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Optimization of Charging Strategies for Battery
Electric Vehicles Under Uncertainty

Gerhard Huber , Klaus Bogenberger , and Hans van Lint

Abstract— The comparably low driving ranges of battery
electric vehicles (BEV) cause time-consuming recharging stops
if long distances have to be covered. Thus, navigation systems
not only have to compute routes leading from the BEV’s current
position to the destination, but also to plan recharging stops.
This type of routing problem is often modeled as a constrained
shortest path problem. The constraint ensures that the BEV does
not run out of energy. In this paper, a de facto deterministic
reformulation of this problem type is suggested, which allows
handling uncertainty–particularly the risks resulting from imper-
fect energy consumption predictions. For this purpose, a certain
part of the battery capacity is used as an energy buffer. Different
approaches to dynamically optimize the size of this energy buffer
in dependency of the expected level of uncertainty are proposed
and a corresponding modification of a typical routing algorithm is
described. Furthermore, a simulation study is conducted showing
that the described framework allows keeping the probability to
run out of energy close to zero (for the test settings: < 0.5%) as
long as a suitable approach for defining the size of the energy
buffer is applied.

Index Terms— Battery electric vehicle, shortest path problem,
uncertainty, routing.

I. INTRODUCTION

THE World Health Organization estimated that air
pollution was responsible for seven million premature

deaths in 2012 [1]. To improve the situation especially
in urban areas, alternatives to internal combustion engine
vehicles (ICEV) have gained relevance. Besides fuel cell
vehicles, particularly battery electric vehicles (BEV) are
named as one of the most promising technologies. However,
BEV selling numbers remain low in many countries. The
so-called range-anxiety–the deeply rooted fear of potential
customers to run out of energy while driving a BEV–is seen
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as one of the main reasons for the limited demand for BEVs
(see p. 10 in [2]). Range-anxiety primarily results from the
typically sparse charging infrastructure in combination with
the, compared to ICEVs, low driving range of BEVs [3].
Building up additional charging infrastructure is an expensive
and time-consuming process. The driving ranges of BEVs
have been increased during the last years, but there is still a
significant gap to the driving ranges achieved by ICEVs. In this
paper, a third approach to tackle range-anxiety is pursued.

According to [3], a well-informed driver of a BEV,
i.e., someone who receives recent and reliable information
about the remaining driving range and nearby charging pos-
sibilities, is less vulnerable to range-anxiety. There exists
a variety of approaches to ensure that drivers feel well-
informed. In this work, the focus will be set on computing
charging strategies for BEVs. Given a road network and some
charging infrastructure placed along the network, the BEV’s
current position, its current state of charge and a destination,
a charging strategy is in the following defined as a sequence
of instructions which describes

• a route from the current location to the destination
• at which charging stations along this route the BEV has

to be recharged
• up to which state of charge the battery of the BEV has

to be recharged at the respective charging station.
Charging strategies have to be reliable, i.e., the risk that a BEV
which follows a charging strategy runs out of energy before
the destination is reached has to be kept as low as possible.
Reliability is essential to reduce or, in the best case, eliminate
range-anxiety. Second, a charging strategy has to be efficient,
i.e., unnecessary and unnecessarily long charging stops have
to be avoided. If charging strategy recommendations are too
conservative, then the travel times resulting when following
these strategies will in general be very high. It is likely that
drivers of BEVs will stop relying on such recommendations,
since they soon will be able to do better on their own.

Clearly, reliability and efficiency, the way they are described
here, are opposing obstacles. The central motivation of this
paper, which is based on a PhD thesis [4], is to show how
dynamic optimization algorithms can be adjusted in order to
achieve a reasonable compromise between reliability and effi-
ciency. For this purpose, we start in section II with a literature
review and describe an already existing formulation of the
problem of finding optimal charging strategies as a shortest
path problem (SPP). In section III, a novel generic approached
is proposed which modifies this formulation in order to address
the existence of uncertainty. Several ideas to concretize this
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generic approach are sketched. A corresponding optimization
algorithm is described in section IV. It can be understood
as an example of how dynamic optimization algorithms can
be adjusted to handle uncertainties. In section V, two of the
suggested approaches are tested within a simulation study.
In this study, a BEV follows frequently updated charging
strategies, which are based on imperfect information about the
future traffic situation. The difference between the predicted
and the real traffic situation causes uncertainty within the
simulation. It is analysed in detail, under which conditions
which of the proposed algorithms performs best. The paper
ends in section VI with a short summary of the contributions
of the paper.

II. STATE OF THE ART

When it comes to routing problems for BEVs, there exists
a vast literature about deriving adequate energy consumption
models for BEVs. Physical consumption models are typically
applied in this context [5] [6]. Such models take a variety
of vehicle parameters (frontal area, vehicle mass, etc.) into
account to determine driving resistance (which consists of
rolling resistance, aerodynamic resistance, climbing resistance
and inertial resistance) in dependency of driving speed, accel-
eration and road steepness. Based on the driving resistance,
the mass of the BEV and the energy conversion efficiency
of the electric motor, the energy which is necessary to move
and accelerate the BEV is estimated. The focus is usually set
on the influence of weather conditions [7] and road steepness
[8] [9]. The latter is particularly interesting, because of the
BEVs ability to regain energy via recuperation, i.e., BEVs
can recharge their battery by making use of the negative
climbing resistance when driving downhill. Routing problems
are often modeled as SPPs and the possibility to recharge
the battery leads to negative edges costs within these models.
Many algorithms which are widely used to solve SPPs, such
as Dijkstra’s algorithm [10], are not able to ensure the com-
putation of optimal solutions if edge costs are partly negative.
To overcome this issue, so-called label correction algorithms,
like the algorithm of Floyd and Warshall [11], can be applied.
Alternatively, Johnson [12] suggested a method that makes it
possible to modify the edge costs of a graph in such a way
that no longer negative edge costs occur. At the same time, this
method ensures that the set of shortest paths leading from any
starting to any destination node is the same as it was before
the modification. Former works on energy-efficient routing [8]
[9] [13], i.e., routes have to be computed which minimize
total energy consumption, are often based on the method of
Johnson.

According to the introduction, charging strategies consist
not only of route recommendations, but also of charging
recommendations. The former is important for both BEVs and
ICEVs. The latter is more critical for BEVs. Nevertheless,
before the problem of finding optimal charging strategies
arose, some papers already treated the so-called vehicle refu-
eling problem [14]–[16]. The situation is basically the same as
for the problem of finding optimal charging strategies, except
that typically fuel costs have to be minimized and that the
costs for fuel differ among the available gas stations.

Transferring the vehicle refueling problem from ICEVs to
BEVs leads to what is from here on denoted as the problem of
finding optimal charging strategies. One of the first paper pub-
lished in this context is [17]. The problem of finding optimal
charging strategies is modeled as an SPP. A charging station
is represented by a single node on a graph. Paths on this graph
are interpreted as charging strategies. If a path leads from a
node A to a node B, while covering some of the nodes which
represent charging stations, then the corresponding charging
strategy suggests to follow the route described by the path and
to fully recharge the battery of the BEV whenever one of the
charging nodes is reached. The energy for passing edges of the
graph is assumed to depend linearly on the length of the road
segments which are represented by these edges. The travelled
distance or total travel times, i.e., the time for driving plus
the time for recharging, are used as the optimization criterion.
The optimization itself is basically done in two steps : In a
pre-processing step, an auxiliary graph is constructed. This
graph consists only of nodes representing the given charging
stations and artificially constructed edges connecting these
stations. The actual shortest path search can be interpreted
as a hierarchical modification of Dijkstra’s algorithm. It starts
on the original graph and is lifted, as soon as possible, to the
auxiliary graph. When the search gets close to the destination,
then the algorithm returns to the original graph. This procedure
improves computation times significantly. In [18], an approach
comparable to one from Kobayashi is pursued. The problem
of finding optimal charging strategies is again modeled as an
SPP and it is only possible to fully recharge a battery when
reaching a charging station. Furthermore, also a pre-processing
step is conducted to improve computation times. However, the
amount of energy that is necessary to get from one node
to another is calculated and stored for all pairs of nodes
for which at least one of both nodes represents a charging
station. Another difference to Kobayashi is that instead of
travel times or travelled distance, solely energy consumption
costs are considered and minimized. In [19], the framework
described in [18] is further extended. The optimization of
the charging strategies is now intended to find a compromise
between consumed energy, travel time and travelled distance.

In [20], the weighted constrained shortest path problem
with replenishment arcs is introduced. The focus is set on
computational experiments on large networks. Reasonable
computational speed is achieved on these large instances,
similarly to [17] or [18], by making use of a preprocessing
method. In [21] the minimum cost path problem with relays
is decribed. A path on a graph is a solution to this type of
SPP if the sum of the costs along a path does not exceed a
given upper bound. In this context, some of the nodes of the
considered graph are assumed to be relays. Whenever a path
reaches such a node, the sum of edge costs is set back to zero.
Thus, relays can be understood as recharging possibilities. In
[22], the problem of finding optimal charging strategies is
modeled as a dynamic program and solved via a backward
recursion. In contrast to the previously mentioned works, not
only a full recharging can be recommended, but recharging
up to any state of charge between 0% and 100% is possible.
The additional flexibility increases the optimization potential.
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However, two unrealistic assumptions are made to achieve
this: First, it is assumed that the BEV can be recharged at
each node of a given graph. Second, the possible existence
of negative edge costs due to recuperation is ignored. In [23]
and [24], the problem of finding optimal charging strategies is
described as a mixed integer nonlinear program. It is explained
how this original problem formulation can be separated into
two linear programs, which can be solved sequentially and
very efficiently. Analogously to [22], solutions of the described
optimization problem are able to recommend arbitrary recharg-
ing amounts.

Also the authors of this paper have contributed to the
topic of computing optimal charging strategies [25], [26]. The
problem itself is again modeled as an SPP. The most significant
difference to the already mentioned approaches is that edge
costs are not modeled as static quantities. Instead, edge costs
describing the time and the energy that is necessary to pass
road segments are assumed to be time-dependent. This allows
taking the effect of dynamic factors, such as changing weather
and traffic conditions, on energy consumption and travel times
into account. In the following, the model described in [25]
and [26] will be used as a basis for all further developments.
A detailed description of this model can be found in section II-
A. Please note that Wang suggested a very similar approach for
modeling the problem of finding optimal charging strategies
[27]. In this work, two algorithms which are both based on
the A∗-algorithm are tested and compared.

Significantly different to the aforementioned contributions
is the work of [28]. There, the stochastic optimal path
problem with relays is proposed. Driving speeds and energy
consumption are interpreted as random variables. The huge
advantage of this approach is that the problem formulation
allows taking only those charging strategies into account,
which ensure a pre-defined minimal arrival probability. Two
different label-correcting algorithms in combination with a
preprocessing method are suggested to solve the problem.
Though some simplifications are presumed–such as allowing
only a full recharging, presuming that no correlations exist
between random variables belonging to different edges, and
ignoring that driving speeds and energy consumption may
depend on time–the suggested algorithms are tested only on
a small network. Due to the extremely high computational
effort, this is typically done when solving stochastic routing
problems. In the context of energy-efficient routing, some
further works (besides [28]) exist that treat the topic of
uncertainty [29] [30], but these contributions do not consider
the possibility to recharge.

For completeness, it shall also be mentioned at this point
that, besides providing charging strategies to a single BEV,
situations in which a whole fleet of BEVs needs to be managed
are also covered in research [31]–[33]. The main challenge for
this type of problem usually is to ensure that each BEV reaches
its destination as quickly as possible while only a limited
number of charging stations is available. Clearly, it is more
complicated to optimize charging strategies for a whole fleet
of vehicles than for a single BEV. This fact has influence on
the structure and complexity of the corresponding optimization
problems and, along with this, also on the solution approaches

which can be applied. If fleets of BEVs have to be coordinated,
then quickly rising computation times often make it impossible
to use optimization algorithms for big problem instances or
necessitate keeping problem formulations quite simple.

A. Charging Strategy Optimization as a Shortest Path
Problem

In the following, the problem of finding optimal charging
strategies is modeled as an SPP. The construction of this opti-
mization problem is separated into three parts: First, a graph
that allows representing not only a road network, but also
charging possibilities and charging strategies is introduced.
Second, edge cost functions which decribe energy consump-
tion and travel times for a BEV moving through a road network
are derived. Third, a corresponding SPP is defined. Optimal
solutions of this SPP can be interpreted as charging strategies,
but the existence of uncertainty is still not addressed.

1) Graph Representation of Road Networks and Charging
Processes: The fundament of an SPP is a mathematical graph.
This graph has to represent the considered road network,
where road segments are typically embodied by edges and
junctions by nodes. For the problem of finding optimal charg-
ing strategies, the charging infrastructure and the available
charging options have to be represented, too. The term “charg-
ing options” is intended to describe the set of all possible
recommendations that can be made to a driver of a BEV
when reaching a charging station. This can either be to charge
up to a certain state of charge (we will from here on refer
to a recommended state of charge as the “target state of
charge”) or to continue the trip without recharging. In this
work, we follow the approach suggested in [26] to represent
charging stations and charging options within a mathematical
graph. For this purpose, let K ∈ N denote the number of
charging stations located along the considered road network.
For each of these charging stations, two additional nodes va

k
and vb

k are introduced, where k ∈ {1, 2, . . . , K } is used to
indicate that these nodes belong to the k-th charging station.
Node va

k marks the location of the junction at which the
original road network can be left in order to get to the k-th
charging station, vb

k analogously embodies the location of the
junction at which one can return to the original road network.
To model the k-th charging station itself, a node v i

k (“i” for
“in”) and a node vo

k (“o” for “out”) are added. Edge (va
k , v i

k)
is used to embody the way from the original road network
to the charging station and edge (vo

k , vb
k ) for the way back.

A parameter � ∈ [0, 1] is introduced to model all possible
charging options. This parameter defines the set of target states
of charge. For example, if � is set equal to 0.05 = 5%, then
it is later on possible to recommend charging up to any state
of charge that is a multiple of 5%. Finally, a node vl·�

k and
two edges (v i

k , v
l·�
k ) and (vl·�

k , vo
k ) are added for each l ∈ N

which fulfills the following condition:
0% ≤ l · � ≤ 100% (1)

The resulting graph is from here on denoted as �G� =
(V �, �E�), where V � represents the set of nodes and �E� the
set of edges. An example for such a graph is shown in Figure 1.
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Fig. 1. Graph-based model of charging possibilities.

Dotted edges are used to represent parts of potential charging
processes, whereas all other edges represent road segments.
The path [v1, v2, v3, v5, v

a
6 , v i

6, v
1.0
6 , vo

6 , vb
6 , v7], which consists

of the bold edges and nodes in Figure 1, is intended to illustrate
how paths on a graph �G� can be interpreted as charging
strategies: A path basically represents, as it is usually the case
for SPPs, a route recommendation leading from its starting
node to its last node. Moreover, whenever a path covers a node
vl·�

k , then the charging strategy which is encoded by this path
suggests to recharge the battery at the k-th charging station up
to a target state of charge of l · �. This means that the bold
path in Figure 1 can be associated with a charging strategy
suggesting to drive from the starting location v1 directly to
junction v3 and then turn left to junction v5. There, the driver
of the BEV has to turn right and recharge up to a state of
charge of 1.0 = 100% at charging station B before continuing
the trip until destination node v7 is reached.

2) Modeling Travel Time and Energy Consumption: Here,
the optimization of charging strategies is done with respect
to total travel time, i.e., the time needed for driving and
recharging when following a recommended charging strategy
has to be minimized. This ensures that the number of charging
stops is kept low, but it also makes it inevitable to introduce
an edge cost functions cT , which assigns time costs to edges.
To simplify the following definitions, let �E�

cs ⊂ �E� define
the set of all edges representing parts of charging processes.
The time costs for passing road segments are assumed to be
time-dependent. For a given arrival time tarl and for an edge
e ∈ �E� \ �E�

cs , this means:
cT (e, tarl) = time for passing segment e at time tarl (2)

For edges representing parts of a charging process, the cor-
responding time costs depend on the state of charge SOC
∈ [0, 1] when arriving at the charging station and on the target

state of charge l · � ∈ [0, 1]:
cT

(
(vl·�

k , vo
k ), SOC

)
= time to recharge

from SOC to l · �
cT

(
(v i

k, v
l·�
k ), SOC

)
= 0

Besides minimizing total travel times, it also has to be ensured
during the optimization process that the battery does not run
out of energy. To achieve this, an edge cost function c̀E ,
assigning energy consumption costs to edges, is additionally
introduced. Again, c̀E is assumed to be time-dependent for
edges which represent road segments:

c̀E (e, tarl) = energy for passing segment e at time tarl

Due to the ability of BEVs to recuperate energy, it is possible
that the state of charge of a BEV increases while passing a
road segment. Hence, c̀E (e, tarl) may return negative values
for edges e ∈ �E� \ �E�

cs . For charging processes, the energy
consumption costs are always negative and equal to the
difference between the initial state of charge and the target
state of charge:

c̀E

(
(vl·�

k , vo
k ), SOC

)
= SOC − l · � (3)

c̀E

(
(v i

k, v
l·�
k ), SOC

)
= 0 (4)

To be able to formulate the problem of finding optimal charg-
ing strategies as an SPP, it is necessary to have a possibility
to represent and pursue the development of the state of charge
of the BEV while it is following a recommended charging
strategy. For this purpose, an adjusted edge cost function cE

has to be introduced. This function is constructed on the basis
of c̀E . Depending on the state of charge SOC when reaching
an edge e ∈ �E�, cE is defined as subsequently stated:

cE (e, t, SOC) =

⎧⎪⎨
⎪⎩

SOC − 1 if SOC − c̀E (e, t) > 1

SOC if SOC − c̀E (e, t) < 0

c̀E (e, t) else

(5)

Adjustments similar to those described by equation 5 have
already been suggested in [8], [9] and [13]. The definition of
cE ensures that for any e ∈ �E�, any t ≥ 0 and any SOC
∈ [0, 1], the state of charge after passing an edge e remains
between 0% and 100%:

0 ≤ SOC − cE (e, t, SOC) ≤ 1 (6)

For a given state of charge at the start of a trip SOCS ∈ [0, 1],
a given starting time tS and a given path P = [v1, . . . , vm ]
(with m ∈ N), cost function cE allows computing the state of
charge at node vi (with i ∈ {1, 2, . . . , m}) by reducing SOCS

by the sum of the energy consumption costs assigned to all
edges that were passed until node vi is reached:

state of charge at vi = SOCS − cE (P1:i , tS, SOCS ). (7)

In this context, P1:i represents the subpath of P that consists
of its first i nodes, i.e., P1:i := [v1, v2, . . . , vi ]. This allows
differing between paths representing charging strategies which
lead to an empty battery, and other paths. The latter type of
paths are denoted as feasible paths [4], [19]. Formally, a path
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P = [v1, . . . , vm ] on �G� is denoted as feasible if for a given
starting time tS and a given state of charge at the start of the
trip SOCS , the following condition holds:

SOCS − cE (P1:i , tS, SOCS) > 0 ∀i (8)

Condition 8 simply states that the state of charge has to be
positive whenever a new node along P is reached.

3) A Deterministic Optimization Problem: Let a graph �G�

and two edge cost functions cT and cE be given as described
above. Furthermore, let a state of charge at the start SOCS

∈ [0, 1], a starting time tS , a starting node vs and a destination
node vd in V � be given. Then, the problem of finding optimal
charging strategies can be defined as follows:

min cT (P, tS , SOCS)

subject to P is a path from va to vd on �G�

P is feasible (9)

This type of SPP is often denoted as a constrained SPP.
Please note that the constraint which restricts the optimization
to paths that fulfill the feasibility condition is crucial to
achieve reliability. Efficiency, however, could also be achieved
by alternative objective functions. Minimizing total energy
consumption or total energy consumption costs would make
some minor adjustments of the described framework necessary,
but optimizing these alternative objective functions would still
lead to efficient charging strategies, since detours and charging
stops cause additional energy consumption and, along with
this, additional energy consumption costs. One could also
think of further modifications, which ensure a charging behav-
ior that is beneficial for the battery lifespan, e.g. by keeping
the state of charge within a certain range. From a modeling
perspective, this could be achieved by excluding high target
states of charge or by reformulating the feasibility condition
in a more restrictive way, but this is out of the scope of this
work.

A severe limitation of this formulation of the problem of
finding optimal charging strategies is its deterministic nature.
If the real energy consumption exceeds the expected energy
consumption c̀E –and recent studies indicate that navigation
systems in reality often underestimate energy consumption
[34]–then a BEV following a correspondingly computed
charging strategy may end up with an empty battery. In [22]
and [26], a very simple adjustment to solve this limitation is
mentioned. There, the feasibility condition is slightly general-
ized by replacing the zero on the right-hand side of equation 8
by a constant positive number. This lower bound ensures that
a certain part of the battery capacity is not taken into account
during the optimization process. Instead, this part is considered
as a buffer, which can be used to compensate for unexpectedly
high energy consumption. As a consequence, reliability may
even be achieved in situations in which uncertainty exists. This
adjustment of the feasibility condition motivates the following
sections.

B. Discussion

When considering the existing literature on charging strat-
egy optimization, most of the papers focus on proposing

efficient solution algorithms, which allow computing charging
strategies even on huge graphs in reasonable time. Admittedly,
this is an important feature and it is absolutely necessary for a
potential future application in practice. Though, the necessary
efficiency of the optimization algorithms is typically achieved
by presuming significant simplifications. Modelling energy
and time costs as static values instead of time-dependent
variables or allowing only to fully recharge the battery are
examples for such simplifications. Another one, on which
the focus in the following sections is set, is to ignore the
possible existence of uncertainties within the model. One
reason for such uncertainties is an imperfect prediction of
travel times or energy consumption, which again could be the
consequence of individual driving behavior or nonrecurring
traffic incidents, such as traffic accidents. Particularly when
energy consumption is underestimated, a BEV can easily end
up with an empty battery. It is necessary to consider the risks
caused by uncertainties. Otherwise, a reliable arrival cannot
be ensured and, along with that, range-anxiety remains an
unsolved problem. Recalling the literature review, it can be
observed that the possible existence of uncertainties is either
addressed in a very simple form–by avoiding that the predicted
state of charge falls below a positive static bound [15], [22],
[26]–or a stochastic problem formulation is derived, which
typically suffers from extremely high computation times and
significant simplifications [28].

In the following sections, we try to find a compromise
between these two extremes. The idea is to extend the simple
approaches of [15], [22] and [26] by dynamically adjusting
the size of the energy buffer depending on the situation. The
resulting problem formulation is still deterministic. Along with
this, it is unable to ensure certain arrival probabilities, but it
allows handling uncertaints up to some degree. Furthermore,
the suggested approach can quite easily be integrated into
existing routing algorithms and a critical increase of compu-
tation times can be avoided.

III. CHARGING STRATEGY OPTIMIZATION

UNDER UNCERTAINTY

Let a path P = [v1, . . . , vm ] on �G� be given. Furthermore,
let ω be a set of not yet specified variables and parameters.
P is denoted as energy secure if for a given starting time
tS and a given state of charge at the start of the trip SOCS ,
the following condition holds:

SOCS − cE (P1:i , tS, SOCS ) > SOCmin (ω) ∀i (10)

In this context, SOCmin is interpreted as a function which
returns positive values in dependency of the situation, which
again is represented (in an abstract form) by ω. The values
which are returned by SOCmin are denoted as minimal
energy buffers. Specific ideas how SOCmin and ω could be
defined are provided in section III-A.

Replacing the feasibility condition in the formulation of the
problem of finding optimal charging strategies by the energy
security condition is a very simple adjustment. Nevertheless,
it represents a fundamental tool to handle uncertainties -
at least if the energy buffer function SOCmin is defined
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Fig. 2. Expected state of charge and the relative energy buffer for z = 1/6 along an exemplary path.

appropriately. In this context, “appropriatelly” is interpreted in
two different ways: First and foremost, SOCmin must return
values which are big enough to compensate the difference
between experienced and predicted energy consumption. Oth-
erwise, it will happen that the battery of the BEV becomes
empty. Second, the minimal energy buffers should not become
too big. The bigger the energy buffers, the less charging
strategies are able to fulfill the corresponding energy security
condition, i.e., the solution space for problem 9 shrinks. Along
with this, the recommended charging strategies become more
conservative. Higher total travel times are the result and
the navigation system will at some point become irrelevant.
Furthermore, with an increasing energy buffer size also the
probability that no charging strategy can be recommended
becomes higher. Consequently, an energy buffer function
SOCmin should return high buffer values in situations where
it is likely that energy consumption is underestimated, and
it should provide low values when energy consumption is
expected to be predicted quite accurately. It still remains the
challenge to define a function SOCmin which is able to fulfill
these requirements. Some ideas to achieve this are sketched in
the next section.

A. Relative Energy Buffer

The concept on which the first type of energy buffer is
based is that the longer the distance between two consecutive
charging stops is, the higher the energy buffer should become.
This can be achieved by increasing the size of the energy
buffer with each passed road segment by a certain percentage
z ≥ 0 of the energy that is expected to be necessary for passing
this road segment. Whenever a charging process is conducted,
the required energy buffer is set back to zero. We refer to this
type of energy buffer as relative energy buffer and denote the
corresponding energy buffer function with SOCr,z

min (“r” for
“relative”). Let Figure 2 be considered to illustrate SOCr,z

min
within a small example. A path P := [v0, v

a
1 , v i

1, v
0.4
1 , vo

1 , vb
1 ]

is displayed. This path can be interpreted as a charging strategy
which recommends to recharge the battery at charging station
1 up to a state of charge of 40%. To keep the example simple,
it is assumed that the energy consumption for passing any
edge that represents a road segment (i.e., not the dotted edges)
is equal to 30%. Parameter z is set equal to 1/6. The BEV
starts with a state of charge of 70%. The table at the bottom
of Figure 2 shows the development of the state of charge
along path P in the second row. The fourth row depicts the
development of the minimal energy buffer according to the

energy buffer function SOCr,z
min with z = 1/6. Note that the

minimal energy buffer is set back to 0% during and at the
end of the charging process, i.e., at nodes v0.4

1 and vo
1 . There

are two reasons for doing this: First, the state of charge when
leaving a charging station is defined by the path itself. No
uncertainty regarding the state of charge exists here, at least if
the BEV reaches the charging station. Second, if the minimal
state of charge would not be reset to zero, energy buffers
would increase further and further along paths. For long
distance routes, where several recharging stops are necessary,
the energy security condition at the end of the routes would be
much more restrictive than at the start–independently of the
level of uncertainty in the corresponding situation. This means
that even if the charging infrastructure is more dense at the
end of the considered route and even if the overall situation
at the end could be predicted more precisely than at the start,
the energy buffer would increase. This contradicts the purpose
of energy buffers to be only as big as necessary. Moreover,
the probability that no charging strategy can be recommended
due to the energy security condition would increase with the
energy that is necessary to follow the whole route.

Please note that the idea of relative energy buffers is quite
simple. This has some advantages: Existing algorithms for
charging strategy optimization can easily be adjusted in such
a way that relative energy buffers are used to compensate
for unexpectedly high energy consumption. Furthermore, it is
very likely that this adjustment, due to its simplicity, does not
have a significant impact on computation times. However, this
simplicity causes also limitations: Relative energy buffers only
depend on the expected energy costs and do not take the level
of uncertainty into account. Furthermore, the approach does
in general not allow to represent probabilities. Hence, deriving
an appropriate value for z to ensure a certain, minimal arrival
probability is in general not possible.

B. Quantile Buffer

Let it be assumed that for each edge e and any arrival
time t , not only an expected energy consumption c̀E (e, t) is
available, but a whole probability distribution. Furthermore,
let c̀E (e, t, α) ∈ R≥0 denote the α-quantile of this proba-
bility distribution, i.e., α is the probability that the energy
consumption for passing edge e at time t is at most equal
to c̀E (e, t, α). Similarly to relative energy buffers, we again
start with an energy buffer of 0% and increase it for each
passed road segment. However, it is not increased by a certain
percentage z of the expected energy consumption, but by the
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difference between the α-quantile (for some α close to 1.0) and
the expected energy consumption. We denote this approach as
quantile buffer and the corresponding energy buffer function
as SOCq,α

min (“q” for “quantile”). Quantile buffers can be
assumed to be able to fulfill the purpose of energy buffers very
well, since the size of this energy buffer particularly increases
if it is likely that the predicted or expected, respectively, energy
consumption significantly underestimates the real energy con-
sumption. This represents a huge advantage in comparison to
relative energy buffers. Still, also this approach suffers from
several limitations: Setting α equal to, for example, 99 percent,
does not mean that a charging strategy which is based on
SOCq,0.99

min ensures a 99 percent probability to arrive at the
destination. Since each edge is considered separately, it is not
trivial to derive overall arrival probabilities from α. Moreover,
presuming to know for any edge and any arrival time accurate
energy consumption distributions is a very strong and probably
unrealistic requirement. Thus, quantile buffers are not part of
the simulation study in section V. Nevertheless, they motivate
a third approach.

C. Trajectory Buffer

A common approach to predict the energy necessary for
passing a road segment e at a time t is to derive, in a first
step, a driving trajectory which describes accelerations, decel-
erations, and driving speeds. In a second step, an energy con-
sumption model c̀e is applied in order to compute an expected
energy consumption value from the trajectory. Instead of
computing only one driving trajectory T pre(e, t) (“pre” for
“predicted”)–and to hope that this trajectory will be equal
or, at least, close to the real one–it is suggested to compute
an additional set of reasonable driving trajectories T nt (e, t)
with nt ∈ {0, 1, .., NT } and NT ∈ N. These “auxiliary”
trajectories lead to additional energy consumption values
c̀E (e, t, T nt (e, t))1. For each road segment e, the energy
buffer is raised by the highest difference between the energy
consumption value resulting from the auxiliary trajectories,
and the expected energy consumption value c̀E (e, t) :=
c̀E (e, t, T pre(e, t)). Similarly as it is done for the relative
energy buffer, the new buffer type is reset to zero whenever
a charging process is conducted. The corresponding energy
buffer is from here on denoted as trajectory buffer and the
energy buffer function by SOCt,NT

min (“t” for “trajectory”).
Clearly, the usefulness of the trajectory buffer depends on
the way the auxiliary trajectories are generated. If the set of
auxiliary trajectories is able to represent the set of all possible
future driving trajectories comprehensively, then it is likely
that function SOCt,NT

min returns values close to SOCq,α
min for

high values of α. The motivation for the trajectory buffers
is to achieve properties similar to those which are expected
for the quantile buffers. However, instead of presuming that
any relevant energy consumption distribution is available,

1It is written c̀E (e, t, T nt (e, t)) and not c̀e(T nt (e, t)) to emphasize that the
energy consumption for passing edge e at time t not only depends on the
driving trajectory, but possibly also on further factors, such as the elevation
profile of the road segment represented by edge e or the outdoor temperature
at time t .

Fig. 3. Edge costs depending on time and the current state of charge.

trajectory buffers can be understood as a construction idea
to approximate these probability distributions.

A limitation, from which all of the suggested energy buffer
concepts suffer, is that the uncertainty of travel times is not
taken into account. Since energy consumption is assumed to
be time-dependent, a possibly postponed arrival at a certain
road segment may influence the expected energy consumption,
as well as the level of uncertainty that prevails. No details are
provided in this paper, but potential adjustments of the problem
formulation, which would allow to explicitly consider travel
time uncertainty, are discussed in section 5.2 in [4]. The main
drawback of the investigated approaches is that computation
times would again be raised significantly.

IV. ALGORITHMIC SOLUTION BASED ON

DIJKSTRA’S ALGORITHM

Problem 9 is, also if the feasibility condition is replaced
by the energy security condition, a constrained SPP. This type
of problem is proven to be NP-complete [35]. Thus, it can
hardly be ensured to compute optimal solutions for this type
of problem on big graphs in reasonable time. The situation
is actually even worse for problem 9, because Bellman’s
optimality principle [36] does not hold. In the context of SPPs,
i.e., for finding a shortest path between two nodes v0 and vK ,
this principle postulates that any subpath P∗

m:n of an optimal
path P∗ = [v0, . . . ., vK ] with 0 ≤ m < n ≤ K again is an
optimal solution for the problem of finding a shortest path
between vm and vn . The small graph illustrated in Figure 3
can be found in a very similar form in section 4.1 of [4]. For
simplicity, it is assumed that SOCmin is constantly equal to
0%. This means that the energy security condition degenerates
to the feasibility condition. The graph shows that the Bellman
principle does not hold for the described setting: The only
feasible, and thus optimal path leading from node a to node d
is path P∗ = [a, b, c, d]. The reason for this is that the energy
consumption costs for passing edge (c, d) exceed the energy
that is available at node c when following path P̂ = [a, c, d]
(available energy is 0.49, whereas the energy consumption
costs are equal to 0.5). However, the optimal path from node
a to node c is [a, c], which is not a subpath of P∗. Clearly,
it is counter-intuitive that reaching a certain location later and
with a lower state of charge could be beneficial in the end.
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Fig. 4. Pseudo-code of the applied algorithm for solving the problem of finding optimal charging strategies.

This intuition is confirmed by the simulation study published
in [26]. The study indicates that such situations occur very
rarely in the context of charging strategy optimization and have
only little influence on the objective function values that can
be obtained. As a consequence, the optimization algorithms
which are applied in this research to compute charging strate-
gies are designed in such a way that the potential absence
of Bellman’s optimality principle is not taken into account.
Instead, to be able to improve computation times, it is accepted
that possibly sub-optimal solutions are computed.

Figure 4 shows the pseudo-code of a dynamic SSP algo-
rithm that includes the idea of relative energy buffers. This
algorithm, to which we refer as Algorithm R, can be inter-
preted as a multicriterial version of Dijkstra’s algorithm. It is
based on “algorithm 1” from [37]. Besides taking the energy
security condition into account, the main difference to the
original version of Dijkstra’s algorithm is that an extended
type of labels is used by Algorithm R. Labels are assigned to
nodes of the graph. Each label consists of information about a
single path which has been constructed during the route search
and which leads from the starting node to the node to which
the label is assigned. In Algorithm R, a label L is a 7-tuple:

L = (
ccur

T , ccur
E , SOCcur

min , v pre, n pre, vcur , ncur ) (11)

Values ccur
T ∈ R≥0 and ccur

E ∈ [−1, 1] describe the cumulated
time and energy consumption costs of the path that is described
by L. The node to which the label is assigned is denoted by
vcur ∈ V �. Several different labels can be assigned during the
route search to the same node. The reason for this is explained
later on. To be able to differentiate between them, all labels
belonging to the same node are numbered consecutively by
indices ncur ∈ {1, 2, . . .}. Node v pre ∈ V � and index n pre

∈ {1, 2, . . .} identify the preceding label. This information
is necessary to reconstruct solution paths. Finally, the value
SOCcur

min ∈ R≥0 refers to the minimal state of charge that has
to be available when reaching node vcur . Here, this value is
based on relative energy buffers.

To explain how Algorithm R works, let it be applied to the
situation that is illustrated in Figure 3. Let z be equal to 10%.
As it is often done in route search algorithms, a set Ltemp

storing temporal labels, and a set Lperm storing permanent
labels are generated in an initial step. Note that Table I shows
which labels belong to Ltemp and Lperm at the end of the
initialization and at the end of each iteration of the while loop.
During the initialization, a first temporal label L1

a belonging to
the starting node va is constructed and assigned to Ltemp . This
label actually describes a degenerated path consisting solely of
node va . The cumulated time and energy consumption costs for
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TABLE I

PROCEEDING OF ALGORITHM R FOR THE EXAMPLE FROM FIG. 3

this path are equal to zero, since no edges have been passed so
far. The entries referring to the preceding label remain empty
and the minimal energy buffer is set equal to 0%. The values of
the last two entries, vcur = a and ncur = 1, are a consequence
of the fact that this initial label belongs to node va and that it
is the first label belonging to node va . After the initialization,
the while-loop is started. Since Ltemp is not empty and since
no label has yet been added to Lperm , both conditions in row
1 are fulfilled. In row 2, label L1

a is taken from Ltemp and
added to Lperm , since it is the only label in Ltemp . If the set of
temporal labels contains more than one label, then always the
lexicographically smallest label is chosen. In general, a vector
ŷ := (ŷ1, ŷ2, . . . , ŷn) ∈ R

n is denoted as lexicographically
smaller than a vector ȳ := (ȳ1, ȳ2, . . . , ȳn) ∈ R

n if one of
the following two conditions hold: Either ŷ = ȳ or ŷ j < ȳ j

with j := min{i : ŷi 	= ȳi , i ∈ {1, . . . , n}}. This definition
is taken from section 5.1 in [38]. For Algorithm R, a label
L̂ := (ĉT , ĉE , . . .) is called lexicographically smaller than
a label L̄ := (c̄T , c̄E , . . .) if the accumulated costs (ĉT , ĉE )
encoded by L̂ are lexicographically smaller than the accumu-
lated costs (c̄T , c̄E ) encoded by L̄. In row 5 of Algorithm R,
the neighbouring nodes of node vcur are considered, i.e., nodes
b and c. In rows 6 to 17, one label for each of these nodes is
created. These labels describe paths from the starting node a
to the corresponding node. Note that between row 10 and row
14, the minimal energy buffer is adjusted by increasing the
original energy buffer at node a, which is equal to 0%, by ten
percent of the expected energy consumption. This leads to a
minimal energy buffer of 2% for node b. For node c, it leads
to 4%. In rows 18 and 19, it is checked if the energy security
condition is fulfilled when following these paths. Furthermore,
it is checked if the recently constructed label is domintated
by an already existing label. A label L̂ := (ĉT , ĉE , . . .) is
dominated by a label L̄ := (c̄T , c̄E , . . .) if ĉT ≥ c̄T , ĉE ≥ c̄E

and ĉT + ĉE > c̄T + c̄E . Vice versa, if a label is added to
the set of temporal labels, then all existing labels which are
dominated by the new one are removed from set Ltemp . This
is done in rows 20 and 21. For the considered situation, two
labels are generated during the first iteration of the while-loop,
namely L1

b encoding path [a, b] and L1
c encoding path [a, c].

Both labels are also added to the set of temporal labels. During
the second iteration, L1

b is taken from Ltemp and added to
Lperm . A new label L2

c = (1, 50%, 5%, b, 1, c, 2) is generated.
It encodes the path [a, b, c]. This label is dominated by L1

c
and thus is not added to Ltemp . During the third and last
iteration, L1

c is made permanent. The only neighbouring node

is d leading to label L1
d = (2, 90%, 0.9%, c, 1, d, 1). Certainly,

the path [a, c, d], which is encoded by L1
d , does not fulfill the

energy security condition. Hence, this label is not added to
the set of temporal labels. Consequently, no more labels are
part of Ltemp when row 1 is reached for the next time. The
while-loop ends. Finally, since no label that belongs to node d
is part of Lperm , no solution has been found by the proposed
algorithm.

As already mentioned, the possible absence of Bellman’s
optimality principle is ignored by Algorithm R. This is also the
reason for being unable to finding the optimal path [a, b, c, d].
To avoid such a situation, it would be necessary to take also
any dominated label into account, i.e., all energy secure paths
would be pursued during the route search. This would further
increase computation times. Note that computation times for
Algorithm R can already increase very quickly with the size
of the considered graph. The critical point is that–in contrast
to the original version of Dijkstra’s algorithm, where only
one cost criterion is relevant–many different non-dominated
paths may exist between the starting node and any other
node. Actually, the number of such non-dominated (or “Pareto
optimal”) paths can grow exponentially with the number of
nodes of the graph [39]. Due to this, any further increase of
computation times has to be avoided.

V. SIMULATION STUDY

In this section, the ability of energy buffers to handle
uncertainty is tested via simulation. Imperfect predictions
of the future development of the prevailing traffic situation
are used as source of uncertainty. The simulation study is
essential for testing the suggested ideas of energy buffers,
because the in fact deterministic optimization problem does
not allow deriving a function describing the relation between,
for example, the percentage z, which defines the size of the
relative energy buffer, and the resulting arrival probability.
The following simulation study is intended to provide some
first results in this context in order to give an idea of the
possibilities and limits of the suggested energy buffer methods.

A. Simulation Environment

The following situation is simulated: A BEV has to pass
a 362 kilometers long road corridor without the possibility
to use alternative routes. The battery capacity of the BEV
is not sufficient to reach the destination, but several charg-
ing stations can be found along the road corridor. While
passing the road corridor, the BEV experiences changing
traffic conditions, which have impact on its driving speed and
energy consumption. However, no perfect information about
the future development of traffic is available. Instead, only
error-prone traffic predictions can be taken into account. At
the beginning of the trip, a charging strategy, which is based
on these traffic predictions, is provided to the BEV. Whenever
the BEV has the possibility to leave the road corridor in
order to recharge, it receives an updated charging strategy,
which is based on the information that is available at that
time (i.e., the BEV’s current state of charge, updated traffic
predictions, etc.). The purpose of this simulation study is
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to test and compare different types of energy buffers under
different parametrizations.

Certainly, long distance trips are not the primary use case
for BEVs. Considering a typical commuting distance of e.g.
40 kilometers would be more relevant from a practical perspec-
tive. However, in such a commuting scenario, it is unlikely that
several charging stops become necessary. Moreover, the low
distance would either lead to only very few charging stations
or to a high charging infrastructure density. This would either
cause a very small solution space or a quite comfortable
situation in which prediction errors could easily be compen-
sated due to the good availability of charging stations. The
intention of considering a long-distance use case is to achieve
challenging scenarios, which probably reveal the differences
between the described energy buffer approaches more clearly.

To simplify explanation, it is differed between setting para-
meters and scenario parameters. The applied energy buffer
function and the considered type of traffic prediction (e.g.
historical average driving speeds) form the set of setting
parameters. The scenario is defined by the starting time of
the virtual trip, the state of charge at the start, parameters
describing the charging infrastructure, parameters describing
the energy consumption properties of the BEV, the BEV’s
maximal driving speed, and the simulated outdoor temperature.
For each setting, a large set of scenarios is tested. This is done
to obtain a comprehensive understanding of how well different
energy buffer functions are able to handle the prediction
errors coming along with different types of traffic prediction
approaches. The assessment of the energy buffer functions
is done with respect to two criteria: The average total travel
time that a BEV achieves which follows a charging strategy
that is based on the considered energy buffer function, and
the resutling failure rate. The latter describes how often it
happenes during the simulation study that the BEV is unable
to reach the destination. This is the case if the BEV runs
out of energy during the simulated trip or if at some point
during the simulation no charging strategy can be provided
which is able to fulfill the energy security condition defined
by the considered energy buffer function. If no energy secure
charging strategy can be computed at the beginning of the
trip, then this type of failure is denoted as pre-trip failure.
Any other failure is denoted as an on-trip failure.

Figure 5 visualizes the structure of the simulation study:
For each setting, a set of scenarios is tested. After having
defined the currently relevant scenario, a first charging strategy
is computed for the whole road corridor. This computation is
based on Algorithm R and on the available traffic prediction.
If a strategy is found that fulfills the currently relevant energy
security condition, then it is simulated that the BEV follows
the computed charging strategy until the next charging station
is reached. If the state of charge of the BEV drops to zero
before this next charging station is reached, the scenario
is rated as a failure and the next scenario is tested. The
same happens if no energy secure charging strategy can be
found. Otherwise, i.e., if the next charging station is reached,
an updated charging strategy computation takes place. Again,
it is checked whether an energy secure strategy can be found
and whether the BEV runs out of energy until the next

Fig. 5. Structure of simulation study.

charging station is reached. This procedure is continued until
the destination is reached or the BEV fails to pass the scenario.

1) Simulated Traffic Situation: The traffic situation which
the BEV experiences during the simulation is described by
a spatio-temporal speed function VGT (“GT” for “ground
truth”). This function returns a speed value in dependency
of time and space. Let an interval X = [xmin, xmax ] ⊂ R≥0
describe the road corridor that needs to be passed and let
the interval T = [tmin , tmax ] ⊂ R≥0 denote the time period
during which the simulated trips are done. Function VGT can
be introduced as follows:

VGT : X × T −→ R≥0

VGT (x, t) = speed at time t and location x

To achieve reasonable results, i.e., to ensure that VGT shows
realistic properties, it is based on inductive loop detector data.
As described before, a several hundred kilometer long road
corridor is considered. This ensures that the simulated BEV
has to recharge its battery several times before reaching the
destination. For the described research, only a limited amount
of detector data, kindly provided by the South-Bavarian Free-
way Authority, is available. Unfortunately, the data does not
cover a several hundred kilometer long road corridor. Thus,
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TABLE II

INFORMATION ON TEST SITES

inductive loop detector data from several road corridors is
concatenated in such a way that a single, 362 kilometer
long road corridor results. Table II provides some general
information about these corridors. The data has been recorded
on two German freeways, the A9 and the A99. The first one
starts in Munich and connects it with Nürnberg and later on
with Berlin. The second freeway forms almost a full circle
around Munich. The inductive loop detector data is given
at one-minute resolution and contains several types of traffic
information. Here, only recorded driving speeds and the time
at which the data was recorded are relevant. The data is
aggregated over all lanes, i.e., no lane specific information is
considered. The distances between two consecutive detectors
range between a few hundred meters and more than three
kilometers.

To get from the inductive loop detector data to the spatio-
temporal speed function VGT , the traffic state reconstruction
approach which is described in [40] is applied. This method is
an adjusted version of the widely known “adaptive smoothing
method” (ASM), which was initially proposed by Treiber
[41]. The ASM is an interpolation scheme which takes the
typical propagation speeds of information in freeway traffic
into account. The interpolation makes it possible to derive a
continous spatio-temporal speed function from detector data
which is only punctually available. The adjustment in [40]
reduces the computational effort for applying the ASM and,
at the same time, keeps the quality of the reconstruction high.

The construction of function VGT is finally done as follows:
First, for each of the four road corridors and for each day for
which data is available, a separate traffic state reconstructions
is made. The last column in Table II shows the number
of days during which inductive loop detector data from the
corresponding road corridor has been gathered. This means
that in total 22 (= 4 + 6 + 4 + 8) traffic state reconstructions–
each describing a single day for one of the four road corridors–
are available. In a second step, these 22 single speed functions
are arranged on the spatio-temporal plane in such a way that
362 kilometers and a two days period are covered. The contour
plot of the resulting function VGT is shown in Figure 6.
The small red areas indicate congestion, whereas the green
areas refer to situations during which high speeds have been
realized. Note that VGT covers a three days period and that
the last day is a copy of the first day. Furthermore, it has to
be mentioned that–though the traffic state reconstructions that
are done for each day and each road corridor should represent
a realistic picture of the corresponding traffic situation–the

Fig. 6. Function VGT which is used in simulation.

concatenation of these spatio-temporal speed functions leads
to unrealistic phenomena. Discontinuities occur particularly at
the spatial borders between the separately generated traffic
state reconstructions, i.e., presumed driving speeds change in
some situations drastically from one moment to the other.
Later on, it is described why it can be assumed that these
discontinuities are not critical for the simulation study.

2) Simulation of Energy Consumption and Travel Times:
The generated traffic situation VGT is used to derive travel
times and energy consumption values for the BEV. This is
done in two steps: First, driving trajectories are derived from
the spatio-temporal speed function VGT . If at a time tS the
BEV begins passing a certain part of the road corridor, which
is represented by an edge e, while facing traffic conditions
described by VGT , then a unique driving trajectory can be
derived by solving the ordinary differential equation

dx

dt
= VGT (x(t), t) (12)

with initial condition x(tS) = start of e [42]. The computation
is terminated as soon as the end of e is reached. Let this
time be denoted as tend (e). The location of the BEV x is
interpreted in equation 12 as a function of time. The time
necessary for passing edge e results directly from the function
x∗(t) which solves the problem described in equation 12. The
corresponding energy consumption is derived in a second step.
For this purpose, a simple energy consumption model, which
consists of two components, is applied to the derived driving
trajectories. Its first component E Prim assigns instantaneous
energy consumption values (given in watt) to driving speeds.
It represents the BEV’s primary energy consumption, i.e., the
energy necessary for propulsion, and can be interpreted as a
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real-valued function:
E Prim : R≥0 −→ R≥0 (13)

This component is based on real consumption data from almost
eleven thousand trips with BEVs. The trips were made by
23 privately owned BMW i3 in 2015 and 2016. The recording
of the energy consumption data took place in the project
“PREMIUM”, which was funded by the (German) Federal
Ministry for the Environment, Nature Conservation, Building
and Nuclear Safety. The BEVs were equipped with sensors
for measuring driving speeds and the energy consumption
which is necessary for propulsion. The data was recorded
with a frequency of ten hertz. Unfortunately, no information
about the geographical position of the BEVs or about the road
stepness was recorded. For the first component of the energy
consumption model, simply the average instantaneous energy
consumption in dependency of the driving speeds is computed
based on the available data. Due to a nondisclosure agreement
with BMW, the authors are not allowed to provide here any
detailed information. Nevertheless, it can be stated that the
resulting primary energy consumption per kilometer shows
the shape of an asymmetric parabola, i.e., the consumption
per kilometer is high for low and for high speeds.

The second component ESec of the applied energy con-
sumption model represents the BEV’s secondary energy con-
sumption, i.e., all energy that is not used for propulsion.
This component was kindly provided by BMW within the
project “DC-Ladestation am Olympiapark”, which was funded
by the (German) Federal Ministry of Transport and Digital
Infrastructure. It desribes the secondary energy consumption of
a BMW i3 in dependency of the outdoor temperature. Note that
the secondary energy consumption is typically dominated by
the consumption necessary for operating the air conditioning,
which strongly depends on the outdoor temperature. Again,
no details can be provided due to a nondisclosure agreement.
Still it can be said that high temperatures (due to cooling)
and low temperatures (due to heating) cause increased energy
consumption of the air conditioning and, along with that,
an increased secondary energy consumption. Particularly tem-
peratures below the freezing point lead to a significant uplift.

In total, the energy consumption c̀E (e, tS) for passing edge
e at time tS , given a traffic situation described by VGT , can
then be computed as follows:

tend (e)∫
tS

E Prim
(
VGT

(
x∗(t), t

)) + ESec
(
T p

(
x∗(t), t

))
dt (14)

Function T p ∈ R describes here the outdoor temperature in
dependency of location and time. Furthermore, it has to be
mentioned that this energy consumption model suffers from
some limitations. Road steepness, for example, is not taken
into account and due to the way E Prim is derived, accelerations
and decelerations are not considered. Fortunately, the latter
ensures that the existance of discontinuities in VGT does not
lead to unreasonable energy consumption values.

3) Types of Error-Prone Traffic Predictions: In total, five
different types of traffic predictions are used during the simu-
lation study as a basis for the charging strategy computation.

The first type is a perfect traffic prediction V tB
Per f . The

variable tB ∈ R≥0 describes the time at which the prediction
is requested. For prediction V tB

Per f , this variable is not

relevant, since V tB
Per f always mirrors the real traffic situation

VGT perfectly:
V tB

Per f (x, t) = VGT (x, t). (15)

Please note that being able to predict future traffic perfectly
is not realistic. Considering this type of traffic prediction is
motivated by academic considerations. The second type of
applied traffic prediction is a so-called instantaneous traffic
prediction V tB

I nst :

V tB
I nst (x, t) := VGT (x, tB) for t ≥ tB . (16)

Function V tB
I nst returns for all future times the currently pre-

vailing traffic conditions. This leads typically to good results
for short-term predictions. The third type of traffic prediction
is denoted by V tB

f f . “ff” is an abbreviation for “free flow”. This
function can be interpreted as a situation in which no informa-
tion about future driving speeds is available and thus simply
free flow is presumed. Note that during the simulation, free
flow means that the BEV drives with a maximal driving speed
VMax which is defined by the scenario that is currently tested:

V tB
f f (x, t) := VMax . (17)

The forth type makes use of historical speed averages V tB
Hist .

The corresponding speed values for the four considered
freeway corridors, on which VGT is based, are provided by
TomTom. They show the historical average driving speeds in
dependency of the location, the time of the day, and the day
of the week. The last type of traffic prediction is denoted by
V tB

Pha (“Pha” stands for “phantom congestion”). If t is part of
the first/second day, it is defined as follows:

V tB
Pha(x, t) := min{VGT (x, t), VGT (x, t + 1 day)} (18)

Otherwise, V tB
Pha(x, t) results as subsequently stated:

V tB
Pha(x, t) := min{VGT (x, t), VGT (x, t − 1 day)} (19)

Recall that VGT represents a three days period, where the
speeds belonging to the first day are copied and additionally
used for the third day. Prediction V tB

Pha returns for any (x, t)
either the real driving speed VGT (x, t), or, if it is lower,
the driving speed that is returned by VGT for one of the neigh-
bouring days for the corresponding location and time of the
day. Thus, function V tB

Pha tends to underestimate real driving
speeds. The motivation for the construction of V tB

Pha is to
understand the impact of incorrectly predicted traffic conges-
tion on the quality of the charging strategies. This can be inter-
preted as a counterpart to the free flow assumption done by
V tB

f f , where driving speeds are systematically overestimated.
4) Scenario Parameters: For each setting, consisting

of an energy buffer function and a prediction type, a set
of 1440 different scenarios is tested. The sequence of
scenarios that is tested remains the same for each setting.
To get different scenarios, each of the six aforementioned
types of scenario parameters is changed with each scenario.
The state of charge at the start is randomly chosen between
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0% to 100%. The same holds for outdoor temperature, but
these values range from −10◦C and +35◦C. For simplicity,
temperature is assumed to be constant over time and space.
The maximal driving speed, which can be understood as the
highest speed the BEV is able to drive, is equal to 90, 100,
110, 120 or 130 kilometers per hour. Starting times are chosen
in steps of two minutes, starting at 00:00 in the morning of
the first day and ending at 23:58 at the end of the second day
for which VGT is constructed. Moreover, it is iterated over
one of four different charging infrastructure scenarios. These
scenarios assume the availability of 7, 9, 11 or 13 charging
stations along the 362 kilometers long road corridor. Note
that there is always a charging station located at the start
of the road corridor, i.e., the BEV can be recharged before
starting the trip. Finally, three different types of BEVs are
considered. They differ in terms of energy consumption and
recharging behavior. The energy consumption model that
has been described in section V-A.2 refers to the first type
of BEV. Furthermore, it is assumed that the battery of this
BEV has the same capacity as the first generation of the
BMW i3, i.e., 67,680,000 joules [43]. Also the charging
behavior is assumed to be similar to the charging behavior
of a BMW i3: Up to a state of charge of 80%, it is assumed
that 22.5 seconds are necessary for increasing the state of
charge by 1%. The consequence is that the battery can be
recharged from 0% to 80% in exactly 30 minutes. For states
of charge above 80%, the charging duration for each percent
increases to 90 seconds. Hence, recharging from 80% to
100% lasts another 30 minutes. For the second type of BEV,
the battery capacity and the recharging times are reduced by
20%. Additionally, the primary energy consumption model is
adjusted in such a way that the second type of BEV consumes
more energy for high speeds and less energy for very low
speeds. The secondary energy consumption is also reduced.
For the third type of BEV, the battery capacity and the
charging durations are increased by 40% in comparison to the
first type of BEV. The primary (particularly for low driving
speeds) and the secondary energy consumption are raised.

B. Simulation Results for Relative Energy Buffers

In this section, the results of the simulation study for relative
energy buffers are discussed. Function SOCr,z

min with z ∈
{0.0%, 2.5%, 5%, 10%, 20%, 30%, 40%} is applied to define
whether or not a certain charging strategy is considered to be
energy secure. The higher the value of z is, the more restrictive
the energy security condition becomes. To explain the analysis
results, let the upper part of Figure 7 be considered. It shows
the results when using traffic prediction V tB

Per f for the deriva-
tion of charging strategies, i.e., in this situation, no prediction
errors exist. Average total travel times, i.e., the sum of average
driving and average charging times, can be found on the
x-axis and the number of failures on the y-axis. Each of
the displayed triangles describes the outcome for one specific
setting. The numbers placed near the triangles show the value
(in percent) of parameter z which belongs to the corresponding
setting. Comment 1 in Figure 7 exemplarily explains how
the rightmost triangle in the upper part of Figure 7 can

Fig. 7. Results of the simulation runs when applying relative energy buffer
functions.

be interpreted: This triangle results when applying function
SOCr,z

min with z = 30% and using perfect traffic predictions
as input for the charging strategy computation. During the
1440 conducted simulation runs, 47 failures occur and the
remaining 1393 scenarios lead to an average total travel time of
about 394 minutes. The leftmost triangle shows that no failures
occur and, at the same time, that the average total travel time
can be reduced down to 369 minutes if parameter z is set
equal to 0%. The latter actually means that no energy buffer
is applied at all. This would be critical if the applied traffic pre-
diction was error-prone. However, function V tB

Per f is used here.
Thus, no uncertainty exists at all for this setting and applying
no buffer is the best that can be done (see comment 2).

With increasing parameter z, the number of charging strate-
gies which are able to fulfill the corresponding energy security
condition becomes smaller. Less solution possibilities reduce
the optimization potential. The consequence is, as can be seen
in the upper part of Figure 7, that the average total travel
times increase. If z becomes big enough, the number of energy
secure charging strategies is reduced down to zero for some
of the simulated scenarios. Consequently, pre-trip errors occur,
i.e., no charging strategy can be recommended at the beginning
of the trip. In the simulation study, this is the case for z equal
to 20% or higher. This can be interpreted as over-cautious
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behavior (see comment 3). Clearly, big energy buffers cause
pre-trip failures also for error-prone types of traffic predictions.
However, in contrast to the case of perfect traffic predictions,
uncertainty exists for these settings. Thus, being too optimistic
can lead to situations in which the battery runs out of energy
during the trip. The consequences are on-trip failures. The
lower part of Figure 7 displays the simulation results also
for the aforementioned error-prone types of traffic predic-
tions. Particularly for the green (instantaneous driving speeds),
the blue (phantom jams) and the yellow curve (historical speed
averages), it can be observed that low values for z cause a lot
of failures (see comment 4). Note that due to the combination
of on-trip failures for small buffers and pre-trip failures for
big buffers, and due to the fact that average total travel times
grow with the size of the energy buffer, the curves belonging
to error-prone traffic predictions show a shape similar to a
parabola (see comment 5). For the gray curve, belonging to
traffic prediction V tB

f f , it seems that the left branch of the
parabola is cut off only shortly left of the vertex. This is
a consequence of ending up with only 23 on-trip failures
even though no energy buffer was used at all. Presuming
always free flow traffic conditions leads to a systematic over-
estimation of driving speeds. Since the applied primary energy
consumption model assigns high energy consumption values to
high driving speeds, also energy consumption is systematically
over-estimated. The only exceptions are very few situations
in which the simulated BEV experiences driving speeds that
remain extremely low for several kilometers. For extreme low
driving speeds, the energy consumption per kilometer can be
higher than when driving with maximal speed. Hence, it can
only happen in these comparably rare situations that the expe-
rienced energy consumption exceeds the energy consumption
prediction based on V tB

f f . This means that traffic prediction

V tB
f f implicitely leads to the same effect as when applying big

energy buffers. The opposite can be observed for V tB
Pha , where

driving speeds are systematically underestimated: In many
situations, the systematic underestimation of driving speeds
causes a systematic underestimation of energy consumption,
which again eventually leads to on-trip failures even for mod-
erate values of z. The underestimation of maximum driving
speeds in near free-flow situations represents also the main
failure reason for functions V tB

I nst and V tB
Hist . This observation

is particularly interesting, since the driver of a BEV would be
able to reduce the driving speed in such situations. This would
reduce energy consumption and the next charging station may
still be reached. If failures are caused by an unexpected traffic
jam, then the driver cannot simply increase the driving speed.
This lack of a reaction possibility makes failures caused by
unexpected traffic congestion, though this occurred less often
within the simulation study, more critical from a practical
perspective.

If this type of simulation study was used to identify for a
given traffic prediction scheme the value of z that leads to
the best charging strategies, then the parabolic shape of the
described curves would suggest to choose low values for z
rather than being too conservative. The reason for this is that
the results for any triangle belonging to the right branch of a
parabola are dominated by the results belonging to the vertex

of the parabola, since the vertex necessarily indicates a lower
average total travel time and a lower failure rate. Values of z
belonging to the left branch of the parabola, on the other hand,
allow improving travel times at the cost of additional failures.
Important is in this context that if using the curves displayed
in Figure 7 in order to determine a good value for z, then
one implicitly assumes that on-trip failures are not worse than
pre-trip failures. This may not represent the opinion of the
driver of a BEV, who may accept to sometimes use a different
transportation mode if no energy secure charging strategy can
be computed, but who probably is not willing to risk running
out of energy during a trip. A possible adjustment to take the
driver’s preferences into account is to weight pre-trip failures
differently.

The main purpose of the conducted simulation study is to
analyze the ability of the concept of energy buffers to handle
uncertainties. If the results in the lower part of Figure 7
are taken into account, then it can be stated that even the
simple idea of relative energy buffers is able to achieve quite
low failure rates for most of the tested traffic prediction
approaches. For V tB

Per f , V tB
f f and V tB

I nst , the appearance of
failures can completely be avoided. The main problem is
V tB

Hist . For this prediction type, the number of failures is
at least equal to 37, leading to a minimal failure rate of
37/1440 = 2.6% for z = 10%. The question is whether a
different type of energy buffer is able to improve the results.

C. Comparison Between Relative and Trajectory Buffers

In the simulation study, also trajectory buffers are tested
for some of the described traffic prediction approaches.
The pseudo-code of the corresponding SPP algorithm is
not provided, but its implementation follows the ideas
described in section IV. The energy consumption prediction
c̀E (e, t, T pre(e, t)) (see section III-C) during the simulation
runs is based on a trajectory T pre that is derived from
the applied traffic prediction scheme. Since it is not impor-
tant which type of traffic prediction approach is applied,
let this prediction for the moment be denoted by V tB

Pred
∈ {V tB

Per f , V tB
f f , V tB

I nst , V tB
Hist , V tB

Pha}. Driving trajectory T pre

is then received by solving differential equation 12 while
replacing VGT by V tB

Pred on the right-hand side. The approach
for constructing auxiliary trajectories T nt is kept simple.
A parameter f ∈ [0, 1] is introduced and the auxiliary
trajectories T nt are derived by replacing VGT in equation 12
by the spatio-temporal speed function V tB , f

nt , which assigns
to each point (x, t) the following value in dependency of nt
∈ {0, 1, . . . , NT }:(

1− nt

NT

)
· (1− f ) · V tB

Pred (x, t)+ nt

NT
· (1+ f ) · V tB

Pred (x, t)

This idea for generating a set of auxiliary trajectories is
also illustrated in Figure 8. The auxiliary trajectories are
intended to comprehensively cover the spatio-temporal area
that lies between the trajectories that are derived from func-
tions (1 − f ) · V tB

Pred and (1 + f ) · V tB
Pred . In order to keep

the computational effort for the simulation runs reasonably
low, only two auxiliary trajectories are computed to derive the
energy buffer function SOCt,NT

min , i.e., parameter NT is set
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Fig. 8. Generation of a trajectory set on the basis of speed bound functions.

equal to 1. Please note that SOCt,NT
min is corrected to zero if

it would return a negative value.
The trajectory buffers have been tested for the traffic pre-

diction functions V tB
Per f , V tB

Hist and V tB
I nst , and for parameter

f ∈ {0.05, 0.1, 0.2, 0.5, 0.7}. Note that f = 0 is not tested,
since this would lead to the same values as z = 0%. The
results of the simulation runs can be found in Figure 9.
Stars mark the results achieved by applying trajectory buffers,
triangles refer again to relative energy buffers. The num-
bers that can be found in the graphs of Figure 9 either
describe the values of z or f . To simplify differentiation, a
%-sign is added whenever a number refers to z. Let at first
Figure 9(a) be considered, where the average total travel time
and failure numbers are shown that result when computing
charging strategies based on perfect traffic predictions. It can
be observed that both displayed curves behave very similarly:
With increasing the value of the applied parameter (z or f ),
the average total travel time increases and at some point,
failures occur– even though no uncertainty exists. For the
applied trajectory buffer, this observation shows that the size
of the energy buffers increases when raising the values of f .
The reason for this is that higher values of f cause the two
generated auxiliary trajectories to deviate more significantly
from the predicted driving trajectory. This tends to lead to
higher differences between the resulting energy consump-
tion values, which again increases the size of the energy
buffer. However, this is not always the case, i.e., increasing
f sometimes reduces the size of the energy buffer. The
consequence is that higher values of f may even decrease
failure rates. This rarely occurring phenomenon causes that
the curve in Figure 9(c), which belongs to trajectory buffers,
is not convex.

When considering the graphs in Figure 9, then both energy
buffer approaches show advantages in different situations.
In Figure 9(a), the results that can be achieved do not differ
much. In Figure 9(b), when relying on predictions based
on historical average driving speeds, it can be seen that the
trajectory buffers outperform relative energy buffers, as the
number of failures can be reduced from 37 to 6. This is a very
important observation, because V tB

Hist is the type of traffic pre-
diction for which the worst failure rates occurred in Figure 7.

Fig. 9. Comparison of relative and trajectory buffer.

On the contrary, relative energy buffers make it possible to
completely avoid failures when making use of instantaneous
traffic predictions. For trajectory buffers, at least for the tested
values of f , this is not the case as can be seen in Figure 9(c).
In conclusion, these first simulation results indicate that the
concept of energy buffers could be very well suited for
handling uncertainties when computing charging strategies.
Interesting in this context is that the two applied approaches,
even though their design is very simple, allow keeping failure
rates quite low. Still, an on-trip failure rate of 6/1440 = 0.4%,
as it can be observed for the conducted simulation runs when
using prediction V tB

Hist to derive charging strategies, is not
sufficient for a practical application. It would mean that for
about one of 250 trips, the BEV would not reach its destina-
tion. On the other hand, by adjusting values z and f , on-trip
failures can be traded against pre-trip failures and increased
travel times. The simulation results in Figures 7 and 9 indicate
that the impact of conservatively chosen parameters z and f
on travel times is very limited. Moreover, the existence of
a few pre-trip failures might be acceptable–also in practice.
Thus, using high values for z and f may already lead to good
results in reality.
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TABLE III

NOMENCLATURE

VI. CONCLUSION

There are two main contributions of the described research:
First, an existing deterministic model for the optimizing of
charging strategies for BEVs is extended in such a way that
uncertainties can be handled. To achieve this, the feasibility
condition, which is typically used if navigation applications
for BEVs are considered, was generalized in section III by
introducing the idea of situation-dependent energy buffers.
This generic adjustment was then concretized in sections III-A
to III-C by proposing three different approaches that dynam-
ically adjusts the size of the energy buffer in dependency of
the situation. These adjustments are intended to compensate
for uncertainties of the available energy consumption pre-
diction. In section IV, a specific algorithmic implementation
is exemplarily described for one of these approaches. This
algorithm represents the second main contribution, since it
can be understood as a template for including energy buffers
into existing routing algorithms for BEVs. By providing such
exemplary pseudo-code, the authors hope to facilitate shifting
the focus in this area of research from further improving
computational speed to ensuring a more reliable arrival at the

destination. Please note that, despite the fact that uncertainties
represent a stochastic phenomenon, both algorithms still are
part of a fully deterministic model. Stochastic approaches
can be expected to increase computational effort significantly.
Moreover, for the described setting, they would need a lot of
information, such as a time-dependent probability distribution
of energy consumption for all relevant road segments. The
simplicity of the described algorithms, however, makes it hard
to analytically compute arrival probabilities. Thus, two of the
suggested energy buffer concepts were afterwards tested within
a simulation study in order to get a first idea of the ability of
the proposed concept to handle the existence of uncertainty.
The results of the simulation study were promising, since
the failure probabilities could be kept in general significantly
below one percent. However, it has to be mentioned that the
conducted simulation runs suffer from several limitations, such
as considering only one source of uncertainty, namely traffic
prediction errors. Furthermore, the described simulation study
covers solely a limited range of situations and it is based on
loads of assumptions. It is not very likely that all situations that
could occur in reality are represented adequately and compre-
hensively. Further studies, in which different assumptions are
made and different sources of uncertainty are considered, are
necessary to get a more comprehensive understanding of the
possibilities and limitations of the concept of energy buffers.
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