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Abstract

Classical mathematical models of tumor growth have shaped our understanding of cancer

and have broad practical implications for treatment scheduling and dosage. However, even

the simplest textbook models have been barely validated in real world-data of human

patients. In this study, we fitted a range of differential equation models to tumor volume mea-

surements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors.

We used a large dataset of 1472 patients with three or more measurements per target

lesion, of which 652 patients had six or more data points. We show that the early treatment

response shows only moderate correlation with the final treatment response, demonstrating

the need for nuanced models. We then perform a head-to-head comparison of six classical

models which are widely used in the field: the Exponential, Logistic, Classic Bertalanffy,

General Bertalanffy, Classic Gompertz and General Gompertz model. Several models pro-

vide a good fit to tumor volume measurements, with the Gompertz model providing the best

balance between goodness of fit and number of parameters. Similarly, when fitting to early

treatment data, the general Bertalanffy and Gompertz models yield the lowest mean abso-

lute error to forecasted data, indicating that these models could potentially be effective at

predicting treatment outcome. In summary, we provide a quantitative benchmark for classi-

cal textbook models and state-of-the art models of human tumor growth. We publicly release

an anonymized version of our original data, providing the first benchmark set of human

tumor growth data for evaluation of mathematical models.
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Author summary

Mathematical oncology uses quantitative models for prediction of tumor growth and

treatment response. The theoretical foundation of mathematical oncology is provided by

six classical mathematical models: the Exponential, Logistic, Classic Bertalanffy, General

Bertalanffy, Classic Gompertz and General Gompertz model. These models have been

introduced decades ago, have been used in thousands of scientific articles and are part of

textbooks and curricula in mathematical oncology. However, these models have not been

systematically tested in clinical data from actual patients. In this study, we have collected

quantitative tumor volume measurements from thousands of patients in five large clinical

trials of cancer immunotherapy. We use this dataset to systematically investigate how

accurately mathematical models can describe tumor growth, showing that there are pro-

nounced differences between models. In addition, we show that two of these models can

predict tumor response to immunotherapy and chemotherapy at later time points when

trained on early tumor growth dynamics. Thus, our article closes a conceptual gap in the

literature and at the same time provides a simple tool to predict response to chemotherapy

and immunotherapy on the level of individual patients.

Introduction

The growth of solid tumors and their response to therapy is hard to predict on the level of indi-

vidual patients. Similar to other complex systems such as the climate [1,2] or stock markets

[3], quantitative mathematical models can be used to describe and forecast the behavior of can-

cer: this is one of the main objectives of “mathematical oncology” [4,5]. Mathematical models

of tumor growth kinetics have improved the understanding of underlying biological mecha-

nisms. [6–8] In addition, they have resulted in a number of modeling approaches for cancer

treatments including chemotherapy [9,10] and immunotherapy [11,12], improved drug dos-

age [13,14] and have yielded candidate biomarkers for treatment response [15]. The roots of

tumor growth models go back to 1825, when Gompertz published a mathematical model to

analyze the population growth [16]. He argued that the number of people alive as a function of

their age L(x) declines faster than exponential functions which means that the death rate

should be increasing with age. 135 years later, von Bertalanffy addressed the question of “why

does an organism grow at all and why after a certain time, does its growth come to stop?” [17]

By replacing its concept of an “organism” with a malignant tumor, the answer to this question

resulted in a mathematical model for tumor growth. Tumor modeling provides information

about the net tumor growth rate, facilitates their comparison among different tumor types [18]

and makes it possible to predict the future growth of tumors [19].

A number of “textbook” models have been used in the past to approximate tumor growth

with mathematical equations. In addition to the above-mentioned models by Gompertz and

von Bertalanffy (each in a “classical” and a more general form), exponential and logistic mod-

els are standard approaches to describe tumor growth (Table 1) [20]. Exponential models are

able to predict either exponential growth or decay depending on the absolute values of birth

and death rates, and the resulting sign of (birth rate − death rate). Logistic models can simulate

the fact that tumor growth is limited by nutritional, immunological or spatial constraints by

including a carrying capacity into the model at which the tumor volume plateaus. This carry-

ing capacity is included in the per capita growth rate, in line with the observation that tumor

growth slows down when the tumor volume becomes large. [21] To be precise, the carrying

capacity can be interpreted to comprise a number of biological constraints to tumor cell
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proliferation. These constraints include the availability of nutrients and oxygen and thus, the

concept of tumor angiogenesis is implicit in the carrying capacity. In addition, the pressure of

immune cells attacking tumor cells limits the niche the tumor cells can fill and thus, the con-

cept of antitumor immune response is implicit in the carrying capacity. The Gompertz model

is another model which illustrates the experimentally observed decrease in the growth speed of

tumors. Similarly to the logistic model it has a sigmoid shape, hence representing limited

tumor growth. Its main assumption is the exponential decay of the growth rate [18]. Since this

model has been applied in many fields to various problems a few equivalent Gompertz models

exist, differing in the chosen re-parametrization. Gompertz and von Bertalanffy growth mod-

els are two basic but important models which are commonly used to model tumor volume

growth since they have outperformed exponential models in many cases in the past [22].

Unlike in other domains in which mathematical models and practice are strongly linked,

the field of mathematical oncology is, by and large, somewhat disconnected from clinical prac-

tice of oncology. While in recent years, large quantitative data collections have deepened the

genetic [23] and immunological [24–26] understanding of solid tumors, even well-established

textbook models in mathematical oncology have not been linked with or validated in large

amounts of quantitative real-world data. As a result, growth models that form a conceptual

backbone of mathematical oncology have never been formally validated in large patient-

derived datasets. In 2014, Benzekry et al. have systematically validated a range of textbook

mathematical models on quantitative data obtained from two mouse models [20]. More

recently, Vaghi et al. have extended that study and have validated classical growth models in

833 measurements in 94 animals [27]. These systematic large-scale approaches are highly

important to link mathematical oncology to real-world data, but bear one major drawback:

since almost all drugs that result in tumor control in mice fail in human experiments [28],

mouse-based models are not suitable for human tumor growth estimations [29]. In addition,

little validation of textbook models has been performed for tumors undergoing treatment,

prompting caution whether unvalidated mathematical models have predictive power for clini-

cal oncology. [30] While modeling of unabated tumor growth has academic relevance, fortu-

nately untreated tumor growth for extended periods of time is rare in clinical practice [30].

Almost all patients with metastatic cancer undergo some type of systemic pharmacotherapy

which slows down tumor progression [31].

In this study, we retrospectively collected quantitative measurements of tumor diameter

changes over time from Non-Small Cell Lung Cancer (NSCLC) and bladder cancer patients

from five large clinical trials. We systematically used this data with each of the standard mathe-

matical models to address two questions: Firstly, how well can existing tumor growth models

fit real-world data of patients undergoing treatment? (experiment #1) Secondly, how well can

these models predict tumor growth at later disease stages when fitted to early-stage data?

(experiment #2).

Methods

Ethics statement and data sharing

All experiments were conducted in accordance with the Declaration of Helsinki and the Inter-

national Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council

for International Organizations of Medical Sciences (CIOMS). This study complies with the

“Transparent reporting of a multivariable prediction model for individual prognosis or diag-

nosis” (TRIPOD) statement [32]. All data were obtained in an anonymized way through a pro-

posal to F. Hoffmann-La Roche Ltd. Through the platform “Clinical Study Data Request”

(CSDR, www.ClinicalStudyDataRequest.com), which is now inactive and has been replaced by
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the Vivli platform (https://vivli.org, April 2021). Qualified researchers may request access to

individual patient level data through the clinical study data request platform (https://vivli.org/

). Further details on Roche’s criteria for eligible studies are available here (https://vivli.org/

members/ourmembers/). For further details on Roche’s Global Policy on the Sharing of Clini-

cal Information and how to request access to related clinical study documents, see (https://

www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_

commitment_to_data_sharing.htm). The original proposal submitted to the CSDR platform is

available in S1 Text. In order to enable reproduction of our experiments, we publicly release a

fully anonymized subset of the data containing only the tumor volume measurements for the

target lesion and the respective study and treatment arm (S1 Data).

Data acquisition and preprocessing

We used data sets from five different clinical trials (Tables 1 and 2). The purpose of the original

studies was the evaluation of the efficacy and safety of Atezolizumab (previously known as

MPDL3280A), an immune checkpoint inhibitor directed against the Programmed Death

Ligand 1 (PD-L1). In two out of the five trials (GO28753, GO28915), the performance of Ate-

zolizumab was compared to Docetaxel, a chemotherapy drug. In the other three trials, all the

participants received Atezolizumab as a treatment and the participants were further catego-

rized into treatment arms or clinical subgroups as defined in the study protocols. One-dimen-

sional longest diameter and shortest diameter of target and non-target lesions as manually

measured on CT scans were available from the study database and were reported for each

patient at different time intervals (Fig 1A). Because the shortest diameter was only available for

a subset of patients, we used only the longest diameter (LD) and converted it to tumor volume

(V) by V = LD3 � 0.5 as described before [33]. Using the maximum value of V in the whole

data set, the volumes were normalized to be in the range of 0 and 1 for the whole dataset. Most

patients in the data sets had multiple tumor lesions (primary tumor and/or metastases). For

simplicity, we refer to these lesions as “tumors”. In the data set, one of these tumors for each

patient was labeled as a “first target lesion” (‘INV-T001’), i.e. an easily measurable lesion for

which the diameter was closely monitored over time. In addition, patients usually had one or

Table 1. Data description. Five data sets were used in this study. The original number of patients in each data set and the treatment arm/subgroups are reported in this

table. Two of the data sets have more than one treatment arm (Atezolizumab and Docetacxel) and the others have only one arm with a number of subgroups defined by

clinical features. No. = Number, Pats. = Patients.

Study ID Cancer Type Phase No. Pats. Treatment Subgroup No. Pats. per group

NCT01846416 (GO28625) FIR [52] Non-Small Cell Lung Cancer 2 138 Atezolizumab� MPDL3280A-1 31

MPDL3280A-2 94

MPDL3280A-3 13

NCT01903993 (GO28753) POPLAR [53] Non-Small Cell Lung Cancer 2 287 Atezolizumab - 144

Docetaxel 143

NCT02031458 (GO28754) BIRCH [54] Non-Small Cell Lung Cancer 2 657 Atezolizumab�� MPDL3280A-1a 31

MPDL3280A-2a 79

MPDL3280A-3a 70

MPDL3280A-1b 104

MPDL3280A-2b 189

MPDL3280A-3b 184

NCT02008227 (GO28915) OAK [55] Non-Small Cell Lung Cancer 3 1182 Atezolizumab - 609

Docetaxel 578

NCT02951767 (GO29293) IMvigor 210 [56] Bladder Cancer 2 429 Atezolizumab - 429

https://doi.org/10.1371/journal.pcbi.1009822.t001
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more “non-target lesions”. In this study, we only used the target lesion which was labeled as

for all the patients, as this was usually the tumor with the highest number of data points. Each

patient has a different number of data points for this selected target lesion. While the intervals

between data points were relatively similar (they were on average 50.62 days, with a standard

deviation of 6.2 days), the absolute number varied (there were on average 3.63 data points for

the selected target lesion per patient with a standard deviation of 3.22). Patients with few data

points likely dropped out of the study early due to death or other reasons. To enable robust fit-

ting of mathematical models to the data, we limited our data set to two sets of patients with

three or more (or six or more, respectively) data points for the target lesion. Cumulatively, the

original data sets had 2693 patients, of which 1472 had three or more data points and 652 had

six or more data points available (Fig 1B).

Patient categorization according to RECIST and trajectory type

For each patient, the ultimate response was encoded according to the response evaluation cri-

teria in solid tumors (RECIST) system [34]. Based on the latest modification of this criteria

(RECIST 1.1) [35], four tumor responses to treatments can be defined: Complete Response

(CR, disappearance of all target lesions), Partial Response (PR, at least 30% decrease in sum of

the longest diameters of target lesions in comparison to the baseline value), Progressive Dis-

ease (PD, at least an increase of 20% in the sum of the longest diameters of target lesions in

comparison to baseline value) and Stable Disease (SD, when none of the above criteria fits to

the tumor response). Because the RECIST system only assesses best response at discrete time

points but does not categorize the full tumor volume trajectories, we additionally categorized

the patients into three treatment response groups: “up”, “down” and “fluctuate” (Fig 1C). For

Table 2. Detailed summary of included studies. Data from five studies were used in this work. All studies can be

identified either by their clinical trial registry number (“NCT . . .”) or by their Roche ID (“GO . . .”).

Study Design

NCT01846416 GO28625 FIR [52] - Atezolizumab in PD-L1 + in NSCLC (n = 138), Phase 2

- 1) patient with no first treatment

- 2) patients progress following platinum chemo

- 3) patients 2L + treated brain metastases

- ORR = 32% /21% / 23%

NCT01903993 GO28753 POPLAR

[53]

- After platinum failure: Atezolizumab or Docetaxel in NSCLC n = 287;

Phase 2

- 1) 144 in Atezolizumab group

- 2) 143 in docetaxel group

- OS 12.6 months / 9.7 months

- improvement in OS with higher PD-L1 expression

- Atezolizumab improved survival, correlated with expression PD-L1

NCT02031458 GO28754 BIRCH

[54]

- Atezolizumab in PD-L1 positive advanced or metastatic NSCLC n = 667;

Phase 2

- 1) 1L Atezolizumab

- 2) 2L Atezolizumab

- 3) 3L Atezolizumab

- ORR: 22% /19% / 18%

NCT02008227 GO28915 OAK [55] - Atezolizumab vs Docetaxel advanced or metastatic NSCLC (2L) n = 1225,

Phase 3

- OS better in Atezolizumab

- confirmed results of POPLAR study

NCT02951767 GO29293 IMvigor - Atezolizumab in locally advanced or metastatic Bladder Cancer Phase 2

- 1) 1L atezolizumab

- 2) 2L atezolizumab after platinum based chemo

- study still ongoing (2020)

https://doi.org/10.1371/journal.pcbi.1009822.t002
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Fig 1. Data description. (A) Longest tumor diameter over time for all lesions in representative patients in each data set. (B) Number of patients in each

dataset. (C) Tumors can be categorized in three trajectory types based on their response to the treatment: Up, Down, Fluctuate. (D) Proportions of

trajectory type in each dataset. (E) Initial RECIST status does not predict final RECIST status.

https://doi.org/10.1371/journal.pcbi.1009822.g001

PLOS COMPUTATIONAL BIOLOGY Prediction of tumor response to chemotherapy and immunotherapy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009822 February 4, 2022 6 / 18

https://doi.org/10.1371/journal.pcbi.1009822.g001
https://doi.org/10.1371/journal.pcbi.1009822


this purpose, we calculated a vector containing the difference of each LD measurement at time

point t + 1 to its previous measurement at time point t for each patient. If the LD at t + 1 was

bigger than at t, the difference would be positive and vice versa. Patients for whom only the

shortest distance measurement was available were excluded from the analysis. The “up” cate-

gory includes patients whose difference vector values are always positive and patients with a

positive difference after the first measurement if the ratio between the sum of all positive values

to the sum of all negative values is>2. The “down” category includes patients whose difference

vector values are always negative or a negative difference after the first measurement if the

overall ratio between the sum of all negative values to the sum of all positive values is>2. The

“fluctuate” category contains all patients that correspond to neither up nor down categories. In

all five studies, the pattern “up”, “down” and “fluctuate” was present (Fig 1D).

Models and experimental design

We predefined six classical mathematical models to be fitted to the data (Table 3). Theoreti-

cally, there are two ways to integrate the effect of pharmacotherapy into models: either, explicit

treatment-related arguments can be added to model equations, or, the effects of treatment can

be implicit in the model. Here, we choose the implicit interpretation of treatment effects by

assuming that therapies change either the growth or death rate of tumor cells or the carrying

capacity of the tumor niche. For all models, the dependent variable is the volume of the tumor

as a function of time. We subsequently performed to experiments: Experiment #1 was aimed

at fitting models to the entire time series for each patient. The statistical endpoint for experi-

ment #1 was the mean absolute error (MAE, also L1-norm, the lower the better,

MAE ¼
Pn

i¼1
jyi � ŷi j

n , yi observed versus ŷi predicted values), the Akaike Information Criterion

(AIC 2R, lower is better, AIC ¼ 2k � 2lnðL̂Þ, k is the number of parameters and L̂ is the

maximum value of the likelihood function for the model), Root Mean Square Error (RMSE,

the lower the better, RMSE ¼
ffiffi
1

n

q Pn
i¼1
ðyi � ŷiÞ and R-squared fit (highest value is 1, higher is

better, R2 ¼ 1 �

P
i
ðyi � ŷi ÞP

i
ðyi � � yÞ

). Experiment #1 was run on both patient sets separately: The set

with all patients with three or more data points and the set with patients with six or more data

points. Experiment #2 was aimed at fitting models to the early measurements for each patient,

Table 3. Model description and interpretation of the parameters. For all differential equation models in the current study, the model name, equations and variables are

listed. �birth rate and growth rate can be combined to one parameter, the effective growth rate.

Model name Solution of the differential equation Differential equation

(with initial condition V(0) = V0)

Parameter description Ref.

Exponential V(t) = N0e(α−β)t dV
dt ¼ a � bð Þ V α[time−1]: birth rate�

β[time−1]: death rate�
[41]

Logistic (Verhulst) V tð Þ ¼ V0Kegt

K� V0 1� egtð Þ

dV
dt ¼ gN 1 � V

K

� �
γ[time−1]: max. net growth rate

K[mm3]: carrying capacity

[41]

Gompertz V tð Þ ¼ exp d

g
þ ln Vð Þ � d

g

� �
e� gt

� �
dV
dt ¼ V d � glnVð Þ g ½mm3 � 1 time� 1� : max. net growth rate

δ[time−1]: constant

[19,41,57]

General Gompertz dV
dt ¼ Vl d � glnVð Þ g ½mm3 � 1 time� 1� : max. net growth rate

δ[time−1]: constant

λ: constant

[41]

Classic von Bertalanffy V tð Þ ¼ a

b
þ V

1
3

0 �
a

b

� �
e� 1

3
bt

� �3 dV
dt ¼ aV2

3 � bV α[time−1]: birth rate

β[time−1]: death rate

[41]

General von Bertalanffy
V tð Þ ¼ a

b
þ V0

1� l � a

b

� �
e� bð1� lÞt

� � 1
1� l

dV
dt ¼ aVl � bV α[time−1]: birth rate

β[time−1]: death rate

λ: constant

[41]

https://doi.org/10.1371/journal.pcbi.1009822.t003
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excluding the last three data points and subsequently estimating the predictive accuracy for the

excluded data points. The statistical endpoint for experiment #2 was the MAE. Experiment #2

was only run on the set of patients with six or more data points.

Fitting and implementation

All model fitting procedures were implemented in Python 3.7. In particular, we used differential

evolution to generate the initial data points for the differential equations. Differential evolution

is a stochastic population based method which is used for global optimization problems [36].

Based on these initial guessed parameter values, the “Curve_fit” function (from the python

package “scipy”) is used to fit the model parameters to the experimental data. This function uses

the Trust Region Reflective (trf) algorithm with the non-linear least squares loss function to

find an optimal fit of the model parameters to the data points. The inputs to this function are

the sorted time and its corresponding tumor volume measurements, the respective mathemati-

cal function to fit the data and the maximum number of iterations (we used 1000 iterations in

this study). The output of the “Curve_fit” function is the calculated optimum parameters for the

selected mathematical function. Having these parameters, it is possible to predict the volume

values for each time point and then evaluate the goodness of the fit. The source codes are pub-

licly available at https://github.com/KatherLab/ImmunotherapyModels.git.

Results

Early RECIST status does not correspond well with ultimate treatment

response

In clinical routine and clinical trials, RECIST response at early time points during treatment is

often used to determine whether a given treatment should be continued [34]. If these initial

RECIST results perfectly matched the ultimate RECIST, there would not be a need for more

mathematical prediction models. Therefore, we systematically compared the RECIST status at

the first, second, third and fourth tumor size evaluation for each patient with the “final”

RECIST status as defined in the study protocol. In all treatment arms, we found an imperfect

overlap between early and final measurements. Overall, the median concordance between

first, second, third and fourth data point and final RECIST was 53.5, 64.0, 63.5 and 78.0,

respectively. The same pattern was seen for the concordance between early and final RECIST

calculated for only one target lesion (Fig 1E). Hence, the RECIST classification can be a useful

tool to assess therapy response status, but it might be insufficient for therapy response estima-

tion at an early therapy stage. These findings provide a rationale for the use of mathematical

models to improve response prediction. In addition, we compared statistically the correlation

between the RECIST standard classification categories (CR/PR, SD and PD) with the devel-

oped grouping methods (up, down and fluctuate). As the results are summarized in S1 Fig

both grouping systems are partially correlated (PD is mostly overlapping with “up”, PR/CR

with “down” and SD with “fluctuate”). However, the correlation was not perfect and particu-

larly in the OAK study, 37 patients from 95 down category patients are classified as PD and 87

patients out of 133 patients in fluctuate category are classified as PD. This comparison shows

that while RECIST is the standard classification system in clinical routine, our grouping

method does provide an additional perspective on tumor response categories.

The Gompertz model outperforms other models when fitting clinical data

points

We tested how well classical differential equation models (Table 3) can fit tumor volume trajec-

tories under immunotherapy and chemotherapy. To compare these models, we first fitted them
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to all available data points for all patients with at least six measurements (experiment #1). This

set the stage for experiment #2 (Fig 2A), in which models were fit to all points except the three

last points and the predictive power was assessed for each model. In experiment #1, we found

that all models provided a good fit to most data points, but the number of poorly fitted points

differed between the models. Overall, the General Bertalanffy, the Gompertz and the General

Gompertz model had the lowest number of poorly fitted data points (Fig 2C). We quantified

this by calculating multiple metrics for the goodness of fit for each model, for each study arm,

further stratifying patients in each study arm by the ultimate RECIST response. Again, we

found that the General Bertalanffy, the Gompertz and the General Gompertz model consistently

outperformed more simple models. (Fig 3A and 3B) The exponential model yielded the worst

fit for 13 out of 19 patient groups in this analysis (Fig 3A). To rule out a selection bias, we

repeated experiment #1 with all patients with at least three measurements, yielding comparable

results (S2A and S2B Fig). Due to their higher degree of freedom, complex models always yield

a better fit than simple models to any data set. To account for this, we assessed the Akaike Infor-

mation Criterion (AIC) which incentivises goodness of fit but penalizes model complexity. We

found that according to the AIC, the General Bertalanffy model consistently yielded the poorest

performance compared to the other models (Fig 3C and 3D). This observation also held when

all patients with three or more measurements were considered (S2C and S2D Fig). However,

the Gompertz model had a low (good) AIC for most study arms, showing that this model give a

good balance between goodness of fit and model complexity. To rule out that these effects were

obtained by sub-stratifying patients according to their final RECIST status, we repeated experi-

ment #1 with patients sub-stratified as “up”, “down” and “fluctuate”, thereby considering the

shape of the whole timeline for each patient. Again, we found that the General Bertalanffy, the

Gompertz and the General Gompertz model consistently outperformed the exponential model,

the logistic model and the Classic Bertalanffy model in terms of Mean Absolute Error (S3A and

S3B Fig), the Root Mean Square Error (S3C and S3D Fig) and the R-squared Error (S3E and

S3F Fig). In particular, this was the case for “fluctuating” patients which for the most clinically

interesting group of patients (S4 Fig). For the “up” and “down” patient groups, the fitted model

parameters were generally in a close range. For the “fluctuating” patient group, the fitted model

parameters showed a higher variability between the patients, indicating the difficulty of to fit

these trajectories (S1 Table). When penalizing for model complexity by using the Akaike Infor-

mation Criterion, again the Gompertz model provided the best balance between goodness of fit

and model complexity (S3G and S3H Fig). In summary, the Gompertz model adequately fitted

the response to immunotherapy and chemotherapy across a range of clinically relevant popula-

tions, while having only two free parameters (Table 3).

Differential equation models can predict tumor response from early time

points

While it is important to assess a model’s ability to fit a tumor volume timeline a posteriori, a

more clinically relevant problem is to predict final treatment response based on early tumor

behavior under therapy. Therefore, we investigated if these models can predict the last data

points when only fitted to early treatment response. To investigate this, we held out the three

last data points on any given patient, fit the model to all remaining (early) data points and eval-

uated the mean absolute error from extrapolation to the holdout test measurements (experi-

ment #2). Interestingly, we found that in most patient groups in most treatment arms the

holdout data points could be very well predicted with this approach. A remarkable exception

was the Classic Bertalanffy Model, which yielded the worst fit on the last three points as

assessed by the Mean Absolute Error (S5A and S5B Fig). Overall, the best models for
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Fig 2. Experimental design and model fit. - (A) In experiment #1, models were fitted to all available data points for each patient (only for patients with

at least 3 or 6 data points, respectively). In experiment #2, models were fitted to all but the last 3 data points for all patients with at least 6 data points.

Then, the predictions for the last 3 data points were compared with the actual values. (B) Fit and prediction for three representative patients. (C) Plot of

real data points and fitted data points for all models for all studies. A larger deviation from the diagonal indicates a worse fit. Models with a “raincloud”

appearance systematically underestimate true tumor volume.

https://doi.org/10.1371/journal.pcbi.1009822.g002
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predicting holdout measurements were the General Bertalanffy and the Gompertz model (S5A

and S5B Fig). When analyzing the predictions of the exponential model (Fig 4A) and the Gen-

eral Bertalanffy model (Fig 4B) in more detail, we found that for the “up” and “down” patients,

the exponential and the General Bertalanffy model visually recapitulated the trajectory of the

tumor volume. A notable exception are U-shaped curves present in some of the “fluctuating”

patients (Fig 4A and 4B).

Discussion

Cancer immunotherapy with immune checkpoint inhibitors is now an established part of the

therapeutic arsenal for solid tumors [37]. Patterns of response to this class of drugs are more

Fig 3. Head-to-head comparison of all models. (A) Model fit for all treatment arms in all trials, stratified by final RECIST, for all models. The loss

function is the Mean Absolute Error (MAE, L1-Loss), after row-wise normalization. (B) Corresponding plot without row-wise normalization, showing

the raw MAE. The worst MAE in each figure is indicated with “#” and best one is indicated with “�”. (C) Corresponding plot showing the Akaike

Information Criterion (AIC) which penalizes models with a large number of free parameters, row-wise normalized. (D) Corresponding plot without

row-wise normalization.

https://doi.org/10.1371/journal.pcbi.1009822.g003
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Fig 4. Fit of the exponential model and the General Bertalanffy model to unseen data. (A) Fit (blue) of the exponential model to the full timeline of

representative patients with “up”, “down” and “fluctuate” trajectories. For the same patients, the prediction (yellow) is shown which was fitted to all

points except the last three data points. (B) Corresponding plot for the General Bertalanffy model. The y axis is the relative tumor volume with respect

to the largest tumor in the whole dataset, shown as 10^-3.

https://doi.org/10.1371/journal.pcbi.1009822.g004
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complex than for classical chemotherapy [38]. Previous studies have at length discussed new

response trajectories such as hyperprogression, pseudoprogression [38,39] or delayed response

[40] in immune checkpoint inhibitors. Accordingly, simple assessment systems for treatment

response such as RECIST are not ideally suited to predict future treatment response for a given

patient. Although mathematical models of tumor growth have been used for decades to under-

stand mechanisms of tumor progression and treatment response, they have not been systemat-

ically validated in human real-world data of patients undergoing systemic treatment. To our

knowledge, the only large systematic evaluation of these models have been performed on

mouse tumors [20,27], which function merely as a proxy for human tumors. Moreover,

although immunotherapy is a cornerstone of cancer treatment and classical mathematical

models are in principle useful to model cancer growth under therapy, they have not been pre-

viously applied to large cohorts of patients under immunotherapy. In this study, we present a

systematic application of mathematical tumor growth models on a large human dataset of

patients undergoing immunotherapy and chemotherapy. We restricted our analysis to six con-

sensus mathematical models selected from [41]. We show that in particular the Gompertz

model and the General Bertalanffy can successfully fit the tumor growth trajectory and provide

an accurate prediction of ultimate treatment response on the basis of early treatment data.

However, we also show that the fit for “fluctuating” patients is lower in all models, and fully U-

shaped tumor growth trajectories could not be fitted at all. Comparison of the results between

experiment #1 and #2 shows that models perform better if all the data points are used. How-

ever, from the clinical point of view, it is very useful if a model can predict the final response

points from the early treatment response. This highlights the usefulness of stratifying patients

into different categories and, in the future, of using more sophisticated models which can over-

come this limitation. Our findings mirror a previous study by Benzekry et al. who demon-

strated that the Gompertz model provides a good approximation of tumor growth in mice.

[20] Therefore, our study provides a potential bridge between textbook models of mathemati-

cal oncology and oncology practice today, providing evidence that simple mathematical func-

tions can be used to predict immunotherapy response in most patient subsets.

A structural limitation to our study lies in the circumstance that the simple modelling of

tumor growth or decay might not be the best predictor for the overall therapy outcome.

Although the assessment of tumor growth might be useful to evaluate the drug or therapy

regime response, it does not provide overall survival prediction for individual patients. Tumors

might show a positive therapy response, but at the same time patients might die from adverse

therapy events, infections or other therapy-related problems. Consequently, mathematical

models which are solely based on tumor growth data should only be used together with other

prognostic and predictive factors in clinical routine. Another limitation is the fact that by set-

ting a threshold of at least six measurements at six points of time per patient, we had to exclude

a part of patients from our final analysis. We mitigated this problem by repeating the analysis

for patients with at least three data points, but this could still represent a selection bias by

neglecting early study drop-outs and early cancer-related deaths. Other data-related limita-

tions are that for some patients, only very few points can be present during the initial dynamics

which might create problems. In the future, the availability of more complex datasets could

allow researchers to build more complex models, thereby capturing more nuanced details of

tumor growth. In practice, this is limited by the availability of structured data in oncology. In

addition, in line with previous studies performed on mouse data, we used very simple mathe-

matical models in this study [20,27]. Such models are a strong simplification of the reality of

solid tumors, which are multicellular structures with a distinct spatial architecture [42]. Funda-

mentally, the key question is: how granular should a model be? This has been discussed exten-

sively in the literature [8,43–47]. More complex models have been proposed for modeling
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tumor growth under immunotherapy which could improve the fit to the data, for example the

Kuznetsov model [12] and game theoretical models [48–50]. As a starting point for the analysis

of more complex models of computational oncology in real-life human datasets of various can-

cer types, we provide our raw data for re-use by other groups. In addition to non-spatial mod-

els like the ordinary differential equation (ODE) models in this study, other studies have

explored the use of spatial models in the context of cancer immunotherapy. [45,46] However,

in these studies we found that it is very hard to fit the parameters of spatial models to clinical

routine data. Even simple spatial models have >25 free parameters, which means that for

every patient at least 25 measurements are needed (ideally much more). In comparison, the

ordinary differential equation (ODE) models in our study are much simpler and they only

have two or three free parameters. This simplicity enables fitting the model parameters to rou-

tine clinical data such as the databases used in our study. Furthermore, the use of non-spatial

models is supported by theoretical considerations. Solid tumors consist of billions of cells

which show some mobility in the immediates spatial vicinity. Tumors are not perfectly homo-

geneous in the spatial dimension, but if we assume that the relevant biological processes are

sufficiently similar in distinct parts of the tumor, spatial patterns do not have to be explicitly

modeled, but can be implicit as in ODE models. Ultimately, complex spatial models and sim-

plistic ODE models are both very valuable tools which could be implemented in the clinic in

different situations. Our present study provides the first large-scale evidence for the usefulness

of ODE models. Future studies should investigate more complex models in similar experimen-

tal approaches. In general, clinical utility remains the ultimate benchmark, as was pointed out

by Gerlee [51], “a model that is disconnected from reality in terms of mechanisms and dynam-

ics is acceptable, as long as it does the job of predicting”.

Ultimately, after refinement and prospective validation, such models could conceivably be

used in the clinic to provide guidance on treatment recommendations for cancer patients.

Unlike molecular biology-based biomarkers in the field of oncology, mathematical models

could potentially improve response prediction for individual cancer patients based on ubiqui-

tously available routine data.
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S1 Fig. Statistical comparison between the “up”/”down”/”fluctuate” and the standard

RECIST-based grouping “CR/PR”/”CR”/”PD”.

(TIF)

S2 Fig. Model fit to all patients with three or more measurements. (A) Model fit for all treat-

ment arms in all trials, stratified by final RECIST, for all models. The loss function is the Mean

Absolute Error (MAE, L1-Loss), after row-wise normalization. (B) Corresponding plot with-

out row-wise normalization, showing the raw MAE. The worst MAE in each figure is indicated

with “#” and best one is indicated with “�”. (C) Corresponding plot showing the Akaike Infor-

mation Criterion (AIC) which penalizes models with a large number of free parameters, row-

wise normalized. (D) Corresponding plot without row-wise normalization.
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S3 Fig. Model fit to all patients grouped by trajectory type and additional loss functions.
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S4 Fig. Goodness of fit for all models, all trial arms, all patient groups.
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S1 Data. Fully anonymized subset of the data containing the tumor volume measurements

for the target lesion and the respective study and treatment arm.
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