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Learning Task-Parameterized Skills From
Few Demonstrations

Jihong Zhu , Member, IEEE, Michael Gienger , Member, IEEE, and Jens Kober , Senior Member, IEEE

Abstract—Moving away from repetitive tasks, robots nowadays
demand versatile skills that adapt to different situations. Task-
parameterized learning improves the generalization of motion
policies by encoding relevant contextual information in the task
parameters, hence enabling flexible task executions. However,
training such a policy often requires collecting multiple demonstra-
tions in different situations. To comprehensively create different
situations is non-trivial thus renders the method less applicable to
real-world problems. Therefore, training with fewer demonstra-
tions/situations is desirable. This paper presents a novel concept to
augment the original training dataset with synthetic data for policy
improvements, thus allows learning task-parameterized skills with
few demonstrations.

Index Terms—Imitation learning, learning from demonstration,
physically assistive devices.

I. INTRODUCTION

IN CONTRAST to industrial robots that operate in cages
and perform repetitive tasks, a next generation of robots

is expected to have higher autonomy, the ability to operate in
unstructured environments and to be adaptive in task executions.
Learning from demonstration (LfD) is a promising step in this
direction, enabling robots to acquire versatile motor skills with-
out explicitly programming the motion, thus facilitating robot
skill learning.

In LfD, robot motion policies are generated from an under-
lying model that is trained from demonstration data. How to
use the data efficiently and produce policies that generalize
well to new situations is at the core of robot LfD research [1].
One prominent example, Task-Parameterized Gaussian Mixture
Models (TP-GMM) improves generalization by encoding the
task-relevant states into the task parameters and use them for
generating motions in a new situation [2]. In TP-GMM, the task
parameters are reference frames that describe the spatial config-
urations of the situation. Perspectives from different reference
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frames are leveraged to produce a policy that adapts to the current
situation.

Multiple demonstrations in different situations need to be col-
lected for training a TP-GMM. Hence, the collected observation
data needs to comprise many different spatial configurations of
the task to provide enough statistics for a meaningful model. This
is often impracticable in practice, e.g., in a factory or house-
hold environment. Furthermore, demonstrating the task with
changing parameters is more likely to introduce ambiguity in the
demonstration. For instance, if there is an object that the robot
needs to avoid during task execution, in TP-GMM, a reference
frame will be assigned to the object. During demonstrations, it
is not easy to ensure that the demonstrator always goes from the
similar direction in the object frame for avoidance, thus bring in
ambiguity and consequently compromise the policy [3].

The contribution of this paper is a concept for learning
task-parameterized skills from few demonstrations. Instead of
solely imitating the expert, it allows generation of synthetic
demonstration data that augment the original dataset for im-
proving the TP-GMM. The framework reduces the number of
demonstrations needed for training task-parameterized skills,
improves the data efficiency, and reduces the possibility of
ambiguous demonstrations, thus making the task-parameterized
skill learning more appealing in practice.

In the next section, we review related works about LfD with a
focus on task-parameterized learning. A brief description of the
TP-GMM is presented in Section III. In Section IV, we describe
our algorithm. The algorithm is then discussed and validated
with simulation in Sect. V. Section VI showcases our algorithm
on a robotic dressing assistance task. Finally in Section VII, we
conclude.

II. RELATED WORKS

Methods such as dynamical movement primitives (DMP) [4],
probabilistic movement primitives (ProMP) [5], Gaussian mix-
ture models (GMMs) [6] and more recently conditional neural
movement primitives [7] have been used for encoding move-
ments with LfD. These methods are known for data efficiency
and can generate robot motion policy from a small number
of demonstrations. Alternatively, instead of relying on expert
demonstrations, reinforcement learning (RL) generates data by
random exploration and finds an optimal policy by reward op-
timization. This is usually less data efficient than LfD-based
approaches. Nevertheless, combining LfD and RL are reported
to further boost data efficiency [8], [9]. LfD benefits from
demonstration data for skill learning, nevertheless, it is also
limited by the reliance on data [1]. Improvements can be made
considering data efficiency or policy generalization.
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For improving data efficiency in LfD: meta-imitation learning
reuses data collected for different tasks [10] thus boosts data
efficiency. Another common approach for improving efficiency
is synthetic data augmentation. The authors of [11] show that
policy improvement can also be made from a single demon-
stration that is augmented with noise. In robotics LfD, DART
is introduced for robust imitation learning [12]. Recently, the
authors of [13] present a method that adds different level of noise
into the demonstration data for improving the reward learning
in an inverse reinforcement learning setting.

For improving generalization in LfD: [14] improves original
DMP by selecting a Hilbert norm that reduces the deformation in
the retrieved trajectory. In a more recent research, [15] combines
DMP and ProMP and proposes Viapoints Movement Primitives
that outperforms ProMP in extrapolation. Task-parameterized
models are alternative approaches for better generalization of the
policy. In these approaches, the contextual information about the
task are described by task parameters, and movement is encoded
with either GMMs or hidden Markov models (HMMs) [2], [16],
[17]. By combining the movement model with task parameters,
TP-GMM(HMM) can produce a policy that adapts to different
situations.

Improvements on TP-GMM: Multiple improvements on the
original TP-GMM have been made in previous research. By
learning the forcing term in DMP with TP-GMM, [16] presents
an approach that resolves the divergence problem usually asso-
ciated with GMM-type models. [17] introduces weighting to
TP-GMM and [18] builds on the idea and proposes to infer
weights from co-variances in the normal distribution. While the
focus of above-mentioned improvements is on better policy gen-
eralization instead of data efficiency, our paper instead addresses
the latter which is an equally important problem in LfD.

III. PRELIMINARIES

Below we briefly present the TP-GMM algorithm, and for an
in-depth tutorial on the subject, the reader can refer to [2]. We
split TP-GMM into two phases: Model training and Fusion for
new situations, where the former describes how to obtain a TP-
GMM from demonstrations, and the latter applies the TP-GMM
to new situations.

A. Model Training:

In TP-GMM, the situation states for the task is described using
N reference frames {An, bn}Nn=1 with An ∈ SO(p), bn ∈ Rp

represents the orientation and displacement in the nth reference
frame of p dimensions1.

The demonstrated motion is denoted as ξ and composed of
input and output data:

ξ =
[
ξI , ξO

]T
. (1)

For a time-based TP-GMM, the input is one dimensional time,
and the outputs are the positions, while a trajectory-based TP-
GMM has positions as inputs and velocities (and maybe also
accelerations) as outputs.

Given M demonstrated trajectories {ξm}Mm=1, for the mth

demonstration, we assign the correspondingN reference frames:
{Am,n, bm,n}Nn=1 to the demonstration. Using these reference
frames, we can transform each demonstration into N frames.

1In robotic, depending on the task, p = 2 or 3.

Once done, we have a dataset consisting of demonstrated trajec-
tories seen from N frames.

A TP-GMM with K components can be trained from this
dataset and is defined by:{

πk, {μn
k ,Σ

n
k}Nn=1

}K

k=1
, (2)

where πk is the kth mixing coefficient, and μn
k ,Σ

n
k are re-

spectively the center and covariance matrix of the kth Gaussian
component in frame n.

B. Fusion for New Situations

For a new situation defined by a set of N references frames

{Ân, b̂n}Nn=1, (3)

a GMM that produces the motion in the new situation can be
derived using (2) and (3) in two steps.

Step 1 - for the nth new reference frame, we transform the
Gaussian distributions of the nth frame in (2) into the new frame
using (3):

μ̂n
k = Ânμ

n
k + b̂n, Σ̂

n

k = ÂnΣ
n
kÂ

T

n (4)

We apply (4) to all K components in (2).
Step 2 - for every component, we fuse the transformed Gaus-

sian distributions in N frames (which we obtained from (4) in
step 1) by:

Σ̂
−1
k =

∑N

n=1
Σ̂

n−1

k , μ̂k = Σ̂k

∑N

n=1
Σ̂

n−1

k μ̂n
k . (5)

The new GMM that adapts to the new frames is then
{πk, μ̂k, Σ̂k}Kk=1. Likewise in (1), the resulting GMM can be
decomposed as:

μ̂k =

[
μ̂Ik
μ̂Ok

]
, Σ̂k =

[
Σ̂
I
k Σ̂

IO
k

Σ̂
OI
k Σ̂

O
k

]
. (6)

Given input data yI (current time instance for time-based TP-
GMM or positions for trajectory-based TP-GMM), the motion
generation in the new situation is solved using Gaussian Mixture
Regression (GMR) [2].

IV. METHODS

We present the proposed method comprehensively in this sec-
tion. We start by giving an intuitive description in Section IV-A
then an in-depth explanation on each step of the algorithm in
Section IV-B.

A. Design Considerations

Rather than explicitly minimizing the difference between
learned and demonstrated policy, TP-GMM relies on a good
representation of data distributions in each reference frame in
order to obtain a good policy in different situations. Fig. 1
presents the comparison between a GMM and TP-GMM. While
the former explicitly maximize the likelihood of motion data in
one situation, the latter learns the data representation in each
frames under different situations.

In the model training step presented in Section III-A, the
learned TP-GMM in the form of (2) maximizes the joint likeli-
hood of data distributions in different reference frames. Since we
start with only few demonstrations, the data will be sparse, and
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Fig. 1. A comparison between GMM and TP-GMM for a 2D movement task:
from the start (the grey U-shape box) to the goal (the yellow U-shape box).

Algorithm 1: Learning Task-Parameterized Skills from Few
Demonstrations.

Inputs: Initial μ demonstrations, Dinit
Maximum number of demonstrations, M
Maximum number of iteration, L

Outputs: Final TP-GMM Pfinal
1: Train a TP-GMM P based on Dinit
2: Cost Computation: J (P,Dinit)
3: iter = 0, nd = μ,D = Dinit
4: while nd ≤M or iter < L do
5: Generate Synthetic Data Dn

6: Aggregrate datasets: D′ ← D +Dn

7: Retrain the TP-GMM P′ from D′
8: Compute the cost with new TP-GMM J ′(P′,Dinit)
9: if J ′ < J then

10: D = D′
11: P = P′
12: nd = nd + 1
13: end if
14: iter = iter + 1
15: end while
16: Pfinal = P
17: return Pfinal

the learned model will not be able to capture the distributions
well in each frame. Subsequently, the model would fail to obtain
a decent fusion for policy generation.

By explicitly taking the reproduction error as the selection
criteria, our algorithm generates and selects synthetic data that
augments the original training data for policy improvement, thus
allows learning task-parameterized skills from few demonstra-
tions.

B. Learning Task Parameterized Skills From Few
Demonstrations

We design Algorithm 1 for learning task-parameterized skill
with few demonstrations. We elaborate on the steps marked with
bold – italic in this section.

1) Inputs: In this step, we mainly discuss the demonstrations
collection. We collect μ demonstrations (where μ ≥ 2) Dinit for
the initial training of the TP-GMM. The number μ depends on
the complexity of the task (i.e., tasks with more frames and less
constraints may require a larger μ). In order to avoid that the
final policy over-fits to some local configurations and improve
generalization, it is better if the demonstrations are collected
in distinctive situations (see Section VI for some discussions).

Since in TP-GMM, the situations are described with reference
frames, the distinctive measure is the distances between the
corresponding reference frames, and difference in Euler angles
that represents difference in orientations. Training a TP-GMM
from initial demonstrations is a standard procedure described in
Section III.

2) Cost Computation: The cost is defined as the reproduction
error between the TP-GMM produced policy and the expert
demonstration. Therefore it takes the initial demonstration Dinit
and the TP-GMM P as inputs.

For a time-based TP-GMM, the cost is defined as root mean
square error. For a number of μ initial demonstrations, we
represent the cost as:

JRMS =
1

μ

∑μ

i=1

√
||yi − ξi||, (7)

where yi is the reproduction of the initial demonstrations from
the TP-GMM and ξi is the initial expert demonstration, both in
the ith instance.

For trajectory-based TP-GMM, we define the cost of the
TP-GMM as the normalized distance computed by dynamic
time warping (DTW) between the reproduction and the expert
demonstrations. Give the reproductiony ∈ RN and correspond-
ing expert demonstration ξd ∈ RM (note for trajectory-based
TP-GMM, N does not necessarily equals M ), DTW tries to
find a warping function φ(K), where K = 1, 2, . . . , T :

φ(K) = (φy(K), φξ(K)) ,

where φy(K) ∈ y, and φξ(K) ∈ ξ. The warping function maps
the data in y to the data in ξ with minimum dissimilarity d.
The dissimilarity d between two data points is defined as their
Euclidean distance. The cost function for DTW is defined as the
average accumulated dissimilarity between warped y and ξ:

dφ(y, ξ) =
∑T

K=1
d (φy(K), φξ(K)) ζφ(K)/Z, (8)

where ζφ(K) is a weighting coefficient and Z is the normaliza-
tion constant (we refer readers to [19] for a detailed definition).
The warping function is computed by minimizing the cost de-
fined in (8):

D(y, ξ) = min
φ

dφ(y, ξ) (9)

Forμ number of initial demonstrations (each with a distinctive
situation), we represent the cost for trajectory-based TP-GMM
as:

JDTW =
1

μ

∑μ

i=1
D (y(i), ξd(i)) (10)

We choose the cost depending on the type of TP-GMM and
use it as a selection criterion for deciding whether we should
update the dataset and TP-GMM or not.

3) Generate Synthetic Data: In this step, we generate new
motion data to augment original demonstration for policy im-
provement. We present 3 different data generation methods for
Alg. 1 and introduce each subsequently:
� Noise: Injecting white noise to the original expert demon-

strations (Fig. 2(b)), as in [11],
� RF: TP-GMM generated data in random new situations

(Fig. 2(c)),
� RF+Noise: TP-GMM generated data in random new situ-

ations adding a white noise (Fig. 2(d)),
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Fig. 2. Simulated movement tasks with expert demonstrations in blue and
synthetic movement data in green. (a) Task representation and original expert
demonstration. (b) Original demonstrations with added noise. (c) Generated
motions in new situations. (d) Generated noisy motions in new situations.

For Noise, we consider injecting white noise into the expert
demonstration for generating the synthetic data. Noise injection
on the training data is a known method for improving learning
outcomes [20]. It has been applied on Deep Neural Networks
(DNNs) for achieving better generalization capability [21] and
robustness [22].

RF generates random reference frames that satisfies task
constraints such as kinematic limits to create a new situation.
Then applies the TP-GMM to the new situation for generation
of new demonstration data.

In TP-GMM, reference frames are attached to movable enti-
ties that are relevant for the task. Depending on the task space and
the property of the entity, the frame orientation and translation
are bounded for the task. For instance, orientation of the frames
can be expressed in Euler angles with maximum and minimum
values:

α ∈ [αmin, αmax], β ∈ [βmin, βmax], γ ∈ [γmin, γmax],
(11)

whereas translation limitation are expressed with:

b ∈ [bmin, bmax]. (12)

We perform uniform random sampling between the limits in
(11) and (12) to generate reference frames that satisfy kinematic
limits of the task. Once we have the new situation, a new motion
data Dn can be obtained from the TP-GMM.

In the RF, the new training data is generated by the fusion
of different Gaussian distributions with new task parameters. It
cannot be generated by the individual GMM in each frame of
the old TP-GMM. Adding the data to the training dataset helps
to better understand the distributions in each frame, rather than
reinforcing the original policy.

RF+Noise is the combination of Noise and RF. It injects white
noise into the data generated from RF and use it for augmenting
the original training data.

We then augment the training dataset with the synthetic data,
and retrain a TP-GMM based on the new dataset. Afterwards, the
costJ of the new TP-GMM is compared with the old one. If the
cost is reduced, we update the dataset and the TP-GMM. If not,
we keep the old dataset and TP-GMM and go back to synthetic
data generation step. Note that the cost is only calculated based
on the expert demonstrations, and does not include the algorithm
generated demonstrations.

4) Outputs: The algorithm has two termination conditions.
The maximum number of the demonstrations in the training
datasetD denoted by M (M > μ) and the number of maximum
iterations L. If the algorithm reaches the maximum iteration but
fails to add any new demonstrations, one could either set a larger
L, or provide additional demonstrations. In this way, the number

Fig. 3. The training (blue) and validation (dashed blue) set in one image in
(a). Figure (b) - - (d) show the policy generated with initial TP-GMM (in red)
compared with expert demonstrations (in dashed blue) in the validation set.

Fig. 4. Reproduction of expert demonstrations in training set with original
selection, the expert demonstrations are in blue and reproduction in red.

of expert demonstrations required can be decided interactively.
The outputs is the final TP-GMM that has the lowest cost after
the dataset augmentation.

V. SIMULATION AND ANALYSIS

In this section, we analyze data generation methods proposed
in Section IV for Alg. 1 in terms of cost reduction and policy
generalization on a simulated task2. The task considers a 2D
movement from the start (the grey U-shape box) to the goal
(the yellow U-shape box) as shown in Fig. 2(a). The shape
imposes constraints for the motion. We use in total six expert
demonstrations, and split them into a training and validation
set (Fig. 3(a)). Each contains three expert demonstrations with
different positions and orientations of the target. Subsequently,
a time-based TP-GMM can be learned from the training set.

We train the initial TP-GMM using the training set (shown in
Fig. 3(a) in blue lines) with 8 Gaussians. The reproduction of
the initial TP-GMM on the training set is presented in Fig. 4(a).
We define a separate validation set shown in dashed blue on
Fig. 3(a).

Fig. 3 demonstrates the generalization capability of the initial
TP-GMM by presenting its policy generation on each new situa-
tion in the validation set. We can observe that the generalization
to new situations are not satisfactory for the initial TP-GMM.

We evaluate Alg. 1 on the initial TP-GMM with two selection
criteria, the two selection criteria are differed in their cost
computation:
� Original selection (criterion): This criterion is what origi-

nally proposed in the algorithm where the cost is computed
with regard to the training set.

� Generalization selection (criterion): This criterion con-
siders a cost computed with regard to the validation set

2The simulation results in this section build on pbdlib: https://gitlab.idiap.ch/
rli/pbdlib-matlab/
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TABLE I
TRAINING AND VALIDATION COST FOR THE INITIAL AND IMPROVED TP-GMM

which contains three new expert demonstrations in new
situations.3

For each selection (criterion), we improve the initial TP-
GMM models using three methods: namely Noise, RF and
RF+Noise. The termination condition for the algorithm is set to
be M = 8 (max number of demonstrations) and L = 50 (max
iterations). For the noise injection, the signal to noise ratio
(SNR) is set to 30 decibels. We run the algorithm with each
data generation methods 20 times and save the models with the
maximum cost reduction.

We hence get 6 improved TP-GMM models. We then compute
the cost defined in (7) for the training and validation set for
each improved model. While the training cost indicates the
performance of policy in reproducing the expert demonstrations,
the validation cost measures the policy generalization in new
situations. The results are summarized in Table I. We use the cost
of the initial TP-GMM as the reference quantity and provides a
percentage value besides each cost value. The increased cost is
marked with red and decreased with cyan in the table.

From Table I we observe that in the original selection, all three
data augmentation methods can reduce the cost on the training
set. As the cost is reduced, they all show better performance
in terms of reproduction of the training set as also shown in
Fig. 4. As for the generalization selection, since the criterion for
selecting synthetic data is defined with regard to the validation
set, the cost on training set remain close to the reference in
Noise and RF+Noise, and is even higher in the case of RF. For
the increase cost, we suspect that adding more trajectories with
the generalization selection is likely to make the final model
over-fit to the validation set, thus the cost on the training set in-
creases. However, due to the page limit, we cannot discuss this in
detail here.

With the original selection, Noise is able to reduce the cost
the most. It is reasonable as the augmented data is the demon-
strations from the training set plus white noise. Reduction of the
training cost is one indicator of the performance. More impor-
tantly, generalization to new situations is the core capability
of TP-GMM. In that regard, Noise performed poorly on the
validation set with an increased cost, indicating overfitting to
the training set. The phenomena can be visually confirmed in
Fig. 5(c) (black trajectories) where Noise turns out to magnify
some unwanted movements in the produced motions in the new
situation.

RF and RF+Noise, on the other hand, provide a reasonable
cost reduction on both training and validation sets. Such re-
duction is manifested in the improved motions in Fig. 5 as
compared to the initial TP-GMM in Fig. 3(b) – (d). Although
the cost reduction on the validation set is slightly higher than
in the generalization selection, they are comparable. This point
is further illustrated in Fig. 5 which shows that the motions

3Note that this selection criterion is only used as an ablation for the best-case
performance in the new situations. In practice it requires more demonstrations
than the original selection criterion.

Fig. 5. Generalization to validation set by TP-GMM produced with Noise
(black), TP-GMM produced with RF (green), TP-GMM produced with
RF+Noise (cyan), all using the original selection criterion and TP-GMM pro-
duced with RF+Noise using the generalization selection criterion (magenta).

produced from RF and RF+Noise in the original selection is
very similar to RF+Noise in the generalization selection.

Another way of cost reduction without generating new data
is to increase the number of Gaussian K in (2) used in the
TP-GMM training phase, however, when initial expert demon-
strations are few and sparse, the TP-GMM is likely to over-fit
to the expert demonstrations, and has the possibility to magnify
unwanted movements in the demonstration similar to Noise. One
good indicator for checking the fitting is the reconstruction error
of demonstrations we defined in (7) and (10). For selecting a
reasonable K, as suggested in [2], methods such as Bayesian
information criterion [23] and Dirichlet process [24] can be used.

In a nutshell, by explicitly using reproduction error as the
selection criterion, all three data generation methods are able
to generate synthetic motions for data augmentation to im-
prove TP-GMM. While TP-GMM produced from Noise tends to
over-fit to original demonstrations and may magnify unwanted
movements, the TP-GMM produced from RF and RF+Noise
are improved over the original TP-GMM in reproduction and
also generalization. The generalization is comparable with a
generalization selection where the cost is computed with regard
to 3 new expert demonstrations in new situations.

VI. ROBOTIC EXPERIMENTS

We consider the task of dressing a short sleeve shirt onto one
arm of a mannequin. We assume the arm posture is static during
the dressing and the hand is already inside the armscye. The
robot grasped on the shoulder area of the cloth. The dressing
starts above the wrist and ends above the shoulder.

The dressing assistance is a primary task that occurs everyday
in elderly care, and has been considered in previous assistive
robot research. Recently the authors of [25] address the problem
from safety perspective and proposed a motion planning strategy
that theoretically guarantees safety under the uncertainty in hu-
man dynamic models. Zhang et al., uses a hybrid force/position
control with simple planning for dressing [26], while [27] use
deep reinforcement learning (DRL) to simultaneously train hu-
man and robot control policies as separate neural networks using
physics simulations. Although DRL yields satisfactory dressing
policies, applying DRL in a real world setting is very difficult,
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Fig. 6. Two demonstrations dataset of the dressing task. Each dataset contains
demonstrations in two different postures. Arm postures in (a) and (b) character-
ized by the dashed lines. Demonstrated path are scattered points in green. Local
frames are depicted with XYZ (RGB arrows) coordinates at the shoulder and
the wrist.

especially if the task involves a human. LfD on the other hand,
allows programming the robot by non-experts, thus can facilitate
dressing skill learning: i.e., the robot can be programmed by
healthcare workers.

LfD has been employed to encode dressing policies in the
previous research. The dressing policy for a single static posture
is encode by a DMP in [28]. When considering multiple different
static postures and the policy needs to adapt, task-parameterized
approaches becomes more relevant. Sensory information and
motor commands are combined in [29] as a joint distribution
in a hidden semi-Markov model, and then coupled with a
task-parameterized model to generalize to different situations.
In [30], the authors propose 3 techniques to incrementally up-
dates the TP-GMM when new demonstration data is available
and tested with a dressing assistance scenario. All techniques
in [30] require new expert demonstrations and focus on how
to update the TP-GMM while our method focuses on how to
generate synthetic data for policy improvement for TP-GMM.
Both [29], [30] require several expert demonstrations (either at
the beginning or incrementally) for generalizing the dressing
task. In this section, we demonstrate that using our framework,
the robot can learn to dress with only two expert demonstrations.

The dressing trajectory needs to adapt to different arm pos-
tures. The postures are described with positions of shoulder
psh, elbow pel and wrist pwr on a static base frame s which
located at the robot base. Two frames are needed to fully describe
the posture of an arm. One located at the shoulder, and the
other located at the wrist. These two frames constitute the task
parameters for the TP-GMM:

{Ash, bsh}, {Awr, bwr}, (13)

where bsh = psh, bwr = pwr. For two orientations Ash and
Awr, the x axis is defined parallel to vector pshpel and pwrpel

respectively. Fig. 6 shows different postures and their respective
reference frames at the shoulder and wrist with coordinate
depicted with red, green and blue (RGB) arrows.

During experiments, we record only positions of the end-
effector (EE) and the wrist, elbow, shoulder positions during
demonstration. The latter is used for calculating the shoulder
and wrist reference frames. The robot motion in a new situations
is generated by GMR produced from a TP-GMM upon the
situation specific task parameters.

Since the dressing motion is not explicitly depending on time,
we employ the GMM consisting of position and displacement,
reference frames can be augmented accordingly to transform

Fig. 7. Cost reduction of Case A and B using proposed algorithm with RF and
RF+Noise as the data generation method. The two cases have a different initial
cost as the demonstration data are different.

TABLE II
SUCCESS RATE OF ROBOT EXPERIMENTS

both position and displacement components:

p̂ =

[
p

δp

]
∈ R6, Â =

[
A 0

0 A

]
∈ R6×6, b̂ =

[
b

0

]
∈ R6

(14)
Following the steps described in Section III-A, we can obtain

a TP-GMM in the form of (2). The dressing motion is generated
by integrating the output of the GMR conditioned on the current
position.

We test our algorithm on two cases. In each case, the demon-
stration dataset contains human demonstrations in two different
postures. Fig. 6 presents the postures and corresponding demon-
strations in both cases.

The maximum number of demonstrations M = 7 and max-
imum iteration L = 100 are set for the algorithm. We train
the TP-GMM with 4 components. Each initial demonstration
dataset are tested on RF and RF+Noise as the data generation
methods. In RF+Noise the SNR is set to be 30 decibels. The cost
reduction is indicate in Fig. 7. The two cases have a different
initial cost as the initial expert demonstrations are different. Both
RF and RF+Noise are able to reduce the cost. Similarly as in
the simulation, both methods have compatible performance in
terms of cost reduction. In addition, we use a baseline TP-GMM
trained with 7 expert demonstrations for comparison.

In addition, likewise in Section V, we test the generalization
of the original and the final obtained TP-GMM. These TP-GMM
are tested on 5 different postures. We define the success condi-
tion as follows. If a trajectory is able to reach above and around
shoulder and does not hit mannequin or stretch the cloth in the
dressing process, we consider the dressing successful. The suc-
cess rate (percentage of success out of total 5 different postures)
of the dressing policy generated from initial and final (synthetic
data augmented) TP-GMM is summarized and compared with
the baseline in Table II.

We observe that Case A improves more than Case B in terms of
generalization. Taking a closer look at the initial demonstrations
of both cases, we observe that compared with Case A, in Case
B, the initial two postures are more similar to each other and
so are the resulting initial expert demonstrations. This is also
consistent with Fig. 7 where the initial cost of Case B is less
than Case A. The TP-GMM in Case B is probably over-fit to the
data in the region which might explain Case A outperforming
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TABLE III
AVERAGE COST REDUCTION AND NUMBER OF TRAJECTORIES GENERATED

Fig. 8. The synthetic demonstration data being added by algorithm and
resulting changes of the GMM in each frame. The points in yellow and red
are respectively original and synthetic demonstrations seen from 2D frames.

B in terms of generalization. The best case scenario is able to
match the baseline in terms of success rate.

The average run-time in experiment setup for our algorithm
is around 20 seconds on a Linux-based i7-9750 PC, which is
far less than the efforts and time of doing one extra expert
demonstration.4

We notice that even the baseline did not achieve a 100%
success rate. The failure case was stuck at the elbow. The reason
might be that the TP-GMM we used only considers reference
frames as task-parameter while the dressing path is dependent
on additional latent variables. However, finding these variables
is beyond the scope of this paper.

We use an example case with the best experiment performance
(Case A with RF as the data generation method) to show how
added synthetic demonstrations change the distribution of data
in each frames in terms of position data, and subsequently the
mixture of Gaussian in 2D. We indicate correspondence with the
same color in each column. Note that row-wise (which shows
the changes of mixture models by adding synthetic data) the

4On average collecting one dressing demonstration on our current setup
requires around 10 seconds, without considering the time to change posture,
and efforts in making the demonstration.

same color does not represents correspondence. Rows in Fig. 8
show progressively new demonstration data being added by the
algorithm and the resulting changes of the GMM in each frames.
The data colored in yellow are initial expert demonstrations and
red are synthetic demonstrations. The first two rows are 3D
position data in the shoulder frame plotted with xy and xz,
the third and fourth are the data in the wrist frame. The ellipse
represents the co-variance of each multivariate Gaussian.

We run the the algorithm 20 times to obtain the average cost
and the number of synthetic trajectories needed for augmenting
n(n = 1 . . . 5) number of new synthetic demonstrations. The
results are presented in Table III. We can also observe that the
reduction is larger when the first new demonstration is added,
then becomes less significant when the number of demonstra-
tions becomes more.

VII. CONCLUSION AND FUTURE WORKS

Task-parameterized learning often requires creating multiple
different situations for collecting demonstration thus increase
the physical labour during data collection and the risk of hav-
ing ambiguous demonstrations. We propose an algorithm for
learning task-parameterized skills with a reduced number of
demonstrations. The algorithm allows generation of new demon-
strations that augment the original training dataset for improving
the TP-GMM. We validate the algorithm in simulation and on
real robot experiments with a dressing assistance task.

We observe that noise injection, creating new situations and
the combination of both are possible data augmentation meth-
ods. Although noise injection provides the highest cost reduc-
tion, it has the possibility of magnifying unwanted movement
when few demonstrations are available. The latter two perform
similarly in terms of policy improvement while render a better
generalization to new situations. In addition, distinctive initial
demonstrations may contribute to better generalization perfor-
mance of the algorithm.

TP-GMM needs a well-defined task space with reference
frames which limits its application. For the dressing task, all
TP-GMMs fail to dress at least one posture. That leads to a
limitation of the current method: the exploration is done en-
tirely in the synthetic domain which means the algorithm is not
designed to handle environment feedback and can not explicitly
use reward signals. As a consequence, the resulting TP-GMM
will not able to resolve on the corner cases. RL-based policy
search maybe promising in resolving corner cases as reported
in ACNMP framework in [31] and adaptive ProMP in [32].
However, for dressing tasks, the reward needs to be carefully
designed as reflected in [33]. Alternatively, instead of discarding
the trajectories, efforts could be made to exploit them [34] to
further enhance the data efficiency.

The current method considers a fix number of Gaussians. As
the training data set is augmented with the algorithm, simulta-
neously increasing the number of Gaussian will probably result
in a better approximation of data distribution in each frame and
subsequently improve the policy even further.
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