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A B S T R A C T

Flexible risers are being required to be installed in a water depth of over 3000m for fewer remaining easy-to-
access oil fields nowadays. Their innermost carcass layers are designed for external pressure resistance since the
hydrostatic pressure at such a water depth may cause the collapse failure of flexible risers. Determining a critical
collapse pressure for the carcass is of great importance to the whole structural safety of flexible risers. However,
the complexity of the carcass profile always makes FE analysis computational intensive. To overcome that
problem, the treatment of the interlocked carcass as an equivalent layer is adopted by researchers to accelerate
the anti-collapse analyses. This paper presents an equivalent layer method to enable that treatment, which
obtains the equivalent properties for the layer through strain energy and membrane stiffness equivalences. The
strain energy of the carcass was obtained through FE models and then used in a derived equation set to calculate
the geometric and material properties for the equivalent layer. After all the equivalent properties have been
determined, the FE model of the equivalent layer was developed to predict the critical pressure of the carcass.
The result of prediction was compared with that of the full 3D carcass model as well as the equivalent models
that built based on other existing equivalent methods, which showed that the proposed equivalent layer method
performs better on predicting the critical pressure of the carcass.

1. Introduction

The ongoing ultra-deep water (UDW) exploitation requires riser
systems that are able to be used beyond 3000m water depth (Luppi
et al., 2014; Vidigal da Silva and Damiens, 2016). As one key tech-
nology in subsea production systems, unbonded flexible riser has been a
good choice for such exploitation due to its flexibility and corrosion
resistance (Edmans, 2014; NOV, 2015; Technip, 2014). This pipelike
structure comprises multiple layers with different structural and op-
erational functions. A typical internal configuration of a flexible riser is
shown in Fig. 1. The innermost carcass layer is designed for external
pressure resistance while the pressure armour layer is for internal
pressure resistance. These two metallic layers are separated by an im-
permeable polymeric inner liner and nested inside one or more pairs of
tensile armours. Those layers along with other functional polymeric
layers are encased in an external plastic sheath, being isolated from the
external environment (Cooke and Kenny, 2014).

As operators contemplate the subsea development to a water depth
beyond 3000m, the flexible riser products are required to have ade-
quate anti-collapse capacity to withstand a very high external pressure
(Wolodko and DeGeer, 2006). The more flexible the pipe is, the less its

collapse resistance becomes. The critical pressure (maximum external
pressure before collapse) of flexible risers does not only depend on the
pipe material properties but also on pipe geometrical properties
(Suleiman, 2002). Experimental tests could be an reliable approach to
determine the critical pressure but such kind of the hydrostatic tests
usually costly. As for numerical analyses performed on full 3D FE
models, they are quite computational intensive because of the complex
interlocking cross-section and the inner contacts of the carcass. Alter-
natively, the treatment of the carcass as a homogenous layer with
equivalent thickness is adopted by researchers to simplified the anti-
collapse analysis of flexible risers. This equivalent layer model could
not only boost the computational efficiency in numerical analyses but
also allow the development of analytical models based on ring buckling
theory (Timoshenko and Gere, 1963).

Up to now, several equivalent layer methods have been proposed to
calculate the thickness for that equivalent homogeneous layer. Those
methods are proposed based by imposing equity between the carcass
and the equivalent layer for some properties, such as cross-sectional
area, bending stiffness per length or area (Zhang et al., 2003; De Sousa
et al., 2001; Martins et al., 2003; Gay Neto et al., 2009; Loureiro and
Pasqualino, 2012; Tang et al., 2016). Area equivalent method is carried
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out based on the equivalence of cross-sectional areas (Zhang et al.,
2003). As the cross-sectional area is the only parameter considered in
this method, the actual material distribution in the carcass profile is not
accounted and hence the accuracy of the prediction may not be guar-
anteed (Cuamatzi-Melendez et al., 2017). Considering that collapse of
ring-like structures is a bending-dominated problem, two methods
based on the equivalence of structural bending stiffness were presented.
One equivalent method obtained the thickness through sectional
bending stiffness equivalence (De Sousa et al., 2001) while the other
built the equivalence through bending stiffness per length (Martins
et al., 2003). However, those bending stiffness equivalent methods are
unable to consider the self-contact issue of the carcass, leading to an
overestimation of the actual structural bending stiffness. Recently, a
method based on strain energy equivalence is proposed (Tang et al.,
2016). The strain energy of the carcass was obtained through the finite
element model. In this carcass model, the Dirichlet-type boundary
condition was applied to ensure that only hoop strain was generated
along the circumferential direction. Such a strong boundary conditions
enhanced the structural stiffness of the carcass, lowering its absorbed
strain energy. As a result, the thickness of the equivalent layer was
underestimated.

In general, most equivalent layer methods fail to capture the actual
structural stiffness of the carcass due to the neglect of contact issues of
the carcass. Moreover, since those methods are only focused on de-
termining the equivalent layer thickness, other potential equivalent
properties might be missing. To solve above-mentioned problems, an
equivalent method is proposed in this paper that trying to construct a
layer with equivalent geometric and material properties. Those prop-
erties were determined through both strain energy and membrane
stiffness equivalences. The reason of adopting the strain energy
equivalence is because that no available approach can be used to cal-
culate the actual bending stiffness of the carcass. As the strain energy
absorption is directly influenced by the structural stiffness, it was
chosen as a representative parameter to reflect the actual bending
stiffness of the carcass. Numerical models were constructed to obtain
that strain energy of the carcass in this paper. After the equivalent
properties of the layer were determined, the equivalent model was built
and then used to predict the critical pressure of the carcass. The pre-
diction result was compared with that of the full 3D carcass model to
verify the reliability of the proposed method. This paper is organized as
follows: following the introduction, Section 2 presents the establish-
ment of the strain energy based equivalent method. Section 3 provides a
feasible FE simulation for offering strain energy to the proposed
equivalent method, which were verified by the test data given in the
work of Tang et al. (2016). In Section 4, the equivalent models are
constructed based on the proposed method and examined by related
case study. The final Section 5 concludes the work.

2. Equivalent layer method based on strain energy equivalence

When the treatment of the carcass as a homogeneous layer is
adopted, the equivalent properties of the layer should be determined in
order to perform a similar collapse behaviour. Many researchers impose
equity between those two tubular structures for their bending stiffness
since the bending stiffness is a dominant factor of the critical pressure of
pipe (Timoshenko and Gere, 1963)

=p EI
R

3
e,cr 3 (1)

where pe,cr is the elastic critical pressure, EI is the bending stiffness of
the pipe cross-section, R is the mean radius of the pipe. The bending
stiffness of the equivalent layer is determined as follow (Fergestad
et al., 2017)

= ′EI Kn EI
Leq

2

p (2)

where n is the number of tendons in the carcass layer, Lp is the pitch and
I2′ is the smallest inertia moment, K is a factor that depends on the
laying angle of the carcass tendons and the moment of inertia in the
section.However, the actual bending stiffness of the carcass is influ-
enced by its inner-contact and therefore much smaller than the calcu-
lated result according to its geometric configuration. In order to solve
this problem, the absorbed strain energy of the carcass is chosen to
reflect its actual structural stiffness when subjecting to radial com-
pression loads. This loading case is referred to the experimental set-up
of carcass radial compression tests presented in the work of Tang et al.
(2016), which is shown in Fig. 2.

The strain energy of the carcass in such a loading case needs to be
extracted from corresponding numerical models, which will be elabo-
rated in the following section. For an equivalent ring model with radial
compression force P, the loading force F=P/2 (at the cross section A)
on its one quarter model can be resolved into component forces Fr and
Fθ on any cross section, as shown in Fig. 3.

Therefore, its strain energy is made up of three parts
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Fig. 1. Typical design of a flexible riser (NOV, 2014).

Fig. 2. Schematic diagram of a ring compressed in the radial direction (Tang
et al., 2016).
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and the total strain energy of the one quarter model is given as

∫ ∫ ∫=
−

+ + −U
F R v

AE
θ

CF R
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θ M R v
EI

θ
(1 )
2

d
2

d (1 )
2

dθ r
eq

2 2 2 2 2

(4)

where v is Poisson's ratio, G is material shear modulus, A is the cross-
sectional area of the ring, R is the mean radius of the ring and can be
expressed as R= Ri + teq/2, which is the sum of the internal radius Ri

and half of the equivalent ring thickness teq.The parameter C in Eq. (4)
is the correction factor for a rectangular cross-section in shear that takes
form (Langhaar, 1962)

∫=C A
I

S
b

Ad
A2

2

2 (5)

where S is the first moment of area of the infinitesimal area element
about neutral axial, b is the width of the cross-section. The component
forces and bending moment can be expressed as

=F P θ
2

cosθ (6)

=F P θ
2

sinr (7)

= + −M M PR θ
2

(1 cos )0 (8)

where

= ⎛
⎝

− ⎞
⎠
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π2
2 10 (9)

which is the bending moment on cross section D in Fig. 3 and can be
obtained by Castigliano's theorem (Timoshenko, 1930).Substituting
Eqs. (6)–(8) into Eq. (4) gives
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and thus the strain energy of that one quarter ring can be calculated.
For a flexible riser that applied to deep water environment, it is

more likely to be collapsed in the plastic range (Kyriakides and Corona,
2007). Therefore, the critical pressure of the carcass is influenced by
both bending stiffness and membrane stiffness since the combined ef-
fect of bending and membrane stresses plasticized the structure at its
most deformed locations. In order to capture the collapse behaviour of
the carcass with the equivalent layer, two kinds of equivalence should
be constructed between those two structures, which are given as

⎧
⎨⎩

=
=

EI EI
EA EA

( ) ( ) (11a)
( ) ( ) (11b)
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Since the bending stiffness equivalence is replaced by strain energy
equivalence, then the equation set Eq. (11) can be expressed as
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However, solving the above equation set is a hard task since it is not
possible to find an equivalent thickness to satisfy both of the two
equations, i.e. Eq. (12a) and Eq. (12b). Considering that, the material
Young's Modulus of the equivalent ring is chosen as an additional un-
known parameter. Similar concepts are presented in the work of
Clinedinst (1939); Cruz and Dias (1997). Therefore, two unknown
parameters, the equivalent thickness teq and equivalent Young's Mod-
ulus Eeq of the equivalent ring, are going to be determined through the
equation set Eq. (12), which could be expressed as
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Noting that the material constitutive relationship is changed when
the equivalent Young's Modulus is adopted as the material of the
equivalent layer. This may have an impact on the strain energy
equivalence between two structures when plastic collapse failure oc-
curs. Since the critical pressure of the plastic collapse is a yielding-
based collapse pressure that is given as Eq. (14) (Timoshenko and Gere,
1963), the material yield stress σy,eq of the equivalent layer should also
be regarded as a parameter awaiting solution.
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where py is the critical pressure of the plastic collapse of pipes, σy is the
material yield stress, w0 is the maximum initial radial deviation from a
circle, pe,cr is the elastic critical pressure and can be calculated through
Eq. (1).The basic-cell energy-equivalence concept is used to determine
value of material yield stress for the equivalent ring (Nemeth, 2011;
Danzi et al., 2017). Assuming that the materials for the carcass and
equivalent layer are both linear and elastic, obeying Hooke's law, up to
the yielding stress, then the structural strain energy density can be
expressed as

= + +u σ ε σ ε σ ε1
2

1
2

1
2ε θ θ r r z z (15)

where σθ, σr, σz and εθ, εr, εz are the stresses and strains generated in
hoop, radial and longitudinal directions separately. Thus the strain
energy of the structural basic cell can be given as

∫ ∫= = + +Ψ u V σ ε σ ε σ ε Vd 1
2

( )dε θ θ r r z z (16)

where the V is the volume of the structure.The yielding stress of the
equivalent layer can be obtained by equating the strain energy between
two structures when both of them reach their material yielding stress.
However, the calculation of the strain energy of the carcass is difficult
as it has a complex profile. To simplify this calculation, two assump-
tions are made herein: a) Assume that the strains in radial and long-
itudinal directions are negligible; b) Assume that the variation of hoop
strains across the thickness of the layer wall can be neglected. With
those two assumptions, Eq. (16) can be rewritten as

Fig. 3. Schematic diagram of a ring compressed in the radial direction.
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∫ ∫= =Ψ σ ε V
σ
E

V1
2

d 1
2

dθ θ
θ
2

(17)

By equating the strain energy at the onset of material yielding be-
tween the carcass and the equivalent layer

=Ψ Ψcarcass eq (18)

The yielding stress of the equivalent layer takes the form

=σ
E σ

E
V
Veq,y

eq y
2

c

eq (19)

where the σy is the yielding stress of the carcass material, Vc and Veq are
the volumes of the carcass and equivalent layer, separately. With the
values of equivalent thickness teq and equivalent Young's modulus Eeq
obtained from Eq. (13), the yielding stress σeq,y of the equivalent layer
can be calculated by Eq. (19). Finally, the geometric and material
properties for the equivalent layer are both determined.

A brief step-by-step methodology is presented as follow to give a
clear clarification of the proposed method:

Step 1, calculating the strain energy Ucarcass of the carcass with a
given radial compression load P numerically (A feasible numerical si-
mulation is presented in Section 3 to show how to provide a reliable
strain energy for the proposed method).

Step 2, determining equivalent layer properties teq and Eeq by sub-
stituting the values of Ucarcass and P into equation set Eq. (13).

Step 3, determining the equivalent yielding stress σeq,y with the
above teq and Eeq by using Eq. (19).

With all the above-mentioned equivalent properties, teq, Eeq and
σeq,y, have been solved, an equivalent layer model can be built for
collapse studies.

3. Numerical simulation for strain energy calculation

As above-mentioned, the strain energy Ucarcass of the carcass was
required as an input in Eq. (13) to calculate the equivalent properties
for the homogeneous layer, therefore, this section is mainly focused on
how to provide such a strain energy with FE simulation. In this section,
a feasible FE simulation is presented to show how to calculate the strain
energy of the carcass and its reliability was verified by the test data of
Tang et al. (2016). This FE simulation was referred to the experimental
tests conducted by Tang et al. (2016), as shown in Fig. 4. In their work,
the compression tests were performed on three kinds of carcass samples
with inner diameters of 6 in., 7 in. and 8 in. Fig. 5 shows a typical cross-
sectional profile of the carcass and the geometric and material prop-
erties of the samples are summarized in Table 1.

3.1. Radial compressed carcass model

A 3D model of the interlocked carcass was constructed by using
Abaqus 6.13 software. Two pitches of the carcass were considered as a
representative length and solid elements were adopted in this 3D

model, as shown in Fig. 6. The lay angle of the carcass strips was ne-
glected since it is not responsible for the important effects in collapse
prediction according to the study of Gay Neto and Martins (2012). Due
to the symmetry of the carcass structure, only half of the carcass ring
was modelled. A rigid plate was also modelled to support the carcass
model.

The boundary conditions considered in the half carcass model were
imposed as: (a) symmetry condition on the carcass cross sections, (b)
the displacements of the portion of the carcass contacted with the
bottom rigid plate are constrained in all directions and (c) the dis-
placements of the side cutting sections are constrained in longitudinal
direction. The supported rigid plate was fully fixed. Those applied
boundary conditions are shown in Fig. 7.

Displacement couplings were set on the carcass profile to simulate a
carcass layer with infinite pitches. MPC constraints were imposed on
the cutting regions since there were only two pitches presented in this
model, as shown in Fig. 8. The loading force was applied on four top
points of the carcass evenly, which is shown in Fig. 9. This loading type
was chose due to two reasons: one was that the contact issue between
the top loading plate and carcass could be eliminated; the other was the
computational results from the FE models with and without the top
loading plate were almost the same. Since the carcass was compressed
within the elastic range (according to the test data of Tang et al.
(2016)), the stress concentration at those four points had little impact
on the calculation results.

Since the self-contact might lead to possible stiffness reduction of
the carcass, the Penalty Method was chosen to deal with that contact
problem. A surface-to-surface formulation was used for the contactFig.4. Experimental set-up of carcass radial compression (Tang et al., 2016)

Fig. 5. Schematic diagram of the carcass profile (Tang et al., 2016).

Table 1
Geometric and material properties of the carcass samples (Tang et al., 2016).

Sample ID (in.) 6 7 8 Sample ID
(in.)

6 7 8

Pitch length Lp (mm) 14.88 17.00 12.55 L5 (mm) 1.80 2.61 2.41
Carcass strip thickness

t (mm)
0.90 0.96 1.30 L6 (mm) 0.00 2.02 0.00

L1 (mm) 26.20 31.42 23.43 L7 (mm) 1.77 2.67 2.12
L2 (mm) 10.36 10.40 7.44 R1 (mm) 4.18 3.75 4.18
L3 (mm) 8.96 10.91 7.47 E (GPa) 206 206 206
L4 (mm) 5.90 8.01 4.39 v 0.3 0.3 0.3

Fig. 6. Radial compressed carcass model, (a) whole view and (b) detailed view.

X. Li et al. Ocean Engineering 164 (2018) 248–255

251



between the carcass strips and the normal penalty stiffness factor was
defined as 0.1. Friction was also considered in the models to account for
the related energy dissipation. The friction factor was defined as 0.13 at
the self-contact regions. The values of those factors were referred to
Tang et al. (2016).

3.2. Model validation

The curves of radial deformation versus compression load of each
carcass samples were recorded by Tang et al. (2016), which are shown
as Fig. 10. The maximum loading displacement was controlled to make
sure that the maximum ovalization of all the samples lower than 3%. It
can be seen from Fig. 10 that the radial compression stiffness of the
carcass samples become stable after the compression loads reach certain

values. This represents that the gaps within the carcass samples were
diminished with the increased compression loads and finally the sam-
ples were compressed into compact structures. In order to reflect the
structural stiffness of a compact carcass, the compression loads applied
to the numerical models were 2 kN and 3 kN for the 6 in. and 7 in.
carcass and 4 kN and 6 kN for the 8 in. carcass. The mean value of the
displacements at the loading nodes were obtained and compared to the
test results.

The comparison results are listed in Table 2 and it can be seen that
the radial displacements provided by numerical models agree well with
the test results for each loading case. The maximum error that given by
the numerical models is just around 10%, showing that those numerical
models can be a reliable approach to extract the strain energy of the
carcass.

4. Verification of the proposed equivalent method

With the methodology presented in the previous two sections, an
equivalent layer model of the carcass can be constructed. In this section,
the prediction accuracy of that equivalent layer model was verified by a
full 3D carcass model presented in the work of Gay Neto and Martins
(2012). This model has been widely used by many researchers and was
recreated to provide a critical pressure for comparison purpose. In the
meanwhile, some other equivalent layer models based on the existing
equivalent methods were also built in order to give a comprehensive
comparison.

4.1. Full 3D model for the comparison purpose

To examine the effectiveness of the proposed equivalent method in
predicting the critical pressure of the carcass, an example presented by
Gay Neto and Martins (2012) was adopted. In that example, two layers,
the carcass and the polymeric inner liner were considered. This inner
liner only acted as a load transmitter during the loading process. The
carcass profile is sketched in Fig. 11 and its geometrical and material

Fig. 7. Boundary conditions applied onto the model (a)
symmetry condition, (b) displacement constraints of the
portion contacted with the rigid plate (c) displacement
constraints of the side cutting section.

Fig.8. Coupling details considered in the compressed carcass model

Fig. 9. Compression force applied to the carcass model.

Fig. 10. Test results of the radial compression of the carcass test pieces (Tang
et al., 2016).

Table 2
Load-displacement results comparison for each case.

Sample ID Compression loads (kN) 2 3 4 6

6″ Radial displacements
(mm)

Experimental 1.60 2.35 – –
numerical 1.43 2.16 – –

7″ Experimental 1.90 2.80 – –
Numerical 2.07 3.10 – –

8″ Experimental – – 2.60 3.70
Numerical – – 2.66 3.99

Fig. 11. Schematic diagram of the carcass profile (Gay Neto and Martins,
2012).
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are given in Table 3.
A bi-linear constitutive model was adopted to describe the elasto-

plastic property of the carcass material. The carcass material behaves
linearly and elastically before reaching its yielding stress. Once the
yield stress is reached, another linear behaviour is assumed with a slope
given by the material tangent modulus. For the inner liner, a multi-
linear elastic material constitutive model was used to describe its ma-
terial property. The material stress-strain curves for both carcass and
inner liner are plotted in Fig. 12 and Fig. 13 separately.

Considering that the collapse of the carcass was an axisymmetric
issue, only half of the carcass was modelled so that making the solution
computational faster. Two displacement conditions were imposed as
the model boundary conditions: a) symmetry condition in plane xy and
b) a fully fixed external edge of the inner liner (the red line displayed in
Fig. 14b). Fig. 14 shows the whole model and its applied boundary
condition. The pressure applied onto the external surface of the inner
liner was the only load considered in the models. To capture the critical
pressure of the carcass subjected to the external pressure, the Riks so-
lution algorithm was used in the numerical models. This captured cri-
tical pressure was regarded as a reference value that judging the pre-
dictive accuracy of the equivalent layer models.

4.2. Equivalent layer models

With the equivalent properties determined by the proposed method,
a finite element model of the equivalent layer (Model A) was con-
structed. That equivalent layer FE model is shown in Fig. 15. The ex-
ternal pressure was applied onto the external surface of the inner liner
to compress the whole model till the collapse occurs. The critical col-
lapse pressure of the equivalent model was read through its result files
and then compared with that of the full 3D model.

To give a more comprehensive comparison, some other equivalent
models based on the existing equivalent methods were also constructed.

Those methods are proposed based on different structural property
equivalences are presented as follows: a) Area equivalence (Model B)
This method obtains the thickness of the equivalent layer by equating
the cross-sectional area between the carcass and the equivalent layer,
which can be expressed as (Zhang et al., 2003)

Table 3
Geometrical and material properties of Gay Neto's carcass model (Gay Neto and
Martins, 2012).

Internal diameter (in.) 4 θ1 (deg) 60
Pitch length Lp (mm) 16 θ2 (deg) 45
Carcass strip thickness t (mm) 1.00 θ3 (deg) 90
L1 (mm) 8.00 R1 (mm) 1.00
L2 (mm) 3.00 R2 (mm) 1.00
L3 (mm) 9.00 R3 (mm) 3.00
L4 (mm) 4.50 E (GPa) 200
L5 (mm) 10.00 v 0.3
L6 (mm) 3.00 Yielding stress σy (MPa) 600
L7 (mm) 2.00 Tangent modulus Et 2000
Rtip (mm) 0.50 (after yielding stress) (MPa)

Fig.12. Stress-strain curve of the carcass material (Gay Neto and Martins, 2012)

Fig. 13. Stress-strain curve of the inner liner material (Gay Neto and Martins,
2012).

Fig. 14. A) numerical model for critical pressure prediction and b) the imposed
boundary conditions.

Fig. 15. Whole view of the equivalent layer model.
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=t A
Leq,1

p (20)

b) Bending stiffness equivalence per area (Model C) This method
was employed by De Sousa et al. (2001) that obtaining the thickness by
equating sectional bending stiffness between two structures. The
equation takes the form

=t I
A

12
eq,2

Gmin

(21)

where IGmin is the minimum moment of inertia of the carcass cross
section. c) Bending stiffness equivalence per length (Model D) This
method is similar to the second one but build the bending stiffness
equivalence based on unit length (Martins et al., 2003). Therefore, the
equivalent thickness can be calculated as

=
+

t
ψ I

L
12(1 )

eq,3
Gmin3

(22)

where L is the axial length of the carcass and ψ is the rate of super-
position of the carcass profiles. The value of the ψ depends on the
profile geometry and the pitch considered, which could be calculated
by using the superposed length Lsuper between two profiles in a pitch
(Gay Neto and Martins, 2012)

=ψ
L

L
super

p (23)

d) Circumferential strain energy equivalence (Model E) This method
is proposed by Tang et al. (2016) which build a strain energy equiva-
lence between two structures that with a specific structural strain
condition: uniform hoop strain is the only strain type that allowed to be
generated. The calculation of the strain energy Ψcarcass of the carcass is
completed through numerical models and a displacement load uθ that is
linearly proportional to the radial length is applied onto the carcass
profile to help create uniform hoop strain εθ, which is given as

=u π r ε
2θ θx (24)

where rx is the radial length of the carcass. The strain energy of the
equiva-lent layer that with the same uniform hoop strain εθ is given as

∫= =Ψ σ ε V π A ε RLt1
2

d
4θ θ θeq 1

2
eq (25)

The parameter A1 within Eq. (25) takes the form

= −
+ −

A E v
v v
1

(1 )(1 2 )1
(26)

and thus the equivalent thickness is given as

=t Ψ
A ε RLπ

θ
eq,4

carcass

4 1
2

(27)

The geometric and material properties of those the equivalent layer
models are presented in Table 4. The internal diameter and longitudinal
length of all the equivalent layer models were identical with the 4 in.
carcass full model.

4.3. Comparison of the critical pressure predictions

The Arc length technique was employed to capture the snap-through
occurrence of each finite element model. It was necessary to choose a
representative radial displacement value for each cross section in the
numerical models since each point had a different displacement value.
A reference line was chosen from the internal surface of numerical
models (full 3D model as well as equivalent models) that identified in
Fig. 16. The mean value of the radial displacement of the nodes on that
reference line was regarded as the radial displacements of the models
subjected to external pressure.

The critical pressure and the radial displacement at the critical
pressure provided by each model are summarized in Table 5. The
curves of radial displacement versus external pressure are plotted in
Fig. 17.

According to the black solid line plotted in Fig. 17, a stiffness re-
duction of the full carcass model appeared when the external pressure
reaches 12MPa approximately. It represents the occurrence of the
material plasticity, which was further developed with the increasing
external loads. Model B gave a linear behaviour that agreed well with
the full model before the occurrence of plastic stresses. However, it
failed to capture the following collapse behaviour of the full carcass
model because the area equivalence considered in this model cannot
build a relationship to its material properties. The results came from
Model C and D deviated considerably from that of the full model. The
methods used in those two models calculated the inertial moment based
on the geometric cross section of the carcass purely, which neglected
the contact and fiction-induced stiffness reduction. That could explain
that why both of the two models have much higher layer thicknesses
and overestimate the critical pressure of the carcass. By contrast, the
critical pressure provided by Model A and Model E were relatively
conservative. As stated above, the thickness of Model E was determined
based on structural strain energy that generated by uniform hoop strain
of the carcass. In other word, this model was constructed based on
membrane stiffness equivalence only and therefore underestimates the
overall structural stiffness of the carcass. As a result, it gave an over-
conservative prediction on the critical pressure of the carcass. Among
those equivalent models, Model A provided a much closer prediction to
the critical pressure of the carcass according to Fig. 17. The predictive
error on critical pressure between the Full model and Model A was just
around 6.5%, which showed that model built with both geometric and
material equivalences can provide a better prediction of the critical
pressure of the carcass.

5. Conclusion and discussion

Predicting the critical collapse of flexible risers accurately is a dif-
ficult task and efficient calculation methods are always demanded.
Dealing the complex carcass structure with an equivalent layer is the
first and foremost step in collapse analyses of the flexible risers. Up till
now, various equivalent methods are developed for constructing such
an equivalent layer. However, most of them are proposed by imposing
equity between the carcass and homogeneous layer for one certain
property and the layer thickness has always been the only output for the
equivalent layer. As a result, their predictions of the critical pressure of
the carcass often result in considerable errors.

Considering that, an equivalent layer method is proposed in this
paper by considering the strain energy and membrane stiffness

Table 4
Geometrical and material properties of the equivalent layer.

Model Thickness (mm) Young's modulus (GPa) Yielding stress (MPa)

Model A 2.85 244.9 691
Model B 3.49 200 600
Model C 6.32 200 600
Model D 5.18 200 600
Model E 2.59 200 600

Fig. 16. Reference line for measuring the radial displacement of FE models.
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simultaneously. Essentially speaking, this method is proposed based on
membrane and bending stiffness equivalence between the carcass and
equivalent layer structures. However, due to the fact that there is no
available approach to calculate the actual bending stiffness of the car-
cass, the strain energy was adopted as an alternative. The strain energy
of the carcass was first obtained through 3D FE carcass models and then
used to determine the equivalent properties, the layer thickness and
Young's modulus, for the equivalent layer in combination with mem-
brane stiffness equivalence. Using such a 3D FE carcass model is due to
the fact that there is no available mathematical model yet for the strain
energy calculation of such interlocked layer structures. Although this is
a limitation of the proposed equivalent layer method, it offers an ap-
proach to consider the self-contact issue of the carcass. Additionally, a
material equivalent yield stress was also determined based on that
obtained equivalent Young's modulus to account for the plastic collapse
of deep-water flexible risers.

A set of models were built to examine the reliability of the proposed
method as well as other existing methods. From the comparison results,
the model constructed based on the proposed method gave the closest
prediction on the critical collapse pressure of the carcass, only with an
error of 6.5%. It indicates that this strain energy based equivalent layer
method is able to consider the actual structural stiffness of the carcass
and can be a reliable and effective tool for the collapse study of flexible
risers.
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