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Abstract
We consider the statistical non-linear inverse problem of recovering the absorp-
tion term f > 0 in the heat equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu − 1
2
Δu + f u = 0 onO × (0, T)

u = g on ∂O × (0, T)

u(·, 0) = u0 onO,

where O ∈ Rd is a bounded domain, T < ∞ is a fixed time, and g, u0 are given
sufficiently smooth functions describing boundary and initial values respec-
tively. The data consists of N discrete noisy point evaluations of the solution
u f on O × (0, T). We study the statistical performance of Bayesian nonpara-
metric procedures based on a large class of Gaussian process priors. We show
that, as the number of measurements increases, the resulting posterior distribu-
tions concentrate around the true parameter generating the data, and derive a
convergence rate for the reconstruction error of the associated posterior means.
We also consider the optimality of the contraction rates and prove a lower bound
for the minimax convergence rate for inferring f from the data, and show that
optimal rates can be achieved with truncated Gaussian priors.
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Gaussian priors, frequentist consistency
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1. Introduction

Inverse problems arise from the need to extract information from indirect and noisy mea-
surements. In many scientific disciplines, such as imaging, medicine, material sciences and
engineering, the relationship between the quantity of interest and the collected data is deter-
mined by the physics of the underlying system and can be modelled mathematically. In general,
we are interested in recovering some function f from measurements of G( f ), where G is the for-
ward operator of some partial differential equation (PDE). In practice, a statistical observation
scheme provides us data

Yi = G( f )(Zi) + σWi, i = 1, . . . , N, (1)

where the Zi’s are points at which the PDE solution G( f ) is measured, and the Wi’s are stan-
dard Gaussian noise variables scaled by a fixed noise level σ > 0. The inverse problem then
consists of reconstructing f from the noisy measurements (Yi, Zi)N

i=1. Many, possibly nonlinear,
inverse problems fit into this framework, including electrical impedance tomography [15, 31],
photoacoustic tomography and several other hybrid imaging problems [8, 9, 39], and inverse
scattering [16, 30]. Even though inverse problems have been studied in great detail, see e.g.
[11, 21, 33], statistical noise models, such as the one above, have been analysed only more
recently [6, 13, 32].

In many applications the forward operator G arising from the related PDE is non-linear
in f , and so the negative log-likelihood function arising from the measurement (1) can be
non-convex. This means that many commonly used methods like Tikhonov regularisation and
maximum a priori (MAP) estimation, where one has to minimise a penalised log-likelihood
function, cannot be reliably computed by standard convex optimisation techniques. There are
some iterative optimisation methods, such as Landweber iteration and Levenberg–Marquardt
regularisation, that circumvent the problems arising from non-convexity, see [34] where the
parabolic PDE considered here has been studied, and also [7, 10, 33]. In this paper we con-
sider the Bayesian approach which offers an attractive alternative for solving complex inverse
problems, see e.g. [18, 57]. In the standard Bayesian approach one assigns a Gaussian prior
Π to f , which is then updated, given data (Yi, Zi)N

i=1, into a posterior distribution for f , using
Bayes’ theorem. The posterior distribution can be used to calculate point estimates but it also
delivers an estimate of the statistical uncertainty in the reconstruction. If the forward map can
be evaluated numerically one can deploy modern MCMC methods, such as stochastic gradi-
ent MCMC and parallel tempering, to construct computationally efficient Bayesian algorithms
even for complicated non-linear inverse problems [12, 20, 40, 44], hence avoiding optimisa-
tion algorithms and inversion of G. Computational guarantees for the mixing times of such
algorithms are also available even in general high-dimensional non-linear settings [14, 28, 53].

Since there is no objective way to select a prior distribution it is natural to ask how the
choice of the prior affects the solution, and especially if the conclusions are asymptotically
independent of the prior. Another important question that arises is whether Bayesian inference
provides a statistically optimal estimate of the unknown quantity f . If we assume that the data
are generated from a fixed ‘true’ function f = f 0, we would like to know whether the posterior
mean f = EΠ( f | (Yi, Zi)N

i=1) converges towards the ground truth, and at what speed the pos-
terior contracts around f 0. Nonparametric Bayesian inverse problems have been extensively
studied in linear settings and the statistical validity of Bayesian inversion methods is quite well
understood, see e.g. [2, 26, 35–37, 46, 55, 58].
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However, non-linear inverse problems are fundamentally more challenging and very little
is known about the frequentist performance of Bayesian methods. Nonparametric Bayesian
posterior contraction rates for discretely observed scalar diffusions were considered in [50],
and Bernstein–von Mises theorems for time-independent Schrödinger equation and compound
Poisson process were studied in [49, 51] respectively. The frequentist consistency of Bayesian
inversion in the elliptic PDE in divergence form was examined in [61]. All the above papers
employ ‘uniform wavelet type priors’ with bounded Cβ-norms. In this paper we consider more
practical Gaussian process priors which are regularly used in applications, and which allow the
use of modern MCMC methods such as the preconditioned Crank–Nicholson algorithm. Gaus-
sian process priors were considered in [27] where the consistency of the Bayesian approach
in the nonlinear inverse problem of reconstructing the diffusion coefficient from noisy obser-
vations of the solution to an elliptic PDE in divergence form was studied. Notably, building
on the ideas from [48] where the consistency of Bayesian inversion of noisy non-abelian x-ray
transform is considered [27], also provides contraction results for general non-linear inverse
problems that fulfil certain Lipschitz and stability conditions. A general class of non-linear
inverse regression models, satisfying particular analytic conditions on the model including
invertibility of the related Fisher information operator, has been considered in the recent paper
[47], where a general semi-parametric Bernstein–von Mises theorem is proved. Closely related
to [27] are the results achieved in [52] for MAP estimates associated to Gaussian process pri-
ors, but since the proofs are based on variational methods they are very different from the
Bayesian ones. We also mention the recent results on statistical Caldéron problem [1], where
a logarithmic contraction speed is proved for the problem of recovering an unknown conduc-
tivity function from noisy measurements of the voltage to current map, also known as the
Dirichlet-to-Neumann map, at the boundary of the medium.

In this paper we consider the problem of recovering a coefficient of a parabolic partial dif-
ferential operator from observations of a solution to the associated PDE, under given boundary
and initial value conditions, corrupted by additive Gaussian noise. More precisely, we will
study the heat equation with an additional absorption or cooling term that presents all the con-
ceptual difficulties of a time dependent parabolic PDEs but allows a clean exposition; let g and
u0 be sufficiently smooth boundary and initial value functions respectively, and let f : O → R

be an unknown absorption term determining the solutions u f of the PDE

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L f (u) = ∂tu − 1

2
Δxu + f u = 0 onO × (0, T)

u = g on ∂O × (0, T)

u(·, 0) = u0 onO,

(2)

where Δx =
∑d

i=1∂
2/∂x2

i denotes the standard Laplace operator and ∂t the time deriva-
tive. Under mild regularity conditions on f , assuming that f > 0, and g, u0 satisfying nat-
ural consistency conditions on ∂O × {0} the theory of parabolic PDEs implies that (2) has
a unique classical solution G( f ) = u f ∈ C(O × (0, T)) ∩ C2,1(O × (0, T)). The above type
reaction–diffusion equations can also be used to describe ecological systems like population
dynamics, with u being density of prey and f describing resources or the effect of predators
[62], evolution of competing languages [54, 56], and many other spread phenomena. Another
attractive way of modelling time evolution is using stochastic PDEs, see e.g. [3, 29] and the
references therein. However, these models are usually not feasible for Bayesian analysis due
to complex likelihood functions.
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We show that the posterior means arising from a large class of Gaussian process priors for
f provide statistically consistent recovery of the unknown function f in (2) given data (1),
where Zi are drawn from a uniform distribution onO × (0, T), and provide explicit polynomial
convergence rates as the number of measurements increases. We start with contraction results
for posterior distributions arising from a wide class of rescaled Gaussian process priors, similar
to those considered in [27, 48], which address the need for additional a priori regularisation
of the posterior distribution to overcome the effects of non-linearity of the forward map G.
Building on the ideas from [48] and further developed in [27], we first show that the posterior
distributions arising from these priors optimally solve the PDE-constrained regression problem
of inferring G( f ) from the data (1). These results can then be combined with suitable stability
estimates for the inverse of G to show that the posterior distribution contracts around the true
parameter f 0, that generated the data, at certain polynomial rate, and that the posterior mean
converges to the truth with the same rate. We also consider the optimality of the contraction
rates and prove a lower bound for the minimax convergence rate for inferring f 0 from the data.
We note that, while the rates achieved in the first part approach the optimal rate for very smooth
models, they are not in general optimal. In the second part of the paper we show that optimal
rates can be achieved with truncated and rescaled Gaussian priors. To the best of our knowledge
this is the first time such optimality results are shown for a non-linear inverse problem.

This paper is organised as follows. The basic setting of the statistical inverse problem and
the notations used in the paper can be found in section 2. The main results are stated in section 3
and their proofs are given in section 4.

2. A statistical inverse problem for parabolic PDEs

2.1. Parabolic Hölder and Sobolev spaces

Throughout this paper O ∈ Rd, d ∈ N, is a given non-empty, open and bounded set with
smooth boundary ∂O and closure O. We define the space-time cylinder Q = O × (0, T), with
T ∈ (0,∞), and denote its lateral boundary ∂O × (0, T) by Σ.

The spaces of continuous functions defined on O ⊂ Rd and O are denoted by C(O) and
C(O) respectively, and endowed with the supremum norm ‖ · ‖∞. For positive integers k ∈ N,
Ck(O) is the space of k-times differentiable functions with uniformly continuous derivatives.
For non-integer s > 0 we define Cs(O) as

Cs(O) =

{
f ∈ C	s
(O) : ∀ |α| = 	s
, sup

x,y∈O,x �=y

|Dα f (x) − Dα f (y)|
|x − y|s−	s
 < ∞

}
,

where 	s
 denotes the largest integer less than or equal to s, and for any multi-index
α = (α1, . . . ,αd),Dα is the αth partial differential operator. The Hölder space Cs(O) is normed
by

‖ f ‖Cs(O) =
∑

|α|�	s

‖Dα f (x)‖∞ +

∑
|α|=	s


sup
x,y∈O,x �=y

|Dα f (x) − Dα f (y)|
|x − y|s−	s
 ,

where the second sum is removed if s is an integer. We denote by C∞(O) =
⋂

sC
s(O) the set of

smooth functions. We also need Hölder–Zygmund spaces Cs(O) which can be defined as a spe-
cial case of Besov spaces by Cs(O) = Bs

∞,∞(O), s � 0, see [59, section 3.4.2] for definitions. If
s /∈ N then Cs(O) = Cs(O) and we have the continuous embeddingsCs′ (O) � Cs(O) � Cs(O),
for s ∈ N ∪ {0}, s′ > s.
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The classical space to look for a solution to (2) is the parabolic Hölder space C2,1(Q) defined
by

C2,1(Q) = { f ∈ C(Q) : ∃ ∂t f , Di j f ∈ C(Q), i, j = 1, . . . , d} .

Let θ ∈ (0, 1] and define

‖ f ‖Cθ,θ/2(Q) = ‖ f ‖∞ + [ f ]θ,θ/2, [ f ]θ,θ/2 = sup
z1,z2∈Q,z1 �=z2

| f (z1) − f (z2)|
ρ(z1, z2)θ

,

where ρ (z1, z2) is the parabolic distance between points z1 = (x1, t1) ∈ Rd+1 and
z2 = (x2, t2) ∈ Rd+1 given by ρ (z1, z2) = (‖x1 − x2‖2

2 + |t1 − t2|)1/2. We denote by Cθ,θ/2(Q)
the space of all functions f for which ‖ f ‖Cθ,θ/2 < ∞. Finally, the parabolic Hölder space
C2+θ,1+θ/2(Q), θ ∈ (0, 1] is defined as the space of all functions f for which

‖ f ‖C2+θ,1+θ/2(Q) =
∑
|α|�2

‖Dα f (x, t)‖∞ + ‖∂t f ‖∞ + [ f ]2+θ,1+θ/2 < ∞,

where

[ f ]2+θ,1+θ/2 =

d∑
i, j=1

[Di j f ]θ,θ/2 + [∂t f ]θ,θ/2.

Parabolic Hölder spaces are Banach spaces. For further details see e.g. [5, 23, 38]. Higher
order parabolic Hölder spaces can be defined in a similar way. We will also need parabolic
Hölder–Zygmund (Besov–Hölder) spaces C2+θ,1+θ/2(Q) = B2+θ,1+θ/2

∞,∞ (Q), which possess sim-
ilar properties to the isotropic Hölder–Zygmund spaces, see e.g. [4, chapter 7.2].

Denote by L2(O) the Hilbert space of square integrable functions on O, equipped with its
usual inner product 〈·, ·〉L2(O). For an integer k � 0, the order-k Sobolev space on O is the
separable Hilbert space

Hk(O) =
{

f ∈ L2(O) : ∀ |α| � k, ∃Dα f ∈ L2(O)
}

,

with the inner product 〈 f , g〉Hk(O) =
∑

|α|�k〈Dα f , Dαg〉L2(O). For a non-integer s � 0, Hs(O)
can be defined by interpolation, see, e.g. [41, section 1.9.1].

We will also use parabolic Sobolev spaces Hs,s/2(Q), with s � 0, defined by

Hs,s/2(Q) = L2 ((0, T); Hs(O)) ∩ Hs/2
(
(0, T); L2(O)

)
,

which is a Hilbert space with a norm

‖u‖2
Hs,s/2(Q)

=

∫ T

0
‖u(·, t)‖2

Hs(O) dt + ‖u‖2
Hs/2((0,T);L2(O))

,

see [42, section 4.2.1].
For s > d/2 the Sobolev embedding theorem implies that Hs(O) embeds continuously into

Cr(O) for any s > r + d/2 � d/2. Let g ∈ Hs,s/2(Q) and f ∈ Hs(O). We then have

‖ f g‖Hs,s/2(Q) � c‖ f ‖Hs(O)‖g‖Hs,s/2(Q), s > d/2. (3)

5
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We will also use the following bound for g ∈ Hs,s/2(Q) and f ∈ Cs,s/2(Q)

‖ f g‖Hs,s/2(Q) � c‖ f ‖Cs,s/2(Q)‖g‖Hs,s/2(Q), s � 0. (4)

The above bounds follow from similar results in isotropic spaces (see e.g. [59]).
Whenever there is no risk of confusion, we will omit the reference to the underlying domain

O or Q. Attaching a subscript c to any space X denotes the subspace (Xc, ‖ · ‖X) consisting of
functions with compact support in O (or Q). Also, if K is a non-empty compact subset of O,
we denote by Hs

K(O) the closed subspace of functions in Hs(O) with support contained in K.
The above definitions extend without difficulty to the case where Q is replaced by its lateral
boundary Σ.

We use the symbols � and � for inequalities holding up to a universal constant. For a
sequence of random variables FN we write FN = OP(aN) if for all ε > 0 there exists Mε < ∞
such that P(|FN| � MεaN) < ε for all N large enough. Finally, we denote by L(F ) the law of
a random variable F.

2.2. The measurement model and Bayesian approach

Let the source function g ∈ C2+θ,1+θ/2(Σ) and the initial value function u0 ∈ C2+θ(O), with
θ ∈ (0, 1] satisfy the consistency conditions

g(x, 0) = u0(x) and ∂tg(x, 0) − 1
2
Δxu0(x) + f (x)u0(x) = 0, x ∈ ∂O. (5)

Also, let f ∈ Cθ(O) and f � fmin > 0. Then the initial boundary value problem (2) has a
unique classical solution u f ∈ C(Q) ∩ C2+θ,1+θ/2(Q), see e.g. [38, 43], and a representation
in terms of the Feynman–Kac formula

u(x, t) = Ex

(
u0(Xt)1{τt=t} exp

(
−
∫ t

0
f (Xs)ds

))
+ Ex

(
g(XτO , τO)1{τt<t} exp

(
−
∫ τO

0
f (Xs)ds

))
(x, t) ∈ Q. (6)

Above 1A is the indicator function of a subset A, (Xs : s � 0) is a d-dimensional Brow-
nian motion started at x ∈ O, with the exit time τO satisfying supx∈O Ex(τO) < ∞, and
τt = min{τO, t}, see e.g. [22]. The related inverse problem is to recover f given u f (and g, u0).
If we additionally assume that f is bounded, g � gmin > 0 and u0 � u0,min > 0 we see, using

(6) and Jensen’s inequality, that u f > 0. Hence, given u f we can simply write f =
( 1

2Δx−∂t )u f
u f

.

The more practical question we are interested in, is how to optimally solve the above non-linear
inverse problem when the observations are corrupted by statistical noise.

We consider the following parameter space for f : for an integer α > 2 + d/2, fmin > 0, and
n = n(x) being the outward pointing normal at x ∈ ∂O, let

Fα, fmin =

{
f ∈ Hα(O) : inf

x∈O
f (x) > fmin, f |∂O = 1,

∂ j f
∂n j |∂O

= 0 for 1 � j � α− 1

}
. (7)

6
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Let f ∈ Fα, fmin and denote by G( f ) the solution to (2). The measurement model we consider
is

Yi = G( f )(Zi) + σWi, Wi ∼ N (0, 1) i = 1, . . . , N, (8)

where the noise amplitude σ is considered to be a known constant, and the design points
Zi = (Xi, Ti) are drawn from a uniform distribution on Q. That is, for N ∈ N,

(Zi)N
i=1 ∼ μ, μ = dz/vol(Q),

with dz being the Lebesgue measure and vol(Q) =
∫

Q d(x, t). We assume that both space
and time variable follow uniform distribution to unify the following approach. The results
could also be developed for deterministic time design at the expense of introducing further
technicalities.

We will take the Bayesian approach to the inverse problem of inferring f from the noisy
measurements (Yi, Zi)N

i=1, and place a priori measure on the unknown parameter f . Gaussian
process priors are a natural choice but they are supported in linear spaces (e.g., Hα

c (O)), which
is why we next define a convenient bijective re-parametrisation for f ∈ Fα, fmin . We follow the
approach of using regular link functions as in [27, 52].

Definition 1.

(a) A function Φ is called a link function if it is a smooth, strictly increasing bijective map
Φ : R→ ( fmin,∞) satisfying Φ(0) = 1 and Φ′(t) > 0 for all t ∈ R.

(b) A function Φ : (a, b) → R:, ∞ � a, b � ∞, is called regular if all the derivatives of Φ are
bounded on R.

Note that given any link function Φ, one can show (see [52, section 3.1]) that the parameter
space Fα, fmin in (7) can be written as

Fα, f min = {Φ ◦ F : F ∈ Hα
c (O)} .

We can then consider the solution map associated to (2) as one defined on Hα
c (O);

G : Hα
c (O) → L2(O), F �→ G(F) :=G(Φ ◦ F), (9)

where G(Φ ◦ F) = G( f ) is the solution to (2) with f = Φ ◦ F ∈ Fα, fmin .
Using the above re-parametrisation f = Φ ◦ F with a given link function the observation

scheme (8) can be rewritten as

Yi = G(F)(Zi) + σWi, i = 1, . . . , N. (10)

The random vectors (Yi, Zi) on R× Q are then i.i.d. with laws denoted by Pi
F. It follows that

Pi
F has the Radon–Nikodym density

pF(y, z) :=
dPi

F

dy × dμ
(y, z) =

1√
2πσ2

e−
(y−G (F)(z))2

2σ2 , y ∈ R, z ∈ Q, (11)

where dy denotes the Lebesgue measure on R. We write PN
F = ⊗N

i=1Pi
F for the joint law of

(Yi, Zi)N
i=1 on RN × QN , and Ei

F, EN
F for the expectation operators corresponding to the laws

Pi
F, PN

F respectively.

7
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We model the parameter F ∈ Hα
c (O) by a Borel probability measure Π supported on the

Banach space C(O). Since the map (F, (y, z)) �→ pF(y, z) can be shown to be jointly measurable
the posterior distribution Π(·|YN , ZN) of F|YN , ZN arising from the model (10) equals to

Π
(
B|YN , ZN

)
=

∫
Be�

N (F) dΠ(F)∫
C(O)e

�N (F) dΠ(F)

for any Borel set B ⊆ C(O). Above

�N(F) = − 1
2σ2

N∑
i=1

(Yi − G(F)(Zi))
2

is the joint log-likelihood function up to a constant.

3. Posterior consistency results

We consider priors that are build around a Gaussian base prior Π′ and then rescaled by N−γ ,
with appropriate γ > 0, to provide additional regularisation to combat the non-linearity of the
inverse problem, as suggested in [48] and further studied in [27], see also [52]. We first consider
certain Gaussian process priors supported on Cβ , β � 2, and show that the posterior distribu-
tions arising from these priors concentrate near sufficiently regular ground truth F0 (or f 0)
assuming that the data (YN , ZN) is generated through model (10) with F = F0. We then prove
a minimax lower bound for inferring f from the data, and show that the optimal convergence
rate can be achieved using truncated Gaussian base priors. The proofs of the theorems can be
found from section 4.

In the following we are interested in recovering F0 (or f 0) with Hα, α > β + d/2 � 2 +
d/2, smoothness. For this we assume that g ∈ H3/2+α,3/4+α/2(Σ) and u0 ∈ H1+α(O) satisfy the
following consistency condition; there exists ψ ∈ H2+α,1+α/2(Q) such that

ψ(x, t) = g(x, t) onΣ, ψ(x, 0) = u0(x) onO (12)

and ψ satisfies

∂k
t

((
∂t −

1
2
Δx + f

)
ψ

) ∣∣∣∣
t=0

= 0 for 0 � k <
α

2
− 1

2
. (13)

Then u f ∈ H2+α,1+α/2(Q) ⊂ C2+β,1+β/2(Q), [42, theorem 5.3]. The above is a standard com-
patibility condition and a generalisation of (5) stating that the source and initial value func-
tions meet smoothly enough on the boundary ∂O × {0} see, e.g., [42, section 2] for general
compatibility relations and trace theorems in parabolic spaces. Especially we have that

g(x, 0) = u0(x), x ∈ ∂O.

Note that if f ∈ Fα, fmin then f |∂O = 1 and we can, for example, take g(x, t) = 1 − t and
u0(x) = 1 in a small neighbourhood of ∂O × {0}. The above consistency conditions are
sufficient but can be relaxed for many of the following results. We also assume that

u0 � u0,min > 0, and g � gmin > 0 (14)

8
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so that u f > 0 for f ∈ Fα, fmin .

3.1. Rescaled Gaussian priors

We refer, e.g., to [25, section 2] for the basic definitions of Gaussian measures and their
reproducing kernel Hilbert spaces (RKHS).

Condition 2. Let α > β + d/2, with some β � 2, and letH be a Hilbert space continuously
imbedded into Hα

c (O). Let Π′ be a centred Gaussian Borel probability measure on the Banach
space C(O) that is supported on a separable measurable linear subspace of Cβ(O), and assume
that the reproducing-kernel Hilbert space of Π′ equals to H.

As a simple example of a base prior satisfying condition 2 we can consider Whittle–Matérn
process M = {M(x), x ∈ O} of regularity α− d/2, see [27, example 25] or [24, example
11.8] for details. Assume that the measurement (10) is generated from a ‘true unknown’
F0 ∈ Hα(O) that is supported on a given compact subset K of the domain O, and fix a smooth
cutoff function χ ∈ C∞

c (O) such that χ = 1 on K. Then Π′ = L(χM) is supported on Cβ′ (O)
for any β′ < α− d/2, and its RKHS H = {χF, F ∈ Hα(O)} is continuously imbedded into
Hα

c (O) and contains Hα
K(O). The condition F0 ∈ H then equals to the standard assumption that

F0 ∈ Hα(O) is supported on a strict subset K of O.
In the following we consider the re-scaled prior

ΠN = L (FN) , FN = N− d
4α+8+2d F′, (15)

where F′ ∼ Π′. Then ΠN defines a centred Gaussian prior on C(O), and its RKHS HN is given
by H with the norm

‖F‖HN = N
d

4α+8+2d ‖F‖H.

Theorem 3. For a fixed integer α > β + d/2, β � 2, consider the Gaussian prior ΠN

in (15) with the base prior Π′ satisfying condition 2 with RKHS H. Let ΠN(·|YN, ZN)
be the resulting posterior distribution arising from observations (YN, ZN) in (10) with the
boundary and initial value functions in (2) satisfying (12)–(14), and with F = F0 ∈ H. Set
δN = N−(α+2)/(2α+4+d).

Then for any D > 0 there exists a sufficiently large L > 0 such that, as N →∞,

ΠN

(
F : ‖G(F) − G (F0)‖L2(Q) > LδN |YN , ZN

)
= OPN

F0

(
e−DNδ2

N

)
(16)

and for sufficiently large M > 0

ΠN

(
F : ‖F‖Cβ(O) > M|YN , ZN

)
= OPN

F0

(
e−DNδ2

N

)
. (17)

Next we will formulate a theorem about the posterior contraction around f0 in L2-norm. For
this we need the following push-forward posterior distribution

Π̃N (· | YN , ZN) = L( f ), f = Φ ◦ F, F ∼ ΠN(· | YN , ZN). (18)

Theorem 4. Let ΠN(·|YN, ZN), δN and F0 be as in theorem 3 with an integer β � 2, and
denote f0 = Φ ◦ F0. Then for any D > 0 there exists L > 0 large enough such that, as N →∞,

Π̃N

(
f : ‖ f − f0‖L2(O) > Lδ

β
2+β
N | YN , ZN

)
= OPN

f0
(e−DNδ2

N ).

9
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We can also show that the posterior mean EΠ(F | YN , ZN) of ΠN(·|YN, ZN) converges to F0

with speed δ
β

2+β
N .

Theorem 5. Under the assumptions of theorem 4 let F̄N = EΠ(F | YN , ZN) be the mean of
ΠN(·|YN, ZN). Then, as N →∞, we have

PN
F0

(
‖F̄N − F0‖L2(O) > Lδ

β
2+β

N

)
→ 0.

Note that, since a composition with the link functionΦ is L2-Lipschitz, the above result also
holds for the original potential f, that is, we can replace ‖F̄N − F0‖L2 by ‖Φ ◦ F̄N − f0‖L2 . The
proof of theorem 5 follows directly from theorems 3 and 4, and the proof of [27, theorem 6].

3.2. Truncated Gaussian priors

In practice so called sieve-priors, which are concentrated on a finite-dimensional approxima-
tion of the parameter space supporting the prior, are often employed for computational reasons.
One of the commonly used methods is to use the truncated Karhunen–Loève series expansion
of the Gaussian base prior Π′. The contraction rate (16) of the forward problem remains valid
with these truncated priors if the approximation spaces are appropriately chosen. In this section
we will establish the optimal rate of estimating f0 from the data and show that it can be achieved
with truncated and rescaled priors.

Let {Ψl,r, l � −1, r ∈ Zd} be an orthonormal basis of L2(Rd) composed of sufficiently reg-
ular, compactly supported Daubechies wavelets, see the proof of theorem 6 for more details.
We assume that F0 ∈ Hα

K(O) for some K ∈ O, and denote by Rl the set of indices r such that
the support of Ψl,r intersects with K. Fix any compact K′ ⊂ O such that K � K′ and a cut-
off function χ ∈ C∞

c (O) for which χ = 1 on K′. Let α > 2 + d/2, and consider the prior Π′
J

arising as the law of the Gaussian sum

Π′
J = L(χF̃), F̃ =

∑
l�J

r∈Rl

2−αlFl,rΨl,r, Fl,r
i.i.d.∼ N (0, 1), (19)

where J = JN →∞ is a deterministic truncation point. Then Π′
J defines a centred Gaussian

prior that is supported on a finite dimensional space

HJ := span{χΨl,r, l � J, r ∈ Rl} ⊂ C(O).

Theorem 6. Let ΠN be the rescaled prior as in (15), where now F′ ∼ Π′
J, with Π′

J defined
in (19), and J = JN ∈ N is chosen so that 2J � N1/(2α+4+d). Let ΠN(·|YN, ZN) be the resulting
posterior distribution arising from data (YN, ZN) in (10) with the boundary and initial value
functions in (2) satisfying (12)–(14), with F = F0 ∈ Hα

K(O). Let δN be as in theorem 3, and
assume that f0 = Φ ◦ F0. Then (16) remains valid and for any D > 0, and for sufficiently large
M > 0,

ΠN

(
F : ‖F‖Hα(O) > M|YN , ZN

)
= OPN

F0

(
e−DNδ2

N

)
, (20)

10
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as N →∞. Furthermore, let Π̃N(· | YN , ZN) be the push-forward posterior as in (18). Then
there exists L > 0 large enough such that

Π̃N

(
f : ‖ f − f0‖L2(O) > LN− α

2α+4+d | YN , ZN
)
= OPN

f0

(
e−DNδ2

N

)
, (21)

as N →∞.

Theorem 7. Under the assumptions of theorem 6 let F̄N = EΠ(F | YN , ZN) be the mean of
ΠN(·|YN, ZN). Then, as N →∞, we have

PN
f0

(
‖Φ ◦ F̄N − f0‖L2(O) > LN− α

2α+4+d

)
→ 0.

The proof of theorem 7 follows directly from theorem 6 and the proof of [27, theorem 6].
Note that from a non-asymptotic point of view, the N-dependent rescaling of the prior can be
thought just as an adjustment of the covariance operator of the prior. Similar result to theorems
6 and 7 could be proven for more general Gaussian priors which are not of wavelet type but
we do not pursue these extensions in this paper.

If we compare the rates achieved in section 3.1 to those attained in this section we notice
that while the rates for Gaussian process priors are of order δβ/(2+β)

N the rates achieved for

truncated Gaussian priors are δ
α/(2+α)
N with α > β + d/2. The question then arises as to what

is the optimal rate for estimating f from the data. Next we will give a minimax lower bound on
the rate of estimation for f and note that the rates attained in this section are minimax optimal.
We also note that, by modifying the proof of theorem 8, one can show that the rate δN achieved
in (16) for the PDE-constrained regression problem of recovering G(F0) in prediction loss is
minimax optimal. Notice that the following theorem gives a lower bound that holds for any
estimate for f, not just the ones studied in this paper.

Theorem 8. Let f be the absorption term in (2) and let g, u0 satisfy (12)–(14) withα replaced
by α+ d/2, with α > 2 + d/2. Then there exists c > 0 such that for ε > 0 arbitrarily small,
as N →∞,

lim inf
f̂N

sup
f∈F̃α

PN
f

(
‖ f̂ N − f ‖L2(O) > cN− α

2α+4+d

)
� 1 − ε, (22)

where F̃α = { f ∈ Cα(O) : infx∈O f (x) � fmin > 0, ‖ f ‖Cα � B}, with any sufficient large
B > 0, and the infimum is taken over all measurable functions f̂ N = f̂ (YN , ZN , g, u0), where
the observations (YN, ZN) are generated through model (8).

To prove theorem 8 we use [25, theorem 6.3.2] which allows us to reduce the problem of
estimating the lower bound (22) into calculating lower bounds of certain testing problems that
involve several hypotheses in the parameter space. We then use tools from information theory,
and in particular the Kullback–Leibler distance between two probability measures, to attain
lower bounds for these testing problems.

As mentioned in the introduction the posterior distributions arising from Gaussian priors
can be computed using MCMC algorithms [12, 17]. These algorithms often employ a finite-
dimensional approximation of the parameter space as in this section. Non-asymptotic sampling
bounds for the preconditioned Crank–Nicholson algorithm were established in [28] providing
bounds on the approximation error for the computation of the posterior mean. Note that these
bounds hold even for likelihood functions that are not log-concave as in this paper. See also
[14, 53] for recent result on efficiently generating random samples from high-dimensional and
non-log-concave posterior measures.

11
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3.3. Conclusions

The convergence rates obtained in this article demonstrate the frequentist consistency of the
Bayesian inversion with Gaussian process priors in the parabolic inverse problem (2) with
data (10) in the large sample limit N →∞. The rates in section 3.1 for the rescaled Gaussian
process prior are minimax optimal for the PDE-constrained regression problem of recovering
G(F0) in prediction loss. However, even though the rates for estimating f0 approach the optimal
rate N−1/2 for very smooth models they are not optimal in general. We note that the optimal
rate in theorem 8 equals to δ

α/(2+α)
N and so the rates achieved in theorems 4 and 5 would be

optimal if we could replace β by α > β + d/2. The second part of theorem 3 with the proof
of theorem 4 reveals that this suboptimal rate is due to the fact that, while we are interested in
recovering F0 ∈ H ⊂ Hα

c , we can only show that the posterior mass is concentrated in Cβ-balls,
with β < α− d/2. On the other hand, we can show that the posterior mass of the truncated
Gaussian priors is concentrated in Hα-balls which allows us to attain the optimal convergence
rate. We note that truncation of a Gaussian prior increases its regularity, which can correct for
possible under-smoothing. The question of optimality for infinite dimensional Gaussian priors
remains an interesting avenue for future research in non-linear inverse problems.

A natural question that arises in section 3.2 is whether the non-linear inverse problem con-
sidered can be solved in a fully Bayesian way (prior independent of the measurement). One way
of achieving this would be to employ a hierarchical prior that randomises the finite truncation
point J in the Karhunen–Loéve series expansion (19). Such an approach has been investigated
in [27] for an elliptic PDE with similar consistency results as in theorems 3–5 for smooth
enough ground truth. Another avenue for further research is assuming the noise amplitude σ
to be unknown and using a hierarchical prior for it.

4. Proofs

4.1. Proofs of the main results

The proof of theorem 5 follows directly from theorems 3 and 4, and the proof of [27, theorem 6].
The proofs of theorems 3 and 4 rely on the following forward and stability estimates. The proofs
of the propositions can be found in section 4.2.

Proposition 9. Let G be the solution map defined in (9) with g, u0 as in (12) and (13). Let
α > 2 + d/2 and F1, F2 ∈ Hα

c (O). Then

‖G(F1) − G(F2)‖L2(Q) � (1 + ‖F1‖4
C2(O) ∨ ‖F2‖4

C2(O))‖F1 − F2‖(H2(O))∗ ,

where X∗ denotes the topological dual space of a normed linear space X. Also, there exists
C > 0 such that

sup
F∈Hα

c (O)
‖G(F)‖∞ � C(‖g‖∞ + ‖u0‖∞) < ∞.

Proof of theorem 3. It follows from proposition 9 that the inverse problem (10) falls in
the general framework studied in [27], with β = 2, γ = 4, κ = 2 and S = c(‖g‖∞ + ‖u0‖∞).
Theorem 3 then follows directly from [27, theorem 14]. �

12



Inverse Problems 38 (2022) 035002 H Kekkonen

Proposition 10. Let G(f) be the solution to (2) with g, u0 as in (12) and (13), and f , f0 ∈
Fα, fmin . Then

‖ f − f0‖L2(O) � ec‖ f∨ f0‖∞‖G( f ) − G( f0)‖H2,1(Q).

To prove theorem 4 we will also need that the forward map G maps bounded sets in Cβ onto
bounded sets in H2+β,1+β/2(Q).

Proposition 11. Let β > 0 and f ∈ Cβ(O), with infx∈O f (x) � fmin > 0. Then there exists
a constant C > 0 such that

‖G( f )‖H2+β,1+β/2(Q) � C(1 + ‖ f ‖1+β/2
Cβ ).

Proof of theorem 4. We start by noting that if Φ : R→ R is a regular link function in
the sense of definition 1 then for each integer m � 0 there exists C > 0 such that, for all
F ∈ Cm(O),

‖Φ ◦ F‖Cm � C(1 + ‖F‖m
Cm). (23)

See [52, lemma 29] for proof. With the above bound we can use the conclusion of theorem 3
for the push-forward posterior Π̃N(· | YN , ZN). Estimate (16) directly implies that

Π̃N( f : ‖G( f ) − G( f0)‖L2 > LδN | YN , ZN) = OPN
f0

(e−DNδ2
N ),

as N →∞. Using the bound (23) and the estimate (17) we get, for a sufficiently large M′ > 0,

Π̃N( f : ‖ f ‖Cβ > M′ | YN , ZN) � ΠN

(
F : ‖F‖Cβ > M | YN , ZN

)
= OPN

F0

(
e−DNδ2

N

)
.

Since Cβ ⊂ Cβ the above estimate is still true if we replace ‖ · ‖Cβ by ‖ · ‖Cβ .
If f ∈ Cβ with ‖ f ‖Cβ � M′ proposition 11 implies that G( f ), G( f 0) ∈ H2+β,1+β/2 and

‖G( f0)‖H2+β,1+β/2 � 1 + ‖ f0‖1+β/2
Cβ < ∞, ‖G( f )‖H2+β,1+β/2 � 1 + ‖ f ‖1+β/2

Cβ � M′′ < ∞.

We will also need the following interpolation inequality. Let s � 0 and θ ∈ (0, 1). Then for all
u ∈ Hs,s/2(Q)

‖u‖H(1−θ)s,(1−θ)s/2 � ‖u‖1−θ

Hs,s/2‖u‖θL2 , (24)

see [42, chapter 4, proposition 2.1]. Combining the above we see that

‖G( f ) − G( f0)‖H2,1 � ‖G( f ) − G( f0)‖
2

2+β

H2+β,1+β/2‖G( f ) − G( f0)‖
β

2+β

L2

� ‖G( f ) − G( f0)‖
β

2+β

L2 .

13
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Hence we get, for large enough L > 0,

Π̃N

(
f : ‖G( f ) − G( f0)‖H2,1 > Lδ

β
2+β

N | YN , ZN

)
� Π̃N( f : ‖G( f ) − G( f0)‖L2 > LδN | YN , ZN) + Π̃N( f : ‖ f ‖Cβ > M′ | YN , ZN)

= OPN
f0

(e−NDδ2
N ),

as N →∞. Applying the stability estimate of proposition 10 we can then conclude

Π̃N

(
f : ‖ f − f0‖L2 > Lδ

β
2+β

N | YN , ZN

)
� Π̃N

(
f : ‖G( f ) − G( f0)‖H2,1 > L′δ

β
2+β
N | YN , ZN

)
+ Π̃N( f : ‖ f ‖Cβ > M′ | YN , ZN)

= OPN
f0

(e−NDδ2
N ).

�

Proof of theorem 6. We start by introducing the wavelet setting that is used in the proofs
of theorems 6 and 8. Consider an s-regular orthonormal wavelet basis for the Hilbert space
L2(Rd) given by compactly supported Daubechies tensor wavelet basis functions

{Ψl,k : l ∈ N ∪ {−1, 0}, k ∈ Zd} Ψl,k = 2
ld
2 Ψ0,k(2l·), for l � 0.

Note that we can choose the smoothness s of the basis to be as large as required and hence
will omit it in what follows. For more details about wavelets see [19, 45] or [25, chapter 4].
For α ∈ R we have the following wavelet characterisation of Hα(Rd) norm

‖ f ‖2
Hα(Rd) �

∑
l,k

22lα〈 f ,Ψl,k〉2
L2(Rd ). (25)

We also note that, for α � 0 and some C > 0,

f ∈ Cα(Rd) ⇒ sup
l,k

2l(α+d/2)|〈 f ,Ψl,k〉L2(Rd )| � C‖ f ‖Cα(Rd ),

with the converse being true when α /∈ N.
We can construct an orthonormal wavelet basis of L2(O) given by{

ΨO
l,k : k � Nl, l ∈ N ∪ {−1, 0}

}
, Nl ∈ N,

that consists of interior wavelets ΨO
l,k = Ψl,k, which are compactly supported in O, and of

boundary wavelets ΨO
l,k = Ψb

l,k, which are an orthonormalised linear combination of those
wavelets that have support inside and outside O, see [60, theorem 2.33]. Using the above basis
any function f ∈ L2(O) has orthogonal wavelet series expansion

f =
∑

l

Nl∑
k=1

〈 f ,ΨO
l,k〉2

L2(O)Ψ
O
l,k.

14
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We denote by FJ = PHJ (F) ∈ HJ the wavelet projection (26) and note that for all F0 ∈
Hα

K(O)

‖F0 − FJ
0‖(H2(O))∗ � 2−J(α+2)

by (63) from [27]. We also note that ‖FJ
0‖C2 � ‖|F0‖C2 by standard properties of wavelet bases

and hence, choosing 2J = N1/(2α+4+d), it follows from proposition 9 that

‖G(F0) − G(FJ
0)‖L2(Q) � ‖F0 − FJ

0‖(H2(O))∗ � N− α+2
2α+4+d = δN.

Using triangle inequality we then see that for a sufficiently large c > 0

ΠN(‖G(F) − G(F0)‖L2(Q) > cδN) � ΠN(‖G(F) − G(FJ
0)‖L2(Q) > c′δN).

We can then conclude that the results of theorems 3–5 remain valid under the truncated and
rescaled Gaussian prior, see [27] section 3.2.

Following the idea from the proof of theorem 4.13 [53] we will next show that the posterior
mass concentrates in some Hα-balls. Define for any M′, Q > 0

AN = {F = F1 + F2 ∈ HJ : ‖F1‖(H2)∗ � QδN , ‖F2‖H � M′}.

Then, by theorem 13 with lemmas 17 and 18 in [27], we have for Q, M′ sufficiently large

ΠN(F ∈ AN | YN , ZN) � 1 − OPN
F0

(eDNδ2
N ).

To prove (20) we need to show that ‖F‖Hα � M for all F ∈ AN .
Let α � 0. Then

F̃ =
∑
l�J

r∈Rl

Fl,rΨl,r =
∑
l�J

r∈Rl

2−αlGl,rΨl,r, Gl,r
i.i.d.∼ N (0, 1),

defines a centred Gaussian probability measure supported on H̃J = span{Ψl,r, l � J, r ∈ Rl}
with the RKHS H̃J endowed with norm

‖F̃‖2
H̃J

=
∑
l�J

r∈Rl

22lαF2
l,r = ‖F̃‖2

Hα(Rd ) ∀ F̃ ∈ H̃J.

The random function

F = χF̃ =
∑
l�J

r∈Rl

Fl,rχΨl,r =
∑
l�J

r∈Rl

2−αlGl,rχΨl,r, Gl,r
i.i.d.∼ N (0, 1),

then defines the centred Gaussian probability measure Π′
J , as in (19), supported on HJ =

span{χΨl,r, l � J, r ∈ Rl}, with the RKHS norm satisfying

‖F‖2
HJ

= ‖χF̃‖2
HJ

� ‖F̃‖2
H̃J

=
∑
l�J

r∈Rl

22lαF2
l,r ∀F ∈ HJ .
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We also note that for all F̃ ∈ H̃J there exists F̃′ ∈ H̃J such that χF̃ = χF̃′ and

‖χF̃‖HJ = ‖F̃′‖H̃J
.

Hence, if F = χF̃ is an arbitrary element of HJ we can write

‖F‖Hα(O) = ‖χF̃′‖Hα(O) � ‖F̃′‖Hα(Rd ) = ‖F̃′‖H̃J
= ‖F‖HJ ∀F ∈ HJ.

We will next show that

‖F‖Hα(O) � 2J(α+2)‖F‖(H2(O))∗ ∀F ∈ HJ.

Denote for J′ ∈ N, J′ � J,

FJ′ = PHJ′ (F) =
∑
l�J′
r∈Rl

〈F,Ψl,r〉χΨl,r ∈ HJ′ . (26)

Note that for large enough Jmin ∈ N, if l � Jmin and the support of Ψl,r intersects K, then
supp(Ψl,r) ⊂ K′ and we have χΨl,r = Ψl,r for all l � Jmin and r ∈ Rl. We can then write

F = FJmin + (F − FJmin ) =
∑

l�Jmin
r∈Rl

Fl,rχΨl,r +
∑

Jmin<l�J
r∈Rl

Fl,rΨl,r.

Since HJmin is a fixed finite dimensional subspace we get, by equivalence of norms, that
‖FJmin‖Hα � CJmin‖FJmin‖(H2)∗ � CJmin‖F‖(H2)∗ . We also see that F − FJmin is compactly sup-
ported on O and hence can be extended by zero to Rd. We can then write

‖F − FJmin‖2
Hα(O) =

∑
Jmin<l�J

r∈Rl

22lαF2
l,r

=
∑

Jmin<l�J
r∈Rl

22lα+4l2−4lF2
l,r

� 2J(2α+4)‖F − FJmin‖2
(H2(O))∗

� 2J(2α+4)‖F‖2
(H2(O))∗ .

Combining the above we see that, for F ∈ HJ , ‖F‖(H2)∗ � QδN and 2J = N1/(2α+4+d),

‖F‖Hα(O) � 2J(α+2)‖F‖(H2(O))∗ � QN
α+2

2α+4+d δN = Q,

which concludes the first part of the proof.
To prove the optimal convergence rate we need to replace the ‖ · ‖Cβ -bounds in the

proof of theorem 4 by ‖ · ‖Hα-bounds. To do this we note that if α > d/2 and f ∈ Hα(O)
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with infx∈O f (x) � fmin > 0 we can use the inequality (3) instead of (4) in the proof
of proposition 11 and show that

‖G( f )‖H2+α,1+α/2(Q) � C(1 + ‖ f ‖1+α/2
Hα ).

Also, if Φ : R→ R is a regular link function in the sense of definition 1 then for each integer
m � 0 there exists C > 0 such that, for all F ∈ Hm(O),

‖Φ ◦ F‖Hm � C(1 + ‖F‖m
Hm). (27)

See [52, lemma 29] for proof. The result then follows directly from the proof of theorem 4. �

Proof of theorem 8. The proof uses similar ideas to [49, 52] by applying [25,
theorem 6.3.2] which reduces the problem of estimating the lower bound in the whole param-
eter space into a testing problem in a finite subset ( fm : m = 0, . . . , M) of F̃α. First, note that

lim inf
f̂N

sup
f∈F̃α

PN
f

(
‖ f̂ N − f ‖L2 > rN

)
� lim inf

f̂N

max
m=0,...,M

PN
fm

(
‖ f̂ N − fm‖L2 > rN

)
(28)

for any finite set ( fm : m = 0, . . . , M) in F̃α. We can use any estimator f̂ N to test between the
M + 1 hypothesis by choosing the fm closest to f̂ N , that is, we are looking for ΨN such that

‖ f̂ N − f ΨN‖L2 = min
m=0,...,M

‖ f̂ N − fm‖L2 .

The errors of the test, which are given by the probability that even though the measurement
was generated by fm the estimator f̂ N is closest to fm′ with some m′ �= m, are bounded by

PN
fm (ΨN �= m) � PN

fm

(
‖ f̂ N − fm′‖L2 � ‖ f̂ N − fm‖L2 for some m′

)
.

Using triangle inequality we see that if ‖ f̂ N − fm′‖L2 � ‖ f̂ N − fm‖L2 for some m′,

‖ f̂ N − fm‖L2 � ‖ fm − fm′ ‖L2 − ‖ f̂ N − fm′‖L2 � ‖ fm − fm′‖L2 − ‖ f̂ N − fm‖L2 . (29)

Assume next that the fm are 2rN separated, that is, ‖ fm − fm′‖L2 � 2rN for all m �= m′. Then
(29) implies

‖ f̂ N − fm‖L2 � rN

and we see that

PN
fm (ΨN �= m) � PN

fm

(
‖ f̂ N − fm‖L2 � rN

)
.

We can then conclude using (28) that

lim inf
f̂N

sup
f∈F̃α

PN
f

(
‖ f̂ N − f ‖L2 > rN

)
� lim inf

ΨN
max

m=0,...,M
PN

fm (ΨN �= m)

if the hypothesis ( fm : m = 0, . . . , M) are 2rNseparated.

17
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If we can find ( fm : m = 0, . . . , MN) ∈ F̃α that are rN � N−α/(2α+4+d) separated from each
other and show that, for some ε > 0 and MN ,

KL(PN
fm , PN

f0
) � ε log(MN),

where KL denotes the Kullback–Leibler divergence, we can use [25, theorem 6.3.2] which
states that

lim inf
ΨN

max
m=0,...,M

PN
fm (ΨN �= m) �

√
MN

1 +
√

MN

(
1 − 2ε−

√
8ε

log MN

)
.

(a) We will start by showing that F̃α contains { fm : m = 0, 1, . . . , M},M � 1 such that

‖ fm − fm′ ‖L2 � N− α
2α+4+d for all m �= m′,

that is, fm are N− α
2α+4+d -separated from each other.

We use the wavelet basis setting described at the beginning of the proof of theorem 6.
For every j ∈ N there exists a small positive constant c and nj = c2 jd many Daubechies
wavelets (Ψ jr : r = 1, . . . , nj) with disjoint compact supports in O. Let bm,· be a point in
the discrete hypercube {−1, 1}n j. We define

hm(x) = hm, j(x) = κ

n j∑
r=1

bm,r2− j(α+d/2)Ψ j,r(x), x ∈ O, (30)

where κ can be chosen to be as small as wanted, and m = 0, . . . , M j with M j chosen later.
Note that hm is compactly supported in O and has zero extension from O to Rd with the
global Hölder norm being equal to the intrinsic one. For α ∈ N we can write

sup
x∈Rd

|Dαhm(x)| = sup
x∈O

∣∣∣∣∣κ
n j∑

r=1

bm,r2
− j(α+d/2)DαΨ j,r(x)

∣∣∣∣∣
� κ sup

x∈O

n j∑
r=1

|(DαΨ0,r)(2
jx)| � Cκ,

where the last inequality follows from the fact that at any point there are only finitely many
Ψ0,r that get a non-zero value. Since the interior wavelets are orthogonal to the boundary
wavelets we get for α /∈ N

‖hm‖Cα � C sup
l,k

2l(α+d/2)|〈hm,Ψl,k〉L2 | = Cκ.

Hence, by choosing κ small enough, we see that all hm are contained in {h ∈ Cα(O) :
‖h‖Cα � 1}.

Let f 0 ≡ 1, hm as in (30), and define functions

fm = f0 + hm, m = 1, . . . , M j.

We then have ‖ fm‖Cα � ‖ f0‖Cα + Cκ, and for κ small enough fm is bounded away from
zero. By the Varshamov–Gilbert bound there exists {bm,· : m = 1, . . . , M j} ∈ {−1, 1}n j,
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with M j � 3
n j
4 , that are n j/8-separated in the Hamming-distance, that is, for all m, m′ �

M j and m �= m′

n j∑
r=1

(bm,r − bm′ ,r)
2 � n j

see e.g. [25, example 3.1.4]. Setting 2 j � N
1

2α+4+d we get, for the fm corresponding to the
above separated bm,·, that

‖ fm − fm′ ‖2
L2 = ‖hm − hm′‖2

L2

= κ22−2 j(α+d/2)

∥∥∥∥∥
n j∑

r=1

(bm,r − bm′,r)Ψ j,r

∥∥∥∥∥
2

L2

= κ22−2 j(α+d/2)

n j∑
r=1

(bm,r − bm′,r)
2

� κ22−2 j(α+d/2)n j � N
2α

2α+4+d .

(b) Next we will prove that, for some ε > 0,

KL(PN
fm , PN

f0
) � ε log(M j),

where KL denotes the Kullback–Leibler divergence.
Using (11) we see that

Ei
fm

(
log

dPi
fm

(Yi, Zi)

dPi
f0

(Yi, Zi)

)
= Ei

fm

(
1

2σ2

(
(Yi − u f0(Zi))2 − (Yi − u fm(Zi))2

))

=
1

2σ2
Eμ

(
u f0(Zi)2 − 2u f0(Zi)u fm(Zi) + u fm(Zi)2

)
� ‖u f0 − u fm‖2

L2 .

Since PN
fm is the product measure ⊗N

i=1Pi
F we have KL(PN

fm , PN
f0

) � N‖u f0 − u fm‖2
L2 . Using

lemma 15 and (25) we then get

‖u fm − u f0‖2
L2(Q) � ‖ fm − f0‖2

(H2
0 (O))∗

� ‖hm‖2
H−2(Rd )

= κ22−2 j(α+d/2+2)

n j∑
r=1

1 � κ2N−1n j.

By the definition of M j and choosing κ small enough we can conclude that KL(PN
fm

, PN
f0

) �
ε log(M j).
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Theorem 6.3.2 from [25] then states that

N
α

2α+4+d inf
f̂N

sup
f∈F̃α

EN
f ‖ f̂ N − f ‖L2(O) �

√
MN

1 +
√

MN

(
1 − 2ε−

√
8ε

log MN

)
,

where MN = M j →∞ when N →∞, and ε can be chosen to be as small as required
by choosing κ small enough. We conclude the proof by noting that the proof of [25,
theorem 6.3.2] actually states a slightly stronger result, showing the above lower bound
for the testing problem infΨN maxm=0,...,M PN

fm
(ΨN �= m). �

4.2. Proofs of the propositions

We start by proving some useful properties of the solutions to the inhomogeneous problem
(31) below. Let f ∈ C(O) and f > 0. We denote by S f the forward operator

S f : H2,1
B,0(Q) → L2(Q), S f (u) = ∂tu − 1

2
Δxu + f u,

where

H2,1
B,0(Q) = {u ∈ H2,1(Q) | u = 0 onΣ and u(x, 0) = 0}.

Then S f is an isomorphism with a linear continuous inverse operator

V f : L2(Q) → H2,1
B,0(Q), h �→ V f (h).

That is, for any h ∈ L2(O) the inhomogeneous equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu − 1

2
Δxu + f u = h on Q

u = 0 onΣ

u(·, 0) = 0 onO

(31)

has a unique weak solution w f ,h = V f (h) ∈ H2,1
B,0(Q), [42, chapter 4, remark 15.1].

Lemma 12. There exists a constant C > 0, such that for all f ∈ C(O), with f > 0, and
h : [0, T] ×O → R a continuous function with t �→ h(t, ·) ∈ C([0, T]; C(O)) the solution wf,h

to (31) satisfies

‖w f ,h‖L2(Q) � C‖h‖L2(Q). (32)

Proof. The solution w f ,h to (31) has a presentation

w f ,h(x, t) =
∫ t

0
e(t−s)S f h(·, s)ds(x), 0 � t � T, x ∈ Ω̄,
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see [43, theorem 5.1.11]. Using Hölder’s inequality we can then write

‖w f ,h‖2
L2 =

∫
Q

(∫ t

0
e(t−s)S f h(·, s)ds(x)

)2

d(x, t)

�
∫

Q

∫ t

0
e2(t−s)S f ds(x)

∫ t

0
h2(x, s)ds d(x, t)

=

∫
Q

1
2

∫ 2t

0
e(2t−s̃)S f d̃s(x)

∫ t

0
h2(x, s)ds d(x, t)

�
∫
O

∫ T

0

1
2
|w f ,1(x, 2t)|dt

∫ T

0
h2(x, s)ds dx

� T‖w f ,1‖∞‖h‖2
L2 .

The solution to (31) has also a probabilistic representation in terms of the Feynman–Kac
formula

w f ,h(x, t) = Ex

(∫ τt

0
h(Xs, t − s)e−

∫ s
0 f (Xr)dr ds

)
,

where (Xs : s � 0) is a d-dimensional Brownian motion started at x ∈ O, with exit time τO
satisfying supx∈O Ex(τO) < ∞, and τt = min{τO, t}. Hence we get a bound

‖w f ,1‖∞ = sup
(x,t)∈Q

∣∣∣∣Ex

(∫ τt

0
e−

∫ s
0 f (Xr)dr ds

)∣∣∣∣ � sup
(x,t)∈Q

Ex(τt) � T.

�

Lemma 12 can be used to prove the following stronger regularity estimates.

Lemma 13. Let f, h be as in lemma 12, and w f ,h ∈ H2,1
B,0(Q) be the unique solution to (31).

Then there exists a constant C > 0 such that

‖w f ,h‖H2,1(Q) � C(1 + ‖ f ‖∞)‖h‖L2(Q) (33)

‖w f ,h‖L2(Q) � C(1 + ‖ f ‖∞)‖h‖(H2,1
C,0(Q))∗ , (34)

where

H2,1
C,0(Q) = {u ∈ H2,1(Q) | u = 0 onΣ and u(x, T) = 0}.

Proof. Using the fact that S0 : H2,1
B,0(Q) → L2(Q) is an isomorphism and lemma 12 we get

‖w f ,h‖H2,1 � C

∥∥∥∥(∂t −
1
2
Δx

)
w f ,h

∥∥∥∥
L2

� C(‖S f (w f ,h)‖L2 + ‖ fw f ,h‖L2 )

� C(‖h‖L2 + ‖ f ‖∞‖w f ,h‖L2 )

� C(1 + T‖ f ‖∞)‖h‖L2

which proves the first estimate.
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Denote by S∗
f = −∂t − 1

2Δx + f the adjoint of S f and by H2r,r
0,0 (Q) the closure of C∞

c (Q) in

H2r,r(Q). Let ϕ ∈ H2(r−1),r−1
0,0 (Q), with some r � 1. Then the adjoint problem

⎧⎪⎪⎨⎪⎪⎩
S∗

f (u) = ϕ on Q

u = 0 onΣ

u(·, T) = 0 onO

(35)

has a solution v∗f ,ϕ ∈ Xr(Q), where

Xr(Q) = {u ∈ H2r,r(Q) : u = 0 onΣ, u(x, T) = 0 and S∗
f (u) ∈ H2(r−1),r−1

0,0 (Q)}.

The adjoint operator S∗
f is an isomorphism of Xr(Q) onto H2(r−1),r−1

0,0 (Q), r � 1, and we denote

the inverse operator by V∗
f : H2(r−1),r−1

0,0 (Q) → Xr(Q), [42, section 7].
We start by showing that the estimate (32) holds also for the solution to the adjoint problem

(35). Let ϕ ∈ C∞
c (Q) and ϕ �= 0. Then v∗f ,ϕ �= 0, and we get

‖v∗f ,ϕ‖2
L2 =

∫
v∗f ,ϕV∗

f (ϕ)

� ‖V f (v∗f ,ϕ)‖L2‖ϕ‖L2

= ‖w f ,v∗f ,ϕ
‖L2‖ϕ‖L2

� T‖v∗f ,ϕ‖L2‖ϕ‖L2 ,

where the last inequality follows from lemma 12. From the above we see that ‖v∗f ,ϕ‖L2 �
T‖ϕ‖L2 .

We can then show, with a similar proof to that of (33), that

‖v∗f ,ϕ‖H2,1 � (1 + T‖ f ‖∞)‖ϕ‖L2 ,

and conclude

‖w f ,h‖L2 = sup
ϕ∈C∞

c ,‖ϕ‖L2�1

∣∣∣∣∫
Q
w f ,hϕ

∣∣∣∣
= sup

ϕ∈C∞
c ,‖ϕ‖L2�1

∣∣∣∣∫
Q
w f ,hS∗

f (V
∗
f (ϕ))

∣∣∣∣
= sup

ϕ∈C∞
c ,‖ϕ‖L2�1

∣∣∣∣∫
Q

S f (w f ,h)V∗
f (ϕ)

∣∣∣∣
� sup

ϕ∈C∞
c ,‖ϕ‖L2�1

‖v∗f ,ϕ‖H2,1‖h‖(H2,1
C,0)∗

� (1 + T‖ f ‖∞)‖h‖(H2,1
C,0)∗ .

�
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We now turn to the properties of the forward map G. The following norm estimate for the
C2,1-Hölder–Zygmund norm of G( f ) = u f is needed for the proof of the proposition 9.

Lemma 14. Let g, u0 and f be as in section 2.2. Then for uf, the unique solution to (2), there
exists a constant C > 0 such that

‖u f‖C2,1(Q) � C
(
1 + ‖ f ‖∞

) (
‖g‖C2,1(Σ) + ‖u0‖C2(O)

)
Proof. We start by noticing that since f > 0

‖u f‖∞ = sup
(x,t)∈Q

∣∣∣∣Ex

(
u0(Xt)χτt=t exp

(
−
∫ t

0
f (Xs)ds

))

+ Ex

(
g(XτO , τO)χτt<t exp

(
−
∫ τO

0
f (Xs)ds

))∣∣∣∣
� ‖u0‖∞ + ‖g‖∞.

(36)

We will also need the isomorphism, see e.g. [5],(
∂t −

1
2
Δx , tr|Σ, tr|O

)
: C2,1(Q) →X

u �→
(
∂tu − 1

2
Δxu, tr|Σ(u), u(·, 0)

)
,

where X is the subspace of C(Q) × C2,1(Σ) × C2(O) of the elements (h, g, u0) satisfying the
consistency conditions

g(x, 0) = u0(x) and ∂tg(x, 0) − 1
2
Δxu0(x) = h(x, 0), x ∈ ∂O.

Using the above we get

‖u f‖C2,1(Q) � C

(∥∥∥∥(∂t −
1
2
Δx

)
u f

∥∥∥∥
∞
+ ‖g‖C2,1(Σ) + ‖u0‖C2(O)

)
= C

(
‖ f u f‖∞ + ‖g‖C2,1(Σ) + ‖u0‖C2(O)

)
� C

(
‖ f ‖∞‖u f‖∞ + ‖g‖C2,1(Σ) + ‖u0‖C2(O)

)
� C

(
1 + ‖ f ‖∞

) (
‖g‖C2,1(Σ) + ‖u0‖C2(O)

)
.

�

Using the above lemmas we can show that the forward operator G satisfies the following
Lipschitz condition.

Lemma 15. Let g, u0 and f be as in section 2.2. Then, for the unique solution uf to (2), there
exists a constant C > 0 such that

‖u f1 − u f2‖L2(Q) � C(1 + ‖ f1‖∞)(1 + ‖ f2‖∞)‖ f1 − f2‖(H2
0 (O))∗ .
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Proof. Let u f i , i = 1, 2, be solutions to (2). We notice that w = u f1 − u f2 solves the inho-
mogeneous equation S f1(w) = ( f1 − f2)u f2 on Q and w = 0 on the boundary Σ×O. Using
lemmas 13 and 14 we see that

‖u f1 − u f2‖L2 = ‖w f1,( f1− f2)u f2
‖L2

� C(1 + T‖ f1‖∞)‖( f1 − f2)u f2‖(H2,1
C,0)∗

� C(1 + T‖ f1‖∞) sup
ϕ∈H2,1

C,0 ,‖ϕ‖
H2,1�1

∣∣∣∣∫
Q

( f1 − f2)u f2ϕ

∣∣∣∣
� C(1 + T‖ f1‖∞) sup

ϕ∈H2,1
C,0 ,‖ϕ‖H2,1�1

‖u f2ϕ‖H2,1‖ f1 − f2‖(H2,1
C,0)∗

� C(1 + T‖ f1‖∞)‖u f2‖C2,1‖ f1 − f2‖(H2,1
C,0)∗

� C(1 + ‖ f1‖∞)(1 + ‖ f2‖∞)‖ f1 − f2‖(H2,1
C,0)∗ .

Furthermore

‖ f1 − f2‖(H2,1
C,0)∗ = sup

ϕ∈H2,1
C,0 ,‖ϕ‖H2,1�1

∣∣∣∣∫
Q

( f1(x) − f2(x))ϕ(x, t)d(x, t)

∣∣∣∣
= sup

ϕ∈H2,1
C,0 ,‖ϕ‖H2,1�1

∥∥∥∥∫ T

0
ϕ(·, t)dt

∥∥∥∥
H2
‖ f1 − f2‖(H2

0 )∗ ,

where

∥∥∥∥∫ T

0
ϕ(·, t)dt

∥∥∥∥2

H2(O)

=
∑
|α|�2

∥∥∥∥Dα
x

∫ T

0
ϕ(·, t)dt

∥∥∥∥2

L2(O)

=
∑
|α|�2

∫
O

∣∣∣∣∫ T

0
Dα

xϕ(·, t)dt

∣∣∣∣2 dx

�
∑
|α|�2

∫
O

T
∫ T

0
|Dα

xϕ(·, t)|2 dt dx

� T
∫ T

0
‖ϕ(·, t)‖2

H2 dt

� T‖ϕ(·, t)‖2
H2,1

which concludes the proof. �

We can finally proceed to prove propositions 9–11.
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Proof of proposition 9. Note that if Φ : R→ R is a regular link function in the sence of
definition 1 then there exists C > 0 such that for all F ∈ L∞(O)

‖Φ ◦ F‖∞ � C(1 + ‖F‖∞).

Also, for all F1, F2 ∈ C2(O) there exists C > 0 such that

‖Φ ◦ F1 − Φ ◦ F2‖(H2)∗ � C(1 + ‖F1‖2
C2 + ‖F2‖2

C2 )‖F1 − F2‖(H2)∗ .

See [52, lemma 29] for a proof. Using lemma 15 and the above estimates we can then write

‖G(F1) − G(F2)‖L2(Q) � C(1 + ‖ f1‖∞)(1 + ‖ f2‖∞)‖ f1 − f2‖(H2
0(O))∗

� C(1 + ‖F1‖2
∞ ∨ ‖F2‖2

∞)(1 + ‖F1‖2
C2 ∨ ‖F2‖2

C2 )

× ‖F1 − F2‖(H2(O))∗

� C(1 + ‖F1‖4
C2(O) ∨ ‖F2‖4

C2(O))‖F1 − F2‖(H2(O))∗ .

�

Proof of proposition 10. Applying Jensen’s inequality we see that

inf
(x,t)∈Q

u f (x, t) = inf
(x,t)∈Q

(
Ex

(
u0(Xt)χτt=te−

∫ t
0 f (Xs)ds

)
+ Ex

(
g(XτO , τO)χτt<te−

∫ τO
0 f (Xs)ds

))
� u0,min e−T‖ f‖∞ + gmin inf

x∈O
e−‖ f‖∞E

x (τO )

� (u0,min + gmin)e−CT‖ f‖∞ > 0,

where CT = max{T,Ex(τO)}.

Since f � fmin > 0 the solution u f is positive and we can write f (x, t) =
( 1

2Δx−∂t )u f (x,t)
u f (x,t) .

Note that f (x, t) is a constant in t. We can then write

‖ f1 − f2‖L2(Q) =

∥∥∥∥
(

1
2Δx − ∂t

)
u f1

u f1

−
(

1
2Δx − ∂t

)
u f2

u f2

∥∥∥∥
L2(Q)

�
∥∥∥∥
(

1
2Δx − ∂t

)
(u f1 − u f2)

u f1

∥∥∥∥
L2(Q)

+

∥∥∥∥(u−1
f1

− u−1
f2

)

(
1
2
Δx − ∂t

)
u f2

∥∥∥∥
L2

� ( inf
(x,t)∈Q

|u f1(x, t)|)−1‖u f1 − u f2‖H2,1(Q) + ‖u−1
f1

− u−1
f2
‖L2(Q)‖ f2u f2‖C0 .

To bound the last term we note that∣∣∣∣ 1
u f1

− 1
u f2

∣∣∣∣ �
∣∣∣∣∣ u f1 − u f2

min{u2
f1

, u2
f2
}

∣∣∣∣∣ � (u0,min + gmin)−2 e2CT‖ f1∨ f2‖∞|u f1 − u f2 |.
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Combining the above with (36) we get

‖ f1 − f2‖L2 � (u0,min + gmin)−1eCT‖ f1‖∞‖u f1 − u f2‖H2,1

+ ‖ f2‖∞(‖u0‖∞ + ‖g‖∞)(u0,min + gmin)−2 eCT‖ f1∨ f2‖∞‖u f1 − u f2‖L2 .

We conclude the proof by noting that ‖ f1 − f2‖L2(Q) = T‖ f1 − f2‖L2(O). �

Proof of proposition 11. We start by noting that since f ∈ Cβ ⊂ Hβ and the assumption
on g, u0 the solution u f = G( f ) ∈ H2+β,1+β/2, see [42, theorem 5.3]. Denote by

Fβ
(C.C.) ⊂ Fβ = Hβ,β/2(Q) × H3/2+β,3/4+β/2(Σ) × H1+β(O)

the subspace of Fβ of elements (h, g, u0) that satisfy the following compatibility conditions
(C.C.); there exists ψ ∈ H2+β,1+β/2(Q) such that

ψ = g onΣ, ψ(x, 0) = u0 onO and

∂k
t

((
∂t −

1
2
Δx + f

)
ψ

) ∣∣∣∣
t=0

= ∂k
t h(x, 0) for 0 � k <

β

2
− 1

2
.

Using the isomorphism [42, theorem 6.2](
∂t −

1
2
Δx , tr|Σ, tr|O

)
: H2+β,1+β/2 →Fβ

(C.R)

u �→
(
∂tu − 1

2
Δxu, tr|Σ(u), u(·, 0)

)
,

inequality (4), and the interpolation inequality (24) we get

‖u f‖H2+β,1+β/2 � ‖
(
∂t −

1
2
Δx

)
u f‖Hβ,β/2 + ‖tr|Σ (u f )‖H3/2+β,3/4+β/2 + ‖u(·, 0)‖H1+β

� ‖ f u f‖Hβ,β/2 + ‖g‖C2+β,1+β/2 + ‖u0‖C2+β

� 1 + ‖ f ‖Cβ‖u f‖Hβ,β/2

� 1 + ‖ f ‖Cβ‖u f‖
β

2+β

H2+β,1+β/2‖u f‖
2

2+β

L2 .

If ‖u f‖H2+β,1+β/2 � 1 we can divide both sides by ‖u f‖
β

2+β

H2+β,1+β/2 and otherwise estimate the
norm on the right-hand side by 1. Using the second part of proposition 9 we then see that

‖u f‖H2+β,1+β/2 � 1 + ‖ f ‖1+β/2
Cβ ‖u f‖L2 � 1 + ‖ f ‖1+β/2

Cβ ‖u f‖∞ � 1 + ‖ f ‖1+β/2
Cβ .

�
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