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A B S T R A C T   

Within organisational learning literature, mental models are considered a vehicle for both individual learning 
and organizational learning. By learning individual mental models (and making them explicit), a basis for for-
mation of shared mental models for the level of the organization is created, which after its formation can then be 
adopted by individuals. This provides mechanisms for organizational learning. These mechanisms have been 
used as a basis for an adaptive computational network model. The model is illustrated by a not too complex but 
realistic case study.   

1. Introduction 

Learning is an essential part of survival, and has been a topic 
intensively studied. Organizational learning is a dynamic, multilevel 
and non-linear type of learning both involving individuals and inde-
pendent of individuals. It is dynamic because it involves people, it is 
multilevel because the learning of the organization is different from that 
of all the individuals in the organization, and it is non-linear because it 
has feedback mechanisms which provide individuals to learn from the 
organization. The concept of organizational learning has been 
addressed, for example, in (Argyris & Schön, 1978; Bogenrieder, 2002; 
Crossan, Lane, & White, 1999; Fischhof & Johnson, 1997; Kim, 1993; 
McShane & von Glinow, 2010; Stelmaszczyk, 2016; Wiewiora, Smidt, & 
Chang, 2019). However, the extensive literature on the concept of 
organizational learning has some deficiencies when it comes to 
computational models for it. There seems to be no detailed computa-
tional formalization of a clearly defined organizational learning process 
from beginning to end. In this study, a self-modeling network perspec-
tive is used to model the different processes and phases of organizational 
learning. 

The transitions between individual and organizational learning are 
keypoints of understanding and directing the learning process of orga-
nizations (Kim, 1993). Without any doubt, one of the most influential 
papers on organisational learning is (Kim, 1993) with an impressive 

number of 4696 citations in Google Scholar by now (dd. August 19, 
2021). The following quote illustrates in a summarized form the 
perspective sketched by Kim (1993): 

‘Organizational learning is dependent on individuals improving their 
mental models; making those mental models explicit is crucial to 
developing new shared mental models. This process allows organi-
zational learning to be independent of any specific individual. Why 
put so much emphasis on mental models? Because the mental models 
in individuals’ heads are where a vast majority of an organization’s 
knowledge (both know-how and know-why) lies.’ (Kim, 1993), p. 44 

According to Kim, although there is a huge amount of previous 
research on the learning, we are not able to fully understand the process 
itself (Kim, 1993). Therefore, to comprehend and manage the formation 
of the common unified mental potential of a group, we need to work on 
organizational learning and its processes and phases. Computational 
modeling of organizational learning provides a more observable 
formalization of development steps of unified shared mental models. To 
this end, the network-oriented modeling approach based on self- 
modeling networks introduced in (Treur, 2020a, 2020b) that will be 
explained in detail in Section 3 was used in this current paper. 

First, Section 2 presents how and in what aspects literature provides 
ideas on mental models and their role in organizational learning. Then, 
Section 3 explains the characteristics and details of adaptive self- 
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modeling network models and how they can be used to model the 
different processes concerning dynamics, adaptation and control of 
mental models. In Section 4 the controlled adaptive network model for 
organisational learning is introduced. Then in Section 5, an example 
simulation scenario is explained in detail. In Section 6 equilibrium 
analysis of the introduced adaptive network model is provided. Section 7 
is a Discussion section. Lastly, Section 8 is an appendix with a full 
specification of the model. 

2. Background literature 

The topic addressed in this paper involves a number of concepts and 
processes such as individual mental models and shared mental models, 
and how they are handled in order to obtain organisational learning. In 
this section, some of the multidisciplinary literature about these con-
cepts and processes is briefly discussed. This provides a basis for the 
design choices made for the adaptive network model that will be pre-
sented in Section 4 and accordingly for the scientific justification of the 
model based on this multidisciplinary literature. 

2.1. Mental models 

For the history of the mental model area, often Kenneth Craik is 
mentioned as a central person. In his book (Craik, 1943), he describes a 
mental model as a small-scale model that is carried by an organism within 
its head as follows; see also (Williams, 2018): 

‘If the organism carries a “small-scale model” of external reality and 
of its own possible actions within its head, it is able to try out various 
alternatives, conclude which is the best of them, react to future sit-
uations before they arise, utilize the knowledge of past events in 
dealing with the present and future, and in every way to react in a 
much fuller, safer, and more competent manner to the emergencies 
which face it.’ (Craik, 1943, p. 61) 

Note that this quote covers both the usage of a mental model based 
on so-called internal mental simulation (‘try out various alternatives’) 
and the learning of it (‘utilize the knowledge of past events’). Moreover, 
it also indicates how this contributes to safety when facing emergencies. 

Other authors also have formulated what mental models are. For 
example, with an emphasis on causal relations, Shih and Alessi (1993, p. 
157) explain that 

‘By a mental model we mean a person’s understanding of the envi-
ronment. It can represent different states of the problem and the 
causal relationships among states.’ 

De Kleer and Brown (1983) describe a mental model as the envi-
sioning of a system, including a topological representation of the system 
components, the possible states of each of the components, and the 
structural relations between these components, the running or execution 

of the causal model based on basic operational rules and on general 
scientific principles. For some more references on mental models, see 
(Doyle and Ford, 1998; Gentner and Stevens, 1983; Johnson-Laird, 
1983). 

An analysis of various types of mental models and the types of mental 
processes processing them can found in (Van Ments & Treur, 2021). This 
analysis has led to a three-level cognitive architecture as depicted in 
Fig. 1 where:  

● the base level models internal simulation of a mental model 
● the middle level models the adaptation of the mental model (for-

mation, learning, revising, and forgetting a mental model, for 
example)  

● the upper level models the (metacognitive) control over these 
processes 

Specific forms of learning that can be applied to mental models are 
observational learning (Van Gog, Paas, Marcus, Ayres, & Sweller, 2009; 
Yi & Davis, 2003), instructional learning (Hogan & Pressley, 1997) and 
combinations thereof. 

By using the notion of self-modeling network (or reified network) from 
(Treur, 2020a, 2020b), recently this cognitive architecture has been 
formalized computationally and used in computer simulations for many 
applications of mental models; for an overview of this approach and 
various applications of it, see (Treur & Van Ments, 2022); see also Section 3. 

2.2. Shared mental models 

Mental models also play an important role when people work 
together in teams. When every team member has a different individual 
mental model of the task that is performed, then this will stand in the 
way of good teamwork. Therefore, ideally these mental models should 
be aligned to such an extent that it becomes one shared mental model for 
all team members. 

Team errors have often been linked to inadequacies of the shared 
mental model and the lack of adaptivity of it (Fischhof & Johnson, 1997; 
Jones & Roelofsma, 2000; Mathieu, Hefner, Goodwin, Salas, & Cannon- 
Bowers, 2000; Burthscher, Kolbe, & Wacker, 2011; Wilson, 2019; Todd, 
2018). This has major implications for health care and patent safety in 
the operation room, e.g., concerning open heart operation and tracheal 
intubation (Higgs et al., 2018; Seo et al., 2021). Jones and Roelofsma 
(2000) discuss four types of team errors resulting from inadequate 
shared mental models 

The first is called ‘false consensus’. The false consensus effect 
(Krueger, 1998; Ross, Greene, & House, 1977) refers to the tendency to 
overestimate the degree of similarity between self and other team 
members and this may result in biased judgements or team decisions. It 
is often described as people’s tendency to ‘see their own behavioural 
choices and judgements as relatively common and appropriate to 
existing circumstances while viewing alternative responses as uncom-
mon, deviant, or inappropriate’. 

A second type of team error and perhaps the most well-known is 
‘groupthink’; e.g., (Janis, 1972; Kleindorfer, Kunreuther, & Schoemaker, 
1993). It is often described as a mode of thinking that people engage in 
when they are deeply involved in a cohesive in-group, when the members’ 
striving for unanimity overrides their motivation to realistically appraise 
alternative courses of action. Groupthink refers to a deterioration of 
mental efficiency and reality testing that results from in-group pressures. 

A third type of team error resulting from inadequate shared mental 
model is group polarization; e.g., (Isenberg, 1986; Lamm & Myers, 
1978). This refers to the phenomenon that occurs when the position that 
is held on an issue by the majority of the group members is intensified as 
a result of discussion. For example, if group members are initially 
generally in favour of a particular preference of action, then group 
discussion will further enhance the favorability of this preference at an 
individual level. There are two special cases of group polarization. One 

Fig. 1. Cognitive architecture for mental model handling with three levels of 
mental processing for mental models. 
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is termed risky shift and occurs when a group, overall, becomes more 
risk seeking than the initial average risk seeking tendencies of the in-
dividual members. The other is termed cautious shift and occurs when 
groups become more risk averse than the initial average risk averse 
tendencies of the individual members. In both cases the average 
response of the individual group members is more extreme after dis-
cussion. Such shifts in preference have been demonstrated by an over-
whelming number of studies. 

A fourth team error is labelled escalation of commitment; e.g., 
(Bazerman, Giuliano, & Appelman, 1984 ). This refers to the tendency 
for individuals or groups to continue to support a course of action 
despite evidence that it is failing. In other words, it is the tendency for a 
decision to support a previous decision for which there was a negative 
outcome. The specific concern is with non-rational escalation of 
commitment with a degree to which an individual escalates commit-
ment to a previously selected course of action beyond that which a 
rational. 

An example of a computational model of a shared mental model and 
how imperfections in it work out can be found in (Van Ments, Treur, 
Klein, Roelofsma, 2021). The model also uses the cognitive architecture 
for mental models depicted in Fig. 1 and its computational formalization 
addressed in (Treur & Van Ments, 2022). For some more references on 
shared mental models, see (DeChurch and Mesmer-Magnus, 2010; 
Dionne, Sayama, Hao, Bush, 2010; Langan-Fox, Code, Langfield-Smith, 
2000; Nini, 2019) 

2.3. Organisational learning: From individual to shared mental models 
and back 

Organisational learning is an area which has received much attention 
over time; see, for example, (Argyris & Schön, 1978; Bogenrieder, 2002; 
Crossan et al., 1999; Fischhof & Johnson, 1997; Kim, 1993; McShane & 
von Glinow, 2010; Stelmaszczyk, 2016; Wiewiora et al., 2019). How-
ever, contributions to computational formalization of organisational 
learning are very rare. The quote in the introduction section illustrates in 
the perspective sketched by Kim (1993). Here, mental models are 
considered a vehicle for both individual learning and organizational 
learning. By learning individual mental models (and making them 
explicit), a basis for formation of shared mental models for the level of 
the organization is created, which provides a mechanism for organiza-
tional learning. Inspired by this, the overall process consists of the 
following main processes and interactions, see also (Kim, 1993)  

(a) Individual level  
(1) Creating and maintaining individual mental models  
(2) Choosing for a specific context a suitable individual mental 

model as focus  
(3) Applying a chosen individual mental model for internal 

simulation  

(4) Improving individual mental models (individual mental 
model learning)  

(b) From individual level to organization level  
(1) Deciding about creation of shared mental models 
(2) Creating shared mental models based on developed individ-

ual mental models  
(c) Organization level  

(1) Creating and maintaining shared mental models  
(2) Associating to a specific context a suitable shared mental 

model as focus  
(3) Improving shared mental models (shared mental model 

refinement or revision)  
(d) From organization level to individual level  

(1) Deciding about individuals to adopt shared mental models  
(2) Individuals adopting shared mental models by learning them 

In terms of the cognitive architecture depicted in Fig. 1, applying a 
chosen individual mental model for internal simulation relates to the 
base level, learning or improving the individual mental model relates to 
the middle level and choosing an individual mental model as focus re-
lates to the upper level. Moreover, both interactions from individual to 
organization level and vice versa involve changing (individual or 
shared) mental models and therefore relate to the middle level, while the 
decision actions as a form of control relate to the upper level. 

This overview will provide useful input to the design of the compu-
tational network model for organizational learning that will be intro-
duced in Section 4. 

3. The self-modeling network modeling approach used 

In this section, the network-oriented modeling approach used is 
briefly introduced. Following (Treur, 2020b), a temporal-causal 
network model is characterised by (here X and Y denote nodes of the 
network, also called states):  

● Connectivity characteristics 
Connections from a state X to a state Y and their weights ωX,Y  

● Aggregation characteristics 
For any state Y, some combination function cY(..) defines the ag-
gregation that is applied to the impacts ωX,YX(t) on Y from its 
incoming connections from states X  

● Timing characteristics 
Each state Y has a speed factor ηY defining how fast it changes for 
given causal impact. 

The following difference (or related differential) equations that are 
used for simulation purposes and also for analysis of temporal-causal 
networks, incorporate these network characteristics ωX,Y, cY(..), ηY in 
a standard numerical format: 

Table 1 
The combination functions used in the introduced network model.   

Notation Formula Parameters 

Advanced logistic sum alogisticσ,τ(V1, …,Vk) 
[

1
1 + e− σ(V1+…+Vk − τ) −

1
1 + eστ)

]

(1 + e− στ)  
Steepness σ > 0 
Excitability threshold τ 

Steponce steponceα,β(..) 1 if time t is between α and β, else 0 Start time α 
End time β 

Hebbian learning hebbμ(V1, V2, V3) V1*V2(1 − V3)+ μV3  V1,V2 activation levels of the connected states;  
V3 activation level of the self-model state for  
the connection weight. 
Persistence factor μ 

Maximum composed with Hebbian learning max-hebbμ(V1, …, Vk) max(hebbμ(V1,V2,V3),V4 ,…,Vk) V1,V2 activation levels of the connected states;  
V3 activation level of the self-model state for the  
connection weight. 
Persistence factor μ 

Scaled maximum smaxλ(V1, …, Vk) max(V1, …, Vk)/λ Scaling factor λ  
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Y(t + Δt) = Y(t) + ηY [cY
(
ωX1 ,Y X1(t),…,ωXk ,Y Xk(t)) − Y(t)]Δt (1)  

for any state Y and where X1 to Xk are the states from which Y gets its 
incoming connections. Within the software environment described in 
(Treur, 2020b, Ch. 9), a large number of currently around 50 useful basic 
combination functions are included in a combination function library. 
The above concepts enable to design network models and their dynamics 
in a declarative manner, based on mathematically defined functions and 
relations. The examples of combination functions that are applied in the 
model introduced here can be found in Table 1. 

Realistic network models are usually adaptive: often not only their 
states but also some of their network characteristics change over time. 
By using a self-modeling network (also called a reified network), a similar 
network-oriented conceptualisation can also be applied to adaptive 
networks to obtain a declarative description using mathematically 
defined functions and relations for them as well; see (Treur, 2020a, 
2020b). This works through the addition of new states to the network 
(called self-model states) which represent (adaptive) network character-
istics. In the graphical 3D-format as shown in Section 4, such additional 
states are depicted at a next level (called self-model level or reification 
level), where the original network is at the base level. 

As an example, the weight ωX,Y of a connection from state X to state Y 
can be represented (at a next self-model level) by a self-model state 
named WX,Y. Similarly, all other network characteristics from ωX,Y, 
cY(..), ηY can be made adaptive by including self-model states for them. 

For example, an adaptive speed factor ηY can be represented by a self- 
model state named HY. 

As the outcome of such a process of network reification is also a 
temporal-causal network model itself, as has been shown in (Treur, 
2020b, Ch 10), this self-modeling network construction can easily be 
applied iteratively to obtain multiple orders of self-models at multiple 
(first-order, second-order, …) self-model levels. For example, a second- 
order self-model may include a second-order self-model state HWX,Y rep-
resenting the speed factor ηWX,Y for the dynamics of first-order self-model 
state WX,Y which in turn represents the adaptation of connection weight 
ωX,Y. Similarly, a persistence factor μWX,Y of such a first-order self-model 
state WX,Y used for adaptation (e.g., based on Hebbian learning (Hebb, 
1949)) can be represented by a second-order self-model state MWX,Y . Such 
second-order self-model states can be used to control adaptation. 

In the current paper, this multi-level self-modeling network 
perspective will be applied to obtain a second-order adaptive mental 
network architecture addressing the mental and social processes un-
derlying organizational learning by proper handling of individual 
mental models and shared mental models. In this self-modeling network 
architecture the base level addresses the use of a mental model by in-
ternal simulation, the first-order self-model the adaptation of the mental 
model, and the second-order self-model level the control over this; see 
Fig. 2. In this way the three-level cognitive architecture depicted in 
Fig. 1 is formalized computationally in the form of a self-modeling 
network architecture . 

Fig. 2. Computational formalization of the three-level cognitive architecture for mental model handling from Fig. 1 by a self-modeling network architecture.  

Fig. 3. The example mental model from (Van Ments et al, 2021a, 2021b) with indicated the part used in the current paper.  
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In Bhalwankar and Treur (2021a, 2021b) it is shown how specific 
forms of learning and their control can be modeled based on this self- 
modeling network architecture, in particular observational learning 
(Yi & Davis, 2003; Van Gog et al., 2009) and instructional learning 
(Hogan & Pressley, 1997) and combinations thereof. Such forms of 
learning will also be applied in the model for organizational learning 
introduced here in Section 4. 

4. The adaptive network model for organisational learning 

The case study addressed to illustrate the introduced model was 
adopted from the more extensive case study in an intubation process 
from (Van Ments et al, 2021a, 2021b). Here only the part of the mental 
models is used that addresses four mental states; see the red outlined 
parts in Figur.e 3 and the explanations in Table 2. 

In the case study addressed here, initially the mental models of the 
nurse (person A) and doctor (person B) are different and based on weak 
connections; they don’t use a stronger shared mental model as that does 
not exist yet. The organizational learning addressed to improve the sit-
uation covers: 

1. Individual learning by A and B of their mental models through in-
ternal simulation which results in stronger but still incomplete and 
different mental models by Hebbian learning (Hebb, 1949). Person 
A’s mental model has no connection from c_A to d_A and person B’s 
mental model has no connection from a_B to b_B.  

2. Formation of a shared organization mental model based on the two 
individual mental models. A process of unification by aggregation 
takes place.  

3. Learning individual mental models from the shared mental model; e. 
g., a form of instructional learning. 

Table 2 
The mental model used for the simple case study.  

States for mental 
models of persons 
A, B and 
organization O 

Short 
notation 

Explanation 

a_A a_B a_O Prep_eq_N Preparation of the intubation equipment by 
the nurse 

b_A b_B b_O Prep_d_N Nurse prepares drugs for the patient 
c_A c_B c_O Pre_oy_D Doctor executes pre oxygenation 
d_A d_B d_O Prep_team_D Doctor prepares the team for intubation  

Fig. 4. The connectivity of the second-order adaptive network model.  

Table 3 
Base level states of the introduced adaptive network model.  

Nr State Explanation 

X1 a_A Individual mental model state for person A for task a 
X2 b_A Individual mental model state for person A for task b 
X3 c_A Individual mental model state for person A for task c 
X4 d_A Individual mental model state for person A for task d 
X5 a_B Individual mental model state for person B for task a 
X6 b_B Individual mental model state for person B for task b 
X7 c_B Individual mental model state for person B for task c 
X8 d_B Individual mental model state for person B for task d 
X9 a_O Shared mental model state for organization O for task a 
X10 b_O Shared mental model state for organization O for task b 
X11 c_O Shared mental model state for organization O for task c 
X12 d_O Shared mental model state for organization O for task d 
X13 conph1 Context state for Phase 1: individual mental model simulation and 

learning 
X14 conph2 Context state for Phase 2: creation of a shared mental model for 

organization O 
X15 conph3 Context state for Phase 3: learning individual mental models from 

the shared mental model for organization O 
X16 conph4 Context state for Phase 4: individual mental model simulation and 

learning  
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4. Strengthening these individual mental models by individual learning 
through internal simulation which results in stronger and now 
complete mental models (by Hebbian learning). Now person A’s 
mental model has a connection from c_A to d_A and person B’s 
mental model has a connection from a_B to b_B. 

The connectivity of the designed network model is depicted in Fig. 4; 
for an overview of the states, see Table 3 to 5. For more details about the 
connections and how they relate to (a) to (d) from Section 2.3, see 
Table 6. 

In this model, at the base level individual mental states of persons 
and shared mental model states of the organization involving these 
people are placed. The context states used for initiation of different 
processes or phases are also in this base level plane. These states can be 
considered as the core of the model representing knowledge of people 
and organization’s general level of knowledge on separate tasks. The 
mental states of persons are connected to each other, which reflects the 
knowledge about the temporal order between tasks and the first ones 
have a connection from the first context state to be initiated in the first 
phase. Their ‘hollow’ mental states, the tasks that they do not know, 
have connections also from the fourth context state to be able to observe 
the progress of these states. 

First- and second-order self-model states are used to bring multi- 
order adaptivity to the network model. The first-order adaptation level 
provides adaptivity of the base level and the second-order one controls 
this adaptivity. In the first-order self-model level, W-states for all the 
weights of the connections between the base level states are placed. In 
the first place, these are the adaptive weights of the base level individual 
mental state connections of persons. In addition, there are W-states of 
the developed shared organisation mental model states. At this first- 
order adaptation level there are (intralevel) connections from all the 
W-states (two for this case) that specify the weight of a connection be-
tween the same tasks for all people (two for this case) to the W-states 
representing the weights of the connections of the shared organization 
model (for the formation of the shared organization mental model) and 
vice versa (for the learning of the shared organization mental model by 
the individuals). At the second-order self-model level, there are higher- 
order W-states specifying the weights of the connections from the W- 
states to the individual ones (to initiate and control the learning of the 
shared organization mental model by the individuals), HW-states for 
adaptation speeds of connection weights in the first-order adaptation 
level, and MW-states for persistence of adaptation. This provides the 
speed and persistence control of the adaptation. 

Table 4 
First-order self-model states of the introduced adaptive network model.  

Nr State Explanation 

X17 Wa_A,b_A First-order self-model state for the weight of the connection  
from a to b within the individual mental model of person A 

X18 Wb_A,c_A First-order self-model state for the weight of the connection  
from b to c within the individual mental model of person A 

X19 Wc_A,d_A First-order self-model state for the weight of the connection  
from c to d within the individual mental model of person A 

X20 Wa_B,b_B First-order self-model state for the weight of the connection  
from a to b within the individual mental model of person B 

X21 Wb_B,c_B First-order self-model state for the weight of the connection  
from b to c within the individual mental model of person B 

X22 Wc_B,d_B First-order self-model state for the weight of the connection  
from c to d within the individual mental model of person B 

X23 Wa_O,b_O First-order self-model state for the weight of the connection from  
a to b within the shared mental model of the organisation O 

X24 Wb_O,c_O First-order self-model state for the weight of the connection from  
b to c within the shared mental model of the organisation O 

X25 Wc_O,d_O First-order self-model state for the weight of the connection from  
c to d within the shared mental model of the organisation O  

Table 5 
Second-order self-model states of the introduced adaptive network model.  

Nr State Explanation 

X26 WWa_O,b_O,Wa_A,b_A 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wa_O,b_O to individual mental model connection weight self- 
model state Wa_A,b_A for instructional learning of the shared 
mental model 

X27 WWb_O,c_O,Wb_A,c_A 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wb_O,c_O to individual mental model connection weight self- 
model state Wb_A,c_A for instructional learning of the shared 
mental model 

X28 WWc_O,d_O,Wc_A,d_A 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wc_O,d_O to individual mental model connection weight self- 
model state Wc_A,d_A for instructional learning of the shared 
mental model 

X29 WWa_O,b_O,Wa_B,b_B 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wa_O,b_O to individual mental model connection weight self- 
model state Wa_B,b_B for instructional learning of the shared 
mental model 

X30 WWb_O,c_O,Wb_B,c_B 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wb_O,c_O to individual mental model connection weight self- 
model state Wb_B,c_B for instructional learning of the shared 
mental model 

X31 WWc_O,d_O,Wc_B,d_B 
Second-order self-model state for the weight of the connection 
from shared mental model connection weight self-model state 
Wc_O,d_O to individual mental model connection weight self- 
model state Wc_B,d_B for instructional learning of the shared 
mental model 

X32 HWa_A,b_A 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wa_A,b_A 

X33 HWb_A,c_A 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wb_A,c_A 

X34 HWc_A,d_A 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wc_A,d_A 

X35 HWa_B,b_B 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wa_B,b_B 

X36 HWb_B,c_B 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wb_B,c_B 

X37 HWc_B,d_B 
Second-order self-model state for the adaptation speed of 
individual mental model connection weight self-model state 
Wc_B,d_B 

X38 HWa_O,b_O 
Second-order self-model state for the adaptation speed of shared 
mental model connection weight self-model state Wa_O,b_O for 
formation or revision of the shared mental model 

X39 HWb_O,c_O 
Second-order self-model state for the adaptation speed of shared 
mental model connection weight self-model state Wb_O,c_O for 
formation or revision of the shared mental model 

X40 HWc_O,d_O 
Second-order self-model state for the adaptation speed of shared 
mental model connection weight self-model state Wc_O,d_O for 
formation or revision of the shared mental model 

X41 MWa_A,b_A 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wa_A,b_A 

X42 MWb_A,c_A 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wb_A,c_A 

X43 MWc_A,d_A 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wc_A,d_A 

X44 MWa_B,b_B 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wa_B,b_B 

X45 MWb_B,c_B 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wb_B,c_B 

X46 MWc_B,d_B 
Second-order self-model state for persistence of adaptation of 
individual mental model connection weight self-model state 
Wc_B,d_B  
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5. Example simulation scenario 

In this scenario, a multi-phase approach is applied to observe two 
separate individual mental models first, formation and effects of the 
created shared mental model for the organization then. Thus, it is 
possible to explore how organizational learning progresses. Note that 
these processes are structured in phases to get a clear picture of what 
happens. In practice and also in the model, these processes also can 
overlap or take place entirely simultaneously. The four phases were 
designed as follows:  

● Phase 1: Individual mental model usage and learning 

This relates to (a) in Section 2.3. Two distinct mental models rep-
resenting two different employees in the same group or organization are 
constructed here. Persons have both common and special characteristics 
and knowledge. For the specific scenario, persons A and B are the em-
ployees of an organization. Initially they have a weak mental model for 
their job considered here but by (Hebbian) learning their mental models 
strengthen over time during usage of them for internal simulation. They 
are involved in the same job but A does the first part of the job while B 
finishes it. Therefore, in this phase A does not have the knowledge of the 
end part of the job, and B does not know how to start the job. Moreover, 
their characteristics are different in terms of persistence of the learning. 
The values of person A’s M− states are slightly higher than B’s. It means 
that B forgets things faster than A.  

● Phase 2: Shared mental model formation 

This relates to (b) and (c) in Section 2.3. Formation of the unified 
shared mental model of the employees occurs in this phase. This takes 
place by a form of aggregation and unification of the individual mental 
models. The collaboration of the employees starts the process of orga-
nizational learning, and the values of the W-states of the shared mental 
model for the general (non-personal) states for the job (a_O to d_O) in-
crease. Then this shared mental model is maintained by the 
organization.  

● Phase 3: Instructional learning of the shared mental model by 
the individuals 

This relates to (d) in Section 2.3. The connections from the general 
W-states of the shared mental model to the personal W-states of the 
individuals are activated, and knowledge from the shared mental model 
is received here by the individuals as a form of instructional learning. 
Persons start to learn from the organisation’s unified shared mental 
model, for this scenario, which can be considered as learning from each 
other in an indirect manner via the shared mental model. Since there is 
only one shared mental model, this does not require many mutual one- 
to-one interactions between employees.  

● Phase 4: Individual mental model usage and learning 

Table 6 
Types of connections in the adaptive network model and how they relate to (a) 
to (d) identified in Section 2.3. For the example scenario, x and y are states from 
{a, b, c, d} and Z is a person from {A, B}.  

Intralevel connections 
x_Z → y_ Z Connection from x to y in individual mental model of person Z: (a) 

from Sect. 2.3. 
x_O → y_O Connection from x to y in shared mental model of organization O: 

(a) from Sect. 2.3. 
conp → x_Z Connection from context state conp for phase p∈{ph1, ph4} to 

activate mental model state x of person Z: (c) from Sect. 2.3. 
Wx_Z,y_Z → 

Wx_O,y_O 

Connection for person Z’s contribution from the weight of the 
connection from x to y in the individual mental model of Z to the 
weight of the connection from x to y in the shared mental model of 
O: (b) from Sect. 2.3. 

Wx_O,y_O → 
Wx_Z,y_Z 

Connection for O’s contribution from the weight of the connection 
from x to y in the shared mental model of O to the weight of the 
connection from x to y in the individual mental model of person Z: 
(d) from Sect. 2.3. 

Wx_Z,y_Z → 
Wx_Z,y_Z 

Persistence connection for Z’s mental model connections: (a) from 
Sect. 2.3. 

Interlevel connections 
x_Z → Wx_Z,y_Z Connection for individual Hebbian 

learning from state x in person Z’s 
individual mental model to self- 
model state Wx_A,y_A for Z’s individual 
mental model: (a) from Sect. 2.3. 

Upward from base level to 
first self-model level 

y_Z → Wx_Z,y_Z Connection for individual Hebbian 
learning from state y in person Z’s 
individual mental model to self- 
model state Wx_A,y_A for Z’s individual 
mental model: (a) from Sect. 2.3. 

x_O → 
Wx_O,y_O 

Connection for Hebbian learning 
from state x in O’s shared mental 
model to self-model state Wx_A,y_A for 
O’s shared mental model: (c) from 
Sect. 2.3. 

y_O → 
Wx_O,y_O 

Connection for Hebbian learning 
from state y in O’s shared mental 
model to self-model state Wx_A,y_A for 
O’s shared mental model: (c) from 
Sect. 2.3. 

Wx_Z,y_Z → y_Z Connection for the effect of self- 
model state Wx_Z,y_Z for person Z’s 
individual mental model on state y in 
Z’s individual mental model: (a) from 
Sect. 2.3. 

Downward from first- 
order self-model level to 
base level 

Wx_O,y_O → 
y_O 

Connection for the effect of self- 
model state Wx_O,y_O for O’s shared 
mental model on state y in O’s shared 
mental model: (c) from Sect. 2.3. 

conph2 → 
HWx_O,y_O 

Connection from the context state for 
Phase 2 to second-order self-model 
state HWa_O,b_O 

representing the 
adaptation speed of first-order self- 
model state Wx_O,y_O for the weight of 
the connection from x to y in the 
shared mental model of O in order to 
trigger this adaptation speed for 
shared mental model formation: (b) 
from Sect. 2.3. 

Upward from base level to 
second-order self-model 
level 

conph3→ 
WWx_O, 

y_O
,Wx_Z,y_Z 

Connection from the context state for 
Phase 3 to second-order self-model 
state WWx_O,y_O,Wx_Z,y_Z 

representing the 
weight of the connection from first- 
order self-model state Wx_O,y_O for the 
weight of the connection from x to y 
in the shared mental model of O to 
first-order self-model state Wx_Z,y_Z 

for the weight of the connection from 
x to y in the individual mental model 
of person Z in order to activate this 
connection for instructional learning 
of Z from the shared mental model: 
(d) from Sect. 2.3.  

Table 6 (continued ) 

HWx_O,y_O 
→ 

Wx_O,y_O 

Effectuation of control of the 
adaptation of O’s shared mental 
model connection weight Wx_O,y_O for 
shared mental model formation 
based on Z’s individual mental 
model: (b), (c) from Sect. 2.3. 

Downward from second- 
to first-order self-model 
level 

WWx_O,y_O
,Wx_Z,y_Z 

→ Wx_Z,y_Z 

Effectuation of control of the 
adaptation of person Z’s individual 
mental model connection weight 
Wx_Z,y_Z for instructional learning of 
Z’s individual mental model from O’s 
shared mental model: (d) from Sect. 
2.3.  
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This relates to (d) in Section 2.3. In this phase, employees have the 
chance of further improving their mental models (in Phase 3 already 
improved based on the shared mental model) by the help of Hebbian 
learning during usage of the mental model for internal simulation. 
Person A starts to learn about task d (state d_A) by using the knowledge 
of person B (obtained via the shared mental model) and similarly B 
learns about task a (state a_B) that they did not know in the beginning. 
Therefore, these ‘hollow’ states become meaningful for the individuals. 
The individuals take advantage of the organizational learning. 

Fig. 5 shows an overview of all states of the simulation; Fig. 6 and 
Fig. 7 focus on part of the states (for the same simulation) to get a more 

detailed view. 
In Fig. 6 it can be seen that the activation levels of person A’s mental 

model states X1, X2 and X3 (a_A to c_A) increase in Phase 1 between time 
10 and 300 while the activation level of X4 (d_A) remains at zero because 
A does not have knowledge on this state d in the beginning. The latter 
state will increase in Phase 4 after learning in Phase 3 from the unified 
shared mental model developed in Phase 2. 

Person B’s mental model states X6, X7 and X8 (b_B to d_B) increase 
just like A’s in phase 1, while the activation level of X5 (a_B) remains at 
zero because B does not have knowledge of this state a in the beginning. 
It will also increase in Phase 4 after learning in Phase 3 from the unified 

Fig. 5. Simulation graph showing all states.  

Fig. 6. The base states and connection weight self-model states for the individual mental models.  
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shared model developed in Phase 2. 
The values of person A’s W-states X17 and X18 representing A’s 

mental model connection weights Wa_A,b_A and Wb_A,c_A increase in the 
first phase, meaning that A learns the mental model better by using it for 
internal simulation (Hebbian learning). However, they slightly decrease 
in the second phase at about 300–400 since the persistence factor self- 
model M-state of A has not the perfect value 1, meaning that A for-
gets. Person B’s W-states X21 and X22 representing B’s mental model 
connections Wb_B,c_B and Wc_B,d_B follow a similar pattern but since the 
persistence factor of B is smaller than of A, they decrease more in the 
second phase: it can be observed that B is a more forgetful person. 

State X19 (Wc_A,d_A) is the W-state for the connection from c_A to d_A 
within A’s mental model. Because A does not have a nonzero X4 state in 
the beginning, learning can happen only (by instructional learning in 
Phase 3) after a unified shared mental model has been formed (in Phase 
2). Thus, X19 increases in Phase 3 at about time 450. Same is valid for 
X20, the W-state for the connection from a_B to b_B within B’s mental 
model. This addresses the task a that B does not know about in the 
beginning. 

By observing in Fig. 6 Phase 4 after time 650, it can be seen that all 
the W-states of the individuals make an upward jump. The reason for 
this is the main focus of this paper, organizational learning. As will be 
explained in more detail in the following paragraph, the W-states of the 
organization’s shared mental model have links back to the W-states of 
the individuals’ mental models to provide the ability of individuals to 
learn (by instructional learning) from the shared mental model. 

As can be seen in Fig. 7, all the second-order self-model W-states (X26 
to X31) for connections from the unified shared mental model’s W-states 
to the individuals’ W-states become activated in Phase 3 between 450 
and 650. This models the instructional learning: the persons are 
informed about the shared mental model. Because the characteristics 
involved have the same values in the role matrices that specify the model 
(see Section 8), they trace the same curve. The unified shared mental 
model gains its characteristics in the second phase at around 350 by the 
help of a form of aggregation of the W-states of the mental models of the 
employees A and B. As also can be seen in Fig. 7, states X23, X24 and X25 
(shared mental model connection weight self-model states Wa_O,b_O, 
Wb_O,c_O, and Wc_O,d_O) jump upward in this phase to form the unified 
shared mental model, and during the phase they decrease a little bit 
because of the forgetting of the employees. 

6. Mathematical analysis of equilibria of the network model 

In general, a dynamical system is in equilibrium at time t if dY(t)/dt 
= 0 for all of its state variables Y. The same can be applied to self- 
modeling network models. However, given the standard equation (1) 
in terms of the network characteristics, for network models the condi-
tion dY(t)/dt = 0 can be formulated in terms of the network charac-
teristics as the following simple criterion 

ηY = 0 or cY
(
ωX1 ,Y X1(t),…,ωXk ,Y Xk(t)) = Y(t) (2) 

This can be used to verify if the implemented model is correct with 
respect to the design of the model. As an example, consider the adap-
tation of the weights according to the combination function max-hebb 
defined in Table 1. 

max − hebbμ(V1,…,Vk) = max
(
hebbμ(V1,V2,V3),V4,…,Vk

)
(3)  

where hebbμ(V1,V2,V3) = V1*V2(1 − V3)+ μV3 

Therefore, for this case the above criterion for being in an equilib-
rium state is equivalent to 

ηY = 0 or max(V1*V2(1 − V3) + μV3,V4,…,Vk) = Y(t) (4) 

One of the states to which this combination function is applied (with 
k = 4) is Wb_A,c_A, which is X18. It has incoming connections from b_A, 
c_A (X2, X3) and X18 itself (all three with connection weights 1), and from 
X24 (with adaptive connection weight represented by self-modeling state 
WWb_O,c_O,Wb_A,c_A which is X27). Moreover, μ = 0.995. From the simulation 
results it seems that this state is (approximately) stationary at time t =
299 and at time t = 849. The speed factor η of Wb_A,c_A is 0.05 which is 
nonzero. The values for the relevant states from the simulation at these 
time points are the following: 

V1 = X2(299) = 0.956268089647092 
V2 = X3(299) = 0.954552603376293 
V3 = X18(299) = 0.994443719684304 
V4 = X24(299) = 0 
μ = 0.995 

If these values are substituted in (4) we get the following 

max(V1*V2(1 − V3) + μV3,V4,…,Vk) = 0.994543319288979 
Y(299) = 0.994443719684304 

Fig. 7. The connection weight self-model states for the shared mental model and the weights by which individuals receive instructional learning of the shared 
mental model. 
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These two values show a deviation of 0.0000996 which is less than 
10− 4. This quite good approximation of the equation in (4) provides 
evidence that the implemented model is correct with respect to its 
design. Similarly, for t = 849: 

V1 = X2(849) = 0.956269533716948 
V2 = X3(849) = 0.95457581935179 
V3 = X18(849) = 0.994548119402481 
V4 = X24(849) = 0.970297110356546 
μ = 0.995 

If these values are substituted in (4) we get the following 

max(V1*V2(1 − V3) + μV3,V4,…,Vk) = 0.994552028641134 
Y(849) = 0.994548119402481 

These two values show a deviation of 0.00000391, which is less than 
10− 5. This again quite good approximation of the equation in (4) pro-
vides still more evidence that the implemented model is correct with 
respect to its design. 

7. Discussion 

Organisational learning is a complex process that is challenging 
when computation modeling of it is concerned; computational models of 
organizational learning are practically absent in the literature. Within 
mainstream organisational learning literature such as (Kim, 1993; 
Wiewiora et al., 2019), (individual and shared) mental models are 
considered to be a vehicle for both individual learning and organiza-
tional learning. By learning individual mental models, sources for the 
formation of shared mental models for the level of the organization as a 
whole are created. Once these shared organization mental models have 
been formed, they are available to be adopted by individuals within the 
organization by learning and applying them. This combination of indi-
vidual mental model learning - shared mental model formation - indi-
vidual (shared) mental model adoption, and some others indicates a 
handful of mechanisms of different types that together can be considered 
to form the basis of organizational learning. The challenges then are (1) 
to formalize these mechanisms in a computational manner, and (2) to 
glue them together according to a suitable type of architecture. 

These mechanisms indeed have been used as a basis for the designed 
adaptive computational network model. The model was illustrated by a 
not too complex but realistic case study. Note that for the sake of pre-
sentation, in the case study scenario the different types of mechanisms 
have been structured over time sequentially. This is not inherent in the 
designed computational network model itself. All these processes can 
equally well work simultaneously in parallel. 

The introduced computational model for organizational learning has 
been designed as a second-order adaptive network model according to 
the modeling approach based on self-modeling network models 
described in (Treur, 2020b). Here, the three-level cognitive architecture 
for handling mental models as described in (Van Ments & Treur, 2021) 
was adopted and formalized computationally as a self-modeling network 
architecture, where the first-order self-model level models the adapta-
tion of weights of connections within mental models and the second- 
order self-model level models the control over this adaptation. These 
weights can be adapted in different manners, depending on the context. 
One context for adapting them is for the focusing on a specific mental 
model as, for example, is addressed in (Canbaloğlu & Treur, 2021). 
Another context for adaptation is for Hebbian learning (Hebb, 1949) as 
applied during internal mental simulation in (Canbaloğlu & Treur, 
2021) and in (Bhalwankar & Treur, 2021a,b) during observational 
learning. These different types of adaptation were also adopted in the 

adaptive network for organizational learning introduced in the current 
paper. Thereby, the context-sensitive control of them was modeled by 
the second-order self-model level. 

For this first step in computational formalization of organizational 
learning by an adaptive network model as presented here, a number of 
issues have been left out of consideration yet. The model provides a good 
basis to address these in future work, thereby obtaining extensions or 
refinements of the model. 

One of these extension possibilities concerns the type of aggregation 
used for the process of shared mental model formation. In the current 
model this has been based on the person who has maximal knowledge 
about a specific mental model connection. But other forms of aggrega-
tion can equally well be applied, for example weighted averages. 
Moreover, the choice of aggregation can be made adaptive in a context- 
sensitive manner so that for each context a different form of aggregation 
can be chosen automatically as part of the overall process. Also aspects 
of priorities for the importance or reliability of individual mental models 
compared to each other may be incorporated. 

Another extension is to make other states used for the control 
adaptive and context-sensitive, such as the second-order self-model H- 
and M-states for the individuals, which for the sake of simplicity were 
kept constant in the current example scenario. A third option to extend 
the model is by adding states for the actual actions in the world and for 
observational learning based on such actions observed in the world, such 
as for example addressed in (Bhalwankar & Treur, 2021a,b). 

Finally, yet another option for an extension is to add an intermediate 
level of teams in between the individual and organizational level as, for 
example, discussed in (Wiewiora et al., 2019). In the forthcoming book 
on computational modeling of multilevel organisational learning (Can-
baloğlu, Treur, & Wiewiora, forthcoming), most of the abovementioned 
issues (and a few more) will be covered by extensions, variations, and 
refinements of the adaptive network model introduced in the current 
paper. 
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Appendix A. Full specification by role matrices 

In Figs. 8 to 12 the different role matrices are shown that provide a 
full specification of the network characteristics defining the adaptive 
network model in a standardised table format. Here in each role matrix, 
each state has its row where it is listed which are the impacts on it from 
that role. 

A.1. Role matrices for connectivity characteristics 

The connectivity characteristics are specified by role matrices mb 
and mcw shown in Fig. 8 and Fig. 9. Role matrix mb lists the other states 
(at the same or lower level) from which the state gets its incoming 
connections, whereas in role matrix mcw the connection weights are 
listed for these connections. 

Nonadaptive connection weights are indicated in mcw (in Fig. 9) by 
a number (in a green shaded cell), but adaptive connection weights are 
indicated by a reference to the (self-model) state representing the 
adaptive value (in a peach-red shaded cell). This can be seen for states X2 
to X4 (with self-model states X17 to X19), states X6 to X8 (with self-model 
states X20 to X22), X10 to X12 (with self-model states X23 to X25), and X17 
to X22 (with self-model states X26 to X31). 
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Fig. 8. Role matrices for the connectivity: mb for base connectivity.  Fig. 9. Role matrices for the connectivity: mcw for connection weights.  
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Fig. 10. Role matrices for the aggregation characteristics: combination func-
tion weights. Fig. 11. Role matrices for the aggregation characteristics: combination func-

tion parameters. 
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A.2. Role matrices for aggregation characteristics 

The network characteristics for aggregation are defined by the se-
lection of combination functions from the library and values for their 

parameters. In role matrix mcfw it is specified by weights which state 
uses which combination function; see Fig. 10. 

In role matrix mcfp (see Fig. 11) it is indicated what the parameter 
values are for the chosen combination functions. Some of them are 

Fig. 12. Role matrices ms for the timing characteristics (speed factors) and initial values iv.  
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adaptive, as can be seen in the rows from X17 to X22 (e.g., the persistence 
factors μ represented by the self-model states X41 to X46). 

A.3. Role matrices for timing characteristics 

In Fig. 12, the role matrix ms for speed factors is shown, which lists 
all speed factors. Next to it, the list of initial values can be found. Also for 
ms some entries are adaptive: the speed factors of W-states X17 to X25 are 
represented by (second-order) self-model HW-states X32 to X40. 
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Canbaloğlu, G., & Treur, J. (2021). Modeling Context-Sensitive Metacognitive Control of 
Focusing on a Mental Model During a Mental Process. Proc. of the 5th International 
Conference on Computational Methods in Systems and Software, CoMeSySo’21, vol. 2. 
Lecture Notes in Networks and Systems, vol. 231. (pp. 992–1009). Springer Nature. 
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