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A B S T R A C T

The mass-scale integration of electric vehicles into the power system is a key pillar of the European energy
transition agenda. Yet, the extent to which such integration would represent a burden for the power system
of each member country is still an unanswered question. This is mainly due to a lack of accurate and context-
specific representations of aggregate mobility and charging patterns for large electric vehicle fleets. Here, we
develop and validate against empirical data an open-source model that simulates such patterns at high (1-min)
temporal resolution, based on easy-to-gather, openly accessible data. We hence apply the model – which we
name RAMP-mobility – to 28 European countries, showing for the first time the existence of marked differences
in mobility and charging patterns across those, due to a combination of weather and socio-economic factors.
We hence quantify the impact that fully-electric car fleets would have on the demand to be met by each
country’s power system: an uncontrolled deployment of electric vehicles would increase peak demand in the
range 35–51%, whilst a plausible share of adoption of smart charging strategies could limit the increase to 30–
41%. On the contrary, plausible technology (battery density) and infrastructure (charging power) developments
would not provide substantial benefits. Efforts for electric vehicles integration should hence primarily focus on
mechanisms to support smart vehicle-to-grid interaction. The approach is applicable generally beyond Europe
and can provide policy makers with quantitatively reliable insights about electric vehicles impact on the power
system.
1. Introduction

In the framework of the European Green Deal, the European Union
aims at reducing its greenhouse gas (GHG) emissions by 55% by 2030
and at achieving carbon neutrality by 2050 [1]. To reach such goals,
decarbonisation policies need to increasingly target multiple energy
end uses beyond power generation, such as transport, heating and
industrial process. Transport, in particular, is at the core of European
decarbonisation policies, with a pledge to curb emissions by 90% by
2050. In fact, transport alone accounts for about a quarter of all EU
GHG emissions, second only to power generation [2].

Of all transport emissions, more than 43% are associated with
passenger light-duty vehicles [3], which also represent the most utilised
passenger transport mode, accounting for up to 73% of the total
passenger-kilometres travelled in the European Union in 2018 [2].
The substitution of conventional light-duty vehicles with equivalent

∗ Corresponding author at: TU Delft, Department of Engineering Systems and Services, Delft, Netherlands.
E-mail address: f.lombardi@tudelft.nl (F. Lombardi).

electric vehicles, to be powered by renewable electricity, is hence one
of the pillars of the European transport decarbonisation strategy. In
fact, in addition to entailing lower life-cycle emissions compared to
conventional vehicles [4,5], electric vehicles are expected to bring
about a number of additional benefits. They can improve the energy
self-sufficiency of households [6] and they can provide key flexibility
for the power system, thanks to the implementation of smart charging
strategies that make possible the bi-directional exchange of energy
between vehicle batteries and the electricity grid as a function of
renewable generation patterns [7–9].

Yet, the integration of electric vehicles into electricity grids may be
difficult to achieve in practice. Regardless of the degree of implemen-
tation of smart charging strategies, a mass-scale penetration of electric
vehicles would entail a substantial increase in the demand of electricity
compared to what power systems are currently designed to meet [10],
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and the extent to which generation capacity would need to be expanded
to cope with such new load is still an unanswered question. Further-
more, there is a trade-off between the provision of flexibility to the
power system through frequent charging and discharging events and
the need to mitigate the vehicle battery degradation associated with
those [11], which, if not carefully optimised, may affect the appeal
of vehicle-to-grid contracts from a user perspective [12]. To address
such questions and allow a frictionless integration of large electric
vehicle fleets into the power system, an accurate and context-specific
representation of their aggregate mobility patterns and charging be-
haviour is critical. For instance, stakeholders still have conflicting views
around the impact of electric vehicles’ load on the current electricity
demand and if and to what extent this could be mitigated by smart
charging behaviour, or by an adaptation of power systems operation
to such load [13]. Providing quantitative insights around such open
issues through accurate modelling could support the resolution of such
conflicts and the implementation of appropriate policies.

The main challenge to this end lies in reproducing mobility patterns
and charging strategies despite a limited availability of data. In fact,
with a few exceptions, such as Germany [14], detailed mobility data
are missing for most European countries. This leads to a wide range of
approaches to reconstruct random user behaviour. A common strategy
relies on Markov chains, which require highly precise and resolved
data for their calibration [15], and are therefore hardly applicable
Europe-wide. Alternative approaches have been so far applied only
in combination with electric vehicle field trial data, which are still
rare and context-specific due to electric vehicles being still in an early
adoption phase (the share of electric vehicle sales has reached the
3.5% in 2019, while their share in the total vehicle stock is still no
more than 1% [16–18]). For these reasons, as further discussed in the
following section, previous work has either managed to model accurate
mobility and charging profiles only for single, data-rich countries, or
managed to estimate Europe-wide profiles at the expense of adapting
context-specific profiles to the whole continent.

With this work:

1. We develop an open-source model that simulates electric vehicle
mobility and charging time series at high (1-min) temporal
resolution solely based – the first of its kind – on easy-to-gather,
openly accessible data. The model grounds on the previously
developed RAMP engine [19] for stochastic user behaviour sim-
ulation, expanding it with mobility-specific features. The model
also includes the possibility to simulate multiple plausible charg-
ing strategies and to account for the effects of different weather
years.

2. We validate the model against real-life charging transactions
metred in the Netherlands, demonstrating good accuracy across
a range of metrics.

3. By applying the model to 28 European countries, we identify
and discuss time-explicit differences in electric mobility de-
mand across those, accounting for both weather- and user-driven
diversity.

4. We analyse the impact that electric vehicle demand would have
on the current electricity demand profile and the extent to
which alternative ‘smart-charging’ strategies and technological
or infrastructural developments could mitigate electric vehicle
demand peaks, again accounting for differences in boundary
conditions – such as renewable generation patterns – across
contexts.

The model, which takes the name of ‘RAMP-mobility’, is released
nder an open-source licence for transparency and reproducibility pur-
oses [20]. It is freely accessible on GitHub [21], as well as perma-
ently archived on Zenodo alongside the data required to generate
2

esults for all Europe [22].
2. State of the art of mobility and charging time series modelling

State-of-the-art approaches for simulating mobility and charging
time series commonly ground on stochastic modelling methods that
allow reproducing the random aspects of user behaviour. They can be
grouped for simplicity into: (i) approaches based on Markov chains; and
(ii) approaches based on other stochastic methods.

Markov chain approaches simulate user behaviour as a series of sub-
sequent ‘states’, for which moving from a starting state to a given desti-
nation state is associated with a specific probability. Fischer et al. [15]
modelled electric vehicle charging profiles at 1-minute resolution and
their impact on residential electricity load demand by means of an inho-
mogeneous Markov chain process, which differentiates user behaviour
depending on the travel departure and arrival location: inside town,
outside town, home and workplace. Such differentiation, made possible
by the abundance of data (70’000 surveyed car trips) made available by
German institutions [14], limits on the other hand the model relevance
to the German context alone. Similarly, Muratori [23] proposed an
heterogeneous Markov chain model to simulate behavioural patterns
related to the uncoordinated charging of electric vehicles with a 10-
minute resolution. To generate activity patterns, they calibrate the
model on highly-detailed household habits data for the US, including
a wide range of activities (e.g. cooking) beyond mobility itself. As a
limitation, such-built activity patterns are hardly applicable seamlessly
beyond the US as well as hard to substitute with equivalent data more
broadly across contexts. Iversen et al. [24] adopted a so-called hidden
Markov model, considering only two user states (driving and non-
driving), calibrated on data gathered from a field trial to simulate
charging profiles at 1-minute resolution. The field trial was limited,
however, to a single vehicle for a period of 183 days, again hinder-
ing a wider model applicability. Furthermore, they model only two
charging strategies, one uncontrolled and one ‘vehicle-to-grid’ based
on an exogenous power exchange limitation. An inhomogeneous cyclic
Markov chain process is proposed also by Gruosso and Gajani [25].
They model charging profiles at 15-min resolution calibrating user
activity patterns on field data from 800 electric vehicles used in Italy
for a car sharing project, which yet strongly limits the possibility to
adapt the model to different contexts and to the mobility patterns of
privately-owned cars. What is more, charging profiles are obtained
by the simple application of a standard, pre-defined charging cycle
to the previously computed mobility patterns, preventing the simula-
tion of different plausible charging strategies. A more peculiar case
is that of the model proposed by Gaete-Morales et al. [26]. Despite
not explicitly referring to Markov-chain theory, they use a sampling
approach for the generation of 15-minute-resolved mobility demand
time series that grounds on the definition of chains of events, again
relying on data provided by German institutions [14]. The model
distinguishes between commuters and non-commuters and between
alternative travel purposes and destinations, each linked to different
charging infrastructure availability probabilities and charging power
capacities. It includes the possibility to customise some assumptions,
such as the charging strategy, and is released open-source. Yet, the
extremely data-rich characterisation of user behaviour, recalling that
of Markov-chain models, hinders the model re-parametrisation and
adaptation to contexts for which only coarser data – for instance,
with no explicit mention of ‘where’ users are in each moment, which
prevents the mapping of chain-of-event probabilities – are available. A
similar sampling approach, grounding on the same highly-detailed data
source for Germany, is proposed by Wulff et al. [27] to synthesise user
mobility patterns. Out of such mobility patterns, they produce hourly
charging profiles, including both uncontrolled and smart strategies,
through a multinomial logit utility function that accounts for charging
location and electricity price. Yet, in addition to the limitation of a
heavy-intertwining with German data, the model does not account for

seasonal mobility behaviour changes nor for holidays.
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Other stochastic methods, instead, generally aim at reproducing
the randomness of user behaviour without assuming a consequential
relationship between subsequent events. At the expense of losing real-
life details about how certain user activities might influence subsequent
ones, these approaches potentially have the advantage of requiring
substantially less resolved input data. For instance, Schäuble et al. [28]
developed a stochastic process that randomly varies for each user the
number of connections in a day, the power charging curve, the charging
start time, and the initial state of charge of the vehicle battery, without
an explicit modelling of user chains of activities. By such method,
they modelled both uncontrolled and smart time series with a 1-
minute resolution; however, they relied exclusively on field trials data,
hindering adaptability to more broadly available data sets. Harris and
Webber [29] proposed a Monte Carlo method that allows to randomise
parameters such as trip starting time and trip duration for different
categories of users, combining easy-to-gather data, such as national
time-of-use surveys, with field trial data related to charging behaviour.
They applied it to the simulation of 1-minute-resolved uncontrolled
charging profiles. Similarly, Brady and O’Mahony [30] developed a
Monte Carlo approach to simulate mobility and charging patterns,
grounding on the data collected from a 15-vehicle field trial over 9
months. As the aforementioned ones, the model shows the potential
for a simple stochastic approach to the modelling of mobility patterns
compared to Markov chains, yet has the strong limitation of grounding
on a non-generally-applicable type of data set. Furthermore, the model
only works over a 2-week simulation period, and does not allow
capturing seasonal effects.

Overall, Markov chain and similar data-heavy approaches emerge as
a viable option whereas highly resolved and abundant mobility data are
available, so as to explicitly characterise users chain of activities over
a day. However, they are hardly applicable to large-scale modelling
across different European countries, which is key in the framework of
the European Green Deal. In addition, the heavy intertwining of the
simulation algorithm with present-day user behaviour data required
by Markov chains hinders the applicability to long-term mobility pat-
terns and to extreme sensitivity scenarios which substantially deviate
from present-day boundary conditions. Conversely, other stochastic
processes are preferable whereas only simple data, such as time-of-
use surveys, are available. The reliance on simpler and smaller sets
of parameters also makes such approaches more flexibly adaptable
to different contexts and suitable for the simulation of long-term or
extreme scenarios. Yet, all generic stochastic approaches proposed
so far failed to decouple their algorithms from context-specific field
trial data regarding charging behaviours: rather than first developing
generally-applicable stochastic approaches and then testing their va-
lidity against particular field-trial data, previous studies went in the
opposite direction, fitting models to specific field trials and missing out
on adaptability to all European countries.

There is a need for a generally-applicable stochastic approach that
capitalises on the already existing, Europe-wide openly accessible data
about the daily activities and type of vehicles of different population
groups to model mobility patterns, and which then allows for the sim-
ulation of multiple plausible charging strategies (including both smart
and conventional ones), based on widely applicable literature data and
on the modellers needs and assumptions. What is more, the approach
should account for demand changes over the year due to both changes
in user behaviour (e.g. holidays) and temperatures effects on battery
consumption, in such a way to ensure a functional coupling with power
system models across weather years. The methods that we present in
the Methods section and implement in RAMP-mobility precisely aim at
fulfilling these needs for the first time.

3. Methods

Our modelling approach (summarised in Fig. 1) is composed of two
subsequent simulation modules: (i) the mobility module; (ii) and the
3

Fig. 1. Conceptual scheme of the overall model structure. The model features two
separate modules for the simulation of, respectively, mobility patterns and charging
strategy.

charging module. The mobility module is meant to generate minute-
resolved mobility patterns for each user, whilst the charging module
uses the previously generated mobility time series to compute the corre-
sponding charging load demand, which also depends on the stochastic
availability of charging points and on the charging logic adopted by
each user.

3.1. Mobility pattern simulation

The algorithmic approach to the simulation of mobility patterns
builds on and expands our previously developed RAMP software en-
gine [19], itself conceived for the stochastic simulation of generic
demand profiles based on simple time-of-use information for different
user types. Here, we expand the approach to additionally take into
account vehicle fleet composition and driving-specific parameters, such
as vehicle speed. Fig. 2 summarises the workflow of the mobility
pattern simulation module. First, input about population and vehicle
fleet compositions are combined to define user–vehicle pairs. Second,
each pair is associated with a different temporal behaviour for each ‘day
type’, distinguishing between weekdays, Saturdays and Sundays (or
festivities). Third, the total mobility demand for each user on a given
day is computed. Fourth and final, single travels are randomly simu-
lated until reaching an amount of travelled kilometres which equals the
mobility demand of the day. Methods and assumptions supporting each
step of this workflow are further detailed in the following sections.

3.1.1. User and vehicle characterisation
As shown in Fig. 2, one a country and calendar year is given, the

first step of the mobility module consists in building realistic users and
vehicles for the simulation. By default, we divide the population of each
country of application into three macro-categories of users, namely
workers, students and inactive users. For each country, we simulate the
representative number of 2500 total users, with the share of individual
users simulated for each category being a function of the population
composition, as provided by Eurostat [31,32]. Each individual user is
then associated with one of three possible electric vehicle sizes, namely
small, medium and large, in such a way that each user category mirrors
the country-specific vehicle fleet share [33]. A summary of all the
openly-available data sources we adopt is provided in the Supporting
Methods, where we also discuss how we associate to each vehicle size
a different driving consumption curve and battery capacity.
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Fig. 2. Workflow of the mobility pattern simulation module. Population and vehicle fleet data allow to define user–vehicle categories. For each calendar year, the day type
determines the way in which peak and off-peak functioning windows are defined and how the total daily mobility demand is subdivided between those. Hence, individual travels
are simulated for each user until their total daily transport demand is satisfied. Parameters subject to stochastic randomisation are highlighted in orange boxes (see also Table S2).
The output of such workflow is twofold: a time series of battery power consumption for each user (and for the whole fleet) and a time series of the share of vehicles that are
travelling in each time step.
3.1.2. Daily travel needs across ‘functioning windows’
To model user behaviour, rather than defining chains of events

with associated probabilities, the core idea behind RAMP’s stochastic
engine is to define functioning windows (see the second main block in
Fig. 2), or time frames in which mobility events can randomly occur.
For each category of users, the model distinguishes between: main
functioning windows, in which the main daily travels (e.g. commuting
to work/study place) occur; and free-time functioning windows, which
account for additional occasional trips. For the case of students and
workers, we consider two main functioning windows, which match
the commuting-related morning and evening mobility peaks recorded
in the majority of time-of-use surveys across Europe [34] (Fig S10).
They are complemented by free-time windows that cover the rest of
4

the day, and in which non-work and non-study related trips may occur.
Inactive users are characterised by only one main functioning window,
encompassing the whole range of hours in which a person is typically
awake and active in a day, and by two free-time windows for trips that
occur in the early morning or during the night. The definition of main
functioning windows for these inactive users grounds on the ‘unspeci-
fied time use and travel’ data series from Eurostat, complemented by
data from JRC’s mobility surveys [35]. Finally, mobility patterns are
differentiated according to the day type: weekday, Saturday and Sun-
day (or festivity), in agreement with real-world mobility patterns [36],
with workers and students behaving similarly to inactive users during
Saturdays and Sundays or festivities.
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Alongside the definition of functioning windows, the model com-
putes the total distance travelled each day (𝑑𝑡𝑜𝑡). More precisely, to keep
coherence with the model output, which is based on time information
rather than on distance, the latter is converted into a total daily time of
travel (𝑡𝑡𝑜𝑡) multiplying it by the average trip velocity (𝑣𝑎𝑣) (see Fig. 2.
Both 𝑑𝑡𝑜𝑡 and 𝑣𝑎𝑣 are computed for each user and car type based on
ata gathered from the JRC mobility survey [37], and made subject
o stochastic variability for every simulated user and day. A full list of
arameters undergoing stochastic randomisation is reported in Table
2. Data for countries not covered by the JRC survey are adapted
rom those of neighbouring ones (Table S1). As shown in Fig. 2, which
raction of 𝑑𝑡𝑜𝑡 is spent in main versus free-time mobility activities
s determined from the values of car usage percentage per hour and
ay type, available from the JRC survey [37] (see the Supporting
nformation for further details).

.1.3. Simulation of individual trips
At this point, as shown by the ‘Trip’ block of the conceptual scheme

n Fig. 2, the algorithm simulates individual trips for each user and
ype of activity (main or free-time) until the total travelled distance
atches the expected value for that particular type of user and activity

ype. The duration and average speed of each simulated trip are made
ubject to stochastic randomisation (Table S1). As a result, also the
ower consumption of the vehicle is randomised as a function of the
andom average velocity (and car type), as further detailed in the
upporting Methods. The process is repeated for all individual users
ithin each user category, and for all days of the year, for each
uropean country. As an output, the model provides the aggregate fleet
attery consumption and the share of travelling vehicles in every time
tep, as shown in Fig. 1. User-disaggregated information are as well
etained for use in the subsequent charging simulation module.

.2. Charging strategy simulation

Based on the computed user-specific battery consumption and mo-
ility time series, the model allows to simulate for each individual user
hree different charging strategies, all equally allowing to meet the
iven battery demand. Fig. 3 summarises the algorithmic logic adopted
nd the differences between each strategy, which are:

• Uncontrolled charging. Users charge their vehicle as much as
possible and as soon as possible. Each time a user trip ends,
a parking event begins, and the presence of the charging point
is verified by means of the charging point probability (𝐶𝑃 𝑝𝑟𝑜𝑏)
function (see Supporting Methods). If the charging infrastructure
is available, the battery is charged, assuming a 90% charging
efficiency at the charging point nominal power (𝑃𝑛𝑜𝑚,𝐶𝑃 ), ran-
domly sampled from a probability distribution that reflects the
relative share of different charging point types (Table S4). The
charging event lasts till 𝑆𝑂𝐶𝑚𝑎𝑥 is reached. The maximum 𝑆𝑂𝐶
can be arbitrarily set to a value lower than 100% to avoid faster
degradation of the battery [38]; in agreement with the literature,
we set it at 80% [39].

• Night charging. Users are incentivised to charge vehicles during
night hours, in such a way to avoid overloading the power system
during the already critical morning and evening hours. Before the
𝐶𝑃 𝑝𝑟𝑜𝑏 function is computed, the algorithm checks the time of
parking. If parking time lies in the desired night-hour window,
the vehicle is charged, otherwise it is not (unless there is not
enough energy for the next trip). Furthermore, the charge does
not occur at full power, but at the minimum power that allows to
completely charge the battery during night hours, as proposed by
Gaete-Morales et al. [26].
5

p

• VRES charging. Users are incentivised to charge when there
is an excess of renewable generation in the area. The charging
algorithm is essentially the same of night charging, except that
time windows for which charging is allowed are now based on
the residual load curve, i.e. the difference between the country-
wide electricity load demand and renewable (solar and wind)
generation (see Supporting Methods). When the residual load
is negative, renewable generation alone exceeds the electricity
demand and calls for storage options, such as storage in electric
vehicle batteries.

It is worth noting that mobility time series are simulated irrespective
of the charging strategy, which is simulated only as a second step.
Hence, it is not excluded that a vehicle state of charge reaches negative
values, violating real-life physical constraints. For this reason, as shown
in Fig. 3, the algorithm for the charging simulation module features two
checks that prevent such possibility. First, we define a minimum state-
of-charge value (𝑆𝑂𝐶𝑚𝑖𝑛), below which the user is forced to charge the
ar as soon as parked. Second, we check that the energy stored in the
attery is sufficient to cover the upcoming trip - or, the upcoming two
rips in case the car is going to be parked only for a brief (shorter than
0 min) stop.

In addition to the charging strategy, the model user is free to
ustomise vehicle types (see Table S3 for default ones), the 𝐶𝑃 𝑝𝑟𝑜𝑏
unction and the charging-point availability anxiety. For further details
bout such customisation options, we refer the reader to the Supporting
ethods.

.3. Empirical data and validation criteria

The following sub-sections discuss: (i) the features of the metred
ata which the model is tested against; (ii) the model set up to allow a
eaningful comparison with such data; and iii) the metrics we define

o compare simulated and metred data.

.3.1. Empirical data
RAMP-Mobility results are validated against real-life charging trans-

ctions metred in the Netherlands by ElaadNL between January 2012
nd May 2016, as processed by previous work [40]. The year selected
or validation purposes is 2015, i.e. the most recent full year of avail-
ble data. As described by Beltramo et al. [40], raw data consisted in
ser-specific charging transactions from around 1750 charging points,
hich represent roughly 16% of the whole public charging infras-

ructure available in the Netherlands at the time of metring. Since
he data included not only electric vehicle charging transactions, but
lso plug-in hybrid electric vehicles’, which are not in the interest
f purely-electric vehicle analyses, the dataset was processed to filter
nly the transactions representing frequent electric vehicle users. More
recisely, plug-in hybrid electric vehicles’ transactions were identified
and removed) as those characterised by a maximum charging power
ower than 4 kW and maximum charged energy lower than 12 kWh.
n addition, users having less than 10 transactions overall were disre-
arded. This translates into a useful dataset of 2215 users (accessible
ia Zenodo [41]), 60% of which owning small and 40% large vehicles.
he data also show that the CPs have an overall maximum nominal
ower of 12 kW, with the vast majority (around 80%) actually supply-
ng power at 3.7 kW maximum, another 15% in the range of 8–12 kW,
nd the rest being evenly distributed along the other values.

It is worth noting that an analysis on the same dataset by Helmus
t al. [42] showed that, whilst day-time transactions tend to occur at
ny random charging point, night-hour transactions tend to take place
t charging points installed upon explicit user request nearby their
omes, and used with similar logic as private charging points. As such,
he ElaadNL dataset approximates the characteristics of both public and

rivate charging in different moments of the day.
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Fig. 3. Workflow of the charging strategy simulation module. Colour coding is used to differentiate parts of the algorithm that pertain to uncontrolled and smart charging
strategy options.
3.3.2. Model settings alignment to dataset
For testing against such data, RAMP-mobility default settings for the

Netherlands are aligned to the specific characteristics of the population
considered within the validation dataset. First, we align the car fleet
share and charging point power distribution to those discussed in the
previous paragraph. Second, to reflect the higher probability of finding
a charging point close to home in periods other than main-activity
hours, we adopt a piecewise 𝐶𝑃 𝑝𝑟𝑜𝑏 function instead of the default
constant value (see Supporting Methods). In addition, acknowledging
the high degree of uncertainty surrounding the precise definition of
a piecewise 𝐶𝑃 𝑝𝑟𝑜𝑏 function, we perform a sensitivity analysis around
plausible values of the latter. More precisely, as shown in Table S5, we
identify 9 sensitivity cases by varying the four parameters which define
the curve shape — the higher/lower probability values, and the hour
of the day at which they switch.

3.3.3. Validation metrics
The comparison between simulated and metred profiles is car-

ried out for non-dimensional profiles, obtained by normalisation with
respect to the total yearly energy consumption. In fact, while RAMP-
mobility will simulate all of the charging transactions experienced by
each user, the validation dataset only accounts for those transactions
occurred in one of the public CP owned by ElaadNL (16% of the total).
It is hence ‘blind’ to possible additional transactions experienced by the
same users through other utilities, preventing a dimensional compari-
son. The accuracy of the model is assessed with two parameters, the
Root Mean Square Error (𝑅𝑀𝑆𝐸) and the average Load Factor (𝐿𝐹 ),
6

as defined in Eqs. (1)–(2).

𝑅𝑀𝑆𝐸 =

√

√

√

√

∑𝑁𝑡
𝑡 (𝑃𝑚𝑜𝑑𝑒𝑙(𝑡) − 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑡))2

𝑁𝑡
(1)

𝐿𝐹 =
365
∑

𝑑=1

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑑)
𝑃𝑝𝑒𝑎𝑘(𝑑)

⋅
1
365

(2)

The 𝑅𝑀𝑆𝐸 allows to evaluate the minute-by-minute deviation
between simulated and measured data, and can be applied to both
the charging profile curve and to the load duration curve. In Eq. (1),
𝑃𝑚𝑜𝑑𝑒𝑙(𝑡) and 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑡) are, respectively, the charging power computed
by the model and the one metred from ElaadNL (both normalised with
respect to the integral of each curve, i.e. the total energy consumption
over the year); 𝑁𝑡 is the total number of timesteps in a year. The
average Load Factor (𝐿𝐹 ) provides an additional, alternative way to
compare simulated and measured charging profiles in terms of their
peak-to-baseload ratio [19]. Averaged across every day (𝑑) of the year,
𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑑) is the daily average power consumption for charging and
𝑃𝑝𝑒𝑎𝑘(𝑑) is the daily peak power consumption. For the computation of
this parameter, average and peak power consumption are computed
with respect to hourly-resampled timeseries, in such a way to smooth
out possible anomalies due to steep peaks lasting only for one or few
minutes.

3.4. Europe-wide long-term simulations

With application to the generation of Europe-wide mobility and
charging time series for long-term energy modelling scenarios, we
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adopt the following model parameters and assumptions. Unlike for
the validation case, which needed to reflect specific infrastructure
characteristics of present-day electric mobility in the Netherlands, we
assume a time-invariant 𝐶𝑃 𝑝𝑟𝑜𝑏, by default set to 80%. We assume
harging stations to be distributed with a higher share of 3.7 and 11 kW
ominal power stations (respectively, 60% and 30% of the total), and a
ore restricted number of 120 kW superchargers (the remainder 10%).
e simulate 2500 users – having verified that a higher number would

ot produce substantially different aggregate results – for each country,
eading to a total of 70000 users for the whole Europe. User category
nd vehicle-type shares in each country are assumed not to vary with
espect to present data. We do not use the optional logistic function im-
lemented in the model to simulate a more relaxed user behaviour with
espect to charging-point availability anxiety (see Supporting Methods),
ue to a too high uncertainty associated with the parameters defining
uch function. The datasets adopted for characterising users behaviour
nd vehicle fleets are the same as those outlined in Section 3.1 and in
he Supporting Methods.

.4.1. Plausible scenario variations
In addition to the aforementioned assumptions, which constitute our

eference scenario for long-term electric vehicle demand simulation,
e consider a number of scenario variations which allow assessing the

mpact of plausible future developments in the field of electric vehicle
ntegration.

First, we consider a ‘smart-charging’ scenario in which we assume
sers to adopt a diverse mix of charging strategies, including smart
nes, in opposition to the reference case in which we assume only
ncontrolled charging. Each charging strategy is assumed to be adopted
y a certain share of the population. For night charge, such share corre-
ponds to the percentage of population living in detached houses [43],
hich are more likely to be provided with a private parking lot.
he share is kept constant (and equal to the EU average) across all
ountries in order to ensure that results are comparable. The share
f VRES-charging cars is set to 10% for all selected countries, which
s a conservative estimation with respect to the levels of vehicle-to-
rid participation assumed, for instance, by the IEA (which would be
bove 15% for European countries) [16]. The combination of night- and
RES-charging vehicles provides a total of 44% of the fleet adopting
mart charging strategies, with the remaining 56% assumed to adopt
n uncontrolled charging strategy.

Second, we consider plausible scenarios of sharp technological (bat-
ery capacity) and infrastructure (charging point power ranges) devel-
pment. For batteries, forecasts for 2030–2035 envisage an increase of
ravimetric densities in the range 325–500 Wh/kg, depending on the
attery chemistry [16,44,45]. Further improvements might be brought
bout by the yet-to-be-commercialised solid-state, lithium–sulphur and
ithium–air batteries, which could ensure gravimetric densities of about
00–1000 Wh/kg in the long run (2050–2070) [44]. Here, we assume
mprovements in line with the target of 500 Wh/kg, as further detailed
n the Supporting Methods. For the charging infrastructure, we assume
eference power levels (Table S4) to be upgraded to, respectively, 7 kW,
50 kW and 350 kW. The entry level (7 kW) refers to the maximum
harging power for single phase AC wall-boxes [46]. A 150 kW in DC
upply is instead already supported by most advanced electric vehicles
n the market, such as Audi e-tron 50 and 55 quattro, Audi e-tron
portback 55 quattro, BMW iX3, Ford Mustang Mach-E ER and Volvo
C40 Recharge. Some models, such as Porsche Taycan and Tesla mod-
ls already have DC charging limits higher than 200 kW. Finally, the top
harging power level of 350 kW since represents the maximum power
ate of Ionity infrastructure that represents the European ultra-fast
harging network.

Table 1 summarises all the considered scenarios.
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3.4.2. Additional metrics and scaling to whole-fleet absolute values for
cross-country comparisons

To allow an immediate understanding of the impact of electric
vehicle loads on power systems across Europe, we define an ad-hoc
metric. Such metric is the ratio between power system peak demand
with and without the additional load entailed by electric vehicles. Such
peak ratio is computed separately for each day of the year, and then
averaged throughout the entire year, as shown in Eq. (3).

Performing such calculation entails turning the generated non-
dimensional electric vehicle demand profiles into corresponding dimen-
sional profiles. To this end, we consider a mass-scale deployment of
electric vehicles, such to replace the entire existing fuel-based vehicle
fleet in each country. We gather the overall passenger kilometres
travelled (pkm) for each country (assumed equal to 2018 values [47])
and divide those by the average occupancy rate (set to 1.7 for all
countries [48]), thereby obtaining the total vehicle kilometres travelled
(vkm) by country. Hence, we translate vehicle kilometres into energy
units by dividing those by the specific electricity consumption per
kilometre, which we assume equal to 0.20 kWh/km for each country
(roughly corresponding to the average consumption of models currently
available on the market [49]). The power system baseline electricity
demand is assumed being equal to that provided by ENTSO-E for each
country for the year 2016 [50]. Since ENTSO-E data have hourly resolu-
tion, dimensional electric vehicles demand profiles are also resampled
to hourly resolution before computing the ratio.

𝑃𝑒𝑎𝑘 𝑟𝑎𝑡𝑖𝑜 =
365
∑

𝑑=1

𝑃 (𝐸𝑁𝑇𝑆𝑂-𝐸+𝐸𝑉 𝑠)
𝑚𝑎𝑥 (𝑑)
𝑃𝐸𝑁𝑇𝑆𝑂-𝐸
𝑚𝑎𝑥 (𝑑)

⋅
1
365

(3)

4. Results

The following sub-sections present and discuss our results. First, we
discuss how well the model compares to metred data. Second, we show
the electricity consumption that would be entailed by an uncontrolled
deployment of electric vehicles in Europe, discussing differences across
countries. Third, we show to what extent smart charging could mitigate
such consumption figures and their impact on current peak electricity
demand in each country. Fourth and final, we investigate the potential
effects of technology and infrastructure developments on such results.

4.1. Validation

Fig. 4 shows the comparison between the sensitivity cases discussed
in paragraph 3.3.2 and the metred ElaadNL data. A satisfying match
can be noticed for a large portion of the curve, with larger deviations
experienced for the tails representing highest and lowest values. As
regards lowest values, representing the night-hour charging load, the
ElaadNL dataset often experiences a null load as opposed to a slightly
non-null load expected by RAMP-mobility (see Fig S1). In fact, the
limited number of users populating the ElaadNL dataset leads to a
total absence of load during some hours of the night which would
be, however, less realistic if dealing with a country-scale pool of
electric vehicle users. When considering the highest values, significant
deviations are only experienced for two sensitivity scenarios, namely
those in which the timing of the evening step of the 𝐶𝑃 𝑝𝑟𝑜𝑏 function is
varied, demonstrating a highly accurate match in all other cases.

In Table 2, the quantitative parameters calculated are presented for
the reference case and for all the 8 sensitivity cases. The relative error
between simulated and metred data in terms of 𝐿𝐹 is of about −9.2%
in the reference case, ranging from −22% to 7.3% across all sensitivity
cases. For most cases, however, the percentage error is negative and
lies in a narrower range, between −5% and -13%. This highlights a
general tendency of RAMP-mobility to have a higher peak-to-baseload
ratio compared to the ElaadNL dataset. The analysis of charging profiles
in Fig S1 also suggests that a large part of this deviation is attributable
to the period of summer vacation (July–August), in which the metred
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Table 1
Summary of assumption variations across all the considered scenarios.

Reference Smart charging Battery upgrade Charging upgrade Battery & Charging upgrade

Mix of charging strategies No Yes No No No
Battery developments No No Yes No Yes
Charging infrastructure developments No No No Yes Yes
Fig. 4. Comparison of metred and simulated data. Data are shown in the form of load duration curves, with a 1-min time resolution. Simulated data are represented by 9
curves, representing the reference and the 8 sensitivity cases for the piece-wise probability function reported in Table S5.
Table 2
Quantitative comparison between metred and simulated data, for the reference case and for the 8 sensitivity cases. The comparison is performed in
terms of relative error in the Load Factor calculation, as well as in terms of 𝑅𝑀𝑆𝐸 – the latter computed for both the time series and the load duration curves.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

LF error [%] −9.2 −13.1 −5.1 −12.9 −5.7 −9.9 −8.8 −22.0 7.3
RMSE timeseries [%] 14.2 14.1 14.5 13.6 15.8 14.1 14.6 15.0 14.7
RMSE LDC [%] 2.6 2.9 2.5 3.8 1.7 2.4 2.8 3.7 4.1
peak consumption decreases. Since behaviour change during summer
vacation is not accounted for in RAMP-Mobility, this leads to a more
marked deviation between metred and simulated data in that period.

The 𝑅𝑀𝑆𝐸 also shows consistent results for both the charging
demand time series and load duration curve. For the time series, the
𝑅𝑀𝑆𝐸 ranges between 13.6% and 15.8%, with the reference case
having a value of 14.2%. Such an order of magnitude can be viewed
positively, considering that a difference between two time series in a
single time step can lead those to diverge for several of the subsequent
timesteps, thereby increasing the RMSE despite negligible practical
differences. Indeed, the 𝑅𝑀𝑆𝐸 computed on the LDC is significantly
smaller, ranging from 1.7% to 4.1% and having a reference value
of 2.6%. This is because the distributional nature of the LDC allows
precisely to smooth out unwanted effects like those aforementioned.

4.2. Electric mobility and charging profiles across Europe

We can hence move forward to analysing results in terms of charg-
ing profiles across all the considered European countries, based on the
reference scenario assumptions defined in Section 3.4. For simplicity,
we categorise countries in 8 macro-regions, for each of which we show
in Fig. 5 the results of the respective ‘most-representative’ country (see
Table S6).

As expected, ‘uncontrolled’ charging power demand time series
follow, for each country, the same temporal pattern as battery con-
sumption, albeit delayed in time. On the other hand, such temporal
patterns experience marked differences across countries. Most countries
are characterised by a double-peak daily profile, with morning and
8

evening peaks driven by working and/or student types of users. Coun-
tries in which these peaks are particularly pronounced, such as Norway,
have indeed the highest relative share of workers and students in their
pool of electric vehicle users; conversely, countries with substantially
flatter profiles, like Italy and Spain, are those with the lowest relative
share of such users. These results highlight the key role that country-
specific user types and behaviours have in determining the shape of
the electricity demand profile associated with large electric vehicle
pools, suggesting that the common practice of relying on a single
‘standard’ profile or dataset for several different countries might lead
to substantial errors.

Differences across countries in terms of battery consumption peaks
are, in addition, driven by differences in weather conditions, with
particularly cold or particularly hot weather both leading to increased
battery consumption. For instance, we see that the peak in Norway or
Germany can be up two twice as much as the peak in Italy or Spain
in the winter (Fig. 5), due to the combined effect of higher share of
active users and colder weather in the former countries; on the other
hand, such difference can be substantially less marked, or even re-
versed, in the summer (Fig S2). This stresses even more the importance
of adopting country-specific datasets to generate bottom-up electric
vehicle demand profiles, including weather-year information that are
consistent with those adopted for renewable generation patterns.

4.3. The impact of smart charging

Differences across countries in electric vehicle demand profiles gain
further nuances if considering not only uncontrolled charging, but
rather a mix of charging strategies, including smart ones. In particular,
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Fig. 5. Uncontrolled battery consumption and charging power. Time series of battery consumption and charging power of an electric vehicle fleet in representative European
countries for users adopting an uncontrolled charging strategy. All power consumption figures are normalised with respect to an annual energy consumption of 1 TWh. Results
are here shown for a three-day representative winter period (February), while results for all other seasons are provided in Fig S2-S4.
as shown in Fig. 6 (and, at higher temporal resolution, in Fig S5), while
profiles tend to be rather similar across countries for users adopting
a ‘night-charging’ strategy, substantial differences are experienced for
users following ‘VRES-charging’ strategies. Such type of users behave
completely differently depending on the availability of VRES in the
associated country and in each day, for instance concentrating the
electric vehicle charging in the central hours of the day when there
is an excess of PV generation – as visible, for instance, in Fig. 6 for
Italy and Spain, or for Germany for the first 2 representative days –
or during the night when there is an excess of wind generation — as it
occurs, for instance, in Fig. 6 for Poland and Germany before the second
and third representative day, respectively. What is most interesting,
however, is that the presence of users adopting either night- or VRES-
smart-charging strategies does contribute to smoothing out charging
demand peaks, which is critical to enable a frictionless integration of
electric vehicle charging infrastructure into power systems. The same
holds for other seasons, as shown in Fig S6–S8.

Fig. 7 shows to what extent the introduction of smart-charging
mechanisms, such as night- and VRES-charging, would be effective in
reducing the additional burden on the power system as a consequence
of a massive deployment of electric vehicles. An ‘uncontrolled’ de-
ployment of electric vehicles could increase by 36- to −51% the daily
9

peak demand to be met by the power system (on average, through-
out the year) for industrialised and densely populated countries like
France, Germany, Italy and the United Kingdom. Conversely, a de-
ployment which features non-negligible shares of night-charging and
VRES-charging users would lead to an increase of only 30- to −41%
for the same countries. The result is particularly relevant if considering
that smart charging strategies are here simply simulated according to
plausible shares (see Section 3.4) rather than being actually optimised
with respect to power system operation. Potentially, more marked
improvements could be attained by endogenously optimising the charg-
ing behaviour within a power system model, and using the obtained
‘optimal’ behaviour to inform the practical shaping of ad-hoc V2G
schemes.

4.4. The impact of technology and infrastructure developments

The considered plausible developments in terms of battery capacity
and charging infrastructure power do not seem to lead to significant
changes in the characteristics of electric vehicle demand profiles. As
shown on the left-hand side of Figs. 8 and S9, larger batteries do not
produce any relevant change in the aggregate charging load, whereas
more powerful charging points lead to higher instantaneous peaks at
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Fig. 6. Mix-of-strategies battery consumption and charging power. Time series of battery consumption and charging power of an electric vehicle fleet in representative
European countries assuming a mix of charging strategies. Colour coding differentiates the contributions of subset of vehicles adopting different charging strategies (uncontrolled,
night and VRES charging) to such total consumption figures. All power consumption figures are normalised with respect to an yearly energy consumption of 1 TWh. The same
results for other periods of the year are provided in Fig S6–S8.

Fig. 7. Peak ratio. The peak ratio (see Eq. (3)) is shown for users adopting an ‘uncontrolled charging’ strategy (a) and for users adopting a combination of uncontrolled-, night-
and VRES-charging strategies(b). Countries left blank are those not covered by our data set.



Applied Energy 312 (2022) 118676A. Mangipinto et al.
Fig. 8. Battery consumption and charging power across plausible infrastructure and technology development scenarios. Time series of battery consumption and charging
power of an electric vehicle fleet in Germany for the reference scenario (uncontrolled charging) and for scenarios assuming plausible technology and infrastructure developments
(battery upgrade, charging upgrade, or both — see Table 1). Results are shown for the alternative cases in which a more relaxed user behaviour with respect to the anxiety of
finding a charging point is not considered (left) or considered (right). All power consumption figures are normalised with respect to an yearly energy consumption of 1 TWh and
resampled to hourly time steps.
the minute scale, which nonetheless largely smooth out when looking
at the hourly scale.

This might be seen as an artefact of the assumed user behaviour:
by default, users tend to charge as soon as parked, which does reflect
the typical behaviour of an electric vehicle user in case the charging
infrastructure is not as widespread as its fuel-based counterpart (as
demonstrated by the validation against empirical data discussed in
Section 4.1). However, this might insufficiently reflect the more ‘re-
laxed’ behaviour of future users that safely rely on a fully developed
charging infrastructure. If the built-in optional ‘relaxed user behaviour’
functionality is allowed (see Section 3.4), the same technology and
infrastructure developments entail non-negligible changes in the shape
of charging profiles (right-hand side of Figs. 8 and S4). More precisely,
if users charge their vehicles only when approaching a low level of
charge (i.e. as they are more ‘relaxed’ with respect to the chances
of finding a charging point exactly when needed), upgraded batter-
ies lead to a relatively more pronounced smoothing of peaks than
in the baseline. In fact, having a more energy-dense battery for the
same consumption pattern entails a delay in the moment of perceived
necessity of charging, which in turns leads to more diluted charging
events at an aggregate level. Interestingly, however, the simultaneous
11
availability of a more powerful charging infrastructure (which is just
as likely to occur) more than compensates for such profile-smoothing
effect provided by more energy-dense batteries. This confirms that,
irrespective of whether the user ‘anxiety’ with respect to the charging
infrastructure in a long-term future is relaxed, the expected technology
and infrastructure developments are not likely to play a key role in
defining the shape of future charging demand patterns at country-scale.

Conclusions

Policy decisions pertaining to the mass-scale deployment of electric
vehicles for integration with the power system are currently slowed
down by unanswered questions concerning the impact that such a de-
ployment would have on electricity demand and the potential of smart
charging mechanisms to mitigate it [13]. This is particularly relevant
for Europe, whose diversity of socio-economic and weather condi-
tions across member countries calls for country-specific answers to the
aforementioned questions despite common targets and ambitions.

In this work, we try to address precisely such questions. To this end,
first, we have developed a model that allows to simulate electric vehicle
battery consumption and charging time series based on a restricted
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set of openly available data, which makes it easily adaptable across
contexts, such as across all European countries and beyond. Second,
thanks to the availability of empirical data of electric vehicle charging
in the Netherlands, we have tested the model against pertinent real-life
figures, demonstrating a good accuracy of the latter across a number
of quantitative metrics. Third, we have applied the model to simulate
long-term scenarios of highly-resolved electric vehicle consumption and
charging time series for all European countries.

The application of the model showcases that such time series ex-
perience substantial variations across countries, due to the combined
effect of socio-economic (e.g. relative predominance of students and
commuting workers in each population) and weather-related (e.g. out-
door temperature trends) factors. This result is particularly relevant
as it proves the inaccuracy of the common practice of considering a
single, standard time series as representative of all European countries.
Furthermore, when considering vehicle demand time series as an input
for power system optimisation models, it stresses the need for simulta-
neously generating them together with those pertaining to renewable
generation, based on a common set of weather years. The energy
modelling community should hence acknowledge the need for using
country-specific and weather-explicit electric vehicle consumption and
charging input time series, which our work now makes freely and
openly available.

Regarding the potential impact of electric vehicle on existing power
systems, we show that the latter could be significant with an ‘uncon-
trolled’ deployment of electric vehicles. In such a case, the increase
in the daily peak demand to be met by the power systems lies in the
range 36%–51%, depending on the specific country. On the other hand,
supporting the adoption of smart charging could be a highly effective
means for smoothing out charging demand profiles from large fleets
of electric vehicles. Plausible shares of users adopting smart charg-
ing strategies could in fact limit peak demand increase to the range
30%–41%. For Germany, for instance, this would mean in practice a
reduction in the average daily electricity demand peak of about 6 GW.
Stronger benefits could be achieved through strong political support for
larger-than-assumed adoption of smart charging strategies, in combina-
tion with a marked expansion of renewable generation capacity, as well
as by identifying even ‘smarter’ vehicle-to-grid strategies as a result of
the joint optimisation of vehicle charging and power system operation
within power system models. We thus encourage energy modellers
to pursue further research in this direction and further highlight the
untapped potential of smart charging, especially in combination with
renewable capacity expansion.

We also show that plausible developments in battery energy density
and in charging-point power would not lead to substantial modifi-
cations of the demand pattern to be handled by the power system,
even if assuming more sophisticated user behaviour with respect to
the ‘anxiety’ of finding an available charging point when needed. This
confirms that political efforts for sectoral integration between electric
vehicles and the power system should primarily focus on the large-scale
implementation and support of smart vehicle-to-grid mechanisms.

Although providing a better understanding of the questions asso-
ciated with the long-term, mass-scale deployment of electric vehicles
across all Europe, the approach presented here has potential for further
enhancement. First, the validation against empirical electric vehicle
charging data, despite representing a key advantage of our approach
compared to the majority of existing alternatives, would benefit from
an expansion across several contexts, user and vehicle types. Second,
simulating the evolution of user behaviour in a future in which the
electric vehicle infrastructure is significantly more widespread might
be useful to further enlarge the range of plausible results. In the current
model, the parametrisation of such behaviour remains largely arbitrary,
and would benefit from further insights from social-science research in
this direction [51]. Finally, the model lends itself to a functional cou-
pling with most recent lumped-parameter electric vehicle consumption
12

models [52], which could be used to further enhance our representation
of some technical dynamics, such as vehicle-consumption fluctuations
due to ambient temperature.

In its present state, our approach already provides a first-of-its-kind
validated option for the simulation of electric vehicles consumption
and charging time series for the whole Europe and beyond, capable
of accounting for country-specific socio-economic and weather-related
factors. The fully open release of all code and data on GitHub, ac-
companied by a walkthrough documentation for results reproduction,
ensures that the approach is widely applicable, while at the same
time providing full freedom for the users to customise parameters and
assumptions. Finally, the simplicity of the data required for running the
model, makes the latter easy to apply worldwide, even beyond Europe.
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