
 
 

Delft University of Technology

Numerical Modelling of Two-Phase Flow in Fractured Rock Masses Using Zero-Thickness
Interface Elements

Barandiarán, Lucía; Liaudat, J.; López, Carlos Maria; Carol, Ignacio

DOI
10.23967/complas.2021.054
Publication date
2022
Document Version
Accepted author manuscript
Citation (APA)
Barandiarán, L., Liaudat, J., López, C. M., & Carol, I. (2022). Numerical Modelling of Two-Phase Flow in
Fractured Rock Masses Using Zero-Thickness Interface Elements. Paper presented at 16th International
Conference on Computational Plasticity. https://doi.org/10.23967/complas.2021.054

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23967/complas.2021.054
https://doi.org/10.23967/complas.2021.054


XVI International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS 2021
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Abstract. In recent years, the authors and co-workers have developed a 3D finite el-
ement model for coupled thermo-hydro-mechanical (THM) problems in fractured rock
masses. Zero-thickness interface elements are used for taking into account explicitly the
effect of fractures and discontinuities in the fluid flow as well as the effect of fluid pressure
in the crack propagation. Furthermore, the use of zero-thickness elements as a discrete
modelling approach for fractures and discontinuities makes it possible to account for the
heat transport taking place within these elements, even when advection dominates over
diffusion (high Péclet number). The model has been implemented in the finite element
code DRAC5, which is equipped with fracture-based interface elements and MPI paral-
lel capabilities. The code was originally developed considering water-saturated porous
medium and fractures. The new developments described in the present paper, include the
extension of the original formulation to the case of two-phase (liquid and gas) flow within
the porous medium and discontinuities. The liquid includes only liquid water species,
while the gas phase includes water vapour and gas species. The formulation includes
the equilibrium equation, the mass balance of water and gas species and the energy bal-
ance equation. The parameters of the retention and relative permeability curves for the
interface elements, such as the gas entry value and the residual water saturation, are up-
dated with the variation of the normal aperture. The new capabilities of the model are
illustrated with some academic verification examples.

1 INTRODUCTION

Within the context of geomechanics, the study of multiphase flow in fractured rock
masses considers the simultaneous flow of at least two fluid phases i.e. water, gas and,
in some applications, also oil, as well as their interactions with the rock mass. Generally
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speaking, fluid phases are composed by a certain number species that may be transferred
from one phase to another due to changes in the multiphase system conditions. Species
may be defined as the different types of chemical molecules present in the system whereas
phases may be defined as a mixture of the said species isolated by means of a fluid
interface [1]. Two-phase flow, a particular case of multiphase flow, takes place in different
types of coupled problems which are relevant to the design and performance evaluation
of engineering projects such as nuclear waste repositories [2], coalbed methane recovery
[3], CO2 storage in depleted oil reservoirs [4] and fractured shale gas reservoirs [5].

This paper briefly presents a FE model in which fractures are explicitly represented
using zero-thickness interface elements. For this model, an existing THM formulation for
a single liquid fluid phase [6] is extended to consider the simultaneous two phase (liquid
and gas). The main assumptions of the model are the following: the system is formed by
one solid phase and two fluid phases (the water phase and the gas phase), the gas phase
is composed by the gas species and eventually also by water species, the water phase is
composed only by water species, i.e. gas solubility in the aqueous phase is neglected. The
mass transfer between phases is treated with the compositional approach. The mechanical
problem is solved assuming small strains. The field variables are: displacements (u), phase
pressures (pw and pg) and temperature (T ). Ideal gas law is considered and Kelvin-Laplace
as well as Clasius-Clapeyron laws are used to calculate the water vapour pressure. van
Genuchten [7] characteristic curve is used to compute the water saturation and relative
permeabilities (hysteresis is not considered).

2 POROUS MEDIUM FORMULATION

2.1 MECHANICAL PROBLEM

The following equilibrium equation of the porous medium is considered:

LuTσ′ − LuTαm(Swpw + Sgpg) + ρg = 0 (1)

where LuT is the differential operator, σ′ is the effective stress vector (Voigt notation), α
is the Biot’s coefficient, m is the equivalent in the Voigt notation to the identity tensor,
ρ is the average density of the porous medium, considering the contributions of the solid
and fluid phases, g is the gravity acceleration vector, and Sw and Sg are the volumetric
saturation degrees of the pore space with respect to the water and gas phases, respectively.
The solid phase is deformable and subject to thermal strains.

2.2 FLOW PROBLEM

Within the compositional modelling approach, the mass balance equations for the flow
problem are not developed in terms of the mass of each phase, but in terms of the mass
of each chemical species in each phase. The general mass balance equation of a ψ-species
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within a π-phase is defined as follows:

∂
(
nSπρ

πψ
)

∂t
+ ∇T ·

(
nSπρ

πψuπψ
)

+ ∇T ·
(
nSπρ

πψvπ
)

= ṁπψ (2)

for π = w, g and ψ = w,g

where n is the porosity, Sπ is the π-phase saturation, ρπψ is the density of the ψ-species
within the π-phase, vπ is the average velocity of the π-phase in the pore space, uπψ

is the diffusive-dispersive velocity of a ψ-species within the π-phase and ṁπψ is a mass
sink/source term accounting for the exchange of the species with other phases. The
diffusive-dispersive velocity is assumed to be proportional to the concentration gradient
of ψ species in the π-phase (Fick’s law). The velocity of the π-phase is assumed to be
proportional to the gradient of pπ (Darcy’s law).

Since dissolution of gas species in the liquid phase is neglected, uwg = uww = 0. The
absolute value of the sink/source term in the right hand side of the Equation (2) is the
same for the water species in both phases because the mass of evaporated water coming
from the liquid phase is equivalent to the mass entering to the gas phase (ṁwg = −ṁww).
The mass balance equation of a ψ-species in the system is obtained as the sum of the mass
balance equations of that ψ-species in each phase, as established by the compositional
formulation [8].

2.3 THERMAL PROBLEM

The following assumptions are considered for establishing the energy balance equation:
the viscous dissipation related to the fluid flow is neglected, the energy exchange due
to the compression-decompression of the fluid phases is neglected and the system is in
thermodynamic equilibrium (at a given point the temperature of the solid, liquid and
gas phases is the same). Also, the final system equation is obtained as the sum of the
thermal balance of each ψ-species within a π-phase. Under this assumptions the following
equation is obtained:

(ρcp)eff

∂T

∂t
+
(
ρwcw

p qws + ρgcg
pq

gs
)
·∇T −∇T · (χeff∇T ) = −ṁ∆hgw (3)

where (ρcp)eff and χeff are the effective heat capacity and the effective thermal conductivity
of the porous medium, qws and qgs are the volumetric (Darcy’s) flows of each phase,
∆hgw is the specific latent heat of water evaporation, and ṁ is the mass rate of water
evaporation. The first term in the left hand side of Equation (3) is the storage term, the
second term represents the heat transport (advection) and the last corresponds to the
heat conduction. Finally, the term in the right hand side represents the heat sink/source
due to phase change. Heat conduction is calculated by means of a generalized Fourier’s
law and heat transport is considered only for a low-advection condition (Pe<1). As a first
approach, the time derivatives and the gradients of gas pressure have been neglected given
that gas pressure changes are usually very slow and their gradients small in the porous
medium [9]. Total volume variation is expected to be negligible, therefore its contribution
to the energy balance has not been considered.
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3 DISCONTINUITY FORMULATION

The physical model for discontinuities is based on similar assumptions as for the porous
medium. The main differences are the influence of the discontinuity aperture in both the
constitutive laws and balance equations, and the absence of the solid phase, given that
the discontinuities are modelled as the space between two parallel surfaces where the
two-phase flow takes place (Figure 1).

Figure 1: Schematic representation of a discontinuity in a continuum porous medium where (n,l) repre-
sent the local orthogonal coordinate system, w is the discontinuity width or aperture, MP is the mid-plane
of the discontinuity, Ql represents the longitudinal local flow and qtop and qbot represent the transversal
flow incoming from the porous medium located at the top and bottom of the discontinuity. After Segura
[10].

3.1 MECHANICAL PROBLEM

The equilibrium equation of a discontinuity is defined as follows:

σmp = σ′mp −mmp

(
Swpw

mp + Sgpg
mp

)
= 0 (4)

where σmp and σ′
mp are the total and effective traction vectors at the mid-plane, pw

mp

and pg
mp are the average pressure of water and gas phases in the mid-plane, and mmp =[

1 0 0
]T

. The stress traction vector is defined as follows:

σmp =
(
σn τl1 τl2

)T
(5)

where σn is the normal stress and τl1 and τl2 are the tangential components. The relative
displacement at a mid-plane point of the discontinuity is represented by:

r =
(
rn rl1 rl2

)T
(6)

where rn is the normal component (discontinuity aperture) and r l1 and r l2 are the tangen-
tial components. Figure 2 shows the particular case of a one-dimensional discontinuity in
a 2D continuum. Given that no solid phase is considered within the discontinuity and that
the discontinuity space is assumed to be completely occupied by the two fluid phases, the
saturation degrees are defined as the volume fraction of water or gas phase with respect
to the total volume of both phases.
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Figure 2: Stresses tractions and relative displacements at the mid-plane of a 1D discontinuity in a 2D
case. After Segura [10].

3.2 FLOW PROBLEM

The general mass balance equation of a ψ-species within a π-phase in the discontinuity
is defined as follows:

∂
(
rnSπρ

πψ
)

∂t
+ ∇T

j ·
(
rnSπρ

πψuπψl

)
+ ∇T

j ·
(
rnSπρ

πψvπl
)

= ṁπψ
mp (7)

for π = w, g and ψ = w,g

where rn is the aperture of the discontinuity, ∇j =
[
∂
∂l1

∂
∂l2

]T
is the partial differential

operator for the local in-plane axes, uπψl is the longitudinal diffusive-dispersive velocity
of the water vapour and gas species (only for the gas phase) and vπl is the longitudinal
average velocity of the π-phase. The longitudinal advective flow is calculated by means
of a generalized Darcy’s law, considering that the longitudinal transmissivity grows with
the cube of the aperture.

The saturation degree of the discontinuity is obtained as a function of the normal
aperture and the capillary pressure pc = pg − pw at the mid-plane, by means of a modified
version of the classic van Genuchten [7] expression for porous media:

Sw = (1− Swr(rn))

 1

1 +
(

pc

pb(rn)

)n
m + Swr(rn) (8)

where S wr is the residual water saturation, pb is the air-entry pressure value and m, n and
λ are fitting parameters. In contrast to the original expression, pb is not constant but a
monotonic decreasing function of the normal aperture.

The effect of the saturation degree on the effective transmissivity of the discontinuity
is introduced by means of relative permeability coefficients obtained as linear functions
of the the respective saturation degrees.

Besides the longitudinal transmissivity, the existence of a discontinuity may also repre-
sent an obstacle or resistance to the fluid flow in the transversal direction, for instance due
to the transition from a pore system into an open channel and back into a pore system.
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This resistance may reduce the fluid flow in the transversal direction and results in a
localized fluid pressure drop across the discontinuity, according to the following equation:

Qπψ
n = ρπψqπn = ρπψkπnp̌

π
mp (9)

where Qπψ
n is the transversal mass flow of a ψ-species within a π-phase and qπn is the

transversal volumetric flow of a π-phase, kπn the transversal hydraulic conductivity and
p̌πmp the transversal pressure drop, which is defined as the difference between the pressure
at the top and the bottom of the discontinuity: p̌πmp = pπtop− pπbot.

3.3 THERMAL PROBLEM

The general balance of energy along the discontinuity is defined as follows:

(ρcp)eff

∂Tmp

∂t
+
(
ρwcw

p qw
l + ρgcg

pq
g
l

)
·∇jTmp −∇T

j · (χeff∇jTmp)

−rnSg

∂pg
mp

∂t
− qg

l ·∇jp
g
mp + rnp

c∂Sw

∂t
− ps∂rn

∂t
= −ṁmp∆hgw (10)

This equation is obtained by adopting similar assumptions as for the porous medium
with regard to the viscous flow dissipation, the incompressibility of the water phase, the
thermodynamic equilibrium of the system, the substitution of energy by enthalpy and the
summation of the energy equation for each species in the fluid phases. The first three
terms are analogous to those of Equation (3) and represent the thermal storage term,
the advective heat transport and the heat conduction. The subsequent two terms are
related to the time derivative and gradients of the gas pressure, which are expected to
be important in the discontinuity. It is noteworthy that the negative sign in both terms
represents the cooling effect associated to gas expansion. Finally, the remaining terms on
the left hand side of the equation are only considered for the discontinuity (and not for
the continuum) because the variation of the absolute volume occupied by the fluids may
be significant, given that the discontinuity opening is unrestricted.

Analogously to the transversal fluid flow, the transversal heat flow is defined as follows:

hπψn = kπψn Ťmp (11)

where hπψn is the transversal heat flow of a ψ-species within a π-phase, kπψn the transversal
thermal conductivity and Ťmp is the temperature drop, which is defined as the difference
between the temperature at the top and the bottom of the discontinuity: Ťmp = T top−
T bot.

4 NUMERICAL IMPLEMENTATION

The equivalent integral forms of the governing differential equations are obtained by
the application of the Galerkin Weighted Residuals method and the Principle of Virtual
Work. 3D finite elements are used for the spatial discretization of the porous medium. In
the case of the discontinuities, zero-thickness interface elements are used for the spatial
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discretization. The displacements, fluid pressures and temperature at the integration
points of the interface elements are approximated by the interpolation of the element
node values using mid-plane shape functions matrices, as well as transport matrices,
which transform the nodal values into mid-plane values. The generalized trapezoidal rule
is considered for the time discretization. Due to the non-linear nature of the system of
equations obtained, an iterative procedure based on the Newton-Raphson method is used.
The formulation has been implemented in the finite element code DRAC5 following a fully
coupled approach.

5 ACADEMIC VERIFICATION EXAMPLES

5.1 CONTINUUM MEDIUM VERIFICATION EXAMPLE

The problem consists of a single square continuum element of 1 m side. The boundary
conditions are: zero prescribed displacements at the bottom left side of the element, zero
prescribed vertical displacements at the bottom right side of the element, no in or out flow
of water or gas, and a prescribed temperature increment of 100 K. The initial water and
gas pressures in the element are pw = 0.9× 106 Pa and pg = 1.0× 106 Pa, respectively,
the initial saturation is S w = 49.5% and the initial temperature is 300 K. The initial
porosity is n0 = 0.30. The Biot’s coefficient is α = 1.0. The bulk modulus of the solid
grains is Ks = 1.0× 1012 Pa, and their volumetric coefficient of thermal expansion is
βs = 1.0× 10−4 K−1. The continuum medium is linear elastic with a Young modulus
E= 1.0×108 Pa and a Poisson coefficient ν = 0.0. Plain strain condition is assumed. The
molar mass of the gas species (air) is Mg = 0.016 kg/mol. The water phase density is 997
kg/m3. The water compressibility modulus is Cw = 0 Pa, and its volumetric coefficient
of thermal expansion is βw = 2.57× 10−4 K−1. The saturation pressure is pgws

0 = 3169.9
Pa and the specific latent heat is ∆hgw = 2441816.06 J/kg. The two-phase characteristic
curves are obtained with the closed-form equations proposed by van Genuchten [7] using
Swr = 0.20, m=0.3, n=1.43, pb =1.0×104 Pa and a=0.5.

The left plot in Figure 3 shows the evolution of the water phase pressure (pw), gas
phase pressure (pg) and the water vapour pressure (pgw) as temperature is increased from
300 to 400 K. The heating of the porous medium results in the rise of fluid pressures, as
normally expected. The porosity remains practically constant because the reduction of
porosity due to the thermal expansion of the solid grains is compensated by the increase
of porosity due to the volumetric expansion of the porous medium. The final saturation
degree is S w = 48.8%, which is lower than the initial saturation due to water evaporation.
In order to remark the contribution of the water vapour pressure to the fluid pressures,
additional pressure curves are plottled in the left diagram of Figure 3 with dashed lines
corresponding to an additional simulation without taking into account water vapour, i.e.
pgws

0 = 0.0 Pa. The final saturation degree is S w = 49.7% which is practically the same
as the initial degree (49.5%). The slight difference may be related to gas compressibility.
The right plot in Figure 3 shows the evolution of the volumetric strains of the porous
medium. As expected, water vapour pressure contributes to a higher volumetric strain.
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Figure 3: Results of the continuum medium verification example. In the left, evolution of gas phase
pressure (orange), water phase pressure (blue) and vapour pressure (green). Dashed lines correspond to
the evolution of gas and water pressures for a simulation without considering water vapour. In the right,
the evolution of volumetric strain.

5.2 DISCONTINUITY VERIFICATION EXAMPLE 1

This example is analogous to the continuum medium verification example. A single
horizontal interface element of 1 m of length is considered. The boundary conditions are:
zero prescribed displacements of zero at the bottom side of the discontinuity, no in or out
flow of water and gas, and a prescribed temperature increment of 100 K. The disconti-
nuity is closed at the beginning of the simulation, therefore the initial retention curve is
considered to be the same as the porous medium. The initial water and gas pressures in
the element are pw = 0.9× 106 Pa and pg = 1.0× 106 Pa, respectively; the initial water
saturation is S w = 49.5% and the initial temperature is 300 K. The discontinuity is elastic
and the normal stiffness coefficient is K n = 1.0 × 108 Pa/m. The molar mass of the gas
species is Mg = 0.016 kg/mol and the specific heat capacity is cg

p = 2224.72 J/(kg K). The
water phase density is 997 kg/m3. The water compressibility modulus is Cw = 0 Pa, its
volumetric coefficient of thermal expansion is βw = 2.57× 10−4 K−1 and the specific heat
capacity is cw

p = 4184.5 J/(kg K). The saturation pressure is pgws
0 = 3169.9 Pa and the

specific latent heat is ∆hgw = 2441816.06 J/kg. The two-phase characteristic curves are
obtained with the modified closed-form equations proposed by van Genuchten (8) using
S wr = 0.20, m=0.3, n=1.43, pb = 1.0× 104 (air-entry value pressure) and a=0.5. As a
first step, initial pressures, temperature and prescribed displacements are applied in the
element resulting in an initial aperture of the discontinuity (rn0 = 1.0× 10−2 m) which is
used to update the residual water saturation and the air-entry value pressure. Then, the
saturation degree is calculated for the open discontinuity, yielding S w = 2.27%, which is
much lower than the initial degree of the porous medium (S w = 49.5%). The left plot in
Figure 4 shows the evolution of the water phase pressure (pw), gas phase pressure (pg)
and the water vapour pressure (pgw) as temperature is increased from 300 to 400 K in the
discontinuity. In contrast to the porous medium example, the gas and water phase pres-
sures reach lower final values and exhibit different behaviour: gas pressure grows at higher
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pace than the water pressure. As with the porous medium example, additional pressure
curves are plottled in the left diagram of Figure 4 with dashed lines corresponding to an
additional simulation without taking into account water vapour, i.e. pgws

0 = 0.0 Pa. The
effect of water vapour is clearly important in the case of an almost dry discontinuity. The
right plot in Figure 4 shows the variation of the discontinuity aperture (∆rn/rn0), which is
equivalent to the volumetric strain in the porous medium because Poisson coefficient was
considered zero (ν = 0.0). The final apertures of the discontinuity are rn = 1.31×10−2 m
and rn = 1.15× 10−2 m for the first and second (without vapour) simulation respectively.
As expected, water vapour pressure contributes to a larger final aperture. It is notewor-
thy that the magnitude of the volumetric strains in the discontinuity are ten times higher
than the volumetric strains obtained in the porous medium.

300 320 340 360 380 400
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0.6

0.8
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1.2

1.4
106

Pg
v

Pw
v

Pg

Pw

Pv

300 320 340 360 380 400
0

8

16

24

32

with vapour

without vapour

Figure 4: Results of the discontinuity verification example. In the left, evolution of gas phase pressure
(orange), water phase pressure (blue) and vapour pressure (green). Dashed lines correspond to the
evolution of gas and water pressures for a simulation without considering water vapour. In the right, the
variation of the discontinuity aperture.

5.3 DISCONTINUITY VERIFICATION EXAMPLE 2

The problem consists of a single interface element of 1 m of length. The boundary con-
ditions are: zero prescribed displacements, fixed water pressure, gas null flow, and a pre-
scribed temperature increment of 40 K. The initial water and gas pressures in the element
are pw = 0.9× 106 Pa and pg = 1.0× 106 Pa, respectively, the initial water saturation is
S w = 49.5% and the initial temperature is 298.15 K. The joint aperture is rn = 1.25× 10−5

m. The molar mass of the gas species is Mg = 0.016 kg/mol and the specific heat ca-
pacity is cg

p = 2224.72 J/(kg K). The water phase density is 1000 kg/m3. The water
compressibility modulus is Cw = 0 Pa, its volumetric coefficient of thermal expansion is
βw = 2.57× 10−4 K−1 and the specific heat capacity is cw

p = 4184.5 J/(kg K).The satura-
tion pressure is pgws

0 = 3169.9 Pa and the specific latent heat is ∆hgw = 2441816.06 J/kg.
The two-phase characteristic curves are obtained with the modified closed-form equa-
tions proposed by van Genuchten (8) using S wr = 0.20, m=0.3, n=1.43, pb = 1.0× 104
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(air-entry value pressure) and a=0.5.
The closed-form expression of the gas pressure evolution within the element due to the

temperature increase is given in Eq. (12):

∆pg =
−B +

√
B2 − 4AC

2A
(12)

with

A = −∂Sw

∂pc

∣∣∣
n

(13)

B = Sgn − p
g
n

∂Sw

∂pc

∣∣∣
n

(14)

C = −pg
nSgn

∆T

Tn
(15)

The water mass release as a function of temperature and saturation is obtained as the
difference between the water mass of the system at times n+1 and n, as given in Eq. (16):

∆mw = −ρw
nβw∆TSwn+1rn + ρw

n∆Swrn (16)

The total energy variation is obtained analogously, as given in Eq. (17):

∆E = ∆mcw
p Tn+1 + rn(ρc)effn+1Tn+1 − rn(ρc)effnTn − rnSgn∆pg − pcrn∆Sw (17)

The results obtained from the simulation are represented in Figure 5. As expected,
gas pressure increases with temperature following the ideal gas law. Since the aperture of
the discontinuity is fixed, the total volume remains constant while gas expands within the
discontinuity, expelling water and consequently decreasing the water saturation degree. In
addition, water also is expelled from the system because of the density reduction associated
to the thermal dilatation. The energy variation is positive because of the ingoing heat
flow associated to the imposed temperature increment.

An additional simulation taking into account the effect of water vapour has also been
performed. As intuitively expected, the presence of water vapour results in an additional
increase of gas phase pressure within the discontinuity. Therefore, water saturation and
water mass expulsion are also increased. It is remarkable that the system requires more
than the double of the energy to heat the system up to 338.15 K when water vapour is
considered.

6 CONCLUDING REMARKS

This paper describes the coupled thermo-hydro-mechanical two-phase flow in fractured
rock masses using zero-thickness interface elements. In the first part of the paper the for-
mulation for the continuum medium and the interface elements is briefly summarized.
The main differences between them have been highlighted, such as the influence of dis-
continuity aperture in the retention curve and in the thermal problem. In the second
part, three simple verification examples have been presented in which the importance of
considering water vapour in the gas phase has been demonstrated. Current work aims at
the simulation of benchmark multiphase flow cases in the literature.
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Figure 5: Results of the discontinuity verification example. Black lines correspond to analytic values
obtained with equations [8], [12], [16] and [17]. Red circles correspond to the results obtained with
DRAC5, and the yellow lines correspond to an additional simulation taking into account the effect of
water vapour.
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