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Abstract—The increasing capacity of offshore wind energy
around the world brings challenges in Operation and Mainte-
nance (O&M) management. Over the past years, many studies
have focused on developing sound maintenance strategies in order
to minimize maintenance cost or maximize availability. One of the
promising maintenance strategies is opportunistic maintenance
due to its potential to combine maintenance activities and save
maintenance efforts. In these models, a common assumption is
made that input parameters are deterministic and maintenance
decisions are made based on these assumed deterministic input
parameters. However, offshore wind farm maintenance in the
practical world is a complicated task where multiple types of
uncertainty exist. These uncertainties may affect evaluation or
output of the maintenance model, making maintenance decisions
sub-optimal or even inappropriate. In this paper, a probabilistic
simulation-based approach integrating an uncertainty module
and a simulation module is proposed to study the influence
of the uncertainties on maintenance performance. We identify
the primary input parameters which should be considered as
uncertainty but are simplified to be deterministic values in
offshore wind energy maintenance models. These deterministic
parameters are modelled as stochastic values in the uncertainty
module to generate uncertainty scenarios. The simulation module
for opportunistic maintenance is developed to quantify the ex-
pected maintenance cost and lost production. The most influential
uncertainties are identified. Valuable information and suggestions
are provided to offshore wind farm owners for future decision-
making and project management.

Index Terms—maintenance strategy, uncertainty, offshore wind
energy, operation and maintenance

I. INTRODUCTION

Europe, the largest regional offshore wind energy market

globally, is expected to devote more effort to developing

offshore wind energy in the future. New annual installation

in Europe is estimated to be more than 10 GW in 2026, and

gradually increases to as much as 15 GW in 2030 [1]. With

the increase of operational capacity, an effective Operation

and Maintenance (O&M) strategy to increase wind farm

availability with less cost is in urgent demand for industry.

As a type of complicated technical activity, O&M performed

in offshore wind farm, is always affected by various fac-

This research is financially supported by the scholarship from China
Scholarship Council (CSC) under the Grant CSC NO. 201906680095.

tors including environmental conditions, technician expertise,

maintenance source availability, etc. It means practical main-

tenance situations are always uncertain and varying, rather

than deterministic or fixed. Although it is understood that

the O&M should be organized under uncertain conditions and

parameters, most of the existing O&M models still assume that

the model inputs are deterministic and constant, disagreeing

with the real world. Ignoring uncertainties possibly make the

expected maintenance consequences considerably different,

and the final decision making is largely influenced.

In recent years, some studies have noticed this gap. Refer-

ence [2] investigated the impact of uncertain component failure

distributions at constant failure rates on the offshore wind farm

availability. Reference [3] performed a sensitivity analysis

to identify the most significant factors of O&M affecting

operating cost and availability of offshore wind farms. Ref-

erence [4] used the probabilistic method to model reliability

data uncertainty and the fuzzy logic to model failure cost

uncertainty. The impacts of these uncertainties on operational

and economic performance of offshore wind turbine are shown

in the paper.

We can find the above literature solely studied the influence

of one or two maintenance uncertainties on availability or cost,

but no paper attempted to identify and conclude the primary

uncertain input parameters affecting maintenance decisions,

and then estimate the influence from the perspective of both

availability and maintenance cost. In addition, these studies

paid attention to the scenario where conventional time-based

maintenance strategy is applied. People are seeking new main-

tenance strategies potential for future offshore wind farm, and

one termed as opportunistic maintenance is attracting people’s

attention, where maintenance activities are combined accord-

ing to the condition/age/reliability of turbine components [5].

No study before has focused on the influence of uncertainty on

the performance of opportunistic maintenance model. Further,

it is noted that the previous literature usually adopted non-

probabilistic methods such as the deterministic sensitivity

analysis and the fuzzy model. These methods are commonly

used to model uncertainty of input parameters or examine

impact of parameter uncertainty, but they can not inform the
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decision-makers how likely a specific value or range of values

will be observed. Further, the range of input parameters chosen

is often arbitrary in the deterministic sensitivity analysis, and

no insight in effects at the margin can be provided [6].

Uncertainty deserves our attention during the entire O&M

process, but it should be explained that the focus of this

work is to study the influence of uncertain input parameters

on the opportunistic maintenance model. O&M for offshore

wind farms encompasses a broad spectrum of services, com-

petencies, processes, and tools required to ensure turbines

can operate as they were designed. A sound organization of

O&M relied on good performance of different technologies

and effective coordination of decision makers. The existence

of uncertainty is inevitable during the application of tech-

nology and the process of decision-making. For instance,

as a significant O&M technology, condition monitoring is

developed to monitor operation parameters of machinery, so

as to identify significant changes that indicate a fault, and then

provide the preparation for making maintenance decisions. The

uncertainties caused by limitation of unidentified degradation

mechanism and measurement difficulties may result in inac-

curate determination of machinery condition and unreasonable

maintenance decisions [7]. Once a maintenance decision is

made, maintenance logistics including spare part management,

maintenance scheduling, vessel routing, etc., should be well

organized to support the maintenance decisions. However, the

predetermined maintenance logistics organization may suffer

from the existence of the uncertainties. For instance, optimal

schedule and routes for offshore wind farm maintenance

determined under certain conditions may not be implemented

successfully or even be cancelled due to uncertain metocean

conditions [8], [9]. The maintenance model proposed in the

paper only concerns the maintenance decisions, indicating the

pre-preparation and post-support is not studied in the work.

Such a model can be regarded as a decision making tool for

decision-makers, especially offshore wind farm owners, who

concern about production maximization and maintenance cost

minimization in the whole lifetime of offshore wind farms.

Opportunistic maintenance for wind energy has been studied

in some literature [5], [10], [11]. These models has many

similarities in the process, which is presented as: discrete

turbine failure events are generated by inputting the failure

distributions and parameters; maintenance decisions are made

based on the condition monitoring and predictive analytics of

turbines; perform maintenance activities including replacement

and major repair to improve condition of components; estimate

the expected model outcome (maintenance cost or lost produc-

tion). The focus of this paper is the influence of uncertainty

on offshore wind energy opportunistic maintenance model,

so the determination of the uncertainty sources is based on

the process described above. Corresponding to each step, the

following uncertainties are studied in the paper: (1)deviation

of predicted and real failure times; (2)stochastic attributes of

time to failure; (3)uncertain maintenance quality; (4)uncertain

repair cost and time.

In this paper, we propose a probabilistic simulation-based

approach integrating an uncertainty module where the input

parameters are presented stochastically by using the proba-

bility distribution functions and a simulation module where

an opportunistic maintenance model is proposed considering

multiple types of maintenance opportunities. In the uncertainty

module, the input parameters are represented by entailing the

use of individual distributions to generate parameter values

according to the probability density function. Then, the gener-

ated stochastic parameters are input into simulation module

to derive the results when the corresponding maintenance

uncertainty is considered.

II. UNCERTAINTY MODULE

In order to represent the uncertain model inputs in a more

realistic pattern, they are quantified by utilizing a probabilistic

method instead of conventional fixed and deterministic values

in the uncertainty module. As discussed in the section of

introduction, there are four main uncertainties considered in

this paper:

A. Deviation of predicted and real failure times

In the existing maintenance models, an assumption is usu-

ally made that failure times of components are accurately

known in advance, then maintenance decisions are made based

on that accurate failure information. In order to realize such

an assumption, we need to use condition monitoring and

remaining useful life prediction (RUL) technology to monitor

operational condition of machinery and predict the time left

failure.

The past decades have witnessed an increasing attention

on condition monitoring and RUL prediction for machinery.

RUL prediction methods are generally categorized into two

types, namely model-based method and data-driven method.

Model-based method involves the knowledge of a system

failure mechanisms to build a mathematical description of the

system degradation process, and uses measured data to update

the model parameters [12]. Common model-based method in-

cludes Winner process model, Gamma process model, Markov

process model, random Gaussian model, etc. Data-driven

method uses previously measured data to forecast the system

state or match with history patterns to infer RUL [13]. It

includes but is not limited to artificial intelligence method,

statistical method, reliability functions [14]. The quality and

quantity of history data measured during operation of machin-

ery is important for ensuring accuracy of prediction.

Although a large number of studies have focused on the

field and put effort into improving the prediction accuracy, an

inevitable error between the prediction value and real failure

time always exists, making the conduction of maintenance

actions earlier or later than the ideal timing. Let us assume

that the age of component i in turbine k is Amik in mth

inspection point. By using condition monitoring and RUL

prediction method, the predicted failure time is F̃ik, then its

predicted RUL percentage P̃mik can be described as P̃mik =

(F̃ik − Amik)/F̃ik. If the real failure time is Fik, its real RUL

percentage Pmik is Pmik = (Fik −Amik)/Fik.
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The average prediction errors all over the degradation

process, denoted by e, is commonly used to estimate the

prediction performance [15]. If the total number of inspection

points is M , the error e is calculated as:

ē =
1

M

M∑
m=1

∣∣∣Pmik − P̃mik ∣∣∣ (1)

Furthermore, it is noted that the prediction performance may

not be completely constant throughout the degradation process.

The RUL prediction is usually not reliable at an earlier stage.

As the degradation process goes on, more data obtained may

provide enough information and prediction results become

more accurate when it gets close to the failure time [16].

In this study, at mth inspection point, the error between

predicted RUL percentage P̃mik and real RUL percentage Pmik ,

denoted by emik, is assumed to follow a Gaussian distribution:

emik =
∣∣∣Pmik − P̃mik ∣∣∣ ∼ N(μmik, δmik2) (2)

where μmik is median and δmik is standard deviation. As the

decrease of RUL, the prediction accuracy improves, indicating

the error emik is gradually reduced. It is assumed that μmik =
μa + P

m
ik μb and δmik = δa + P

m
ik δb, which means the median

and standard deviation of the error decreases as the reduction

of RUL percentage. In this way, the deviation of predicted and

real failure times is presented, and average prediction errors e
can be estimated by varying values of μa, μb, δa, δb.

B. Stochastic attributes of time to failure (TTF)

Even if the deviation of predicted and real failure times

can be perfectly eliminated by using advanced technology,

stochastic attributes of TTF are still a type of uncertainty

affecting estimation of the maintenance model. Although the

bathtub curve is widely used to describe the hazard function

of offshore wind turbines, most studies assumed that failure

rates are constant during lifetime. Based on the constant failure

rates, various failure distribution functions and parameters

can be selected to produce random lifetimes representing the

discrete failure events in time during simulation. The potential

uncertainty in the distribution functions and parameters has

a straightforward influence on the generated TTF values of

components [17].

Reference [2] has investigated the influence of statistical

uncertainty of component reliability estimations in the aspect

of availability. It mainly focused on the failure distribution

around a mean addressing the statistical uncertainty when

the data collection method is not clear enough. The paper

mentioned the uncertainty of failure distribution functions and

parameters under the constant failure rates discussed above,

but didn’t reflect this time-based mechanism in that paper.

As shown in Table I, if the failure rate of a generator

is 0.125/year [5], the mean time to failure (MTTF) can be

computed as 2924 days. It means simulated failures occur

every 2924 days on average, but the failure distribution and

parameters may vary, then leading to different shapes of failure

distribution. Weibull distribution is widely used in reliability

TABLE I
DIFFERENT FAILURE DISTRIBUTION UNDER THE SAME FAILURE RATE

Component
Failure

distribution
Parameter

MTTF
(days)

Failure rate
(per year)

Generator

Weibull
distribution

3300,2

2924 0.125

Weibull
distribution

3274,3

Uniform
distribution

1462,4386

Gaussian
distribution

2924,500

Exponential
distribution

2924

engineering to represent failure characteristics of mechanical

and electromechanical machinery. Further, some other distribu-

tions have also been selected to evaluate the failure behaviours,

such as exponential distribution [18], Gaussian distribution

[19], uniform distribution [2]. The various failure distribution

and parameters will affect the generation of failure events in

the simulation, and then make the outputs different.

C. Uncertain maintenance quality

A perfect maintenance action can completely recover the

system to a perfect state, and an imperfect maintenance

procedure can recover the component to a state between the

initial perfect state and current operation state. A large number

of studies of wind energy maintenance assumed the imperfect

maintenance recovers the age/reliability of component with a

fixed and certain value. Quality of imperfect maintenance is

closely related to many factors including technician expertise,

maintenance methods and tools, environment conditions, and

so on [20]. For instance, human factors, which is defined

as physical and psychological capabilities of the individual,

like training, education and experience, has a straightforward

and significant influence on the performance of maintenance

activities [21]. In this work, we only discuss the possible

stochastic behaviours of maintenance quality which are caused

by these factors, instead of deeply investigating how the factors

affect maintenance quality.

If the age of component i in turbine k is Amik in mth

inspection, and then it is performed on an imperfect main-

tenance with the maintenance quality θ which means the age

of the component can be reduced to a percentage of θ. The

component age is updated to Amikθ after the conduction of

maintenance. When the value of θ is 0, it means this is

a perfect maintenance because the age is reduced to 0 and

the component is restored to a perfect state. When the value

of θ is 1, it means this maintenance action doesn’t improve

the component state at all. It is usually difficult to specify

accurately the maintenance quality in practice. Even if the

same maintenance action is carried out on one component

several times, the final maintenance quality is difficult to be

guaranteed the constant. It is more practical to model the

maintenance quality as a random value represented by an

appropriate probability distribution. The value of quality of

imperfect maintenance θ is between 0 and 1. In probability
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theory and statistics, the beta distribution is a family of

continuous probability distributions defined on the interval [0,

1]. The distribution is parameterized by two shape parameters,

denoted by α and β. The random value of θ is assumed

to follow a beta distribution [22]. The probability density

function which is defined on the support [0,1] is:

f(θ) =
1

Beta(α, β)
θα−1(1− θ)β−1 (3)

where α and β are two positive shape parameters, and

Beta(α, β) =
∫ 1

0
tα−1(1− t)β−1dt.

The expected value μθ is:

μθ =
1

1 + β
α

(4)

The standard deviation σθ is:

σθ =

(
αβ

(α+ β)
2
(1 + α+ β)

) 1
2

(5)

The values of μθ and σθ can specify the quality of imperfect

maintenance. The value of μθ represents the expected mainte-

nance quality, and the value of σθ characterises the uncertainty

of the maintenance quality. As shown in Fig.1, when the

expected maintenance quality is of the same value 0.7, the

value σθ can change the instability of the maintenance quality.

As the increase of σθ, the maintenance quality disperses in a

larger range due to more influence from external factors, e,g,.

maintenance techniques, environment factors.

Fig. 1. Probability density function of uncertain maintenance quality

The maintenance quality improves with the amount of the

budget invested and the time spent during conduction of

maintenance activities [23]. In other words, the money and

time spent during maintenance is related to the maintenance

quality. Therefore, we assume the stochastic maintenance

quality means the consumed repair cost and time also vary

correspondingly. It should be clarified that the existence of

uncertain maintenance quality induces a difference between

the actual maintenance quality and the improvement we ex-

pect, and the repair cost and time are considered to be the

same once the actual maintenance quality is the same.

If the actual maintenance quality is θ, the corresponding

repair cost Cθ is :

Cθ = Cr(1− θ)fc (6)

where Cr denotes the replacement cost and fc determines

the exact relationship between maintenance quality and corre-

sponding repair cost [24].

Similarly, the repair time for imperfect maintenance Tθ is:

Tθ = Tr(1− θ)ft (7)

where Tr denotes the repair time for replacement; ft deter-

mines the exact relationship between maintenance quality and

corresponding repair time. The values of fc and ft are assumed

to be certain and fixed in this subsection. For example, if the

value of fc is 2 and maintenance quality is 0.7, then we can

obtain Cθ = (0.3)
2Cr, which is a common method to estimate

repair cost in many studies [25].

D. Uncertain repair cost and time

Generally, the money and time spent on maintenance are

positively related to maintenance quality. However, the specific

relationship is not explicit enough so far. On the one hand,

the cost and time of different types of maintenance can be

collected in wind energy industry, but the quality and quantity

of these historical maintenance record is still not sufficient

enough to explore the explicit relationship and make accurate

estimation [26]. On the other hand, similar to uncertain main-

tenance quality, the maintenance cost and time is affected by

many factors such as the maintenance method. In addition,

some studies mentioned the existence of different inherent

characteristics among components, such as age, may result

in the varying maintenance cost and time [27]. Instead of

specifying a deterministic values (constants that are known

in advance), it is more reasonable to represent the repair cost

and time in a probabilistic approach [28].

Equation (6) and (7) can estimate repair cost and time

according to maintenance quality. Instead of certain values,

fc and ft can be represented by a probability distribution. In

this study, they are assumed to follow a Gaussian distribution

N(μr, σr
2). Fig. 2 illustrates the relationship between cost

ratio Rc, time ratio Rt and maintenance quality θ, where

Rc =
Cθ
Cr

, Rt =
Tθ
Tr

, μr = 2, and σr increases from 0 to

0.5. By introducing the probability distribution to replace the

fixed fc and ft, the uncertainty of repair cost and time can

be modelled. In the paper, we keep the value of μr constant

(equal to 2), as it is commonly set as 2 in many studies of

wind energy maintenance [15]. The change of σr can help us

model the uncertainty in different degree.

III. SIMULATION MODULE

In this section, maintenance cost and lost production during

the lifetime of offshore wind farm is evaluated based on a
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Fig. 2. Cost ratio and time ratio versus maintenance quality under different
uncertainty

simulation-based maintenance model developed earlier [29].

As shown in Fig.3, the model includes the following mainte-

nance opportunities:

• Failure-based opportunity. When the component fails

due to degradation, the maintenance opportunity will be

triggered

• Incident-based opportunity. If a critical incident occurs

causing component failure, the maintenance opportunity

will appear.

• Age-based opportunity. No component fails, but a certain

number of components reach the specific age threshold,

the maintenance opportunity will arrive.

The component states are classified into four cases: failed,

aged, mature, and young. For the failed component, it should

be completely replaced. The total cost of failure replacement

is MCR
total. If the component age reaches the maximum age

threshold, it should be replaced preventively. The cost spent on

preventive replacement is MPR
total. The mature components be-

tween maximum and minimum age thresholds are performed

major repair on. The total cost for major repair is MMR
total.

There is no maintenance needed for young components. In

addition, fixed cost M f
total is used to prepare a maintenance

cycle. Transportation cost MTR
total represents the money for

transportation in the offshore wind site. If the lifetime of off-

shore wind farm is S years which N cycles of maintenance are

carried out during the lifetime, then the annual maintenance

cost Cannual is calculated as follows:

Cannual(A
min, Amax, ζ) =

1

S

N∑
n=1

(
M f

total+

MTR
total +M

PR
total +M

CR
total +M

MR
total

)
s.t. 0 < Amin < Amax < 1

(8)

where Amin (minimum age percentage threshold), Amax (max-

imum age percentage threshold), and ζ (percentage threshold

of number of aged components) are the decision variables of

A maintenance 
cycle starts

Environmental
 impact arrives  

Impact 
severity 

Critical Minor

Incident-based 
opportunity

A portion of 
components is 

aged?

Perform repair 
activities No 

maintenance 

Maintenance 
finish 

Age-based 
opportunity

Degradation 
failure occurs? Failure-based 

opportunity

During each decision 
period

Influential

An abrupt 
increase of 

degradation

Fig. 3. The flow chart of the developed opportunistic maintenance model

the proposed model. The variable, ζ, can determine how many

aged components can trigger the age-based opportunity. More

details can be found in the [29].

In addition to maintenance cost, availability and lost pro-

duction are the expected outputs of the model as well. The

downtime of the turbine results from two aspects: turbine

failure and maintenance execution. During these periods of

time, the turbine can not produce power. The number of

offshore wind turbine is K. The total downtime of turbine

k during its lifetime is denoted by Dd
k , the total repair time

is Dr
k, and the operational time is Dw

k . The availability of the

offshore wind farm Afarm can be calculated as:

Afarm =

K∑
k=1

Dw
k

K∑
k=1

(Dd
k +D

r
k +D

w
k )

(9)

The lost power (Ploss) is modelled based on the daily

average wind speed during downtime and repair time. Every

wind turbine design has a cut-in wind speed (vin), a cut-out

wind speed (vout), and a rated wind speed (vrated). When

the wind speed reaches cut-in speed, the blades begin to

rotate and electricity is produced. As the speed reaches the

rated wind speed, the turbine can produce power in the rated

power (Prated). If the wind speed is higher than cut-out speed,

then it may risk damage from further operation. In such a
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overspeeding situation, brake mechanism is needed to shut

down the turbine before it reaches the danger zone. The

relationship between wind speed (v) and power generation

(Pge) is [30]:

Pge =

⎧⎪⎪⎨⎪⎪⎩
0

Prated(a+ bv + cv
2)

Prated

0

0 ≤ v < vin
vin ≤ v < vrated
vrated ≤ v < vout

vout ≤ v
(10)

where parameters a, b, and c are obtained as:

a =
vin

(vin − vrated)2
[(vin + vrated)−

4vrated

(
vin + vrated
2vrated

)3

]

(11)

b =
1

(vin − vrated)2
[4(vin + vrated)

(
vin + vrated
2vrated

)3

− (3vin + vrated)]
(12)

c =
1

(vin − vrated)2
[
2− 4

(
vin + vrated
2vrated

)3
]

(13)

IV. CASE STUDY AND RESULTS

The proposed method is applied in an offshore wind farm,

designed for a 20-year lifetime, located in the North Sea (Fig.

4). The location is about 30 km away from the Netherlands

shore. The scale of the farm is 50 turbines, and each 5-MW

turbine is composed of five critical components (gearbox, gen-

erator, rotor blade, main bearing and pitch system). The total

capacity of the farm is 250 MW. The technical specification

of the turbine is shown in Table II.

Fig. 4. Geographical localization of the offshore wind farm in the North Sea

In order to investigate the influence of different types of

uncertainty on the outputs of the proposed maintenance model,

it is necessary to derive a set of results as the benchmark.

Deterministic parameters shown in Table III and Table IV are

TABLE II
TECHNICAL SPECIFICATION OF THE 5-MW TURBINE

Rating 5 MW
Rotor configuration 3 blades

Drivetrain High speed, multiple-stage gearbox
Rotor diameter 126 m

Hub height 90 m
Cut-in speed 3 m/s
Rated speed 12 m/s

Cut-out speed 25 m/s

TABLE III
FAILURE DISTRIBUTION OF FIVE CRITICAL COMPONENTS

Component
Weibull distribution

Shape parameter Scale parameter
Rotor&blade 3 3000

Bearing 2 3750
Gearbox 3 2400

Generator 2 3300
Pitch system 3 1858

set as the input parameters. Further, fixed cost is 50 kC, trans-

portation cost is 10 kC. Maintenance improvements of two

levels are 0.5 and 0.7 respectively, indicating the maintenance

quality will be more significant for older components. The

repair time for failure replacement and preventive replacement

is 70 hours and 50 hours respectively. The model assumes

a work shift of 8 hours each day. The above deterministic

parameters are derived and estimated from studies [5], [31],

[32].

By using Monte Carlo method, the simulation module is

run in the following base scenario: Amax = 0.9, Amin =
0.5, ζ=1.2% for 500 times, the average values of the outputs

including annual maintenance cost Cannual, availability Afarm,

and total lost production P lost
farm are regarded as the benchmark

results listed in Table V.

We need to make a comparison under the same uncertainty

level with the purpose of exploring which uncertainty is

more influential for the model output. We introduce the mean

absolute percentage error (MAPE) denoted by Ū to represent

uncertainty level:

TABLE IV
COST PARAMETERS OF FIVE CRITICAL COMPONENTS

Component
Failure

replacement (kC)
Preventive

replacement (kC)
Rotor&blade 215 55

Bearing 60 15
Gearbox 260 65

Generator 90 25
Pitch system 44 10

TABLE V
BENCHMARK RESULTS

Cost (kC) Availability (%) Production
loss (MWh)

Benchmark 1100 99.12 219140
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Ū =
100

X

X∑
x=1

|Vf − Vu|
Vf

(14)

where Vf and Vu is the expected fixed value and produced

uncertain value of input parameter correspondingly; X is

sample size. Different uncertainty levels are calculated by

varying parameters in the uncertainty module. In this paper, the

influence of different types of uncertainties is compared under

three uncertainty levels: 5%, 10%, and 15%. The comparison

is shown in Table VII. The MAPE of benchmark equals 0. We

use U1, U2, U3, and U4 respectively represent four types of

uncertainty as shown in Table VI.

TABLE VI
NOMENCLATURE OF DIFFERENT TYPES OF UNCERTAINTY

Uncertainty type Nomenclature

deviation of predicted and real failure times U1
stochastic attributes of time to failure U2

uncertain maintenance quality U3
uncertain repair cost and time U4

TABLE VII
COMPARISON OF DIFFERENT TYPES OF UNCERTAINTY UNDER THREE

UNCERTAINTY LEVELS

MAPE
(%)

Uncertainty
type

Cost
(kC)

Availability
(%)

Production
loss (MWh)

0 - 1100 99.12 219140

5

U1 1135 99.09 227060
U2 1127 99.11 221200
U3 1108 99.10 223060
U4 1103 99.12 219380

10

U1 1296 99.00 248480
U2 1161 99.09 227150
U3 1136 99.08 229180
U4 1110 99.10 223020

15

U1 2485 98.19 451970
U2 1222 99.06 235260
U3 1176 99.05 236460
U4 1114 99.10 224870

Fig. 5. Uncertainty level versus annual maintenance cost

Fig. 6. Uncertainty level versus lost production

Fig. 5 and 6 illustrates the three uncertainty levels versus

annual maintenance cost and lost production. When Ū is 5%,

the model outputs considering four types of uncertainty are

all close to the benchmark results, because the degree of the

uncertainty is still relatively small. With the increase of Ū ,

the effect of U1 becomes particularly obvious when compared

to U2, U3, and U4. When Ū is as large as 15%, the output

considering U1 is more than twice than the benchmark. Such

a large deviation between failure and real times causes two

results: (1)A large number of component lifetimes are underes-

timated, hence they are not repaired in a timely manner. Many

turbines may break down due to the underestimation, then

more maintenance cycles are triggered, and a large amount of

maintenance cost and lost production are induced due to the

turbine failure. (2)A large number of component lifetimes are

overestimated. Preventive repair and replacement is conducted

in a premature way, resulting in more maintenance cycles and

much unnecessary cost. These two reasons can explain why

the influence of U1 is so large. Compared to U1, the effect

of U2, U3, and U4 is relatively small, but it doesn’t mean

they don’t deserve our concern. The influence of U2 and U3

is close. When Ū is 15%, the deviation caused by U2 and

U3 in the economic aspect is about 11.1% and 6.9%, and

the deviation is 7.4% and 7.9% respectively in the aspect of

loss production. U2 is more influential than U3 in terms of

maintenance cost, and it is reversed when in terms of lost

production. Compared to others, U4 is the least prominent.

The deviation of maintenance cost and production loss is 1.3%

and 2.6% respectively when Ū is 15%. It may be explained

by the fact that this paper mainly focuses on the uncertain

cost and time for major repair, which only is a portion of total

maintenance cost and repair time.

The effect of each type of uncertainty is discussed respec-

tively below. In every inspection point, we can predict the

failure time of component F̃ik. Then, maintenance decisions

are made based on the predicted failure time. The deviation

between predicted and real failure time naturally result in

the timing of maintenance decisions that are not ideal. As

introduced in the uncertainty module, parameters μa, μb, δa, δb
are used to describe the degree of deviation. Four cases
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are selected to make the comparison: μa = δa = 0.01,
μb = δb = 0.1 (case 1-1); μa = δa = 0.02, μb = δb = 0.1
(case 1-2); μa = δa = 0.01, μb = δb = 0.2 (case 1-3);

μa = δa = 0.02, μb = δb = 0.2 (case 1-4). The comparison

is shown in Table VIII. It is found that as accuracy of predic-

tion decreases (average prediction error grows), the deviation

between outputs and benchmark increase at a growing rate.

We use Ê to denote the deviation percentage between outputs

and benchmark results. The simulation is run in more cases

to roughly demonstrate the relationship between Ê and e, as

shown in Fig.7 where we use an exponential distribution to

fit. When average prediction error e is 10%, the deviation

of maintenance cost and production is about 16% and 12%

respectively. If we set the acceptable value of Ê for both

cost and production is 20%, it indicates the average prediction

error should be no more than 10.5%. In recent years, some

studies have shown that their methods can improve the average

prediction error as good as about 10% [33], which provides

a powerful tool for making the maintenance decisions more

accurate and effective.

TABLE VIII
COMPARISON CONSIDERING DEVIATION BETWEEN PREDICTED AND REAL

FAILURE TIME

Cost
(kC)

Availability
(%)

Production
loss (MWh)

Average
prediction
error(%)

Case 1-1 1165 99.07 229730 7.0

Case 1-2 1228 99.04 237800 8.2

Case 1-3 1623 98.79 301960 12.8

Case 1-4 2041 98.51 372580 14.0

Fig. 7. Average prediction error versus output error

When investigating the influence of different failure distri-

butions and parameters, the simulations are run under different

cases listed as: Weibull distribution, shape parameter is 3

(case 2-1); Weibull distribution, shape parameter is 2 (case

2-2); Weibull distribution, shape parameter is 2.5 (case 2-

3); Weibull distribution, shape parameter is 3.5 (case 2-4);

Exponential distribution (case 2-5); Uniform distribution (case

2-6); Gaussian distribution, standard deviation is 300 (case 2-

7); Gaussian distribution, standard deviation is 500 (case 2-8);

Gaussian distribution, standard deviation is 700 (case 2-9).

The results of the different cases are listed in Table IX.

When we use Weibull distribution to model component failure

and compare it with the benchmark, the deviation of mainte-

nance cost varies from -7.5% to +12.4% and the deviation

of lost production is from -8.5% to +9.5%. Further, as the

increase of shape parameter (from 2 to 3.5), the outputs,

maintenance cost and lost production, will both decrease.

When Exponential distribution is adopted, we can find there

is a large difference in the result (maintenance cost: +78%,

lost production: +71.8%). When using Gaussian distribution

and Uniform distribution, the outputs are both lower than

benchmark, and the scale of the difference is much less than

Exponential distribution. Based on the results, it is found that:

(1) The selection of failure time modelling has an obvious

influence on the outcome of maintenance model. Although

Weibull distribution is commonly used in wind industry, the

uncertainty of Weibull distribution parameters still signifi-

cantly affect the results.

(2) When failure times of components are modelled by

using the distribution where failure times tend to stay within

a narrow range around MTTF, the outputs of the model are

lower. It can explain the lower results when using the Weibull

distribution with higher shape parameter and the Gaussian

distribution with less standard deviation to model component

failure times.

TABLE IX
MODEL OUTPUTS UNDER DIFFERENT FAILURE DISTRIBUTIONS AND

PARAMETERS

Case Cost (kC) Availability(%) Production
loss(MWh)

2-1 1056 99.17 207030

2-2 1236 99.03 240010

2-3 1129 99.11 221910

2-4 1017 99.20 201060

2-5 1958 98.49 376520

2-6 989 99.22 194480

2-7 905 99.27 179720

2-8 948 99.24 188250

2-9 1019 99.18 204750

In (5), a larger standard deviation means the actual mainte-

nance quality is more unstable. Three cases are conducted to

study the influence of uncertain maintenance quality: standard

deviation is 0.001 (case 3-1); standard deviation is 0.005

(case 3-2); standard deviation is 0.01 (case 3-3). The results

of different cases are listed in Table X. As the increase of

uncertainty of maintenance quality, the results also grow in a

roughly linear trend.

Repair cost and time are modelled as a random value by

randomizing fc and ft in (6) and (7). Three cases are presented

in Table XI: σr = 0.1 (case 4-1); σr = 0.3 (case 4-2); σr =
0.5 (case 4-3). The results are shown in Table XI.
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TABLE X
MODEL OUTPUTS UNDER UNCERTAIN MAINTENANCE QUALITIES

Case Cost (kC) Availability(%) Production
loss(MWh)

3-1 1112 99.10 223700

3-2 1158 99.06 233760

3-3 1213 99.02 244800

TABLE XI
MODEL OUTPUTS UNDER UNCERTAIN REPAIR COST AND TIME

Case Cost (kC) Availability(%) Production
loss(MWh)

4-1 1108 99.11 218100

4-2 1127 99.08 229410

4-3 1181 99.02 242170

V. CONCLUSIONS

Most of the O&M models for wind energy commonly

assume the input parameters are certain and known in ad-

vance. However, such an assumption may bring a negative

influence on the investment estimation and decisions-making

for offshore wind farm owners, because the model output is

largely misestimated due to the existence of the uncertainty.

In order to assist the owners to make a realistic estimate and

provide valuable suggestions for the project management, it

is necessary to identify the potential uncertainty which affects

the O&M model outcome, and then quantify the extent of in-

fluence. We make the conclusions and provide the suggestions

as follows:

(1) The most influential uncertainty is resulted from the

deviation between failure and real failure times, followed by

stochastic attributes of time to failure and uncertain mainte-

nance quality. Uncertain repair cost and time cause the least

difference compared to benchmark results, which can almost

be neglected.

(2) Considering the deviation of predicted and real failure

times, the increase of the RUL prediction error results in an

exponential increase of deviation between the probabilistic

model output and benchmark results. If a more accurate O&M

estimation is expected, offshore wind farm owners should pay

high attention to condition monitoring and RUL prediction

technology. If we set the acceptable deviation as 20%, the

average prediction error should be no more than about 10.5%.

(3) Considering the stochastic attributes of TTF, the failure

distribution and parameters have an obvious influence on the

outputs of the maintenance model, especially when adopting

Exponential distribution. When we use the distribution with

the shape where failure times are more concentrated around

MTTF, the model outputs are less. It can be explained by

the different characteristics of the failure distribution. If a

more accurate failure database can be developed or the failure

information can be updated during the full lifetime, the devia-

tion resulted from stochastic attributes time to failure may be

eliminated to some extent.

(4) The uncertain maintenance quality, cost, and time may

be caused by some factors such as environment conditions,

human factors, and inherent characteristics among components

when conducting maintenance activities on offshore wind

turbines. The total consumed costs and time will be reduced

if maintenance activities can be carried out in a more sta-

ble manner through enhancing technician training, improving

maintenance methods, etc. Furthermore, if the quantity and

quality of maintenance data can be ensured and improved, a

more explicit relationship between maintenance activities and

corresponding consumption can be clarified and then input in

the O&M model. An unambiguous input can assist the offshore

wind industry to estimate the O&M results more accurately

and reliably.

There are still limitations in the model. The data and param-

eters input in the model are derived from the existing literature.

If more real data can be obtained in the future, the model

output will be more realistic. Furthermore, the model mainly

focuses on the maintenance decisions regardless maintenance

logistics organization, and potential uncertainties exiting in

maintenance logistics organization are not clarified and stud-

ied. It is assumed that the maintenance resource and capacity,

including staff, tools, spare parts, transportation means, etc.,

are always available to complete all the maintenance tasks in

the farm. The accessibility to the location of the farm will

not be affected by any negative factor. These assumptions

make the output of model (especially availability and lost

production)higher than the practical case where failed turbines

can only be repaired in scheduled maintenance activities.

Maintenance logistics organization is significant in the O&M

process for offshore wind farms, and the potential uncertainties

deserve our attention and effort. Further, in the long lifetime

of offshore wind farm, the investment, such as material cost,

is assumed to stay constant and doesn’t change due to the

change of policy, the development of technology, etc. The cost

for hiring vessels, technicians, and other logistics related cost

are not considered in the model. The authors will gradually

take these factors into account in the future work.
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