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We study (quasi-)cohomological properties through an analysis of quantum Markov

semi-groups. We construct higher order Hochschild cocycles using gradient forms

associated with a quantum Markov semi-group. By using Schatten-Sp estimates we

analyze when these cocycles take values in the coarse bimodule. For the 1-cocycles (the

derivations) we show that under natural conditions we obtain the Akemann–Ostrand

property. We apply this to q-Gaussian algebras �q(H
R
). As a result q-Gaussians satisfy

AO+ for |q| � dim(H
R
)−1/2. This includes a new range of q in low dimensions compared

to Shlyakhtenko [34].

1 Introduction

The aim of this paper is to connect the theory of quantum Markov semi-groups to

certain cohomological properties of their algebras. Quantum Markov semi-groups are

continuous semi-groups of trace preserving unital completely positive maps on a finite

von Neumann algebra. Such quantum Markov semi-groups naturally arise in time

evolutions of open systems that undergo decoherence. With the emergence of non-
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6406 M. Caspers et al.

commutative probability, their theory had been investigated thoroughly. We refer in

particular to the papers of Davies-Lindsay [15], Goldstein–Lindsay [21] and Cipriani [9].

A result that is of fundamental importance to us was obtained by Cipriani

and Sauvageot [11]. They showed that any generator � of a quantum Markov

semi-group (e−t�)t≥0 admits a closable derivation ∂ as its square root, that

is, � = ∂∗∂. Since derivations are 1-cocycles in Hochschild cohomology, this

is the 1st instance that shows relevance of quantum Markov semi-groups to

cohomology.

The results from [11] had several consequences in non-commutative potential

theory and quantum probability. Much more recently also links to approximation and

rigidity properties of von Neumann algebras were made. In particular, amenability [12]

and Haagerup property [7] can be characterized in terms of quantum Markov semi-

groups with sufficient decay (see also [6, Appendix]). Further rigidity properties of von

Neumann algebras can be obtained [6] by using quantum Markov semi-groups as input

for the machinery developed by Ozawa–Popa [27, 28] and Peterson [30]. A crucial tool

here is the gradient form (or carré du champ) of a quantum Markov semi-group (or

classically a diffusion semi-group)

We describe these rigidity results a bit further. In the celebrated paper [37]

Voiculescu showed, using free entropy, that free group factors do not possess a Cartan

subalgebra. Later on, using completely different methods, Ozawa and Popa [27] re-

obtained this result. Ozawa and Popa in fact prove a stronger result. Namely, they

show that the normalizer of any amenable diffuse von Neumann subalgebra generates

a von Neumann algebra that is amenable again. This property became known as strong

solidity and plays a central role in the theory. Strong solidity results are usually proved

from a combination of weak compactness and a malleable deformation or a group

geometric/cohomological property.

In particular, the rigidity results of [28, 30] show that proper 1-cocycles in group

cohomology with values in the coarse bimodule (or any bimodule weakly contained in

it) can be used to show that von Neumann algebras are strongly solid. After [28, 30]

these results were improved upon in [8], [33], and [26], where it was shown that also

the Akemann–Ostrand property, which in the case of a group von Neumann algebra

compares to quasi-cocycles in bounded (group) cohomology, can be used to get strong

solidity results and further prime factorization results [29].

In the current paper we address the question whether also derivations in

Hochschild cohomology can be used to obtain (quasi-)cohomological properties like the

Akemann–Ostrand property. We do this as follows. Fix a finite von Neumann algebra M
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-Cohomology, Derivations, and Semi-Groups 6407

with a quantum Markov semi-group on it having a dense ∗-algebra A in the domain of

its generator. We first show that we can construct natural n-cocycles in the Hochschild

cohomology of A. The case n = 1 reduces to the work of Cipriani–Sauvageot [11]

mentioned above. The n-cocycles are defined inductively and in each inductive step

their coefficient bimodule changes by a construction, which we refer to as the “gradient

tensor product”. Say that the n-cocycles take values in the n-fold gradient tensor

L2(M)∇(n) (we omit the construction here in the introduction). We then analyze when

L2(M)∇(n) is quasi-contained in the coarse bimodule; meaning that it is contained as a

bimodule in an infinite direct sum of copies of the coarse bimodule. In order to do this

we introduce the notion of gradient-Sp for a quantum Markov semi-group and prove the

following.

Theorem A. If a quantum Markov semi-group is gradient-S2n then L2(M)∇(n) is quasi-

contained in the coarse bimodule of M.

So essentially under gradient-S2n the cohomology takes place in the coefficient

bimodule given by the coarse bimodule. Note that gradient-S2n becomes weaker for

higher n. We illustrate this for q-Gaussians algebras introduced by Bożejko and Speicher

[3], see also [2].

Theorem B. For |q| < dim(H
R
)−1/p we have that the Ornstein–Uhlenbeck semi-group

on the q-Gaussian algebra �q(H
R
) is gradient-Sp.

The importance of Theorems A and B is so far mostly witnessed in the case

n = 1. In fact, in Theorem 4.1 we show that the cohomology of the ∗-algebras associated

with q-Gaussians vanishes for n ≥ 2 so that the cocycles we construct are in fact

coboundaries. For n = 1 we show that Theorem B can be used to obtain further results

that serve as in input for the machinery developed in [32] and [26]. We give sufficient

conditions on a derivation to imply the Akemann–Ostrand property. We analyze these

conditions in the case of group algebras but also many other algebras by assuming that

the quantum Markov semi-group has a type of filtration (or is radial in some sense). In

many known natural examples these conditions are verified, see the end of Section 5. As

a culminating result we single out the following.

Theorem C. For |q| � dim(H
R
)−1/2 the q-Gaussian algebra �q(H

R
) satisfies the

Akemann–Ostrand property; more precisely condition AO+ from [26].
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6408 M. Caspers et al.

Shlyakhtenko [34] obtained the same result for |q| <
√

2 − 1 using that the q-

Toeplitz algebra is nuclear in this range. In fact the q-Toeplitz algebras are isomorphic

within this range [18], and nuclearity for
√

2 − 1 � |q| < 1 is still an open problem.

Theorem C thus strictly extends the known range of q for which �q(H
R
) has AO+ for

dimension up until 5.

The outline of this paper is as follows. After the preliminaries we introduce the

gradient tensor construction in Section 3. We analyze when a repeated tensor product

is contained in the coarse bimodule through the notion of being gradient-Sp (Theorem

A). We also show that in the group case, under a domain condition, one may always

average quantum Markov semi-groups to a semi-group of Fourier multipliers retaining

the gradient Sp-properties. In Section 4 we illustrate this using q-Gaussians and we

show that the Ornstein–Uhlenbeck semi-group is gradient-Sp for |q| < dim(H
R
)−1/p

(Theorem B). Section 5 is then concerned with the question of which derivations imply

condition AO+. We give sufficient conditions for the Cipriani–Sauvageot [11] derivations;

among many other examples this includes q-Gaussians and we conclude Theorem C.

2 Preliminaries

2.1 General conventions and notation

Throughout the paper M is a finite von Neumann algebra with a trace τ . Let �τ ∈
L2(M) := L2(M, τ) be the cyclic vector given by 1 ∈ M. We denote by Sp the

Schatten–von Neumann class, which is the non-commutative Lp-space associated with

B(H) and its trace.

2.2 Containment of bimodules

Let A be a ∗-algebra. By an A–A bimodule H we mean a Hilbert space together with

∗-homomorphisms πl : A → B(H) and πr : Aop → B(H) whose images commute. If A is a

von Neumann algebra then we assume moreover that πl and πr are normal.

We write L2(M) for the trivial bimodule and L2(M) ⊗ L2(M) for the coarse

bimodule with the usual left and right actions. Let H and K be M − M bimodules. We

say that H is contained in K if H is (isomorphic to) a sub-bimodule of K; that is, H is

a closed subspace of K that is invariant for the bimodule actions of M. We say that H

is quasi-contained in K if H is contained in ⊕i∈IH for some index set I. We use Popa’s

definition of weak containment [31].
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-Cohomology, Derivations, and Semi-Groups 6409

Definition 2.1. Let M be a von Neumann algebra and let H and K be M-M-bimodules.

We say that H is weakly contained in K if for every ε > 0, every finite set F ⊆ M and

every ξ ∈ H there exists finitely many ηj ∈ K indexed by j ∈ G such that for x, y ∈ F,

|〈xξy, ξ 〉 −
∑
j∈G

〈xηjy, ηj〉| < ε.

Notation H  K.

The following clarifies the connection to containment in the way we encounter

it in this paper.

Lemma 2.2. Let M be a von Neumann algebra and A a σ -weakly dense ∗-subalgebra

of M with norm closure A. Let H be an A–A-bimodule and let K be an M–M-bimdoule.

Suppose that there exists a dense subspace D ⊆ H such that for every ξ ∈ D there exists

an η ∈ K such that for every x, y ∈ A we have

〈xξy, ξ 〉 = 〈xηy, η〉.

Then for every ξ ∈ D the sub-bimodule Hξ := AξA of H is contained in K as A–A

bimodules. Consequently, H is contained in a (possibly infinite) direct sum of copies of

K and further the A–A bimodule actions on H extend to normal M–M-bimodule actions.

Proof. Take ξ ∈ D. By assumption there exists η ∈ K such that for all x, y ∈ A we

have that 〈xξy, ξ 〉 = 〈xηy, η〉. Then set U : Hξ → K by aξb �→ aηb where a, b ∈ A and it

follows that this map is isometric and intertwines the bimodule actions (of A and then

by continuity of A).

Since UHξ admits normal M–M bimodule actions, we can extend the A-A actions

on Hξ to normal M-M bimodule actions.

Let  be the set of all families of unit vectors (ξi)i in H such that each Hξi
:= AξiA

is a sub A–A bimodule of K and that all Hξi
are orthogonal with each other. By Zorn’s

lemma, take a maximal element (ξi)i in . Let Pi be the orthogonal projection onto Hξi
and

suppose by contradiction that P := ∑
i Pi �= 1H . Note that P commutes with A–A bimodule

actions. Let ξ ∈ D be such that (1 − P)ξ �= 0 and fix η ∈ K such that 〈aξb, ξ 〉 = 〈aηb, η〉.
Then observe that for all finitely many ai, bi ∈ A,

‖
∑

i

ai(1 − P)ξbi‖ = ‖(1 − P)
∑

i

aiξbi‖ � ‖
∑

i

aiξbi‖ = ‖
∑

i

aiηbi‖.
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6410 M. Caspers et al.

One can define a contraction v : AηA → A(1 − P)ξA by v(aηb) = a(1 − P)ξb for a, b ∈ A.

Then since v∗v commutes with A–A bimodule actions, if we put η′ := (v∗v)1/2η, then it

satisfies

〈a(1 − P)ξb, (1 − P)ξ 〉 = 〈aη′b, η′〉, for anya, b ∈ A.

This contradicts the maximality of (ξi)i. We conclude that there is an A–A bimodule

embedding

H =
⊕

i

Hξi
⊂

⊕
i

K

and we can extend the A–A actions to normal M–M bimodule actions via this

embedding. �

2.3 Hochschild cohomology

Fix an algebra A. We define Hochschild cohomology (see [5], [35], and also [14]) through

the bar resolution as follows. Let Fn be the space of all linear maps f : A⊗n → H to a

fixed A–A bimodule H. For f ∈ Fn we define dnf : A⊗n+1 → H by

(dnf )(a1 ⊗ a2 ⊗ . . . ⊗ an+1) = a1 · f (a2 ⊗ . . . ⊗ an+1)

+
n∑

k=1

(−1)kf (a1 ⊗ . . . ⊗ akak+1 ⊗ . . . ⊗ an+1) + (−1)n+1f (a1 ⊗ . . . ⊗ an) · an+1

with a1, . . . , an+1 ∈ A. Further, set for ξ ∈ H the map d0ξ : A → H by (d0ξ)(a) =
aξ − ξa, a ∈ A. We get a chain called the bar resolution,

. . . ←d4 F4 ←d3 F3 ←d2 F2 ←d1 F1 ←d0 H,

with dn+1 ◦ dn = 0. Let Cn(A, H) be the kernel of dn, which we call the Hochschild

n-cocycles. Let Bn(A, H) be the image of dn−1, which we call the n-coboundaries. By

definition B0(A, H) = {0}. Let

Hn(A, H) = Cn(A, H)/Bn(A, H)

be the n-th Hochschild cohomology group with coefficients in H.
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-Cohomology, Derivations, and Semi-Groups 6411

3 Gradient Tensoring, n-cocycles, and Gradient-Sp

The aim of this section is to construct n-cocycles in Hochschild cohomology using

quantum Markov semi-groups.

Definition 3.1. A quantum Markov semi-group (�t)t≥0 on (M, τ) is a semi-group of

unital completely positive maps �t : M → M that preserve the trace, that is, τ ◦ �t = τ

for all t ≥ 0. Further, we assume that �t is symmetric τ(�t(x)y) = τ(x�t(y)), x, y ∈ M.

Moreover, we assume that for every x ∈ M the map t �→ �t(x) is continuous for the

strong topology of M.

3.1 Gradient tensoring

Let (�t)t≥0 be a quantum Markov semi-group on M. Let

�
(2)
t : L2(M) → L2(M) : x�τ �→ �t(x)�τ

be the corresponding semi-group on L2(M). Let � ≥ 0 be its generator, that is, � is the

unbounded positive (self-adjoint) operator on L2(M) such that

exp(−t�) = �
(2)
t

as a semi-group on L2(M).

Assumption 1. We shall assume that there exists a σ -weakly dense ∗-subalgebra A
of M such that A�τ is contained in the domain of � and moreover �(A�τ ) ⊆ A�τ . We

simply write �(a), a ∈ A for the map � on the level of A. We assume moreover that for

every a ∈ A the map t �→ �t(a) is norm continuous. Let

A := A‖ · ‖

be the C∗-closure of A. In general we cannot guarantee the existence of such an algebra

A, but in many concrete cases it exists. The assumption should be compared to similar

assumptions and remarks made in [10, Section 5], [23], or [6]. We introduce the following

definition, which is in principle A-dependent. For p = 2 it was introduced in [6].
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6412 M. Caspers et al.

Definition 3.2. Let 1 � p � ∞. We say that a quantum Markov semi-group (�t)t≥0 is

immediately gradient-Sp if for every a, b ∈ A and every t > 0 we have that

�
a,b
t : x �→ −1

2
�t (�(axb) + a�(x)b − �(ax)b − a�(xb)) (3.1)

extends to a bounded map x�τ �→ �
a,b
t (x)�τ on L2(M) that is moreover in Sp. (�t)t≥0 is

gradient-Sp if for every a, b ∈ A the map (3.1) is in Sp for t = 0. We set �a,b = �
a,b
0 .

Example 3.3. We illustrate Definition 3.2 by a simple (counter)example. Suppose that

T is the torus seen as the unit circle in C. Let ek(z) = zk, z ∈ T. Let A be the span of

ek, k ∈ Z, that is, the ∗-algebra of trigonometric polynomials. Set M = L∞(T).

• Let � be the Laplacian given by �(ek) = k2ek, which generates the heat

semi-group (e−t�)t≥0. This semi-group is not gradient-Sp for any 1 ≤ p ≤ ∞.

Indeed, we find that

�el,em(ek) = −1

2
((l + k + m)2 + k2 − (l + k)2 − (k + m)2)el+k+m = −lm el+k+m,

and this map is not even compact on L2(T) unless lm = 0.

• However, if we consider the Poisson semi-group (e−t�
1
2
)t≥0 then we find

�el,em(ek) = −1

2
(|l + k + m| + |k| − |l + k| − |k + m|)el+k+m,

which is 0 as soon as |k| ≥ |l| + |m|. Therefore, �el,em is finite rank and

therefore (e−t�
1
2
)t≥0 is gradient-Sp for every p ∈ [1, ∞].

Remark 3.4. Morally, one can expect that a quantum Markov semi-group is gradient-

Sp if the eigenvalues of the generator grow (almost) linearly (like for the Poisson semi-

group) and if there is not too much interaction between the operators a and b in an

expression axb if x has a very large “length” (this obviously requires more structure

to explain in more detail). The current paper gives quantitative examples of this, see

Section 4 and Theorem B of Section 1. More examples as well as stability properties for

gradient-S2 for free products were given in [6].
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-Cohomology, Derivations, and Semi-Groups 6413

In [11] the following bimodule is constructed. We set the gradient form (or carré

du champ),

�(x, y) = 1

2
(�(y)∗x + y∗�(x) − �(y∗x)), x, y ∈ A,

which we view as an A-valued inner product. Let H be any A–A-bimodule. Equip the

algebraic tensor product A ⊗alg H with the (degenerate) inner product

〈x ⊗ ξ , y ⊗ η〉 = 〈�(x, y)ξ , η〉, x, y ∈ A, ξ , η ∈ H.

The Hilbert space obtained by quotienting out the degenerate part and taking the

completion will be called the gradient tensor product, which we denote by H∇ . We

will denote by a ⊗∇ ξ , a ∈ A, ξ ∈ H the class of a ⊗ ξ in H∇ . H∇ has an A–A bimodule

structure given by the left action

x · (y ⊗∇ ξ) = xy ⊗∇ ξ − x ⊗∇ yξ , x, y ∈ A, ξ ∈ H, (3.2)

and the right action

(y ⊗∇ ξ) · x = y ⊗∇ ξx, x, y ∈ A, ξ ∈ H. (3.3)

Proposition 3.5. The left and right actions defined in (3.2) and (3.3) are well-defined

contractive left and right actions of A that moreover commute. That is, H∇ is an A–A-

bimodule where A is the C∗-closure of A.

Proof. The proof in case H = L2(M) is the trivial M–M-bimodule is given as [11, Lemma

3.5]. But in fact the same proof works for any A–A-bimodule H. Note that the proof that

the right action is contractive is straightforward. �

Definition 3.6. We call (�t)t≥0 gradient coarse if the A–A-bimodule actions on L2(M)∇
extend to normal M–M-bimodule actions and further L2(M)∇ is weakly contained in the

coarse bimodule of M.

By Proposition 3.5 for an A–A-bimodule H we may define

H∇(n) = ((H∇)∇ . . .)∇ ,

for the n-fold application of H �→ H∇ . The following connects the map (3.1) to the

bimodule structure defined above.
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6414 M. Caspers et al.

Lemma 3.7. Let H be an A–A-bimodule. For x, y, a, b ∈ A and ξ , η ∈ H we have

〈x · (a ⊗∇ ξ) · y, b ⊗∇ η〉 = 〈�b∗,a(x)ξy, η〉.

Proof. Indeed, we find that

〈x · (a ⊗∇ ξ) · y, b ⊗∇ η〉 =〈(xa ⊗∇ ξy − x ⊗∇ aξy), b ⊗∇ η〉
=〈(�(xa, b) − �(x, b)a)ξy, η〉

=1

2
〈(�(b∗)xa+b∗�(xa)−�(b∗xa)−�(b∗)xa−b∗�(x)a+�(b∗x)a)ξy,η〉

=〈�b∗,a(x)ξy, η〉.

This concludes the proof. �

Remark 3.8. Let H be an A–A-bimodule and let ξ ∈ H. Then the functional on A ⊗max

Aop given by x ⊗ yop �→ 〈xξy, ξ 〉 is positive and therefore also its restriction to A ⊗alg

Aop → C sends elements of the form x∗x with x ∈ A ⊗alg Aop to non-negative reals.

Therefore, if this map is ⊗min continuous we obtain a positive map A ⊗min Aop → C.

For any n ∈ N≥1, we say that a vector ξ ∈ L2(M)∇(n) is algebraic if it is contained

in a linear span of elements of a0 ⊗∇ a1 ⊗∇ · · · ⊗∇ an for some a0, . . . , an ∈ A.

Theorem 3.9. Let n ∈ N≥1. Suppose that the quantum Markov semi-group � = (�t)t≥0

is gradient-Sp for p = 2n.

Then for any algebraic ξ ∈ L2(M)∇(n) , AξA is contained in the coarse bimodule

L2(M) ⊗ L2(M) as A–A bimodules. In particular, L2(M)∇(n) is contained in an infinite

multiple of the coarse bimodule L2(M)⊗ L2(M) as A–A bimodules and the A–A bimodule

actions on L2(M)∇(n) extend to normal M–M bimodule actions via this embedding.

Proof. Take a0, a1, . . . , an, b0, b1, . . . , bn ∈ A. Consider vectors α := a0 ⊗ . . . ⊗ an−1 ⊗
an�τ , β := b0 ⊗ . . . ⊗ bn−1 ⊗ bn�τ ∈ L2(M)∇(n) . For x, y ∈ A we get from Lemma 3.7 that

〈x · α · y, β〉 =〈x · (a0 ⊗∇ . . . ⊗∇ an−1 ⊗∇ an�τ ) · y, b0 ⊗∇ . . . ⊗∇ bn−1 ⊗∇ bn�τ 〉
=〈�b∗

n−1,an−1 ◦ . . . ◦ �b∗
1,a1 ◦ �b∗

0,a0(x)an�τ y, bn�τ 〉
=〈b∗

n�b∗
n−1,an−1 ◦ . . . ◦ �b∗

1,a1 ◦ �b∗
0,a0(x)an�τ , �τ y∗〉

=〈b∗
n�b∗

n−1,an−1 ◦ . . . ◦ �b∗
1,a1 ◦ �b∗

0,a0(x)an�τ , y∗�τ 〉,
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-Cohomology, Derivations, and Semi-Groups 6415

where the last equality uses the fact that �τ y∗ = y∗�τ .

Since each �
b∗

j ,aj is an element of Sp with p = 2n we find that

� := �b∗
n−1,an−1 ◦ . . . ◦ �b∗

1,a1 ◦ �b∗
0,a0 ∈ S2.

Then also x�τ �→ b∗
n�(x)an�τ is in S2. Therefore, there exists ζα,β ∈ L2(M) ⊗ L2(M) such

that

〈x · α · y, β〉 = 〈x�τ ⊗ y∗�τ , ζα,β〉. (3.4)

Since the map Mop � yop �→ y∗ ∈ M is an ∗-isomorphism, we deduce that assigning (3.4)

to x ⊗ yop ∈ M ⊗alg Mop is ⊗min-bounded and moreover normal.

Now take any algebraic α ∈ L2(M)∇(n) . The previous paragraph shows that the

map ρ : M ⊗ Mop : x ⊗ yop → 〈x · α · y, α〉 extends to M⊗Mop. Moreover, ρ is positive on

A ⊗alg Aop → C, see Remark 3.8. We claim that ρ is also a positive map M⊗Mop → C.

Indeed, take z ∈ M⊗Mop positive and write z = d∗d, d ∈ M⊗Mop. By Kaplansky’s density

theorem, let dj ∈ A⊗Aop be a bounded net converging strongly to d. Then d∗
j dj → d∗d =

z weakly and hence σ -weakly since these topologies coincide on the unit ball. Since ρ

is normal (i.e., σ -weakly continuous), we get 0 ≤ ρ(d∗
j dj) → ρ(z). Since L2(M) ⊗ L2(M)

is the standard Hilbert space for M⊗Mop there exists ζα ∈ L2(M) ⊗ L2(M) such that

〈x · α · y, α〉 = 〈x · ζα · y, ζα〉. As algebraic vectors in L2(M)∇(n) form a dense subspace, we

conclude by Lemma 2.2. �

Corollary 3.10. Suppose that the quantum Markov semi-group (�t)t≥0 is gradient-S2;

then it is gradient coarse.

3.2 Construction of n-cocycles.

The following proposition allows to construct cocycles at the expense of changing the

bimodule. We will remedy this change by using Schatten-Sp properties below.

Theorem 3.11. Let H be an A–A-bimodule and let f : A⊗(n−1) → H be a linear map. Set

Gf : A⊗n → H∇ by

(Gf )(a1 ⊗ . . . ⊗ an) := a1 ⊗∇ f (a2 ⊗ . . . ⊗ an) ∈ H∇ .

Then Gd+dG = 0, where d’s are the differentials of the appropriate cochain complexes.

In particular, G maps cocycles to cocycles and coboundaries to coboundaries, so it

induces a map on the level of cohomology G∗ : Hn(A, H) → Hn+1(A, H∇).
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6416 M. Caspers et al.

Proof. Let us first compute G(df ). We have

df (a1 ⊗ · · · ⊗ an) = a1f (a2 ⊗ · · · ⊗ an) +
n−1∑
k=1

(−1)kf (a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)nf (a1 ⊗ · · · ⊗ an−1)an,

hence

G(df )(a0 ⊗ · · · ⊗ an) = a0 ⊗∇ a1f (a2 ⊗ · · · ⊗ an)

+
n−1∑
k=1

(−1)ka0 ⊗∇ f (a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)na0 ⊗∇ f (a1 ⊗ · · · ⊗ an−1)an.

On the other hand,

−d(Gf )(a0 ⊗ · · · ⊗ an) = −a0(a1 ⊗∇ f (a2 ⊗ · · · ⊗ an)) + a0a1 ⊗∇ f (a2 ⊗ · · · ⊗ an)

+
n−1∑
k=1

(−1)ka0 ⊗∇ f (a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)na0 ⊗∇ f (a1 ⊗ · · · ⊗ an−1)an.

Note that

−a0(a1 ⊗∇ f (a2 ⊗ · · · ⊗ an)) = −a0a1 ⊗∇ f (a2 ⊗ · · · ⊗ an) + a0 ⊗∇ a1f (a2 ⊗ · · · ⊗ an).

It follows that G(df ) = −d(Gf ), that is, dG + Gd = 0. �

Corollary 3.12. The map,

∂n : A⊗n → L2(M)∇(n) : a1 ⊗ . . . ⊗ an �→ a1 ⊗∇ . . . ⊗∇ an ⊗∇ �τ ,

defines an n-cocycle, that is, an element in Cn(A, L2(M)∇(n) ).

Proof. For n = 1 we get ∂1(ab) = ab⊗∇ �τ = a · (b⊗∇ �τ )+ (a⊗∇ �τ ) ·b = a∂1(b)+∂1(a)b

and so the corollary follows. For higher n use Theorem 3.11 inductively. �
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3.3 The Haagerup averaging technique

We will show that under algebraic conditions gradient-Sp properties behave well under

Haagerup averaging techniques. We believe this result is of independent interest,

though we will not use it in the subsequent sections.

Let � be a discrete group with group algebra C[�] and von Neumann algebra

(L(�), τ). We will identify � with its image under the left regular representation. So for

γ ∈ � we will also write γ for the associated unitary in L(�). Let (�t)t≥0 be a quantum

Markov semi-group on L(�). Consider the map,

�t = E ◦ (�t ⊗ id) ◦ δ�, (3.5)

where δ� : L(�) → L(�)⊗L(�) is the comultiplication δ� : γ �→ γ ⊗ γ and E is the

conditional expectation of L(�)⊗L(�) onto the image of δ� (post-composed with the

inverse of δ� so that the range is contained in L(�)). Then �t is a completely positive

Fourier multiplier with symbol ϕt(γ ) = τ(�t(γ )γ −1), γ ∈ �.

Lemma 3.13. Let �t : L(�) → L(�), t ≥ 0 be unital completely positive Fourier

multipliers (not necessarily a semi-group) and suppose that for every γ ∈ � the limit

��
0 (γ ) := limt↘0

1
t (γ − �t(γ )) exists. Then ��

0 defines a preclosed (unbounded) operator

on �2(�) with closure �� . Moreover, exp(−t��) is a quantum Markov semi-group.

Proof. Since ��
0 acts diagonally on �2(�) with respect to the basis γ ∈ � it is

preclosed. The remaining statements follow by following the constructions in [22] and

[7, Proposition 5.5]. Alternatively, there is the following short proof. Let ϕt be the symbol

of the Fourier multiplier �t, which is positive definite and ϕt(e) = 1. Consider the state

μt on C[�] that maps γ ∈ � to ϕt(γ ). Then �0(γ ) := limt↘0
1
t (μt − ε) defines a generating

functional on C[�] where ε(γ ) = 1, γ ∈ � is the counit (see [16, Section 6.2] for generating

functionals). Therefore, νt := exp(−t�0) defines a convolution semi-group of states on

C[�]. Since the Fourier multiplier �t = (id ⊗ νt) ◦ δ� is a trace preserving ucp map it

extends from C[�] to a quantum Markov semi-group on L(�) with generator �� . �

Lemma 3.14. Let (�t)t≥0 be a quantum Markov semi-group on L(�) with generator �

and assume C[�] is in the domain of �. Consider �t as in (3.5) and let �� be as in Lemma

3.13. We have

��(γ ) = d

dt
|t=0〈�t(γ ), γ 〉γ = 〈�(γ ), γ 〉γ , γ ∈ � ⊆ C[�].
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6418 M. Caspers et al.

Proof. This is clear from the definitions. �

The following theorem shows that under a domain condition on � we may

average a quantum Markov semi-group to a semi-group of Fourier multipliers while

retaining the property of being gradient-Sp.

Theorem 3.15. Let (�t)t≥0 be a quantum Markov semi-group on L(�) with generator

� and assume C[�] is in the domain of �. If (�t)t≥0 is gradient-Sp then so is exp(−t��).

Proof. Take μ1, μ2 ∈ � fixed. Since (�t)t≥0 is gradient-Sp we have that the assignment

�μ1,μ2 : γ �→ �(μ1γμ2) + μ1�(γ )μ2 − μ1�(γμ2) − �(μ1γ )μ2

is in Sp as an operator on �2(�). Therefore, also

μ−1
1 �μ1,μ2( · )μ−1

2 : γ �→ μ−1
1 �(μ1γμ2)μ−1

2 + �(γ ) − �(γμ2)μ−1
2 − μ−1

1 �(μ1γ )

is in Sp. Let D be the conditional expectation of B(�2(�)) onto the diagonal operators in

B(�2(�)). Certainly D(μ−1
1 �μ1,μ2( · )μ−1

2 ) is in Sp and, further,

D(μ−1
1 �μ1,μ2( · )μ−1

2 )(γ ) = μ−1
1 ��(μ1γμ2)μ−1

2 + ��(γ ) − ��(γμ2)μ−1
2 − μ−1

1 ��(μ1γ ).

Multiplying again with μ1 and μ2 shows that the assignment

γ �→ ��(μ1γμ2) + μ1��(γ )μ2 − μ1��(γμ2) − ��(μ1γ )μ2

is in Sp. �

4 Schatten Sp-Estimates for the Ornstein–Uhlenbeck Semi-group on q-Gaussians

We show that q-Gaussians �q(H
R
) with the Ornstein–Uhlenbeck semi-group are

gradient-Sp for a range of q depending on p and the dimension of the Hilbert space

H
R

.

4.1 q-Gaussian algebras

Let H
R

be a finite-dimensional real Hilbert space with complexification H = H
R

⊗C. We

denote by I the complex conjugation on H and we extend it to H⊗n by I(v1 ⊗ · · · ⊗ vn) :=
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-Cohomology, Derivations, and Semi-Groups 6419

Ivn ⊗· · ·⊗ Iv1. Let q ∈ (−1, 1) and consider the symmetrization operator on H⊗n given by

Pn
q (ξ1 ⊗ . . . ⊗ ξn) =

∑
σ∈Sn

qi(σ )ξσ(1) ⊗ . . . ⊗ ξσ(n),

where i(σ ) is the number of inversions in σ . Recall that an inversion is a pair (a, b) ∈
{1, . . . , n} with a < b and σ(a) > σ(b). For q ∈ (−1, 1) we set new inner products on H⊗n

by

〈ξ , η〉q = 〈Pn
q ξ , η〉,

and we refer to the Hilbert space with this q-deformed inner product as H⊗n
q . Also set

the q-Fock space Fq(H) = C� ⊕ (⊕∞
n=1H⊗n

q ), with � a unit vector called the vacuum

vector. Note that the conjugation I extends to an antiunitary operator on Fq(H); a typical

permutation does not preserve the q-deformed inner product, so it is a special feature

of the permutation reversing the order. We set the left creation operator for ξ ∈ H,

lq(ξ)η1 ⊗ . . . ⊗ ηn = ξ ⊗ η1 ⊗ . . . ⊗ ηn,

and the annihilation operator l∗q(ξ) = lq(ξ)∗. These operators are bounded and extend to

Fq(H) for q ∈ (−1, 1). We define the q-Gaussian algebra as

�q := �q(H
R
) := A′′

q, Aq := ∗-alg{ lq(ξ) + lq(ξ)∗ | ξ ∈ H
R
}.

We let ϕ� be the (tracial) vacuum state on �q(H
R
) given by ϕ�(x) = 〈x�, �〉. � is a

separating and cyclic vector for �q(H
R
) and so ϕ� is faithful and Fq(H) is the standard

Hilbert space of �q. In this setting � is a tracial vector and further �q is a II1-factor [33].

For vectors ξ1, . . . , ξn ∈ H there exists a unique operator Wq(ξ1 ⊗ . . .⊗ξn) ∈ �q(H
R
)

such that

Wq(ξ1 ⊗ . . . ⊗ ξn)� = ξ1 ⊗ . . . ⊗ ξn.

We call these operators elementary Wick operators or elementary Wick words. The

Ornstein–Uhlenbeck quantum Markov semi-group is then defined by

�t(Wq(ξ1 ⊗ . . . ⊗ ξn)) = e−tnWq(ξ1 ⊗ . . . ⊗ ξn).
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6420 M. Caspers et al.

(It extends to the q-Gaussian algebra by [2, Theorem 2.11].) It comes with a generator

(the quantum Dirichlet form) given by the number operator

�(ξ1 ⊗ . . . ⊗ ξn) = nξ1 ⊗ . . . ⊗ ξn.

We determine the cohomology as follows.

Theorem 4.1. For any Aq–Aq-bimodule H we have Hn(Aq, H) = 0 for n ≥ 2.

Proof. Let e1, . . . , em be an orthonormal basis of H
R

. We claim that algebraically

Aq is isomorphic to the ∗-algebra of non-commutative polynomials in m self-adjoint

variables X1, . . . Xm by the identification Xi := Wq(ei). Indeed, let P be a non-commutative

polynomial and suppose that P(X1, . . . , Xm) = 0. Let Q(X1, . . . , Xn) = Xi1 . . . Xid be a

monomial occurring in P of highest degree d. Then, from Lemma 4.3 below, we find

Q(X1, . . . , Xn) = Wq(Xi1 ⊗ . . .⊗Xid)+A where A is a linear combination of Wick operators

Wq(ξ1 ⊗ . . . ⊗ ξk) of tensors of order k < d. If P(X1, . . . , Xm) = 0 we must therefore have

that Q(X1, . . . , Xm) = 0. By induction we conclude that P = 0.

Now in [5, p. 192] it is shown that for the algebra of non-commutative polyno-

mials, the Hochschild cohomology with coefficients in any bimodule is 0. Alternatively,

see [24, Eqn. (5.11)] for an explicit short exact projective resolution, which also yields

this result. �

4.2 Gradient-Sp estimates

Let [n] be the set {1, . . . , n}, with n ∈ N. [n] has its natural order. We will consider the

operator �a,b associated to the Ornstein–Uhlenbeck semigroup. We will need a formula

for products of Wick words to be able to work with this operator. We will follow Effros–

Popa [19] (see also [17]).

Definition 4.2. Let n1, . . . , nk be natural numbers. By P�2(n1 ⊗ · · · ⊗ nk) we denote

the set of partitions of the set [n], where n = n1 + · · · + nk, with blocks of size at most

two, such that there is no pairing inside the sets {1, . . . , n1}, {n1 +1, . . . , n1 +n2}, . . . , {n−
nk + 1, . . . , n}. For π ∈ P�2(n1 ⊗ · · · ⊗ nk) we will define the number of crossings cr(π).

Let π = (l1, r1), . . . , (lm, rm), s1, . . . , sl be the blocks of the partition, so 2m + l = n; we

will denote by P(π) the set of pairs and by S(π) the set of singletons. We will denote

by c(π) the usual crossing number, that is, the number of pairs (li, ri) and (lj, rj) such

that li < lj < ri < rj. The symbol d(π) will denote the set of degenerate crossings, that
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-Cohomology, Derivations, and Semi-Groups 6421

is, the number of triples x < y < z such that (x, z) = (li, ri) for some i and y = sj for

some j, that is, y is not paired with anything. The crossing number cr(π) is defined to

be cr(π) = c(π) + d(π).

While cumbersome to formally define, the crossing number is easy to compute,

provided that we have a graphical representation of the partition available:

For this partition π there are two regular crossings (i.e., c(π) = 2) and 5

degenerate crossings, so cr(π) = 7.

We are now ready to state the multiplication formula for Wick words (cf. [19,

Theorem 3.3]).

Lemma 4.3. Let ξ = ξ1 ⊗ · · · ⊗ ξn ∈ H⊗n, where n = n1 + · · · + nk. Let us call ξ1, . . . , ξk

the tensors that arise from this decomposition of n, i.e. ξ1 = ξ1 ⊗ · · · ⊗ ξn1
, ξ2 = ξn1+1 ⊗

· · · ⊗ ξn1+n2
, etc. We have the following formula

Wq(ξ1) . . . Wq(ξk) =
∑

π∈P�2(n1⊗···⊗nk)

qcr(π)

⎛
⎝ ∏

(l,r)∈P(π)

〈Iξl, ξr〉
⎞
⎠ Wq(ξS(π)), (4.1)

where ξS(π) := ξs1
⊗ · · · ⊗ ξsl

if S(π) = {s1 < s2 < · · · < sl}.

This formula will be instrumental in the proof of the next proposition.

Proposition 4.4. Take operators in Aq of the form

a = Wq(ξ) = Wq(ξ1⊗. . .⊗ξn), b = Wq(η) = Wq(η1⊗. . .⊗ηk), x = Wq(μ) = Wq(μ1⊗. . .⊗μm),
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6422 M. Caspers et al.

where each ξi, ηi, μi ∈ H; define also v := ξ ⊗ μ ⊗ η. Then we have

�(axb) − �(ax)b + a�(x)b − a�(xb) (4.2)

= −2
∑

π∈P�2(n⊗m⊗k)

|(l, r) ∈ P(π) : l ∈ [n], r ∈ [k]| qcr(π)

⎛
⎝ ∏

(l,r)∈P(π)

〈Ivl, vr〉
⎞
⎠ Wq(vS(π)).

Proof. We determine the four summands in

�(axb) + a�(x)b − �(ax)b − a�(xb). (4.3)

Note that the formula for a triple product from the Lemma 4.3 can be obtained by

applying the formula for double products twice. It means that we can compute axb

as either (ax)b or a(xb). The fact that the crossings that we compute on the way add up

to the crossing number of the whole partition is not hard to check, but not immediate.

For instance, if we compute axb as (ax)b, then first we get a sum over partitions of n⊗m

and then over partitions of (n + m) ⊗ k, where you remove the nodes from [n + m] that

have already been paired; you have to check that the sum of the crossing numbers of

these partitions is equal to the crossing number of the resulting partition of n ⊗ m ⊗ k.

Once we have this observation, it is not hard to arrive at the formula. Indeed,

each of the four terms in (4.3) will feature a sum as in the formula for a triple product

of Wick words, but with coefficients coming from the Laplacian. In case of �(axb) the

coefficient is equal to n + m + k − 2|P(π)|. For �(ax)b the coefficient is equal to n + m −
2|{(l, r) ∈ P(π) : l ∈ [n], r ∈ [m]}|. The term a�(x)b just yields m. The last one, a�(xb),

produces m + k − 2|{(l, r) ∈ P(π) : l ∈ [m], r ∈ [k]}|. If we compute �(axb) − �(ax)b +
a�(x)b − a�(xb) then the result is −2|{(l, r) ∈ P(π) : l ∈ [n], r ∈ [k]}|. Indeed, the pairings

between [n] and [m] are accounted for by �(ax)b, the ones between [m] and [k] by a�(xb),

and only pairings between [n] and [k] are left. �

We now have a formula for �a,b(x). In order to estimate the Sp-norm of this

map, we will estimate separately the Sp-norms of �a,b restricted to H⊗m
q for each m �

0. Recall that on an N-dimensional Hilbert space we can estimate the Sp-norm by the

operator norm, namely ‖T‖p � N
1
p ‖T‖. Therefore, we will be concerned only with the

operator norm of �a,b restricted to H⊗m.

Proposition 4.5. Let ξ := ξ1 ⊗ · · · ⊗ ξn ∈ H⊗n, η := η1 ⊗ · · · ⊗ ηn ∈ H⊗k and consider

a := W(ξ) and b := W(η). Then the norm of �a,b restricted to H⊗m
q can be estimated as
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-Cohomology, Derivations, and Semi-Groups 6423

follows:

‖�a,b
|H⊗m

q
‖ � C(q, ξ , η, dim(H))|q|m. (4.4)

In order to obtain useful estimates, we need to replace the formula (4.1) by a new

one, which takes into account the q-deformed inner products. We will only consider the

case of 2 or 3 Wick words for simplicity. We will need operators R∗
n,k : H⊗n+k → H⊗n+k

given by

R∗
n,k(v1 ⊗ · · · ⊗ vn) =

∑
A⊂[n+k]:|A|=n

qi(A)vA ⊗ v[n]\A,

where i(A) = ∑n
l=1(il − l) if A = {i1 < i2 < · · · < in}; one can interpret this number as

the cost of moving elements of A to the left of [n + k] or, equivalently, cost of moving

its complement to the right. Now we can rewrite the formula for the double product of

Wick words.

Lemma 4.6. For (μ = μ1 ⊗ · · · ⊗ μm and η = η1 ⊗ · · · ⊗ ηk) we have

W(μ)W(η)� =
m∧k∑
j=0

(Idm−j ⊗ mj ⊗ Idk−j)(R
∗
m−j,j(μ) ⊗ R∗

j,k−j(η)), (4.5)

where mj : H⊗j
q ⊗ H⊗j

q → C is the inner product pairing given by mj(v ⊗ w) = 〈Iv, w〉.

Proof. Note that in Lemma 4.3 the crossings of partitions come from two sources: from

pairing a subset of [m] with a subset of [k] (the degenerate crossings) and from crossings

inside these subsets. If you fix the subsets and sum over all partitions that pair these

two subsets, the crossings can be incorporated into the definition of the q-deformed

inner product, and the numbers i(A) appearing in the definition of R∗
n,k count exactly

the number of degenerate crossings. �

We can iterate this to obtain a formula for W(ξ)W(μ)W(η). But if we do not

introduce a simpler notation, it will get very complicated. We will start from an element

of a triple tensor product H⊗n ⊗H⊗m ⊗H⊗k. One thing that we will have to do is to apply

inner product pairing between any two of them, and we need a notation for that. So we

will use the notation mab
j to denote the pairing of H⊗j from between the a-th and b-th

space, for example, m13
j will first split H⊗n ⊗H⊗m ⊗H⊗k into H⊗n−j ⊗H⊗j ⊗H⊗m ⊗H⊗j ⊗

H⊗k−j and then pair the two H⊗j spaces. Another thing is that operators R∗
n,k only split

the tensor power into two factors, but we will have to do it again, so we need a notation
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for that as well. The defining property of operators R∗
n,k is Pn+k

q = (Pn
q ⊗ Pk

q)R∗
n,k (cf. [25,

Lemma 5]). It motivates the following definition.

Definition 4.7. We define the operator R∗
n,k,l : H⊗n+k+l → H⊗n+k+l to be the unique

operator such that Pn+k+l
q = (Pn

q ⊗ Pk
q ⊗ Pl

q)R∗
n,k,l.

Later on we will have to use boundedness of these operators. In order to achieve

that goal we will need the following simple lemma.

Lemma 4.8. We have

R∗
n,k,l = (R∗

n,k ⊗ Idl)R
∗
n+k,l = (Idn ⊗ R∗

k,l)R
∗
n,k+l.

Proof. The equality Pn+k
q = (Pn

q ⊗ Pk
q)R∗

n,k means exactly that R∗
n,k is the adjoint of the

“identity” map Rn,k : H⊗n
q ⊗ H⊗k

q → H⊗n+k
q . By the same token R∗

n,k,l is the adjoint of the

identity map Rn,k,l : H⊗n
q ⊗ H⊗k

q ⊗ H⊗l
q → H⊗n+k+l

q , which can be obtained by composition

Rn+k,l(Rn,k ⊗ Idl) or Rn,k+l(Idn ⊗ Rk,l). �

We are ready to state a new formula for a triple product.

Proposition 4.9. Let ξ ∈ H⊗n, μ ∈ H⊗m, and η ∈ H⊗k. Then we have

W(ξ)W(μ)W(η)� =
∑
j,r,s

qr(m−j−s)m13
r m12

s m23
j (R∗

n−r−s,r,s(ξ) ⊗ R∗
s,m−s−j,j(μ) ⊗ R∗

j,r,k−j−r(η)).

(4.6)

Proof. The 1st step is to apply formula (4.5) to W(μ)W(η). It means that we apply the

operator
∑

j mj(R
∗
m−j,j ⊗ R∗

j,k−j) to μ ⊗ η. We denote the result by μ ⊗W η = ∑
j μ ⊗j

W η.

And then we repeat the procedure to obtain a formula for the triple product, but we

have to be careful at this point. If we just used the formula for a double product, we

would have to apply the operator
∑

p mp(R∗
n−p,p ⊗ R∗

p,m+k−2j) to ξ ⊗ (μ ⊗j
W η) and sum

over j. Now the tensors μ and η are mixed and we do not want to let that happen. So

we will pair a subset of [n] with a subset of [m + k − 2j] (with some elements removed

by the 1st pairing) but we will split the latter into parts lying in [m] and [k]; say they

have cardinalities s and r (so p = r + s). The issue is that we have to move this whole

subset to the left of [m + k − 2j], pair with the corresponding subset of [n], and compute

the inner product in H⊗s+r
q , which is not what we want; we prefer H⊗s

q ⊗ H⊗r
q . Because of
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the formula Ps+r
q = (Ps

q ⊗ Pr
q)R∗

s,r, we can achieve this goal by applying (Idn−r−s ⊗ R∗
s,r) to

R∗
n−p,p(ξ). Note that our pairing m involves a 2nd ingredient, the complex conjugation

I, which reverses the order of the tensor (i.e., I(v1 ⊗ · · · ⊗ vn) = Ivn ⊗ · · · ⊗ Iv1). So we

should consider the operator IPs+r
q instead. To make things easier, we will denote by Ij

the conjugation I acting on H⊗j. We have to compute Is+rPs+r
q = Is+r(Ps

q ⊗Pr
q)R∗

s,r. Because

Is+r reverses the order, we get Is+r(Ps
q ⊗ Pr

q)R∗
s,r = (IrPr

q ⊗ IsPs
q)R∗

r,s. Thus, we can write

ms+r = mrms(R
∗
r,s⊗Ids+r). It follows that we can replace the pairing ms+r by mrms at the

cost of applying Idn−r−s⊗R∗
r,s to R∗

n−p,p(ξ); by Lemma 4.8 this is the same as R∗
n−r−s,r,s(ξ).

Look now at the part coming from μ ⊗j
W η; we have a tensor of rank s coming

from μ and a tensor of rank r coming from η. We have to think about the cost of moving

it to the left of [m+k−2j]. The μ part we can simply move to the left and it is accounted

for by applying the operator R∗
s,m−j−s. The η part we move to the left of [k − j] using the

operator R∗
r,k−j−r and then we have to move it to be adjacent to the μ part. There are

m − j − s nodes that we have to cross, and the subset has cardinality r, so the cost is

equal to r(m − j − s). It means that our formula can be written as

∑
j,r,s

qr(m−j−s)m13
r m12

s (R∗
m−r−s,r,s(ξ) ⊗ (R∗

s,m−j−s ⊗ R∗
r,k−j−r)(μ ⊗j

W η)).

It is not yet exactly the formula (4.6), but it is very close to it. Recall that μ⊗j
W η is equal

to mj(R
∗
m−j,j(μ) ⊗ R∗

j,k−j(η)). So we arrive at

(R∗
s,m−j−s ⊗ R∗

r,k−j−r)(mj(R
∗
m−j,j(μ) ⊗ R∗

j,k−j(η))).

Note that we can either apply the pairing immediately, just like in the formula above,

but we can also first apply identities on the spaces that will be paired, and apply the

pairing afterwards. Thus, we get

mj((R
∗
s,m−j−s ⊗ Idj)R

∗
m−j,j(μ) ⊗ (Idj ⊗ R∗

r,k−j−r)R
∗
j,k−j(η)).

By Lemma 4.8, we get (R∗
s,m−j−s ⊗ Idj)R

∗
m−j,j = R∗

s,m−j−s,j and (Idj ⊗ R∗
r,k−j−r)R

∗
j,k−j =

R∗
j,r,k−j−r. In order to finish the proof, it suffices to add the decoration 23 to mj to make

it m23
j , which exactly matches the formula (4.6). �

Remark 4.10. In order to pass to the formula for �a,b(μ) we just need to multiply each

summand in (4.6) by −2r.
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In order to finish the proof of Proposition 4.5, we just need bounds for the inner

product pairings and the operators R∗
n,k.

Lemma 4.11. Let H be a Hilbert space. The inner product pairing m : H ⊗ H → C has

norm
√

dim(H).

Proof. Let (ei)i∈I be an orthonormal basis of H. Then the norm of v := ∑
i∈I ei ⊗ ei is

equal to
√|I|, while m(v) = |I|, so the norm is at least

√|I|. On the other hand, a simple

Cauchy–Schwarz estimate shows that it is not larger than that. �

Lemma 4.12. Recall that the norm of R∗
n,k : H⊗n+k → H⊗n+k is bounded by C(q). Then

the norm R∗
n,k : H⊗n+k

q → H⊗n
q ⊗ H⊗k

q is not greater than
√

C(q).

Proof. Because of the formula Pn+k
q = (Pn

q ⊗Pk
q)R∗

n,k, we get Pn+k
q � C(q)Pn

q ⊗Pk
q . Indeed,

if we have an equality A = BT for positive operators A and B then A2 = BTT∗B � ‖T‖2B2;

hence, A � ‖T‖B, as square root is an operator monotone function. The majorization

Pn+k
q � C(q)Pn

q ⊗ Pk
q shows that ‖Rn,k‖ �

√
C(q); therefore, also ‖R∗

n,k‖ � C(q). �

Corollary 4.13. We have ‖R∗
n,k,l‖ � C(q), where R∗

n,k,l is viewed as an operator from

H⊗n+k+l
q to H⊗n

q ⊗ H⊗k
q ⊗ H⊗l

q .

Proof. By Lemma 4.8 we can express R∗
n,k,l as (R∗

n,k ⊗Idl)R
∗
n+k,l, and then we can appeal

to the lemma above. �

Proof of Proposition 4.5. Let μ ∈ H⊗m
q and consider �a,b(μ). According to Proposition

4.9 we have

�a,b(μ) = −2
∑
j,r,s

rqr(m−j−s)m13
r m12

s m23
j (R∗

n−r−s,r,s(ξ) ⊗ R∗
s,m−s−j,j(μ) ⊗ R∗

j,r,k−j−r(η)).

We may assume that r � 1 (otherwise the corresponding summand is equal to zero), so

the (absolute value of the) factor qr(m−j−s) is bounded above by |q|m, up to a constant

depending on q, n, and k. As each of j, r, and s is bounded by either n or k, the range

of summation is finite, so it suffices to bound uniformly the norm of each summand. If

we treat R∗
n,k as a map from H⊗n+k

q to H⊗n
q ⊗ H⊗k

q , then each summand in (4.6) should

be thought of as an element of the space H⊗n−r−s
q ⊗ H⊗m−s−j

q ⊗ H⊗k−j−r
q and this norm

is bounded by a constant depending on q and dim(H) (coming from the inner product

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/9/6405/5766448 by TU
 D

elft Library user on 02 M
arch 2022



-Cohomology, Derivations, and Semi-Groups 6427

pairing). Because the norm of the identity map Rn−r−s,m−s−j,k−j−r : H⊗n−r−s
q ⊗ H⊗m−s−j

q ⊗
H⊗k−j−r

q → H⊗m+n+k−2(j+r+s)
q has norm at most C(q), the norm in H⊗m+n+k−2(j+r+s)

q is

bounded uniformly as well, which ends the proof. �

Theorem 4.14. Suppose that |q| < dim(H)
− 1

p . Then the Ornstein–Uhlenbeck quantum

Markov semi-group (�t)t≥0 is gradient-Sp. If |q| � dim(H)
− 1

p then (�t)t≥0 is immediately

gradient-Sp.

Proof. We will estimate the Sp norm of �a,b by
∑∞

m=0 ‖�a,b
|H⊗m

q
‖p. Because dim(H⊗m

q ) =
dim(H)m, we may estimate ‖�a,b

|H⊗m‖p by dim(H)
m
p ‖�a,b

|H⊗m
q

‖. The bound for this norm is

provided by Proposition 4.5, so we get

‖�a,b‖p � C(q, ξ , η, dim(H))

∞∑
m=0

(
|q| dim(H)

1
p

)m
.

This series is convergent if |q| < dim(H)
− 1

p .

If |q| = dim(H)
− 1

p , then we want to show that the maps �
a,b
t are in Sp for any

t > 0. Running again the same computation, we get the estimate

‖�a,b
t ‖p � C(q, ξ , η, dim(H))

∞∑
m=0

e−tm
(
|q| dim(H)

1
p

)m

= C(q, ξ , η, dim(H))

n∑
m=0

e−tm,

and this series is convergent. �

4.3 Consequences for Cartan rigidity

We gather some Cartan rigidity properties; these were already obtained in an unpub-

lished manuscript by Avsec [1], where they were proved for any −1 < q < 1. Our

cohomological properties in the next section are new however. Recall that we assumed

that dim(H
R
) < ∞.

We recall that a von Neumann algebra M has the W∗CMAP (weak-∗ complete

metric approximation property) if there exists a net �i : M → M of completely

contractive normal finite rank maps such that for every x ∈ M we have �i(x) → x σ -

weakly and lim supi ‖�i : M → M‖cb = 1.
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Theorem 4.15. For any H
R

and |q| � dim(H)− 1
2 the q-Gaussian algebra �q(H

R
) is

strongly solid.

Proof. By [1] we see that �q(H
R
) has the W∗CMAP. In Corollary 3.12, we have

constructed a closable derivation ∂(= ∂1) : Aq → L2(�q(H
R
))∇ . This derivation is real

by [6, Lemma 3.10] and proper as ∂∗∂ = � and � has compact resolvent. Further,

by Theorem 4.14 we find that (�t)t≥0 is immediately gradient-S2 and gradient S2 if

|q| < dim(H)− 1
2 .

In case |q| < dim(H)− 1
2 from Theorem 3.9 we see that the left and right Aq actions

on L2(�q(H
R
))∇ extend to normal �q(H

R
) actions. Moreover, the thus-obtained �q(H

R
)-

�q(H
R
) bimodule L2(�q(H

R
))∇ is weakly contained in the coarse bimodule of �q(H

R
).

Then [28, Corollary B] implies the result except that we need a reformulation of [28,

Corollary B] in terms of derivations instead of cocycles; that version can be found in [6,

Appendix A] (even for stable normalizers).

For arbitrary |q| ≤ dim(H)− 1
2 the proof follows in the same way using [6,

Proposition 4.3] instead of Theorem 3.9; one only needs to prove that the left and

right Aq actions on L2(�q(H
R
))∇ extend to normal �q(H

R
) actions. We do this in

Proposition 4.16. �

Proposition 4.16. The left and right Aq-actions on L2(�q(H
R
))∇ extend to commuting

normal �q-actions.

Proof. The proof follows [6, Proposition 3.8]. We prove it for the left action, the proof

for the right action is similar. We must show that the action is weakly continuous on the

unit ball. Take elementary Wick operators a = Wq(ξ), b = Wq(η), c = Wq(μ), d = Wq(ν) ∈
Aq. For ξ = ξ1 ⊗ . . . ⊗ ξn we refer to n as the length of Wq(ξ). Consider

〈x · a ⊗∇ b�, c ⊗∇ d�〉 = −1

2
〈d∗(�(c∗xa) + c∗�(x)a − �(c∗x)a − c∗�(xa))b�, �〉. (4.7)

Let x, a, b, c, d have length X, A, B, C, D, respectively. The operator � preserves the length

of a Wick word. Then using Lemma 4.3 we see that each of the expressions d∗�(c∗xa)b,

d∗c∗�(xa)b, d∗�(c∗x)ab and d∗c∗�(x)ab is a linear combination of Wick words of length

at least X − A − B − C − D. Therefore, if X > A + B + C + D then (4.7) is 0. We therefore see

that the map

Aq → C : x �→ 〈x · a ⊗∇ b�, c ⊗∇ d�〉 (4.8)
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factors through the normal projection P≤X : �q(H
R
) → �q(H

R
) onto Wick words of length

≤ X. The range of this projection is finite dimensional and contained in Aq. Hence, (4.8)

extends to a normal map �q(H
R
) → C.

Now let x ∈ �q(H
R
) with ‖x‖ ≤ 1 and let xj ∈ �q(H

R
) with ‖xj‖ ≤ 1 be a net

converging to x weakly (Kaplansky’s density theorem). Let ξ , η ∈ L2(�q(H
R
))∇ and let

ξ0, η0 be in the linear span of vectors of the form a⊗b� with a, b ∈ Aq as in the previous

paragraph with ‖ξ − ξ0‖, ‖η − η0‖ < ε. Let j0 be such that for j > j0 we have |〈(x −
xj)ξ0, η0〉| < ε. Then,

|〈(x − xj)ξ , η〉| ≤|〈(x − xj)ξ0, η0〉| + ‖x − xj‖‖ξ − ξ0‖‖η0‖ + ‖x − xj‖‖ξ‖‖η − η0‖
≤ε + 2ε‖η0‖ + 2ε‖ξ‖.

�

5 Derivations and the Akemann–Ostrand Property

In this section we show that quantum Markov semi-groups may be used to prove the

Akemann–Ostrand property AO+ of a von Neumann algebra. In particular we find a

new range of q for which q-Gaussians have AO+. Let us first recall the definition of the

Akemann–Ostrand property that is most suitable for us, see [26].

Definition 5.1. A finite von Neumann algebra M has condition AO+ if there exists a

σ -weakly dense unital C∗-subalgebra A ⊆ M such that

(1) A is locally reflexive [4, Section 9];

(2) There exists a ucp map θ : A ⊗min Aop → B(L2(M)) such that θ(a ⊗ bop)− abop

is compact for all a, b ∈ A.

Let M be a finite von Neumann algebra with faithful normal trace τ . Let A be a

∗-subalgebra that is σ -weakly dense in M with C∗-closure A. Let ∂ : A → H be a closable

derivation to an A–A bimodule H. Assume that A has some linear basis ei, i ∈ I with I

countable that is moreover orthonormal in L2(M). Define the linear map,

S : A → H : ei �→ ∂(ei)

‖∂(ei)‖
, (5.1)

where we put any unit vector in H as S(ei) if ∂(ei) = 0. Then the map S is not necessarily

bounded on L2(M) and therefore we state the following assumption.
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Assumption 2. Assume that S is a bounded map L2(M) → H. Further, we assume that

S∗S is a Fredholm operator on L2(M).

Next, for every x, y ∈ A we introduce a bounded linear map

Tx,y : L2(M) → H : ξ �→ xS(ξ)y − S(xξy). (5.2)

Let S = V|S| be the polar decomposition of S and note that 1 − V∗V is a finite rank

projection. Denote by K(L2(M)) the compact operators.

Proposition 5.2. Assume that H is weakly contained in the coarse bimodule of M as

A–A bimodules (namely, the assignment x ⊗ yop ∈ B(L2(M) ⊗ L2(M)) �→ xyop ∈ B(H) for

x, y ∈ A extends to a bounded ∗-homomorphism). Suppose that Assumption 2 holds and

that Tx,y is compact for all x, y ∈ A. Then there is a ucp map

θ : A ⊗min Aop → B(L2(M)),

such that θ(a ⊗ bop) − abop is compact for all a, b ∈ A.

Proof. Observe that one can write Tx,y = xyopS−Sxyop for all x, y ∈ A, where x and yop

mean the corresponding left and right actions. Let � be the quotient map on B(L2(M))

onto the Calkin algebra. Then by the assumption, for x, y ∈ A,

0 = �(S∗Tx,y) = �(S∗xyopS) − �(S∗Sxyop)

= �(|S|)�(V∗xyopV)�(|S|) − �(|S|2)�(xyop).

It holds that

�(|S|2)�(xyop) = �(|S|)�(V∗xyopV)�(|S|). (5.3)

By taking the adjoint of this equation and by exchanging x, y by x∗, y∗, we get that

�(|S|2)�(xyop) = �(xyop)�(|S|2), for allx, y ∈ A,

so that �(|S|) commutes with �(xyop) for all x, y ∈ A. Since �(|S|) is invertible by

assumption, by applying �(|S|)−1 to (5.3) from left and right, we get

�(xyop) = �(V∗xyopV), for allx, y ∈ A.
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We conclude that V∗xyopV − xyop is compact for all x, y ∈ A.

Finally by the weak containment assumption, there is a bounded ∗-homomorphism

ϕ : A ⊗ Aop → C∗{xyop ∈ B(H) | x, y ∈ A}; ϕ(x ⊗ yop) = xyop.

Then if P := V∗V = 1, the composition Ad(V∗) ◦ ϕ works as a desired ucp map θ . For the

general case, Ad(V∗) ◦ ϕ is a ucp map into PB(L2(M))P. Since 1 − P is compact, by using

a fixed state φ on A ⊗min Aop, we can consider φ(·)(1 − P) + Ad(V∗) ◦ ϕ as a desired ucp

map. �

We now investigate sufficient conditions such that the assumptions of

Proposition 5.2 are satisfied.

5.1 Group algebras

We first consider group von Neumann algebras. This case was (essentially) discussed in

[4, Section 15], but we include all proofs for the reader’s convenience.

Let � be a discrete group. Let π : � → U(H) be a unitary representation and

b : � → H a 1-cocycle for π in the sense that b(xy) = b(x) + πxb(y) for all x, y ∈ �.

Consider left and right actions of � on H ⊗ �2(�) given by πx ⊗ λx and 1 ⊗ ρy for all

x, y ∈ �, respectively. Then using the canonical basis (δx)x∈� for �2(�), one can construct

a closable derivation by

∂ : C[�] → H ⊗ �2(�); ∂(x) = b(x) ⊗ ex, x ∈ �.

As above, put A := C[�] and define S : A → H ⊗ �2(�) by Sex := ∂(x)‖∂(x)‖−1 (and put

Sex = ξ ⊗ ex for any fixed unit vector ξ ∈ H if ∂(x) = 0). Recall that b is proper if

‖b(g)‖ → 0 whenever g → ∞. In this setting, we prove the following.

Proposition 5.3. Suppose that b is proper and that π is weakly contained in the left

regular representation. Then ∂ and S satisfy all the assumptions in Proposition 5.2.

Proof. Since S is an isometry, Assumption 2 is trivially satisfied. Since π ≺ λ, it holds

that the representation � × � � (x, y) �→ πx ⊗ λxρy is weakly contained in the one of

�×� � (x, y) �→ λx ⊗λxρy, which is in turn unitarily equivalent to �×� � (x, y) �→ πx ⊗ρy

via the unitary ex ⊗ ey �→ ex ⊗ exy on �2(�) ⊗ �2(�). We conclude that H ⊗ �2(�) is weakly

contained in the coarse bimodule as A–A bimodules.
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It remains to show that Tx,y is compact for all x, y ∈ A. For this we can assume

x, y ∈ �. Using Lemma 5.4 below and using the properness of b, one has ‖Tx,y(eg)‖ → 0

as g → ∞. Observe that Tx,y(eg) ∈ H ⊗ Cexgy; hence, T∗
x,yTx,y ∈ �∞(�), so T∗

x,yTx,y ∈ c0(�).

We conclude that Tx,y is compact. �

Lemma 5.4. For every γ1, γ2 ∈ �, there is a constant Cγ1,γ2
> 0 such that

‖Tγ1,γ2
(μ)‖ � Cγ1,γ2

‖∂(μ)‖−1.

Proof. We have

Tγ1,γ2
(μ) =‖∂(μ)‖−1γ1∂(μ)γ2 − ‖∂(γ1μγ2)‖−1∂(γ1μγ2)

=(‖∂(μ)‖−1 − ‖∂(γ1μγ2)‖−1)γ1∂(μ)γ2 − ‖∂(γ1μγ2)‖−1(γ1∂(μ)γ2 + γ1μ∂(γ2)).
(5.4)

We have that

‖∂(γ1μγ2)‖ − ‖∂(μ)‖ � ‖∂(γ2)‖ + ‖∂(γ1)‖,

so

‖∂(μ)‖−1 − ‖∂(γ1μγ2)‖−1 � ‖∂(γ2)‖ + ‖∂(γ1)‖
‖∂(γ1μγ2)‖‖∂(μ)‖

converges to 0 with order O(‖∂(μ)‖−2) as ∂ is proper. We conclude that ‖Tγ1,γ2
(μ)‖

converges to 0 with order O(‖∂(μ)‖−1). �

5.2 Von Neumann algebras with filtration

We fix again (M, τ) a finite von Neumann algebra with (�t)t≥0 = (exp(−t�))t≥0 a

quantum Markov semi-group. Let

∂ : A → L2(M)∇ : a �→ a ⊗ �τ

be the derivation of Corollary 3.12. We shall assume that � satisfies certain properties

that are close to being a length function.

Definition 5.5. We say that � is filtered if it has a compact resolvent and for every

eigenvalue λ of � there exists a (necessarily finite-dimensional) subspace A(λ) ⊆ A such

that A(λ)�τ equals the eigenspace of � at eigenvalue λ ≥ 0. Moreover, let λn, n ∈ N be an

increasing enumeration of the eigenvalues of �, and we assume the spaces A(λn), n ∈ N,
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to be filtered in the sense that

∞⊕
k=0

A(λk) = A and A(λn)A(λm) ⊆
m+n⊕
k=0

A(λk) for alln, m ∈ N, (5.5)

where
⊕

means the algebraic direct sum.

Suppose now that � has a compact resolvent with a complete set of eigenvectors

(ei)i in A, which is an orthonormal basis in L2(M) (e.g., if � is filtered this holds). Then

since it is also a linear basis for A, we can define the map S by (ei)i and ∂ as in (5.1).

Observe that if ei ∈ A(λn), then ‖∂(ei)‖2 = 〈�(ei), ei〉 = λn. Using this, it is easy to see

that

S(a) = λ
− 1

2
n ∂(a), for alla ∈ A(λn) and all eigenvaluesλn. (5.6)

In particular, the map S does not depend on the choice of (ei)i.

Lemma 5.6. Suppose that � has a compact resolvent with a complete set of

eigenvectors in A. Then the map S in (5.6) is an isometry and hence satisfies

Assumption 2.

Proof. By definition, S is given by eigenvectors (ei)i. Then we have

〈S(ei), S(ej)〉 =‖∂(ei)‖−1‖∂(ej)‖−1〈∂(ei), ∂(ej)〉 = ‖∂(ei)‖−1‖∂(ej)‖−1〈� 1
2 ei, �

1
2 ej〉 = δi,j.

So S is an isometry. �

Lemma 5.7. Suppose that � is filtered, then in fact we have A(λm)A(λn) ⊂⊕m+n
k=|m−n| A(λk).

Proof. As �(x∗) = �(x)∗ for x ∈ A, the spaces A(λ) are self-adjoint. Now take

x ∈ A(λm), y ∈ A(λn), and z ∈ A(λk). Assume that m > n and that k < m − n.

By assumption we find that y∗z ∈ ⊕n+k
l=0 A(λl). As n + k < m this shows that 0 =

〈y∗z�τ , x�τ 〉 = 〈z�τ , yx�τ 〉. So yx is orthogonal to A(λk). The same holds for xy, which

yields the lemma. �

Example 5.8. Let � be a discrete finitely generated group and let L : � → N be the

length function given by the graph distance to the identity in the Cayley graph of �. Set
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� to be the closure of γ �→ L(γ )γ as an unbounded operator on �2(�). Suppose that L is

conditionally positive definite so that

Q(ξ) =
∑
γ∈�

L(γ )‖ξ(γ )‖2 = 〈� 1
2 ξ , �

1
2 ξ 〉

is a quantum Dirichlet form (see [11]), that is, the generator of a quantum Markov semi-

group. Then � is easily seen to be filtered.

Remark 5.9. Let �q(H
R
) be the q-Gaussian algebra for −1 < q < 1 with the Ornstein–

Uhlenbeck semi-group e−t�, see Section 4. Then it follows from the Wick product

formula of Lemma 4.3 that � is filtered.

Definition 5.10. We say that � has subexponential growth if it has a complete set of

eigenvalues λ0 < λ1 < λ2 < . . . for which

lim
n→∞

λn+1

λn
= 1. (5.7)

Remark 5.11. Subexponential growth of a generator of a quantum Markov semi-group

should be compared to the amenability results obtained in [11] and [6, Appendix]. These

results show that often one cannot expect a growth on the eigenvalues that is more than

linear and so in particular (5.7) holds.

Theorem 5.12. Let M be a finite von Neumann algebra and let (�t)t≥0 = (exp(−t�))t≥0

be a quantum Markov semi-group such that � is filtered with subexponential growth.

Let S be as in (5.6). Then for every x, y ∈ A the operator Tx,y in (5.2) is compact.

Proof. Fix x, y ∈ ⊕K
k=0 A(λk) for some K ∈ N. For each eigenvalue λ, let Pλ be the

orthogonal projection onto A(λ)�τ and we also regard it as a map A → A(λ). Only in

this proof, we will use the notation ‖a‖∞ for the operator norm for a ∈ A. Our 1st goal is

to prove ‖Tx,yPλn
‖ → 0 as n → ∞. For this, we have only to prove that ‖Tx,y(an)‖ → 0 as

n → ∞, where (an)n is any sequence such that an ∈ A(λn) and ‖an�τ‖ = 1 for all n ∈ N.

Take such a sequence (an)n and fix n ∈ N. Then since xany ∈ ⊕2K
k=−2K A(λn+k) by

Lemma 5.7 (where A(l) = 0 if l < 0), one has xany = ∑2K
k=−2K Pλn+k

(xany) (where Pl = 0 if

l < 0), so that

S(xany) =
2K∑

k=−2K

λ
− 1

2
n+k∂(Pλn+k

(xany)).
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Using this, we can write

Tx,y(an) = xS(an)y − S(xany) = λ
− 1

2
n x∂(an)y −

2K∑
k=−2K

λ
− 1

2
n+k∂(Pλn+k

(xany))

and further using ∂(xany) = ∑2K
k=−2K ∂(Pλn+k

(xany)), this translates into

Tx,y(an) = λ
− 1

2
n

(
x∂(an)y − ∂(xany)

) +
2K∑

k=−2K

(λ
− 1

2
n − λ

− 1
2

n+k)∂(Pλn+k
(xany)). (5.8)

We will show that the 1st and the 2nd term on the right-hand side converges to 0 as

n → ∞.

We see the 2nd term. Observe that for each −2K � k � 2K,

‖∂(Pλn+k
(xany))‖ = ‖� 1

2 (Pλn+k
(xany))‖ = λ

1
2
n+k‖Pλn+k

(xany)‖ � λ
1
2
n+k‖x‖∞‖y‖∞.

The subexponential growth condition then shows that for any such k,

‖(λ− 1
2

n − λ
− 1

2
n+k)∂(Pλn+k

(xany))‖ � λ
1
2
n+k|λ− 1

2
n − λ

− 1
2

n+k|‖x‖∞‖y‖∞ → 0

as n → ∞. This finishes the case of the 2nd term.

We next see the 1st term. By using the Leibniz rule, our term is

λ
− 1

2
n

(
x∂(an)y − ∂(xany)

) = −λ
− 1

2
n

(
∂(x)any + xan∂(y)

)
. (5.9)

To estimate this term we firstly find

‖∂(x)any‖2 = ‖x ⊗∇ any�τ‖2 � ‖�(x, x)‖∞‖an�τ‖2‖y‖2∞ = ‖�(x, x)‖∞‖y‖2∞;

hence, as n → ∞,

λ
− 1

2
n ‖∂(x)any‖ � λ

− 1
2

n ‖�(x, x)‖
1
2∞‖y‖∞ → 0. (5.10)

This shows that the 1st summand on the right-hand side of (5.9) converges to 0. For the

2nd summand, we first observe a couple of preliminary estimates. Using the equation
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any = ∑K
k=−K Pλn+k

(any) by Lemma 5.7 (where Pl = 0 if l < 0), we have

‖(�(an)y − �(any))�τ‖2 =
∥∥∥∥∥∥

K∑
k=−K

λnPλn+k
(any) −

K∑
k=−K

λn+kPλn+k
(any)

∥∥∥∥∥∥
2

=
K∑

k=−K

|λn − λn+k|2
∥∥∥Pλn+k

(any)

∥∥∥ 2

�
K∑

k=−K

|λn − λn+k|2 ‖y‖ 2∞,

so that by combining with the subexponential growth condition, as n → ∞,

λ−1
n ‖(�(an)y − �(any))�τ‖ → 0. (5.11)

Secondly, as � is self adjoint,

λ−1
n τ(�(y∗a∗

nan)y) = λ−1
n τ(y∗a∗

nan�(y)) =
K∑

k=0

λk

λn
τ(y∗a∗

nanPλk
(y)) → 0, (5.12)

as n → ∞, where we used the estimate for each summand as

λk

λn
|τ(y∗a∗

nanPλk
(y))| = λk

λn
|τ(anPλk

(y)y∗a∗
n)| � λk

λn
‖Pλk

(y)y∗‖∞,

which converges to 0 as n → ∞. Similarly,

λ−1
n τ(y∗�(a∗

nan)y) = λ−1
n τ(a∗

nan�(yy∗)) → 0, (5.13)

as n → ∞. Now we find that

2|λ−1
n τ(�(an, any)y − y∗�(an, an)y)|

� λ−1
n |τ(�(any)∗any − y∗�(an)∗any)| + λ−1

n |τ(�(y∗a∗
nan)y)| + λ−1

n |τ(y∗�(a∗
nan)y)|

� λ−1
n ‖(�(any) − �(an)y)�τ‖‖y‖∞ + λ−1

n |τ(�(y∗a∗
nan)y)| + λ−1

n |τ(y∗�(a∗
nan)y)|,

which converges to 0 as n → ∞ by (5.11), (5.12), and (5.13). Essentially the same

estimates show that

λ−1
n τ(�(any, any) − y∗�(any, an)) → 0.
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We therefore get that, as n → ∞,

λ−1
n ‖an∂(y)‖2 =λ−1

n τ
(
�(any, any) + y∗�(an, an)y − y∗�(any, an) − �(an, any)y

) → 0.

This shows that, as n → ∞,

λ
− 1

2
n ‖xan∂(y)‖ � λ

− 1
2

n ‖x‖∞‖an∂(y)‖ → 0. (5.14)

In all, the convergences (5.14) and (5.10) show that (5.9) and hence (5.8) goes to 0. We

conclude that Tx,y(an) → 0 as n → ∞ and therefore ‖Tx,yPλn
‖ → 0 as n → ∞.

By Lemma 5.7, for any n, m with |n − m| > 2K, xany and xamy are orthogonal,

so that

〈xan ⊗∇ y, xam ⊗∇ y〉 = 〈xan ⊗∇ y, xamy ⊗∇ 1〉 = 〈x ⊗∇ any, xamy ⊗∇ 1〉 = 0.

This implies 〈x∂(an)y, x∂(am)y〉 = 〈x∂(an)y, ∂(xamy)〉 = 0. We obtain

〈Tx,y(an), Tx,y(am)〉 = 0, for alln, m with|n − m| > 2K.

It turns out that T∗
x,yTx,yPλn

= ∑2K
k=−2K Pλn+k

T∗
x,yTx,yPλn

for all n ∈ N (where Pl = 0 if

l < 0). By putting T := T∗
x,yTx,y, we see that

T =
∑
n∈N

TPλn
=

∑
n∈N

2K∑
k=−2K

Pλn+k
TPλn

=
2K∑

k=−2K

∑
n∈N

Pλn+k
TPλn

,

where the sum is in the strong topology. For each fixed −2K � k � 2K and m ∈ N, since

Pλn+k
is orthogonal for different n, it holds that

∥∥∥∥∥∥
∑

m�n∈N
Pλn+k

TPλn

∥∥∥∥∥∥
= sup

m�n∈N
‖Pλn+k

TPλn
‖ � sup

m�n∈N
‖Tx,yPλn+k

‖‖Tx,yPλn
‖,

which converges to 0 as m → ∞. Thus, the sum
∑

n∈N Pλn+k
TPλn

converges in the norm

topology; hence, it is a compact operator. We conclude that T is compact, so Tx,y is also

compact. �

We conclude as follows.
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Theorem 5.13. Let M be a finite von Neumann algebra and let (�t)t≥0 = (exp(−t�))t≥0

be a quantum Markov semi-group that is gradient coarse and suppose that � is filtered

with subexponential growth. Assume further that A as defined above is locally reflexive.

Then M satisfies AO+.

Proof. Lemma 5.6 and Theorem 5.12 show that the assumptions of Proposition 5.2 are

satisfied. Therefore, this proposition together with local reflexivity of A implies that M

satisfies AO+. �

The following corollary is then a consequence of [26] (see also [32]).

Corollary 5.14. Suppose M has the W∗CMAP. Then under the assumptions of Theorem

5.13, M is strongly solid.

The following examples are covered by Theorem 5.13.

Corollary 5.15. For |q| � dim(H)− 1
2 the q-Gaussian algebra �q(H

R
) satisfies Condition

AO+.

Proof. In case |q| < dim(H)− 1
2 we verify the conditions of Theorem 5.13 as follows.

From Theorem 4.14 and Remark 5.9 we see that a �q(H
R
) admits a filtered quantum

Markov semi-group that is gradient-S2. From Corollary 3.10 this semi-group is gradient

coarse and the conditions of Theorem 5.13 are verified. In case |q| � dim(H)− 1
2 we

have that Theorem 4.14 and Remark 5.9 show that �q(H
R
) admits a filtered quantum

Markov semi-group that is immediately gradient-S2. Then from [6, Proposition 4.3] and

Proposition 4.16 we see that the semi-group is gradient coarse. We conclude again by

Theorem 5.13. �

As mentioned before, Shlyakhtenko [34] obtained the same result for |q| <
√

2−1

so that up to dimension 5 we find a new range. Other examples include the following.

Example 5.16. Free group factors with the natural radial semi-group coming from the

length function. Here condition AO+ is known, see [4].

Example 5.17. Free orthogonal quantum groups O+
N (tracial case). In [6] a gradient

coarse quantum Markov semi-group was constructed which has the filter and subexpo-

nential growth property. Together with local reflexivity (which follows from the CMAP
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of [20] or [13]) one obtains AO+. Here AO+ was obtained already in [37] using boundary

actions.
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