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ABSTRACT: Applications like drought monitoring and forecasting can profit from the global and near-real-time avail-

ability of satellite-based precipitation estimates once their related uncertainties and challenges are identified and treated.

To this end, this study evaluates the IMERG V06B Late Run precipitation product from the Global Precipitation

Measurement mission (GPM), a multisatellite product that combines space-based radar, passive microwave (PMW), and

infrared (IR) data into gridded precipitation estimates. The evaluation is performed on the spatiotemporal resolution of

IMERG (0.18 3 0.18, 30min) over the Netherlands over a 5-yr period. A gauge-adjusted radar precipitation product from

the Royal Netherlands Meteorological Institute (KNMI) is used as reference, against which IMERG shows a large positive

bias. To find the origin of this systematic overestimation, the data are divided into seasons, rainfall intensity ranges, echo top

height (ETH) ranges, and categories based on the relative contributions of IR, morphing, and PMW data to the IMERG

estimates. Furthermore, the specific radiometer is identified for each PMW-based estimate. IMERG’s detection perfor-

mance improves with higher ETH and rainfall intensity, but the associated error and relative bias increase as well. Severe

overestimation occurs during low-intensity rainfall events and is especially linked to PMW observations. All individual

PMW instruments show the same pattern: overestimation of low-intensity events and underestimation of high-intensity

events. IMERGmisses a large fraction of shallow rainfall events, which is amplifiedwhen IR data are included. Space-based

retrieval of shallow and low-intensity precipitation events should improve before IMERG can become accurate over the

middle and high latitudes.

KEYWORDS: Rainfall; Radars/Radar observations; Satellite observations; Precipitation; Remote Sensing

1. Introduction

Precipitation observations are required for environmental

applications that are highly embedded in the contemporary

society, such as crop yield and flash flood forecasting, water

management, and drought monitoring. However, the global

coverage of ground-based precipitation measurements is lim-

ited, especially over Africa, South America, parts of Asia, and

regions that are difficult to access (e.g., oceans, mountainous

areas, polar regions; Lorenz and Kunstmann 2012; Saltikoff

et al. 2019). Besides being limited in their spatial representa-

tion, ground-based measurements retrieved from rain gauges

are restricted in their temporal resolution as well. Satellites

can potentially overcome these limitations, as they are able

to provide global, uniformly distributed, and quasi-real-time

precipitation observations.

Satellite-based estimates, however, have challenges of

their own. Examples are the retrieval of shallow precipita-

tion (Petković and Kummerow 2016; Arulraj and Barros

2017) and snowfall (Foster et al. 2012; Casella et al. 2017).

Both precipitation types frequently occur over the middle

and high latitudes, including areas that are not covered by

ground-based measurements such as oceans and regions

above the polar circles. Those deficiencies can cause unre-

liable precipitation estimates, while accurate estimates are

vital for environmental applications. Hence, to be able to

improve mid- and high-latitude precipitation retrievals, it is

of fundamental importance to identify the sources of error

and quantify the uncertainties related to precipitation esti-

mations retrieved from satellites.

The Global Precipitation Measurement mission (GPM)

(Hou et al. 2014; Skofronick-Jackson et al. 2018) is one of

the recent efforts to improve space-based precipitation esti-

mates. The GPM Core Observatory satellite has an orbit ex-

tending from 658S to 658N and carries the Dual-Frequency

Precipitation Radar (DPR) and the GPM Microwave Imager

(GMI) on board. Besides the core satellite, which provides

high-quality estimates approximately once a day for a given

location (Hou et al. 2014), GPM consists of a constellation of

partner satellites carrying radiometers. Additionally, GPM

incorporates observations from geostationary satellites with

infrared (IR) sensors to collect as much data as possible. Due

to the large spatial coverage and the inclusion of numerousCorresponding author: Linda Bogerd, linda.bogerd@wur.nl
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satellites, GPM provides the opportunity to elaborately study

space-based precipitation measurements over different cli-

mates and from various instruments.

Apart from offering observations as retrieved from indi-

vidual instruments, the GPM products also include the gridded

Integrated Multisatellite Retrievals for GPM (IMERG) pre-

cipitation estimates. IMERG combines all GPM data available

(including reanalysis data that are used for the morphing com-

ponent since version V06B) to create a half-hourly precipitation

product with a 0.18 3 0.18 spatial resolution (Huffman et al.

2020). Three different IMERG products exist: two near-real-

time (NRT) runs (Early, IMERG-E and Late, IMERG-L) and

one post-real-time run (Final, IMERG-F). IMERG-F has been

extensively evaluated over different geographical areas and at

different time scales (e.g., Rios Gaona et al. 2016; Chen and Li

2016; Asong et al. 2017; Tan et al. 2017; Dezfuli et al. 2017;

Ramsauer et al. 2018; Prakash et al. 2018; Cui et al. 2019;

Maranan et al. 2020; Freitas et al. 2020), as IMERG-F is claimed

to provide themost accurate space-based precipitation estimates

on such high spatial and temporal resolution currently available

(Huffman et al. 2019).

The higher accuracy of IMERG-F compared to the NRT

runs is attributed to the implementation of Monthly Global

Precipitation Climatology Centre (GPCC) rain gauges

(Foelsche et al. 2017; Tapiador et al. 2019; Hosseini-Moghari

and Tang 2020; Mohammed et al. 2020). However, the inclusion

of rain gauges is not necessarily beneficial for those areas where

satellite observations could add most value: regions where

ground observations are scarce or even absent. Furthermore, it

takes several months after the observation before IMERG-F is

available. This latency is reduced to 4 and 14h for IMERG-E

and IMERG-L, respectively. Hence, NRT runs are more feasi-

ble to use for operational meteorology or water management

despite their lower accuracy compared to IMERG-F.

The aforementioned studies also show that IMERG-L out-

performs IMERG-E. This better performance is attributed to

1) the use of both forward and backward propagation in the

IMERG-L run while IMERG-E only extrapolates forward in

time and 2) the inclusion of additional data that are not de-

livered in time to be included in IMERG-E but are in time to

be included in IMERG-L due to its additional 10 h of latency.

Because of the combination of higher accuracy compared to

IMERG-E and the exclusion of ground-based observations

and the associated shorter latency compared to IMERG-F,

IMERG-L is selected to evaluate and unravel the discrep-

ancies between the reference and a satellite-only precipitation

product.

Thus far, in-depth evaluations focusing on IMERG-L are

scarce, especially over the midlatitudes (Gebregiorgis et al.

2018; Wang and Yong 2020). The seasonal performance of

IMERG-L is only briefly considered in the aforementioned

studies, despite the different types of precipitation that char-

acterize the different seasons (e.g., Attema and Lenderink

2014; Navarro et al. 2019; Tapiador et al. 2019). Additionally,

it is expected that the performance of IMERG-L is related

to rainfall intensity, as already proved to be the case for

IMERG-F (Xu et al. 2017). This relation is anticipated to be

even stronger for IMERG-L: the implementation of gauges in

IMERG-F may mask errors associated with satellite-based

observations, such as attenuation of the signal during high-

intensity rainfall events and difficulties to detect low-intensity

rainfall events. Each instrument that contributes to IMERG

has its own deficiencies concerning these precipitation char-

acteristics. Hence, identification of the source available dur-

ing the moment of observation provides valuable insights into

the required adaptations to improve the overall performance

of IMERG.

This study aims to validate IMERG-L precipitation esti-

mates over the period January 2015–December 2019 over the

Netherlands. A high-resolution gauge-adjusted weather radar

dataset, which is available over the entire period and research

area, is used as reference.As far as the authors are aware, this is

the first study validating IMERG over such an extended time

period over a midlatitude country, performing an in-depth

analysis of IMERG-L V06B and its constituents. Furthermore,

the influence of 1) seasons, 2) rainfall intensity, 3) vertical

extent of precipitation, and 4) the relative contribution of the

IR and PMWsources on IMERG’s performance are evaluated.

2. Measurement and methods

a. Data

The three datasets used in this study were all available

over the research area, the Netherlands (50.788–53.688N,

3.388–7.388E; 35 000 km2) and for the evaluation period from

1 January 2015 to 31 December 2019. Each dataset is briefly

described in the following subsections.

1) SATELLITE RAINFALL ESTIMATES: IMERG V06B

This study evaluates the most recent version (V06B) of

IMERG, the gridded multisatellite precipitation product of

GPM. To obtain the high spatiotemporal resolution of IMERG

(0.18 3 0.18, 30min), precipitation estimates from variousGPM

partner satellites with passive microwave (PMW) sensors on

board are combined. Additionally, a morphing algorithm is

applied to fill time gaps between PMW observations using

motion vectors. If the time gap between two subsequent PMW

observations is larger than;30min, infrared (IR) observations

are additionally included to update the final precipitation es-

timates (Huffman et al. 2019, 2020).

The key difference between IMERG V06B and its previous

versions is a modification in the morphing algorithm. While

motion vectors were derived from cloud top observations re-

trieved from IR measurements in previous versions, they are

derived from reanalysis data (MERRA-2 for IMERG-F, GEOS

FP for IMERG-E and IMERG-L) in V06B. Additionally,

IMERG-L V06B does not involve climatological calibrations

based on Global Precipitation Climatology (GPCC) gauges,

which makes the calibrated and uncalibrated precipitation ob-

servations identical and therefore independent of direct ground

observations.More details about (the recent changes in) IMERG

are described in Tan et al. (2019) and Huffman et al. (2020). For

the remaining of this paper, the IMERG-L V06B product is re-

ferred to as IMERG.

To studywhether the source (i.e., PMW,morphing and/or IR)

of observation affects the accuracy of precipitation estimates,
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four categories were distinguished [using a similar approach

as applied in Tan et al. (2016) and Maranan et al. (2020)].

The observations were categorized based on the availability

of PMW observations (stored in the IMERG data field

HQPrecipSource) and the weighted percentage of IR obser-

vations included to retrieve the final precipitation estimate

(stored in the IMERG data field IRKalmanFilterWeight). The

following four categories were defined: 1) PMW observations

(HQPrecipSource 6¼ 0, referred to as PMW), 2) spatially ad-

vected PMW observations (HQPrecipSource 5 0 and 0%

IRKalmanFilterWeight, referred to as PMW-morph), and

two categories for morphed estimates distinguished on the

weighted contribution of IR data, namely, 3) mostly morphed

(,50% IRKalmanFilterWeight, referred to as morph1IR ,
50%), or 4) mostly IR (.50% IRKalmanFilterWeight, re-

ferred to as morph1IR . 50%). Because the frequency of

estimates solely based on IR observations was found to be

small (they mostly occur over areas where PMW estimates are

unreliable, such as snow surfaces), no separate category for

‘‘only IR observations’’ was created.

Five radiometers contributed to IMERG estimates over

the Netherlands during the studied period: two sounders

[Microwave Humidity Sounder (MHS) and Advanced

Technology Microwave Sounder (ATMS)] and three im-

agers [GPM Microwave Imager (GMI), Advanced Microwave

Scanning Radiometer (AMSR), Special Sensor Microwave

Imager/Sounder (SSMIS)]. Note that if a particular type of

sensor is mounted on multiple satellites, they are grouped

together. The performance of PMW estimates might be sen-

sor dependent, as exact specifications vary among the radi-

ometers. Hence, five additional categories representing the

specific instruments were added to the source categories.

2) GROUND-BASED RAINFALL ESTIMATES:
GAUGE-ADJUSTED RADAR

A gauge-adjusted radar dataset obtained from the Royal

Netherlands Meteorological Institute (KNMI) was used as

reference to validate the IMERG precipitation estimates. This

gridded dataset completely covers the land surface of the

Netherlands at a spatial resolution of ;1 km2 and a 5-min

temporal resolution. Radar data were unavailable for some

time steps within the studied time period due to, for instance,

maintenance of the radar systems. Time gaps of 5min were

filled by means of linear interpolation. If more than one 5-min

radar sample were missing in half an hour, this half-hour was

removedbefore further analysis for all datasets. Still, the temporal

coverage remains larger than 99% for the considered period.

The rainfall estimates are based on composites of two

C-band radars, which measure instantaneous rainfall every

5min. Until 2017, four elevation scans were used (0.38, 1.18,
2.08, and 3.08). This is reduced to three elevation scans (0.38,
0.88, and 2.08) from 2017 onward. These scans are used to

construct the pseudoCAPPI (pseudo–constant altitude plan

position indicator) at a height of 1500m. Subsequently, the

CAPPIs from both radars are combined using a range-

dependent weighting factor. The weights decrease with dis-

tance from the radar, except close to the radar, where the

weights become smaller to mitigate the effects of residual

clutter and the cone of silence. As the majority of the land

surface of theNetherlands is covered by at least one scan with a

height that is below or at the CAPPI level, the impacts of

(large) overestimations of rainfall intensity that occur due to

bright band effects is limited (Overeem et al. 2009b, 2020).

Subsequently, this combined composite is adjusted with gauge

data fromKNMI (31 automatic and 325manual gauges). These

gauge adjustments provide corrections during weather cir-

cumstances that reduce the accuracy of radar estimates, such as

overshooting or variability of the drop size distribution. The

combination of CAPPIs, distance weighting, and gauge ad-

justments yields a high-quality dataset. More detailed infor-

mation about this dataset (including an assessment of its

quality) can be found in Overeem et al. (2009a,b, 2011).

3) GROUND-BASED ECHO TOP HEIGHT

OBSERVATIONS: RADAR

As briefly mentioned, one of the persistent challenges for

satellite-based precipitation monitoring is the detection of

shallow precipitation events (i.e., precipitation from clouds in

the lower parts of the atmosphere). Therefore, radar echo

top height (ETH) data were used to examine the influence of

the vertical extent of a precipitating area on IMERG’s

performance. The ETH observations are retrieved from the

same C-band radars as described in the previous subsection.

However, while precipitation estimates are based on three or

four vertical elevation scans, fifteen elevations (ranging from

0.38 to 12.08) are used for the ETH product.

ETH is defined as themaximumheight at which a reflectivity

threshold of 7 dBZ is exceeded. This low detection threshold

combined with residual clutter, as well as the vertical sampling

by the radar (especially at long ranges overshooting may occur

as a consequence of the increasing height of observation),

can induce unrealistically high or low ETH values. Therefore,

extremely low (below 1 km) and high (above 15 km) ETH

observations were removed before further analysis [more in-

formation about the ETH product and an evaluation can be

found in Beekhuis and Holleman (2008) and Aberson (2011)].

b. Spatiotemporal aggregation

The spatiotemporal resolution of the KNMI (gauge-adjusted)

radar datasets was aggregated to match the coarser IMERG

resolution. First, the 5-min KNMI estimates were aggregated

into 30-min estimates for each radar pixel by summing the

precipitation estimates and averaging the ETH observations.

Then, each radar pixel was allocated to an IMERG pixel based

on the minimum distance between the grid centers. The

arithmetic mean of all radar pixels belonging to a certain

IMERG pixel was assumed to be representative for spatial

aggregation to IMERG resolution. Additionally, the IMERG

dataset was converted from intensity (mm h21) to rainfall

depth (mm). Once all datasets had the same spatiotemporal

resolution, a mask was applied to make sure only pixels

(partly) over the land surface of the Netherlands were con-

sidered for further analysis. Due to the limited availability of

rain gauges over the sea region, this area was excluded from

further analysis to ensure the reference product had a consis-

tent spatial performance.
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c. Validation

Five widely applied statistics and contingency metrics were

adopted to evaluate the performance of IMERG. The overall

error magnitude was calculated with the mean absolute error

(MAE). To be able to compare theMAEacross different seasons

and observation sources, its normalized version (NMAE) was

also computed. The relative bias (RB) was used to indicate the

direction (i.e., underestimation or overestimation) of the sys-

tematic bias. The RB, MAE, and NMAE are defined as follows:

RB5
�
n

i51

(R
IMERG,i

2R
radar,i

)

�
n

i51

R
radar,i

, (1)

MAE5
�
n

i51

jR
IMERG,i

2R
radar,i

j
n

, (2)

NMAE5
�
n

i51

jR
IMERG,i

2R
radar,i

j

�
n

i51

R
radar,i

, (3)

where n represents the number of pixels at all time steps

available for the studied period or corresponding to a certain

selection (e.g., season, intensity). All three metrics would

yield a value of 0 if the observations of IMERG would be

identical to the radar observations.

Furthermore, two contingency metrics were adopted to

evaluate the capability of IMERG to distinguish between wet

and dry pixels. These are the probability of detection (POD)

and probability of false alarm (POFA, often referred to as the

false alarm ratio). The POD and POFA are defined as

POD5
hits

hits1misses
, (4)

POFA5
false alarms

hits1 false alarms
, (5)

where ‘‘hit’’ means that both IMERG and the reference (the

radar estimates) identify a pixel as ‘‘rainy,’’ ‘‘false alarm’’ means

that IMERG identifies a pixel as rainy while the reference

identifies the pixel as ‘‘dry,’’ and ‘‘miss’’ means that the reference

identifies a pixel as rainy while IMERG identifies the pixel as dry.

The threshold to distinguish between dry and wet pixels was 0.1-

mm rainfall depth in 30min. If IMERG would always correctly

identify rainy pixels, POFA would be 0 and POD would be 1.

Except for the contingency metrics, the values in Tables 1–4

in the results section are based on observations where both

radar and IMERG exceeded the threshold of 0.1-mm rainfall

depth. With all observations included where only the radar

exceeded the threshold, the RB, MAE, and NMAE scores

were lower due to the inclusion of misses (i.e., the scores im-

proved as the values smaller than 0.1mm reduce the (positive)

bias). Because this compensation effect was similar for all

statistics and selections and the number of misses can be de-

duced from the POD, only the scores based on the subsets of

hits are shown in the tables.

Last, we compared the cumulative distribution functions

(CDF) of IMERG and radar estimates. The CDF was calcu-

lated on both occurrence (i.e., the relative contribution of a

certain rainfall depth to the total precipitation occurrence) and

volume (i.e., the relative contribution of a certain rainfall depth

to the total volume).

3. Results

From the spatially averaged monthly sums (i.e., time series

calculated from IMERG native resolution over the entire pe-

riod of evaluation), it is clear that IMERG systematically

overestimates the monthly amount of rainfall compared to the

reference Fig. 1). This overestimation is generally lowest in the

second half of the year, i.e., midsummer, fall, and the beginning

of winter. The largest absolute and relative overestimation

occurs in January and February, respectively.

The performance of IMERG on a pixel-by-pixel basis over

the entire research period is summarized in the upper row of

Table 1. The mean rainfall amount is noticeably higher ac-

cording to IMERG (1.28mm) compared to radar (0.77mm).

The corresponding RB is high and positive (66%), which

means that IMERG systematically overestimates rainfall (as

already observed in Fig. 1). Furthermore, IMERG misses ap-

proximately half of the radar rainfall events (POD 5 0.51),

while at the same time almost half of IMERG’s rainfall events

are false alarms (POFA 5 0.46).

To further analyze the fluctuating monthly performance of

IMERG and to identify what causes the systematic overesti-

mation and large number of misses, four categories are defined

and discussed in the subsections below. First, the seasonal

performance of IMERG is analyzed in more detail. Seasons

are defined as the four meteorological seasons in the Northern

Hemisphere: winter (DJF), spring (MAM), summer (JJA), and

fall (SON). Then, the effect of rainfall intensity and the vertical

extent of precipitation on the accuracy of the IMERG esti-

mates are considered, both strongly linked to the seasons in the

Netherlands. Finally, the degree to which the source of ob-

servation influences the performance of IMERG is examined.

a. Seasonality

The results of the seasonal evaluation of IMERG are shown

in the last four rows of Table 1. The mean radar rainfall depth

TABLE 1. IMERG performance on a pixel-by-pixel basis (0.18 3
0.18 spatial resolution, 30-min temporal resolution) for the entire

studied period (January 2015–December 2019). The calculations of

mradar (mean of the radar estimates),mIMERG (mean of the IMERG

estimates), RB, MAE, and NMAE are based on paired observa-

tions where both radar and IMERG exceed the threshold value of

0.1mm per 30min (i.e., only hits were considered).

Season

mradar

(mm)

mIMERG

(mm)

RB

(%)

MAE

(mm)

NMAE

(—) POD POFA

All 0.77 1.28 66 0.94 1.22 0.51 0.46

DJF 0.68 1.39 104 1.01 1.48 0.47 0.45

MAM 0.70 1.38 96 1.07 1.43 0.52 0.47

JJA 0.95 1.38 46 1.05 1.11 0.59 0.47

SON 0.76 1.00 32 0.73 0.97 0.50 0.44
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shows a seasonal dependence and is smallest in winter and largest

in summer.Conversely, themean IMERGrainfall depth is similar

during winter, spring, and summer. The high RB andNMAE and

the low POD indicate that winter is the most challenging season

for IMERG. Consistent with Fig. 1, the mean IMERG rainfall

depth, RB, and NMAE values are smallest in fall. An analysis of

the individual years yields similar conclusions (not shown).

A comparison between the seasonal rainfall maps of IMERG

and radar reveals that, except for fall, IMERG overesti-

mates the amount of rain over the entire surface of the

Netherlands (Fig. 2). A certain geographical dependence

can be observed as IMERG consistently shows higher values

over the Waddeneilanden (small islands in the north of the

Netherlands), Zeeland (southwest), and Limburg (south-

east) compared to the reference observations, especially in

winter and spring. Furthermore, the RB (last row of Fig. 2)

seems reduced in the middle of the country at a larger dis-

tance from the North Sea, again especially during winter and

spring. Compared to the other seasons, the bias is small

during fall and even almost zero in the middle of the coun-

try. The small spatial bias during fall indicates that IMERG

is able to correctly capture the higher amounts of rainfall

near the coast of the Netherlands while the amount gradu-

ally decreases toward the east of the country.

b. Rainfall intensity

Dividing the radar estimates into five intensity classes clearly

shows that the detection performance of IMERG improves for

higher intensities (Table 2). More than half of the pixels with

rainfall amounts between 0.1 and 1mm are not detected, while

the correctly identified wet pixels are highly overestimated.

FIG. 1. Spatially averaged (time series calculated from IMERG

native resolution over the entire period of evaluation) monthly

rainfall accumulations according to the radar and IMERGdatasets

for the January 2015–December 2019 period.

FIG. 2. Seasonally averaged precipitation maps (mm day21) according to (top) radar and (middle) IMERG, and (bottom) the relative bias

(RB) for the January 2015–December 2019 period.

JULY 2021 BOGERD ET AL . 1859

Brought to you by Wageningen University & Research - Library | Unauthenticated | Downloaded 06/29/21 11:03 AM UTC



Remarkably, more than half of IMERG’s observations be-

tween 0.1 and 1mm are false alarms (i.e., the corresponding

radar rainfall depths are smaller than 0.1mm). In general,

IMERG tends to overestimate lower intensities and underes-

timate higher intensities.

A comparison of the cumulative distribution functions

(CDF) of radar and IMERG rainfall depths clearly indicates

that IMERG underestimates both the occurrence (Fig. 3, solid

line) as well as the volume (Fig. 3, dashed line) of rainfall

amounts smaller than 1mm (not shown). Although the un-

derestimation is present in all seasons, it is amplified in winter

and spring (Fig. 3, upper row): more than 80% (less than 70%)

of the radar (IMERG) rainfall amounts are smaller than 1mm,

contributing more than 55% (less than 30%) of the total

rainfall volume. Furthermore, less than 1% of the IMERG

rainfall amounts are larger than 10mm, while they contribute

more than 10% of the total rainfall volume in winter and

spring. Therefore, the systematic overestimation visible in

those seasons seems to be related to a small number of very

large rainfall values. Although less extreme, similar conclu-

sions apply to summer and fall.

Table 2 shows that IMERG underestimates large radar

rainfall depths, while Fig. 3 reveals that the contribution of

high rainfall amounts to IMERG’s total rainfall accumulation

is relatively large. To illustrate the potential relation between

the rainfall rate (based on the radar rainfall amount) and

IMERG’s under- or overestimations, the residuals (IMERG 2
radar) are analyzed as a function of radar estimates (Fig. 4). The

underestimation of large rainfall depths is visible for all seasons,

except during winter when higher intensities are absent. For

radar rainfall depths larger than 15mm, the difference is almost

always below the 0 mm line. On the other hand, IMERG

overestimates low intensities, especially in winter and spring.

c. Echo top height

To study the relationship between IMERG’s performance

and the vertical extent of the precipitation system, the rainfall

estimates are coupled (pixel by pixel) with ETH observations.

The seasonal distribution of ETH observations shows that the

variability of ETH values is smallest in winter and largest in

summer (Fig. 5). Almost all rainfall events in winter and more

than 95% of the events in spring and fall have ETH values

below 6 km. The highest ETH values occur during summer, the

season associated with most (convective) high-intensity events

in the Netherlands.

The performance of IMERG categorized by ETH clearly

shows that shallow events (low ETH, 1–3 km) are the most

challenging to detect (POD 5 37%, Table 3). The increasing

ability of IMERG to detect rainfall for higher ETH goes at the

expense of a larger positive bias and a slightly higher NMAE.

To unravel the performance of IMERG per ETH category

even further, Fig. 6 decomposes the results from Fig. 4 per ETH

category (again both hits and misses are considered). Two con-

clusions can be derived from Fig. 6 which are valid for all seasons

except winter, when both high-intensity events and high ETH

hardly occur: 1) most observations linked with low ETH are

misses or underestimations of low rainfall amounts and 2) the

number of (severe) overestimations is amplifiedwith higherETH.

d. Source of observation

Categorizing the IMERG estimates based on its constituent

available during the observation reveals that, surprisingly, both

PMW-morph and morph1IR , 50% exceed the detection

performance of PMW observations (Table 4). Both morphing

and inclusion of IR information increase the occurrence of

false alarms. Increasing the contribution weight of IR to

more than 50% reduces IMERG’s detection performance. All

sources systematically overestimate the amount of rain once

they correctly detect rainfall, although this effect is strongest

for PMW observations.

Each category shows outliers of IMERG rainfall estimates ex-

ceeding 15mm when radar estimates are smaller than 5mm

(Fig. 7). The inclusion of morphing and IR data seems to decrease

the magnitude of overestimation, especially for low-intensity

events. Figure 7 suggests that severe overestimations derived

from PMW observations might propagate into the morphed esti-

mates. Most of the PMW observations are performed by MHS,

followed by SSMIS (Fig. 7, two upper rows). All five radiometers

show a similar pattern (Fig. 7, two upper rows): they all overesti-

mate low-intensity events andunderestimate high-intensity events.

Most of the observations are performed by MHS, followed by

SSMIS. GMI (the radiometer aboard the core satellite) does not

seem to perform better than the other constellation sensors.

Finally, the performance of each source is evaluated per

ETH class (Fig. 8). Rainfall associated with low ETH is the

most difficult to detect, especially for morph1IR . 50%. The

POD clearly increases with higher ETH, although this increase

is limited for the POD in case of medium ETH deduced from

morph1IR . 50%. For medium and high ETH, the largest

RB, MAE, and NMAE result from PMW observations. For

low ETH, the largest values of the error metrics (RB, MAE,

and NMAE) are reported for morph1IR . 50%. It should be

noted that the limited number of observations when both radar

and IMERG detect rainfall in the low ETHmorph1IR. 50%

category, which mainly originates from the winter season, in-

creases the uncertainty of the reported bias.

Among the five PMW instruments, SSMIS has the lowest

RB and (N)MAE for all ETH categories (bottom row Fig. 8).

Additionally, of all five radiometers, SSMIS best detects low

andmediumETH events. GMI has the second-best POD score

for both low and medium ETH, but the worst POD score for

TABLE 2. IMERG performance on a pixel-by-pixel basis de-

composed into 30-min rainfall intensity intervals. Because the in-

tervals are applied to radar rainfall depths and start from 0.1mm,

NMAE (divided by the sum of radar observations) is omitted.

POFA is calculated based on 30-min IMERG observations. Other

details are the same as stated in Table 1.

Rainfall

intensity

mradar

(mm)

mIMERG

(mm)

RB

(%)

MAE

(mm)

NMAE

(—) POD POFA

0.1–1mm 0.42 1.00 137 0.72 1.72 0.47 0.55

1–2mm 1.38 1.90 38 1.36 0.99 0.75 0.21

2–4mm 2.66 2.76 3 2.09 0.79 0.83 0.14

4–8mm 5.18 3.65 230 3.35 0.65 0.88 0.10

.8mm 10.90 4.86 255 7.00 0.64 0.94 0.07
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high ETH. Furthermore, the RB and (N)MAE of GMI esti-

mates are quite high. ASMR-2 has the highest RB and MAE

for all three ETH categories. The sounders (ATMS and MHS)

have low POD scores for both low and medium ETH, but the

highest POD score for high ETH. Furthermore, the two

sounders have similar (N)MAE and RB values, whereas these

values vary among the three imagers.

4. Discussion

Previous research frequently reported IMERG’s underes-

timation of high-intensity events (Fang et al. 2019; Freitas et al.

2020; Maranan et al. 2020) and its overestimation of low-

intensity events (Foelsche et al. 2017; Anjum et al. 2019),

features of IMERG we also observed (Fig. 4). However,

the magnitude of (the overall) overestimation found in

this study is considerably larger. Before we elaborate on

probable causes, we would like to mention that most of

these studies employed IMERG-F, in which (severe)

overestimations are corrected by means of gauge adjust-

ment (Foelsche et al. 2017; Tapiador et al. 2019; Hosseini-

Moghari and Tang 2020). Our aim was to evaluate satellite-only

products, as identifying the sources of error contributes to better

estimates over both ungauged and gauged areas. Two possible

FIG. 3. Seasonal cumulative distribution functions of rainfall depth occurrence (CDF; solid line) and volume

(CDFy; dashed line) for radar (black) and IMERG (blue) on half-hourly time intervals for the January 2015–

December 2019 period. Only paired observations where both radar and IMERG exceed 0.1mm per 30min are

considered (hits). The CDFs are calculated with a 0.5-mm bin width.
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explanations are discussed, which together may cause these se-

vere overestimations.

First, it should be emphasized that the current analysis is

focused on a relatively high-latitude location compared to the

more frequently studied tropical and semiarid areas. Small

rainfall depths, which frequently occur in this area (Fig. 3), are

systematically overestimated by IMERG (Fig. 4). In contrast,

tropical precipitation is often intense and short. The current

analysis shows that the intensity of convective events is fre-

quently underestimated by IMERG. This effect inherently

reduces the bias when IMERG is validated over a longer

time period.

Our findings are in line with studies focusing on mid- to high

latitudes. A study that validated all IMERG runs over Austria

(located around 478N), where the WEGN gridded rain gauge

dataset was used as reference, reported relatively large over-

estimations for IMERG-L (Foelsche et al. 2017). However, this

study does not mention which intensities were overestimated.

OverAlaska,where daily precipitation accumulation observations

from 155 (automatic) stations were used as reference, IMERG

Early Run (IMERG-E) was found to both systematically over-

estimate the amount of precipitation as well as to overestimate the

occurrence of large rainfall depths (Gowan andHorel 2020). Their

findings are similar to our results in Fig. 3. Over Germany (at

similar latitudes as the Netherlands), where a gauge-adjusted

quality-controlled dataset from the GermanWeather Service was

used as reference, the systematic overestimation of IMERG-Fwas

found to be amplified in winter (Ramsauer et al. 2018).

Second, differences (in magnitude) with previous studies

might be related to the implemented IMERG version and its

corresponding GPROF version. GPROF is the algorithm re-

sponsible for the PMW precipitation retrieval from all sensors

belonging to the GPM constellation [detailed information can

be found in Kummerow et al. (2015) and Randel et al. (2020)].

Another study over the Netherlands, which evaluated the first

IMERGversion (V03D), did not find a consistent overestimation

in the uncalibrated IMERG-F (RiosGaona et al. 2016). A brief

evaluation of the same time series as Rios Gaona et al. (2016)

FIG. 4. Seasonal scatter density plots of the difference between IMERGand radar estimates (IMERG2 radar) vs

the radar rainfall depths on half-hourly time intervals for the January 2015–December 2019 period. Only paired

observations where radar exceed 0.1mm per 30min are considered (hits and misses).
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with different IMERG versions (not shown) using the uncali-

brated estimates, revealed an enhanced overestimation of the

annual accumulation for each new version, except from V05

to V06 (the only version update without significant GPROF

changes). Although this brief evaluation involved the uncali-

brated IMERG-F and a shorter period of evaluation, a similar

trend is expected for different years and IMERG runs. However,

since multiple algorithms are combined within IMERG, it is

hard to narrow down the change in algorithms causing the

larger overestimations.

Our result that IMERG’sdetectionperformance is lowest for the

morph1IR. 50%category (Fig. 8) agreeswithprevious studies, in

which both misses and false alarms are higher for IR compared to

PMW retrieval (Gebregiorgis et al. 2017). Furthermore, retrieval

based on PERSIANN-CCS (the algorithm responsible for IR-

based precipitation retrieval in IMERG) is found to be limited to

the areas with the coldest brightness temperatures and highest rain

rates (Kirstetter et al. 2018). This is in line with our results, as we

found a high POD for high ETH for the morph1IR . 50% cat-

egory and a (very) low POD for low and medium ETH compared

to the other categories (Fig. 8). Most observations in this category

occur during winter (not shown), which at least partly explains the

absence of higher rainfall depths (Fig. 7).

It is likely that the overestimations from radiometers prop-

agate into the morphed estimates due to interpolation over

time. This is already shown by Tan et al. (2016), who studied

the performance of the different sources contributing to

IMERG. In contrast to the results of Tan et al. (2016), GMI is

not found to have a more reliable performance compared to

the other sensors (Figs. 7, 8). However, the number of data

points in Tan et al. (2016) is much smaller (e.g., n 5 438 for

GMI observations, including nonrainy pixels), the reference

product is different (gauges and a level-3 radar product are

used separately as reference), and the implemented IMERG

version and run are different (Final run, V03).

The results of the current evaluation also differ from those

reported by Tang et al. (2014): they found that SSMIS has the

largest overestimations of all sensors, while Table 4 and Fig. 8

show that SSMIS has the lowest RB and MAE. However,

SSMIS did not have a specific algorithm yet and hence Tang and

colleagues implemented a revised version of GPROF2004 for

SSMIS observations. Currently, all sounders and imagers con-

tributing to IMERG use the sameGPROF algorithm. A similar

kind of reasoning can explain why Tang et al. (2014) report

larger differences between sounders and imagers: imagers used

GPROF 2010, while sounders implemented another algorithm.

The large number of low-intensity events (in general found

to be overestimated by IMERG) in combination with the

limited occurrence of higher intensities (in general found

to be underestimated by IMERG) may result in the poor

performance of IMERG found during winter. Accurate re-

trieval of snow events is shown to be challenging for IMERG

(Cui et al. 2019), whichmight explain the lower performance of

IMERG during winter compared to other seasons. However,

snowfall was reported over a part of the Netherlands for less

than fifteen days during the study period (2015–19). Hence, we

expect that role of snow is limited for our results.

The seasonal POD score follows the seasonal cycle of the

ETH: lowest for winter, followed by fall, and clearly the best

for summer (Table 1). As shown in Fig. 6, high radar rainfall

depths are associated with high ETH. Since these events are

mostly convective events, they occur during summer when

temperatures are higher. The seasonal cycle in ETH as observed

in our study and its relationwith rainfall intensity is in agreement

with the results reported by Aberson (2011). Remarkably, fall is

the only season where those severe overestimations are reduced

despite the frequent occurrence of low-intensity events. This

reduction results in the smallest positive RB and MAE of the

four seasons. In-depth research with, for instance, 3D radar re-

flectivity data, is needed to understand why fall is different from

the other seasons for otherwise similar precipitation character-

istics such as ETH and rainfall intensity.

Our findings are especially relevant for ungauged areas with

similar climates or regions where light, long-duration (shallow)

precipitation events frequently occur. Because IMERG relies

heavily on PMW observations, we recommend further research

on passive retrieval of shallow and low-intensity precipitation

and how the seasonality of precipitation characteristics influ-

ences this retrieval. This could be done through coupling

ground-based (3D) radar reflectivity observations with profiles

from the dual-frequency precipitation radar aboard the GPM

core satellite. Subsequently, these results could be related to

FIG. 5. Seasonal probability density function (PDF; a kernel

density estimation is used to compute the PDF) of the ETH values,

from January 2015 to December 2019. ETH values are only con-

sidered between 1 and 15 km and when the paired radar rainfall

depth observations exceed 0.1mm per 30min.

TABLE 3. IMERG performance on a pixel-by-pixel basis de-

composed into three (low, medium, and high) ETH categories.

POFA cannot be calculated since ETH observations are only

considered when the half-hourly radar estimates are above 0.1mm.

Therefore, there are no radar observations below 0.1mm within

this selection. Other details are the same as stated in Table 1.

ETH

mradar

(mm)

mIMERG

(mm)

RB

(%)

MAE

(mm)

NMAE

(—) POD

Low 1–3 km 0.46 0.72 57 0.52 1.14 0.37

Medium 3–6 km 0.81 1.30 60 0.96 1.18 0.70

High 6–15 km 1.72 3.00 75 2.18 1.27 0.93
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radiometer retrieval as the core satellite also carries the GPM

Microwave Imager (GMI).

This study employed the KNMI radar data as ground truth,

despite its own limitations. Examples of radar artifacts are visi-

ble in Fig. 2 in the north of the Netherlands (striped pattern,

especially visible during fall) and over ‘‘deMaasvlakte (2)’’ (blue

grid cell visible in the lower panel of Fig. 2). Both are known

deficiencies of the radar product. The former ismost likely related

to trees in the neighborhood of the radar and the latter to cranes

and containers in the Port of Rotterdam, resulting in strong

backscatter in cases of radar beam superrefraction. Furthermore,

ground-based weather radar is known to underestimate extreme

rainfall amounts in short time intervals (Overeem et al. 2009a,b;

Hazenberg et al. 2011). However, the consequences for the

obtained results are expected to be limited: IMERG itself is

found to have difficulties capturing high-intensity events while

the reported overestimations of IMERG are related to low

rainfall amounts. Therefore, a better performance of the radar is

FIG. 6. As in Fig. 4, but decomposed into three different ETH categories (low, 1–3 km; medium, 3–6 km; and high, 6–15 km). The term

Rdiff refers to the mean difference between the radar and IMERG estimates. Furthermore, the percentage of events overestimated

(referred to as ‘‘Overest’’) andmissed by IMERGare provided for each category (it should be noted that the percentage of overestimated

events is based on events that are either ‘‘hits’’ or ‘‘misses’’).

TABLE 4. IMERG performance on a pixel-by-pixel basis decomposed into the source of observation categories as defined in section 2

(including the five radiometers). Other details are the same as stated in Table 1.

Source mradar (mm) mIMERG (mm) RB (%) MAE (mm) NMAE (—) POD POFA

PMW 0.80 1.42 79 1.04 1.30 0.48 0.41

PMW-morph 0.76 1.20 58 0.88 1.16 0.55 0.45

morph 1 ,50% IR 0.76 1.21 59 0.93 1.22 0.52 0.53

morph 1 .50% IR 0.68 1.01 48 0.86 1.26 0.28 0.61

AMSR-2 0.80 1.93 141 1.42 1.78 0.45 0.42

SMISS 0.77 1.19 55 0.84 1.09 0.55 0.43

GMI 0.74 1.49 100 1.06 1.43 0.52 0.32

ATMS 0.80 1.42 78 1.35 1.07 0.44 0.41

MHS 0.84 1.52 82 1.34 1.12 0.44 0.41
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expected to even amplify our finding that IMERG underesti-

mates high-intensity rainfall.

5. Conclusions

This study validated IMERG Late Run V06B precipita-

tion estimates at the spatiotemporal resolution of IMERG

(0.18 3 0.18, 30 min) over the Netherlands. A gauge-adjusted

radar dataset over a five-year period (2015–19) was em-

ployed as reference. To the best of our knowledge, this is the

first study that assessed IMERG performance over such a long

period of time over a midlatitude country. Furthermore, we

explored the relation between IMERG’s performance and:

1) seasons, 2) rainfall intensity, 3) echo top height (ETH), and

4) the source of observation.

IMERG systematically overestimates low-intensity rainfall,

more pronounced during winter and spring. Simultaneously,

IMERG is found to underestimate higher rainfall intensities.

IMERG’s detection performance increases with higher ETH

and higher rainfall intensity. Hence, the probability of detec-

tion is relatively low in winter (frequent occurrence of low-

intensity and shallow precipitation events) and high in summer

(when most convective events occur). The probability of false

alarms decreases with higher intensity.

FIG. 7. Scatter density plots of the difference between IMERG and radar estimates (IMERG 2 radar) vs the 30-min radar rainfall

depths categorized according to the source of observation (as defined in section 2, including the five radiometers) for the January 2015–

December 2019 period. Note that the number of data points of category . 50% IR data is small. Only paired observations where radar

exceed 0.1mm per 30min are considered (hits and misses).
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PMW-based precipitation estimates are prone to over-

estimations and the inclusion of IR data is found to decrease

the detection performance of IMERG. All sources, includ-

ing the five radiometers, either miss or highly overestimate

low-intensity events. The performance among the imagers

(ASMR-2, SSMIS, and GMI) varies: while SSMIS has the

lowest RB and (N)MAE, ASMR-2 has the highest RB and

MAE of all five instruments. In contrast, the sounders (ATMS

and MHS) have a comparable performance. Furthermore,

both sounders have a low POD score for low and medium

ETH compared to the imagers. For all sources, both the

correct identification of wet pixels as well as the accuracy of

the rainfall amount are most challenging for shallow rainfall

events. Hence, we identify space-based shallow and low-

intensity precipitation retrieval as an important topic for fu-

ture research.
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