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Abstract: Collaboration between humans and robots is an important aspect of Industry 4.0.
It can be improved by incorporating human-like characteristics into robot motion planning. It
is assumed that humans move optimal with respect to a certain objective or cost function. To
find this function, also for a robot, we use an inverse optimal control approach identifying what
linear weighted combination of physically interpretable cost functions best mimics human point-
to-point motions. A bi-level optimization is used, where the upper level compares the optimal
robot result of the lower level with human reference motions. Two depth cameras are combined
in a setup to record these reference motions.
The resulting weighted cost functions are then used to generate new motions for a seven degrees
of freedom robot arm. The resulting optimized motions are compared to standard robot motions
based on linear interpolation in joint or task space. The comparison is performed by means of a
small experiment where preliminary observations show that humans experience these motions
as more anthropomorphic and feel at least equally comfortable and safe compared to existing
motion planning strategies.

Keywords: Human-Robot-Collaboration, Path Planning, Optimal Trajectories, Inverse
Optimal Control, Motion Analysis

1. INTRODUCTION

In an environment where humans and robots are working
together a mutual understanding of each other is crucial.
One way to improve this is by humanizing Human-Robot
Interaction (HRI), which means that the robot not only
tries to understand the human’s actions and intentions,
but also that it uses human-like features to communicate
its own, see e.g. Sciutti et al. (2018). This makes sense
because humans are highly trained in interacting with
other humans.

Human and robot arm motion planning has to deal with
a high level of redundancy and out of the infinite amount
of possibilities it is believed that humans choose a path
that is optimal with respect to a certain objective func-
tion, see e.g. Alexander (1996). This objective function is
situation dependent and generally unknown. By inverse
optimization using human measurements these objective
functions can be determined. Applying optimal control
with the found objective functions can enable human-like
motion characteristics for robots.

1.1 Contribution

The contribution of this paper is on an inverse optimal
control based motion generation approach based on phys-

Fig. 1. The YuMi robot performing an optimal motion
based on the cost function derived with inverse opti-
mal control using human recorded motion. Point-to-
point motions on this robot are currently performed
by linearly interpolating a path in joint or in Cartesian
space.

ically interpretable objective functions for human-robot-
collaboration and the comparison of the resulting motions
to those from standard point to point motion generation
approaches that are based on linear interpolation in joint
or task space. The comparison is not done based on quan-
titative measures but by a small experiment, analyzing
subjective acceptance of humans working together with a
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Fig. 2. Methodology. Human control objective is identified
using inverse optimal control. Corresponding robot
trajectories are generated using optimal control and
executed on real robot.

robot. The robot we consider here is the ABB YuMi with
seven degrees of freedom in each of the two arms.

The paper is organized as follows: In Chapter 2 the
theory behind inverse optimal control using the bi-level
approach is summarized, followed by our implementation
in Chapter 3. The results are given in Chapter 4 in the
form of a composite cost function, which is analyzed with
an experiment to determine how humans experience the
resulting motions.

1.2 Related work

Inverse optimal control has been used in several publica-
tions to either analyze human motion or to generate robot
motion. A bi-level optimization approach was introduced
in Mombaur et al. (2010) for finding the optimization
criteria humans use for a locomotion tasks. A combination
of five criteria, involving minimization of time, acceleration
and orientation towards the target, gave the best results.
In Clever et al. (2018) the approach was extended for the
generation of gait trajectories in complex environments
using an objective function identified from human cap-
tured walking motions. A similar bi-level approach was
used for arm motions in Berret et al. (2011) for a two
dimensional pointing task. The cost functions that had the
biggest contributions where those that minimized energy
consumption and angle acceleration. The same approach
was later used for a more realistic three dimensional task
by Sylla et al. (2014), where it was found that a geodesic
and an energy criteria best mimicked human motion. Arm
reaching motions in collaboration tasks were researched
by Mainprice et al. (2015). Two participants performing
a number of pick-and-place tasks while standing next to
each other were recorded. For the inverse optimal control
they use cost functions based on distances to the other
participant and functions achieving smoothness. The tra-
jectories planned with the recovered weights are found to
better resemble human motion than with manually tuned
weights. In Albrecht et al. (2011) a one-level optimization
has been used and it is stated that a combination of torque
change and joint jerk minimization generates humanoid
robot reaching motions, which match human recorded
motions closely. Also based on a one-level approach, task
dependence of cost function was examined for a box mov-
ing task using time dependent weights in Englert et al.
(2017).

Whereas in the cited literature, quality was rated by
how well the generated motions imitate human motions,
in our contribution, we rate the quality of generated
motions by how humans working together with the robot
perceive these motions in comparison to the standard
motions. Different to Mainprice et al. (2015), here we
study the suitability of various physically interpretable
objective functions for human-motion-collaboration that

go beyond smoothening and distance. In contrast to Clever
et al. (2018), where the transferred optimization strategy
includes a re-scaling of the identified weights, here we
directly use the robot model within the identification step.
Hence, we investigate the objective for the considered
robot, when moving as close as possible to what has been
captured in human recordings.

2. INVERSE OPTIMAL CONTROL

With optimal control a certain objective function is min-
imized to derive a local optimal solution. For inverse op-
timal control this objective function is to be determined
using a known optimal solution. In the case of a robot
arm this can also be a recorded motion of a human. The
learned objective function can then be used to achieve
human-like characteristics for reaching new targets. This
generalization to new situations is an important feature of
inverse optimal control.

Because real-time control is not an objective here and
to have more flexibility in the choice of cost functions,
a bi-level approach is chosen. The upper level optimizes
parameters αi based on the difference between the solution
of the lower level and the recorded reference motion. The
lower level solves a forward optimal control problem using
the objective parameters supplied by the upper level.

2.1 Linear combination

One way of learning the objective function U can be by
assuming that it is a linear combination of n cost functions
Ui weighted by parameters αi that do not change over
time. The total cost is then

U =

∫ T

0

[ n∑
i=1

αiUi(z(t),u(t))
]
dt, (1)

with z representing the states, u the controls and T the
motion duration. The problem of finding the objective
function is now reduced to finding the weights αi. A weight
can go to zero if its corresponding cost function does not
contribute to the reference motion.

2.2 Upper level

The inverse optimal control problem can be split into two
levels. The upper level optimization is used to determine
the weight factors α := [α1, . . . , αn] using a least-squares
minimization

min
α

m∑
j=1

||υ∗(Φ(α), tj)− υM
j ||2, (2)

with the comparison criterion υM
j of the physical mea-

surements Mj , j = 1, . . . ,m and the comparison crite-
rion υ∗(Φ(α), tj) of the optimization results Φ(α) :=
(z∗,α(t),u∗,α(t), T ∗,α) for the current set of weights α,
evaluated at the time point tj matching the time of
measurements. Here the motions are compared based
on the position of the end-effector f(z), the arm an-
gle θ(z) and the final time T , hence υ∗(Φ(α), t) :=
(f(z∗,α(t)), θ(z∗,α(t)), T ∗,α), see section 3.3.

Because the lower level evaluations are expensive and the
results can be noisy, a derivative free optimization method
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Fig. 2. Methodology. Human control objective is identified
using inverse optimal control. Corresponding robot
trajectories are generated using optimal control and
executed on real robot.

robot. The robot we consider here is the ABB YuMi with
seven degrees of freedom in each of the two arms.

The paper is organized as follows: In Chapter 2 the
theory behind inverse optimal control using the bi-level
approach is summarized, followed by our implementation
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dimensional pointing task. The cost functions that had the
biggest contributions where those that minimized energy
consumption and angle acceleration. The same approach
was later used for a more realistic three dimensional task
by Sylla et al. (2014), where it was found that a geodesic
and an energy criteria best mimicked human motion. Arm
reaching motions in collaboration tasks were researched
by Mainprice et al. (2015). Two participants performing
a number of pick-and-place tasks while standing next to
each other were recorded. For the inverse optimal control
they use cost functions based on distances to the other
participant and functions achieving smoothness. The tra-
jectories planned with the recovered weights are found to
better resemble human motion than with manually tuned
weights. In Albrecht et al. (2011) a one-level optimization
has been used and it is stated that a combination of torque
change and joint jerk minimization generates humanoid
robot reaching motions, which match human recorded
motions closely. Also based on a one-level approach, task
dependence of cost function was examined for a box mov-
ing task using time dependent weights in Englert et al.
(2017).

Whereas in the cited literature, quality was rated by
how well the generated motions imitate human motions,
in our contribution, we rate the quality of generated
motions by how humans working together with the robot
perceive these motions in comparison to the standard
motions. Different to Mainprice et al. (2015), here we
study the suitability of various physically interpretable
objective functions for human-motion-collaboration that

go beyond smoothening and distance. In contrast to Clever
et al. (2018), where the transferred optimization strategy
includes a re-scaling of the identified weights, here we
directly use the robot model within the identification step.
Hence, we investigate the objective for the considered
robot, when moving as close as possible to what has been
captured in human recordings.

2. INVERSE OPTIMAL CONTROL

With optimal control a certain objective function is min-
imized to derive a local optimal solution. For inverse op-
timal control this objective function is to be determined
using a known optimal solution. In the case of a robot
arm this can also be a recorded motion of a human. The
learned objective function can then be used to achieve
human-like characteristics for reaching new targets. This
generalization to new situations is an important feature of
inverse optimal control.

Because real-time control is not an objective here and
to have more flexibility in the choice of cost functions,
a bi-level approach is chosen. The upper level optimizes
parameters αi based on the difference between the solution
of the lower level and the recorded reference motion. The
lower level solves a forward optimal control problem using
the objective parameters supplied by the upper level.

2.1 Linear combination

One way of learning the objective function U can be by
assuming that it is a linear combination of n cost functions
Ui weighted by parameters αi that do not change over
time. The total cost is then

U =

∫ T

0

[ n∑
i=1

αiUi(z(t),u(t))
]
dt, (1)

with z representing the states, u the controls and T the
motion duration. The problem of finding the objective
function is now reduced to finding the weights αi. A weight
can go to zero if its corresponding cost function does not
contribute to the reference motion.

2.2 Upper level

The inverse optimal control problem can be split into two
levels. The upper level optimization is used to determine
the weight factors α := [α1, . . . , αn] using a least-squares
minimization

min
α

m∑
j=1

||υ∗(Φ(α), tj)− υM
j ||2, (2)

with the comparison criterion υM
j of the physical mea-

surements Mj , j = 1, . . . ,m and the comparison crite-
rion υ∗(Φ(α), tj) of the optimization results Φ(α) :=
(z∗,α(t),u∗,α(t), T ∗,α) for the current set of weights α,
evaluated at the time point tj matching the time of
measurements. Here the motions are compared based
on the position of the end-effector f(z), the arm an-
gle θ(z) and the final time T , hence υ∗(Φ(α), t) :=
(f(z∗,α(t)), θ(z∗,α(t)), T ∗,α), see section 3.3.

Because the lower level evaluations are expensive and the
results can be noisy, a derivative free optimization method
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is used for the upper level. In this case the BOBYQA
algorithm developed by Powell Powell (2009). The system
is implemented in Matlab using the NLopt library from
Johnson (2008) for the upper level optimization.

2.3 Lower level

The lower level is an optimal control problem formulated
as

min
z,u,T

∫ T

0

[ n∑
i=1

αiUi(z(t),u(t))
]
dt (3)

subject to: System equation:

ż =

[
q̇
u

]
, (4)

Forward kinematics bounday conditions:

f(q(0)) = x0; (5)

f(q(T )) = xe (6)

Joint angular speeds bounday conditions:

q̇(0) = 0; (7)

q̇(T ) = 0. (8)

The joint angles and joint angular speeds are the states

z =

[
q
q̇

]
, the joint accelerations are the controls u = q̈,

and f defines the forward kinematics, mapping joint angles
to the end-effector pose in task space. System (3) - (8)
is solved with a direct boundary value problem approach
using multiple shooting as developed by Bock and Plitt
(1984) together with an SQPmethod to solve the nonlinear
programming problems. The controls are discretized by
making them represent the nodes in a shape-preserving
piece-wise cubic interpolation function, because this leads
to a smooth function without the risk of overshoot. The
time between the nodes (τi) is made variable as well, where
a linear constraint ensures that the sum of all τi’s is equal.
Here, we use the fmincon function from Matlab, with the
ode45 function for numerical integration of the system
equation.

The composite cost function of (1) can be combined with
the system equation and be solved simultaneously by the
ode-solver

[
ż

U̇

]
=




q̇
u

n∑
i=1

αiUi(z,u)


 . (9)

This way the accuracy of the solution of the cost is also
incorporated in the error control of the ode-solver.

The SQP algorithm requires gradients of the objective and
constraint functions to determine its search direction and
to determine the first-order optimality of the current step.
The forward kinematics boundary constraints (5) and (6)
are based on the positional and rotational differences of the
end-effector with its target. The analytical Jacobian J(q)
of the arm can be used to efficiently and exactly calculate
the gradient of this function towards q

ẋ = J(q)q̇ J(q) =
(∂xi

∂qj

)
i,j
. (10)

The gradient of the objective function and the gradient of
the continuity constraints are calculated numerically using
a finite difference method.

3. HUMAN AND ROBOT MOTION

In this section we elaborate our choice of cost functions,
describe the models and present our motion recording
system.

3.1 Cost functions

The considered cost functions are inspired by previous
research, not necessarily related to inverse optimal control.
Criteria, minimizing hand and angular velocity, accelera-
tion and jerk have been used to achieve smoothness of
the motion in Flash and Hogan (1985). In Albrecht et al.
(2011) minimization of hand jerk, joint jerk and torque
change is considered.

Minimization of energy was shown to be an important
criteria for humans in Berret et al. (2011). It can be
calculated as

W =

∫ T

0

q̇Tτdt, (11)

where τ is the torque in the joints. However, this assumes
that moving in the opposite direction of the torque gen-
erates energy, while in reality it costs energy. So instead
the absolute work of torques is used, where we make
the assumption that moving with and against the torque
consumes the same amount of energy.

In Sylla et al. (2014) the geodesic criteria is used, it
minimizes joint velocities squared times the inertia matrix.
It prefers the shortest path in joint space and maximizes
smoothness of the motion. Together with the energy cri-
teria it was shown to lead to realistic human motions.

The cost functions used for the optimization are displayed
in Table 1. Uẍ was chosen because the squared function
tends to increase the movement time. Other squared

functions, like on joint acceleration q̈Tq̈ or jerk
...
q T...q ,

had their weights go to zero indicating that they did not
contribute to the upper level minimization.

Table 1. Cost functions used in optimization

Time UT T =
∫ T

0
1dt

Hand acceleration Uẍ

∫ T

0
ẍTẍdt

Energy Uenergy

∫ T

0

∑
|q̇iτi|dt

Geodesic Ugeodesic

∫ T

0
q̇TM(q)q̇dt

3.2 Models

The robot used in this research is the YuMi from ABB. It
has two arms, both with seven degrees of freedom, and is
intended for collaboration with humans. A model of the
YuMi was made with the Robotic Toolbox from Corke
(2017).

Figure 3 shows the kinematic structure of the human
and robot models. Except for the orientation of the last
joint, the main difference lies in the offsets between the
joints. The human shoulder can be approximated as a
ball-and-socket joint, see e.g. Soslowsky et al. (1992) and
is modeled with three revolute joints with zero offset.
Similarly, both the elbow and the wrists joints consist of
two revolute joints with zero offsets. The similar structure

Fig. 3. The human arm (left) and robot arm (right) can
be modeled similarly except for the orientation of the
last joint. The differences in offsets between the joints
are not shown here.

of the human and the robot arm allows to use the robot
model directly within the inverse optimization, avoiding a
re-scaling of weights, when using the identified objective
for robot motion generation. As the energy and geodesic
cost functions are based on the dynamics parameters of
the model (e.g. link mass, center of mass and inertia
parameters), these are included as well.

3.3 Motion recording

To capture reference data for the upper level of the inverse
optimal control, we used a dual depth camera setup for
recording human motion. A Microsoft Kinect v2 was
chosen because of its ability to markerless track human
body positions. Internally it uses a classifier to segment
different parts of the body based on depth image data,
Shotton et al. (2011). The SDK gives access to 25 body
positions in three dimensional space. To improve position
and orientation tracking of the lower arm and the hand a
Leap Motion was added to the system, also a depth camera
but with a closer range. The program for the motion
recording was programmed in C++ on Windows. The
two cameras are calibrated using a checkerboard pattern
using functions provided by the OpenCV library. The body
positions of the two cameras are transformed into the
same coordinate frame, were the weighting is based on the
confidence value δconf provided by the Leap Motion. This
ensures that the hand is tracked even outside of the range
of the Leap Motion without making sudden jumps.

The position and orientation of the hand with respect to
the body frame are recorded, together with the arm angle
and the duration of the motion. These are used to form
the reference data υM for the upper level optimization.
The arm angle parametrizes the motion in the nullspace
of the arm. It is defined as the angle between a vertical
reference plane and a plane though the shoulder, elbow and
wrist. Together these seven values uniquely describe the
arm configuration, see Kreutz-Delgado et al. (1990) and
make comparison of motions between two manipulators
with small kinematic differences possible.

4. RESULTS AND VALIDATION

This chapter shows the results of the bi-level optimiza-
tion, expressed as the optimized weights itself and the
contribution of each weighted cost to the total cost. To
determine if our method for generating trajectories does
indeed lead to improved collaboration we have performed
an experiment where we compare it with two existing
motion planning strategies. Human participants are asked
to rate the shown motions on a number of scales indicating
anthropomorphism and feeling of comfort and safety.

4.1 Results of the bi-level optimization

The bi-level optimization was run on four recorded trajec-
tories, two from left to right and two from right to left. for
all considered examples, the algorithm was able to derive
a robot motion that closely matched the human reference,
as is shown in Figure 4 for the arm angle.
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Fig. 4. Arm angle as recorded and derived with the bi-level
optimization for two trajectories.

Table 2. Optimized weights for the four trajec-
tories

αT αenergy αgeodesic α...q αẍ RMSE
I 1 0.0110 1.0304 0 0.7001 7.08
II 1 0.0200 0.9691 0 0.5207 4.62
III 1 0 1.0957 0 0.7222 10.16
IV 1 0.0196 1.2866 0 0.7035 7.52

Table 2 shows the result of the optimization of the weights
for the four trajectories. Averaging the found weights
would not be feasible because they are relative to each
other. So instead the set of weights that performs best on
all four trajectories was chosen as final result:

U = T + 0.020 Uenergy + 0.97 Ugeodesic + 0.52 Uẍ (12)

Figure 5 shows the contribution of each weighted cost to
the total cost. It is calculated as

ci =
αiUi

U(α)
with U(α) =

n∑
i=1

αiUi. (13)

The main difference with the result from Sylla et al. (2014)
is the large influence of T and Uẍ. This can be explained by
their use of a fixed end time. The geometric and temporal
properties of human arm motion are decoupled, according
to Biess et al. (2007). T and Uẍ counteract each other,
whereas geodesic and energy have little influence on the
duration of the motion.

Fig. 5. Contribution of each cost function to the total cost.

4.2 Validation of results on the robot

The experiment was preformed using the YuMi robot,
which at the moment has two implementations for plan-
ning point-to-point motions: MoveL, with paths linear
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Fig. 3. The human arm (left) and robot arm (right) can
be modeled similarly except for the orientation of the
last joint. The differences in offsets between the joints
are not shown here.

of the human and the robot arm allows to use the robot
model directly within the inverse optimization, avoiding a
re-scaling of weights, when using the identified objective
for robot motion generation. As the energy and geodesic
cost functions are based on the dynamics parameters of
the model (e.g. link mass, center of mass and inertia
parameters), these are included as well.

3.3 Motion recording

To capture reference data for the upper level of the inverse
optimal control, we used a dual depth camera setup for
recording human motion. A Microsoft Kinect v2 was
chosen because of its ability to markerless track human
body positions. Internally it uses a classifier to segment
different parts of the body based on depth image data,
Shotton et al. (2011). The SDK gives access to 25 body
positions in three dimensional space. To improve position
and orientation tracking of the lower arm and the hand a
Leap Motion was added to the system, also a depth camera
but with a closer range. The program for the motion
recording was programmed in C++ on Windows. The
two cameras are calibrated using a checkerboard pattern
using functions provided by the OpenCV library. The body
positions of the two cameras are transformed into the
same coordinate frame, were the weighting is based on the
confidence value δconf provided by the Leap Motion. This
ensures that the hand is tracked even outside of the range
of the Leap Motion without making sudden jumps.

The position and orientation of the hand with respect to
the body frame are recorded, together with the arm angle
and the duration of the motion. These are used to form
the reference data υM for the upper level optimization.
The arm angle parametrizes the motion in the nullspace
of the arm. It is defined as the angle between a vertical
reference plane and a plane though the shoulder, elbow and
wrist. Together these seven values uniquely describe the
arm configuration, see Kreutz-Delgado et al. (1990) and
make comparison of motions between two manipulators
with small kinematic differences possible.

4. RESULTS AND VALIDATION

This chapter shows the results of the bi-level optimiza-
tion, expressed as the optimized weights itself and the
contribution of each weighted cost to the total cost. To
determine if our method for generating trajectories does
indeed lead to improved collaboration we have performed
an experiment where we compare it with two existing
motion planning strategies. Human participants are asked
to rate the shown motions on a number of scales indicating
anthropomorphism and feeling of comfort and safety.

4.1 Results of the bi-level optimization

The bi-level optimization was run on four recorded trajec-
tories, two from left to right and two from right to left. for
all considered examples, the algorithm was able to derive
a robot motion that closely matched the human reference,
as is shown in Figure 4 for the arm angle.
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Fig. 4. Arm angle as recorded and derived with the bi-level
optimization for two trajectories.

Table 2. Optimized weights for the four trajec-
tories

αT αenergy αgeodesic α...q αẍ RMSE
I 1 0.0110 1.0304 0 0.7001 7.08
II 1 0.0200 0.9691 0 0.5207 4.62
III 1 0 1.0957 0 0.7222 10.16
IV 1 0.0196 1.2866 0 0.7035 7.52

Table 2 shows the result of the optimization of the weights
for the four trajectories. Averaging the found weights
would not be feasible because they are relative to each
other. So instead the set of weights that performs best on
all four trajectories was chosen as final result:

U = T + 0.020 Uenergy + 0.97 Ugeodesic + 0.52 Uẍ (12)

Figure 5 shows the contribution of each weighted cost to
the total cost. It is calculated as

ci =
αiUi

U(α)
with U(α) =

n∑
i=1

αiUi. (13)

The main difference with the result from Sylla et al. (2014)
is the large influence of T and Uẍ. This can be explained by
their use of a fixed end time. The geometric and temporal
properties of human arm motion are decoupled, according
to Biess et al. (2007). T and Uẍ counteract each other,
whereas geodesic and energy have little influence on the
duration of the motion.

Fig. 5. Contribution of each cost function to the total cost.

4.2 Validation of results on the robot

The experiment was preformed using the YuMi robot,
which at the moment has two implementations for plan-
ning point-to-point motions: MoveL, with paths linear
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interpolated in Cartesian space and MoveJ, linear interpo-
lated in joint space. These two are compared with our own
implementation using the same forward optimal control
scheme as was used in the lower level of section 2.3, but
now with the identified cost function of (12). This motion
will be referred to as ’Optimal’.
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Fig. 6. Comparison of the three motion implementations
used in the experiment (Joint angles / end-effector
positions).

Figure 6 (top) shows the joint angle trajectories of the
three motion planning implementations. As expected,
MoveJ has linear interpolated paths in joint space and
MoveL has curved paths. Interestingly, Optimal is some-
what in between. In the Cartesian trajectory of the end-
effector MoveL has linear interpolated paths, see Figure 6
(bottom). MoveJ and Optimal both show curved paths,
with Optimal following a less rounded curve.

The joint angle trajectories are generated offline and
exported to motion commands in a RAPID module, which
can run on the YuMi robot. The correct joint angular
speeds are achieved by specifying the duration of each
individual command.

Experiment A questionaire based on Bartneck et al.
(2009) is used to determine the reactions of humans on
the developed method. It is proposed to use a semantic dif-
ferential scale to give rating to different criteria regarding
anthropomorphism, animacy, likeability, perceived intelli-
gence and perceived safety. We chose to use Fake - Natural
and Moving rigidly - Moving elegantly to determine the
anthropomorphism of the motions and Anxious - Relaxed
and Quiescent - Surprised to see how comfortable or safe
the participant feels. A group of 10 participants was tested,
with an average age of 26 years. The participants were
asked to rate their familiarity with robots on a scale from
1 (low) to 5 (high), on average this was 2.

Experimental procedure The participant was first given
a description of the experiment and was asked to sign a
consent form. The participant was sitting in front of the

robot. First the three different motions were shown one
after the other. Then the motions were shown again, but
now with time in between to fill in the four scales. This
procedure was repeated four times, with different start
and end targets for the robot arm, so in total 12 motions
were shown. The order of the motions was mixed for every
new target, and the order of the scales was mixed between
participants.

Fig. 7. Average scores given for the three motion planning
strategies.

Table 3. Answers to the scales expressed in
percentages

MoveL 1 2 3 4 5

Fake 12.5 10.0 22.5 30.0 25.0 Natural

Moving rigidly 7.5 20.0 20.0 30.0 22.5 Moving elegantly

Anxious 0 10.0 12.5 30.0 47.5 Relaxed

Quiescent 22.5 15.0 22.5 30.0 10.0 Surprised

MoveJ 1 2 3 4 5

Fake 0 7.5 10.0 45.0 37.5 Natural

Moving rigidly 0 5.0 15.0 27.5 52.5 Moving elegantly

Anxious 0 2.5 2.5 37.5 57.5 Relaxed

Quiescent 35.0 25.0 12.5 22.5 5.0 Surprised

Optimal 1 2 3 4 5

Fake 0 2.5 2.5 55.0 40.0 Natural

Moving rigidly 0 0 5.0 27.5 67.5 Moving elegantly

Anxious 0 0 5.0 32.5 62.5 Relaxed

Quiescent 32.5 27.5 7.5 30.0 2.5 Surprised

5. DISCUSSION

From the average scores displayed in Fig. 7 it is clear
that the optimal motions are perceived as more natural
and more elegant than the other two implementations.
The participants feel less relaxed and more surprised for
the MoveL motions, but between the MoveJ and Optimal
motions they feel similar. Table 3 shows the percentage
of every choice on the scales. The Optimal motion scores
higher for natural, moving elegantly and relaxed.

Using an alpha level of 0.05, a dependent-samples t test
was conducted. The first two scales are measuring anthro-
pomorphism. Combining them the test indicates that Op-
timal is perceived as significantly more anthropomorphic

than MoveL and MoveJ. When it comes to the last two
scales the results can be combined to give a measure for
perceived safety. The t test shows that there is a signifi-
cant difference between the MoveL and Optimal motions
but that the participants do not experience a significant
difference in perceived safety between MoveJ and Optimal.
However, both are a significant improvement to MoveL.

It is important to state that perceived safety is only a
subjective feeling, while the actual safety of the robot
needs to be ensured with other measures.

6. CONCLUSIONS

We applied inverse optimal control to point-to-point mo-
tions of a seven degrees of freedom robot arm. A bi-
level optimization was introduced to identify a physically
interpretable cost function suitable for the generation of
robot motions that match the human recorded motions.
The results of this study confirm our hypotheses that the
identified cost function can be used to generate motions
for new targets, that show positive effects on how the op-
timal motions are perceived. Our approach helps towards
increasing human acceptance of robot motions and thereby
towards the improvement of human-robot interaction.

In the future the approach of this work could be used
for an online implementation where the forward optimal
control plans its paths in a way that is comfortable for
the human. The weights can also be varied based on the
requirements of the current situation, for example a higher
focus on energy and time minimization in the absence of
a human coworker. Another interesting idea is to make
the weights dependent on the specific human interacting
with the robot, as preferences between humans can greatly
differ. More research is needed on the tasks dependency
of the cost functions, as here only point-to-point motions
are considered. More complex tasks and situations might
require different cost functions.
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cant difference between the MoveL and Optimal motions
but that the participants do not experience a significant
difference in perceived safety between MoveJ and Optimal.
However, both are a significant improvement to MoveL.

It is important to state that perceived safety is only a
subjective feeling, while the actual safety of the robot
needs to be ensured with other measures.

6. CONCLUSIONS

We applied inverse optimal control to point-to-point mo-
tions of a seven degrees of freedom robot arm. A bi-
level optimization was introduced to identify a physically
interpretable cost function suitable for the generation of
robot motions that match the human recorded motions.
The results of this study confirm our hypotheses that the
identified cost function can be used to generate motions
for new targets, that show positive effects on how the op-
timal motions are perceived. Our approach helps towards
increasing human acceptance of robot motions and thereby
towards the improvement of human-robot interaction.

In the future the approach of this work could be used
for an online implementation where the forward optimal
control plans its paths in a way that is comfortable for
the human. The weights can also be varied based on the
requirements of the current situation, for example a higher
focus on energy and time minimization in the absence of
a human coworker. Another interesting idea is to make
the weights dependent on the specific human interacting
with the robot, as preferences between humans can greatly
differ. More research is needed on the tasks dependency
of the cost functions, as here only point-to-point motions
are considered. More complex tasks and situations might
require different cost functions.
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