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Abstract

This article introduces adaptivity in Clustering-based Reduced Order Models (ACROMs). The strategy is demonstrated for
particular CROM called Self-Consistent Clustering Analysis (SCA), extending it into the Adaptive Self-Consistent Clustering
nalysis (ASCA) method. This is shown to improve predictions of Representative Volume Elements (RVEs) of materials

xhibiting history-dependent localization phenomena such as plasticity, damage and fracture. The overall approach is composed
f three main building blocks: target clusters selection criterion, adaptive cluster analysis, and computation of cluster interaction
ensors. In addition, an adaptive clustering solution rewinding procedure and a dynamic adaptivity split factor strategy are
uggested to further enhance the adaptive process. The ASCA method is shown to perform better than its static counterpart
hen capturing the multi-scale elasto-plastic behavior of a particle–matrix composite and predicting the associated fracture and

oughness. The proposed adaptivity strategy can be followed in other CROMs to extend them into ACROMs, opening new
venues to explore adaptivity in this context.
2022 Elsevier B.V. All rights reserved.

eywords: Clustering adaptivity; Clustering-based reduced order model; Localization; Adaptive Self-Consistent Clustering Analysis; Multi-scale
odeling

1. Introduction

Integrated Computational Materials Engineering (ICME) [1,2] requires the ability to perform accurate and
fficient predictions of material behavior. Given current computational resources, this implies resorting to Reduced
rder Models (ROMs) that strike a balance between efficiency and accuracy unattainable by Direct Numerical
imulations (DNS) of multi-scale material behavior [3–5]. However, current ROMs do not successfully handle
ases where highly localized plasticity or damage phenomena occur [6]. This article addresses this challenge
y introducing adaptivity in Clustering-based ROMs (CROMs) to enhance their predictive ability when material
ocalization occurs.

CROMs (e.g., [7,8]) are a recent family of ROMs that have been particularly successful in modeling nonlinear
lasto-plastic material behavior by only requiring elasticity simulations in a prior learning stage. This is a distinctive
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characteristic when compared with other significant contributions in the literature such as the Transformation
Field Analysis [9], Nonuniform Transformation Field Analysis [10], Proper Generalized Decomposition [11],
Reduced Basis Method [12], High-Performance Reduced Order Model [13], Empirical Cubature Method [14] and
Wavelet-Reduced Order Model [15]. The underlying idea of CROMs is to perform model reduction through a
clustering-based domain decomposition relying on unsupervised machine learning (clustering algorithms). This
novel approach sprouted from the work of Liu and coworkers [7] when they developed the Self-Consistent
Clustering Analysis (SCA) method. Soon after, Wulfinghoff and coworkers [8] proposed a CROM derived from
the Hashin–Shtrikman variational principle that turned out to be equivalent to the SCA formulation [16]. Since
then, CROMs gained traction (e.g., [17–21]), mathematical foundations have been consolidated (e.g., [16,22]) and
several numerical applications have been successfully explored (e.g., [23–29]).

Notwithstanding, there are limits to what can be predicted without considering adaptivity in CROMs. In
articular, dealing with the onset and propagation of highly localized phenomena such as material yielding and
racture is notoriously difficult [6,17]. Therefore, akin to what happened in the past with Adaptive Finite Element

ethods (AFEMs) pioneered by Babuška and Rheinboldt [30,31], this article proposes a strategy towards Adaptive
Clustering-based Reduced Order Models (ACROMs). For convenience, Appendix A includes an overview of AFEM
for the reader unfamiliar with the topic, including key references and illustrations. For the purposes of this article,
the key is to recall that AFEMs have three main ingredients [32], as summarized in the same Appendix: (1) an
error estimator or indicator, employed to locate where there is a need for mesh refinement/de-refinement; (2) a
procedure to adapt the spatial interpolation, increasing or decreasing the interpolation in a particular region of
the computational domain; and (3) a remeshing criterion, translating the output of error analysis into a need for
adaptivity and actual mesh parameters (e.g., minimum element size). The interested reader is also referred to the
extensive literature on the topic (e.g., [33–36]).

Without loss of generality, the following work focuses on adaptivity for a particular CROM, the SCA method,
forming the first ACROM: the Adaptive SCA (ASCA) method. Yet, the new clustering adaptivity procedures are
valid for other CROMs. For completeness, the reader unfamiliar with the SCA method is encouraged to read the
concise description in Appendix B or a comprehensive treatment of the topic in [37] and references therein. Similarly
to these references, a two-scale hierarchical material model is considered in this article to focus on the adaptive
solution of the underlying microscale equilibrium problem. The material microstructure can be defined by any
number of material phases, each characterized by any class of constitutive model under infinitesimal or finite strains.
However, this first article considers infinitesimal strains, two-scales, two material phases at the micro-scale, and
either two-dimensional plane stress/plane strain (ndim = 2) or three-dimensional (ndim = 3) models.

. Methodology

.1. Nomenclature and fundamental concepts

At the macroscale, the domain and its boundary are denoted by Ω and ∂Ω , and the coordinates of a material point
re given by X and x in the reference and deformed configurations, respectively. At the microscale, the material
icrostructure is assumed to be properly characterized by a representative volume element (RVE) of dimensions

lRVE)i , i = 1, . . . , ndim and whose domain and boundary are denoted by Ωµ and ∂Ωµ (see Fig. 1). At this scale,
he coordinates of a material point are given by Y and y in the reference and deformed configurations, respectively.
n addition, the reference configuration is generally denoted as (•)0 and the microscale fields are denoted as (•)µ.

The RVE is here assumed to be discretized in a regular grid of voxels, nv =
∏ndim

i=1 ni , where ni denotes the
umber of voxels in the i th dimension (see Fig. 1). This type of discretization is suitable for CROMs whose solution
rocedure is partially computed in the discrete frequency domain, but can be easily converted to a finite element
esh of quadrilateral/hexahedral finite elements (see Appendix C). In the former case, each spatial sampling point

s denoted as Y s1,s2 ≡ Y (s1, s2) ∈ Ωµ,0 (2D) or Y s1,s2,s3 ≡ Y (s1, s2, s3) ∈ Ωµ,0 (3D), where si = 0, 1, . . . , ni − 1
nd i = 1, . . . , ndim. The associated coordinates can be determined in the two-dimensional case as

Y s1,s2 =

(
(lRVE)1

n1
s1,

(lRVE)2

n2
s2

)
, si = 0, 1, . . . , ni − 1, i = 1, 2 , (1)

nd in the three-dimensional case in an analogous way. By performing a discrete Fourier transform (DFT) and

umping to the discrete frequency domain, each sampling angular frequency is then characterized by a wave vector,

2
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Fig. 1. Schematic illustration of a biphasic material (MP1 and MP2), from left to right: Representative volume element (RVE); Spatially
iscretized RVE in a regular grid of 8 × 8 voxels; Cluster-reduced representative volume element (CRVE) with 6 material clusters.

s1,s2
≡ ζ (s1, s2) (2D) or ζ s1,s2,s3

≡ ζ (s1, s2, s3) (3D), that is defined in the two-dimensional case as

ζ s1,s2
=

(
2π

(lRVE)1
s1,

2π

(lRVE)2
s2

)
, si = 0, 1, . . . , ni − 1, i = 1, 2 , (2)

nd similarly in the three-dimensional case.
After the CROM clustering-based domain decomposition is performed, the RVE domain is decomposed in nc

aterial clusters and a cluster-reduced representative volume element (CRVE) is obtained. The clustering-based
omain decomposition that characterizes the initial CRVE is hereafter called base clustering. To take advantage of
priori knowledge about the material behavior, the cluster analysis is usually performed independently for each
aterial phase, henceforth designated cluster-reduced material phase (CRMP). Each material cluster groups a given

umber of voxels and may have an arbitrary-shaped discontinuous domain, as illustrated in Fig. 1. Usually, it is
ssumed that every local field, here generally denoted as aµ( y), is uniform within each material cluster,

aµ( y) =

nc∑
I=1

a(I )
µ χ (I )( y) , χ (I )( y) =

{
1 if y ∈ Ω (I )

µ

0 otherwise
, (3)

here a(I )
µ is the homogeneous field in the I th material cluster and χ (I )( y) is the characteristic function of the I th

aterial cluster. The equilibrium problem solution procedure is then formulated over the CRVE according to the
hosen CROM’s formulation.

.2. Adaptive clustering-based reduced order modeling

ACROMs have specific characteristics and challenges when compared to AFEMs, as highlighted in Appendix D.
n summary, standard error estimators, p-adaptivity and hp-adaptivity are not relevant for CROMs that assume
niformity of fields within the disconnected cluster subdomains, and the simplest approach to r -refinement is not
pplicable as clusters are not well-defined by a given set of boundary nodes. Therefore, ACROMs are proposed to
ollow a cluster subdivision strategy, akin to element subdivision in AFEMs but with the added advantage of not
aving issues such as node placement and mismatch between adjacent elements. Appropriate error indicators and
emeshing criteria are discussed in this article and additional similarities to AFEMs are highlighted accordingly.

Adaptivity in ACROMs is applied to each CRMP. For clarity, these material phases are further classified as
tatic cluster-reduced material phase (SCRMP) if the associated clustering-based decomposition is kept constant
hroughout the problem’s solution (no adaptivity), or as an adaptive cluster-reduced material (ACRMP) if clustering
daptivity is allowed. Once the CROM (microscale) equilibrium problem solution is obtained for a given loading

ncrement (macroscale), clustering adaptivity may occur if a set of conditions is met, for instance:

3
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• Clustering adaptivity frequency. The clustering adaptivity frequency, ∆madapt, defines if the ACROM
framework is activated after each loading increment (∆madapt = 1), or only every q loading increments
(∆madapt = q). This condition could be simply set by default as ∆madapt = 1. However, given that the
total number of clusters is often limited, a smart choice of this parameter is crucial for achieving an optimal
accuracy-efficiency balance, as later discussed. In addition, this parameter can be defined independently for
each ACRMP, being the ACROM framework only activated if at least one material phase needs to be evaluated.
Note that a similar strategy can be adopted based on the evolution of any relevant variable other than the
loading increments (e.g., a relative increase of a damage variable);

• Maximum consecutive adaptivity steps. A maximum number of consecutive clustering adaptivity steps can
be set so that the equilibrium problem solution procedure continues even if further clustering adaptivity would
still be triggered within the following clustering adaptivity step;

• Threshold number of clusters. A threshold may be enforced on the number of clusters of each ACRMP,
nmax

c , to limit the computational cost of the equilibrium problem solution procedure. If the number of clusters
surpasses this threshold, then the ACRMP’s adaptivity is locked and the associated clustering is kept static
during the remaining solution procedure;

• Minimum localization/damage value. A minimum significant value for a given localized or damage variable
can be defined for each ACRMP. Clustering adaptivity procedures are only activated for that material phase
when the variable of interest reaches the minimum significant defined value (e.g., a minimum value of
accumulated plastic strain, ε̄

p
min, associated with the material plastic yielding).

If all adaptivity conditions are satisfied for at least one material phase, then a clustering adaptivity step is performed.
Otherwise, the equilibrium problem solution procedure continues to the next macroscale loading increment in a
standard way.

2.3. An ACROM implementation: Adaptive self-consistent clustering analyses

Fig. 2 summarizes the ACROM implementation for the SCA method: the ASCA. In close resemblance with
the key ingredients of AFEMs described in Appendix A, a clustering adaptivity step comprises three fundamental
blocks. The first block (Block A) involves the evaluation of a given error estimator or indicator, i.e., a criterion that
selects the target clusters to be adapted. If there is at least one target cluster, an adaptive cluster analysis (Block B) is
performed for each target cluster together with a suitable transfer of clusters’ state-related variables. Otherwise, the
equilibrium problem solution procedure continues if the clustering adaptivity is not triggered for any cluster. After
performing the adaptive cluster analysis for all target clusters, the CRVE clustering-based domain decomposition
has been effectively updated. However, the SCA method requires the computation of the cluster interaction tensors,
which must be updated accordingly (Block C). Each of these blocks is described in detail in the following sections.

Remark 1. In addition to the adaptivity conditions described in Section 2.2, the formulation of both Block A
(Section 2.3.1) and Block B (Section 2.3.2) are completely independent from the particular extended CROM. In
contrast, Block C involves the computation of any clustering-dependent formulation entities which, in the particular
case of the SCA method, are the cluster interaction tensors.

Once the clustering adaptivity step is concluded, the adaptivity conditions are re-evaluated. If these continue to
be satisfied for at least one material phase, a new clustering adaptivity step is performed. Otherwise, the equilibrium
problem solution procedure continues to the next macroscale loading increment. Even if a new clustering adaptivity
step is performed, clustering adaptivity might not be triggered for any cluster (see Fig. 2). It is also remarked that
the macroscale loading increment where the clustering adaptivity procedure has been performed may be repeated
with the updated CRVE before proceeding to the next macroscale loading increment.

2.3.1. Block A: Target clusters selection criterion
The first block in the clustering adaptivity step is to determine what material clusters need to be refined in

order to fulfill the desired accuracy requirements. Assume that the clustering adaptivity is designed to capture
a given scalar microscale field, cµ( y), hereafter called clustering adaptivity feature. This choice may be set

ndependently for each CRMP and can be, for instance, a constitutive state variable associated with localization

4
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Fig. 2. Adaptive Self-Consistent Clustering Analysis (ASCA) as an ACROM implementation. A complete clustering adaptivity step comprises
three fundamental blocks: (A) target clusters selection criterion, (B) adaptive cluster analysis and (C) computation of cluster interaction tensors.

Fig. 3. Target clusters selection criterion based on the evaluation of the clustering adaptivity feature’s, cµ, spatial discontinuities along
clusters’ boundaries, jump(cµ). Middle plot shows the clustering adaptivity feature’s profile for a given row of voxels ( j = 4) and the
associated discontinuities at clusters’ boundaries. Targeted clusters are stored together with any data relevant to the following adaptive cluster
analysis.

phenomena (e.g., accumulated plastic strain, cµ( y) = ε̄ p( y)) or a damage variable (cµ( y) = D( y)). Irrespective
of the chosen clustering adaptivity feature, having such variable directly available from the CRMP’s clusters’ state
variables is convenient for efficiently computing it from them (e.g., the norm of cluster strain concentration tensor,
cµ( y) = ∥H∥ ( y), the density of plastic strain energy, cµ( y) = U p

dens.( y)).
After setting the suitable clustering adaptivity feature, a criterion to select the target clusters to be adapted is

eeded. Taking inspiration from several contributions of residual error estimators and error indicators employed in
FEMs [38–41], see also Appendix A.1, a selection criterion is proposed here based on the evaluation of the spatial
iscontinuities (or jumps) of cµ( y) along the material clusters’ boundaries (see Fig. 3). This requires a scanning
rocedure over the CRVE whose scan directions are collinear and equal in number to the problem dimensions,
.e., two scanning directions (2D problem) or three scanning directions (3D problem).

For simplicity, assume a 2D problem and that direction 1 is currently being scanned, as illustrated in Fig. 3.
ssume further that the j th row of voxels is being evaluated, i.e., the row whose voxels are defined as Y i, j , i =

, . . . , n1. Every pair of two consecutive voxels, (Y i, j , Y i+1, j ), i = 0, . . . , nv,1, is evaluated as follows1:

1. Skip conditions. Several conditions are defined to avoid unnecessary computations and skip straight to the
next pair of voxels if:

1 The last pair of consecutive voxels to be evaluated is (Y , Y ), i.e., the last voxel is paired with the first voxel (Y ≡ Y ).
n1, j 0, j n1+1, j 0, j

5
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• Both voxels belong to the same material cluster (cluster(Y i, j ) = cluster(Y i+1, j )). This condition has
two main outcomes: (1) ensures that only the jump in the boundaries of the clusters is evaluated;
(2) computations are avoided when assuming the uniformity of fields within each cluster, i.e., when
jump(cµ) = 0 is known a priori;

• Voxels belonging to different material phases (MP(Y i, j ) ̸= MP(Y i+1, j )). This condition is optional,
being nonetheless relevant to (1) comply with a different clustering adaptivity feature for each material
phase and (2) perform the clustering adaptivity independently for each CRMP. It can be dropped if the
clustering adaptivity should conform to the discontinuity of a given clustering adaptivity feature at the
interface between different material phases (e.g., interface phenomena).

2. Jump evaluation. The clustering adaptivity feature jump can be evaluated and normalized as

jumpr (cµ) =

⏐⏐⏐cµ(Y i, j ) − cµ(Y i+1, j )
⏐⏐⏐⏐⏐⏐max(cµ(∀Y ∈ MP)) − min(cµ(∀Y ∈ MP))

⏐⏐⏐ , (4)

being conveniently bounded as jumpr (cµ) ∈ [0, 1]. This normalized ratio quantifies the magnitude of the
clustering adaptivity feature discontinuity relative to the maximum amplitude within the material phase. It
can be interpreted as an error indicator in the sense that a significant discontinuity is often associated with
localization or damage phenomena that demand a more refined clustering to be properly captured;

3. Target selection condition. The normalized jump is now compared with a user-defined parameter called
adaptivity trigger ratio, γratio ∈ [0, 1].
If jumpr (cµ) >= γratio, the discontinuity is assumed to be significant and both clusters are marked as
target clusters to be adapted. Otherwise, none of the clusters is marked. The adaptivity trigger ratio is thus
a parameter that controls the sensitivity of the selection criterion. As γratio → 0, the adaptivity tends to
generalize to the whole ACRMP clustering, whereas γratio → 1 tends to focus adaptivity only on clusters
placed on regions exhibiting very high discontinuities.

After evaluating all directions and every pair of consecutive voxels, clusters targeted during the CRVE scanning
procedure are stored for the following adaptive cluster analysis.

2.3.2. Block B: Adaptive cluster analysis
If there is at least one target cluster stemming from Block A, then the clustering adaptivity step proceeds to the

following block. A generalized adaptive cluster-reduced material phase (GACRMP) is proposed here. The adaptive
cluster analysis of each material phase cluster is performed independently through any chosen unsupervised machine
learning clustering algorithm (see Fig. 4). The adopted strategy is similar to the h-refinement element subdivision
approach employed in AFEMs (e.g. [36,42–44], see also Appendix A.2), where target clusters are divided into
smaller ones and keep their original boundaries intact. This strategy is convenient concerning the transfer of clusters’
state-related variables to the refined clustering. After the adaptive cluster analysis and subdivision of a given cluster,
each child cluster inherits its parent cluster state-related variables.

Given that any field is usually assumed uniform within each material cluster (see Eq. (3)), the cluster-level
dataset has a null cluster tendency and cannot be used to perform the adaptive cluster analysis. In this context, it
is proposed to recover the offline stage data computed at the voxels belonging to the target cluster. It is remarked
that the voxel-level dataset employed to perform the clustering procedure may be different from the one employed
to perform the base clustering of the CRMP.

Besides the dataset required to perform the adaptive cluster analysis, it is necessary to define the suitable degree
of decomposition, i.e., the number of child clusters created from each target cluster (parent cluster) (see Fig. 5). The
possible number of child clusters ranges from an absolute minimum of nmin

c,child = 2 up to a user-defined maximum of
nmax

c,child = nint(( fc,child)−1), where nint(x) denotes the nearest integer rounding function. The parameter fc,child ∈ [0, 1]
denotes the volume fraction of each child cluster relative to the parent cluster by assuming a uniform subdivision,
e.g., fc,child = 0.2 would result in a maximum of nmax

c,child = 5 child clusters. Given the established range of number

of child clusters, the user-defined parameter called adaptivity split factor, γsplit ∈ [0, 1], sets the adequate number

6
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c

Fig. 4. Adaptive cluster analysis of each targeted cluster (parent cluster) into a given number of subclusters (child clusters), nc, child, through
luster subdivision. The adaptive cluster analysis can be performed with any available clustering algorithm.

Fig. 5. Computation of the number of child clusters, nc, child, in which a given target cluster is decomposed through the proposed adaptivity
split factor, γ split.

of child clusters as2

nc,child = max(2, nint(γsplit nmax
c,child)) . (5)

A value of γsplit = 0 leads to the minimum number of child clusters, nc,child = 2, whereas a value of γsplit = 1 results
in the maximum number of child clusters, nc,child = nint(( fc,child)−1). Besides the bounded and comprehensible
nature of both these parameters, fc,child and γsplit, the proposed strategy is convenient as it is independent of the
target cluster’s number of voxels and often discontinuous spatial arrangement.

The adaptive cluster analysis ends when every target cluster has been adapted and the CRVE clustering-based
domain decomposition has been updated.

Remark 2. To accurately capture localized and damage phenomena, adaptivity needs to counteract the non-local
nature of static CROMs (here, the SCA). When a given set of material points is grouped into a single cluster,
it is implicitly enforced that all follow exactly the same deformation history path. As soon as that cluster is
adaptively subdivided, each resulting child cluster is able to follow its own deformation history path, i.e., the non-
local connection with the remaining child clusters is broken from that point onwards. In this way, the evolution
of material points where localized phenomena occur is not dampened by other material points assumed to have a
similar behavior up to that point.

2 Note, however, that nc,child must be lower than or equal to the number of voxels of the parent cluster, i.e., the dimension of the
voxel-level dataset. Otherwise, the adaptive cluster analysis cannot be performed.
7
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2.3.3. Block C: Computation of cluster interaction tensors
The last block of the clustering adaptivity step involves the required update of the cluster interaction tensors,

(I )(J ), I, J = 1, 2, . . . , nc. These fourth-order tensors play a fundamental role in SCA and describe a non-local
train–stress interaction between each pair of clusters. They are usually computed at SCA’s offline stage after
erforming the CRVE base cluster analysis. As illustrated in Fig. 6, in practice the complete set of tensors may be
onveniently stored in a cluster interaction matrix. A cluster interaction tensor is defined as

T(I )(J )
=

1
f(I )vµ

∫
Ωµ,0

∫
Ωµ,0

χ (I )(Y ) χ (J )(Y )Φ0(Y − Y ′) dv′dv , I, J = 1, 2, . . . , nc, (6)

here f (I )
= v(I )

µ /vµ is the volume fraction of the I th cluster and Φ0 is the well-known Green operator associated
ith the reference material. It transpires from this definition that, from a physical point of view, T(I )(J ) represents

he influence of the stress in the J th cluster on the strain in the I th cluster. It is thus understandable that the cluster
nteraction tensors must be updated according to the new CRVE clustering.

A simple approach would be to compute all the cluster interaction tensors as done relative to the CRVE based
lustering. Despite being a valid solution, the computational cost of these fourth-order tensors is high. This cost
cales with the number of clusters, where a new cluster implies a new cluster interaction tensor with itself (I = J )
nd with all the remaining clusters (I ̸= J ), and it also scales with the spatial discretization of the RVE in the
patial and/or frequency domains. If the Green operator is assumed to be known in the frequency domain, Φ̆

0
, the

omputation of T(I )(J ) for a given pair of clusters I and J (see Eq. (6)) involves two main steps: (1) the convolution
ver the cluster J , which can be computed in the frequency domain as∫

Ωµ, 0

χ (J )(Y ′)Φ0(Y − Y ′) dv′
= F−1

(
χ̆ (J )(ζ ) Φ̆

0
(ζ )
)

, (7)

here F−1 denotes the inverse Fourier transform; and (2) the spatial integration over the cluster I domain implied
n ∫

Ωµ,0

χ (I )(Y )

(∫
Ωµ,0

χ (J )(Y )Φ0(Y − Y ′) dv′

)
dv . (8)

he computation of T(I )(J ) is then concluded with the product by (v(I )
µ )−1

= ( f (I )vµ)−1.
Note that the cluster interaction tensors exhibit a cluster-symmetry in the sense that, from Eq. (6),

T(J )(I )
=

f (I )

f (J ) T(I )(J ) . (9)

or a CRVE base clustering with nc material clusters, cluster-symmetry can be exploited by only performing a full
omputation of 0.5 nc(nc +1) cluster interaction tensors (lower triangular elements of the cluster interaction matrix).
he remaining 0.5 nc(nc − 1) cluster interaction tensors, representing 0.5 (1 + n−1

c ) × 100 (%) of the total number
f tensors, may be directly obtained from Eq. (9). This fraction tends to 50% as the number of clusters increases.

The cluster-symmetry of the cluster interaction tensors can be further explored in the context of clustering
daptivity to minimize computational costs. In the following explanation, assume that I and J denote existing
lusters before the clustering adaptivity step, and I ∗ and J ∗ denote new clusters stemming from the adaptive cluster
nalysis. It is proposed that the full computation is only performed for T(I )(J∗), i.e., the cluster interaction tensors
ocated in the columns of the cluster interaction matrix associated with new clusters (see Fig. 6). Besides the cluster
nteraction tensors T(I∗)(J∗), it can be verified that all the remaining new cluster interaction tensors T(I∗)(J ) can be
omputed directly from cluster-symmetry. This approach not only takes advantage of the cluster-symmetry to reduce
he number of full tensor computations, but also avoids repeating the computation of the convolution (see Eq. (7))
ssociated with previously existent clusters. The cluster interaction tensors T(I )(J ) can be naturally recovered from the
revious clustering. In summary, if the CRVE updated clustering is characterized by nc previously existent clusters
nd n∗

c new clusters, the update of the cluster interaction tensors requires 0.5 n∗
c (n∗

c+2nc+1) full tensor computations
nd 0.5 n∗

c (n∗
c + 2nc − 1) cluster-symmetry tensor computations. The proposed strategy is valid irrespective of the
ethod employed to compute the cluster interaction tensors as long as the cluster-symmetry holds.

8
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Fig. 6. Update of the cluster interaction matrix, T, consistent with the clustering adaptivity step. By taking advantage of the cluster interaction
ensors cluster-symmetry, only those tensors in the columns associated with the new clusters need to be fully computed.

.3.4. Adaptive clustering solution rewinding
The numerical solution of a general equilibrium problem depends on the spatial discretization of the domain. This

s particularly important when dealing with path-dependent nonlinear material behavior and/or damage mechanisms,
here the proper discretization of specific regions of the domain can be crucial to get accurate predictions. For these

easons, preliminary mesh convergence studies are a standard practice in DNS analyses of a given problem which
an then be complemented by adaptive methodologies.

Given the fundamental accuracy-efficiency balance subjacent to CROMs, it is often the case that the clustering-
ased domain decomposition is not sufficiently refined to assume convergence with respect to spatial discretization.
his means that an ACROM has a persistent material state history prior to any clustering adaptivity step that will
ffect the solution accuracy of the remaining loading path. In other words, even if an ‘optimal’ clustering refinement
s performed at a given instant of time, the resulting child clusters inherit a less accurate material state. For instance,
t is expected that a coarser clustering leads to a rather diffuse modeling of localized phenomena, which means that
hild clusters inherit underestimations of the magnitude of the localized fields. More importantly, the predictions
f the onset and propagation of the material failure are consequently delayed.

To address this challenge, a solution rewinding procedure is proposed herein. This procedure is composed of
hree main steps, as illustrated in Fig. 7(a). The first step consists in storing the rewind state whenever a given
ondition is met (e.g., when the material begins yielding plastically). This essentially involves taking a snapshot
f the solution state, saving the loading path state, the material homogenized strain and stress, the clusters state
ariables, and so on. Once the rewind state is stored, the second step consists in evaluating one or more rewind
riteria at each loading increment, i.e., criteria that establish when the solution must be rewound after at least one
lustering adaptivity step has been performed. If the rewind criteria are met, the third step performs the actual
ewind operations, returning the solution to the rewind state but with the updated clustering. This requires that the
ew clustering somehow recovers the material state variables associated with the rewind state.

The clusters’ state variables recovery process is illustrated in Fig. 7(b). Given the adaptive cluster analysis
escribed in Section 2.3.2, the clustering adaptivity hierarchy of the GACRMP can be built throughout the problem
olution. Therefore, the recovery process requires finding the rewind state’s parent cluster of each cluster from which
he associated state variables are transferred. The pseudo-code of this parent cluster search procedure is presented
n Fig. 7(b) and consists of an upward hierarchical search for each cluster.

.4. Additional adaptivity procedures

Some additional procedures are proposed here to complement ACROMs. These are optional but can effectively
mprove the clustering adaptivity and/or provide a more practical tool to the analyst.
9
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Fig. 7. Schematic of solution rewinding procedure after clustering adaptivity: 7(a) Solution rewinding main steps, namely (1) storage of
rewind state, (2) evaluation of rewind criteria and (3) perform rewind operations; 7(b) Recovery of clusters state-related variables through a
suitable search of clustering adaptivity hierarchy.

• Cluster adaptivity level. The adaptivity level of a given cluster I , λ(I ), describes its depth of refinement
throughout the equilibrium problem solution procedure, being λ(I )

= 0 associated with the base clustering. If
cluster I is targeted and subjected to adaptive cluster analysis, each child cluster inherits its adaptivity level
incremented by 1. In this sense, the adaptivity level measures how many clustering adaptive steps led to its
creation, i.e., how far it is from the base clustering domain decomposition. This information can be useful in
two different ways. In the first place, a user-defined parameter, λmax, may be enforced to limit the adaptivity
level of all clusters belonging to a given ACRMP. This would be an additional target selection condition in
the sense that any cluster I could only be targeted if λI < λmax (see Section 2.3.1). In the second place,
the adaptivity level may be used to enforce a certain degree of uniformity concerning the domain clustering
adaptivity. A user-defined parameter, λ∆

max, can be defined to limit the difference between adaptivity levels of
adjacent clusters. Assume the generic pair of consecutive voxels (Y i, j , Y i+1, j ) described in Section 2.3.1 and
that I = cluster(Y i, j ) and J = cluster(Y i+1, j ). If jumpr (cµ) >= γratio and |λ(I )

− λ(J )
| <= λ∆

max, then both
clusters are marked as target clusters to be adapted. However, if |λ(I )

− λ(J )
| > λ∆

max, only the cluster with the
lowest adaptivity level, min(λ(I ), λ(J )), is marked as target cluster.

• Cluster minimum number of voxels. Irrespective of the microstructure under analysis, the smallest cluster
possible is composed of a single voxel. If a proper domain discretization is performed, usually involving
thousands of voxels, it is most likely that a single-voxel cluster does not contribute significantly to the accuracy
of the problem solution. However, either in the computation of the base clustering or in each clustering
adaptivity step, an additional cluster may contribute to a significant increase in the number of cluster interaction
tensors and associated computation cost. This reasoning can be extended to a given minimum number of voxels
per cluster, a user-defined parameter that naturally depends on the spatial discretization of the domain and on
the minimum dimension considered significant to capture the material behavior accurately. This threshold is
then enforced as an additional target selection condition, being a given cluster targetable only if the associated
number of voxels is greater than or equal to the prescribed minimum;

• Dynamic adaptivity split factor. In Section 2.3.2, the adaptivity split factor, γsplit, is proposed as a user-

defined parameter that defines the number of child clusters of every target cluster in a given ACRMP. This

10
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concept can be further explored by recognizing that certain target clusters should be more refined on a given
clustering adaptivity step than others, depending on the error estimator or indicator being employed. For
instance, target clusters associated with higher discontinuities of the clustering adaptivity feature, jumpr (cµ),
most likely demand a greater refinement. In this sense, a magnitude associated to each target cluster, ssplit,
can be conveniently defined as ssplit = max(jumpr (cµ)) − γratio, ssplit ∈ [0, 1 − γratio], where max(jumpr (cµ)) is
the maximum jump associated with each target cluster and stored during the CRVE scanning procedure (see
Section 2.3.1). This data may be used in three different adaptivity procedures:

⋄ Enforcement of the number of clusters. When no metric is employed to distinguish the different target
clusters, the threshold number of clusters can only be evaluated after the clustering adaptivity step (see
Section 2.2). This means that the total number of clusters may largely exceed the prescribed threshold,
given that all target clusters are split. By sorting the target clusters in descending order of magnitude,
ssplit, the remaining target clusters can be discarded as soon as the total number of clusters surpasses the
prescribed threshold. The deviation of the total number of clusters relative to the prescribed threshold is
at most nmax

c,child − 1 in this case;
⋄ Dynamic split factor magnitude function. An additional user-defined parameter called adaptivity split

factor amplitude, γ∆
split, may be set around the prescribed adaptivity split factor, γ

p
split (see Fig. 5). The

range of the adaptivity split factor is then characterized by a lower bound, γ −

split = γ
p

split −0.5 γ∆
split, and an

upper bound, γ +

split = γ
p

split + 0.5 γ∆
split. The suitable number of child clusters associated with each target

cluster may then be set as

γsplit = γ −

split + gsplit(ssplit) γ∆
split , (10)

where gsplit = gsplit(ssplit) can be any monotonically increasing scalar function that satisfies the boundary
conditions gsplit(0) = 0 and gsplit(1 − γratio) = 1. This means that a target cluster that has been marked
with the minimum possible magnitude (ssplit = 0) is adapted with γsplit = γ −

split, whereas target clusters
with ssplit > 0 are adapted with a γsplit proportional to the associated ssplit. Here a general power function
is proposed as

γsplit = (1 − γratio)−nsn
split , (11)

where n ∈ [0, +∞] (see Fig. 8). A value of n = 1.0 can be set by default, which means that the number
of child clusters increases linearly with the magnitude. A value of n > 1.0 can be set to decrease the
split factor sensitivity, i.e., to promote an increasing number of clusters in the higher magnitude range.
In contrast, n < 1.0 can be set to increase the split factor sensitivity and have an increased number of
clusters from the low magnitude range;

⋄ Lower-valued cluster split factor. By default, it has been assumed that both target clusters associated to
a given spatial discontinuity, cluster(Y i, j ) and cluster(Y i+1, j ), are evaluated in a similar way concerning
the discontinuity magnitude. However, it may be of interest to differentiate the number of child clusters
between the lower and higher-valued cluster, namely decreasing the number of clusters created in the
lower-valued side of the jump. To achieve this behavior, the magnitude associated to the lower-valued
cluster, s low

split, can be defined as s low
split = θ ssplit, where θ ∈ [0, 1] sets the desired differentiation.

2.5. Summary of hyperparameters

Numerical methods can include hyperparameters (or user-defined parameters) that are (i) difficult to interpret,
(ii) cumbersome to calibrate properly, and (iii) significantly impact the results when slightly changed. The
hyperparameters introduced here for ACROMs (see summary in Table 1) do not exhibit these issues, as shown in
the following section. Some numerical experience shows that the role of each parameter can be easily understood

and that results exhibit a lower parameter sensitivity as long as the proper strategy is adopted.

11
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Fig. 8. Proposed dynamic adaptivity split factor magnitude function. Three behaviors are available: (1) n = 1.0 means that the number of
hild clusters increases linearly with the magnitude associated with the parent cluster, (2) n → +∞ promotes an increasing number of child
lusters in the high magnitude range (low sensitivity) and (3) n → 0 raises an increasing number of child clusters from the low magnitude
ange (high sensitivity).

Fig. 9. Logo of CRATE (Clustering-based Nonlinear Analyses of Materials).

Table 1
Essential hyperparameters of the ACROM framework. Insertion: target clusters selection criterion (Block A) and
adaptive cluster analysis (Block B).

Parameter Notation Insertion Meaning

Adaptivity
frequency

∆madapt
Adaptivity
conditions

Controls when adaptivity procedures take
place relative to loading increments

Adaptivity
trigger ratio

γratio
Block A

Sets the sensitivity of the selection criterion
(e.g., significant field discontinuity)

Maximum
adaptive level

λmax
Limits the cluster level of refinement
relative to base clustering

Maximum number
of child clusters

nmax
c,child

Block B

Sets the maximum allowed number of child
clusters created from each target cluster

Adaptivity split
factor

γsplit
Controls the number of child clusters
created from each target cluster(a)

Adaptivity split
factor amplitude

γ∆
split

Controls the variation of the number of child
clusters created from each target cluster(b)

(a)Set as γsplit = 1.0 if using a static adaptivity split factor, i.e., nc,child = max(2, nint( nmax
c,child)).

(b)Only required if using a dynamic adaptivity split factor.

3. Numerical results and discussion

Numerical simulations are performed with CRATE (Clustering-based Nonlinear Analyses of Materials), an
object-oriented Python program that performs multi-scale nonlinear analyses through clustering-based reduced order
models. This program has been fully designed and coded by Bernardo P. Ferreira, and its initial version will soon
be released. A thorough description of this program’s object-oriented design and application will also be published
so that it can be easily exploited and extended by the interested research community (see Fig. 9).

Unless otherwise stated, all the numerical simulations presented in this section are run with 1 CPU core in a

personal computer with the following specifications: CPU Intel Core i7-6800 K (3.40 GHz × 6 cores/12 threads,

12
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Fig. 10. 2D RVE of biphasic material characterized by randomly distributed circular particles ( f = 30%) embedded in a matrix ( f = 70%),
and three SVEs representing different particle spatial arrangements found in the biphasic material RVE.

Table 2
Constitutive model and properties of particle–matrix composite’s material phases. Notation: Young’s Modulus
(E), Poisson’s ratio (ν), Yield stress (σy ) and accumulated plastic strain (ε̄ p).

Phase Model E(MPa) ν σy (MPa)

Matrix von Mises (isotropic) 100 0.3 σy = 0.5 + 0.2(ε̄ p)0.4

Particles Elastic (isotropic) 1 0.19 –

Broadwell), RAM 32 GB (4 × 8GB) DDR4 @ 2400MHz. Nonetheless, some third-party (low-level) packages may
erform multi-processor computations at certain operations.

.1. Particle–matrix composite

In order to follow the numerical examples of the original SCA paper [7], a biphasic material characterized by
andomly distributed circular particles ( f = 30%) embedded in a matrix ( f = 70%) is here considered (see Fig. 10).
he matrix material phase constitutive behavior is assumed isotropic and elasto-plastic, governed by a standard von
ises associative flow rule with isotropic strain hardening, while the particle material phase is assumed isotropic and

lastic. However, in contrast with the SCA paper [7], particles are assumed soft to promote localized shear yielding
nd failure in the matrix. The material phase’s properties are summarized in Table 2. In addition, a simplified ductile
racture criterion is formulated according to which fracture occurs when 0.5% of the matrix material phase surpasses
n accumulated plastic strain of 0.125 (see Fig. 11). Under uniaxial tension, the composite’s toughness is computed
s the integral of the composite stress–strain curve before fracture prediction. It is remarked that such a simple
racture criterion does not affect the constitutive behavior of the material and is only employed here to compare the
ailure prediction between different solution methods.

The following examples focus on two-dimensional cases under infinitesimal strains. Problems involving more
omplex loading paths and material constitutive behavior are left for future work, as discussed in Section 4. The RVE
f the particle–matrix composite is shown in Fig. 10, together with three statistical volume elements (SVEs) that
esemble different particles’ spatial arrangements found in the actual RVE. Three different macroscale strain-driven
oadings are considered in the following sections (see Fig. 12),

• uniaxial tension: [εxx , εyy, εxy] = [5.0, 0.0, 0.0] × 10−2;
• pure shear: [εxx , εyy, εxy] = [0.0, 0.0, 5.0] × 10−2;
• combined uniaxial tension–shear: [εxx , εyy, εxy] = [0.0, 5.0, 5.0] × 10−2;

eing all prescribed in a total of 200 increments of equal magnitude.
13
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Fig. 11. Simplified fracture criterion assumed for the particle–matrix composite under uniaxial tension loading: fracture occurs when 0.5%
of the matrix material phase surpasses an accumulated plastic strain of ε̄ p

= 0.125. On the left, the accumulated plastic strain field at
fracture was predicted with the DNS solution. On the right, a schematic illustration of the fracture propagation and failure of the material’s
load-bearing capacity.

Fig. 12. Uniaxial tension, pure shear and combined uniaxial tension–shear macroscale strain loading conditions.

emark 3. The authors’ are aware that performing a first-order homogenization and assuming microscale periodic
oundary conditions in the presence of localized phenomena is not accurate from a physical point of view. Although
uch a topic has received a lot of attention in recent years, such considerations can be disregarded in this paper,
here the DNS is assumed to deliver the ‘high-fidelity’ (reference) solution to evaluate the CROMs numerical

ccuracy.

.2. Solution methods and error assessment

Three solution methods are considered in the numerical assessment presented in the following sections: a direct
umerical solution (DNS), here adopted as the reference (or ‘high-fidelity’) solution, an SCA solution following
he original paper [7], and the Adaptive Self-Consistent Clustering Analysis (ASCA) proposed herein.

The DNS solution is obtained with an FEM first-order hierarchical multi-scale model based on computational
omogenization. This solution is carried out with LINKS (Large Strain Implicit Non-linear Analysis of Solids
inking Scales), an implicit multi-scale finite element Fortran code developed by the CM2S research group at

he Faculty of Engineering of the University of Porto3. LINKS is also employed to perform the linear elastic
NS simulations required in the offline-stage of both SCA and ASCA (see Appendix C for finite element mesh

3 Bernardo P. Ferreira is an active member of the CM2S research group, led by F.M. Andrade Pires, and one of the developers of LINKS.
This motivated the choice of FEM as the DNS solution, as opposed to the choice of an external FFT-based homogenization solver. Despite
the different fundamental basis of the solution, some preliminary studies showed a good agreement between both approaches under elasticity
and elastoplasticity for a sufficiently refined mesh.
14
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compatibility and element averaging procedures). Both SCA and ASCA solutions are obtained with CRATE as
previously described. Periodic boundary conditions are assumed and a refined spatial discretization of nv =

400 × 400 voxels is considered for all numerical examples. Without loss of generality, only the matrix material
phase is subject to clustering adaptivity in the ASCA solution. The base clustering of both material phases is
performed with the well-known K -Means clustering (standard Lloyds’ algorithm) with 10 centroid initializations
omputed with K -Means++. In turn, the adaptive cluster analysis of the matrix material phase relies on the Mini-
atch K -Means with the same 10 centroid initializations computed with K -Means++. Both of these algorithms

implementations are readily available from Scikit-learn, a Python module integrating a wide range of state-of-the-art
machine-learning algorithms for medium-scale supervised and unsupervised problems [45].

Concerning the error assessment, two different metrics are adopted. On the one hand, the relative error, ϵr , is
employed to compare the macroscale homogenized response and toughness, being always defined as

ϵr (%) =

⏐⏐⏐⏐aCROM − aDNS

aDNS

⏐⏐⏐⏐× 100 , (12)

here a denotes the scalar quantity of interest. On the other hand, the root-mean-square error (RMSE) is employed
o compare the microscale field solutions (see Appendix C), being defined as

RMSE (aµ) =

√ 1
nv

nv∑
i=1

(
aµ,CROM − aµ,DNS

)2
i , (13)

where aµ denotes any microscale scalar quantity. Note that the RMSE has the units of the actual quantity being
evaluated. Two microscale local scalar quantities are evaluated in the following analyses: (1) the accumulated plastic
strain, ε̄ p, a state variable of the von Mises constitutive model governing the behavior of the matrix material phase;
and (2) the accumulated plastic strain energy density defined as U p

dens =
∫
∆σ dε p. Both quantities are intrinsically

ssociated with the highly localized plastic yielding of the composite as well as with the adopted fracture criterion.

.3. Benchmark analysis

The benchmarks presented in Fig. 10 promote simple plastic strain localization patterns under uniaxial tension
hat can be easily visualized. Despite this simplicity, accurately capturing such localized phenomena already poses
mportant challenges to standard CROMs. For these reasons, they are selected as the first illustration of the ASCA
pplication and performance without introducing additional complexities.

As shown in Fig. 13, benchmark 1 promotes a single plastic strain localized band between both particles under
niaxial tension. The first important task consists in identifying, as well as possible, what are the main evolution
teps of the field of interest. The evolution of the accumulated plastic strain field in this benchmark has essentially
wo main steps: (1) the initial plastic yielding of the matrix at the particle–matrix interface (transverse plane relative
o loading direction), and (2) the propagation of plastic yielding that leads to the band connecting both particles.
n accordance, it is expected that the ‘optimal’ clustering should exhibit a more refined domain decomposition on
hese regions to accurately capture the material response.

The second task consists in choosing a suitable number of initial clusters. Such choice is by no means unique
nd should ensure a minimal accuracy upon which the adaptivity can be properly developed. As a rule of thumb, the
ase clustering should at the very least capture the main regions where the field of interest shows some significant
volution. In this benchmark, the minimal number of clusters has been set to nc = 65 (60 clusters in the matrix
CRMP and 5 clusters in the particles SCRMP). From Fig. 13, it can be verified that the SCA solution with nc = 65
an capture the main regions of plastic strain but in a rather diffuse manner.

Last but not least, it remains to define how should the ASCA be effectively employed and set the associated
arameters accordingly. In the first place, the clustering adaptivity feature for the matrix ACRMP is set as the
ccumulated plastic strain, cµ( y) = ε̄ p. At this point, the clustering adaptivity strategy must be defined based
n the available knowledge about the problem physics, namely the main evolution steps already described. Here,
lustering adaptivity should follow the plastic strain field front propagation, a similar strategy to that commonly
sed in phase-field methodologies. It is assumed that a 10% normalized accumulated plastic strain discontinuity is
ignificant by setting γratio = 0.1 and the number of child clusters is simply set constant and equal to nc,child = 2
f = 0.5, γ = 1.0). Clustering adaptivity procedures should be activated as soon as the matrix begins to
c,child split
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Fig. 13. Comparison of the clustering-based domain decomposition and local accumulated plastic strain field at the end of the deformation
ath of Benchmark 1 under uniaxial tension. Colors displayed in the clustering row are associated with different material clusters within
ach CRVE.

ield plastically and the clustering adaptivity frequency is set to ∆madapt = 15 so that adaptivity steps may efficiently
accompany the plastic strain field front propagation.

Besides the DNS solution, three different SCA solutions are selected to provide insightful comparisons: a ‘coarse’
solution with nc = 65, a ‘medium’ solution with nc = 185 and a ‘fine’ solution4 with nc = 305. To focus the
ttention on the matrix material phase and perform a fair comparison between the different solution methods, the
umber of clusters of the particles SCRMP is always set to 5 (approximately proportional to the particles volume
raction in the SCA ‘coarse’ solution). To evaluate the performance of the ASCA solution, the initial number of
lusters is also set to nc = 65, similar to the SCA ‘coarse’ solution, and the threshold number of clusters is set
o nc = 185, similar to the SCA ‘medium’ solution. The maximum allowed adaptivity level is set as λmax = 2,

i.e., each cluster can only be subject to a maximum of two adaptive cluster analyses. This limit is important to
avoid exhausting the available number of clusters before all the critical domain regions are properly refined.

Remark 4.
To focus the attention on the matrix material phase and perform a fair comparison between the different solution

methods, the number of clusters of the particles SCRMP is always set to 5, approximately proportional to the
particles volume fraction in the SCA ‘coarse’ solution. This means that the actual accuracy of the remaining solutions
with respect to the DNS solution would be increased by considering the particles number of clusters proportional
to their volume fraction. A similar comparison is performed in the following analyses of the particle–matrix RVE.

The comparison between the macroscale homogenized response predicted by the different solution methods is
shown in Fig. 14. The clustering has been dynamically adapted throughout the ASCA solution procedure, where the
number of clusters has increased from nc = 65 to nc = 190 (see Fig. 16(a)). A total of 5 clustering adaptivity steps
have been performed (signaled by the diamond-shaped markers), two of them in the yielding region (particle–matrix
interface) and the remaining on the post-yielding region (plastic band). It is possible to see that ASCA solution’s
accuracy outperforms the SCA ‘medium’ solution with a similar number of clusters as well as the SCA ‘fine’
solution with nc = 305, exhibiting an overall relative error below 4%. The ASCA solution departs from the SCA
‘coarse’ solution with nc = 65 occurring in the yielding region soon after the first clustering adaptivity step, hence

ighlighting the importance of such procedure to accurately capture the initial yielding of the matrix material phase.
n addition, ASCA is able to predict the material fracture (signaled by the star-shaped marker) and toughness with
ignificantly greater accuracy (see Table 3).

4 The number of clusters of the SCA ‘fine’ solution has been selected so that the relative error of the macroscale homogenized response
is below 5% with respect to the FEM DNS solution.
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Fig. 14. Comparison of the macroscale homogenized response of Benchmark 1 predicted by different solution methods under uniaxial tension:
a) Homogenized stress; (b) Relative error with respect to the FEM DNS solution. Symbology: clustering adaptivity step (♦), fracture criterion
rediction (⋆).

Table 3
Ductile failure and associated toughness of Benchmark 1, predicted by the different solution
methods under uniaxial tension. Failure assumed when 0.5% of the matrix phase surpasses an
accumulated plastic strain of 0.125. Number of clusters: (c) nc = 65 (coarse), (m) nc = 185
(medium), (f) nc = 305 (fine) and (*) nc = 65 → 190.

Method Failure Toughness

εxx σxx (MPa) J (mJ/mm3) ϵ(%)

DNS 2.00 × 10−2 7.40 × 10−1 1.06 × 10−2 –
SCA(c) 2.58 × 10−2 8.58 × 10−1 1.59 × 10−2 50.00
SCA(m) 4.48 × 10−2 8.15 × 10−1 1.44 × 10−2 35.85
SCA(f) 2.40 × 10−2 8.02 × 10−1 1.37 × 10−2 29.25
ASCA(∗) 2.35 × 10−2 7.94 × 10−1 1.30 × 10−2 22.64

The numerical assessment proceeds with the comparison between the microscale solution fields, as shown by
he RMSE of the local accumulated plastic strain and accumulated plastic strain energy density fields in Fig. 15.
ote that such error metric accounts for the errors stemming from the whole domain, hence the improvement from

he SCA solution with nc = 65 is delayed in comparison with macroscale homogenized response. Nonetheless,
he ASCA solution’s accuracy surpasses the SCA ‘medium’ solution with a similar number of clusters and even
eaches the SCA ‘fine’ solution with nc = 305. These and the macroscale homogenized results can be further
omprehended by analyzing the clustering and local accumulated plastic strain field at the end of the deformation
ath (see Fig. 13). While the SCA ‘fine’ solution with nc = 305 scatters the clusters over the whole domain, the
SCA solution places the majority of clusters where they are most needed. As the magnitude of the plastic strain

ocalization increases, the improved accuracy of the ASCA on these regions dominates over the less significant
rrors in the remaining domain, in accordance with Fig. 15.

Nevertheless, ASCA’s improved accuracy involves some computational cost due to the adaptivity procedure that
ries to compensate for the evaluation of more clusters when adaptivity is not present. Therefore, the partial and
otal computational times of the different solution methods are presented in Table 4 (see Fig. B.33 for a description
f each step). In the first place, the DNS solution computational time is approximately one order of magnitude
reater than the most expensive SCA solution with nc = 305. Second, the total time of the ASCA solution is faster
han the SCA ‘medium’ solution with a similar number of clusters.
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Fig. 15. Root-mean-square error (RMSE) of Benchmark 1 microscale fields solutions relative to the FEM DNS solution under uniaxial
tension: (a) Local accumulated plastic strain field; (b) Local accumulated plastic strain energy density field. Symbology: clustering adaptivity
step (♦).

Table 4
Partial and total computational times (s) of the different solution methods associated to Benchmark 1 under
uniaxial tension. Number of clusters: (c) nc = 65 (coarse), (m) nc = 185 (medium), (f) nc = 305 (fine) and
(*) nc = 65 → 190. Offline-stage: linear elastic DNS simulations (step 1), base cluster analysis (step 2) and
computation of cluster-interaction tensors (step 3).

Method Computational time (s)

Offline Offline Offline Online Online Total
(step 1) (step 2) (step 3) (solution) (adapt.)

DNS – – – 23800 – 23800
SCA(c) 219 22 52 132 – 425
SCA(m) 219 108 399 1350 – 2080
SCA(f) 219 154 1100 2460 – 3930
ASCA(∗) 219 22 52 324 637 1010

Analyzing the partial computational times is useful to understand the differences between SCA and ASCA. The
omputational time associated with the DNS linear elastic analyses (step 1 of the offline-stage) is independent of
he number of clusters, hence similar among the different solutions. The computational cost of the base cluster
nalysis (step 2 of the offline-stage) scales with the number of clusters. Given that ASCA starts with an initial
umber of clusters nc = 65, this step is faster than both SCA solutions with a higher number of clusters. The
ame applies to the computation of the cluster interaction tensors (step 3 of the offline-stage), the most expensive
tep of the offline-stage. It is thus clear that ASCA results in significant savings associated with the offline-stage
verhead costs. Concerning the actual solution procedure of the online-stage, ASCA is much faster than the SCA
ith a similar number of clusters. This results from the fact that approximately one-fourth of the deformation path

s solved with nc < 185 (see Fig. 16). Finally, there is a computational cost associated with all clustering adaptivity
rocedures exclusive to the ASCA solution. It is noticeable that this cost is relatively high when compared with
he actual online solution procedure. Fig. 16(b) shows that the update of the cluster interaction tensors (Block C)
ominates the computational cost of the clustering adaptivity after the first clustering adaptivity step is performed.

emark 5. Despite promoting different plastic strain localization patterns, the same clustering adaptivity strategy
as been successfully employed to solve benchmarks 2 and 3 (see Fig. 10). Given that similar conclusions have

een obtained, the corresponding results and discussion are omitted to avoid extending this article.
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Fig. 16. Evolution of clustering adaptivity related metrics in Benchmark 1 under uniaxial tension: (a) Number of clusters; (b) Relative time
f each block of the clustering adaptivity step with respect to the total time spent in clustering adaptivity procedures.

.4. Particle–matrix RVE analysis under uniaxial tension

The analysis of the particle–matrix RVE is more complex than the previously described benchmarks. Fig. 11
hows numerous plastic strain localized bands developed between particles throughout the deformation path under
niaxial tension. It is possible to conclude that the composite fracture results from two prominent plastic bands
hose propagation occurs transversally to the loading direction. It is thus understandable that the clustering

daptivity strategy employed in the previous section may not be the most suitable choice to tackle this problem.
oreover, some of the additional adaptivity procedures proposed in Section 2.4 can be explored here as well as the

daptive clustering solution rewinding procedure described in Section 2.3.4.
The identification of the accumulated plastic strain field’s main evolution steps is not straightforward as in the

enchmark cases. At most, it can be a priori expected that the composite macroscale yielding and posterior fracture
s dictated by one or more continuous bands where plastic strain localizes with a higher magnitude. The ‘optimal’
lustering should thus prioritize the refinement of the primary plastic bands but cannot disregard the development
f secondary localized phenomena with lower magnitude.

The initial number of clusters is set to nc = 100 (70 clusters in the matrix ACRMP and 30 clusters in the particles
CRMP). Fig. 17 shows that the corresponding SCA solution satisfies a minimal required accuracy despite failing

o capture several secondary plastic bands.
The clustering adaptivity feature for the matrix ACRMP is again set as the accumulated plastic strain, cµ( y) = ε̄ p.

iven that several plastic strain localized bands are not developed at the same time and/or rate, attempting to follow
ll plastic strain fronts efficiently is cumbersome. Instead, the strategy adopted here is to perform a single clustering
daptivity step right after the yielding region (ε̄ p

= 0.05), i.e., once the primary plastic bands have developed as well
s some of the secondary ones. In order to do so, it is assumed that a 5% normalized accumulated plastic strain
iscontinuity is significant by setting γratio = 0.05. In addition, the number of child clusters is set dynamically
s nc,child ∈ [3, 8] ( fc,child = 0.125, γsplit = 0.7, γ∆

split = 0.6) and assuming the default linear magnitude function
(n = 1.0). In this way, the regions associated with the primary plastic bands (higher discontinuities) are refined with
a greater number of clusters without wasting too many clusters in the secondary plastic bands (lower discontinuities).
For the same reason, s low

split = 0.0 (θ = 0.0) so that the matrix lower-valued clusters surrounding all plastic bands do
not exhaust the available number of clusters.

Remark 6. Although the refined clustering of the primary plastic bands is crucial to accurately predict the material’s
structural degradation and fracture, the suitable refinement of the surrounding matrix clustering plays an important
role in the macroscale homogenized response.
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Fig. 17. Comparison of the clustering-based domain decomposition and local accumulated plastic strain field at the end of the deformation
ath of the particle–matrix composite 2D RVE under uniaxial tension. Colors displayed in the clustering row are associated with different
aterial clusters within each CRVE. Symbology: solution rewinding (⟲).

Besides the DNS solution, three different SCA solutions are again selected for comparison following the same
easoning: a ‘coarse’ solution with nc = 100, a ‘medium’ solution with nc = 200 and a ‘fine’ solution with
c = 300. The number of clusters of the particles SCRMP,5 is always set to 30. To evaluate the performance of

he ASCA solution, the initial number of clusters is set to nc = 100, the threshold number of clusters is set to
c = 200 and the maximum allowed adaptivity level is kept as γmax = 2. Moreover, following the discussion

n Section 2.3.4 two ASCA solutions are evaluated: one where the ASCA solution proceeds after the clustering
daptivity step is performed, and the other where the ASCA solution is rewound back to the beginning of the
eformation path after the clustering adaptivity step. The following results demonstrate that solving the yielding
egion with a proper clustering refinement and overwriting the less accurate state variable history is fundamental
o the solution’s accuracy.6 This approach can then be characterized by two steps: (1) a first fast step where a
oarse clustering is solved up to the point where a proper clustering adaptivity has been performed and (2) a
econd step where the deformation path and material state history is partially or totally solved with adequate domain
ecomposition. Unless otherwise stated, the ASCA solution with rewinding is evaluated in the following discussion.

The comparison between the macroscale homogenized response predicted by the different solution methods
s shown in Fig. 18. The clustering has been dynamically adapted from nc = 100 to nc = 202 in a single
lustering adaptivity step (signaled by the diamond-shaped marker) right after the yielding region (see Fig. 20). It is
ossible to see that the ASCA solution’s accuracy outperforms the SCA solution with a similar number of clusters,
amely in the yielding region where the departure between both solutions occurs. The outcome of a clustering
daptivity step performed right after the yielding region is even more highlighted in comparison with the SCA
fine’ solution with nc = 300. The ASCA solution has greater accuracy in the yielding and early post-yielding
egion, after which the SCA ‘fine’ solution catches up due to a more refined clustering dispersed over the whole
atrix material phase. A similar comparison results from the prediction of the material fracture (signaled by the

tar-shaped marker) and toughness (see Table 5). ASCA prediction’s accuracy is almost equal to the SCA’s ‘fine’
olution, while significantly better than the SCA ‘medium’ solution with a similar number of clusters. Despite
he reasonable fracture and toughness predictions of the ASCA solution without rewinding, the accuracy of the

acroscale homogenized response is severely affected and significantly worse than SCA ‘medium’ solution with a
imilar number of clusters.

5 It is emphasized that if the number of clusters of the particles’ SCRMP is increased proportionally to the corresponding volume fraction,
then the approximation of the SCA and ASCA solutions towards the DNS is significantly improved.

6 Despite improved results obtained in Benchmark 1, suitable use of the adaptive clustering solution rewinding may play a major role in
the improvement of the ASCA solution’s accuracy.
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Fig. 18. Comparison of the macroscale homogenized response of the particle–matrix composite 2D RVE predicted by different solution
ethods under uniaxial tension: (a) Homogenized stress; (b) Relative error with respect to the FEM DNS solution. Symbology: clustering

daptivity step (♦), fracture criterion prediction (⋆), solution rewinding (⟲).

Table 5
Ductile failure and associated toughness of the particle–matrix composite 2D RVE predicted by
the different solution methods under uniaxial tension. Failure assumed when 0.5% of the matrix
phase surpasses an accumulated plastic strain of 0.125. Number of clusters: (c) nc = 100 (coarse),
(m) nc = 200 (medium), (f) nc = 300 (fine), (*) nc = 100 → 202 and (⟲) nc = 100 → 202 (with
rewinding).

Method Failure Toughness

εxx σxx (MPa) J (mJ/mm3) ϵ(%)

DNS 1.68 × 10−2 3.16 × 10−1 3.70 × 10−3 –
SCA(c) 2.23 × 10−2 3.68 × 10−1 6.10 × 10−3 64.86
SCA(m) 2.10 × 10−2 3.62 × 10−1 5.65 × 10−3 52.70
SCA(f) 1.75 × 10−2 3.42 × 10−1 4.39 × 10−3 18.64
ASCA(∗) 2.03 × 10−2 3.61 × 10−1 5.39 × 10−3 45.68
ASCA(⟲) 1.85 × 10−2 3.48 × 10−1 4.70 × 10−3 27.03

The RMSE of the local accumulated plastic strain and accumulated plastic strain energy density fields is shown in
ig. 19. The ASCA solution’s accuracy surpasses the SCA ‘medium’ solution with a similar number of clusters and
losely follows the SCA ‘fine’ solution in the yielding and early post-yielding regions. These results follow the same
easoning of the macroscale homogenized response and are complemented by the clustering and local accumulated
lastic strain field at the end of the deformation path (see Fig. 17). It is important to highlight the contrast between
he ASCA solution with and without performing the rewinding procedure. While the former departs from the SCA
coarse’ solution after the clustering adaptivity step, the latter departs from the beginning and improves the solution’s
ccuracy throughout the whole deformation path.

The partial and total computational times of the different methods are presented in Table 6. In the first place,
he ASCA solution is much faster than the DNS solution concerning the total computational time, faster than the
CA ‘fine’ solution with nc = 300 and slightly slower than the SCA ‘medium’ solution with the same number of

clusters. The later comparison results from the balance between different costs: (i) ASCA base cluster analysis is
faster due to the lower number of initial clusters; (ii) the computation of ASCA base clustering cluster interaction
tensors is much faster for the same reason; (iii) ASCA must re-solve the macroscale loading increments prior to
the solution rewinding; (iv) ASCA must spend additional computational time associated to the clustering adaptivity
procedures. Hence, by rewinding the solution back to the beginning of the deformation path, the ASCA solution
21
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Fig. 19. Root-mean-square error (RMSE) of the particle–matrix composite 2D RVE microscale fields solutions relative to the FEM DNS
olution under uniaxial tension: (a) Local accumulated plastic strain field; (b) Local accumulated plastic strain energy density field. Symbology:
lustering adaptivity step (♦), solution rewinding (⟲).

Table 6
Partial and total computational times (s) of the different solution methods associated to the particle–matrix 2D
RVE under uniaxial tension. Number of clusters: (c) nc = 100 (coarse), (m) nc = 200 (medium), (f) nc = 300
(fine), (*) nc = 100 → 202 and (⟲) nc = 100 → 202 (with rewinding). Offline-stage: linear elastic DNS
solutions (step 1), base cluster analysis (step 2) and computation of cluster-interaction tensors (step 3).

Method Computational time (s)

Offline Offline Offline Online Online Total
(step 1) (step 2) (step 3) (solution) (adapt.)

DNS – – – 30800 – 30800
SCA(c) 219 34 115 184 – 552
SCA(m) 219 145 438 397 – 1200
SCA(f) 219 216 696 638 – 2040
ASCA(∗) 219 34 115 367 432 1170
ASCA(⟲) 219 34 115 475 432 1280

not only loses the benefit of partially solving the deformation path with a lower number of clusters but also needs
to re-solve the overwritten loading increments. This is a clear trade-off between accuracy and efficiency, which is
perfectly reasonable in this particular problem. In addition, concerning the memory consumption of the rewinding
procedure, the rewind state storage required 12.7kB for data about the applied loading and 11.2kB for data about
the material constitutive state (cluster state variables). This short memory consumption results from not needing to
store any voxel-based data (i.e., regular grid sized arrays). At last, Fig. 20(b) shows once again that the update of
the cluster interaction tensors (Block C) dominates the computational cost of the clustering adaptivity.

3.5. Particle–matrix RVE analysis under different loadings

When subjected to different loading conditions, namely pure shear and a combined uniaxial tension–shear
oadings (see Fig. 12), it is possible to see that the distinction between primary and secondary plastic localization
ands is not as clear as in the uniaxial tension case (see Figs. 21 and 22). In order to demonstrate the robustness of
he proposed clustering adaptivity approach, it is instructive to evaluate its response by adopting the same strategy

escribed in Section 3.4 (uniaxial tension loading) and keeping exactly the same set of hyperparameters. Following
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Fig. 20. Clustering adaptivity of particle–matrix composite 2D RVE (without rewinding) under uniaxial tension: (a) Evolution of the number
of clusters; (b) Evolution of the cluster adaptivity framework’s blocks computation time relative to the total adaptivity computation time up
to a given increment.

Fig. 21. Comparison of the clustering-based domain decomposition and local accumulated plastic strain field at the end of the deformation
ath of the particle–matrix composite 2D RVE under pure shear loading. Colors displayed in the clustering row are associated with different
aterial clusters within each CRVE. Symbology: solution rewinding (⟲).

the numerical observations of the previous section, only the ASCA solution with the rewinding procedure after the
clustering adaptivity step is illustrated.

The comparison between the macroscale homogenized response7 predicted by the different solution methods is
shown in Figs. 23 and 24. In both loading cases, the clustering has been dynamically adapted from nc = 100 to
nc = 201 in a single clustering adaptivity step (signaled by the diamond-shaped marker) right after the yielding
region. The accuracy improvements stemming from the single clustering adaptivity step are as expected. Prior to
the clustering adaptivity step, the ASCA delivers the most accurate solution in the yielding region even when

7 In the combined uniaxial tension–shear loading case, the equivalent strain, εeq, and equivalent stress, σ eq, are defined as

εeq
=

√
2
3

εd : εd , σ eq
=

√
1
2

σ d : σ d ,

here ε and σ are the deviatoric components of the infinitesimal strain tensor and Cauchy stress tensor, respectively.
d d
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Fig. 22. Comparison of the clustering-based domain decomposition and local accumulated plastic strain field at the end of the deformation
ath of the particle–matrix composite 2D RVE under combined uniaxial tension–shear loading. Colors displayed in the clustering row are
ssociated with different material clusters within each CRVE. Symbology: solution rewinding (⟲).

compared with the SCA ‘fine’ solution with nc = 300. This suggests that the clustering adaptivity step performs
uitable refinements in the regions of interest, namely in the regions where the most severe plastic localization took
lace at that stage of the deformation path. Then, as several new plastic yielding bands are developed, the ASCA
olution without any further adaptivity steps tends to approximate the solution delivered by the SCA with a similar
nitial number of clusters. As a consequence of the adopted clustering adaptivity strategy, all the ‘available’ clusters
ave been deployed to capture the plastic localization in the yielding region. The remaining loading path lacks the
equired adaptivity. Regarding the fracture criterion, both SCA ‘coarse’ and ‘medium’ solutions, with nc = 100
nd nc = 200 respectively, fail to predict the material fracture under a pure shear loading. In contrast, the ASCA
olution predicts fracture (signaled by the star-shaped marker) with greater accuracy than the SCA ‘fine’ solution
ith nc = 300. Under the combined uniaxial tension–shear loading, the ASCA delivers the most accurate fracture
rediction as well.

The RMSE of the local accumulated plastic strain and accumulated plastic strain energy density fields is shown in
igs. 25 and 26, with similar results obtained for both loading conditions. Concerning the local accumulated plastic
train, the ASCA solution’s accuracy surpasses the SCA ‘medium’ solution with a similar number of clusters except
n the final stage of the deformation path. In terms of the local accumulated plastic strain energy density, the ASCA
olution closely follows the SCA ‘fine’ solution with nc = 300.

For the sake of completeness, the partial and total computational times of the different methods are presented in
ables 7 and 8, respectively, being similar to the uniaxial tension loading case (see Table 6).

emark 7. The results obtained for the composite RVE subjected to different loading conditions considering the
ame hyperparameters, reinforce the robustness of the ASCA and the improved accuracy without significant changes
n the efficiency of the SCA method for a similar final number of clusters. Nevertheless, the main observations and
endencies shown in this section should hold irrespective of the problem dimension, the spatial discretization and
train formulation. Future investigations should shed additional light on the computational cost and accuracy of
SCA in more challenging scenarios.

.6. Computational cost of updating the cluster interaction matrix

The previous results show that the computation of the cluster interaction tensors (Block C) plays a major role
n the total computational cost of the clustering adaptivity procedures. In this regard, two important aspects have

een discussed in Section 2.3.3: (i) taking advantage of the cluster-symmetry property of cluster interaction tensors
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Fig. 23. Comparison of the macroscale homogenized response of the particle–matrix composite 2D RVE under pure shear loading predicted
by different solution methods: (a) Homogenized stress; (b) Relative error with respect to the FEM DNS solution. Symbology: clustering
adaptivity step (♦), fracture criterion prediction (⋆), solution rewinding (⟲).

Fig. 24. Comparison of the macroscale homogenized response of the particle–matrix composite 2D RVE under combined uniaxial tension–pure
shear loading predicted by different solution methods: (a) Homogenized stress; (b) Relative error with respect to the FEM DNS solution.
Symbology: clustering adaptivity step (♦), fracture criterion prediction (⋆), solution rewinding (⟲).

(see Eq. (9)) and (ii) update the cluster interaction matrix such that only new clusters require a full computation
of the cluster interaction tensors. It is important to emphasize that the computational cost of the cluster interaction
tensors scales with the number of problem dimensions, the total number of voxels and the number of independent
strain components. This cost is analyzed here assuming a 2D problem, a spatial discretization in a regular grid of
n = 400 × 400 voxels and an infinitesimal strain formulation with 3 independent strain components, similar to
v
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Fig. 25. Root-mean-square error (RMSE) of the particle–matrix composite 2D RVE microscale fields solutions relative to the FEM DNS
olution under pure shear loading: 25(a) Local accumulated plastic strain field; 25(b) Local accumulated plastic strain energy density field.
ymbology: clustering adaptivity step (♦), solution rewinding (⟲).

Fig. 26. Root-mean-square error (RMSE) of the particle–matrix composite 2D RVE microscale fields solutions relative to the FEM DNS
olution under combined uniaxial tension–shear loading: (a) Local accumulated plastic strain field; (b) Local accumulated plastic strain energy
ensity field. Symbology: clustering adaptivity step (♦), solution rewinding (⟲).

the problems analyzed in Section 3. Moreover, the computational speed-up is here defined as the ratio between the
computational time of the reference approach and the computational time of the proposed technique.

To illustrate the advantage of the cluster-symmetry property, the computation of all cluster interaction tensors is
performed for a different number of clusters comprised between 3 and 316. Fig. 27 compares the computational
time with and without considering the cluster-symmetry property as well as the associated speed-up. As expected,

the cluster-symmetry property accelerates the computation and the speed-up increases significantly with the number
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Table 7
Partial and total computational times (s) of the different solution methods associated to the particle–matrix 2D
RVE under pure shear loading. Number of clusters: (c) nc = 100 (coarse), (m) nc = 200 (medium), (f) nc = 300
(fine) and (⟲) nc = 100 → 201 (with rewinding). Offline-stage: linear elastic DNS solutions (step 1), base
cluster analysis (step 2) and computation of cluster-interaction tensors (step 3).

Method Computational time (s)

Offline Offline Offline Online Online Total
(step 1) (step 2) (step 3) (solution) (adapt.)

DNS – – – 33280 – 33280
SCA(c) 219 34 115 187 – 555
SCA(m) 219 145 438 435 – 1237
SCA(f) 219 216 696 689 – 1820
ASCA(⟲) 219 34 115 490 398 1256

Table 8
Partial and total computational times (s) of the different solution methods associated to the particle–matrix 2D
RVE under combined uniaxial tension–pure shear loading. Number of clusters: (c) nc = 100 (coarse), (m)
nc = 200 (medium), (f) nc = 300 (fine) and (⟲) nc = 100 → 201 (with rewinding). Offline-stage: linear elastic
DNS solutions (step 1), base cluster analysis (step 2) and computation of cluster-interaction tensors (step 3).

Method Computational time (s)

Offline Offline Offline Online Online Total
(step 1) (step 2) (step 3) (solution) (adapt.)

DNS – – – 32475 – 32475
SCA(c) 219 34 115 216 – 584
SCA(m) 219 145 438 423 – 1225
SCA(f) 219 216 696 746 – 1877
ASCA(⟲) 219 34 115 493 396 1257

Fig. 27. Comparison between the computational cost of the cluster interaction tensors with and without taking advantage of the
luster-symmetry property. Conditions: 2D problem, nv = 400 × 400, infinitesimal strain formulation with 3 independent strain components.

f clusters. This scaling is a direct consequence of the increase in the number of cluster interaction tensors that are
btained directly through cluster-symmetry.

The analysis of the computational cost associated with the update of the cluster interaction matrix is more
ntricate. For a given clustering adaptivity step, this cost depends on the initial number of clusters, ninit, the number
c
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Fig. 28. Computational cost associated with the update of the cluster interaction matrix on a given clustering adaptivity step (α = 0.75):
a) Comparison between standard and proposed approaches; (b) Speed-up resulting from the proposed approach. Conditions: 2D problem,
v = 400 × 400, infinitesimal strain formulation with 3 independent strain components.

f unchanged clusters, nold
c , and the number of new clusters, nnew

c . Assume that nold
c and nnew

c are both defined as
unctions of ninit

c as

nold
c = nint(α ninit

c ) , (14)

nd

nnew
c = nint((1 + β) ninit

c ) − nold
c , (15)

here α ∈ [0, 1] and β ∈ [0, ∞[. From these definitions, the parameter α sets the relative amount of initial clusters
hat are kept unchanged and parameter β sets the relative increase of the number of clusters resulting from the
lustering adaptivity step. For the sake of clarity, assume that at the beginning of a clustering adaptivity step, one
as ninit

c = 10 and (α, β) = (0.5, 1.0). This means that nold
c = 5 clusters are not refined and the remaining 5 clusters

re targeted, originating nnew
c = 10 new clusters and leading to a total of 20 clusters.

To illustrate the advantage of the procedure proposed in Section 2.3.3, Fig. 28 shows the comparison of the
omputational cost associated with the update of the cluster interaction matrix on a given clustering adaptivity step.
he standard procedure involves cycling through the cluster interaction matrix rows and columns in a sorted manner,
omputing the clustering interaction tensors and taking advantage of the cluster-symmetry property whenever
ossible. It is assumed that α = 0.75, i.e., nold

c = nint(0.75 ninit
c ) are kept unchanged, and the relative increase

f the number of clusters is varied according to β ∈ [0.25, 1.0].
In the first place, it is possible to observe that the proposed strategy is more efficient than the standard approach in

he whole spectrum of the number of initial clusters, ninit
c . In the second place, it is seen that the speed-up decreases

s the number of initial clusters increases. This is expected given that the computational savings associated with the
onvolution of previously existing clusters interaction tensors become less relevant as the total number of computed
ensors increases. Finally, the speed-up also decreases as the relative number of new clusters increases and the full
omputation of the associated cluster interaction tensors becomes dominant.

At last, Fig. 29 compiles the computational cost associated with the update of the cluster interaction matrix for
init
c ∈ [6, 178], α ∈ [0, 0.75] and β ∈ [0.25, 1.0].8

As expected, the computational cost increases significantly with the increase of the number of initial clusters,
.e., the update of the cluster interaction matrix tends to become more expensive as the clustering adaptivity advances.

8 It is possible to verify that the constraint β >= 1 − α applies irrespective of the number of initial clusters.
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Fig. 29. Computational cost associated with the update of the cluster interaction matrix on a given clustering adaptivity step. Conditions:
2D problem, nv = 400 × 400, infinitesimal strain formulation with 3 independent strain components.

For a given number of initial clusters, ninit
c , and a given number of unchanged clusters (fixed α), the computational

cost increases with the number of new clusters as more cluster interaction tensors must be computed. For a given
number of initial clusters, ninit

c , and a given number of new clusters (fixed β), the computational cost increases as
the number of unchanged clusters decreases. Maximum computational cost occurs in the particular case where all
clusters are adapted (α = 0, β > 0), i.e., a whole new cluster interaction matrix must be computed.

The previous analyses evidence that the computation of the cluster interaction tensors (Block C) plays a major
role in the total computational cost of ASCA. Despite some improvements, it is clear that this challenge must
be thoroughly addressed in future work to allow a more efficient clustering adaptivity and, therefore, improve the
performance of ASCA.

4. Conclusion

Adaptivity is introduced to the recent family of CROMs with the goal of improving accuracy while keeping
computational cost low when predicting localized phenomena such as plasticity and damage. In contrast with the
static nature of most CROMs, where the clustering-based domain decomposition is solely defined by a preliminary
offline-stage, the ACROMs introduced in this article allow the clustering to evolve dynamically throughout the
actual problem solution. Without loss of generality, a particular ACROM implementation is proposed and evaluated
in this article that is coined the Adaptive Self-Consistent Clustering Analysis (ASCA). Three main blocks are
considered in these methods: (i) target clusters selection criterion (Block A), to determine what clusters need to be
refined; (ii) adaptive cluster analysis (Block B), to perform the actual clustering adaptivity; and (iii) computation of
cluster interaction tensors (Block C), required to complete the clustering characterization. Several complementary
procedures are further proposed to improve the overall performance of the adaptivity process, namely an adaptive
clustering solution rewinding procedure and a dynamic adaptivity split factor strategy.

An elasto-plastic particle–matrix composite exhibiting highly localized plasticity is numerically modeled and
a simple ductile fracture criterion is defined. Two different clustering adaptivity strategies are successfully
demonstrated and a thorough analysis shows that ASCA’s accuracy is able to outperform SCA with a similar number
of clusters concerning (i) the macroscale homogenized response, (ii) the microscale accumulated plastic strain and
accumulated plastic strain energy density fields and (iii) the composite’s fracture and toughness prediction. From
an efficiency point of view, ASCA can deliver solutions with greater accuracy than SCA with a lower or similar
computational cost.
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Given the promising results shown in this paper, the proposed framework sets the stage and opens up new avenues
o explore adaptivity in the context of CROMs. From a development standpoint, improved selection criteria shall be
esigned together with appropriate error estimators (Block A), the capabilities of different cluster analysis algorithms
ay be investigated (Block B), and additional strategies should be employed to accelerate the computation of the

luster interaction tensors (Block C) (e.g., [46]). In addition, the effectiveness of ACROMs shall be analyzed when
ealing with different scales, finite strains, complex materials in terms of topology and/or constitutive behavior
e.g., anisotropy, damage models), non-monotonic loading paths, and failure criteria. Finally, the advantage of highly
arallel computational architectures can be taken through parallelization of the material clusters state update (online-
tage) as well as parallelization of the cluster interaction tensors computation (both offline- and online-stage). Given
ts dominant computational cost in a clustering adaptivity step, the latter may significantly accelerate the clustering
daptivity process and improve the performance of the proposed framework.
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ppendix A. Overview about Adaptive Finite Element Methods (AFEMs)

Adaptive procedures have become essential in practical engineering analyses based on the Finite Element Method
e.g., [33–36]). In the context of elasto-plastic material behavior, they deal with the loss of ellipticity of the boundary
alue equilibrium problem as well as the consequent nonuniqueness of the solution [47,48]. Strain softening and
ocalization [40,49,50] are among the most relevant reasons for this harmful behavior. Localization of deformation
efers to the emergence of narrow regions or bands in a structure where all further deformation tends to concentrate,
espite the external loading following a monotonic path [51] (see Fig. A.30). Once localization occurs, large strains
ay accumulate inside the band without substantially affecting the strains in the surrounding material [39,52],

he latter usually unloading elastically and behaving in a quasi-rigid manner. The localization phenomena are thus
ssociated with displacement (e.g., sliding), strain and stress discontinuities [48]. This phenomenon is observed for a
ide range of materials, although the scale of localization, often associated with a ‘band width’, may differ by some
rders of magnitude. Given that it has a detrimental effect on the integrity of the structure, it often acts as a direct
recursor to structural failure and fracture mechanisms [51]. To avoid the spurious dependence of the solution on
he mesh refinement, the suitable handling of this phenomenon calls for a very fine mesh in the localization area that
s, in general, not known a priori [32]. Different strategies have been proposed to solve problems involving strain
ocalization, such as methods involving regularization (e.g., [51,53]), non-local formulations (e.g., [54,55]), gradient-
nhancement (e.g., [56–58]), phase-field fracture (e.g., [59–62]), concentrated discontinuities (e.g., [63,64]), the
xtended finite element method (e.g., [65–67]) and cohesive zone models (e.g., [68–71]). These and other strategies
an be effectively coupled with adaptive finite element methodologies (e.g., [39,41,51,72–76]).

As mentioned in the main text, AFEMs have three main ingredients [32]: (1) an error estimator or indicator; (2)
procedure to adapt the spatial interpolation; and (3) a remeshing criterion. The following sections elaborate on
hem.
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Fig. A.30. Schematic illustration of problems involving strain softening and localization: (a) Rigid footing placed on an elasto-plastic
mbankment; (b) Uniaxial compression of plane strain elasto-plastic specimen with two circular openings. Arrows within the material denote
a) plastic flow and (b) plastic slip.

.1. Error estimators and indicators

Both error estimators and error indicators consist of measures that may be used to assess the error9. The
istinction between the nature of these quantities is described in [47] together with a comparison of the associated
dvantages and limitations. On the one hand, error estimators approximate a measure of the actual error in a given
orm or behave as equivalent norms. On the other hand, error indicators are quantities that are chosen, in an
d hoc manner, as an indicator of the error, often based on heuristic considerations. The so-called a posteriori
rror estimators, which extract information about the error of the approximate solution without invoking the often
nknown exact solution, may be classified into two prominent families: recovery-based estimators and residual-
ased estimators. Recovery-based estimators take advantage of an improved solution by a posterior treatment of
he finite element data to estimate the error (e.g., [77–79]). In contrast, residual-based estimators make use of
he equilibrium residuals of the finite element approximation, either explicitly or implicitly. The simplest explicit
esidual-based estimators are based on the equilibrium residuals in the element interior and on the flux discontinuities
t the element boundary, the later often named jump discontinuities (e.g., [30,34,38,80]). Among all the existing
mplicit residual-based estimators, the equilibrated residual estimator (e.g., [81,82]) is the most robust. Other types
f estimators involve the analysis of constitutive functionals (e.g., [83–85]) or general error functionals derived by
uality arguments (e.g., [86–88]).

Attending to their heuristic nature, a great variety of error indicators can be found in the literature and a structured
lassification similar to the error estimators is not available. Given that the choice of these measures is closely tied
ith the precise nature of the problem, error indicators are usually quantities that are already available in the finite

lement computation. For instance, in nonlinear solid mechanics, some common choices are the equivalent plastic
train or its gradient [47]. In [40], an error indicator is proposed tailored to problems of strain localization and
ased on the variation of the solution within each element. The adaptive strategy consists of equidistributing the
ariation of the velocity field over the elements of the mesh and a heuristic justification for the use of variations as
ndicators is provided. A similar approach is proposed in [89], being the isolines of effective strain used to perform

esh adaptivity. In the context of thermodynamics with internal variables, error indicators based on a generalized
nergy norm, the plastic dissipation functional, and the rate of plastic work are explored by Perić and coworkers
e.g., [75,90]). These are found to be an appropriate choice for the adaptive solution of finite strains elasto-plastic
roblems of practical interest. In the same context, [91] propose pointwise error indicators for stresses and plastic
train increments. In order to deal effectively with material failure and the associated high gradients of the state
ariables, [92] proposes error indicators based on the rate of fracture indicators. From a geometrical point of view,
he element aspect ratio or the distortion can be used, an approach that has proven to be effective when dealing with
ocalization phenomena and discontinuities (e.g., [41,76,93]). Some methodologies are based on recognizing that
he unknown function that we are attempting to model exhibits higher gradients or curvatures in specific directions.

9 In this paper, the focus is given to the spatial discretization error associated with the computational domain decomposition. It is assumed
that the remaining sources of error (e.g., time integration, iterative solution methods) are sufficiently small and deemed secondary.
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Fig. A.31. Rigid footing placed on elasto-plastic foundation. Mesh h-refinement and elements aspect ratio based on gradient and curvature
f displacement norm.

high degree of refinement can be achieved economically in high gradient areas with elongated elements with
suitable orientation [48] (see Fig. A.31). Due to the complexities arising in the error estimation of problems

nvolving path-dependent nonlinear material behavior and, in particular, strain softening and localization, several
uthors proposed various methodologies based on error indicators (e.g., [72,75,94–96]).

.2. Procedure to adapt spatial interpolation

There are essentially two leading families of procedures to perform the adaptivity of spatial discretization in finite
lement computations: h-adaptivity and p-adaptivity. Adaptivity in h-adaptive procedures is focused on the size of

elements in the mesh, keeping the type of elements unchanged. In the regions where a more accurate solution is
needed, the element size is decreased in order to enrich the spatial interpolation (mesh refinement). Likewise, in
areas where the accuracy is exceeding the prescribed requirements, the element size may be increased to provide
maximum economy in reaching the desired accuracy (mesh de-refinement). As illustrated in Fig. A.32, this family
can be further divided into different strategies: (i) r -refinement, based on the relocation of existing nodes and keeping
the mesh connectivities constant; (ii) element subdivision, based on the division of existing elements into smaller
ones and keeping the boundaries of the original elements intact; and (iii) mesh regeneration, consisting in building
an entirely new mesh where the elements’ optimal size are specified throughout the spatial domain. In contrast,
adaptivity in p-adaptive procedures is focused on the order of the polynomial that defines each type of element,
keeping the elements’ size and boundaries unchanged. Therefore, in the regions where great accuracy is required,
the polynomial order is increased to enrich the spatial interpolation (mesh refinement). Much work has been put
forth in an efficient coupling between h- and p-adaptive approaches, the so-called hp-adaptivity, where both the
size of elements and the order of the associated polynomial are simultaneously changed (e.g., [97–102]). A fairly
complete comparison between the advantages and disadvantages of these different approaches can be found in [36].

A.3. Remeshing criterion

Finally, the remeshing criterion consists of a given strategy that, based on the error assessment, defines when,
where and how much should the spatial discretization be adapted through a given procedure. It effectively establishes
the bridge between the error estimators/indicators and the adaptive discretization procedure to complete the overall
finite element adaptive strategy. For instance, in the context of h-refinement, the remeshing criterion should provide
information about the required element size throughout the mesh to fulfill the prescribed accuracy requirements.
The criteria can be conveniently formulated through a given normalized error estimator or indicator that is compared
in some way with a user-defined threshold. Some of the most popular strategies are described in [103], namely: (i)
maximum strategy, where the error is normalized by the maximum value found in the whole mesh and elements
whose normalized error is greater than the prescribed threshold are marked for refinement; (ii) equidistribution

strategy, similar to the maximum strategy but the error is normalized by the average value over the whole mesh;
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Fig. A.32. Schematic of the different h-refinement adaptive procedures in the analysis of an elasto-plastic perforated specimen (symmetry
onditions) under uniaxial tension.

nd (iii) Dörflers’s strategy, where a group of elements holding the largest errors is marked if the group’s total
rror normalized by the total mesh error is greater than the prescribed threshold. Similar criteria to predict the best
olynomial order in the case of p-refinement are cumbersome to derive.

ppendix B. Self-consistent clustering analysis (SCA)

The Self-Consistent Clustering Analysis (SCA) method proposed by Liu and coworkers [7] can be considered the
ioneering clustering-based reduced order model (CROM) in computational solid mechanics. Given its application
n the present paper, a concise description of this method is provided here,10 following the formulation of the original
ublication [7]. A more comprehensive description can be found therein and also in [37].

Similar to most CROMs, the SCA is classified as a two-stage algorithm, meaning that it comprises an offline
raining/learning stage and an online prediction stage (see Fig. B.33). The offline stage aims to compress the high-
delity representative volume element (RVE) into a cluster-reduced RVE (CRVE). This model reduction is carried
ut by performing a clustering-based decomposition of the spatial domain into a given number of material clusters
step 2), where each cluster group points with similar mechanical behavior. In order to do so, the cluster analysis
s based on the fourth-order local elastic strain concentration tensor, H,

εe
µ(Y ) = He(Y ) : εe(X) , ∀ Y ∈ Ωµ,0 , (B.1)

hich establishes the relation between the macroscale strain tensor, εe, and the microscale strain tensor, εe
µ, at each

oint of the domain. Inspection of the previous relation in matricial form (Voigt’s notation),

εe
µ = Heεe

→

⎡⎢⎢⎢⎢⎢⎢⎣

εe
µ,11

εe
µ,22

εe
µ,33

2εe
µ,12

2εe
µ,23

2εe
µ,13

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
He

1111 He
1122 He

1133 He
1112 He

1123 He
1113

He
2211 He

2222 He
2233 He

2212 He
2223 He

2213
He

3311 He
3322 He

3333 He
3312 He

3323 He
3313

He
1211 He

1222 He
1233 He

1212 He
1223 He

1213
He

2311 He
2322 He

2333 He
2312 He

2323 He
2313

He
1311 He

1322 He
1333 He

1312 He
1323 He

1313

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
εe

11
εe

22
εe

33
2εe

12
2εe

23
2εe

13

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.2)

eveals that this tensor can be determined from the direct numerical simulation (DNS) of 6 linear elastic microscale
quilibrium problems under orthogonal loading conditions (step 1). For instance, the first column of the matrix
e is computed by imposing a macroscale strain tensor defined as εe

= [1, 0, 0, 0, 0, 0]T , the second column by

10 The nomenclature presented in Section 2.1 is adopted throughout this Appendix A.
33



B.P. Ferreira, F.M. Andrade Pires and M.A. Bessa Computer Methods in Applied Mechanics and Engineering 393 (2022) 114726

w

w
A
L

w
a

T
t
s
c
k
m
m

o
d
m

f
i
B

A

i

imposing εe
= [0, 1, 0, 0, 0, 0]T , and so on. To conclude the complete characterization of the CRVE, the so-called

cluster interaction tensors must be computed between every pair of clusters (step 3). The cluster interaction tensor
between clusters I and J is defined as

T(I )(J )
=

1
f (I )vµ

∫
Ωµ, 0

∫
Ωµ, 0

χ (I )(Y ) χ (J )(Y ′)Φ0(Y − Y ′) dv′dv , I, J = 1, 2, . . . , nc , (B.3)

here f (I ) is the volume fraction of the I th cluster,

f (I )
=

v(I )
µ

vµ

, (B.4)

and Φ0 is the Green operator associated with a fictitious elastic reference material. Each of these fourth-order
tensors has a non-local nature in the sense that it physically represents the influence of the stress in the J th cluster
on the strain in the I th cluster.

In the following online-stage, the CRVE is loaded with the macroscale strain and/or stress constraints and the
microscale equilibrium problem is formulated based on the well-known Lippmann–Schwinger equation,

εµ(Y ) = −

∫
Ωµ,0

Φ0(Y − Y ′)
(
σµ(Y ′) − De, 0

: εµ(Y ′)
)

dv′
+ ε0

µ , ∀Y ∈ Ωµ, 0 , (B.5)

here De, 0 is the elasticity tensor of the elastic reference material and ε0
µ is a homogeneous far-field strain.

fter a suitable time discretization and considering the general (pseudo-)time increment [tm, tm+1], the incremental
ippmann–Schwinger integral equilibrium equation can be averaged over each material cluster I as

∆ε
(I )
µ, m+1 = −

nc∑
J=1

T(I )(J )
:

(
∆σ̂

(J )
µ, m+1 − De, 0

: ∆ε
(J )
µ, m+1

)
+ ∆ε0

µ, m+1 , I = 1, 2, . . . , nc , (B.6)

here σ̂ denotes the incremental constitutive function, being the macroscale strain and stress constraints expressed
s

nc∑
I=1

f (I )∆ε
(I )
µ, m+1 = ∆εm+1(X) ,

nc∑
I=1

f (I )∆σ̂
(I )
µ, m+1 = ∆σ m+1(X) . (B.7)

he Lippmann–Schwinger system of equilibrium equations that must be solved in the online-stage (step 4) is
hen composed of (i) nc Lippmann–Schwinger integral equilibrium equations (see Eq. (B.6)) and (ii) macroscale
train and/or stress constraints (see Eq. (B.7)). Due to the general nonlinearity stemming from the material phase’s
onstitutive models, the equilibrium problem is generally nonlinear and can be efficiently solved through the well-
nown Newton–Raphson Method. The definition of suitable residual functions and solution procedure of a given
acroscale load increment is summarized in Box Appendix B.1 Once the solution is obtained, the macroscale
aterial response can be computed by computational homogenization (step 5).
Given that the solution of the Lippmann–Schwinger system of equilibrium equations depends on the choice

f the elastic reference material properties, the well-known self-consistent micromechanical approach is adopted to
etermine the ‘optimal’ properties at each macroscale loading increment. By assuming an isotropic elastic reference
aterial, the regression-based self-consistent scheme is then mathematically formulated as an optimization problem,

{
λ0

m+1, µ0
m+1

}
= argmin

{λ′, µ′}

∆σ m+1 − De, 0
m+1(λ′, µ′) : ∆εm+1

2
, (B.8)

rom which the reference material elastic properties, λ0
m+1 and µ0

m+1, can be determined at each macroscale loading
ncrement. The solution procedure of the Lippmann–Schwinger system of equilibrium equations summarized in
ox Appendix B.1s thus enriched and embedded within a self-consistent iterative scheme.

ppendix C. Compatible FEM regular mesh and element averaging

As described in Section 2.1, the RVE is usually discretized in regular voxels in CROMs whose solution procedure

s partially computed in the discrete frequency domain. Given that the Finite Element Method (FEM) is selected
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Box Appendix B.1: The solution procedure of a given load increment m + 1 of the Lippmann–Schwinger system
of equilibrium equations through the Newton–Raphson Method.

(i) Initialize iterative counter, k := 1
(ii) Set initial guess for incremental strains, ∆ε

(I )(0)
µ, m+1 = 0

(iii) Perform the material state update for each cluster

∆σ
(I )(k−1)
µ, m+1 = ∆σ̂µ, m+1

(
∆ε

(I )(k−1)
µ, m+1 , α(I )

m

)
, ∀I = 1, 2, . . . , nc

(iv) Compute global residual functions

R(I )
m+1

(
∆ε

(k−1)
µ, m+1

)
= ∆ε

(I )(k−1)
µ, m+1 +

nc∑
J=1

T(I )(J )
:

[
∆σ̂

(J )(k−1)
µ, m+1 − De, 0

: ∆ε
(J )(k−1)
µ, m+1

]
− ∆ε

0, (k−1)
µ, m+1 ,

R(nc+1)
m+1

(
∆ε

(k−1)
µ, m+1

)
=

nc∑
I=1

f (I )∆ε
(I )(k−1)
µ, m+1 − ∆εm+1(X) ;

R(nc+1)
m+1

(
∆σ

(k−1)
µ, m+1

)
=

nc∑
I=1

f (I )∆σ
(I )(k−1)
µ, m+1 − ∆σm+1(X) ,

∀I = 1, 2, . . . , nc

(v) Check for convergence
if (converged) then

• Update incremental solution, ( • )m+1 = ( • )(k)
m+1, and exit

(vi) Compute the Jacobian matrix

J
(
∆ε

(k−1)
µ, m+1

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂R(I )
m+1

∂∆ε
(K )
µ, m+1

∂R(I )
m+1

∂∆ε0
µ, m+1

∂R(nc+1)
m+1

∂∆ε
(K )
µ, m+1

∂R(nc+1)
m+1

∂∆ε0
µ, m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦(
∆ε

(k−1)
µ, m+1

)
, ∀I, K = 1, 2, . . . , nc

(vii) Solve the system of linear equations

δ∆ε(k)
µ = −J−1

(
∆ε

(k−1)
µ, m+1

)
R
(
∆ε

(k−1)
µ, m+1

)
(viii) Update incremental strains

∆ε
(k)
µ, m+1 = ∆ε

(k−1)
µ, m+1 + δ∆ε(k)

µ

(ix) Increment iteration counter, k := k + 1
(x) Go to step (iii)

as the direct numerical simulation (DNS) method throughout this paper, two essential procedures are required to
perform a suitable transfer and/or comparison of data between both types of spatial discretizations. For instance,
these arise when (1) performing the offline-stage DNS solutions with FEM and (2) quantitatively comparing CROMs
and FEM microscale field solutions.

The first procedure involves the generation of a FEM mesh compatible with the regular grid of voxels. A simple
ay to achieve this is to convert the pixels (2D) and voxels (3D) into quadrilateral (2D) and brick (3D) finite

lements, respectively (see Fig. C.34). The suitable order and type of finite elements should be defined according
o the problem under analysis.

The second procedure allows the transfer and/or comparison between both types of spatial discretizations. The
ntegrations over the finite element domain are generally performed by means of the Gaussian Quadrature Method
nd the state variables are computed at a given set of Gauss sampling points. Because each pixel (2D) or voxel
3D) only contains one sampling point, the data from the different Gauss sampling points of the associated finite
35
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Fig. B.33. Schematic of the Self-Consistent Clustering Analysis (SCA) clustering-based reduced order model [7].

Fig. C.34. Conversion of a regular grid of pixels into a finite element mesh with quadrilateral 8-noded quadratic elements.

element must be ‘compressed’ in some way. An element volumetric averaging procedure is proposed as follows: for
a generic field aµ(Y ) and the local normalized domain Υ of the element, the volumetric average of aµ(Y ) among
the Gauss sampling points of each element e is taken as

āe, µ =
1

ve, µ

ngp∑
i=1

wi aµ(ξ i ) j(ξ i ) , (C.1)

where ve, µ is the volume of the finite element, ξ i and wi , i = 1, 2, . . . , ngp, are the positions and weights of the
Gauss sampling points in the domain Υ and j(ξ ) is the determinant of the mapping (Y : Υ → Ω (e)) Jacobian (see
Fig. C.34 and Fig. C.35).

Appendix D. ACROMs vs AFEMs: specific characteristics and challenges

Despite the extensive work in the context of AFEMs, all the successful contributions do not translate directly to
CROMs. The most significant difference resides in the spatial decomposition. In FEM, the domain Ω is discretized
in a finite set of subdomains called finite elements, Ω (e), e = 1, . . . , nelem. Each finite element, e, is a geometrically
well-defined connected subspace characterized by a given number of nodes and an equal number of so-called shape
functions. The latter are polynomials of a given order that perform the required field interpolations within the element
domain. In contrast, in CROMs, the domain Ω is discretized in a finite set of subdomains called material clusters,
36
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Ω

Fig. C.35. Element volumetric averaging as a means to transfer and/or compare data between a finite element mesh and a regular grid of
pixels or voxels.

Fig. D.36. Geometrical comparison between a finite element (left) and a material cluster (right).

(I ), I = 1, . . . , nc. Each material cluster, I , is a geometrically (often) disconnected subspace that groups a given
number of points with similar mechanical behavior (see Fig. D.36). In accordance, the different fields are usually
assumed uniform within the cluster domain (see Eq. (3)). Another difference that should be remarked concerns the
primary unknowns of the formulation. While in FEM the primary unknowns are generally the displacements at
nodes (displacement-based formulation), in CROMs such as the SCA they are often taken as the (uniform) strains
at the material clusters (strain-based formulation).

Given that fields are assumed to be uniform within each material cluster, recovery-based error estimators that
take advantage of optimal sampling points (e.g., SPR-like procedures) are not readily available. The main idea of the
alternative recovery-based estimators that attempt to determine a recovered system that is smooth and continuous
may be applicable. Still, the proposed contributions are closely tied to the FE formulation. By making use of the
equilibrium residuals, the primary approach of residual-based error estimators seems to be most easily translated to
the context of CROMs. However, explicit residual-based estimators usually depend on mesh-dependent parameters
and often account only for the significant contribution of the so-called jump discontinuities. Given that clusters
are usually disconnected subdomains, i.e., each cluster boundary is not a connected path (see Fig. D.36), such
discontinuities require suitable treatment. In addition, cluster boundaries are not as well-defined as finite element
boundaries, the latter easily characterized by a given set of boundary nodes. Implicit residual-based estimators
depend significantly on the choice of suitable recovery methods and require the proper treatment of boundary fluxes.
37
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Other types of estimators related, for instance, with the analysis of constitutive functionals, may be of interest, as
the material constitutive behavior of each cluster follows standard procedures.

Due to their heuristic nature, there is a lot of flexibility in the definition of error indicators in the context of
ROMs as well. While several error indicators employed in AFEMs may also be readily available in the solution
rocedure, some are not translatable due to the previously mentioned formulation differences. This is the case of
he element aspect ratio or distortion, a geometrical indicator used effectively to deal with localization phenomena
nd discontinuities in finite element computations (see Fig. A.31).

Concerning the adaptive discretization procedures, p-adaptivity and hp-adaptivity are of no interest while
assuming the uniformity of fields within the disconnected cluster subdomains. Focus can thus be given to h-
adaptivity (see Fig. A.32), where the size of clusters may be refined or de-refined according to the accuracy
requirements. A significant difference already emerges at this point regarding the size measure. In AFEMs, the finite
element size, h, is usually taken as the diameter of the smallest circle/sphere that contains the element domain, Ω (e).
Given that the domain of each material cluster is, in general, disconnected, such measure loses its significance. The
closest size measure is, for instance, the number of voxels belonging to the cluster.

Besides the overall limitation in terms of engineering practicality, the simplest approach of r -refinement is not
applicable as clusters are not well-defined by a given set of boundary nodes. At the other end of the degree
of adaptivity, the complete mesh regeneration approach can be, in theory, adopted by performing a new cluster
analysis and subsequent cluster domain decomposition. However, the crucial transfer of data between the old and
new clusterings would be highly cumbersome, as the cluster domains are not only disconnected but can also exhibit
a significantly different topology. The more conservative element subdivision seems the most suitable and natural
approach to be employed in the context of CROMs. The most prominent difficulties in AFEMs are related to the
placement of new nodes and mismatches between adjacent elements, inexistent issues when dealing with material
clusters. In fact, the capabilities of different clustering algorithms may be explored to perform an enriched data-based
subdivision effectively. Nonetheless, de-refinement procedures may be challenging in terms of data management,
primarily due to the ambiguous concept of adjacency when dealing with disconnected cluster domains.

In terms of remeshing criteria, the most popular strategies can be formulated similarly. The same applies to the
coupling of the adaptive procedures with the general incremental scheme to solve nonlinear problems, where some
specifics of CROMs must be taken into account. A crucial aspect concerns the interaction tensors that frequently
emerge in the CROMs’ formulation and establish a strain–stress relationship between each pair of clusters. Given
the significant costs associated with the computation of these tensors, their update must be efficiently performed
every time the clustering is adapted.

Finally, a vital aspect of the reduced order modeling paradigm is the balance between accuracy and efficiency. The
primary objective of clustering adaptivity is, of course, an improvement of the solution’s accuracy. As described in
Section 1, of particular importance in modeling path-dependent nonlinear elasto-plastic materials is the phenomenon
of strain softening and localization, often the precursor of material failure and fracture. Besides the shortcomings
stemming from the lack of adaptivity, note that the main idea underlying the clustering-based (non-local) domain
decomposition is, to a certain extent, opposite to the main features of such localized phenomena. Hence, adaptivity
is deemed crucial in this context and, perhaps, more challenging. Nonetheless, it must always be present that any
accuracy gains are only valuable if the computational costs of the adaptive procedures do not compromise the high
efficiency of CROMs. The higher the computational cost, the lower the true value of the accuracy gains compared
to standard DNS methodologies. Finding such an accuracy-efficiency equilibrium point in the development of an
ACROM framework is the challenge addressed here.

Appendix E. Accelerating the CRVE scanning procedure

The target clusters selection criterion described in Section 2.3.1 involves a scanning procedure over the CRVE
dimensions. The computational cost of this operation scales with the spatial discretization of the RVE as the number
of voxels along with each scanning direction increases. Although the update of the cluster interaction tensors (Block
C) dominates the overall cost of the clustering adaptivity procedures, the cost of the selection criterion (Block A)
is by no means neglectable.

In this context, a simple but effective strategy is proposed here to accelerate the CRVE scanning procedure.
In the standard approach, every pair of consecutive voxels is scanned along each direction. However, despite the
completeness of this procedure, it can be argued that scanning every voxel is not absolutely necessary to perform a
38
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R

Fig. E.37. Randomized scanning frequency aiming to accelerate the CRVE scanning procedure underlying the target clusters selection criterion
based on spatial discontinuities.

proper assessment and cluster selection. This is especially true when considering a spatial discretization where
the voxels’ dimensions are small in comparison with the clusters’ sizes and/or the characteristic length of the
relevant phenomena. The main idea is thus to set a scanning frequency (user-defined parameter) associated with each
scanning direction as schematically illustrated in Fig. E.37. A frequency of X means that the scanning is performed
every X voxels, with X = 1 recovering the standard (complete) approach, being enforced that the first and last
voxels of each scanning direction are always evaluated. In addition, in order to avoid missing any particular domain
regions, the initial voxel index can be randomly picked at each clustering adaptive step. Note that a frequency of
X leads to X distinct initial voxel indexes defined as 0, 1, . . . , X − 1.
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