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In this paper, we study the shape and dynamics of helical coherent structures found
in the flow field of an annular swirling jet undergoing vortex breakdown. The flow
field is studied by means of time-resolved tomographic particle image velocimetry
measurements. The obtained flow fields are analysed using both classic and spectral
proper orthogonal decomposition. Despite the simple geometrical set-up of the annular
jet, the flow field is very complex. Two distinct large-scale helical flow structures are
identified: a single and a double helix, both co-rotating with the swirl direction, and it
is revealed that these structures are not higher harmonics of each other. The structures
have a relatively low energy content which makes it hard to separate them from other
dynamics of the flow field, notably turbulent motions. Because of this, classic proper
orthogonal decomposition fails to identify both structures properly. Spectral proper
orthogonal decomposition, on the other hand, allows them to be identified accurately
when the filter size is set at around eight times the precession period. The precession
frequencies of the single and double helices correspond to Strouhal numbers of 0.273
and 0.536 ± 0.005, respectively. A global stability analysis of the mean flow field
shows that these structures correspond to two separate global modes. The precessing
frequencies obtained by the stability analysis and the related spatial structures match
very well with the experimental observations. The current work extends our knowledge
on turbulent vortex breakdown and on mean field global stability theory in general. It
leads to the following conclusions. Firstly, single- and double-helix vortex breakdown
are both manifestations of global modes. Previous studies have shown that both m= 1
and m = 2 modes can coexist in swirling jets. However, the m = 2 mode has been
identified as a second harmonic of the first mode, while this study identifies both
as two independent global modes. Secondly, this work shows that the simultaneous
occurrence of multiple helical global modes is possible within a turbulent flow and
their shapes and frequencies are very well predicted by mean field stability analysis.

† Email address for correspondence: maarten.vanierschot@kuleuven.be
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883 A31-2 M. Vanierschot and others

The latter finding is of general interest as it applies to a wide class of fluid problems
dominated by multiple oscillatory structures.

Key words: vortex breakdown

1. Introduction
It is well known that swirling flows can sustain large-scale coherent structures,

such as vortex breakdown and the precessing vortex core (PVC), which can be
found in both laminar and turbulent flow regimes. A comprehensive overview of
these structures and their occurrence can be found in the reviews of Lucca-Negro &
O’Doherty (2001) and Syred (2006). Experimental studies show that vortex breakdown
can be classified in no less than seven different types. The two most commonly
observed, called bubble and spiral breakdown, were first reported by Lambourne &
Bryer (1961). In bubble breakdown, an axisymmetric region of flow recirculation is
formed near the central axis of rotation, acting as a bluff body in the flow. In spiral
breakdown, the vortex core breaks up into a helical structure, which precesses around
the central axis. Until now, due to the occurrence of several types of breakdown and
the often contradictory results because of a high sensitivity to boundary conditions,
there is still no general consensus about the origin of vortex breakdown. Recent
studies appear to support the criterion of Benjamin (1962), which states that vortex
breakdown is the transition from a supercritical to a subcritical flow. If this criterion
is applied locally at a certain axial location in the jet, it can predict the region
of bubble appearance (Ruith et al. 2003; Oberleithner et al. 2012). This has been
confirmed by the recent simulations of Vanierschot (2017) who showed that in a flow
region near the central axis, which is subcritical according to Benjamin’s definition,
an axisymmetric imbalance in the momentum equation grows exponentially, which
eventually leads to the formation of the vortex breakdown bubble. On the other
hand, spiral vortex breakdown or the PVC does not originate from axisymmetric
instabilities, but from helical ones. For low Reynolds numbers, many studies have
shown that spiral breakdown is the manifestation of a global mode of the flow which
develops in the periphery of the breakdown bubble (Ruith et al. 2003; Liang &
Maxworthy 2005; Gallaire et al. 2006; Oberleithner et al. 2011; Meliga, Gallaire &
Chomaz 2012a; Qadri, Mistry & Juniper 2013; Rukes et al. 2017). Two modes of
spiral breakdown have been observed: the single helix (|m| = 1) and the double helix
(|m| = 2), where m is the azimuthal wavenumber. The recent study of Meliga et al.
(2012a) shows that both single- and double-helix breakdown are bifurcations from
axisymmetric breakdown and that mode selection depends on the swirl number. In
experimental studies, observation of the double-helical mode is very rare (Sarpkaya
1971; Escudier & Zehnder 1982; Billant, Chomaz & Huerre 1998; Gallaire, Rott &
Chomaz 2004) as this type of breakdown is highly sensitive to disturbances. It is
mostly observed in pipe flows; however, it has also been reported to occur in flow
over a delta wing at large incidence angles (Calderon, Wang & Gursul 2012) or in
annular jet flows (Vanierschot, Percin & van Oudheusden 2018).

An annular jet is a special kind of jet flow, i.e. one comprising a round channel
with a parallel centrebody in the middle. This jet configuration is widely used in
bluff-body combustors. The specific appearance of a central bluff body creates a
central recirculation zone (CRZ) which enhances mixing and flame stabilization (Beér
& Chigier 1983; Gupta & Lilley 1984). Moreover, it can be used as a fuel injection
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Single- and double-helix vortex breakdown in swirling jet flow 883 A31-3

device or to induce a co-flow jet in the centre, e.g. in the Sydney burner (Dinesh
& Kirkpatrick 2009; Dinesh et al. 2012). The flow field of an annular jet can be
divided into three zones: the initial merging zone, the intermediate zone and the fully
merged zone (Ko & Chan 1979). The initial merging zone contains the wake behind
the centrebody, and extends up to the end of the potential core of the jet. In this
zone, two shear layers exist: an inner shear layer between the jet and the CRZ and an
outer shear layer between the jet and the surroundings. Both shear layers are prone
to Kelvin–Helmholtz instabilities which are convected downstream. For the inner
shear layer, the instabilities are convected back to the jet nozzle due to recirculation,
creating a very low-frequency meandering of the wake (Vanierschot et al. 2014). As
such, the position of the stagnation point at the end of the wake exhibits a dynamic
behaviour and velocity measurements show large fluctuations in that region (Durao
& Whitelaw 1978; Patte-Rouland et al. 2001; Danlos & Patte-Rouland 2013). This
low-frequency meandering can also be found in other types of wake flows, such as
behind Ahmed bodies (Lucas et al. 2017; Pavia, Passmore & Sardu 2018), blunt
bodies (Grandemange, Gohlke & Cadot 2013; Brackston et al. 2016), axisymmetric
wakes (Rigas et al. 2014, 2015) or axisymmetric afterbodies (Gentille et al. 2016,
2017). Adding swirl to an annular jet induces the same favourable effects as the
wake behind the inner body, i.e. the creation of regions of intensified mixing and
low flow velocity. For instance, in combustion, swirl is often added to the jet to
enhance flame stabilization. The addition of swirl has a significant impact on the flow
structures in the initial merging region of an annular jet. If a very small amount of
swirl is added, the Kelvin–Helmholtz instability in the inner and outer shear layers
becomes helical (Garcia-Villalba, Frohlich & Rodi 2006; Garcia-Villalba & Frohlich
2006; Jones, Lyra & Navarro-Martinex 2012; Zhang et al. 2015) and the meandering
of the wake at zero swirl transforms into a precession (Vanierschot & Van den Bulck
2011; Vanierschot et al. 2014). As the level of swirl is further increased, these helical
instabilities become stronger. At some point in the swirl increase, the CRZ behind
the centrebody opens and a toroidal vortex is formed (Sheen, Chen & Jeng 1996;
Vanierschot & Van den Bulck 2008). When the critical swirl number is reached, a
recirculation zone appears downstream, called the vortex breakdown bubble. With
further increase in swirl, this bubble moves upstream and interacts with the wake
behind the bluff body, creating a complex flow field. After merging of the CRZ and
the vortex breakdown bubble, the coherent structures in the flow are very similar to
the ones observed in round jet flows. Like for round jets, the PVC is reported as
a single helix which is wrapped around the breakdown bubble (Sheen et al. 1996;
Huang, Hsieh & Yang 2003; Huang & Yang 2005; Garcia-Villalba et al. 2006;
Garcia-Villalba & Frohlich 2006; Dinesh & Kirkpatrick 2009; O’Connor & Lieuwen
2012; Stoehr, Boxx & Campbell 2012; Falese, Gicquel & Poinsot 2014; Canepa et al.
2015; Poinsot 2017).

Local linear stability analysis (LSA) has been shown to predict the PVC with regard
to temporal frequency and spatial mode shape (Chomaz 2005) in both laminar flow
(Gallaire et al. 2006) and turbulent flow (Oberleithner et al. 2011; Rukes, Paschereit
& Oberleithner 2016), showing an excellent match between analytical results and
numerical or experimental data. In the turbulent case, LSA is not conducted on
the base flow but on the time-averaged mean flow which is nonlinearly modified
by turbulent stresses, entailing the global mode to stably oscillate at a limit cycle
(Barkley 2006). To accurately predict the PVC in turbulent environments, the direct
influence of the turbulent stresses on the global mode needs to be accounted for
with a turbulence model. It has been demonstrated that a Boussinesq eddy viscosity
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883 A31-4 M. Vanierschot and others

model calibrated against the Reynolds stresses is suitable (Crouch, Garbaruk &
Magidov 2007; Crouch et al. 2009; Meliga, Pujals & Serre 2012b; Mettot, Sipp
& Bézard 2014; Meliga, Cadot & Serre 2016; Rukes et al. 2016; Tammisola &
Juniper 2016). Recently, global LSA in conjunction with its adjoint counterpart has
become more common. The combination of direct and adjoint analyses is particularly
useful for localizing regions where the instability is sensitive to modifications and for
revealing the ‘wavemaker’ of the instability which is responsible for its continuous
self-excitation (Giannetti & Luchini 2007; Tammisola & Juniper 2016; Kaiser, Poinsot
& Oberleithner 2017).

In contrast to round jets, stability analyses for annular swirling jets are less common.
Instability-related studies focus mainly on two-phase flows where a liquid annular
jet emerges in a gas environment (Vadivukkarasan & Panchagnula 2017; Matas,
Delon & Cartellier 2018) or on reacting flows in combustor geometries (Terhaar,
Oberleithner & Paschereit 2015). To the authors’ knowledge, no studies exist for
single-phase non-reacting annular swirling flows. In this paper we aim to close this
knowledge gap by analysing the global modes and associated coherent structures of
an annular jet at moderate swirl level. Not only is the rarely observed double-helix
vortex breakdown in turbulent flow analysed in detail, but also the coexistence of two
global modes is demonstrated. Although the simultaneous occurrence of single- and
double-helical structures in the flow field has been reported in many papers previously
(Oberleithner et al. 2011; Tammisola & Juniper 2016), where the latter is a second
harmonic of the former, this study shows that both structures are independent global
modes and hence not harmonics of each other. The three-dimensional structures and
dynamics are investigated experimentally using time-resolved tomographic particle
image velocimetry (PIV) measurements. The flow fields are subsequently analysed
using (spectral) proper orthogonal decomposition. The physics involved are studied by
reconstruction of the flow field from the identified coherent modes and by a global
stability analysis of the mean flow field. The organization of the paper is as follows.
The experimental set-up and data processing techniques are described in § 2. The
flow field analysis and the identification of coherent modes and their dynamics are
described in § 3. The results of the global stability analysis are presented in § 4 and
compared to the experimentally observed flow structures resulting from the (spectral)
proper orthogonal decomposition of the experimental data. Finally, § 5 summarizes
the main conclusions.

2. Experimental set-up and data processing
2.1. The swirling jet facility

The investigation is carried out in a water facility. A schematic view of the
experimental set-up, including the tomographic PIV set-up, is shown in figure 1.
The swirling jet facility used in this study resembles a typical bluff-body combustor
geometry (figure 1a). The swirl generator was designed by the International Flame
Research Foundation (Dugué & Weber 1992). The fluid is supplied by a pump and
subsequently divided into six equal parts before entering the swirl generator through
six evenly distributed radial inlets. The arrows in the figure indicate the flow direction.
The flow passes a moveable block swirler which consists of 12 adjustable guide
vanes that allow the amount of swirl to be changed. After flowing through an annular
channel with an inner diameter Di = 18 mm and an outer diameter Do = 27 mm,
the jet issues into an octagonal water-filled tank which has a cross-sectional size
of 600 mm (≈22Do) and a height of 800 mm (≈30Do). The height of the annular
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Radial
inlet

Movable block
swirler
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(a) (b)

To reservoir

Laser

Flow meter
From pump

XY

Z

FIGURE 1. Schematic view of the experimental set-up. (a) Detail of the nozzle geometry
and the swirl generator used. (b) General view of the tomographic PIV set-up.

nozzle inside the octagonal bottom floor is H = 20 mm. The tank is made of
poly(methyl methacrylate) (acrylic glass) to ensure full optical access for illumination
and tomographic imaging and the dimensions are large enough to resemble the
conditions of a free jet. The symmetry axis of the jet is aligned with the y axis
in the measurement coordinate system with the origin located in the centre and at
the end of the inner tube. The velocity components in the x, y and z directions are
labelled as u, v and w, respectively. The working fluid is water with a density of
998.1 kg m−3 and kinematic viscosity of 0.9915 mm2 s−1. The flow rate is regulated
by a frequency-controlled submersible pump and the flow rate is fixed at 18 l min−1.
This results in a Reynolds number of 8500 based on the hydraulic diameter of
the annular jet (Dh = 9 mm) and mean outlet axial velocity v0 = 0.94 m s−1. The
integrated flow rate based on the measured axial velocity profile at the nozzle outlet
is within 3 % of the direct measurement by a rotameter. In this study, the amount of
swirl is characterized by the swirl number S, which is defined as the ratio of the flux
of tangential and axial momentum times outer radius:

S=

∫ 2π

0

∫ Di/2

Do/2
ρvvθr2 dr dθ

Do

2

∫ 2π

0

∫ Do/2

Di/2
ρv2r dr dθ

, (2.1)

where the azimuthal velocity component vθ is calculated based on averaging of the
profiles at the nozzle exit in the azimuthal direction and the overbar denotes time-
averaged quantities. In this study, the swirl number is kept constant at S= 0.36.

2.2. Data acquisition
The flow field is measured using time-resolved tomographic PIV. A schematic view
of the measurement system is shown in figure 1(b). Neutrally buoyant polyamide
spherical particles of 56 µm mean diameter were employed as tracer particles at
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883 A31-6 M. Vanierschot and others

a concentration of around 0.65 particles mm−3. The flow was illuminated by a
double-pulse Nd:YLF laser (Quantronix Darwin Duo, 2 × 25 mJ pulse−1 at 1 kHz)
with a wavelength of 527 nm. The light scattered by the particles was recorded by a
tomographic system composed of four HighSpeedStar 6 CMOS cameras (1024× 1024
pixels, 5400 frames s−1, pixel pitch of 20 µm). Each camera was equipped with a
Nikon 105 mm focal objective with a numerical aperture f = 32 to allow focused
imaging of the illuminated particles. The cameras were linearly arranged in a
horizontal plane with a viewing angle of 90◦, where the two outer cameras were
positioned/oriented along the x and z directions, respectively. The laser beam is
transformed by the use of optics into a cylindrical volume with a diameter of 1.2Do

and the height of the measurement domain is 1.8Do, resulting in a digital resolution
of 21.6 pixels mm−1. The choice of a cylindrical measurement volume eliminated the
need for a lens-tilt mechanism to comply with the Scheimpflug condition. Moreover,
the use of a cylindrical volume yields a more favourable condition for accurate
volumetric reconstruction because the particle image density does not change with the
viewing angle along the azimuth and decreases when moving towards the periphery
of the jet. The average particle image density is approximately 0.045 particles per
pixel. The images were captured in a single-frame mode at a recording frequency
of 2.5 kHz (which is about two orders of magnitude larger than the frequencies of
the coherent flow structures studied) to enable the visualization of the time-series
phenomena. A total of N = 5000 samples are taken to obtain a sufficient amount of
data for the decomposition analysis. This corresponds to a total acquisition time of
2 s, which is more than 50 times the precession period.

Image preprocessing, volume calibration, self-calibration, reconstruction and
three-dimensional cross-correlation-based interrogation were performed using LaVision
DaVis 8.1.6. A three-dimensional calibration target was scanned through the
measurement volume in order to obtain the mapping function between the camera
and the laboratory coordinate systems. The initial calibration was then refined by
using the volume self-calibration technique (Wieneke 2008), yielding a misalignment
of less than 0.05 pixels. The raw images were preprocessed with background intensity
removal and particle intensity normalization. The reconstruction of the tomograms was
performed by use of MLOS initialization (Atkinson & Soria 2009) and 10 CSMART
iterations with Gaussian smoothing after each iteration. The particle images were then
interrogated using windows of final size 48× 48× 48 voxels with an overlap factor of
75 %, resulting in a vector spacing of 0.56 mm in each measurement direction. The
dimensions of the measurement volume are 72 points in the x and z directions and
89 points in the y direction. The measurement error of the instantaneous velocities is
0.04vo and the error on the time-averaged velocities is 0.005vo. The reader is referred
to Percin, Vanierschot & van Oudheusden (2017) for a more detailed discussion
regarding the quality of the data and an error analysis.

2.3. Large-scale flow structure extraction
Tomographic PIV measurements provide a vast amount of measurement data. The
challenge to analyse these data is to separate turbulent or apparently stochastic features
from other coherent motions in the flow field. Usually, these coherent motions have
much longer time and much larger length scales compared to stochastic motions
of fine-scale turbulence. As such, they can be overlooked in data analysis as they
are often ‘masked’ by the latter ones. Several methods exist for the extraction of
large-scale flow structures from turbulent flow fields. The most widely used ones
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are classical Fourier decomposition, proper orthogonal decomposition (POD) or its
variants (Lumley 1970; Sirovich 1987; Boreé 2003), dynamic mode decomposition
(Rowley et al. 2009; Schmid 2010; Williams, Kevrekidis & Rowley 2015) and
very recently spectral proper orthogonal decomposition (SPOD) (Sieber, Paschereit
& Oberleithner 2016). In this study, we apply snapshot POD and SPOD. In both
techniques, the velocity field is decomposed into a set of spatial modes Φi(x) and
temporal coefficients ai(t) as

v(x, t)= v̄(x)+ v†(x)= v(x)+
N∑

i=1

ai(t)Φi(x), (2.2)

where v is a velocity vector with components u, v and w. The overbar denotes
time-averaged quantities and hence only the fluctuating velocity field is decomposed.
For the N snapshots in time obtained by tomographic PIV, the temporal coefficients
ai = [ai(t1), ai(t2), . . . , ai(tN)]

T and mode energies λi can be obtained by solving the
eigenvalue problem

Rai = λiai; λ1 > λ2 > · · ·> λn > 0, (2.3)

where the elements of the correlation matrix R are given by

Ri,j =
1
N

〈
v†(x, ti), v

†(x, tj)
〉
. (2.4)

As spatial inner product 〈 , 〉, the L2 norm is usually taken. The spatial modes
are obtained by the projection of the fluctuating velocity fields onto the temporal
coefficients as

Φi(x)=
1

Nλi

N∑
j=1

ai(tj)v
†(x, tj). (2.5)

If periodic coherent structures exist in the flow field, the matrix R has a diagonal
wave-like structure, also named diagonal similarity (Sieber et al. 2016). In SPOD, this
similarity is augmented by filtering the correlation matrix R along the diagonals using
a simple low-pass filter. This introduces the correlation matrix S, defined as

Si,j =

Nf∑
k=−Nf

gkRi+k,j+k, (2.6)

with g a vector of length 2Nf + 1 with filter coefficients and Nf the filter width.
The correlation matrix S can then substitute R in (2.3) and the velocity field is
decomposed using S instead of R. A study by Sieber et al. (2016) of different test
cases shows that optimal results are obtained if the filter size is one or two times the
period of the periodic structure in the flow field.

An important aspect in the flow-field analysis and decomposition using POD/SPOD
is the identification of linked modes. For instance, the dynamical behaviour of periodic
coherent structures, such as the PVC, is described by a mode pair. A mode pair is
defined as two modes in the decomposition that have the same spectral content and
a constant phase difference of ±π/2. As such, reconstructing the flow field with a
mode pair describes the precession of a coherent structure in the flow. A linked mode
pair ai(t) and aj(t) can be identified by looking at the harmonic correlation of the
eigenvectors of the dynamic mode decomposition of the temporal coefficients. More
detailed information on the identification of the pairs can be found in the work of
Sieber et al. (2016).
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2.4. Triple velocity decomposition
As the large-scale coherent vortical structures found in swirling flows precess around
the central axis of the jet, a simple Reynolds decomposition of the flow field into a
mean and fluctuating part is not appropriate. This decomposition makes no distinction
between the contributions of precession and turbulence to the fluctuating part of
the velocity. A more appropriate decomposition under this circumstance is the triple
velocity decomposition as first proposed by Hussain & Reynolds (1970). In this
decomposition, the instantaneous velocity field at time instant ti is decomposed into
three parts: a time-averaged (mean) flow field v, a quasi-periodic component ṽ
induced by large-scale coherent structures and a quasi-stochastic turbulent component
v′ according to

v(x, ti)= v(x)+ ṽ(x, ti)+ v′(x, ti). (2.7)

The large-scale coherent component ṽ can be found by reconstruction of the velocity
with the relevant mode pairs of the (S)POD decomposition as

ṽ(x, t)=
∑

k

(ak
i (t)Φ

k
i (x)+ ak

j (t)Φ
k
j (x)), (2.8)

where a mode pair k consists of (S)POD modes with indices i and j. The second-order
statistical moments ṽlṽm can be calculated (taking into account the orthogonality of the
temporal coefficients, i.e. aiaj = λiδij) as

ṽlṽm =
∑

k

(λk
iΦ

k
ilΦ

k
im + λ

k
jΦ

k
jlΦ

k
jm), (2.9)

where l and m are components of the vector Φ.

2.5. Linear stability analysis
Global LSA is employed to model the coherent velocity fluctuations, which are
then compared to the coherent velocity fluctuations determined by the SPOD
approach. The method is based on an eigenmode analysis of the linear operator
determining the evolution of perturbations on the mean flow field. The governing
equations are derived from the incompressible Navier–Stokes equations and the
incompressible continuity equation. Employing the triple decomposition ansatz
(see § 2.4), equation (2.7) is substituted into both of these equations and both are
time-averaged and phase-averaged. By subtracting the time-averaged set of equations
from the phase-averaged set of equations, one arrives at the governing equations for
the coherent velocity fluctuations (Reynolds & Hussain 1972):

∂ ṽ

∂t
+ ṽ · ∇v + v · ∇ṽ = −

∇p̃
ρ
+∇ · (ν(∇+∇>)ṽ)

−∇ · (τR + τN︸︷︷︸
≈0

), (2.10)

∇ · ṽ = 0, (2.11)

where τN = ũũ − ũũ describes the nonlinear interactions of the perturbation with its
higher harmonics (Mantič-Lugo, Arratia & Gallaire 2015). This term has zero mean
and can be interpreted as the fluctuation of the coherent Reynolds stresses due to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 D

el
ft

 U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y,

 o
n 

28
 F

eb
 2

02
2 

at
 1

2:
45

:3
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.872
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Single- and double-helix vortex breakdown in swirling jet flow 883 A31-9

nonlinear interaction with the higher harmonics. It is assumed that these interactions
are weak and the nonlinear term is neglected in the following. Turton, Tuckerman &
Barkley (2015) state that the neglect of the nonlinear term is justified if the interaction
of the fundamental with the higher harmonics is weak. In other words, it is assumed
that the nonlinear energy transfer between the fundamentals and higher harmonics is
weak compared to the energy transfer between mean and coherent field contained in
the remaining linear terms of (2.10).

The other term τR = 〈v
′v′〉 − v′v′ = ṽ′v′ describes the fluctuation of the stochastic

Reynolds stresses due to the passage of a coherent perturbation (Reynolds & Hussain
1972). This term must be modelled in order to close (2.10).

As mentioned earlier, in the context of swirling flows with a PVC, it is now well
established to use the Boussinesq eddy viscosity model as a closure (Oberleithner
et al. 2015; Rukes et al. 2016; Tammisola & Juniper 2016). This is done here as
well. It is also common to assume that the coherent fluctuations of the turbulent
kinetic energy are small enough to be negligible (Reynolds & Hussain 1972). With
that assumption one arrives at

τR = ṽ′v′ =−νt(∇+∇
>)ṽ. (2.12)

The unknown eddy viscosity is calculated from the measured velocity fields of the
experiment. As the turbulence of the swirling jet is highly anisotropic, the approach
in (2.12) yields six independent eddy viscosities. A reasonable compromise among
the six eddy viscosities can be achieved by using a least-squares fit over all resolved
stochastic Reynolds stresses (Ivanova, Noll & Aigner 2013):

νt =
〈−v′v′ + 2/3 · kI, S〉F

2〈S, S〉F
, (2.13)

where 〈·, ·〉F is the Frobenius inner product, k is the turbulent kinetic energy, I is
the identity tensor and S = 1/2 · (∇+∇>)v is the mean strain rate tensor. The eddy
viscosity is then simply added to the kinematic viscosity to form an effective viscosity
νeff = ν + νt. The effective viscosity then replaces the kinematic viscosity in (2.10).

The global LSA examines flows which are inhomogeneous in two or three spatial
dimensions. These are typically named bi-global and tri-global LSA (Theofilis 2011).
For the present work, a bi-global analysis suffices due to the homogeneity of the
mean flow along the azimuthal direction. Equations (2.10) and (2.11) are solved with
a normal mode ansatz in cylindrical coordinates:

q̃(x, t)= q̂(x, r)ei(mθ−λt)
+ c.c., (2.14)

where q̂ are the complex spatial amplitude functions of the velocities and the pressure,
m is the azimuthal wavenumber and λ is the complex frequency. Discretization and
rearrangement lead to a linear generalized eigenvalue problem with λ as eigenvalue.
Solving the eigenvalue problem provides the eigenmodes q̂, each accompanied by
one complex eigenvalue λ. The eigenvalue consists of a real part Re(λ) = ω that
corresponds to the angular frequency of the mode and of an imaginary part Im(λ)=σ
corresponding to the temporal growth rate. In the eigenspectrum, an oscillator mode
at the limit cycle, such as the PVC, is expected to be an eigenvalue isolated from
any continuous eigenvalue branch and approximately marginally stable (σ ≈ 0) since
the instability neither grows nor decays (Barkley 2006). With that criterion and the
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Inlet Outlet Walls Axis

v̂ = 0 ∂v̂/∂n= 0 v̂ = 0 v̂ = 0
v̂r = 0 ∂v̂r/∂n= 0 v̂r = 0 ∂v̂r/∂r= 0
v̂θ = 0 ∂v̂θ/∂n= 0 v̂θ = 0 ∂v̂θ/∂r= 0
p̂= 0 ∂ p̂/∂n= 0 ∂ p̂/∂n= 0 p̂= 0

TABLE 1. Boundary conditions of the global direct LSA.

known frequency from the experiment, the single-helix and the double-helix vortex
breakdown mode can be identified.

To obtain the adjoint modes, denoted with (·)+, the direct eigenvalue problem is
reformulated as an adjoint eigenvalue problem being derived from the continuous
formulation of the adjoint equations of (2.10) and (2.11) (Luchini & Bottaro 2014).
The adjoint mode can be interpreted as the receptivity of the direct mode with regard
to a periodic forcing (Sipp et al. 2010). Furthermore, the structural sensitivity of an
eigenvalue to mean flow modifications can be estimated via the Cauchy–Schwarz
inequality from the direct and adjoint modes. The structural sensitivity is then defined
by (Giannetti & Luchini 2007)

Λ= ‖ṽ‖ · ‖ṽ
+
‖. (2.15)

The regions of high structural sensitivity are interpreted as the wavemaker of the
global instability. This is because the overlap of high amplitudes in both the direct
and adjoint modes indicates the locations where the feedback among the coherent
fluctuations is the strongest (Giannetti & Luchini 2007).

The Fortran code MAFIA (Paredes 2014) is employed for the discretization of the
linearized Navier–Stokes and continuity equations (2.10) and (2.11), and for solving
the eigenvalue problem with the Arnoldi algorithm. A high-order finite-difference
scheme with non-uniformly distributed Chebyshev nodes is used for discretization.
A total number of 8500 nodes is employed for a converged solution. The boundary
conditions are set according to table 1. At the inlet, homogeneous Dirichlet boundary
conditions for velocity and pressure are imposed since coherent fluctuations are
not advected from upstream of the domain. At the outlet, homogeneous Neumann
boundary conditions for the velocity and pressure are set since the domain is truncated
at positions with remaining non-zero perturbations. For all walls, homogeneous
Dirichlet boundary conditions are imposed for the velocity due to the no-slip and
no-penetration condition. For the pressure, no physical boundary conditions exist.
However, a compatibility condition from the governing momentum equations can
be derived (Theofilis, Duck & Owen 2004). Substituting the homogeneous Dirichlet
conditions from the velocity into the linearized Navier–Stokes equation for the
coherent perturbation, knowing that the eddy viscosity is zero as per definition on
the wall, taking the inner product with the unit normal vector n at the respective
boundaries, and rearranging leads to

∂p
∂n
= ρν

∂2vn

∂n2
. (2.16)

Assuming ∂2vn/∂n2
≈ 0 provides homogeneous Neumann conditions for the pressure

on the walls. For the adjoint LSA, the same boundary conditions are applied as for
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FIGURE 2. Time-averaged flow field. The grey lines in the background denote streamlines.
(a) Radial profiles of v/v0. (b) Radial profiles of w/v0.

the direct modes except that the outlet conditions from table 1 are set to homogeneous
Dirichlet conditions. In the case of a converged adjoint solution, the adjoint eigenvalue
λ+ of the PVC is the complex conjugate of the direct eigenvalue λ. By that, the
adjoint eigenmode can be identified.

3. Flow-field analysis
3.1. Mean flow fields

The time-averaged flow field is shown in figure 2, where radial profiles of v/v0 and
w/v0 are depicted. The profiles of v/v0 are wake-like due to the presence of the
CRZ since the centrebody acts as a bluff body to the flow. This CRZ is toroidal due
to the presence of the strong swirling component near the nozzle outlet as similarly
observed by Vanierschot & Van den Bulck (2008) and Sheen et al. (1996). Further
downstream, a second recirculation zone appears, which is the vortex breakdown
bubble. This recirculation zone is very weak as the maximum downward velocity
is only 0.02v0 ± 0.005vo. The azimuthal velocity profiles close to the central axis
resemble a solid-body rotation (w = Ωy) for x/Do ≈ 0.9 with an angular rotational
frequency of Ω = 185 rad s−1 (figure 2b).

3.2. Coherent structure extraction
Recently, clear evidence of a double-helical structure has been identified in the flow
field of the same annular jet flow in both the velocity and pressure fields (Percin et al.
2017; Vanierschot et al. 2018). This double helix has the same features as the single-
helical PVC found in numerous other round or annular swirling jets: its branches are
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FIGURE 3. Energy contribution of mode pairs to the dynamics of the flow using POD and
SPOD. The diameter and colour of the points are a measure for the harmonic correlation
and the mode pairs are numbered with decreasing harmonic correlation strength. Mode
pair identification through (a) POD and (b) SPOD.

winded in the counter-swirl direction and the helix itself precesses along the central
axis in the swirl direction. Analysis of the velocity spectra at different locations in the
flow field showed a dominant peak at 28.2 Hz, corresponding to a Strouhal number
based on the hydraulic diameter and mean jet outlet velocity, St = fDh/v0, of 0.27.
A POD analysis of the pressure field (Percin et al. 2017) allowed both single- and
double-helical structures to be identified, with corresponding Strouhal numbers of 0.28
and 0.56. As the frequency of the double helix was double that of the single helix, the
authors speculated the double helix to be a higher harmonic of the single helix, as also
shown by Oberleithner et al. (2011). Besides this peak, several other peaks have been
observed, corresponding to motions of the wake behind the central body (Vanierschot
& Van den Bulck 2008; Vanierschot et al. 2014). Hence, the annular jet is not only
a very complicated flow field due to the presence of two interacting shear layers
and associated anisotropic structure of turbulence, but it also contains many coherent
structures with different time and length scales. Moreover, the possible coexistence of
single- and double-helical structures and their possible relation or interaction have not
been resolved and require further analysis.

An analysis of the mode pairs in the POD and SPOD and their associated energy
contribution is shown in figure 3. The four mode pairs with the highest harmonic
correlation are labelled. Modes with a high harmonic correlation represent oscillating
or precessing motions. In the POD in figure 3(a), these four modes also have the
highest energy content and hence represent dominating large-scale structures in the
flow field. However, considering the frequency spectra of the temporal coefficients
of these four pairs (figure 4), not one single but several distinct peaks are present.
For instance the peak found at St = 0.27 in the studies of Percin et al. (2017) and
Vanierschot et al. (2018) can be found in mode pairs II and III. This indicates that
contributions from several different structures in the flow with their own dynamics are
present in a single mode pair. In other words, POD spreads out the coherent structures
across multiple modes. Moreover, the double-helical structure found in the flow by
other studies can only be observed in mode pair IV (more specifically, modes 9 and
10 of the POD). The energy content (around 3.9 %) is too low for the POD to separate
it from other dynamical structures and noise in the data.

The mode pairs obtained by SPOD are shown in figure 3(b). A filter width of four
to eight times the period of the motion to be studied was found to be the optimum.
Increasing the filter width corresponds to narrowing the bandpass filter width in the
spectrum of the coefficients (Sieber et al. 2016). If the filter size Nf and hence the
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FIGURE 4. Power spectral density of the first four mode pairs in the POD. The solid line
corresponds to the first mode of the pair and the dashed line to the second one. Power
spectral density of (a) mode pair I (modes 1 and 2), (b) mode pair II (modes 3 and 4),
(c) mode pair III (modes 5 and 6) and (d) mode pair IV (modes 9 and 10).

spectral attenuation width are too small, several other peaks can be found in the
spectra (similar to that for the conventional POD) and if the filter width is too large,
the spectrum evolves towards a discrete Fourier transformation, which cannot take
into account jitter in the frequency and modulation of the amplitude and is more
prone to measurement noise. The optimal filter width obtained here is larger than the
one found by Sieber et al. (2016), indicating the strong dependence of Nf on the flow
topology. One could say that a good procedure would be to take the smallest value
for which the frequency spectra of the time coefficients show no frequency content
from other flow structures.

In figure 3(b), the four pairs with the highest harmonic correlation are identical to
those of the POD. However, the individual order is different as is also the energy
content. The power spectral density of the temporal coefficients of these pairs is shown
in figure 5. Pairs II and III correspond to motions of the wake and bubble (Vanierschot
& Van den Bulck 2008; Vanierschot et al. 2014). As the structures in these pairs have
a rather low-frequency content, the filter size is too small to enhance the diagonal
similarity and several peaks are therefore still present in the spectrum. These structures
were also found in the POD and will not be considered further to limit the scope of
the study, which focuses on the helical instabilities in the jet. Besides those modes,
two other mode pairs displaying distinct frequencies emerge: a dominant one at St=
0.273± 0.005 with 3.9 % energy content and a second one at St= 0.536± 0.005 with
2 % energy content. In the following, we go into more detail of the dynamics of mode
pairs I and IV.
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FIGURE 5. Power spectral density of the first four mode pairs in the SPOD. The solid line
corresponds to the first mode of the pair and the dashed line to the second one. Power
spectral density of (a) mode pair I (modes 6 and 7), (b) mode pair II (modes 1 and 2),
(c) mode pair III (modes 3 and 4) and (d) mode pair IV (modes 20 and 21).

3.3. Mode pair I: a single-helical PVC
Mode pair I in the SPOD spectrum in figure 3(b) consists of modes 6 and 7
(according to energy ranking) in the SPOD. The temporal coefficients, scaled with
the single mode energy, are shown in figure 6(a). From the figure it is clear that
the phase shift between the two time coefficients is π/2 as the minima and maxima
of one coefficient correspond to the zeros of the other one and vice versa. Also
the circular shape of the Lissajous curves (phase portraits) in figure 6(b) confirms
this. Frequency spectra of the temporal coefficients (figure 5a) show a clear peak
at 28.5 Hz or St = 0.273 with equal magnitude for both coefficients of the pair.
Figure 6(a) reveals that the single helix is not always present in the flow. The
amplitude evolves from zero towards the limit cycle and back in a seemingly random
way. This evolution in amplitude suggests that the mode is a marginally stable one and
it gets excited by turbulent fluctuations or due to stochastic changes of the mean flow
field (slow drift modes). More generally, in dynamical system theory the observation
of a stable mode due to random forcing is also referred to as coherence resonance.
Since the single-helical structure is not always present in the flow, it has a relatively
low time-averaged energy content, making it very hard to be detected by POD. The
spatial structure of the mode pair is shown in figure 6(c) and is visualized using the
Q-criterion (Jeong & Hussain 1995). Each mode consists of a double-helical structure
and the phase angle between the two modes is π/2. Recombining the investigated
mode pair with the mean flow field (figure 6d) shows a single-helical structure
which is wrapped up in the counter-swirl direction upstream of the vortex breakdown
bubble (visualized by the downstream black isocontour surface of zero axial velocity
in the figure).
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FIGURE 6. Temporal and spatial characteristics of mode pair I (modes 6 and 7 in the
SPOD). (a) Evolution of the temporal coefficients. Solid line: a6(t); dashed line: a7(t).
(b) Phase portrait. (c) Spatial structure of modes 6 and 7. Isocontours of Q = 0.25 s−2.
Blue: mode 6; red: mode 7. (d) Reconstructed velocity field with only mode pair I. The
light blue lines are isovalues of Q = 0.04 s−2 and the black surfaces are isosurfaces of
zero axial velocity.

3.4. Mode pair IV: a double-helical PVC
Mode pair IV in the SPOD spectrum in figure 3(b) consists of modes 20 and 21 in the
SPOD. The temporal coefficients are shown in figure 7(a). Similar to mode pair I, the
phase shift between the time coefficients is π/2, again confirmed by the circles in the
Lissajous curves (phase portraits) in figure 7(b). Frequency spectra of the coefficients
in figure 5(d) show a clear peak at 56 Hz or St= 0.536 which is equal in magnitude
for both coefficients. This frequency is double the frequency of mode pair I within
measurement accuracy. Together with the observation that the azimuthal wavenumber
is also double, one might think that the double helix is the first harmonic of the
single helix. However, figure 8 shows that mode pair IV is not a higher harmonic
of mode pair I. If this were the case, the Lissajous curves in figure 8(a) should have
a figure-of-eight shape. Nevertheless, plotting the phase portrait might be corrupted
by intermittence and phase distortion of both modes and therefore a more detailed
statistical analysis is given in figure 8(b,c). If the two modes were harmonics of each
other, the plot of φIV versus φI should give an arrangement of the dots in three major
diagonals, where φI = arctan(a6/a7) and φIV = arctan(a20/a21) are the phase angles of
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FIGURE 7. Temporal and spatial characteristics of mode pair IV (modes 20 and 21 in the
SPOD). (a) Evolution of the temporal coefficients. Solid line: a20(t); dashed line: a21(t).
(b) Phase portrait. (c) Spatial structure of modes 20 and 21. Isocontours of Q= 0.5 s−2.
Blue: mode 20; red: mode 21. (d) Reconstructed velocity field with only mode pair IV.
The light blue lines are isovalues of Q= 0.035 s−2 and the black surfaces are isosurfaces
of zero axial velocity.

the mode pairs. The scattering of the data shows that this is clearly not the case. Also,
if one were to plot the statistical histogram of the variable 2φI − φIV , and the modes
happen to be harmonics of each other, the fixed phase relation should give one clear
peak in the histogram. Figure 8(c) shows that there is no statistical correlation, and
hence it can be concluded that the modes are not harmonics of each other.

Figure 7(a) shows that mode pair IV is not always present in the flow, similar to
the observations made for mode pair I. Comparison of figures 6(a) and 7(a) shows
that there is no clear correlation between the appearance of the single and double
helix in the flow field as both modes can coexist for some time intervals, while
for other intervals only one of the two is present. Also, mode pair IV is more
dynamic compared to mode pair I as the amplitude grows/decays more often. The
spatial structure of mode pair IV is shown in figure 7(c). This indicates two different
regions where the vortical structures are oriented differently. In the breakdown region
the mode has a helical structure, similar to mode pair I, but in the wake region
the vortical structures are oriented along the streamwise direction. The orientation
of the vortices indicates different orientations of the mean strain rates that produce
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FIGURE 8. Analysis of the correlation between the phase angle of mode pair I and that of
mode pair IV. (a) First temporal coefficient of mode pair IV versus mode pair I. (b) Phase
angle of mode pair I versus mode pair IV. (c) Histogram of the phase difference of mode
pair I and mode pair IV.

the vorticity. In the breakdown region, the superposition of axial and azimuthal
velocities gives rise to helical vortical structures. In contrast, there is little axial
velocity in the wake region behind the bluff body of the jet, which leads to a
streamwise orientation of the vorticity. The mode shape indicates a linked dynamic
in the two regions, which is in contrast to the single-helical structure. Recombining
the flow field (figure 7d) reveals a double-helical structure which is wrapped up
in the counter-swirl direction upstream of the vortex breakdown bubble (visualized
by the downstream black isocontour surface of zero axial velocity in the figure).
Once reconstructed in combination with the mean flow field, both structures precess
at an angular frequency ω = 2πf /m, where m is the azimuthal wavenumber and
f is the frequency corresponding to the peak in the power spectral density of the
corresponding temporal mode coefficients. This results in a phase rotation rate of
ω = 180 rad s−1 for both structures as the frequency peak of the double helix is
more or less double that of the single helix and the azimuthal wavenumber is also
double. This value is very close to the bulk rotation rate of the jet at the axial
location where the cores break up, ω= 185 rad s−1, defined as the slope at the axis
of the radial profiles of rotational velocity just upstream of the vortex breakdown
bubble (figure 2b).
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FIGURE 9. Coherent contribution to the second-order statistics of the single-helical (a–c)
and double-helical (d–f ) precession: (a) ũũ/v2

0 × 100; (b) ṽṽ/v2
0 × 100; (c) w̃w̃/v2

0 × 100;
(d) ũũ/v2

0 × 100; (e) ṽṽ/v2
0 × 100; ( f ) w̃w̃/v2

0 × 100.

The dynamics of the two large-scale structures in the flow introduces extra mixing
in the flow field. To quantify this mixing, figure 9 shows the contribution of both
precessions to the second-order statistics (called the coherent stresses) of the flow. The
single helix has the highest coherent stresses near the region where the central vortex
core breaks up in a single helix. Slightly upstream of the bubble, the horizontal
velocity components (u and w) have the highest fluctuations, while for the axial
velocity v the fluctuations are highest in the shear layer between the vortex breakdown
bubble and the jet. The double helix shows a different behaviour. Both u and w show
large values in a region immediately downstream of the CRZ and in the shear layer
between the vortex breakdown bubble and the jet. Comparison with the statistical
data of Percin et al. (2017) shows that despite the low energy content of the two
precession motions (around 4 % and 2 %, respectively), the impact on the second-order
statistics in the near-bubble region is significant with contributions of around 16 %
for ũũ and ṽṽ and of 30 % for w̃w̃. Analogous to the production of turbulent kinetic
energy caused by mean shear, the contribution of the coherent flow component to the
production of the kinetic energy can be written as

P=−ṽjṽi
∂vi

∂xj
, (3.1)

where the expression is written in Einstein notation. The production of coherent
kinetic energy for the two helical modes is shown in figure 10. High values indicate
regions where the coherent structures extract energy from the mean flow. It can be
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FIGURE 10. Kinetic energy production P (m2 s−3) of (a) the single helix and (b) the
double helix.

seen that both the single and double helices extract energy from the shear layer
between the vortex breakdown bubble and the jet, albeit somewhat more downstream
for the double helix, while the former extracts more energy. The double helix also
extracts a smaller amount of energy from the mean flow at the end of the CRZ.

4. Results of the global LSA
4.1. Frequency, growth rate and mode structure

The eigenvalues obtained by the global direct LSA are displayed in figure 11. The
spectrum is entirely stable since the growth rate of every eigenvalue is below the
stability limit with σ < 0. The eigenvalues marked with filled symbols correspond
to the selected modes of interest that represent the single- and double-helical modes
in the best possible way within the constraints of the normal mode basis. Further
elaborations on convergence and accuracy of the eigenspectrum are provided in
appendices A and B. Considering the single-helical spectrum (azimuthal wavenumber
m = 1), the least stable eigenvalue represents the single-helical mode found in
the experiment. Its frequency of St = 0.268 is very similar to the experimentally
measured frequency of St = 0.273 with a relative error of less than 2 %. For
the double-helical spectrum (azimuthal wavenumber m = 2), the eigenvalue with
a frequency of St= 0.464 represents the double-helical mode found in the experiment.
In this case, the error relative to the experimentally obtained Strouhal number is
approximately 13 %. The larger mismatch can be attributed to the position of the
wavemaker, related to regions of recirculation in conjunction with the strong mean
flow gradients occurring in its vicinity. Since the predicted LSA frequency is quite
sensitive with regard to changes of the swirl velocity in the wavemaker region, any
measurement error of tomographic PIV has a significant impact. This is likely to
be the cause for the frequency mismatch. This is further shown and discussed in
appendix A.
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FIGURE 11. Eigenvalue spectrum with non-dimensional growth rate σDh/v0 over Strouhal
number St obtained by global direct LSA of the mean flow for azimuthal wavenumber
m= 1 and 2. Filled symbols (u,p) denote the identified single-helical and double-helical
modes, vertical solid lines denote the experimentally measured Strouhal numbers and the
horizontal dashed line denotes the stability limit.

The growth rates being close to but below the stability limit (σ . 0) reflect the
property of both global modes existing only due to continuous stochastic forcing.
The small negative values of the growth rates indicate that the modes only decay
very slowly over large periods of time (note that the time scale of decay is more
than an order of magnitude larger than the time scale of oscillation). However, for
short periods of time, the modes can still transiently grow when stochastic forcing is
applied. For the single-helical mode (m = 1), the growth rate is associated with an
error due to domain truncation at the outlet boundary. A shift of the outlet boundary
in the upstream direction of up to 30 % results in an increase of the negative growth
rate (see appendix C). This is associated with the truncation of the region of high
structural sensitivity (shown and discussed further below), meaning that a significant
part of the wavemaker centred around y/Do ≈ 1.3 is excluded. Therefore, it can be
expected that the correct growth rate of the single-helical mode is actually even closer
to the stability limit. In the case of the double-helical mode (m = 2), no sensitivity
of the growth rate due to domain truncation is identified. This is attributed to the
primary wavemaker being located far upstream at the end of the recirculation bubble,
concentrated around y/Do ≈ 0.4.

The spatial structure of both single- and double-helical modes, based on the
Q criterion, is shown in figure 12. Comparing the mode of m = 1 extracted via
SPOD (see figure 6) to the mode predicted by global LSA, it is evident that a
good match exists in some parts, while in other parts a slight mismatch can be
observed. The inclination angle of the isosurfaces representing the counter-winding
vortices is associated with the axial wavelength and it can be seen that prediction and
measurement match very well. The increasing radial spread in the downstream
direction is related to the convective growth and the LSA correctly captures
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FIGURE 12. Spatial structure of the identified PVC modes obtained by global direct LSA;
isosurface of Q criterion (arbitrary scale and arbitrary phase angle); blue, real part; red,
imaginary part. Vector field shows the real part of the coherent fluctuations projected onto
the plane x= 0. (a) Single-helical mode (m= 1). (b) Double-helical mode (m= 2).

this property. Additionally, the location where the mode starts to initially grow
is predicted accurately as well. For m= 2 (compared to figure 7), there are also clear
similarities, although there is some mismatch too. The initiation of the double-helical
mode far upstream at the end of the recirculation bubble is correctly predicted
including the large axial wavelengths, resulting in a very small inclination angle
of the counter-winding vortices. Downstream of the bubble, the mode decays at
first, before it is again amplified in the axial direction. This trend is reproduced by
the LSA mode as well. In the second region of convective amplification, the axial
wavelength is slightly underpredicted compared to the SPOD mode, leading to a
steeper inclination angle of the counter-winding vortices. Furthermore, the convective
growth is overpredicted, leading to a larger radial spread of the mode. The mismatch
towards the outlet boundary is likely to have the same cause as the mismatch of the
frequency, which is rooted in potential inaccuracies in the wavemaker region due to
very strong mean flow gradients.

4.2. Structural sensitivity and wavemaker
Figure 13 shows the structural sensitivity of the two identified global modes. This
is high where the receptivity, represented by the adjoint mode, and the forcing,
represented by the direct mode, have their combined maximum. These regions of
high structural sensitivity correspond to the wavemaker of the respective modes
where the self-excitation mechanism acts. In both cases the wavemaker positions
are associated with regions of mean recirculation, supporting a self-excited feedback
loop due to reverse flow. The wavemaker of the single-helical mode is located in the
centre of the vortex breakdown bubble around y/Do≈ 1.3. This thin recirculation strip,
associated with the single-helix wavemaker, is completely detached from the upstream
large recirculation bubble located at the exit of the annulus. For the double-helical
mode, two wavemakers exist. The first is located at the downstream end of the
recirculation bubble around y/Do ≈ 0.4 and is responsible for the initial growth of
the amplitude as observed in figure 12. The second wavemaker is bordered at the
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FIGURE 13. Structural sensitivity Λ of the identified global modes obtained by global
direct and adjoint LSA. Grey lines denote streamlines and thick blue lines denote contours
of zero axial velocity indicating the recirculation zones. (a) Single-helical mode (m= 1).
(b) Double-helical mode (m= 2).

vortex breakdown bubble, close to the wavemaker of the single-helical mode. It
is responsible for the re-initiation of growth towards the downstream end of the
domain. The first, upstream-lying wavemaker is the primary wavemaker of the mode
since the truncation of the second, downstream-lying wavemaker does not affect
the frequency and the growth rate of the double-helical mode, as discussed above
(also see appendix C). The clear spatial separation of the single-helical wavemaker
and the primary double-helical wavemaker demonstrates the independence of the
self-excitation mechanisms. The double helix is explicitly no higher harmonic of
the single helix and both modes have completely different sources. Moreover, the
close proximity of the single-helical wavemaker and the secondary double-helical
wavemaker coincides with the competition of both modes as observed for the
temporal coefficients in figures 6 and 7. Notably, the bulk production of coherent
kinetic energy (see figure 10) for both modes is slightly spatially shifted with the
single-helical and secondary double-helical wavemaker. The maximum of production
is reached slightly upstream of these wavemakers. This reflects an essential feature
of both global modes. Coherent fluctuations are produced and subsequently advected
downstream where they are fed to their respective wavemakers, sustaining the loop of
self-excitation. Surprisingly, however, this does not apply to the primary wavemaker
of the double helix. There, the main production starts downstream of the wavemaker.

5. Conclusions
In this paper, the flow field of an annular swirling jet has been studied by means

of time-resolved tomographic PIV. The large-scale dynamics was extracted by classic
POD and SPOD. Despite the simple geometrical configuration of the annular jet, the
flow field is very complex. Two distinct helical structures were found: a single-helical
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structure with an azimuthal wavenumber m = 1 and a double-helical structure with
an azimuthal wavenumber m = 2. The energy content of these modes was very low
and both structures were only intermittently present. For this reason, classic snapshot
POD failed to extract these modes in a consistent way as it distributes their dynamics
across several modes. However, SPOD delivers a mode space that allows the dynamics
of the two modes to be clearly identified. The first helical structure (the single-helix
mode) was precessing at a frequency of St= 0.273, while that of the double helix was
St= 0.536. Analysis of the temporal coefficients obtained by SPOD showed that the
structures are not harmonics of each other. Both structures have a significant impact
on the turbulent statistics and the mean flow. The calculation of coherent production
shows that the single helix extracts its energy from the shear layer between the vortex
breakdown bubble and the jet, while the double helix extracts a part of the energy
immediately downstream of the CRZ and in the shear layer between breakdown
bubble and jet.

Global LSA was employed based on the measured mean flow. Two converged global
modes were identified that matched very well with the empirically found structures
in terms of frequency and mode shape. Furthermore, the structural sensitivity of the
two modes was calculated using the corresponding adjoint modes and the wavemaker
regions were identified. The clear spatial separation of both (primary) wavemaker
regions demonstrates the independence of the respective self-excitation mechanisms.
This further supports that the double-helical mode is not a higher harmonic of
the single-helical mode and that both modes have completely different sources.
Furthermore, both modes were found to be stable but close to the stability limit,
which suggests that they are only present in the data due to a continuous stochastic
forcing. This is also supported by the observation that both modes are competing
and each occurs only intermittently. The reason why mean flow analysis still captures
both modes well is likely because both are still close to their bifurcation point and
the stochastic forcing allows both to arise intermittently. To the authors’ knowledge,
the capability of mean flow stability analysis to capture two intermittently coexisting
helical global modes in a highly three-dimensional turbulent flow has not been
demonstrated before. Moreover, this paper shows that a detailed insight into the
dynamics of these competing modes is only possible through the combination of the
results from empirical mode identification from experimental data and analytic mode
predictions from mean flow global LSA.
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Appendix A. Considerations on accuracy of the global LSA

Figure 14 shows, for x/Do > 0, the solid-body rotation rate w/x at every location in
the field as well as the locations of both wavemakers. Accounting for the single and
double helicity of both modes, the phase rotation rate Ωm =mw/x at the wavemaker
locations can be specified with Ω1≈ 115 rad s−1 for m= 1 and Ω2≈ 220 rad s−1 for
m = 2. The ratio of phase rotation rate and the global frequency predicted by LSA
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FIGURE 14. Mean azimuthal velocity with wavemakers for modes m = 1 and m = 2
corresponding to regions 1 and 2 of solid-body rotation are denoted by WM 1 and WM 2,
respectively; solid and dashed lines define aforementioned regions of solid-body rotation.

is Ωm/(2πfLSA,m)≈ 0.7 for both modes. This demonstrates that the solid-body rotation
rate at the wavemaker location and the global LSA frequency are closely related.

In regions where the swirling jet rotates as a solid body, the solid-body rotation rate
w/x should ideally stay constant with increasing distance to the centreline. In fact, the
wavemaker for the single-helical mode m= 1 is located in a region where the solid-
body rotation rate stays almost constant for increasing x. In contrast, the wavemaker
for the double-helical mode m = 2 resides in a region where the flow clearly does
not rotate as a solid body since the solid-body rotation rate shows a steep decrease
with increasing x. This implies a higher sensitivity of the global LSA frequency to
errors in the prediction of the wavemaker location. Since the wavemaker location is
strongly related to the border of the recirculation bubble (e.g. Qadri et al. 2013), a
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slight misprediction of the bubble position and, thus, the wavemaker location can have
a large effect on the prediction of the LSA frequency.

The sensitivity of the predicted LSA frequency due to uncertainties of the
breakdown bubble position can be examined by, for example, considering the vector
spacing of the post-processed tomographic PIV data (see § 2.2). The vector spacing
is δ/Do ≈ 0.02. Assuming the ratio of phase rotation rate and global LSA frequency
Ωm/(2πfLSA,m)≈ 0.7 to be constant for slight displacements of the breakdown bubble
and, thus, the wavemaker, the impact on the phase rotation rate and, thus, the
predicted global LSA frequency can be estimated. For m = 1, displacements of one
unit of vector spacing δ/Do≈ 0.02 in x or y direction would lead to a change of LSA
frequency of below 3 %. In contrast, a displacement of one unit of vector spacing in
y direction would lead to a change of LSA frequency by 4 % and in x direction to a
change by 21 %. On the other hand, the relative error in comparison to the ‘correct’
experimentally measured global frequency is 13 %. Therefore, the error of the LSA
frequency is actually smaller than the frequency uncertainty related to the relatively
coarse vector spacing.

Appendix B. Considerations on convergence of the global LSA
The main issue regarding full convergence of the selected modes of interest is

the limited spatial resolution of the tomographic PIV data. In cases where the mesh
grid of the global LSA is coarser than the grid of the PIV, the change of most of
the eigenvalues with increasing mesh resolution follows a monotonic trend. When
the mesh of the global LSA is finer than the grid of the PIV, the changes of the
eigenvalues become small but seemingly ‘random’ since the addition of nodes no
longer provides any additional information. These ‘random’ changes can be basically
attributed to discretization errors caused by the employed interpolation scheme coupled
with the choice of finite-difference scheme. Therefore, the classical way of showing
convergence of the spurious modes and of the modes of interest is difficult.

For these reasons, we resort to other means of selecting the best-fitting eigenvalue
to obtain the mode of interest for m = 1 and m = 2. Within the constraints of the
modal basis, the goal is to find the eigenvalue that represents the global modes m= 1
and m= 2 optimally, based on inspection of (1) stability, (2) frequency and (3) mesh
sensitivity. Mesh sensitivity of an eigenvalue can be used as an indicator for spurious
and non-physical modes that can be ignored in the context of global instabilities (Sipp
et al. 2010). The mesh sensitivity is quantitatively assessed by calculating the standard
deviation of the eigenvalue change over all considered mesh sizes. Figure 15(a) shows
the eigenvalue spectrum for different mesh resolutions for m= 1. The selected mode
of interest directly fulfils criteria 1 and 2 in that it is the least stable eigenvalue
while matching the measured frequency with least error. Additionally, it is one of
the eigenvalues with the lowest mesh sensitivity (criterion 3). For m = 2 the proper
selection is more difficult (see figure 15b). The selected mode of interest is not the
least stable. However, it is one of the least stable modes (criterion 1) which are still
close enough to the measured frequency (criterion 2). Additionally, the eigenvalue is
one of the least mesh-sensitive (criterion 3).

Appendix C. Impact of domain truncation on global LSA
Figure 16 shows the impact of domain truncation on the predicted global LSA

frequency and growth rate. For the single-helical mode m= 1, the predicted frequency
increases by almost 13 % when 30 % of the downstream domain is truncated.
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FIGURE 15. Eigenvalue spectrum for different mesh resolutions, where 100 % mesh
resolution corresponds to reference mesh with resolution approximately equal to PIV
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(quantified via standard deviation) and vertical lines denote experimentally measured
Strouhal number. (a) Mode m= 1 and (b) mode m= 2.
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FIGURE 16. Impact of domain truncation on global LSA. Here yout/Do denotes axial
position of truncation where furthest to the right corresponds to no truncation and furthest
to the left corresponds to more than 30 % truncation of downstream domain. (a) Global
LSA frequency fDh/v0. (b) Growth rate σDh/v0.

Likewise, the growth rate shows a general trend of decrease by around 50 %. This
demonstrates that truncating regions of the wavemaker of m = 1, which is centred
at y/Do = 1.3, affects the predictive quality of the global LSA for the single-helical
mode. In contrast, the double-helical mode m = 2 shows no sensitivity with regard
to the considered domain truncations. Global LSA frequency and growth rate stay
nearly constant. Although the structural sensitivity of m = 2 is high in two isolated
regions around y/Do = 0.4 and y/Do = 1.3, the insensitivity of frequency and growth
rate with regard to truncating up to y/Do = 1.3 clearly demonstrates that the primary
wavemaker of m= 2 is located in the upstream region at y/Do = 0.4.
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