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Imitation Learning with Inconsistent Demonstrations through
Uncertainty-based Data Manipulation

Peter Valletta1, Rodrigo Pérez-Dattari1 and Jens Kober1

Abstract— Aleatoric uncertainty estimation, based on the
observed training data, is applied for the detection of conflicts
in a demonstration data set. The particular focus of this paper
is the resolution of conflicting data resulting from scenarios
with equivalent action choices, such as obstacle avoidance,
path planning or multiple joint configurations. In terms
of the estimated uncertainty, the proposed algorithm aims
to decrease this otherwise irreducible value through direct
alteration of the accrued data set and to provide data that
a policy-learning neural network is able to fit appropriately.
The proposed algorithm was validated with real robot scenar-
ios while learning from inconsistent demonstrations, where
the resulting policies consistently achieved their prescribed
objectives. A video showing our method and experiments can
be found at: https://youtu.be/oGYnzlW9Ncw.

I. Introduction
Imitation Learning (IL) offers an intuitive method-

ology for humans to teach robots a set of motions,
without demanding them to be skilled in robotics. This
is especially beneficial as these tasks become increasingly
complex and manual prescription of such behaviors
becomes a daunting proposition. IL builds on the premise
that it is frequently easier for a human teacher to
demonstrate the sought behavior, rather than explicitly
engineer it, and incorporates human knowledge into
the learning process, significantly decreasing sample
complexity [1]. A comprehensive approach to devising IL
strategies is encompassed in four key questions - when,
what, who and how to imitate a teacher’s input [2], [3].

These questions are rigorously addressed in literature,
therefore this work is concerned with alternative issues
that persist as open problems within the same field [1].
Namely, this work addresses the frequent assumption
within IL methodologies that user input is ideal and
consistently leads to optimal task learning. A realistic
set of demonstrations will contain conflicting or poor
examples that degrade the quality of the learned policies
and could lead to failure in meeting the required goals,
notwithstanding a significant amount of data. In order
to resolve this matter of poorly learned policies despite
the accrual of a comprehensive amount of demonstration
data, we present a framework that exploits Neural Net-
work (NN) based uncertainty estimation (UE) to detect
conflicting regions in our data set and automatically
resolve these conflicts, in settings with equivalent action
choices. An adept example of this setting is the obstacle

1All authors are with the Cognitive Robotics Department,
TU Delft, Delft, The Netherlands (valletta.p@gmail.com,
{r.j.perezdattari, j.kober}@tudelft.nl)

Fig. 1: An obstacle avoidance scenario with two obstacles,
applied as an experimental setting in this paper. The yellow
circle represents the goal position for the arm’s end effector,
while the green circles denote areas where multiple paths may
be chosen while traversing this environment.

avoidance scenario, where a moving agent must avoid an
obstacle by moving either left or right, with either action
being equally valid, as shown in Figure 1. Path planning
and robotic platforms with multiple joint configurations
are other scenarios which present similar issues.

This paper explores the use of aleatoric UE to de-
tect conflicts in IL training data and aims to reduce
the predominant sources of this uncertainty through
modification of the available data. The assumption of
equivalent action choices dictates that every action is
equally valid to solve a task, which allows for the
resolution of detected conflicts via the removal of data
points. After identifying conflicting elements within a
data set, these are grouped into one or more clusters
of closely-located points. An action choice is selected
from every cluster, based on its frequency, and all data
within the relevant cluster belonging to other action
choices is removed from the data set, thus resolving the
conflict. The adjusted data set is applied to update the
policy being learned. Notably, the algorithm proposed is
composed of multiple, distinct elements, which may be
varied, modified or improved upon to suit different use
cases and implementations, particularly as this method
is applied to more complex scenarios.

This paper continues as follows: Chapter II presents
the literature most closely related to this work and
briefly discusses its main theoretical aspects. Chapter
III outlines our contributions and Chapter IV presents
the results obtained from multiple experiments. Finally,
our concluding remarks are included in Chapter V.
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II. Related Work
A. Uncertainty Estimation

A general use of the term uncertainty refers to all the
situations where there is a lack of knowledge with regards
to the outcome of a problem, its structure or the nature
of the factors motivating the problem. Uncertainty is
categorized as being either epistemic or aleatoric, with
their amalgamation defined as predictive uncertainty,
encapsulating a model’s certainty (or lack of) in its
output [4]. The former is briefly introduced for the sake
of theoretical rigor but is not a concern of this work,
which focuses on aleatoric UE with NNs, which is an
active field of research [5]–[10]. Figure 2 presents a visual
comparison of aleatoric and epistemic uncertainty.

Epistemic uncertainty, also known as model uncer-
tainty, accounts for doubt in model parameters, structure
or a general lack of knowledge about the problem at hand
and may be nullified through additional information. A
simple approach to quantifying this uncertainty involves
computing the variance between a set of outputs ob-
tained from an ensemble of deterministic models, such
as Neural Networks [11], however the produced value
may not always be accurate and this approach has been
criticised for not performing Bayesian inference [4], [12].
Anchored ensembles of Neural Networks [12] and the
application of dropout in a work’s testing phase [4] have
been shown to approximate Bayesian inference and thus
adequately estimate this uncertainty.

Aleatoric uncertainty, also known as data uncertainty,
is a measure of the network’s confidence in the accuracy
of its output, with any doubt stemming from inherent
randomness within the environment or the agent. This
paper exclusively considers data uncertainty in the anal-
ysis of Imitation Learning (IL) demonstration data, given
the objective set out in Section I. An accurate estimate
of this uncertainty may be efficiently obtained while
learning a regression task with a feed-forward Neural
Network through supervised learning (SL), with the aim
of maximising the log likelihood of the target data,
in both uni- and multi-dimensional scenarios [4], [13].
This approach, which is especially relevant to this work,
requires the addition of a secondary network output to
predict the uncertainty alongside the learned quantity.
Other network configurations estimating aleatoric uncer-
tainty with neural networks are observed in [6], [14].
B. Learning from Conflicting Data

A family of methods implicitly address the challenge of
learning from conflicting data by minimizing the reverse
Kullback-Leibler (KL) divergence, or I-projection, which
collapses the output of the learned models to one of the
demonstrated modes [15]–[17]. Even though these ap-
proaches are promising, the minimization of the reverse
KL divergence has shown to be a challenging problem
and, therefore, it is an active field of research. Contrary
to our work, these methods are not uncertainty aware
and data manipulation techniques are not applied.

(a) Aleatoric uncertainty estimation.

(b) Epistemic uncertainty estimation.
Fig. 2: One-dimensional example of a comparison between
estimated aleatoric and epistemic uncertainty over a data set
[4], [12]. In regions with multiple values of y for the same
x, aleatoric uncertainty increases. In regions without data,
epistemic uncertainty increases.

The identification and resolution of conflicting data,
which is the objective of this paper, is not an extensively
explored area within the IL field. Ledesma et al. [18]
propose a deterministic method for the computation of
a measure of the conflict between data points within data
sets compiled for supervised learning; however, this is not
linked with a methodology for the removal or correction
of this data.

Chernova et al. [19] introduce a methodology for
the successive detection and resolution of data con-
flicts arising from situations involving equivalent action
choices. The algorithm leverages classification confidence
predictions obtained from a Gaussian Mixture Model
(GMM) classifier to identify regions of low confidence
points, which are subsequently gathered into distinct
clusters. Differing data points within unique clusters are
transformed to a single value, selected from a finite set
of options within each cluster.

The method proposed in this work is related to
the GMM-based, conflict resolution approach proposed
in [19]; however, it extends their framework to the
continuous action domain, which is the prevalent sce-
nario in robotic problems. Furthermore, neural networks
are applied within this paper due to their scalability
properties, thus removing the computational limitations
of a GMM-based implementation.

III. Methodology
This section describes the proposed data manipulation

framework. The succinct view is as follows: (1) Aleatoric
uncertainty is estimated for every data point in the
demonstration data set using a NN, (2) Clustering is
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applied to detect different regions of uncertain points,
(3) Action choices are estimated for every cluster, (4)
One action choice is selected for every cluster; all other
options are removed, and (5) the NN is retrained using
the modified database.

A. Aleatoric Uncertainty Estimation
Aleatoric uncertainty is estimated with a methodology

that trains a NN in a supervised fashion to predict the
mean and variance of a target probability distribution
[13], where the predicted variance is interpreted as the
uncertainty about that mean value. The estimation of
uncertainty is an effective way of identifying one or more
regions with potentially conflicting data in the data set
and is a logical first step that allows for more directed
methods further down the line.

The method applied in this work assumes that for an
input x ∈ X , the collected data contains data-dependent
additive white Gaussian noise n(x); individual points are
defined as

d(x) = f(x) + n(x), (1)

where f(x) is the true function generating said data. The
definition of observation noise as a function of the data
itself implies that it may be learned by the network as the
covariance about f(x) [8]. This covariance is interpreted
as the uncertainty regarding the mean prediction of f(x),
both of which are learned concurrently. The estimation
of two values specifies the addition of output neurons and
hidden layers to form a split-network architecture with
two distinct groups of output neurons corresponding to
each quantity to estimate, linked to one set of inputs.
From the normal distribution assumption for n(x), and
setting the network’s goal as the maximization of the
log-likelihood of the target values y ∈ Y, it follows that
its loss function is defined as

L =
1

2
[y − f(x)]

T
υ(x)−1 [y − f(x)]+

1

2
ln |υ(x)| (2)

in the multi-dimensional setting, where the mean predic-
tion f(x) and covariance prediction υ(x) are commonly
trained simultaneously [4], [13]. In this case study, X
corresponds to the state space of the robot and Y to its
action space.

The computation of the covariance matrix presents
two major challenges:

1) As the number of dimensions in the action space in-
creases, the number of dimensions of the covariance
matrix increases quadratically, which may become
intractable as the action space grows.

2) The covariance matrix must be positive semi-
definite. As a consequence, a strategy has to be
adopted in order to enforce this property at the
output of the NN.

To address these limitations, when estimating the uncer-
tainty of our system, the dimensions of the action space
are assumed to be uncorrelated - consequently, it is only
necessary to estimate the main diagonal of the covariance

matrix, i.e., the problem is reduced to the estimation
of N independent one-dimensional normal distributions,
where N corresponds to the number of dimensions in the
action space. Then, the number of values to estimate in
the covariance matrix increases linearly with the number
of action dimensions. Finally, to enforce the covariance
matrix to be positive semi-definite, every value of the
diagonal must be equal to or greater than zero. This is
achieved by using the softplus activation function.

Until now, we have made two strong assumptions
regarding our data: 1) the target probability distribution
follows a normal distribution, and 2) the dimensions
of this distribution are uncorrelated. In our case-study
(equivalent action choices) the former does not hold,
since equivalent action settings imply that the target
distribution is multi-modal, which is not the case for
a normal distribution. Likewise, the latter assumption
only holds if the orientation of each of the variances
aligns with the corresponding axes in the action space.
Nevertheless, the current objective at this stage in the
framework is to obtain a scalar value that represents
the uncertainty in our data, i.e., for every input in our
explored state space (negligible model uncertainty), it is
desired to know how certain or uncertain the NN is about
its output. A normal distribution with uncorrelated
dimensions suffices to capture this uncertainty, thus the
failings of these assumptions are overlooked and the
Frobenius norm of the covariance matrix is computed
to combine the uncertainty of every dimension into a
single scalar value.

One final remark; in order to accelerate and improve
the training stability of our algorithm, the training of the
mean and uncertainty prediction halves of the network
were separated into two distinct processes, similarly
to the methodology proposed in [13]. First, the mean
prediction half is trained exclusively with a mean squared
error (MSE) loss, until the network accurately represents
the training data. The relevant network parameters
are subsequently frozen and the remaining, covariance-
related branch of the network is trained with the loss
function (2). Note that this sequential training is equiv-
alent to training both outputs together using (2), since
in both cases f(x) will converge to the mean of the
samples.

B. Data Conflict Resolution

Our algorithm is equally effective with any iterative
and non-iterative Imitation Learning (IL) approaches
that gather demonstration data in a database and can
process both continuous and discrete action spaces. The
case of continuous actions is the focus of this paper,
given its greater generality and prevalence in the robotics
field. In the ensuing stages of the proposed method,
the assumption regarding the correlation between the
dimensions in the action space is withdrawn, ensuring
the generality of this approach.
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1) Inconsistencies detection: Following the collection
of demonstration data and the evaluation of uncer-
tainty within said data, highly uncertain data points
are selected based on a user-defined threshold, τ . The
application of a user-defined threshold, rather than a
homogeneous approach such as the mean or median
uncertainty value, was found to be the most effective in
isolating highly uncertain data points within the data set.
Such a collection of points does not provide information
with regards to their distribution or relationships within
the state space, thus an algorithm was required to define
groups (events) of closely-located, highly-uncertain data,
which were most likely to be conflicting and thus, were
regarded as candidates for review and correction.

2) Clustering of inconsistent events: Density-based
Spatial Clustering of Applications with Noise (DBSCAN)
[20] was introduced within this approach to achieve this
objective, due to its high efficiency, ability to identify
arbitrarily-shaped clusters and a limited dependence on
prior knowledge. A cluster is defined when at least 3
points lie within a region with radius ε · m from a
given point. The variable ε denotes the average distance
between data points in the complete space, while m
is a user-defined multiplication factor. The use of the
parameter m allowed for a more accurate definition of
these clusters and the inclusion of all the relevant points.
Alternative clustering methods may replace DBSCAN,
depending on the scenario being considered.

3) Action choice selection: In subsequence to the
clustering step, the developed framework contained one
or more groups of data, each possibly containing multiple
action choices leading to data conflicts. Data conflicts
were addressed through the selection of one action choice
per cluster; data points belonging to the remaining action
choices are removed from the data set. Given that we are
working with continuous actions, an action choice must
be defined as a region, not a single value. To find such
regions, the incidence of actions within a cluster must
be computed. An efficient approach is Kernel Density
Estimation (KDE) [21], a non-parametric method for
probability density modeling which approximates a prob-
ability density function p(x) from a set of observations
which are assumed to be drawn from the same function.
A Gaussian kernel was chosen to approximate sampled
distributions.

After fitting a density model in the action space of
each cluster, we would expect to obtain multi-modal
distributions, where each modality would correspond to
one of the action choices. Therefore, our method selects
one of the action choices by defining a region around
the action value as with the highest density. Every data
point with an action value a below a minimum distance
r to as belongs to this region. Otherwise, it is considered
as a different action choice and it is removed from the
data set. It is worth mentioning that this approach gives
preference to the most frequent action choices observed
in the demonstrations; however, given our assumption of

Algorithm 1: The Uncertainty Manipulation algorithm
1: procedure
2: given D, τ , m, r
3: υ ← Estimate uncertainty in D
4: M ← data with υ > τ in D
5: ε← mean nearest neighbour distance from D
6: C ← set of clusters in M with DBSCAN(ε ·m)
7: for all c ∈ C do
8: n← number of different actions in c
9: if size(c) ≥ 3 and n > 1 then

10: as ← Most frequent action in c
11: for all a ∈ c do
12: if ||a− as|| > r then
13: Dnew ← remove a from D
14: Update policy on Dnew

equivalent action choices, any heuristic that selects one
modality per cluster would work.

Finally, the NN is trained once again using the
modified database. A pseudocode representation of the
proposed algorithm is included in Algorithm 1, where D
denotes the gathered set of demonstration data. In this
algorithm, M ∈ D is a subset of highly uncertain data
within D, while C ∈M is a set of clustered data points
grouped together by the DBSCAN algorithm.

IV. Experimental Results
Two experiments were carried out in the real world

using a KUKA LBR iiwa 7 manipulator. The robot was
able to move in the XY plane, parallel to a flat table with
various obstacles on it, as shown in Figures 1 and 3. The
velocity of the robot was controlled in task space with
fixed orientation. The state of the robot was represented
by its (x,y) position. As a consequence, both the state
and action space were 2-dimensional. Demonstrations
were obtained by teleoperating the robot directly in task
space using a space mouse; consequently, it was possible
to directly imitate this behavior with NNs and behavioral
cloning. The same algorithm hyper-parameters were used
for both experiments: τ = 0.4, m = 6, r = 0.1 and a
bandwidth of 0.15 for the KDE. The hyper-parameter
tuning was a straightforward process, given that every
step of our algorithm can be visualized in plots (as it
can be observed in the following subsections) and the
values of the hyper-parameters can be directly inferred
from them. However, as the dimensionality of the state
space grows, this approach can become intractable and
other techniques could be required to find these values.

A. Scenario 1: One obstacle
As seen in Figure 3, the objective of this experiment

was for the manipulator to travel from one side of
an obstacle to another while avoiding collisions. Ten
demonstrations were collected. Given that it is possible
to achieve the goal of the task by choosing to avoid
the box from one side or the other, conflicting samples
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Fig. 3: An obstacle avoidance scenario with one obstacle. The
yellow circle represents the goal position for the arm’s end-
effector, while the green circles denote areas where multiple
paths may be chosen while traversing this environment.

Fig. 4: Demonstrated trajectories in the XY plane. The color
intensity of each point indicates the value of the demonstrated
action in the y axis.

were obtained in the region that covers the starting
positions of the arm’s end-effector. This can be observed
in Figure 4, where around the coordinates (0.9, 0.0)
conflicts in the action dimension along the y axis are
observed, which corresponds to the green region in
Figure 3. The goal is located around the point (-0.8,
0.0).

Figure 5 depicts that, as expected, this region presents
high uncertainty and that one cluster (in purple) was
detected by the clustering algorithm, DBSCAN.

Within the detected cluster, Figure 6 exhibits the
bimodal distribution obtained in the action space using
KDE. Two peaks were found around the points (-0.6,
-0.6) and (-0.6, 0.6) (the lighter the value, the higher its
probability).

Finally, in Figure 7 it can be observed that the value at
the coordinate (-0.6, 0.6) in Figure 6 was chosen by our
method to modify the demonstrations and to retrain the
network. As a consequence of modifying this set of action
values, the aleatoric uncertainty was removed from this

(a) Estimated aleatoric uncer-
tainty of the data. The color of
the data indicates the uncertainty
computed at each point.

(b) Points in red represent the
complete database and points
in purple belong to the de-
tected cluster.

Fig. 5: Clustering of inconsistent events.

Fig. 6: Density estimation in the action space of cluster 1.

(a) Neural Network regression
using original demonstrations.

(b) Neural Network regression
using modified demonstrations.

Fig. 7: Comparison of Neural Network regression before and
after modifying the demonstrations.

region.
Both policies depicted in Figure 7 were deployed in

the robot for twenty evaluations each (with different
initial points) and the results compared. The policy
trained with the original demonstrations was able to
successfully solve the task 60% of the time, while the
policy trained over the modified demonstrations was
successful in every trial. A trial was considered to be
successful if the manipulator was able to reach the goal
without colliding with the obstacle. The failures observed
in the policy trained with the original demonstrations
were due to the fact that in the conflicting region, the
policy was computing an average of the demonstrations,
which lead to slow or no movement at all. This behavior
also made the arm occasionally diverge away from the
demonstrations and thus failing to complete the task.

B. Scenario 2: Two obstacles
This scenario is depicted in Figure 1. The objective

is to reach the goal position, shown in yellow, while
avoiding both obstacles. In this case, two regions of
uncertainty are generated by the demonstrations, one
at the beginning of the motion and the other centrally,
between both obstacles. Due to the increased velocity
of the manipulator as it moves towards the goal, which
yielded a higher risk of collision with the second obstacle,
this scenario proved to be more challenging than the
preceding one. Eight demonstrations were carried out.

The inconsistencies presented in the demonstrations
can be observed in Figure 8. As opposed to the previous
scenario, in this case the inconsistencies are presented
in the manipulator’s x axis; therefore, this is the ac-
tion dimension presented in the forthcoming plots. At
each demonstration, the motion started from the region
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Fig. 8: Demonstrated trajectories in the XY plane. The color
intensity of each point indicates the value of the demonstrated
action in the x axis.

(a) Estimated aleatoric uncertainty
of the data. The color of the data
indicates the uncertainty computed
at each point.

(b) Points in red represent the
complete database and points
in purple/yellow belong to the
detected clusters.

Fig. 9: Clustering of inconsistent events.

around the point (0.0, -0.9), which is also the a region
with conflicting data. The other region with conflicting
data is around the point (0.0, 0.0) and the goal is located
roughly at (0.0, 0.9).

Once more, as expected, the aleatoric uncertainty
estimated in the demonstrations was larger in the areas
with conflicting data, as can be observed in Figure 9. It is
also possible to observe that two clusters were obtained
from DBSCAN (in purple and yellow, respectively),
which is what we would expect to obtain as well.

In this case, it was required to estimate the probability
density in the action space separately for each cluster.
Figure 10 shows that, once again, a bi-modal distribution
was predominant for each cluster, which is what we would
expect to obtain from these demonstrations.

Finally, Figure 11 depicts how the aleatoric uncer-
tainty was removed from the conflicting regions, and that
one of the action choices was selected from each cluster

(a) Density estimation in the
action space of cluster 1.

(b) Density estimation in the
action space of cluster 2.

Fig. 10: Density estimation in the detected clusters.

(a) Neural Network regression
using original demonstrations.

(b) Neural Network regression
using modified demonstrations.

Fig. 11: Comparison of Neural Network regression before and
after modifying the demonstrations.

to do so.
Twenty evaluations were done for each policy in this

scenario as well. Once again, a trial was considered to be
successful if the manipulator was able to reach the goal
without colliding with the obstacles. In this case, the
policy trained with the original demonstrations failed at
every trial, while the policy trained with the modified
demonstrations was successful at each one of them. It
was observed that the former failed because it collided
with one of the two obstacles at every trial.

V. Conclusions
We have introduced an algorithm to identify conflict-

ing data in demonstration data sets and to automatically
remove these conflicts through modifying this data, in
scenarios involving equivalent action choices. This was
achieved by applying uncertainty estimation with neural
networks and processing the inference provided with
clustering via the DBSCAN algorithm and selecting the
actions to modify the examined data through kernel
density estimation.

We have shown, through two distinct experiments,
that this approach can lead to improved policies - the
policies trained on data processed with our algorithm
notably outperformed the policies trained on the unmod-
ified data sets. In particular, our approach allowed for
the utilization of data that prior to correction, did not
lead to any successful evaluations. Furthermore, we have
validated the assumptions taken within this approach
and shown that the intermediate results are as expected.

Notwithstanding the successes of this algorithm, it is
limited to scenarios involving equivalent action choices
and its effectiveness and applicability to more challenging
environments (e.g., higher-dimensional data or more
complex ambiguities) remains to be explored. Finally,
we note the possibility of combining our approach with
active learning, such that the robot is able to query its
teacher in regions of high uncertainty and thus resolve
any conflicts with additional data.
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