
 
 

Delft University of Technology

Spreading speeds and monostable waves in a reaction-diffusion model with nonlinear
competition

Zhang, Qiming; Han, Yazhou; van Horssen, Wim T.; Ma, Manjun

DOI
10.1016/j.jmaa.2022.126077
Publication date
2022
Document Version
Final published version
Published in
Journal of Mathematical Analysis and Applications

Citation (APA)
Zhang, Q., Han, Y., van Horssen, W. T., & Ma, M. (2022). Spreading speeds and monostable waves in a
reaction-diffusion model with nonlinear competition. Journal of Mathematical Analysis and Applications,
511(2), Article 126077. https://doi.org/10.1016/j.jmaa.2022.126077

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jmaa.2022.126077
https://doi.org/10.1016/j.jmaa.2022.126077


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



J. Math. Anal. Appl. 511 (2022) 126077
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Spreading speeds and monostable waves in a reaction-diffusion 

model with nonlinear competition

Qiming Zhang a, Yazhou Han b, Wim T. van Horssen c, Manjun Ma a,∗

a Department of Mathematics, School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 
310018, China
b Department of Mathematics, School of Science, China Jiliang University, Hangzhou, Zhejiang, 310018, 
China
c Delft Institute of applied Mathematics, Delft University of Technology, Delft, 2600 GA, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2021
Available online 10 February 2022
Submitted by Y. Yamada

Keywords:
Spreading speed
Minimal wave speed
Linear selection
Lotka-Volterra model
Cubic competition

In this paper the wave propagation dynamics of a Lotka-Volterra type of model with 
cubic competition is studied. The existence of traveling waves and the uniqueness of 
spreading speeds are established. It is also shown that the spreading speed is equal to 
the minimal speed for traveling waves. Furthermore, general conditions for the linear 
or nonlinear selection of the spreading speed are obtained by using the comparison 
principle and the decay characteristics for traveling waves. By constructing upper 
solutions, explicit conditions to determine the linear selection of the spreading speed 
are derived.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The classical Lotka-Volterra models contain quadratic competition terms. It has been shown that the 
quadratic competition terms cannot accurately model competitive dynamics in all cases. For instance, in 
[4] the authors tested the Lotka-Volterra model with biological data from experiments with a competitive 
system of two species of Drosophila. However, an exact fit was not found. By applying a curvilinear regression 
approach in [4], analytical models of competition were fitted. By using statistical and biological criteria, 
the best one was chosen in [4] and is nowadays called the Gilpin-Ayala model. This model has a cubic 
competition term and represents an extension of the classical Lotka-Volterra model of competition. The cubic 
competition model is also known in the physics literature as the well-known Gross-Pitaevskii model (e.g., 
[2,11] and references therein), which accurately describes the dynamics of atomic Bose-Einstein condensates. 
In [10], Perthame dealt with the following Lotka-Volterra type system with cubic nonlinearities
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{
ut = d1uxx + r1u

(
1 − b1u− a1v

2) , t > 0, x ∈ R,

vt = d2vxx + r2v
(
1 − b2v − a2u

2) , t > 0, x ∈ R
(1.1)

with initial data

u(x, 0) = u∗
0(x) ≥ 0, v(x, 0) = v∗0(x) ≥ 0, (1.2)

which was also mentioned in [5], where u(x, t) and v(x, t) represent the densities of two competing species u
and v at location x at time t, respectively; di, ri and 1/bi, i = 1, 2 are the diffusive rate coefficients, the net 
growth rate coefficients and the carrying capacity coefficients; a1 and a2 are the nonnegative competition 
coefficients of v and u, respectively. Following [1], by using the scalings

√
r1
d1

x → x, r1t → t,

b1u(x, t) → u(x, t), b2v(x, t) → v(x, t),

d = d2

d1
, r = r2

r1
,

a1

b22
→ a1,

a2

b21
→ a2,

model (1.1) is transformed to an equivalent non-dimensional system
{

ut = uxx + u
(
1 − u− a1v

2) , t > 0, x ∈ R,

vt = dvxx + rv
(
1 − v − a2u

2) , t > 0, x ∈ R.
(1.3)

Obviously, (1.3) has an invariant region W = {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Through a simple computation, 
we have in W that, if the competition coefficients a1 and a2 satisfy

a1 > 1, a2 <
1
3 ,

then (1.3) has three constant steady states

q1 = (0, 0), q2 = (0, 1), q3 = (1, 0),

among them, q2 is stable and q1, q3 are unstable. While, if

a1 > 1, a2 > 1,

then (1.3) has four constant steady states

q1 = (0, 0), q2 = (0, 1), q3 = (1, 0), q4 = (u∗, v∗),

where (u∗, v∗) is a positive solution of the kinetic system of (1.3)

⎧⎪⎨
⎪⎩

du

dt
= u

(
1 − u− a1v

2) ,
dv

dt
= rv

(
1 − v − a2u

2) . (1.4)

Moreover, q2, q3 are stable and q1, q4 are unstable. Usually, the former is called the monostable case while 
the latter is termed as the bistable case. For the bistable case, in [10], by applying the method of energy 
functions the author proved that the speed of the traveling wave connecting q2 to q3 has the sign of a2 −a1. 
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This indicates that both the diffusive rate d and the growth rate r do not influence the propagation direction 
of the bistable traveling wave, which is completely different from the result for the classical Lotka-Volterra 
model with linear competition, see [7,8], and definitely shows that the conclusions drawn from the Lotka-
Volterra case cannot be generalized that easily. Therefore, in this paper we will study the propagation 
behaviors for the monostable case. Specifically, we will discuss the existence of the single spreading speed 
(short for asymptotic speeds of spread) and traveling wave solutions, the relationship between the spreading 
speed and the minimal speed of the traveling waves as well as the selection mechanism for the minimal wave 
speed of the traveling waves for system (1.3). Hence, throughout this work we will always assume that the 
competitive coefficients a1 and a2 satisfy

a1 > 1, a2 <
1
3 . (1.5)

The rest of this paper is organized as follows. In section 2, we prove the existence of spreading speeds and 
traveling waves connecting q2 to q3. Further, the uniqueness of spreading speeds is proved, and it is shown 
that this speed is equal to the minimal wave speed. In Section 3, the generic conditions for the linear or 
nonlinear selection of the spreading speed are derived. In Section 4, some explicit conditions to determine 
the linear selection mechanism of the spreading speed are presented. Finally, in Section 5 some conclusions 
are drawn, and some open issues will be discussed.

2. Spreading speeds and traveling wave solutions

Let C = BC(R, R2) be the space of all bounded and continuous functions from R to R2 equipped with 
the compact open topology, that is, a sequence {ϕn} converges to ϕ in C if and only if {ϕn(x)} converges to 
ϕ(x) in R2 uniformly for x in any compact subset of R. Let C+ = {(ϕ1, ϕ2) ∈ C : ϕi(x) ≥ 0, ∀x ∈ R, i = 1, 2}. 
For any ϕ1, ϕ2 ∈ C, we write ϕ1 ≤ ϕ2 if ϕ2 − ϕ1 ∈ C+, ϕ1 < ϕ2 if ϕ2 − ϕ1 ∈ C+\{0}, and ϕ1 � ϕ2 if 
ϕ2 − ϕ1 ∈ Int(C+). For any vectors c, d ∈ R2, we write c ≤ d if d − c ∈ R2

+, c < d if d − c ∈ R2
+\{0}, and 

c � d if d − c ∈ Int(R2
+). For c, d ∈ R2 with c ≤ d, we define Cc,d = [c, d]C = {ϕ ∈ C : c ≤ ϕ ≤ d} and 

[c, d]R2 = {ϕ ∈ R2 : c ≤ ϕ ≤ d}. Here Int(Λ) represents the interior of the function space Λ.
In order to use the theory as developed in [3], we transform (1.3) into a cooperative system by letting 

u = 1 − u and v = v. For simplicity, we drop out the bar and obtain
{

ut = uxx + (1 − u)
(
a1v

2 − u
)
,

vt = dvxx + rv
(
1 − v − a2(1 − u)2

) (2.1)

with the nonnegative initial data

u(x, 0) = 1 − u∗
0(x) ≥ 0, v(x, 0) = v∗0(x) ≥ 0, x ∈ R. (2.2)

Correspondingly, the equilibrium points q1, q2 and q3 become α = (1, 0), β = (1, 1) and 0 = (0, 0), respec-
tively. Moreover, β is stable, 0 and α are unstable. Let {Q}t≥0 denote the solution semiflow associated with 
system (2.1)-(2.2). Then, we have

Qt[ψ](x) = W (x, t;ψ), ∀ψ ∈ BC(R,R2
+), t ≥ 0, (2.3)

where W (x, t; ψ) = (u, v)(x, t; ψ) is the unique solution of (2.1)-(2.2) satisfying W (x, 0; ψ) = ψ(x) =
(u, v)(x, 0). It is easy to see that {Qt}t≥0 is a monotone semiflow on [0, β]C and has fixed points 0, α
and β on [0, β]R2 . We now define a translation operator Ty, for any y ∈ R, on C by

Ty[u](x) = u(x− y), ∀x ∈ R, u ∈ C.
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For any ω ∈ R2 satisfying 0 � ω ≤ β, we take ψ ∈ C with the following properties:

(B1) ψ is a non-increasing function;
(B2) ψ(x) = 0 for all x ≥ 0;
(B3) ψ(−∞) = ω.

Let Q := Q1. Then define an operator Rc by

Rc[â](s) = max{ψ(s), T−cQ[â](s)},∀â ∈ R (2.4)

and a sequence of functions an(c; s) by

a0(c; s) = ψ(s), an+1(c; s) = Rc[an(c; ·)](s). (2.5)

By following the theory as presented in [3,12], two numbers are defined:

c∗+ = sup{c : a(c,+∞) = β}, c+ = sup{c : a(c,+∞) > 0}, (2.6)

where a(c, s) = limn→∞ an(c, s) in R2 for each s ∈ R. It is obvious that c∗+ ≤ c+. By Remark 3.7 in [3] on 
spreading speeds, and by using a similar proof as the proof of Theorem 2.17 in [6], we have the following 
results:

Lemma 2.1. For the monotone semiflow {Qt}t≥0 on C0,β defined in (2.3), the following statements are valid:

(i) If ψ ∈ C0,β, 0 ≤ ψ � β, and ψ(x) = 0, ∀x ≥ L, for some L ∈ R, then

lim
t→∞,x≥ct

[Qt[ψ](x) − 0] = 0 for any c > c+.

(ii) If ψ ∈ C0,β and ψ(x) ≥ σ, ∀x ≤ l, for some σ 	 0 and l ∈ R, then

lim
t→∞,x≤ct

[Qt[ψ](x) − β] = 0 for any c < c∗+.

This lemma implies that c∗+ and c+ are the lowest and highest rightward spreading speeds for the system 
{Qt}t≥0 on C0,β. If c+ = c∗+, we say that the system {Qt}t≥0 admits a single rightward spreading speed.

The following theorem implies that c+ is the minimal wave speed for traveling waves of system (2.1)
connecting β to 0.

Theorem 2.2. For any c ≥ c+, system (2.1) has a traveling wave W (x −ct) = (U(x −ct), V (x −ct)) connecting 
β to 0, and W (z), z = x − ct is non-increasing in z ∈ R; while for any c < c+, there is no traveling wave 
connecting β to 0.

Proof. It is easy to verify that the continuous-time semiflow {Qt}t≥0 satisfies (A1), (A3)-(A5) in [3] on 
Mβ = C0,β . Then, the result holds only by excluding the second possibility (ii) in Theorem 4.2 in [3].

By way of contradiction, suppose that (ii) in Theorem 4.2 in [3] is true. Obviously, α is the unique 
intermediate equilibrium between 0 and β. Hence we first restrict system (2.1) on the order interval [0, α]C, 
then it follows that v ≡ 0 and

ut = uxx − u(1 − u), (2.7)
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which admits a non-increasing traveling wave U1(x − ct) connecting 1 to 0; and if system (2.1) is restricted 
on the order interval [α, β]C, then we have u ≡ 1 and

vt = dvxx + rv(1 − v), (2.8)

which has a non-increasing traveling wave V1(x − ct) connecting 1 to 0.
By (2.7), we know that U2(x − ct) = 1 −U1(x − ct) is non-decreasing traveling wave connecting 0 to 1 of 

the system

wt = wxx + w(1 − w). (2.9)

It is well-known that systems (2.8) and (2.9) have spreading speeds c∗1 = 2
√
dr and c∗2 = 2 and are equal to 

the minimal speeds of their traveling waves, respectively. Thus, we have

c ≥ c∗1 = 2
√
dr > 0, −c ≥ c∗2 = 2 > 0.

This is a contradiction. Thus, the proof is complete. �
Next we prove that c+ is the single rightward spreading speed for {Qt}t≥0 on C0,β.

Theorem 2.3. The following statements are valid:

(i) If ψ ∈ C0,β, 0 ≤ ψ � β, and ψ(x) = 0, ∀x ≥ L, for some L ∈ R, then

lim
t→∞,x≥ct

[Qt[ψ](x) − 0] = 0 for any c > c+.

(ii) If ψ ∈ C0,β, ψ(x) ≥ σ, ∀x ≤ l, for some σ 	 0 and l ∈ R, then

lim
t→∞,x≤ct

[Qt[ψ](x) − β] = 0 for any c < c+.

Proof. By Lemma 2.1, it suffices to prove that c+ = c∗+. Otherwise, by the definition of c+ and c∗+, we have 
c+ > c∗+. Using (1) and (3) of Theorem 4.2 in [3], we know that system (2.1) has a traveling wave solution 
(U, V )(x − c∗+t) connecting β to α. Thus, U ≡ 1 and V is a traveling wave of (2.8) connecting 1 to 0. Then, 
c∗+ ≥ c∗1 > 0, where c∗1 is defined as in the proof of Theorem 2.2. Hence we can choose c1 ∈ (c∗+, c+), and set 
μ(σ) = dσ2 + r. Due to the fact that c1 > c∗1 = infσ>0

μ(σ)
σ , then there exists a σ1 > 0 such that c1 = μ(σ1)

σ1
. 

If we let μ1 := μ(σ1), then we have

σ1c1 − dσ2
1 − r = 0. (2.10)

Moreover, let H(σ, c) = σc − σ2. It is easy to see that H(0, c1) = 0, ∂H∂σ (0, c1) = c1 > 0, and then there is a 
σ2 ∈ (0, σ1) such that H(σ2, c1) > 0. To proceed, we define two wave-like functions:

u(x, t) = min
{
a1e

−σ2(x−c1t), 1
}
, v(x, t) = e−σ1(x−c1t), t ≥ 0, x ∈ R. (2.11)

We now verify that (u, v) is an upper solution to system (2.1). If x − c1t ≤ ln a1
σ2

, then u = 1. From the first 
equation it follows that

∂ū − ∂2ū + (1 − ū)(ū− a1v̄
2) = 0,
∂t ∂x2
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and by (2.10), the second equation leads to

∂v̄

∂t
− d

∂2v̄

∂x2 − rv̄(1 − v̄ − a2(1 − ū)2)

≥ ∂v̄

∂t
− d

∂2v̄

∂x2 − rv̄ = e−σ1(x−c1t)(σ1c1 − dσ2
1 − r) = 0.

While for x − c1t > ln a1
σ2

, we have u = a1e
−σ2(x−c1t). For the second equation, it can be verified as above. 

For the first equation, we have

∂ū

∂t
− ∂2ū

∂x2 + (1 − ū)(ū− a1v̄
2)

≥ a1e
−σ2(x−c1t)

[
(σ2c1 − σ2

2) + (1 − ū)
(
1 − e(σ2−2σ1)(x−c1t)

)]
= a1e

−σ2(x−c1t)
[
H(σ2, c1) +

(
1 − e−σ2(x−c1t)

)(
1 − e(σ2−2σ1)(x−c1t)

)]
≥ 0.

Thus, we have shown that (u, v) is an upper solution to system (2.1). For a given function ψ(x) satisfying 
(B1)-(B3), and by taking a sufficiently large positive constant L, we have

ϕ(x) := (ū, v̄)(x− L, 0) ≥ ψ(x), ∀x ∈ R.

The comparison principle leads to

Qt[ψ](x) ≤ Qt[ϕ](x) ≤ (ū, v̄)(x− L, t), x ∈ R, t ∈ R,

where Qt is defined in (2.3). By using (2.4) and (2.5), and for a0 = ψ ≤ ϕ, we have

a1(c1, x) = max{ψ(x), T−c1Q[a0](x)} ≤ max{ϕ(x), Q[ϕ](x + c1)}.

From (2.11), it then follows that
{

u(x− L, 0) = min
{
a1e

−σ2(x−L), 1
}
,

v(x− L, 0) = e−σ1(x−L),
(2.12)

and {
u(x + c1 − L, 1) = min

{
a1e

−σ2(x−L,1), 1
}
,

v(x + c1 − L, 1) = e−σ1(x−L).
(2.13)

So we obtain

Q1[ϕ](x + c1) ≤(ū, v̄)(x + c1 − L, 1)

=(ū, v̄)(x− L, 0) = ϕ(x),

that is, a1(c1, x) ≤ ϕ(x), ∀x ∈ R. By induction, we get

an(c1, x) ≤ ϕ(x), ∀x ∈ R, n ≥ 0.

This property of an(c1, x) and the assumption that c1 ∈ (c∗+, c+) yield

(1, 0) = a(c1,+∞) = lim lim an(c1, x) ≤ lim ϕ(x) = (0, 0).

x→+∞ n→+∞ x→+∞
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This contradiction implies that c∗+ = c+. �
Based on the aforementioned theorems, we know that system (2.1) possesses a single rightward spreading 

speed c∗+, which is equal to the minimal wave speed for traveling waves connecting β to 0 denoted by cmin. 
Therefore, in the next section we will discuss the selection mechanism for cmin.

3. Selection mechanism for the minimal wave speed

In this section we will derive general conditions to determine the linear or nonlinear selection of the 
minimal wave speed for traveling waves connecting β to 0. Firstly, we present the wave profile system 
related to system (2.1):

{
U ′′ + cU ′ + (1 − U)

(
a1V

2 − U
)

= 0,
dV ′′ + cV ′ + rV

(
1 − V − a2(1 − U)2

)
= 0

(3.1)

subject to the boundary conditions

(U, V )(−∞) = (1, 1), (U, V )(+∞) = (0, 0), (3.2)

where (U, V )(z) = (u, v)(x, t) and z = x − ct. Linearizing (3.1) at 0 yields a linear system
⎧⎪⎨
⎪⎩

U ′′ + cU ′ − U = 0,
dV ′′ + cV ′ + r(1 − a2)V = 0,
U(∞) = V (∞) = 0.

(3.3)

Let (U, V )(z) = (η1, η2)e−μz, where η1, η2, and μ are positive constants. Substituting it into (3.3) gives

B(μ) =
(
μ2 − cμ− 1 0

0 dμ2 − cμ + r(1 − a2)

)(
η1
η2

)
=

(
0
0

)
. (3.4)

Then μ solves the characteristic equations

μ2 − cμ− 1 = 0, dμ2 − cμ + r(1 − a2) = 0.

Solving the first equation for μ yields

μ1(c) = c +
√
c2 + 4
2 > 0, μ2(c) = c−

√
c2 + 4
2 < 0, (3.5)

and the second equation leads to

μ3(c) =
c−

√
c2 − 4dr(1 − a2)

2d , μ4(c) =
c +

√
c2 − 4dr(1 − a2)

2d . (3.6)

Taking into account that (U, V ) is positive, we have c ≥ 2
√
dr(1 − a2), and thus μ4(c) ≥ μ3(c) > 0. It is 

easy to see that μ1(c) > μ4(c) ≥ μ3(c) > 0 if d ≥ 1. By convention, c0 := 2
√

dr(1 − a2) is called the linear 
speed. Clearly, we have

μ := μ4(c0) = μ3(c0) =
√

r(1 − a2)
. (3.7)
d
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By (3.4), we know that the eigenvectors of the matrix B(μ) corresponding to μ1 and μi, i = 3, 4 are 
(η1, η2)T = (1, 0)T and (η1, η2)T = (0, 1)T , respectively. Hence near 0 the positive solution of (U, V ) with 
c > c0 satisfies

(
U(z)
V (z)

)
∼ C1

(
1
0

)
e−μ1(c)z + C2

(
0
1

)
e−μ3(c)z as z → ∞, (3.8)

where Ci, i = 1, 2 are constants and C1 > 0, C2 > 0. We now present the definition of selection mechanism 
of the minimal wave speed and the definition of an upper/lower solution for system (3.1).

Definition 3.1. If the minimal wave speed cmin is equal to c0, then we say that the minimal wave speed is 
linearly selected; Otherwise, i.e., cmin > c0, we say that the minimal wave speed is nonlinearly selected.

Definition 3.2. (see Section 6 in [1]) An upper solution to system (3.1)-(3.2) is defined to be a pair of 
continuous functions (U, V )(z) which are twice-differentiable on z ∈ (−∞, ∞) except at a finite number of 
points zi, i = 1, · · ·, n, and which satisfy

⎧⎪⎨
⎪⎩

U ′′ + cU ′ + (1 − U)
(
a1V

2 − U
)
≤ 0,

dV ′′ + cV ′ + rV
(
1 − V − a2(1 − U)2

)
≤ 0,

(U, V )(−∞) ≥ 1, (U, V )(∞) ≥ 0,
(3.9)

for z �= zi, i = 1, · · ·, n, and (U ′, V ′)(z−i ) ≥ (U ′, V ′)(z+
i ) for i = 1, · · ·, n. A lower solution is given by 

reversing all the inequalities.

The following theorem gives a sufficient condition for the linear selection of the minimal wave speed.

Theorem 3.1. Assume that, for a given c ≥ c0, there exists a positive and non-increasing upper solution 
(U, V )(z), z = x − ct of system (3.1)-(3.2) satisfying

lim inf
z→−∞

(U, V )(z) > (0, 0), lim
z→∞

(U, V )(z) = (0, 0). (3.10)

Then we have that cmin ≤ c. Particularly, if c = c0, then the minimal wave speed is linearly selected.

Proof. By (2.6) and Theorem 2.3, we know that the minimal wave speed is equal to the single rightward 
spreading speed, i.e.,

cmin = c∗+ = sup{c : a(c,+∞) = β}. (3.11)

The non-increasing function ψ in (2.5) is taken as

ψ(x) = 0, x > 0 and lim
x→−∞

(ψ(x) − ω) = 0, 0 � ω � β.

Now let ψ(−∞) be sufficiently small such that the upper solution (U, V ) (or a shift if needed) satisfies

ψ(x) = a0(c;x) ≤ (U, V )(x) � ϕ(x), x ∈ R.

Thus, by (2.4) and (2.5), it follows that
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a1(c;x) = max{ψ(x), T−cQ[a0(c; ·)](x)}
= max{ψ(x), Q[a0(c; ·)](x + c)}
≤ max{ϕ(x), Q[ϕ](x + c)}
≤ max{ϕ(x), (U, V )(x)} = (U, V )(x),

where the definition of a upper solution (U, V ) of the map Q is used, that is, Q(U, V )(x) ≤ (U, V )(x − c). 
By induction, we have

an(c;x) ≤ (U, V )(x), n ≥ 0.

By letting n → +∞, x → +∞, it follows that a(c; +∞) ≤ (U, V )(∞) = (0, 0), which indicates that 
a(c, +∞) = 0. Then (3.11) implies that c ≥ cmin. Hence the first result of the theorem is proved.

The second part of the theorem directly follows from the result of the first part and from the definition 
of c0. �

Generic conditions for nonlinear selection are presented in the following two theorems.

Theorem 3.2. Suppose that d ≥ 1, and for a given c = c > c0, (U,V)(z) is a pair of nonnegative and 
non-increasing functions, which satisfy

lim
z→−∞

sup(U, V )(z) < 1, (U, V )(z) ∼ (ξ1e−μ1(c)z, ξ2e
−μ1(c)z), z → ∞, (3.12)

where z = x − ct, μ1(c) is defined in (3.5), and ξ1, ξ2 are positive constants. If (U, V )(z) is a lower solution 
of system (3.1)-(3.2), then system (2.1) has no traveling wave with speed c ∈ [c0, c), i.e., cmin ≥ c.

Proof. Following the proof (by contradiction) of Lemma 2.8 in [1], it will be assumed now that there exists 
a non-increasing traveling wave solution (U, V )(x − ct) to (2.1) with initial conditions

u(x, 0) = U(x), v(x, 0) = V (x)

for some c located in [c0, c). Since d ≥ 1 implies that μ1(c) ≥ μ4(c), and by μ1(c) is increasing in c, we have 
that μ1(c) ≥ max{μ1(c), μ4(c)}. Then from (3.12) it is possible (by shifting if necessary) to have

(U, V )(x) ≤ (U, V )(x), x ∈ R.

By applying the comparison principle, it follows that

U(x− ct) ≤ U(x− ct), V (x− ct) ≤ V (x− ct) (3.13)

for all (x, t) ∈ (−∞, ∞) × [0, ∞). Now fix z∗ = x − ct such that U(z∗) > 0. Then, it follows that

U(z∗) = U(x− ct) ≤ U(x− ct) = U(z∗ + (c− c)t) ∼ U(∞) = 0 as t → ∞. (3.14)

This contradicts the fact that U(z∗) > 0. Hence the proof is complete. �
Due to the fact that μ4(c) is increasing with respect to c, and by applying Theorem 3.2, we can now 

easily obtain the following general condition for nonlinear selection.
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Theorem 3.3. Let (U,V)(z) be a pair of nonnegative and non-increasing functions, satisfying

lim
z→−∞

sup(U, V )(z) < 1, (U, V )(z) ∼ (η1e
−μ1(c)z, η2e

−μ4(c)z), z → ∞, (3.15)

for a given c = c > c0, where z = x − ct, where μ1(c), and μ4(c) are defined in (3.5)-(3.6), and where 
η1, η2 are positive constants. If (U, V )(z) is a lower solution of system (3.1)-(3.2), then system (2.1) has no 
traveling wave with speed c ∈ [c0, c), and so: cmin ≥ c.

4. Explicit conditions for linear selection

Based on the Theorem 3.1, we derive in this section some explicit conditions for linear selection of the 
spreading speed by explicitly constructing upper solutions to system (3.1)-(3.2). In what follows, c0 and μ̄
are defined as in Section 3, that is,

c0 = 2
√
dr(1 − a2), μ = μ(c0) =

√
r(1 − a2)

d
, and dμ2 − c0μ + r(1 − a2) = 0.

Theorem 4.1. For the fixed parameters d, r, a1 and a2, assumed that either

d > 1, a2
1 + 2 ≥ 2

a2
≥ min{2a1 + 1,

√
a1 + 2}, (4.1)

or

d > 1, a2
1 + 2 ≤ 2

a2
(4.2)

is satisfied. Then the minimal wave speed is linearly selected.

Proof. Define a pair of functions (U1, V1) by

V1 = 1
1 + eμz

, U1 =
{

1, z ≤ z1,

a1V1
2
, z ≥ z1,

(4.3)

where z1 satisfies a1V1
2(z1) = 1 and μ = μ(c0). It is easy to check that

V1
′ = −μV1(1 − V1), V1

′′ = μ2V1(1 − V1)(1 − 2V1),

U
′
1 = −2a1μV

2
1(1 − V 1), U

′′
1 = 2a1μ

2V
2
1(1 − V 1)(2 − 3V 1).

By substituting (U1, V1) into the first equation of (3.1), and by using the assumptions that d > 1 and (1.5), 
we obtain

U1
′′ + c0U1

′ + (1 − U1)
(
a1V1

2 − U1

)
=2a1V1

2(1 − V1)
(
2μ2 − c0μ− 3μ2V1

)
=2a1V1

2(1 − V1)
(

2r(1 − d)(1 − a2)
d

− 3μ2V1

)
≤ 0.

For the second equation in (3.1), when z ≤ z1, by using the fact that V 1(z) ≥ V 1(z1) = 1√
a1

and (4.1), we 
have
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dV
′′
1 + c0V

′
1 + rV 1

(
1 − V 1 − a2(1 − U1)2

)
=V 1(1 − V 1)(ra2 − 2dμ2V 1)

≤V 1(1 − V 1)
(
ra2 −

2r(1 − a2)√
a1

)

= ra2√
a1

V 1(1 − V 1)
(√

a1 + 2 − 2
a2

)
≤ 0,

(4.4)

when z ≥ z1, by noting the fact that 1 − a1V
2
1 ≥ 1 − a1V 1, it follows that

dV
′′
1 + c0V

′
1 + rV 1

(
1 − V 1 − a2(1 − U1)2

)
≤V 1(1 − V 1)

[
ra2 − ra2

(1 − a1V 1)2

1 − V 1
− 2dμ2V 1

]
=V 1

[
ra2(1 − V 1) − ra2(1 − a1V 1)2 − 2dμ2V 1(1 − V 1)

]
.

The condition (4.1) leads to

V 1
[
ra2(1 − V 1) − ra2(1 − a1V 1)2 − 2dμ2V 1(1 − V 1)

]
=ra2V 1

[
V 1(2a1 + 1 − 2

a2
) + V

2
1(

2
a2

− a2
1 − 2)

]
≤ 0.

The condition (4.2) also yields

V 1
[
ra2(1 − V 1) − ra2(1 − a1V 1)2 − 2dμ2V 1(1 − V 1)

]
≤ra2V 1

[
V 1(2a1 + 1 − 2

a2
) + V 1(

2
a2

− a2
1 − 2)

]
= −ra2V

2
1(a1 − 1)2 ≤ 0.

Moreover, since (4.2) implies √a1 +2 ≤ 2
a2

, hence (4.4) is still true under the condition (4.2). Thus, (U1, V1)
is an upper solution to system (3.1)-(3.2) under the condition (4.1) or (4.2). Then, by Theorem 3.1, the 
desired result follows. �

Now by defining an upper solution whose two component functions are linear dependent, we derive 
conditions for the linear selection of the spreading speed.

Theorem 4.2. For the fixed parameters d, r, a1 and a2, suppose that either

⎧⎪⎪⎨
⎪⎪⎩

0 < d < 1
2 ,

a2(1 + a1) ≥ 1,
a1d

2(1−a2) ≤ r ≤ d
(1−2d)(1−a2) ,

(4.5)

or

⎧⎪⎪⎨
⎪⎪⎩

d > 1
2 ,

a2(1 + a1) ≥ 1,

r ≥ a1d
2(1−a2)

(4.6)

holds. Then the minimal wave speed is linearly selected.
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Proof. Define a pair of functions (U2, V2) by

V2 = 1
1 + eμz

, U2 =

⎧⎨
⎩

1, z ≤ z2,

1 − a2

a2
V2, z ≥ z2,

(4.7)

where z2 satisfies 1−a2
a2

V2(z2) = 1 and μ = μ(c0). It is easy to check that

V2
′ = −μV2(1 − V2), V2

′′ = μ2V2(1 − V2)(1 − 2V2).

Substituting (U2, V2) into the first equation in (3.1), for z ≤ z2 we then easily obtain

U2
′′ + c0U2

′ + (1 − U2)
(
a1V2

2 − U2

)
= 0.

For z ≥ z2 we obtain

U2
′′ + c0U2

′ + (1 − U2)
(
a1V2

2 − U2

)
=1 − a2

a2
V2

[
μ2(1 − V2)(1 − 2V2) − μc0(1 − V2) + a2

1 − a2
(1 − 1 − a2

a2
V2)(a1V2 −

1 − a2

a2
)
]

=:1 − a2

a2
V2G(V2),

where

G(V2) = μ2(1 − V2)(1 − 2V2) − μc0(1 − V2) + a2

1 − a2
(1 − 1 − a2

a2
V2)(a1V2 −

1 − a2

a2
)

= (2μ2 − a1)V2
2 +

(
c0μ + a1a2

1 − a2
− 3μ2 + 1 − a2

a2

)
V2 + μ2 − c0μ− 1.

From the third inequality in (4.5) or (4.6), one has G′′(V2) = 2 
(

2(1−a2)r
d − a1

)
≥ 0. Furthermore, from the 

first inequality and the third inequality in (4.5) or the first inequality in (4.6), we obtain that

G(0) = μ2 − c0μ− 1 = r(1 − 2d)(1 − a2)
d

− 1 ≤ 0,

using (1.5) and the second inequality in (4.5) or (4.6) give

G(1) = 1
a2

(1 − a2

1 − a2
)[1 − a2(1 + a1)] ≤ 0.

Thus, G(V2) ≤ 0 for 0 ≤ V2 ≤ 1, and then

U2
′′ + c0U2

′ + (1 − U2)
(
a1V2

2 − U2

)
≤ 0, z ∈ (−∞,∞).

From the second equation in (3.1), when z ≤ z2, and by using V 2(z) ≥ V 2(z2) = a2
1−a2

, we obtain

dV
′′
2 + c0V

′
2 + rV 2

(
1 − V 2 − a2(1 − U2)2

)
=V 2(1 − V 2)(ra2 − 2dμ2V 2)
≤V 2(1 − V 2)(ra2 − 2r(1 − a2)

a2 ) = −ra2V 2(1 − V 2) ≤ 0.
1 − a2
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When z ≥ z2, we obtain

dV
′′
2 + c0V

′
2 + rV 2

(
1 − V 2 − a2(1 − U2)2

)
=V 2(1 − V 2){dμ2(1 − 2V 2) − cμ + r − ra2

(1 − 1−a2
a2

V 2)2

1 − V 2
}

≤V 2(1 − V 2){dμ2(1 − 2V 2) − cμ + r − ra2(1 − 1 − a2

a2
V 2)2}

=V 2(1 − V 2)
[
ra2 − 2r(1 − a2)V 2 − ra2(1 − 1 − a2

a2
V 2)2

]
= −r(1 − a2)2

a2
V

3
2(1 − V 2) ≤ 0.

Therefore, (U2, V2) is an upper solution to system (3.1)-(3.2) when the condition (4.5) or (4.6) is satisfied. 
Then Theorem 3.1 implies the desired result. �

We next construct an upper solution for which both components are twice continuously differentiable 
functions on R in order to obtain conditions for the linear selection of the spreading speed.

Theorem 4.3. Suppose that the given parameters d, r, a1, and a2 satisfy

d >
1
2 , r ≥ d(a1 − 1)

2(1 − a2)(2d− 1) . (4.8)

Then the minimal wave speed is linearly selected.

Proof. We define a pair of functions (U3, V 3) by

U3 = V 3 = ( 1
1 + e2μz ) 1

2

with μ = μ(c0). Again by using Theorem 3.1, it suffices to prove that (U3, V 3) is an upper solution of system 
(3.1)-(3.2). A simple computation leads to

V
′
3 = −μV 3(1 − V 3)(1 + V 3), V ′′

3 = μ2V 3(1 − V 3)(1 + V 3)(1 − 3V 2
3).

By using 0 ≤ V 3 ≤ 1, and (4.8), and from the first equation in (3.1), it follows that

U
′′
3 + c0U

′
3 + (1 − U3)

(
a1V

2
3 − U3

)
=V 3(1 − V

2
3)

(
μ2 − 3μ2V

2
3 − c0μ + a1V 3 − 1

1 + V 3

)

=V 3(1 − V
2
3)

(
r(1 − a2)

d
− 2r(1 − a2) −

3r(1 − a2)
d

V
2
3 + a1

V 3

1 + V 3
− 1

1 + V 3

)

≤V 3(1 − V
2
3)

(
r(1 − a2)

d
− 2r(1 − a2) + 1

2a1 −
1
2

)

=1
2V 3(1 − V

2
3)

(
a1 − 1 − 2(1 − a2)(2d− 1)

d

)
≤ 0.

From the second equation in (3.1), and by using (1.5), it follows that

dV
′′
3 + c0V

′
3 + rV 3(1 − V 3) − ra2V 3(1 − U3)2

=V 3(1 − V
2
3)

(
−3dμ2V

2
3 − r(1 − a2) + r

1 − a2(1 − V 3)
1 + V 3

)

=V 3(1 − V
2
3)

(
−3r(1 − a2)V

2
3 −

V 3(1 − 2a2)
r

)
≤ 0.
1 + V 3
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Thus, (U3, V 3) is an upper solution of system (3.1)-(3.2), and the proof is completed. �
5. Conclusion and discussion

In this paper we have proved the existence of traveling wave solutions connecting some of the steady 
states of system (1.3). We have also verified that the spreading speed is unique and equal to the minimal 
wave speed. These proofs mainly rely on the propagation theory for monotone semiflows. The generic 
selection mechanisms of the spreading speed have been obtained by using the comparison principle and the 
decay rates of traveling waves (see Theorems 3.1-3.3). Three explicit conditions for linear selection (i.e.,
Theorems 4.1-4.3) have been proved by giving explicit upper solutions. Compared to the results on linear 
selection for the Lotka-Volterra model with linear competition in [1,8,13], some striking differences are found 
for the Lotka-Volterra problems as considered in this paper. For instance, this paper finds explicit conditions 
for both d ∈ (0, 1/2) and d ∈ (1/2, ∞). However, in all the known references [1,8,13], it is required that d is 
located in a finite interval. Furthermore, in [1,9,13] some sufficient conditions for nonlinear selection were 
obtained. However, for the Lotka-Volterra model (1.1) with nonlinear competition it is very difficult to find 
an appropriate lower solution satisfying the Theorems 3.2-3.3. An explicit condition for nonlinear selection 
has not yet been derived so far, and remains an open problem.

In this paper we only studied the case for which system (1.3) has three uniform steady states, that is, 
condition (1.5) is required. But if condition (1.5) is not satisfied, system (1.3) may have four uniform steady 
states including a co-existence equilibrium. Then individual species possibly invade into the far end with 
different spreading speeds. Hence the basic question to solve is whether spreading speeds are unique or not. 
This is an interesting and challenging question, and efforts to answer this question are currently made, and 
will be presented in future publications.
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