∇𝑝) ⋅ 𝐧𝛤 𝑑𝛾 = ∫𝛺𝑖

𝜂𝑞𝑑𝑉 (9)

It holds valid on each cell of the grids, including matrix, fracture
nd cavity cells. For different types of cell, the equation has different
orms. The interaction between matrix and fractures/cavities would be
resented in Section 4.

.3. Fully discretized forms

The numerical scheme can be applied to grids with arbitrary poly-
ons. In this work, we consider the triangular cells due to the commonly
sed unstructured grids. Note that the number of edges of cell 𝑖 is 𝛤 ,
𝑖
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Fig. 2. Schematic of mesh partition. Fractures are discretized as the interfaces along matrix cells. Cavities are regarded as internal constrained boundaries. The virtual aperture
is assigned to each fracture cell.
Fig. 3. (a) Schematic of shape function. (b) Cell parameters used in numerical
discretization.

and one of the edges is denoted by 𝜎∗. The number of neighbors of cell
𝑖 is 𝑛𝑒𝑖𝑔ℎ𝑠,𝑖. We have the expression:
𝑛𝑒𝑖𝑔ℎ𝑠,𝑖
∑

∗=𝑗,𝑘,𝑚
∫𝜎∗

−𝜂 (𝜆∇𝑝) ⋅ 𝐧𝜎∗𝑑𝛾 = ∫𝛺𝑖

𝜂𝑞𝑑𝑉 (10)

where 𝐧𝜎∗ is the normal vector that points to the outward of the edge
𝜎∗ belonging to cell 𝛺𝑖, as displayed in Fig. 3b.

Applying the cell-central formulation, which is widely used in reser-
voir simulation, the fully discretized formula reads:
𝑛𝑛𝑒𝑖𝑔ℎ,𝑖
∑

∗=𝑗,𝑘,𝑚
𝑇𝑖∗

(

𝑝𝑖 − 𝑝∗
)

= 𝑞𝑖𝛥𝑉𝑖 (11)

The coefficient 𝑇𝑖∗ =
(

𝑇𝑖𝑓𝑇∗𝑓
)

/

(

𝑇𝑖𝑓 + 𝑇∗𝑓
)

is defined by the
expression:

𝑇𝑖𝑓 =
𝛥𝐴𝑖𝑓

(

𝐧𝜎∗ ⋅
(

𝐊𝑖 ⋅ 𝐧𝜎∗
))

𝐷𝑖𝑓𝐧𝜎∗
(12)

where 𝛥𝐴𝑖𝑓 is the area of the face between cell 𝑖 and its neighbor cell
∗. 𝐷𝑖𝑓 is the distance from cell-center of cell 𝑖 to the central point at
the edge shared with neighbor cell ∗, as shown in Fig. 3b. 𝐊𝑖 is the
permeability tensor of cell 𝑖. Note that ∗= 𝑗, 𝑘, 𝑚 when the polygonal
cell is a triangle.

According to the mass conservation law ∇ ⋅ 𝐮 = 𝑞, the flux can be
calculated:

𝑞𝑖𝛥𝑉𝑖 =
∑

𝑢𝑖∗𝛥𝐴𝑖∗ (13)

Consequently, the flux at each interface of cell 𝑖 can be calculated.
It indicates that the total flux of a cell is the summation of sub-flux at
each interface, as illustrated in Fig. 3b.
4

3.4. Algebraic system considering fracture–cavity network

The preceding formulation proposes the well-posed boundary value
problem, and then it is discretized using the Galerkin finite element
formulation. The solution is computed based on the algebraic system,
which is constructed by the discretized formulas Eqs. (11) and (12).

Once the coefficient 𝑇𝑖∗ is calculated for all connections of matrix–
matrix, matrix–fractures and fractures–fractures, we can then construct
the integrated algebraic system 𝐂𝑛𝑒𝑙𝑒×𝑛𝑒𝑙𝑒𝐩𝑛𝑒𝑙𝑒×1 = 𝐪𝑛𝑒𝑙𝑒×1, by assembling
𝑇𝑖∗ of each cell according to the grid connectivity:

⎡

⎢

⎢

⎣

𝐂𝑚𝑚 𝐂𝑚𝑓 𝐂𝑚𝑐
𝐂𝑓𝑚 𝐂𝑓𝑓 𝐂𝑓𝑐
𝐂𝑐𝑚 𝐂𝑐𝑓 𝐂𝑐𝑐

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐩𝑚
𝐩𝑓
𝐩𝑐

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐪𝑚
𝐪𝑓
𝐪𝑐

⎤

⎥

⎥

⎦

(14)

where 𝐂𝛼𝛼 on the diagonal represents the sub-block related to interac-
tion of matrix/fracture/cavity cells with itself. 𝐂𝛼𝛽 on the off-diagonal
is the interaction of matrix–fractures/cavities, fractures–cavities/matrix.
Note that the subscripts 𝑚, 𝑓 , 𝑐 are matrix, fractures and cavities,
respectively. Therefore, 𝛼, 𝛽 = 𝑚, 𝑓 , 𝑐 and 𝛽 ≠ 𝛼.

4. Flux interaction of multiple fractures

Eqs. (11) and (12) are the unified formulas of the cells of ma-
trix, fractures and cavities. However, when applying these formulas to
simulate fluid flow in fractured reservoir, several difficulties appear.
To this end, the flux connection of multiple fractures needs a special
treatment.

4.1. Connections of matrix, fractures and cavities

It is useful to classify different types of matrix cells and fracture
cells. The grid connectivity, which is given by the Delaunay algorithm
in Section 3.1, plays an important role in this consideration, where the
requisite information of topological connectivity of cells is provided.

As illustrated in Fig. 4, each of the low-dimensional fracture cells
has two types of neighbors, the matrix and fractures cells. In Section 2,
the filled cavities and empty cavities are defined, which have different
hydraulic properties. (1) In the former case, it can be viewed as special
type of matrix, but has significant different values of permeability com-
pared to the matrix. (2) Conversely, the later case is often considered
as the internal boundary, such that it can be assigned as inlet or outlet
boundary.

Based on these, the interactions of matrix, fractures and cavities are
mainly classified as two groups:

• Group 1: The flux in matrix cells allows exchange with both
cavities and fracture cells, including matrix ⇔ matrix, matrix ⇔
filled cavities, matrix ⇔ fractures.



Journal of Natural Gas Science and Engineering 100 (2022) 104450L. Wang et al.
Fig. 4. Different types of interaction of fractures–matrix and fractures–fractures. .

• Group 2: The flux in fractures and cavities allows exchange,
including fractures ⇔ fractures, filled cavities ⇔ filled cavities,
fractures ⇔ filled cavities.

The interactions in Group 1 are directly treated by the use of the
standard GFEM, as presented in Section 3, while the permeability
of filled cavities allows different from that of matrix. However, the
situation is totally different in Group 2, since the low-dimensional
fracture cells lead to the difficulty of topological connection to the
high-dimensional matrix cells.
Algorithm 2 Procedure for treatment of matrix, fractures and cavities
1: for each 𝑖 ∈ [1, 𝑛𝑒𝑙𝑒] do
2: Cell 𝑒𝑖 is classified as cells of matrix 𝑒𝑚𝑖 , fracture 𝑒𝑓𝑖 or cavity 𝑒𝑐𝑖
3: Classifying 𝑒𝑖, where number of 𝑒𝑚, 𝑒𝑓 and 𝑒𝑐 are denoted as 𝑛𝑚, 𝑛𝑓 and

𝑛𝑐

4: end for
Note that 𝑛𝑒𝑙𝑒 = 𝑛𝑚 + 𝑛𝑓 + 𝑛𝑐 , 𝑒𝑖 = 𝑒𝑚 ∨ 𝑒𝑓 ∨ 𝑒𝑐

5: for each 𝑖 ∈ [1, 𝑛𝑚] do
6: Cell 𝑒𝑚𝑖 has three neighbors for non-boundary cells, and one or two

neighbors for boundary cells
7: Find all neighbors of each 𝑒𝑚𝑖 , which is stored in the data structure
8: Calculating 𝑇𝑖∗ according to neighbors of 𝑒𝑚𝑖
9: end for

10: for each 𝑖 ∈ [1, 𝑛𝑓 ] do
11: Cell 𝑒𝑓𝑖 can be classified as different types based on the discussion in

Section 4.2
12: Different types of crossing fractures is identified
13: Calculating 𝑇𝑖∗ according to 𝑒𝑓𝑖 and its neighbors.
14: Eqs. (12) and (15) are used to calculated 𝑇𝑖𝑓 for matrix and fracture
15: end for

Repeat Lines 5 to 9 for cavity cells from 1 to 𝑛𝑐

4.2. Connection of multiple fractures

The flux exchanges at the crossing position of multiple fractures
allows several directions, as shown in Fig. 4. The flow direction is
determined by the pressure gradient ∇𝑝 of each cell pair. Therefore,
the efficient star-delta procedure is applied to avoid the computa-
tional expansive and numerical instability (Karimi-Fard et al., 2004).
The original motivation of the procedure originated from a renormal-
ization technique for calculating the permeability of heterogeneous
media (King, 1989). To this end, it is important to categorize the
fracture cells as follows:

• Type 1: Fracture cell at the intersection has six neighbors, includ-
ing four fracture cells and two matrix cells.

• Type 2: Fracture cell at the endpoint has three neighbors, includ-
ing two matrix cells and one fracture cell.

• Type 3: The regular fracture cell has four neighbors, including
two matrix cells and two fracture cells.

In the presented method, each fracture cell is assigned to an aper-
ture, as illustrated in Fig. 4. Note that the aperture is a virtual value
5

Fig. 5. Schematic of the crossed-fractures model. .

that evaluated in computational consideration instead of a real physical
width. In this context, Eq. (12) is adopted to calculate the fracture–
fracture interaction:

𝑇 𝑓𝑟𝑎𝑐
𝑖𝑓 =

𝛥𝑎𝑖
(

𝐭𝑖 ⋅
(

𝐊𝑖 ⋅ 𝐭𝑖
))

𝐿𝑖
(15)

where 𝛥𝑎𝑖 and 𝐿𝑖 are the aperture and half length of fracture cell,
respectively. 𝐭𝑖 is the unit vector in the tangential direction of the frac-
ture. Therefore, the fluid fluxes of the low-dimensional cells (fractures)
and high-dimensional cells (matrix and cavity cells) are calculated in
different situations, as shown in Algorithm 2.

5. Numerical results and discussion

Numerical tests are carried out in this section using the presented
numerical method. This method is verified by a classical benchmark
study. Grid convergence is evaluated with different grid resolutions.
Then, a fractured porous medium with different geometrical configu-
rations is simulated under different conditions. The effects of hydraulic
conductivity, cavities and heterogeneity on fluid flow in fractured
reservoir are analyzed.

5.1. Numerical validation and grid convergence

Before applying the presented numerical method to simulate a
heterogeneous fractured reservoir with complex geometry, the vali-
dation and convergence evolution should be performed. The model
used for benchmark, namely the crossed-fractures model, is given in
literature (Hajibeygi et al., 2011; Ţene et al., 2017). The geometrical
configuration is shown in Fig. 5. Note that the size of the domain is
9 m × 9 m. The crossed-shape fractures, each one with length 5 m,
are placed on the center of the domain. To fully resolve the model
with a very fine grid resolution, the fracture aperture 𝛥𝑎 = 5 × 10−3 m
approximates to the grid resolution.

The homogeneous assumption is adopted, as given in literature (Ha-
jibeygi et al., 2011; Ţene et al., 2017). The permeability of rock matrix
is set to 𝑘𝑚 = 10−12 m2. The permeability of fractures 𝑘𝑓 is determined
by the permeability ratio 𝑘𝑟 = 𝑘𝑓∕𝑘𝑚, which reflects the difference of
hydraulic property between matrix and fractures. We assign the ratio
𝑘𝑟 = 105 and 10−5 to simulate the conductive channel and the barrier
for fluid flow, respectively. The pressure boundary condition is imposed
on the left boundary 𝑝𝐿 = 1MPa, while the outlet is placed at the right
boundary. The top and bottom boundaries are impermeable, as shown
in Fig. 5.

Boundary conditions, as well as the conductivity of fractures, would
influence fluid flow in the fractured medium. Fig. 6a shows the pressure
distribution in the case of crossed-fractures with high-conductivity.
Simulation results agree well with the results reported in literature (Ha-
jibeygi et al., 2011; Ţene et al., 2017). It appears that the presence
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Fig. 6. Permeability (unit: [m2]) and pressure distribution (unit: [MPa]) for matrix and fractures. (a) High-conductivity of the crossed-fractures leads to a conductive pathway.
(b) Low-conductivity produces the blocking effect.
of fractures produces a conductive pathway for fluid flow, therefore
fluid directly flows through the pathway. Pressure distribution shows a
slight influence induced by the fractures. Fig. 6b provides a contrasting
comparison, in which the low-conductivity of fractures is considered.
The fractures play the role of a barrier for fluid flow, therefore the
discontinuity of pressure can be observed. In addition, pressure dis-
tribution over the crossed-fractures is totally different in these two
situations. The blocking fractures lead to a higher pressure magnitude
than the high-conductivity fractures, as displayed in Fig. 6b.

To evaluate the convergence performance of the proposed numeri-
cal method, grid convergence test is conducted. The reference solution
is denoted as {𝑃𝑖}. The results calculated by different grid resolutions
ℎ, denoted as {𝑝ℎ𝑖 }, are compared with the reference solution. It is
useful to define the error percentage to evaluate the performance of
grid convergence:

𝜖ℎ =
𝑁𝑝
∑

𝑖=1

‖

‖

‖

𝑃𝑖 − 𝑝ℎ𝑖
‖

‖

‖2
‖

‖

𝑃𝑖
‖

‖2
(16)

where 𝑁𝑝 is the number of cells along the diagonal of the domain.
As displayed in Fig. 7, different grid resolutions are selected for

testing the grid convergence. A comparison of the results simulated
by different methods is provided. The error of different solutions 𝜖ℎ

measured by Eq. (16) is reduced with the increased grid resolution. It
proves that the proposed numerical method is grid-independent and
it has at least first-order accuracy. Fig. 8 illustrates an example that
a comparison between the fully-resolved solution and solutions with
two different levels of refinement. It shows that the relative coarse
resolution is able to reproduce the same result compared to the fine
resolution.

5.2. Sensitivity to the hydraulic conductivity of fractures and matrix

In practice, the matrix and fractures are often naturally assigned
to different conductivities. Normally, the rock matrix has relative low-
permeability compared to the fractures. In contrast, the fractures can
also exhibit a barrier effect instead of the conductive channels due to
6

the geological environment. Therefore, we analyze the pressure distri-
bution on fractures with different permeabilities to show the impacts
of impermeable or conductive fractures. The parameters are same as in
the above test.

Fig. 9 illustrates pressure distribution in different situations. The
permeability ratio is set to 𝑘𝑟 = 105 and 10−5. It indicates that the
barrier effect of fractures produces a significant discontinuity in the
pressure field. The movement of fluid is blocked around the low-
conductivity fractures. Furthermore, the type of boundary conditions,
specifically the injection position, also affects the pressure distribution.
To this end, we consider different injection types. As displayed in
Fig. 9a, the horizontal fracture is inactive if the injection is imposed
on the entire left surface. While if the injection is applied on the
left bottom corner, as shown in Fig. 9c, both horizontal and vertical
fractures are active. In the situation of high-conductivity fractures, the
pressure distribution shows a slight perturbation only in the region
around fractures, which can be seen in the contour maps of Figs. 9b
and d. Comparing the pressure distributions calculated by different
permeabilities, it is concluded that the pressure gradient is very high
around the fracture network if it plays the role of barriers. The pres-
sure concentration would disappears if the fractures are assigned to
high-conductivity.

The pressure distribution along fractures strongly depends on the
hydraulic properties of fractures and rock matrix. Specifically, in the
crossed-fractures model, the horizontal and vertical fractures show
obviously different behaviors. A set of curves, corresponding to Fig. 9,
to show pressure distribution along the horizontal and vertical frac-
tures under different situations, are illustrated in Figs. 10 and 11. It
appears that a significant jump around the horizontal fracture when
this fracture plays the role of flow barrier, as depicted in Fig. 10a,
corresponding to Fig. 9a. If the injection is placed on the left bottom
corner, the discontinuous pressure is observed in both the horizontal
and vertical fractures, as shown in Fig. 10b.

Fig. 11 demonstrates that pressure on the horizontal fracture shows
a linear decay if the fracture is assigned to high-conductivity (𝑘𝑟 = 105).
The reason is that the fracture plays the role of conductive pathway,
which directly conducts the fluid from inlet to outlet, therefore fluid
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Fig. 7. Grid independence test (left) and comparison of the results calculated by different methods (right).
Fig. 8. Comparison of the results calculated by different grid resolutions. (a) The fully-resolved solution. (b) and (c) are discretized by 7512 and 4274 cells, respectively.
Fig. 9. Pressure distribution expressed by contour maps (top) and profiles (bottom). The injection position and permeability are allowed to be changed.
flow in the horizontal fracture produces a linear pressure gradient. Note
that when the injection is imposed on the left bottom corner of the
domain, both horizontal and vertical fractures exhibit the same behav-
ior, since the symmetric effect of fluid flow in the crossed-fractures, as
shown in Fig. 11b.

5.3. Flow in fractured porous media with cavities

A fractured porous medium with different types of cavities is simu-
lated with the consideration of flux connection in fracture–cavity net-
work. The discrete fractures and cavities are stochastically distributed
7

inside this medium. The multiple crossing fractures are considered,
while the empty cavity and filled cavity are connected through the
pathways generated by the discrete fractures. Especially, the filled
cavity is allowed to be assigned to a different hydraulic conductivity
𝑘𝑐 compared to the rock matrix 𝑘𝑚, therefore it creates a barrier or
conductive pathway to fluid flow.

The domain is a square with size 100 m × 100 m, as shown in
Fig. 12. To study the effects of cavities, as well as the permeability
of cavities and fractures, we consider three different patterns of this
model. Different permeabilities and boundary conditions are given in
Table 1. Note that in Patterns A and B, the permeability of filled
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Fig. 10. Pressure variation along fractures when fractures are impermeable (𝑘𝑟 = 10−5). Note that (a) and (b) correspond to Figs. 9a and 9c, respectively.
Fig. 11. Pressure variation along fractures when fractures are conductive pathway (𝑘𝑟 = 105). Note that (a) and (b) correspond to Figs. 9b and 9d, respectively.
Fig. 12. Schematic of a porous medium with stochastic fractures and cavities.

cavity is set to 𝑘𝑐∕𝑘𝑚 = 1. The fracture network highlighted in red
color, as shown in Fig. 12, has different hydraulic property compared
to the rock matrix. As indicated in Table 1, the permeability of the
fracture network is assigned to 𝑘𝑓∕𝑘𝑚 = 10−5 and 105 in Patterns A and
B, respectively. Therefore, the effects of impermeable and conductive
pathway of the fracture network are simulated.

The simulation results are shown in Fig. 13. The injection is imposed
on the left boundary 𝑝𝐿 = 1MPa, while the outlet is placed on the right
boundary. The presence of fracture network strongly influences the
pressure distribution. It can be observed that a pressure concentration
phenomenon is produced by the impermeable fractures (𝑘𝑓 = 10−15

m2) in Pattern A. The impact of the fracture network in Pattern B
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Table 1
Model parameters in simulation.

Pattern A Pattern B Pattern C

Matrix permeability 𝑘𝑚 [m2] 10−12 10−12 10−12

Fracture aperture 𝛥𝑎 [mm] 0.1 0.1 0.1
Fracture permeability 𝑘𝑓 [m2] 10−17 10−5 10−17

Cavity permeability 𝑘𝑐 [m2] 10−12 10−12 10−15

Empty cavity 1 – – Inlet
Empty cavity 2 – – Outlet
Pressure injection [MPa] 𝑝𝐿 = 1 𝑝𝐿 = 1 𝑝𝑐 = 1

is relatively small compared to Pattern A due to the fact that the
conductive pathway directly conducts fluid through the fractures.

The impact of the impermeable and conductive fracture network
can be further illustrated by the pressure variation along a monitoring
line. A horizontal line is placed along this domain from coordinates
(0, 50) to (100, 50), as depicted in Fig. 14. As shown in this figure, the
pressure variation in Pattern A shows two significant jumps around
the fracture network, which is marked by red color in Fig. 12. The
first jump happens in the range 35∼40, and the second jump happens
in range 60∼65. These two positions are coincidentally intersected by
fractures. In Pattern A, the impermeable region in the center of the
domain is constructed by the impermeable fracture network, which can
be reflected in the pressure curve with range 40∼60. In contrast, the
pressure variation in Pattern B shows a different tendency, in which
the fracture network is assigned to a high-conductivity. Therefore, the
tendency of pressure variation is smooth and monotonically decreases,
which is consistent to the fact of the linear pressure gradient.
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Fig. 13. Pressure distributions in Patterns A and B. The fracture network, highlighted in red color in Fig. 12, is assigned to 𝑘𝑓 ∕𝑘𝑚 = 10−5 and 105, respectively.
Fig. 14. Pressure variation along the monitoring line in Patterns A and B.
In contrast, this model is then simulated with Pattern C. The pa-
rameters are shown in Table 1. Boundary conditions, as well as the
hydraulic conductivity of the cavities, are different from Patterns A
and B. We consider different properties of the empty cavity (Cavities
1 and 2) and the filled cavity (Cavity 3), which are labeled in Fig. 12.
The simulation results are displayed in Fig. 15. It shows that the low
conductivity (𝑘𝑐 = 10−15 m2) of the filled cavity produces a relative
low pressure region around Cavity 3. Fluid directly conducts from the
source (Cavity 1) to the sink (Cavity 2), and then gathering in the
region surrounded by the fracture network, as displayed in Fig. 12. The
fracture network creates a connected pathway, therefore the conductive
channel connects the cavities and the fracture–cavity network. Fig. 15
depicts the pressure field in the discrete fractures. Pressure decay along
the fracture network is observed due to the pressure gradient generated
by the pressure difference between the inlet and outlet.
9

5.4. The influence of heterogeneity on fluid flow

In practice, the geological field shows a random distribution of
hydraulic property spatially. In different regions of a fractured reser-
voir, the permeability can be assigned to various magnitudes and the
distribution may follow statistical laws. In contrast to the homogeneous
assumption, in this section, we study the effect of heterogeneity on
fluid flow. To this end, permeability field is generated randomly and is
allowed to be changed in a range. The permeability distribution follows
the statistical laws, such as the log-normal distribution (Wang et al.,
2014; Cusini et al., 2018). In this work, the Gaussian distribution law
is applied to create the heterogeneity in permeability field. As display
in Fig. 16, the range of the matrix permeability can be changed between
0.7∼1.2 × 10−12 m2. Other parameters are same as the above test.

Obviously, the heterogeneity influences the pressure distribution,
as shown in Figs. 17 and 18. A comparison between the solutions of
homogeneous and heterogeneous situations is provided. This impact
is also related to the fracture permeability. It demonstrates that the
impact of heterogeneity in low-conductivity fracture is relatively larger
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Fig. 15. Pressure distribution of the fractured porous medium in Pattern C.
Fig. 16. Permeability distribution (unit: [m2]) of the rock matrix (a) and fractures (b) with high-conductivity.
Fig. 17. Pressure variation along a monitoring line in the situations of low-conductivity (left) and high-conductivity (right) of fractures.
Table 2
Model parameters of the large-scale simulation.

Parameters Values

Domain size 500 m × 250 m
Matrix permeability 𝑘𝑚 3.7 × 10−12∼2 × 10−8 m2

Cavity permeability 𝑘𝑐 3.7 × 10−18 , 3.7 × 10−14 m2

Fracture aperture 𝛥𝑎 0.1 mm
Fracture permeability 𝑘𝑓 3.7 × 10−17∼3.7 × 10−7 m2

Inlet 𝑝𝐿 = 20 MPa
Outlet 𝑝𝑅 = 10 MPa

than the high-conductivity. Fig. 18 provides the pressure deviation
induced by the heterogeneity. It is measured by the difference between
the results of homogeneous and heterogeneous situations, defined as
𝛥𝑝 = |

|

𝑝ℎ𝑜 − 𝑝ℎ𝑒|
|

. The percentage of pressure deviation is defined by
𝛥𝑝∕𝑝ℎ𝑜. The variation of pressure deviation along the diagonal of the
10
domain is shown in Fig. 18. It indicates that the pressure deviation con-
centrates at the positions which are intersected by fractures. Especially,
𝛥𝑝 is more significant around the discrete fractures if these fractures
play the role of barriers. The reason is that the impermeable fractures
may lead to a relative large deviation due to these fractures block fluid
flow.

To investigate the effects of multiple cavities and fractures, as well
as their hydraulic properties, on fluid flow, a large-scale fractured
porous medium with heterogeneity is simulated, as shown in Fig. 19a.
It can be seen that fractures and cavities are connected, therefore a
fracture–cavity network is created. Boundary conditions and model
parameters are shown in Table 2. We generate a random permeability
field, as displayed in Fig. 19b. The permeability of cavities is allowed
to be changed. The presence of cavities affects the flow pattern in this
fractured medium. The filled cavities are equivalent to the barriers if
the low-conductivity is used, as displayed in Fig. 21b. Otherwise, the
cavities are permeable if a high-conductivity is used, such that fluid
directly conducts through the fracture–cavity network.
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Fig. 18. Percentage of pressure deviation induced by heterogeneity measured by the difference between homogeneous and heterogeneous solutions.
Fig. 19. The large-scale fractured porous medium. (a) Geometry of the model. (b)
Permeability distribution (unit: m2).

Furthermore, the impact of heterogeneity on fluid flow is ana-
lyzed with different fracture permeability. As displayed in Fig. 20,
the percentage of pressure deviation 𝛥𝑝∕𝑝ℎ𝑜, induced by the random
permeability field, is calculated by the difference between the solutions
of homogeneous and heterogeneous situations. It appears that this
value decreases with the increase of fracture permeability. Therefore,
it indicates that the influence of heterogeneity on high-conductivity
fractures is relatively smaller than the low-conductivity.

6. Conclusions

This work presents a numerical investigation on fluid flow in het-
erogeneous porous media, in which the influence of discrete frac-
tures and cavities with different conductivities is simulated. A hybrid-
dimensional modeling approach combined with the dual fracture-pore
model is presented. Based on these, the effects of fracture–cavity net-
work, as well as hydraulic property, on fluid flow are studied.

The numerical method is based on the Galerkin finite element
method, in which the shape function is selected as a piece-wise con-
stant function. The discrete fractures are discretized as the low-order
objects compared to the rock matrix cells, while the natural cavities are
modeled and categorized into filled and empty cavities. The numerical
11
Fig. 20. Percentage of pressure deviation induced by heterogeneity with different
permeabilities.

Fig. 21. Pressure distribution under different conditions (unit: MPa). (a) High-
conductivity of the filled cavities. (b) Low-conductivity of the filled cavities (modeled
as barriers).
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treatment of flux connection of multiple fractures is elaborated. Spe-
cially, the connections of fractures–fractures and matrix–fractures are
resolved by the classification of different types of cell, therefore the
high-dimensional cells (matrix and cavities) and the low-dimensional
cells (fractures) are considered in different situations.

A series of numerical tests is conducted to verify the presented
method and to investigate pressure distribution in fractured porous
media under different conditions. First, the results calculated by dif-
ferent grid resolutions are compared with the reference solution. A
grid convergence test is performed to show the grid independence.
Then, a sensitivity study is conducted to investigate the impacts of
boundary conditions and fracture permeability on pressure distribution.
The fractures are allowed to be modeled as barriers or conductive path-
ways. Next, a fractured porous medium with different types of cavity is
simulated with the consideration of flux connection in fracture–cavity
network. The effects of impermeable and conductive fractures on fluid
flow are analyzed. Later, in contrast to the homogeneous situation,
we study the effect of heterogeneity on fluid flow. Pressure deviation
induced by heterogeneity is investigated with different permeabilities
of fractures and cavities.

Several extensions of the presented study deserve a further inves-
tigation. Typically, the fractured vuggy porous media, with multiple
scale fractures and cavities, is widely existing in carbonate reservoir
engineering. However, it is impossible to simulate all the multiple scale
fractures and cavities due to the computational cost. Developing an
upscaling approach and then combining with our numerical method
is an efficient strategy.
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