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OpenSense: An open-source toolbox 
for inertial-measurement-unit-based 
measurement of lower extremity kinematics 
over long durations
Mazen Al Borno1,2†, Johanna O’Day3*† , Vanessa Ibarra4, James Dunne3, Ajay Seth5, Ayman Habib3, 
Carmichael Ong3, Jennifer Hicks3, Scott Uhlrich3,4 and Scott Delp3,4,6 

Abstract 

Background: The ability to measure joint kinematics in natural environments over long durations using inertial 
measurement units (IMUs) could enable at-home monitoring and personalized treatment of neurological and mus-
culoskeletal disorders. However, drift, or the accumulation of error over time, inhibits the accurate measurement of 
movement over long durations. We sought to develop an open-source workflow to estimate lower extremity joint 
kinematics from IMU data that was accurate and capable of assessing and mitigating drift.

Methods: We computed IMU-based estimates of kinematics using sensor fusion and an inverse kinematics approach 
with a constrained biomechanical model. We measured kinematics for 11 subjects as they performed two 10-min tri-
als: walking and a repeated sequence of varied lower-extremity movements. To validate the approach, we compared 
the joint angles computed with IMU orientations to the joint angles computed from optical motion capture using 
root mean square (RMS) difference and Pearson correlations, and estimated drift using a linear regression on each 
subject’s RMS differences over time.

Results: IMU-based kinematic estimates agreed with optical motion capture; median RMS differences over all sub-
jects and all minutes were between 3 and 6 degrees for all joint angles except hip rotation and correlation coefficients 
were moderate to strong (r = 0.60–0.87). We observed minimal drift in the RMS differences over 10 min; the average 
slopes of the linear fits to these data were near zero (− 0.14–0.17 deg/min).

Conclusions: Our workflow produced joint kinematics consistent with those estimated by optical motion capture, 
and could mitigate kinematic drift even in the trials of continuous walking without rest, which may obviate the need 
for explicit sensor recalibration (e.g. sitting or standing still for a few seconds or zero-velocity updates) used in current 
drift-mitigation approaches when studying similar activities. This could enable long-duration measurements, bringing 
the field one step closer to estimating kinematics in natural environments.
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Introduction
Inertial measurement units (IMUs) could enable bio-
mechanics and rehabilitation researchers to measure 
kinematics in a variety of populations, in natural envi-
ronments and over long durations. From detecting 
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functional improvement in patients post-stroke to moni-
toring fall-risk in older adults [1], continuous sensing of 
kinematics could improve our understanding of human 
movement pathology by providing many repetitions of 
a movement in home or community settings, in contrast 
with the limited number of trials and highly-controlled 
environment of a laboratory experiment. IMUs could 
also enable early detection of disease or injury-risk. They 
could then be used together with mobile interventions to 
create rehabilitation or injury-prevention strategies that 
are optimized to the user’s biomechanics. In addition, 
IMUs are an inexpensive way to measure movement in 
large cohorts, facilitating large-scale multi-center clini-
cal trials for which traditional motion capture is currently 
infeasible.

IMUs have been used to estimate kinematics during 
human movement for the past 30 years [2] and over the 
past decade, the biomechanics and rehabilitation com-
munities have substantially improved the accuracy of 
IMU-based methods for measuring kinematics. For 
example, researchers have developed new sensor fusion 
algorithms to estimate orientations [3–6] and devised 
more precise sensor-to-body segment alignment meth-
ods [7, 8]. Researchers have also employed biomechanical 
models [9–11], and used neural networks and optimiza-
tion [12–15] to estimate accurate kinematics without 
reliance on potentially distorted magnetometer data or 
precise IMU placement. Some studies have shown accu-
racy for lower extremity kinematics on the order of one 
degree root mean square (RMS) difference compared 
to optical motion capture. However, the overwhelming 
majority of studies only assess accuracy of steady-state 
behavior (e.g., walking or running) over short durations 
(on the order of one minute or less) [16], even though 
these conditions are not wholly representative of natural 
behavior.

A key challenge when estimating 3D orientation from 
IMUs over long durations is managing compounding 
drift over time. Most IMU-based algorithms to esti-
mate joint kinematics rely on three-dimensional ori-
entations computed through sensor fusion, a process 
where triaxial data from the accelerometer, gyroscope, 
and/or magnetometer are combined to give a more 
accurate measure of orientation than could be provided 
by any of the single data streams. Strap-down integra-
tion, or integrating gyroscope data from an IMU that 
is strapped to the body segment of interest (as opposed 
to mounted on a stabilized platform), results in random 
drift as numerical integration amplifies noise in the 
gyroscope data [17]. Accelerometer-based and mag-
netometer-based compensation can correct this drift 
using Earth’s gravitational and magnetic field vector. 

However, ferromagnetic disturbances distort the meas-
urement of the earth’s magnetic field, which can lead 
to inaccurate orientation estimates [18]. Sensor fusion 
approaches have been designed to mitigate drift in spe-
cific and precise movements such as those performed 
by robots [6]. Validation studies applying sensor fusion 
methods in human movement analysis have reported 
average RMS differences in the range of 1.7°–8° for 
joint angles over short durations (on the order of one 
minute) [5, 19–21]. Recent work has shown that sensor 
fusion algorithms [22–24] can produce estimations of 
sensor orientations with less than 10° RMS difference 
over five minutes. We extend the work by estimating 
drift-free physiologically realistic joint angles in new 
experimental conditions over 10 min.

Previous studies have computed IMU-based estimates 
of kinematics using biomechanical models with accura-
cies under 5° RMS difference. These results suggest the 
physiological joint constraints of biomechanical mod-
els may mitigate errors due to drift. For the most part, 
however, these studies have used closed-source com-
mercially available models (e.g., MVN Xsens) [25] that 
cost on the order of $10  k, or simple models that are 
developed in-house and thus are limited to users with 
IMU and modeling expertise [10, 26–30]. Tagliapietra 
et al. (2018) provide an open-source IMU-based inverse 
kinematics algorithm using a biomechanical model; this 
study reports good agreement (RMS differences less 
than 6 degrees) between their IMU-based estimates of 
kinematics and the robotic-encoder-based or optical-
based kinematics, but the approach has not been tested 
for human movement.

Ideally, the research community would have access 
to an open-source platform that allows computation 
of kinematics from experimentally recorded IMU data 
using a physiologically representative musculoskeletal 
model that has been evaluated for use over long dura-
tions. This integrated environment would empower 
researchers to generate further analyses and insights 
(e.g. estimations of musculotendon lengths or veloci-
ties required to generate motion) that would otherwise 
involve invasive and complex experiments.

Our goal was thus to develop an open-source work-
flow for computing three-dimensional joint kinemat-
ics with IMU sensors using a human musculoskeletal 
model that was accurate and capable of assessing and 
mitigating drift. To evaluate our workflow, we com-
pared against optical motion capture data during 
10-min periods of common activities. To facilitate 
access of long-duration validation data to the research 
community, we also sought to provide an open dataset 
of synchronized IMU and optical motion capture data.
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Methods
Data collection
We collected IMU and optical motion capture data for 
11 subjects in a laboratory environment, which included 
significant amounts of electronic equipment and fer-
romagnetic materials. All subjects provided informed 
consent to a protocol approved by the Stanford Univer-
sity Institutional Review Board. Subjects were young 
(27.9 ± 6.7  years, mean ± 1 standard deviation (sd) 
and free of any musculoskeletal injuries or disorders; 
the mean body mass index of subjects was in the “nor-
mal” range (23.7 ± 2.4  kg/m2) and the majority were 
male (9/11). Subjects were outfitted with 8 IMUs (MTw 
Awinda, Xsens North America Inc., Culver City, USA), 
which were affixed to thin plexiglass plates with clus-
ters of at least 4 retro-reflective markers, constituting a 
marker plate, and secured to the upper back (T2), lower 
back (L5), and the right and left thighs, shanks, and feet 
(Additional file 1: Figure S1). IMU signals were sampled 
at 100  Hz for nine subjects, and at 40  Hz for two sub-
jects (due to a protocol inconsistency). IMU data were 
acquired via a graphical interface (MT Studio, Xsens 
North America, USA).

Optical motion capture data were collected simulta-
neously to enable comparison of the IMU-based esti-
mates of joint kinematics to the current gold standard. 
In addition to the markers on the marker plate, markers 
were placed on the bony landmarks of the C7 vertebrae, 
sternoclavicular joints, acromion processes, anterior 
and posterior superior iliac spines, medial and lateral 
femoral epicondyles, medial and lateral malleoli, calca-
nei, and 5th metatarsal heads. Markers on the medial 
femoral epicondyles and malleoli and makers obscured 
by the marker plates were removed prior to walking tri-
als. Marker trajectories were measured at 100  Hz using 
an eight-camera motion capture system (Motion Analy-
sis Corporation, Santa Rosa, CA, USA). A standard video 
camera (30 frames/s) was used to record each trial and 
visually confirm events or event timings offline. The opti-
cal motion capture and IMU data were synchronized by 
maximizing the cross-correlation between the resulting 
joint kinematics.

Experimental conditions
Experimental data were collected while each subject 
completed two conditions: (i) 10  min of walking and 
turning and (ii) 10  min of a repeated series of move-
ments. Subjects started each condition with an initial cal-
ibration pose, standing with their arms by their sides, feet 
hip’s width apart, and facing forward for a period of 5 s. 
In the first condition, subjects were instructed to walk 
straight for 5  m at a self-selected pace then turn 180° 
using a self-selected strategy and to repeat this sequence 

for a continuous 10-min trial. Next, subjects took the cal-
ibration pose again, and then completed multiple cycles 
of lower-extremity movements for 10  min. Each cycle 
consisted of sitting, standing, ascending and descending 
three stairs, side-stepping for five meters, walking around 
a 12-m oval circuit, and finally running around a 12-m 
oval circuit. Subjects completed the cycle 6–10 times 
over the 10 min.

Sensor fusion
We tested three sensor fusion algorithms: a proprietary 
filter (embedded on-board the Xsens IMU sensor), and 
two open-source complementary filters [3, 5]. The com-
plementary filters used the raw accelerometer, gyroscope, 
and magnetometer signals read from the IMU sensors. 
We implemented the complementary filters using the 
developers’ open-source code [3, 5] in MATLAB R2019a 
(Mathworks, Inc., Natick MA, USA) with the initial ori-
entation estimate computed from the accelerometer and 
magnetometer measurements when the sensors were at 
rest (i.e., when the subject was standing still for a few sec-
onds). We manually tuned the filter gain (“beta param-
eter”) of the complementary filters [5] using data from 
two randomly chosen subjects (sampled at 100 Hz), and 
this filter gain of 0.1 was used for all subjects with data 
collected at 100 Hz. For the two subjects with data col-
lected at 40 Hz, the filter gain value of 0.1 overcorrected 
drift, resulting in poor accuracy. Therefore, we experi-
mented with filter gains of 0.05 and 0.025 and found the 
latter was optimal. To evaluate the accuracy of the sensor 
fusion algorithm, we compared the IMU-based orienta-
tion estimates to those computed using the motion cap-
ture markers affixed to the marker plates. The orientation 
difference was expressed as the angle of an axis-angle 
representation of the relative rotation. From this angle, 
we computed RMS errors. As the markers and IMUs 
were rigidly mounted to the marker plate, we would 
expect minimal errors in the optical estimates of orien-
tation, thus we report RMS errors and refer to them as 
sensor fusion errors.

Inverse kinematics workflow
We used OpenSim 4.2 [31, 32] (simtk.org/projects/
opensim) to compute both IMU-based and optical-
motion-capture-based estimates of kinematics, which 
we refer to as IMU-based kinematics and optical-based 
kinematics, respectively. We used a physiological skele-
tal model with 22 segments and 43 degrees-of-freedom 
(dofs). The model had 16 dofs in the lower body includ-
ing 6 for the pelvis and 5 for each lower extremity. The 
hip was modeled as a ball-and-socket joint (3 dofs), the 
knee as a custom joint with 1 dof [33–35]. The ankle 
and foot in the model of Rajagopal and colleagues [36] 
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was simplified to a single pin joint representing ankle 
plantarflexion-dorsiflexion, with the subtalar and mtp 
joints removed by welding (making them rigid). The 
model was scaled to match each subject’s anthropom-
etry based on experimentally-measured markers placed 
on anatomical landmarks. Model scaling was only 
relevant for computing optical-based kinematics, as 
rigid body segment length does not affect IMU-based 
inverse kinematics. For optical-based kinematics, we 
used an inverse kinematics algorithm to solve for the 
joint angles that minimized the difference between the 
experimentally measured marker positions and the cor-
responding virtual markers on the model.

Our OpenSense toolkit in OpenSim 4.2 was used to 
compute IMU-based joint kinematics. The IMU orien-
tation data resulting from a given sensor fusion algo-
rithm were imported and associated with a rigid body 
(e.g., pelvis) based on a user-defined sensor mapping. 
To determine the orientation of the IMUs relative to 
the body segment on which they were placed, we used 
the calibration pose data. We used the optical motion 
capture data to pose the model (given that our main 
focus was assessing drift) and the IMU calibration data 
to compute the orientations of the IMUs relative to the 
posed model’s body segments as fixed rotational offsets. 
The modeled virtual IMU frames were then assigned 
these offsets relative to the underlying rigid body.

After this calibration step, we used Eq. 1 to compute 
the difference, expressed as the angle ( θi ) of the axis-
angle representation between the experimentally meas-
ured IMU orientations (a rotation matrix expressed in 
Earth’s reference frame N, NRexp

i  ), and the orientations 
of the model’s virtual IMUs ( NRvir

i  ). We denote this dif-
ference as Ri . We used an inverse kinematics algorithm 
(Eq.  2) that solved for the joint angles (q) that mini-
mized this weighted-squared difference ( wiθ

2
i ).

We used θi to quantify the RMS differences between 
the experimentally measured IMU orientations and the 
virtual IMU orientations. From here we refer to these 
RMS differences as inverse kinematics orientation dif-
ferences. In the inverse kinematics algorithm, we down-
weighted the terms corresponding to the distal IMUs 
(reduced the relative weighting on the shank IMUs and 
the foot IMUs, i.e. wshank and wfoot) to minimize the 
influence of the IMUs that were closer to the in-ground 
metal force-plates (see Additional file 1: Table S1).

(1)θi = cos
−1 trRi − 1

2
, where Ri = (NR

exp
i )

T NRvir
i and i ∈ IMUs

(2)min
q

∑

i∈IMUs

wiθ
2
i

Assessing IMU orientation data and joint kinematics
As noted above, the data were collected in a laboratory 
environment with ferromagnetic disturbances which 
resulted in distortions in IMU orientation estimates, 
especially in the heading direction. These erroneous 
IMU orientation estimates led to exaggerated hip adduc-
tion, hip rotation, and ankle flexion in the downstream 
inverse kinematics solution. To address this, we devel-
oped a pre-screening process that used the kinematic 
constraints of the skeletal model to identify experimental 
sensor orientations that were physiologically unrealistic. 
This pre-screening was part of the general pipeline, and 
we recommend applying it to achieve comparable results. 
The pre-screening process was based on the inverse kin-
ematics orientation differences described above and did 
not assume knowledge of the true IMU orientations. The 
pre-screening process was: (i) if the differences exceeded 
a threshold of 45 degrees in the first 10 s of the trial, indi-
cating poor tracking of the IMU orientation, then these 
data were excluded or (ii) if the average range of the 
difference over 60 ms bins (in the first 10  s of the trial) 
exceeded a threshold of 30 degrees, indicating unrealistic 
variability and therefore poor data, then these data were 
excluded. We share a subject information table indicat-
ing which IMUs were included in our analysis of joint 
kinematics (Additional file 1: Table S2). The values of 45 
degrees and 30 degrees were chosen based on the data of 
five trials and kept constant for all 22 trials in the study. 
Seven of 11 subjects had at least one IMU excluded from 
analysis as a result of the pre-screening.

Statistics
We compared the joint angles computed with IMU ori-
entations to the joint angles computed from optical 
motion capture using root mean square (RMS) differ-

ence. We calculated a Pearson correlation between each 
subject and joint angle and reported the mean and stand-
ard deviation for the correlation coefficients and average 
change in correlation coefficients over 10 min (Table 1). 
Bilateral joint measures were pooled for all summary 
statistics. As some data were not normally distributed, 
as determined by a Shapiro–Wilk test, we computed the 
median and interquartile range of RMS difference over 
all subjects and all minutes for each joint angle. Outliers 
were defined as values 1.5 times the interquartile range 
below or above the 25th and 75th percentile (correspond-
ing to the bottom or top of the box, respectively, in box 
plots).
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We quantified drift for each subject and joint angle 
using a linear regression on each subject’s individual 
per-minute RMS differences for each joint angle over 
the 10 min. For each joint angle, we averaged the slopes 
of the linear fits across subjects. We report the range of 
slopes to represent drift as an average change in RMS 
difference per minute. To examine changes over time in 
RMS differences for different sensor fusion algorithms, 
we subtracted a subject’s joint angle RMS difference at 
the end of the first minute from the RMS difference at 
the end of the 10th minute. We completed all statistical 
analyses in MATLAB R2019a.

Results
Median RMS differences between IMU and optical-based 
kinematics were 3–6° over all subjects and all minutes 
(Fig. 1) for all joint angles except hip rotation (12°); these 
values are within the reported variability and uncertainty 
of optical motion capture [37]. We saw a similar range of 
RMS differences between IMU and optical-based kine-
matics for the 10-min sequence of lower-extremity move-
ments. Results for the two open-source complementary 
filters were similar, so we focus on the results produced 
with the open-source algorithm from Madgwick et  al. 
[5] and refer to it as the “complementary filter”. Minute-
by-minute RMS differences for the complementary filter 
from Mahony et al. [3] can be found in Additional file 1: 
Figure S2 and highlight that these trends for RMS differ-
ences over time were also largely flat.

Lower extremity joint kinematics showed minimal 
drift. Median RMS differences were largely unchanged 
over 10  min for all joint angles during both conditions 
(Fig.  1). Each individual subject’s per-minute RMS dif-
ferences showed minimal change over 10  min for all 
joint angles (Additional file  1: Figure S3), and the aver-
age slopes of the linear fits to these data were near zero 
(− 0.14–0.17°/min), indicating minimal drift. Though 
the linear fits were not strong  (R2 = − 0.03–0.4), this was 

likely due to the nearly horizontal trajectories of the sub-
jects’ RMS differences, at which point  R2 approaches a 
negative value (i.e., the chosen model fits worse than a 
horizontal line).

Individual subjects’ mean IMU-based joint angles 
over the gait cycle showed minimal difference (within 
two standard deviations) from optical-based joint 
angles between the 1st and 10th minute of overground 
walking (Fig.  2). IMU-based hip rotation showed the 
least agreement with optical-based kinematics. A few 
subjects (Subjects 2,3,11) had IMU-based kinematics 
outside two standard deviations of optical-based kin-
ematics (Fig.  2). The residual plots between the IMU-
based and optical-based kinematics for all subjects are 
included in Additional file 1: Figure S4.

We found moderate to strong correlations between 
the IMU-based kinematics and the optical-based kine-
matics as indicated by high correlation coefficients over 
the 10-min period of overground walking, ranging from 
r = 0.60–0.87 (Table  1). The average difference in cor-
relation coefficient between the first and 10th minute 
was also near zero (− 0.1–0.1), indicating little change 
or drift over the 10 min. The results were similar for the 
sequence of lower-extremity movements (Additional 
file  1: Table  S3) and also whether we used the com-
plementary filter or the proprietary filter from Xsens 
(Additional file 1: Figure S5).

Joint angles computed using the complementary filter 
and the proprietary filter from Xsens showed similar 
changes in median RMS difference over 10  min, with 
less than 2 degrees versus less than 4 degrees, respec-
tively, during walking (Additional file 1: Figure S5). The 
proprietary filter, however, had more and larger outliers 
than the complimentary filter. For example, almost 50 
degrees change in RMS difference in knee flexion was 
recorded for one subject (Additional file 1: Figure S5), 
highlighting that when the proprietary filter starts to 
drift, errors can accumulate quickly and substantially. 

Table 1 Correlation coefficients between IMU- and optical-based kinematics over 10 min of overground walking, averaged over all 
subjects

Mean (standard deviation)

Joint angle Overall correlation (r) Average difference in correlation 
(r) between 1st and 10th minute

Pelvic tilt 0.60 (0.30) 0.1 (0.1)

Pelvic list 0.65 (0.23) 0.002 (0.1)

Hip flexion 0.84 (0.29)  − 0.002 (0.01)

Hip adduction 0.60 (0.27)  − 0.002 (0.06)

Hip rotation 0.71 (0.27)  − 0.03 (0.04)

Knee flexion 0.87 (0.32)  − 0.003 (0.04)

Ankle plantarflexion 0.70 (0.10)  − 0.1 (0.1)
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Similar results were achieved for the sequence of lower-
extremity movements (see minute-by-minute RMS dif-
ferences in Additional file 1: Figure S6).

We found that downweighting the distal sensor ori-
entations (reducing the relative weighting on the shank 
and feet sensor orientations) when solving inverse 
kinematics improved the accuracy of the kinematic 
estimates and reduced drift. The inverse kinematics 
computed with downweighted distal sensors’ orienta-
tions showed less RMS difference (up to 28% less) than 
inverse kinematics computed with uniformly weighted 

orientations in the 10th minute of overground walking 
(Fig. 3). Note that all other figures with IMU-based kin-
ematics show downweighted results.

Changes in inverse kinematics orientation differ-
ences (the angle difference between the experimen-
tal IMU orientation and the virtual IMU orientation) 
from the 1st to 10th minute were strongly correlated 
with changes in sensor fusion error (Fig. 4), indicating 
that inverse kinematics orientation differences are a 
helpful tool for tracking errors in the orientations from 
sensor fusion when present.
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Discussion
Our open-source workflow for computing three-dimen-
sional lower extremity joint kinematics with IMUs 
produced joint angles that were consistent with opti-
cal motion capture (3°–6° RMS differences for all joint 
angles except hip rotation) and showed minimal drift 
during a 10-min period of common lower-extremity 
movements (including walking). The differences between 
IMU-based kinematics and optical-based kinematics are 
similar to previous studies [16], despite our experiments 
being an order of magnitude longer in duration. We also 
found that using sensor fusion approaches, as well as 

downweighting distal IMUs during inverse kinematics, 
mitigates drift during these common lower-extremity 
movements. Our open-source workflow, documentation, 
data, and models are shared at https:// simtk. org/ proje 
cts/ opens im and https:// simtk. org/ proje cts/ opens ense_ 
val so that others can reproduce and extend our work.

Our results suggest that explicit sensor recalibration 
(e.g., sitting or standing still for a few seconds or zero 
velocity updates) may not always be necessary to mitigate 
drift when monitoring human movement with IMUs. 
Further study is needed to determine whether this also 
occurs under more general experimental conditions and 
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outside of the laboratory. Our workflow leveraged com-
plementary filters [3, 5] that incorporate magnetometer 
data. Our study indicates that natural human move-
ment—even continuous walking without explicit peri-
ods of rest—includes phases where each individual body 
segment has a low angular velocity. During these phases, 
the sensor fusion algorithms were able to reject drift. 
These implicit corrections by the sensor fusion algorithm 

occurred at different times depending on the activity, but 
for each of the movement trials (continuous walking and 
a sequence of movements), the frequency and the dura-
tion of periods of low angular velocity were sufficient 
to mitigate drift. The approach further has the benefit 
of being activity-agnostic, compared to some previous 
approaches that were tailored to specific activities (e.g., 
[38] for running; [39] for specific phases during walking) 
or reliant on achieving relatively high joint center accel-
erations [40, 41]. In our computational experiments, the 
RMS differences during the first 15  s of walking were 
similar between our sensor fusion estimate and an esti-
mate obtained by solely integrating the angular velocities 
over time (Additional file 1: Table S4), indicating that the 
drift correction in the sensor fusion did not significantly 
degrade accuracy over short durations. In this work, 
we used a linear regression to show that drift did not 
increase over our 10-min trial. An analysis of how errors 
accumulate over short periods of time (i.e., where the 
linear analysis might be inadequate) would be a valuable 
topic of future study.

The proprietary filter included with the sensors resulted 
in more drift for all subjects (Additional file 1: Figure S5), 
likely because the filter rejected the distorted magnetom-
eter signal over too long a duration. Recent work has 
shown that Kalman filters can be formulated to achieve 
good accuracy over long durations [24]. Some prior work 
has shown complementary filters drift with measurement 
duration [23, 42]. We suspect that these studies have used 
different sensor fusion parameters than those reported in 
our study and these parameters were critical to achieve 
the drift-free orientation estimation. Future work should 
explore a variety of sensor fusion algorithms and whether 
they are sufficiently robust for periods of continuous run-
ning, sprinting, or other highly dynamic activities, as well 
as activities outside of the laboratory.

The biomechanical model and inverse kinematics algo-
rithm used in our workflow (OpenSense, OpenSim), pro-
vided features that helped us to monitor errors when they 
did occur. For example, we saw that a change in inverse 
kinematics orientation differences from the first to the 
10th minute was strongly correlated with sensor fusion 
error (Fig.  4) demonstrating utility for monitoring joint 
angle accuracies. We also used the inverse kinematics 
orientation differences to screen for IMUs that presented 
large differences early in the experiment (within the first 
10  s). Monitoring inverse kinematics orientation differ-
ences could alert users to the presence of error, as knowl-
edge of the true IMU orientations is not required. This 
is a salient feature because there is currently no standard 
method to monitor error over time for IMU-based kin-
ematics. As the reliance on IMUs for quantifying human 
movement experiments continues to increase, users will 

Fig. 3 Effect of downweighting distal IMU sensors when solving 
inverse kinematics. Reducing the relative weighting on the shank 
orientations and the feet orientations when solving inverse 
kinematics helped reduce mean joint angle root mean square (RMS) 
difference in the 10th minute. To highlight how this downweighting 
influenced all joint kinematics, this analysis included mean joint 
angle RMS differences for the four subjects who did not have IMUs 
excluded and results computed from the complementary filter

Fig. 4 Changes in inverse kinematics (IK) orientation differences 
relate to changes in sensor fusion errors. Changes in IK orientation 
differences (mean over all joint angles per subject) from the 1st 
to 10th minute were strongly correlated with changes in sensor 
fusion error, indicating that IK orientation differences are a helpful 
tool for tracking error in the sensor fusion orientation when 
present. Individual subjects’ data are represented by black circles, 
and kinematics computed with both the complementary and the 
proprietary filter were used
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benefit from having error-monitoring features integrated 
with user-friendly software (OpenSim) that possesses a 
significant community of 25,000 + users/year worldwide 
[31]. Users can extend these tools to meet their research 
needs by combining IMU-based estimates of motion with 
a range of open-source models or explore underlying 
quantities like muscle dynamics.

Our study also provides insights about how different 
joints are affected by magnetic disturbances and drift. 
For example, while magnetic disturbances can cause large 
errors in heading angles, our results suggest that these 
errors do not significantly impact the accuracy of the 
knee flexion angle. This is an important observation as 
a major concern in the adoption of IMUs in biomechan-
ics and physical rehabilitation is the presence of mag-
netic disturbances in the patient’s home. We suspect that 
knee flexion accuracy is not severely impacted by mag-
netic disturbances because these disturbances will likely 
impact the heading of both the shank and the thigh simi-
larly, and possibly because of the kinematic constraint on 
the knee (i.e., one dof in the sagittal plane). We observed 
that the IMU orientations computed from sensors on 
the feet were most affected by magnetic disturbances. In 
laboratories similar to ours with in-ground force plates, 
researchers have reported significant magnetic distur-
bances to the point where they recommended that meas-
urements be performed at least 40  cm off the ground 
[18]. We were able to increase the agreement between 
IMU- and optical-based kinematics by reducing the fre-
quency at which the complementary filter incorporated 
magnetometer data for the foot IMU (Additional file  1: 
Figure S7). This balanced the positive influence from 
some magnetometer information and distortion from the 
force plates. As this may be overfitting to our data, we did 
not use this approach when reporting our final results, 
but offer it as an approach to explore further when com-
puting IMU-based kinematics in disturbed magnetic 
environments.

Similar to past studies, we saw the largest joint angle 
RMS differences in hip rotation (12.7 degrees median 
RMS difference). This could be partially due to the fact 
that the foot IMUs were most affected by ferromagnetic 
disturbances, and their distorted heading estimates could 
have introduced error into the hip rotation angle, which 
was the dof that relied most on this heading information. 
RMS errors on the order of 10 degrees are also observed 
for optical motion capture, which may also have contrib-
uted to the RMS differences we observed [37]. We also 
qualitatively observed large hip adduction errors due to 
magnetic disturbances while the subjects were sitting 
in the sequence of lower-extremity movements. Future 
work is needed to assess joint-specific impacts of mag-
netic disturbances.

It is important to consider the limitations of our 
work. We used the optical motion capture data to pose 
the model for IMU registration, which is an unrealistic 
approach for natural environments. We instructed sub-
jects to take a “neutral” pose, with pelvic tilt, pelvic list, 
hip flexion, hip adduction, hip rotation, knee flexion, and 
ankle flexion at 0 degrees. The mean difference between 
the subject’s chosen pose (measured with motion cap-
ture) and the instructed pose was relatively small (3.8°), 
and the difference range was 0–20.1 degrees (maximum 
was hip rotation) over all joint angles, and all subjects. A 
range of calibration approaches including manual, static, 
functional, and anatomical methods have been described 
and assessed [7]. While using an IMU-based calibration 
might have altered the RMS differences, we expect our 
conclusions showing minimal drift would be unchanged.

Despite being one of the longer validation studies for 
IMU-based kinematics, our 10-min experiments may not 
be sufficient to understand the accuracy over multiple 
hours or days. However, we have three cases where the 
IMUs were calibrated between seven and twelve minutes 
before the start of the 10-min experiment and we again 
observed minimal drift (Additional file 1: Table S5). This 
suggests that our results might translate to longer dura-
tions, but future experiments should assess this. In this 
study, we focused on assessing the accuracy over an 
aggregate of activities. Future work should validate the 
approach for the individual activities in the sequence of 
lower-extremity movements, along with other activi-
ties of daily living, including upper body kinematics, and 
more natural sequences of these activities. Since our sam-
ple size was small and our subject demographics were 
homogenous, it is uncertain how our results may trans-
late to other populations. We hope that future studies 
will be conducted with larger, more diverse populations 
and will build upon the data repository we have provided.

Conclusions
Our open-source workflow (OpenSense, OpenSim) 
provides accurate estimates of human joint kinemat-
ics with wearable technology by leveraging the advan-
tages of inertial sensors, sensor fusion algorithms, 
and model-driven simulation. The validation over 
10-min durations during common human movements 
gives confidence to users in being able to monitor and 
compute kinematics with minimal drift using IMUs. 
Though all of our kinematics were calculated offline, a 
recent study has shown promising accuracy over short 
durations with a low-cost and portable system utilizing 
the same open-source tools to compute inverse kine-
matics described here (42). Integration with the Open-
Sim musculoskeletal simulation environment opens 
the gateway to investigate other quantities, like muscle 
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mechanics and inverse dynamics with IMUs. Future 
work will focus on developing algorithms to estimate 
kinetics from IMU data and streamlining real-time 
systems to enable biomechanical monitoring, feed-
back, and interventions outside of the lab. This suite of 
open-source tools brings the field closer to conducting 
human movement studies in natural environments.
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