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Studying the interplay between multiple coupled mechanical resonators is a promising new direction in the field of
optomechanics. Understanding the dynamics of the interaction can lead to rich new effects, such as enhanced cou-
pling and multi-body physics. In particular, multi-resonator optomechanical systems allow for distinct dynamical
effects due to the optical cavity coherently coupling mechanical resonators. Here, we study the mechanical response
of two SiN membranes and a single optical mode, and find that the cavity induces a time delay between the local and
cavity-transduced thermal noises experienced by the resonators. This results in an optomechanical phase lag that causes
destructive interference, cancelling the mechanical thermal noise by up to 20 dB in a controllable fashion and match-
ing our theoretical expectation. Based on the effective coupling between membranes, we further propose, derive, and
measure a collective effect, cooperativity competition on mechanical dissipation, whereby the linewidth of one resonator
depends on the coupling efficiency (cooperativity) of the other resonator. © 2022 Optica Publishing Group under the terms

of theOptica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.446434

1. INTRODUCTION

Cavity optomechanics [1] addresses the interaction between
electromagnetic fields and mechanical motion. In recent years,
multi-mode optomechanics, such as multiple mechanical res-
onators interacting with a common cavity field, has received
significant attention and offered a platform for studying rich
physics, including hybridization [2–5] and synchronization [6–8]
of mechanical modes, mechanical state swapping [9], coherent
[10] and topological [11] energy transfer, and two-mode squeezed
mechanical states [12–14]. In particular, optomechanical systems
consisting of multiple SiN membranes have seen considerable
progress towards the enhancement of their single-photon cou-
pling rate [15–18], and have been the subject of many theoretical
proposals [19–23]. Compared to the relatively simple description
of the standard optomechanical system, arrays of mechanical res-
onators coupled to a common optical mode offer the prospect of
studying complex new physical effects and the ability to achieve
individual control over each constituent of a multi-element system.

In this work, we study two mechanical resonators, coher-
ently coupled to a common cavity mode that couples the thermal
mechanical noise of the two resonators in an effective mechanical
beam-splitter interaction [22,24] that can be used to swap the
mechanical states [9,25] or topologically transfer energy between
them [11]. By operating in the side-band unresolved regime, the
optomechanically scattered photons that mediate this effective

mechanical beam-splitter interaction can remain coherent in the
cavity, which adds a stochastic time delay to this process. This
results in a time delay in the effective (local and transduced) noise
experienced by each resonator, which causes destructive interfer-
ence when the mechanical resonator spectra overlap. We measure
up to 20 dB cancellation of mechanical noise, matching well with
our theoretical model. This provides a new interference mecha-
nism distinct from that attributed to direct mechanical coupling
between two resonators [2,26], to multiple optical modes [27,28]
or optical modulation [29], which can clearly be excluded in our
system.

We further propose and derive another new collective effect,
resulting in a cooperativity competition of the mechanical dis-
sipation, which we also observe in our measurements. This
competition arises between the dissipation dynamics of two
mechanical resonators coupled to the same optical field and leads
to a linewidth broadening of one resonator that depends on the
optomechanical cooperativity of the other resonator.

2. THEORY AND EXPERIMENTAL SETUP

Our system consists of an array of two nominally identical 200 nm
thick SiN membranes [Fig. 1(a)] with fundamental frequencies
ω1,2 ' 2π × 150 kHz and linewidths γ1,2 ' 2π × 0.1 Hz.
They are patterned with a photonic crystal with 35% reflec-
tivity at 1550 nm [30], characterized in a previously described
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Fig. 1. (a) (top) Microscope image of a double-membrane device.
(bottom) Cross-section of the double-membrane chip, with the SiN
membranes on either side of the Si substrate. The 200 µm spacing
between the two membranes is rigid, fixed by the substrate. (b) Schematic
of the experimental setup. The laser wavelength is locked to the cavity
length using a Pound–Drever–Hall locking scheme, and the mechanics
of the membranes are measured via homodyne detection. SA, Spectrum
analyzer;ϕ, Fiber stretcher; EOM, Electro-optic modulator.

setup [31]. The double-membrane chip is placed close to the
center of a 49.6 mm long Fabry–Perot cavity (free spectral range
3.023 GHz, beam waist 33 µm), with an empty-cavity optical
linewidth (full width at half maximum) of κe = 2π × 128 kHz,
in principle putting us into the optomechanical sideband resolved
regime (total linewidth κ .ω j ). The membranes cause additional
optical loss when placed inside the cavity due to scattering and
small imperfections in the alignment, resulting in a linewidth
κ & 2π × 300 kHz, with a strong dependence on the exact

δ x̂1 = χ
eff
1 (ω)

{
−G1G2[χc (ω)− χ

∗
c (−ω)]χ2(ω)ξ̂2 + iG1

√
κ[â inχc (ω)+ â in,†χ∗c (−ω)]

i + G2
2χ2(ω)[χc (ω)− χ∗c (−ω)]

+ ξ̂1

}
, (3)

position [32] and alignment [30] of the membranes. The mechani-
cal motion of the membranes is coupled to the optical cavity
frequencyωc with vacuum optomechanical coupling rates g 0,1 and
g 0,2 respectively. A laser at frequency ω` is coupled to the cavity
with coupling strength E =

√
P`κe/~ω`, where P` is the laser

power and κe the external coupling rate of the cavity.
The behavior of the membranes is investigated using a homo-

dyne detection setup, schematically shown in Fig. 1(b), for which
we lock the laser wavelength (λ= 1549.62 nm) to the cavity
length using a Pound–Drever–Hall (PDH) locking scheme [33].
By tuning the parameters of our PID controller, we can lock the
laser beam slightly off-resonant with our cavity, and the red (blue)
detuned laser can be used to cool (amplify) our optomechanical
system.

The Hamiltonian describing our system is given by

Ĥ/~=ωcâ †â +
∑
j=1,2

(ω j

2

(
x̂ 2

j + p̂2
j

)
− g 0, j â †â x̂ j

)
+ i E

(
â †e−iω`t

−H.c.
)
, (1)

with â (â †) the annihilation (creation) operator of the cavity mode,
and x̂ j and p̂ j the dimensionless position and momentum of the
j th mechanical resonator. We are interested in the fast fluctuations
of the mechanical operators (δ x̂ j , δ p̂ j ) and optical field, which

are described by the quantum Langevin equations (QLEs, see
Supplement 1 Sec. 1 for details)

δ ˙̂x j=ω j δ p̂ j

δ ˙̂p j=−ω j δ x̂ j − γ j δ p̂ j + G∗j δâ + G j δâ †
+ ξ̂ j

δ ˙̂a=− (i1+ κ/2) δâ + i
∑
j=1,2

G j δ x̂ j +
√
κ â in, (2)

where ξ̂ j and â in are the mechanical and optical noise terms. We
have further introduced an effective detuning 1=ωc −ω` −∑

j

g 2
0, j
ω j
|〈â〉|2 and the effective optomechanical coupling rate

G j = g 0, j 〈â〉 = g 0, j E/(κ/2+ i1), with 〈â〉 being the average
cavity field amplitude. We can solve these equations by taking the
Fourier transform and deriving the expected power spectral density
(PSD) detected from the cavity output field (Supplement 1 Sec. 2).

3. RESULTS

A. Interference from Optomechanical Phase Lag

In this section, we introduce of the optomechanical phase lag,
and show that it leads to interference in the dynamics of the two
mechanical resonators. To simplify the following analysis, we take
the phase of 〈â〉 such that the G j are real (the full derivation keep-
ing any complex values of G j is given in Supplement 1 Sec. 1). If
we solve the QLEs [Eq. (2)], the position fluctuations for resonator
1, for example, take the form

where we have introduced the natural susceptibility of the
mechanical resonators, χ j (ω)=

ω j

ω2
j−ω

2−iγ jω
, and of the cavity

field, χc (ω)=
1

κ/2+i(1−ω) (χ∗c (−ω)=
1

κ/2−i(1+ω) ), and an effec-
tive susceptibility that incorporates the optomechanical effects on
the susceptibility of the mechanical resonator,

χ eff
1 (ω)=

[
1

χ1(ω)
+

G2
1

(
χc (ω)− χ

∗
c (−ω)

)
i + G2

2χ2(ω)
(
χc (ω)− χ∗c (−ω)

)]−1

.

(4)
Equation (3) features terms that contain the different noise sources,
the optical noises â in, â in,†, and the mechanical noises of both res-
onators, ξ̂1, ξ̂2. If we neglect the optical noises, which is a valid
assumption if the system is at room temperature, we can see that
the position fluctuations of the resonator depend on an effective
mechanical noise, ξ̂ eff,

ξ̂ eff
1 (ω)= ξ̂1 +M1ξ̂2, ξ̂ eff

2 (ω)= ξ̂2 +M2ξ̂1 (5)

with

M1(ω)=
iχ2(ω)G1G2

(
χc (ω)− χ

∗
c (−ω)

)
1− iG2

2χ2(ω)(χc (ω)− χ∗c (−ω))

M2(ω)=
iχ1(ω)G1G2

(
χc (ω)− χ

∗
c (−ω)

)
1− iG2

1χ1(ω)(χc (ω)− χ∗c (−ω))
. (6)
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Fig. 2. (a) Schematic of mechanical noise contribution for two independent (left) or cavity-coupled (right) resonators. (b) Measured mechanical spectra
for two membranes in a single cavity, where one membrane (ω1) is significantly stronger coupled (more damped) than the other (ω2). Theory models are fit-
ted for the independent (uncoupled) and the coupled membranes case, including optomechanical phase lag.

This is the crucial point: The position fluctuations of any (one)
of the two resonators are not only dependent on its local thermal
bath, but also on the thermal bath of the other via the optical
field [Fig. 2(a)], as is well-understood for general coupled res-
onators [34]. This cross-term between the resonators is the
effective mechanical beam-splitter interaction used for state
swapping and energy transfer between the mechanical resonators
[9,11,22,24,25]. It represents photons that have been scattered
with phonon transfer (i.e., optomechanically scattered) from one
resonator, and subsequently re-scattered from the other. While
this is a second-order optical process, it is linear in the mechanical
operators, so it is not eliminated by the linearization of the QLEs
[Eq. (2)]. We quantify the rate of this process in Supplement 1 Sec.
3, and show that the transduced noise can be similar in amplitude
to the local noise.

To evaluate these expressions and obtain a PSD such as the one
we detect in our experimental setup, conventionally, one assumes
each of the mechanical baths to be Markovian (if Q j =

ω j
γ j
� 1

[35,36]), with autocorrelators for ξ̂ j as〈
ξ̂ j (t)ξ̂ j (t ′)+ ξ̂ j (t ′)ξ̂ j (t)

〉
/2≈ γ j (2n̄ j + 1)δ(t − t ′), (7)

with n̄ j the mean thermal phonon number (Supplement 1 Sec. 4).
Based on Eq. (5), we can write an autocorrelator for the effective
noise, which will contain terms from both thermal baths.

It is here that we introduce new physics. In Eq. (5), both noises
have an immediate effect on the position fluctuations of the res-
onator: δ x̂1(t) is dependent on ξ̂1(t) and ξ̂2(t). For the local noise,
this is correct, but the transduced noise must have a finite time
delay due to the separation of the resonators (thermal baths) and
the non-zero travel time of the photons between them: δ x̂1(t)must
depend on ξ̂1(t) and ξ̂2(t − t̄) for an average photon travel time
t̄ . The well-established framework of Eq. (2) breaks down: it does
not contain this time delay. It predicts an immediate response of,
e.g., resonator 1 when resonator 2 is moved, regardless of the finite
photon travel time. Note that the noise transduced by the cavity is
first experienced by the other resonator from its own thermal bath
[Fig. 2(a)].

We introduce the time delay of the transduced noise with
respect to the local noise in the autocorrelation of the effective
thermal noise experienced by a resonator (e.g., resonator 1),

〈ξ̂ eff
1 (t)ξ̂

eff
1 (t

′)+ ξ̂ eff
1 (t

′)ξ̂ eff
1 (t)〉/2

=

〈(
ξ̂1(t)+M1(t) ∗ ξ̂2(t)

) (
ξ̂1(t ′)+M1(t ′) ∗ ξ̂2(t ′)

)〉
⇒

〈(
ξ̂1(t)+M1(t) ∗ ξ̂2(t − t̄)

) (
ξ̂1(t ′)+M1(t ′) ∗ ξ̂2(t ′ − t̄)

)〉
,

(8)

where M(t)=F−1
{M1(ω)} from the inverse Fourier transform,

the time delay between the local and transduced noise is t̄ , and
∗ denotes convolution. We have explicitly introduced the delay
time t̄ only in the transduced noise term; by property of the con-
volution, we could have distributed the time delay freely between
M1(t) and ξ̂2(t) without affecting the result. In the frequency
domain, using the time-shift property of the Fourier transform, we
get a phase shift,

〈ξ̂
eff,′

1 (ω)ξ̂
eff,′

1 (ω′)+ ξ̂
eff,′

1 (ω′)ξ̂
eff,′

1 (ω)〉/2

=

〈(
ξ̂1(ω)+ e−2iπ t̄ωM1(ω)ξ̂2(ω)

)
×

(
ξ̂1(ω

′)+ e−2iπ t̄ωM1(ω
′)ξ̂2(ω

′)
)〉
, (9)

where we have denoted the effective noise with added time delay

by ξ̂ eff,′

j . The frequency range of interest is close to the mechanical
frequencies (ω∼ω1 'ω2), so we can consider it as a constant
phase factor e−2iπ t̄ω

' e iφ1 . We call this the optomechanical phase
lag that the transduced noise experiences with respect to the local
noise. This modifies Eq. (5) to

ξ̂
eff,′

1 (ω)= ξ̂1 + α1e iφ1 M1ξ̂2, ξ̂
eff,′

2 (ω)= ξ̂2 + α2e iφ2 M2ξ̂1,

(10)
where we have introduced the amplitude fit factors α1 and α2 to
account for imperfect alignment between the two membranes.
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Fig. 3. (a)–(c) Top panels: Measured PSD for the two-membrane system for various coupling ratios (blue), and the expected behavior with interfer-
ence (red) and considering independent membranes (orange). The measured coupling rates are shown, their ratios being 0.07, 0.28, and 0.65, respectively.
Bottom panels: OMIT data (blue dots) and fits (red line) used to extract the optomechanical parameters. (d) Extracted phase lag from the fit (red circles) and
expected phase lag based on the cavity linewidths (green crosses). The green shaded area shows the phase lag bounds based on the cavity linewidths, see main
text. (e) Zoom-in on dashed regions of (a) and (b) showing narrow spectral features at the mechanical frequency of the less-coupled resonator.

Some closer considerations of this time delay and phase lag are
warranted. An optomechanically scattered photon traveling the
distance between resonators 1 and 2 (200 µm) takes about 670 fs,
which should be negligible on the time scale of the mechanical
motion, so we would expect the phase lag to be negligibly small
as well. However, due to the optical cavity and the fact that g 0, j is
small, the chance for a scattered photon to directly interact with
the other resonator is very small. It is much more likely to exit the
cavity without interacting with the other membrane, as κ� g 0, j .
The photons that do interact with the other membrane (i.e., the
ones that have not exited the cavity) will thus have an average
travel time equal to the lifetime of the cavity t̄ = τ = 1/κ . In the
regime κ 'ω j , this time lag represents a significant fraction of
the mechanical period, meaning that the contributions to the
effective noise of a resonator can be perfectly out of phase. When
that happens, the effective noise term that resonator 1 experiences
is reduced due to the coupling to resonator 2 and its thermal bath
(and vice-versa). In other words, the local noise and the noise
transduced by the optical field from the other resonator interfere.
We estimate the optomechanical phase lag for systems from the
literature (Supplement 1 Sec. 5) and distinguish interference due
to this effect from other interference mechanisms (Supplement 1
Sec. 6).

B. Experimental Observation of Interference

We study the behavior of our optomechanical system by measuring
the mechanical PSD with our homodyne setup. This allows us to
test the theory curves obtained with the inclusion of the time delay
and the curves obtained for two completely independent mem-
branes (i.e., G j set to zero while G i 6= j 6= 0, for either membrane
with the resulting spectra summed), shown in Fig. 2(b). As these
measurements are in the frequency domain, we shall refer to the
optomechanical phase lag rather than the time delay.

The theory curve for the independent resonators (orange, solid
line) clearly shows two Lorentzians, one at ω1 which is broadened
due to optomechanical cooling, and one which is less coupled
at ω2 and therefore less broad. The theory curve with the added
optomechanical phase lag (red, solid line) follows the other theory
curve for most of the frequency domain: because the Lorentzian

at ω2 is narrow, the noise contribution from ξ̂2 to ξ̂ eff
1 is only rel-

evant for a small frequency range around ω2 (inset). Here, the
interference between the noise terms results in a characteristic
Fano lineshape [37] in the theory curve where the spectra of the
individual mechanical resonators would overlap.

Comparing both theory curves to the experimental data (blue,
solid line), we see a clear drop in the PSD aroundω2, which the the-
ory that includes the optomechanical phase lag describes well while
the model without it does not. Note that the peak of the Fano line-
shape is absent from the experimental data as well, which we attrib-
ute to experimental imperfections.

To further study how this interference based on the optome-
chanical phase lag behaves, we adjust the optomechanical coupling
rates of the resonators. This changes the frequency range over
which the interference is observable, and also its strength. By
varying the position of the chip within the cavity, the optical field
intensity that each membrane experiences is changed, which
allows us to control the optomechanical coupling rate of each of
the membranes. We consider four cases, one shown in Fig. 2(b)
(g 0,1� g 0,2) and three in Figs. 3(a)–3(c), g 0,1� g 0,2, g 0,1 < g 0,2,
and g 0,1 ' g 0,2. For the latter three, we also show optomechan-
ically induced transparency (OMIT) measurements and fits
[38–40] (for details see Supplement 1 Sec. 7), by which we inde-
pendently obtain all optomechanical parameters. In these OMIT
measurements [Figs. 3(a)–3(c), bottom row], we observe an addi-
tional feature not captured by our fit. Due to its frequency, it likely
stems from the resonator’s thermal noise.

In the case where one of the resonators has very weak cou-
pling to the optical field, as shown in Figs. 2(b) and 3(a), the
PSD of the more strongly coupled resonator takes the expected
Lorentzian form. At the frequency of the weakly coupled res-
onator, we observe a consistent dip in the PSD [Figs. 2(b) right
panel and 3(e)], where the noise drops 15− 20 dB below the
level of the spectrum of the other mode. The optomechanical
parameters [ω1 = 2π × 149.89 kHz, ω2 = 2π × 150.80 kHz,
κ ' 2π × 600 kHz, 1= 2π × 10 kHz, g 0,1 = 2π × 2.2 Hz,
and g 0,2 = 2π × 0.2 Hz for Fig. 2(b)] are also obtained through
the separate OMIT measurement and fit.

When one of the resonators is less coupled, but not very weakly
[Figs. 3(b) and 3(e)], we see a clear Fano lineshape in the PSD. If
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Fig. 4. (a) PSD for a fixed g 0,1/g 0,2 = 0.74 and various powers (blue), with theory fits for the coupled-resonator (red) and independent-resonator mod-
els (orange). (b) Fitted mechanical linewidths as a function of cooperativity. Solid lines include the effect of cooperativity competition while dashed lines do
not. (c) Normalized total (sum) linewidths for various coupling ratios (blue), showing a decrease due to cooperativity competition.

both resonators are approximately equally coupled [cf. Fig. 3(c)],
the measured spectrum exhibits a pronounced anti-resonance
[41], clearly signaling destructive interference. There is an addi-
tional mode at 147 kHz that is not included in the fits in Fig. 3.
Combined, these measurements show that our model with phase
lag consistently describes the experimental data much better
(20 dB, a factor 100 difference) than the theory without the
phase lag.

The most important factor governing the phase lag is the cavity
linewidth κ . As we change the position of the chip in the cavity,
κ changes due to scattering and misalignment losses. We plot the
expected phase lag as a function of the chip position in Fig. 3(d)
by way of the fits (red circles) to the spectra of Figs. 2–4, and the
calculated values (green crosses) based on the average κ mea-
sured directly before and after each experiment. Unfortunately,
κ is the main source of uncertainty in the theory curves, as it
has a significant uncertainty from the OMIT fits and a spread
(275−600 kHz) when measured directly from a laser wavelength
scan before and after OMIT and PSD measurements. This is
likely due to our imperfect stabilization of the laser to the cavity
frequency, smeared out by the averaging. To illustrate, we have cal-
culated the expected phase lag for a spread of κ = 275−600 kHz
(green shaded area), all observed from measurements at the same
wavelength and chip position. We have calculated the expected
linewidths based on this spread using a model of a Fabry–Perot
cavity with lossy membranes (Supplement 1 Sec. 8). There is rea-
sonable agreement between the fitted and calculated values, and all
values fall well within the band based on the spread in κ .

C. Cooperativity Competition

Independent of the optomechanical phase lag, we predict that if
two mechanical resonators are coupled to the same optical field,
the effective mechanical dissipation of one does not only depend
on its local environment but also on the optomechanical cooper-
ativity of the other resonator. We refer to this effect as cooperativity
competition (for details see Supplement 1 Sec. 9). From the solution
to Eq. (2), we can rewrite the position fluctuations in terms of the
effective susceptibility χ eff

i (ω). We can further define the effective
mechanical linewidths, which reduce to the simple expressions

γ eff
1 ≈ γ1

(
1+

C1

C2

)
, γ eff

2 ≈ γ2

(
1+

C2

C1

)
. (11)

Here, we assume identical mechanical frequencies and optimal
cooling, 1=ω1 =ω2; side-band resolution, κ .ω j ; and large
optomechanical cooperativities, C j = 2G2

j/(κγ j )� 1. These
equations describe how the effective mechanical dissipation of
one resonator is reduced with respect to those of two independ-
ent modes, where γ eff

j ' γ j (1+C j ) ( j = 1, 2) [42–44]. While
Eq. (11) describes a simplified model, for our experiments we use
the full model (see Supplement 1 Sec. 9) to obtain γ eff

j . Although
both the optomechanical phase lag and the cooperativity com-
petition originate from cavity-mediated coupling between the
mechanical resonators, they are essentially different effects with
their own characteristics, embodied by noise cancellation and
competition in dissipation dynamics, respectively.

To observe cooperativity competition in our system, we vary
cooperativities C1 and C2 [see Eq. (11)] by changing the cou-
pling ratio g 0,1/g 0,2 or by changing the optical power. With
g 0,1/g 0,2 = 0.74 to keep the effect of the interference on the shape
of our PSD constant, we measure at different powers [Fig. 4(a)
(blue)]. The optomechanical parameters are determined as before,
which we then use to fit our coupled (red) and independent
(orange) models. The cooperativity competition manifests itself
as a change in linewidth of the two resonances, which is difficult to
gauge from the shape of the PSD, as it is dominated by the inter-
ference. Therefore, we have plotted the fitted linewidths in terms
of the cooperativity in Fig. 4(b) for both the coupled case (solid
curves), which contains both the interference and the cooperativity
competition, and the independent case (dashed curve), which
contains neither. This shows an appreciable reduction in linewidth
for higher cooperativities as predicted.

We can further corroborate cooperativity competition by ana-
lyzing the fitted linewidths for various coupling ratios, shown in
Fig. 4(c). We compare the total linewidth (sum of both linewidths)
and expect a straight line as a function of C1/C2 in the independent
case (orange, dashed), while cooperativity competition predicts
a cooperativity-ratio-dependent reduction of the total linewidth
(red, solid). The reduction is maximal when the cooperativities are
approximately equal where the competition is most intense, and
the curve is symmetric around C1/C2 = 1, which can be seen by
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switching the labels 1, 2 of the resonators. The fitted linewidths
are normalized to account for the cooling efficiency by rescaling
the total linewidth by the maximum reduction expected due to
cooperativity competition for the fitted κ , 1, and cooperativities
of each data point. The results match with the expected decrease
associated with the cooperativity competition as a function of
C1/C2. This shows the effective optomechanical coupling leading
to a competition on the mechanical dissipation of the resonators.

4. CONCLUSION

We have introduced an optomechanical phase lag between the
local and cavity-transduced thermal noises of the two resonators,
originating from the time-delay of noise transduced via the cavity.
We have observed interference stemming from this phase lag by
measuring the mechanical power spectral density of a double-
membrane device. The interference coherently cancels mechanical
noise of the two resonators where their (broadened) frequency
spectra overlap, leading to a 20 dB decrease in mechanical noise.
This could create an interesting new method of controllably reduc-
ing unwanted mechanical noise by introducing a second resonator,
which would allow cancellation of mechanical noise in a specific
frequency range (Supplement 1, Sec. 10).

In addition, we have proposed and experimentally verified
another new collective effect in the same system, where the
effective susceptibility of the coupled resonators causes a com-
petition on the mechanical dissipation. The dissipation rates of
two mechanical resonators can get significantly reduced when
their optomechanical cooperativities are comparable. This novel
collective effect paves the way for long-range control of phonon
dynamics [45], and the results of this work can be applied directly
to multi-resonator (N > 2) optomechanical systems, where we
expect more prominent and even richer collective effects.
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