

Delft University of Technology

Models and heuristics for hard routing and knapsack problems

Pierotti, J.

DOI
10.4233/uuid:bad12fb8-ef0a-41ba-b0ae-f5e5ce2fa5fe
Publication date
2022
Document Version
Final published version
Citation (APA)
Pierotti, J. (2022). Models and heuristics for hard routing and knapsack problems. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:bad12fb8-ef0a-41ba-b0ae-f5e5ce2fa5fe

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:bad12fb8-ef0a-41ba-b0ae-f5e5ce2fa5fe
https://doi.org/10.4233/uuid:bad12fb8-ef0a-41ba-b0ae-f5e5ce2fa5fe

MODELS AND HEURISTICS
FOR HARD ROUTING AND KNAPSACK PROBLEMS

MODELS AND HEURISTICS
FOR HARD ROUTING AND KNAPSACK PROBLEMS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 26 april 2022 om 12:30 uur

door

Jacopo PIEROTTI

Master of Science in Automation and Control Engineering,
Politecnico di Milano, Milaan, Italië,

geboren te Bergamo, Italië.

Dit proefschrift is goedgekeurd door de

promotor: prof. dr. ir. K.I. Aardal
copromotor: dr. ir. J.T. van Essen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. K.I. Aardal, Technische Universiteit Delft
Dr. ir. J.T. van Essen, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. Helena Ramalhinho Lourenço,

University Pompeu Fabra
Prof.ḋr. Bart van Arem, Technische Universiteit Delft
Prof.ḋr. Paola Festa, University of Naples Federico II
dr. Valentina Morandi, Free University of Bolzano
Prof. dr. Hai Xiang Lin, Technische Universiteit Delft, reservelid

Dr. Lorenzo Ferretti, Prof. Dr. Laura Pozzi, Dr. Lina Simeonova, Msc. Maximilian Khron-
muller en Dr. W. Böhmer hebben in belangrijke mate aan de totstandkoming van het
proefschrift bijgedragen.

Dit onderzoek is deels gefinancierd door het DIAMANT (Discrete, Interactive and
Algorithmic Mathematics, Algebra and Number Theory) cluster.

Keywords: Metaheuristics, Logistics, Routing, Integer Linear Programming, Bal-
anced Traveling Salesman Problem, Special Education Needs School
Bus Routing Problem, Reinforcement Learning, Knapsack Problem

Printed by: GVO Drukkers en Vermogen B.V

Front & Back: GVO Drukkers en Vermogen B.V.

Copyright © 2022 by J. Pierotti

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Je veux dédier ce poème
a toutes les femmes qu’on aime

pendant quelques instants secrets

Antoine Pol

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Combinatorial optimization . 2

1.1.1 Complexity. 2
1.1.2 Linear programming models. 3

1.2 Solution methods . 4
1.2.1 Exact solution method . 4
1.2.2 Heuristics . 5
1.2.3 Artificial intelligence . 6
1.2.4 Pareto frontier . 7

1.3 Problems . 7
1.3.1 Routing problems . 7
1.3.2 Knapsack problem . 11

1.4 Dissertation outline . 11

2 AILS with RR for the BTSP 13
2.1 Introduction . 14
2.2 Problem formulation . 15
2.3 Methodology . 16

2.3.1 Finding an initial solution . 17
2.3.2 Adaptive iterated local search with random restarts 18

2.4 Experiments . 24
2.4.1 Instances. 24
2.4.2 Parameters tuning . 24
2.4.3 Performance . 25

2.5 Conclusion . 27

3 MILP models for the Dial-a-Ride problem with transfers 31
3.1 Introduction . 32
3.2 Problem formulation . 34
3.3 Continuous time model . 35

3.3.1 Moves . 35
3.3.2 Core model . 37
3.3.3 Model extension . 43

3.4 Discrete time model . 47
3.4.1 Core model . 49
3.4.2 Model extension . 52

vii

viii CONTENTS

3.5 Computational experiments . 54
3.5.1 Benchmark . 54
3.5.2 Tuning parameters . 56
3.5.3 Tests . 57

3.6 Conclusions. 59

Appendices 63
3.A Modifications about people dependent service times 63

3.A.1 Continuous time model . 63
3.A.2 Discrete time model . 63

3.B Idling, parking, transit and transfer nodes. 64
3.B.1 Continuous time model . 64
3.B.2 Discrete time model . 64

3.C Equivalent models . 65
3.C.1 Unserved requests and late arrival 65
3.C.2 Objective functions . 65

3.D Complete models . 66
3.D.1 Continuous time model - core . 66
3.D.2 Continuous time model - extension 68
3.D.3 Discrete time model - core . 71
3.D.4 Discrete time model - extension 73

4 Special education needs school bus routing problem 75
4.1 Introduction . 75
4.2 Literature review . 77
4.3 Problem formulation . 79

4.3.1 Decision variables . 80
4.3.2 Objective function . 81
4.3.3 Constraints . 81

4.4 Methods . 83
4.4.1 Valid inequalities. 84
4.4.2 Metaheuristic method . 85

4.5 Computational results . 88
4.5.1 Exact solutions . 89
4.5.2 Metaheuristic results. 93

4.6 Conclusions. 94

Appendices 95
4.A Graphical results for the 12-students instances 95
4.B Sensitivity analysis . 95

5 Reinforcement learning for the knapsack problem 101
5.1 Introduction . 101
5.2 Problem formulation and background information 102

5.2.1 Reinforcement learning framework 103
5.2.2 Agent . 106
5.2.3 Model architecture . 107

CONTENTS ix

5.3 Computational results . 108
5.4 Conclusion . 109

6 Conclusion 111

Bibliography 115

Acknowledgements 123

Curriculum vitæ 125

List of publications 127

SUMMARY

One of the world’s biggest challenges is that living beings have to share a limited amount
of resources. As people of science, we strive to find innovative ways to better use these
resources, to reach and positively affect more and more people. In the field of optimiza-
tion, we aim at finding an optimal allocation of limited sets of resources to maximize a
certain objective. Some of these problems can be solved in polynomial time; others are
more difficult to be solved. Current state-of-the-art methods can solve NP-hard prob-
lems (a class of optimization problems) in exponential time, in the worst case. To give
an idea, for input size n = 100 and parameter k = 2: polynomial time nk = 1002 = 10,000;
exponential time kn = 2100 = 1,267,650,600,228,229,401,496,703,205,376. Yet, many
relevant and practical problems are NP-hard and have to be solved in a short amount of
time. Our research focuses on formulating and solving four of these problems. Among
those, three are vehicle routing problems (VRP, Chapters 2, 3 and 4).

VRPs are problems where vehicles have to perform routes in order to minimize an
objective function (for example, minimize routing costs) while being subjected to con-
straints (for example, each location has to be visited). Routing costs have a significant
impact on society and on the cost of products (the transportation sector makes up 13.2%
of the EU’s GDP (Joint Research Centre, 2021)). Although VRPs have been thoroughly
studied for over half a century, new technologies (autonomous driving, real-time infor-
mation, etc.) and new customers’ demands (increase in online shopping, a more com-
petitive delivery market, etc.) create variants of the standard VRP that are more and more
complex to formulate and solve. VRPs are well-known for being NP-hard and difficult to
approximate, and hence solve. We formulated three novel VRPs and solve those both
exactly via branch-and-bound (Chapters 3 and 4, the latter also uses valid inequalities)
and metaheuristicly (Chapters 2 and 4). To increase generalizability, we introduced an
almost non-parametric algorithm that encompasses all the most famous heuristic oper-
ators for VRP (Chapter 4). To increase performance, we proposed an adaptive, i.e., self-
tuning, algorithm (Chapter 2) that can detect problem’s features and steer its decisions
to achieve better solutions.

Lastly, Chapter 5 focuses on what we believe will be the most radical transforma-
tion in the metaheuristic field in coming years: machine learning for combinatorial op-
timization. Machine learning established its fundamental importance in many fields
and it is currently paving its way into combinatorial optimization. We developed a self-
attention based deep reinforcement learning algorithm without any problem-specific
knowledge to solve one of the most studied combinatorial optimization problems. Our
results suggest that machine learning can (and we conjecture that it will) tackle com-
binatorial optimization on its own, without problem-specific knowledge and will be a
fundamental element in future state-of-the-art heuristics for combinatorial optimiza-
tion.

xi

SAMENVATTING

Een van ’s werelds grootste uitdagingen is dat levende wezens een zeer beperkte hoeveel-
heid middelen moeten delen. Als wetenschapper zoeken we naar innovatieve manieren
om deze middelen beter te gebruiken, om zo steeds meer mensen te bereiken en hen
positief te beïnvloeden. Bij wiskundige optimalisatie richten we ons op het vinden van
de optimale toewijzing van beperkte sets van middelen om een doelstelling te maxima-
liseren. Soms kunnen we deze problemen in polynomiale tijd oplossen; soms zijn pro-
blemen moeilijker op te lossen. Huidige geavanceerde methoden kunnen in het ergste
geval NP-moeilijke problemen (een klasse van optimalisatieproblemen) in exponentiële
tijd oplossen. Om een idee te geven: polynomiale tijd nk = 1002 = 10.000; exponentiële
tijd kn = 2100 = 1.267.650.600.228.229.401.496.703.205.376. Veel relevante en praktische
problemen zijn echter NP-hard en moeten in korte tijd worden opgelost. Ons onderzoek
richt zich op het formuleren en oplossen van vier van deze problemen. Drie daarvan zijn
problemen beschouwen de routebepaling van voertuigen (VRP, hoofdstukken 2, 3 en 4).

VRP’s zijn problemen waarbij een aantal voertuigen een aantal routes moet uitvoeren
om een doel functie te minimaliseren (bijvoorbeeld de vervoerskosten minimaliseren),
terwijl ze aan een aantal beperkingen voldoen (bijvoorbeeld elke locatie moet worden
bezocht). Vervoerskosten hebben een aanzienlijke impact op de samenleving en op de
kosten van producten (de transportsector vertegenwoordigt 13.2% van het BBP van de
EU (Joint Research Centre, 2021)). Hoewel VRP’s al meer dan een halve eeuw grondig
worden bestudeerd, creëren nieuwe technologieën (autonoom rijden, realtime informa-
tie, enz.) en nieuwe eisen van klanten (toename van online winkelen, een meer concur-
rerende bezorgmarkt, enz.) variaties op de standaard VRP die steeds complexer worden
om te formuleren en op te lossen. VRP’s zijn berucht als NP-moeilijke problemen en zijn
moeilijk te benaderen (en dus op te lossen). We formuleren drie nieuwe VRP’s en los-
sen die op zowel vanuit een optimaal oogpunt via branch-and-bound (hoofdstukken 3
en 4, de laatste gebruikt ook geldige ongelijkheden) als vanuit een metaheuristisch oog-
punt (hoofdstukken 2 en 4). Om dit verder te generaliseren, hebben we een bijna apara-
metrisch algoritme geïntroduceerd dat alle meest bekende heuristische operatoren voor
VRP omvat (hoofdstuk 4). Daarnaast hebben we om de prestaties te verbeteren, een
adaptief, d.w.z. zelfafstemmend, algoritme voorgesteld (hoofdstuk 2) dat de kenmerken
van het probleem begrijpt en beslissingen kan sturen om de winst te maximaliseren.

Ten slotte richt hoofdstuk 5 zich op wat volgens ons de meest radicale transformatie
in het metaheuristische veld in de komende jaren zal zijn: machine learning voor com-
binatorische optimalisatie. Machine learning heeft zijn fundamentele belang op veel
gebieden bewezen en baant zich momenteel een weg naar combinatorische optimalisa-
tie. We hebben een op self-attention gebaseerd deep reinforcement learning algoritme
ontwikkeld zonder enige probleemspecifieke kennis om een van de meest bestudeerde
combinatorische optimalisatieproblemen op te lossen. Onze resultaten suggereren dat
machine learning de combinatorische optimalisatie op zichzelf kan (en we vermoeden

xiii

xiv SAMENVATTING

zal) aanpakken, zonder probleemspecifieke kennis, en een fundamenteel element zal
zijn in toekomstige geavanceerde heuristieken voor combinatorische optimalisatie.

1
INTRODUCTION

This dissertation treats a wide variety of topics. In order to guide the reader, Figure 1.1
displays the relationships between the chapters of this dissertation and their research
fields (combinatorial optimization and artificial intelligence), their real-life applications
(vehicle routing problem and knapsack problem), their complexity (NP-hard) and the
used solution methods (heuristic and optimal). All the aforementioned terminology is
explained in detail in the remainder of this chapter.

Figure 1.1: Connections among the main topics treated in this dissertation and its chapters. The numbers in
the boxes indicate the sections where these topics are discussed.

1

1

2 1. INTRODUCTION

1.1. COMBINATORIAL OPTIMIZATION
Combinatorial optimization (CO) is hidden in uncountable many aspects of everyday
life: where a business should locate its facilities, how to take the shortest path from home
to work, how to assign weapons to targets, how to schedule doctors and nurses in a hos-
pital, etc. All these problems and many other problems can be formulated (and solved)
as combinatorial optimization problems. In general, we can say that CO involves find-
ing an optimal object within a finite set of objects (Schrijver, 2003). CO problems can be
formulated naturally in terms of graphs and/or as (integer) linear programs (see Section
1.1.2) and solving them can be a very complex task (see Section 1.1.1).

1.1.1. COMPLEXITY
There is a lot of open debate about the complexity of CO problems. When we talk about
the complexity of a CO problems, we are talking about the number of steps needed in or-
der to solve them. CO problems can be divided in decision and optimization problems.
A combinatorial optimization problem deals with finding the optimal solution among a
finite set of possible solutions while a decision problem concerns answering a yes or no
question. For instance, ‘what is the minimum distance to travel to visit a set of cities?’ is
an optimization problem while ‘is there a path which visits a set of cities?’ is a decision
problem. Optimization problems can be transformed into decision problems by intro-
ducing a threshold, say t . For instance, ‘can a set of cities be visited within a travelling
distance of t?’ is a decision problem.

Among combinatorial optimization decision problems, the two most studied com-
plexity classes are the P and the NP class. The P class contains the decision problems
whose solutions can be surely found in a polynomial (with respect to the input size)
number of steps. The NP class is an extension of the P-class and it also contains the de-
cision problems for which we are uncertain about the minimum number of steps needed
to obtain an answer in the worst case (but the number of steps is upperbounded by an
exponential). However, a yes-solution to any decision problem in NP (and thus also in
P) can be verified in polynomial time.

Within NP, there is a class of decision problems called NP-complete. If one NP-
complete problem could be solved in polynomial time even in its worst case, then, all
NP-complete problems could also be solved in polynomial time (Goldreich, 2010). Yet,
there exists no known method to ensure that a NP-complete can be solved in poly-
nomial time and, so far, most of the scientific community believes that a solution to
an NP-complete problem can be found even in its worst case only in an exponen-
tial number of steps. To explain the difference between a problem in P and a NP-
complete problem, let us give an example with an instance size n of 100. Depend-
ing on the problem, an instance of size 100 can be a reasonably sized instance. For
example, in Chapters 2, 4 and 5 we solve instances up to size 3000, 168 and 100, re-
spectively. For a constant coefficient k = 2, a polynomial number of steps would re-
sult in nk = 1002 = 10,000 steps, while an exponential number of steps would results in
kn = 2100 = 1,267,650,600,228,229,401,496,703,205,376 steps1. This means that, even-

1This example is just indicative. The number of steps needed could be scaled by a constant scaling factor.
Moreover, given the same instance size, the k coefficients for the P and the NP-complete problem could be
different. For the sake of the example, we assume the k coefficients to be the same and we assume the scaling

1.1. COMBINATORIAL OPTIMIZATION

1

3

tually, as the instances’ sizes become bigger and bigger, they will require too much time
to be solved to optimality. Even if we were able to use the computational power of all the
hardware in the world, a real-world instance could easily still require years or more to be
solved to optimality.

All problems treated in this dissertation are NP-hard optimization problems. An op-
timization problem is NP-hard when the associated decision problem is NP-complete. If
a problem is NP-hard, it means that it is, at least, as complex as any NP-complete prob-
lem. Moreover, there is no known method to surely verify the optimality of solutions to
NP-hard optimization problems in less than exponential time. There are still many open
questions regarding NP complexity and this subject is of such paramount importance
that it earned a position in the seven mathematical millennium prize problems2.

1.1.2. LINEAR PROGRAMMING MODELS
Many real-life optimization problems can be formulated as linear programs (LP). Linear
programs are models where a linear objective function is maximised (or, equivalently,
minimised) while being subjected to some linear constraints (Korte et al., 2011). For ex-
ample, one can be sitting hungry at a restaurant while trying to minimize expenses. The
optimization problem could be to eat enough to achieve at least a minimum number of
calories while spending the minimum amount possible. This can be easily formulated as
a linear program. In this case, the variables would be the quantities of the items on the
menu and the objective would be the sum of the prices of the menu’s items times their
quantity (i.e., the total price of the final bill). In this little example, the only constraints
would be the following. The sum of the quantities of the items times their caloric in-
take should be greater than or equal to a certain threshold and the quantities should be
greater than or equal to zero.

If we solve this problem to optimality, we would find a solution in polynomial time;
yet, this solution may indicate to order 2

3 of a meal. In fact, linear problems belong to
the P-class but, when integrality constraints are added, the problems might become NP-
hard. Integrality constraints are special constraints that state that one or more variables
have to assume only integer values instead of being able to assume continuous values.
This is indeed necessary in many applications, as, for instance, one can only order an
integer number of meals. When a problem allows only for integer variables, we call that
problem an integer linear programming (ILP) problem; if, instead, some variables are
integer and some are continuous, the problem is called a mixed integer linear program-
ming (MILP) problem. In general, ILP and MILP belong to the same class of complexity
(NP-hard). When the variables of an ILP can assume only a finite number of integer
values, the optimization problem is to find the optimal solution among a finite set of
objects, hence, it is a combinatorial optimization problem.

We stated that a linear program might become NP-hard after introducing integrality
constraints. There are some notable cases, such as the shortest path problem, where
problems stay in the P class even after introducing integrality. In the remainder of this
dissertation, we only deal with NP-hard problems.

factors to be one.
2The seven millennium prize problems are considered some of the most fundamentals and groundbreaking

problems in current days mathematics (https://en.wikipedia.org/wiki/Millennium_Prize_Problems).

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

1

4 1. INTRODUCTION

1.2. SOLUTION METHODS

All the problems treated in this dissertation are NP-hard and, to solve them, we either
rely on classical exact techniques (which return one optimal solution, see Section 1.2.1,
or a family of optimal solutions, see Section 1.2.4) or we design (meta)heuristics (algo-
rithms that quickly return not-necessarily-optimal solutions), both using classical tech-
niques (see Section 1.2.2)) or with newer artificial intelligent techniques (see Section
1.2.3).

1.2.1. EXACT SOLUTION METHOD

Linear problems can be solved in polynomial time and there are many ways to solve
them. Internal point methods (Kojima et al., 1989) can solve LPs in polynomial time
while the simplex method (Dantzig et al., 1955) solves LPs, in the worst case, in expo-
nential time. The commercial software used in this dissertation to solve LPs (Gurobi
Optimization, LLC, 2021), uses a combination of the simplex method and the barrier
method (Lange, 1994). Also to solve (M)ILPs, algorithms for solving LPs play an impor-
tant role. There exists a close relationship between MILPs and LPs; in fact, whenever
we remove the integrality constraints from a MILP, we obtain an LP. This process of re-
moving integrality constraints is called relaxation. A linear relaxation of a (M)ILP is an
LP with the same variables, objective and constraints as the original (M)ILP, except the
integrality constraints. Without loss of generality, we assume to solve an ILP whose ob-
jective function is a maximization one. Note that the linear relaxation always exhibits a
(non-strictly) higher objective function value than its integer counterpart. This is due to
the fact that the linear relaxation can reach, at the very least, all the solutions of the ILP.

Firstly, to solve an ILP, we solve its linear relaxation. This can be done in polynomial
time since the relaxation is an LP. Once the linear relaxation is solved, we check if all the
variables have integer values. If that is not the case, we can branch the problem. In this
case, to branch means to generate two subproblems from the original one. For instance,
considering the previous example, the solution of the linear relaxation could be to order
4
3 dishes of pasta. We can then branch the problem into two different subproblems. On
one side, we impose the additional constraint to order at most one dish of pasta; on the
other side, we impose to order at least two dishes of pasta. Then, we solve again the two
subproblems (which are still LPs). Doing so, we do not allow the algorithm to choose
again 4

3 dishes of pasta. Note that, due to the extra constraint(s), the objective function
value of a subproblem cannot be greater than the objective function value of its original
maximization problem.

This process of branching is iterated on subproblems that return a non-integer so-
lution until the optimal integer solution is found. However, as soon as a subproblem
returns an integer solution, we can prune unpromising branches. In fact, each returned
integer solution might or might not be the optimal solution, but we know for sure that
the optimal solution presents a greater or equal objective function value. So, if the re-
laxation of a subproblem presents an objective function value which is smaller than the
objective function value of the best known integer solution, we can discard that branch
and prune it.

1.2. SOLUTION METHODS

1

5

All in all, we have a directed rooted tree3 of LPs, with relaxed objective function values
and a best known integer objective function value. The process terminates when the
objective function values of the leaves are not strictly greater than the objective value of
the best known integer solution and we return the best known integer solution as the
optimal solution.

The method described above is a basic version of the branch-and-bound (B&B, Land
and Doig, 1960). B&B is the most used method to optimally solve NP-hard problems and
it is the method used in this dissertation to solve MILPs. In addition, there exist plenty
of speed-ups one can apply to the B&B (on which variable to branch, in which order one
should solve the subproblems, etc.). These speed-ups are already implemented in the
commercial solver used in this dissertation (Gurobi Optimization, LLC, 2021).

1.2.2. HEURISTICS

Although there is no unanimous consensus in the optimization community, in this dis-
sertation, we name a heuristic any algorithm that aims to quickly (meaning in polyno-
mial time with respect to the number of variables of a problem) return a solution. More
specifically, a heuristic can either return a solution in polynomial time or cannot return
a solution at all. In case a solution is not returned, the heuristic could be bad designed
or even finding a feasible solution could require a number of steps which is more than
polynomial. Given an instance and a fixed random seed, a heuristic always returns the
same solution, independent of how many times the heuristic has been run. We name
a metaheuristic an algorithm that returns a solution and the returned solution depends
on the computational runtime of the metaheuristic itself (the maximum computational
runtime is often a design parameter). The solution returned by a metaheuristic depends
on its runtime because metaheuristics are designed such that, given enough time, they
can escape local minima. This means that: if we let a metaheuristic run for t0 computa-
tional time, it might return solution s0, while, if we let it run for t1 computational time, it
might return solution s1 6= s0. Usually, a metaheuristic quickly finds a solution (just as a
heuristic) and later it keeps trying to iteratively improve it. The improvement is usually
time-dependent, with more computation time leading to a better improvement.

Some heuristic algorithms, called approximation algorithms, can return solutions
within some performance guarantee; for instance, an approximation algorithm could
return a solution which is, at most, twice as bad as the optimal solution. Even one
of the most standard combinatorial (routing) problems, the traveling salesman prob-
lem (definition in Section 1.3.1), in its most general version, does not have any known
polynomial-time approximation algorithm: in fact, even finding a feasible solution is
proven to be NP-hard (Hartmanis, 1982). Only if we introduce assumptions on the graph
(triangular inequality, fully connected graph, undirected and non-degenerative edges),
then there exist approximation algorithms (Edmonds, 1965, Christofides, 1976). How-
ever, approximation algorithms do not yield competitive results in practice (Toth and
Vigo, 2002).

3A directed rooted tree is a mathematical object where a root (in our case, the relaxation of the original prob-
lem) is branched into nodes. The edges are oriented from the parent to the children, i.e. from the root to
the nodes. The nodes can also be branched into other nodes and different parents cannot direct to the same
child. The nodes which are not branched, i.e., they have no outgoing edges, are called leaves (Bollobás, 1998)

1

6 1. INTRODUCTION

Despite the existence of hundreds of metaheuristics, they all have a general com-
mon structure. Metaheuristics work iteratively, starting from one (or more) solutions
and trying to improve it locally. By locally, we mean that, generally, only small parts of a
solution can be changed and improved. We limit ourselves to changing small parts be-
cause of computational efficiency. Once a locally optimum solution has been found and
it cannot be further improved by local moves, the solution is broadly changed. Doing
so, we move to a different part of the solution space where local moves are potentially
effective. At the end of the process, the overall best solution found is returned.

Generally speaking, if, in infinite time, a metaheuristic can return the optimal solu-
tion, it means that it can navigate the whole solution space. This means that, indepen-
dently from where the algorithm starts, it can reach any possible solution. Usually, to
allow the algorithm to navigate the whole solution space we introduce random moves.
In fact, although random moves may decrease the quality of a solution (since they do
not take quality into account and they are usually applied to locally optimum solutions),
they allow to move away from an already well-explored area of the solution space.

1.2.3. ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the field that studies any system that perceives its environ-
ment and takes actions that maximize its chance of achieving its goals (Poole et al., 1998).
Within AI, machine learning (ML) is the study of computer algorithms that can improve
their performance automatically through experience and by the use of data (Mitchell,
1997). In recent years, ML has shown state-of-the-art capabilities in speech recognition,
language translation, image classification, etc. (O’Shea and Nash, 2015, Bontemps et al.,
2016, Vaswani et al., 2017). Lately, more and more combinatorial optimization problems
have been studied under the lens of machine learning (Bengio et al., 2021).

On one hand, ML has been applied to the branch-and-bound process, assisting in
making smart decisions on how to branch to reduce the computation time drastically
(Lodi and Zarpellon, 2017, Balcan et al., 2018, Prouvost et al., 2020). Nonetheless, even
these state-of-the-art fine-tuned exact methods take too much time to determine the
optimal solution for medium to big size instances. On the other hand, in recent years,
heuristics have been hybridized with more and more elements of machine learning
(Mayer et al., 2018, Nazari et al., 2018).

When ML is used to quickly generate a single solution from an input instance, it is of-
ten called an end-to-end method. Note that, since always the same solution is returned,
this method classifies as a heuristic but not as a metaheuristic. Among the many ma-
chine learning algorithms (supervised, unsupervised,. . .), in this dissertation (Chapter
5), we focus on one specific type of ML algorithm: an end-to-end reinforcement learn-
ing (Sutton and Barto, 2018) algorithm for a CO problem. With reinforcement learning
(especially ‘end-to-end’ reinforcement learning), an agent learns on its own while inter-
acting with the environment. In our case, the environment is the collection of instances,
constraints, objective function and such related to the CO problem we are analysing. The
reinforcement learning algorithm can act on and observe the environment but cannot
change its dynamics. For instance, the algorithm can read an instance (i.e., observe) pro-
pose the variables’ values for a solution (i.e., act) and analyze the objective function of
the proposed solution (i.e., observe again). However, it cannot modify any constraint or

1.3. PROBLEMS

1

7

the objective function. In theory, since the algorithm is exploring and creating a decision
policy on its own and it is not imitating good known solutions, it could learn a strategy
that is better than any possible strategy humans could apply on their own. This is the dif-
ference between algorithms performing at human expert levels and algorithms breaking
those barriers. In practice, this has already happened multiple times, for example with
AlphaGO4 and AlphaZero (Silver et al., 2016, Silver et al., 2017).

In addition to ML, there are other forms of artificial intelligence that have been used
in heuristics. One example is adaptiveness. Adaptiveness is a feature by which an algo-
rithm can modify the probability to select some operator based on their performance
(Lourenço et al., 2003). As stated before, Poole et al., 1998 defines intelligent any system
that perceives its environment and takes actions that maximizes its chance of achiev-
ing its goals. In Chapter 2, we describe an adaptive algorithm. An adaptive algorithm
is an algorithm that uses heuristics (called operators) as subroutines. The parameters of
the adaptive algorithm (for example, the parameters to decide which operator to use)
can be modified in time. Indeed, our algorithm has to iteratively choose among many
possible operators and based on their outcomes (i.e., perceiving the environment), the
algorithm modifies their successive selection probabilities (i.e., takes actions) in order
to increase the odds of choosing the most performing operators (i.e., to maximize its
chance of achieving its goals). So, our adaptive algorithm is to be considered as an arti-
ficially intelligent algorithm.

1.2.4. PARETO FRONTIER
So far we assumed that the problems to be solved were single objective, i.e., the objec-
tive function value is a scalar. However, in this dissertation, we also treat multi-objective
problems (see Chapter 4). As single-objective problems, also multi-objective problems
can be solved both optimally or heuristically. To solve a multi-objective problem means
to identify the set of solutions that are non-dominated (i.e. the Pareto front or Pareto
frontier, Censor, 1977). A solution, say s, is dominated if there exists another solution,
say s

′
, with the same or better objectives than s and at least one being strictly better. In

the previous sentence, better means greater or smaller, depending on whether we are
maximizing or minimizing that objective. Clearly, this adds complexity to the problem
because, instead of looking for an optimal solution, we are now looking for a set of opti-
mal solutions.

1.3. PROBLEMS
In this dissertation, we treat two types of CO problems: routing problems and the knap-
sack problem. Section 1.3.1 illustrates the family of routing problems and Section 1.3.2
portrays the knapsack problem.

1.3.1. ROUTING PROBLEMS
Food delivery, international shipping of goods from production to consumption coun-
tries, same-day delivery, ride hailing and freight transportation are just a few of the many

4Free documentary available at: https://www.youtube.com/watch?v=WXuK6gekU1Y, website accessed on
September 2020

https://www.youtube.com/watch?v=WXuK6gekU1Y

1

8 1. INTRODUCTION

problems falling under the umbrella of routing problems (Toth and Vigo, 2002). These
problems are tremendously relevant for transportation, shipping and logistic companies
as well as for any other businesses that rely on some sort of delivery.

Basically all routing problems (with a few exceptions, e.g. the shortest path problem
(Dijkstra et al., 1959)) are NP-hard and, on top of that, they are also difficult to approxi-
mate. In our opinion, routing problems are just as complicated as they are interesting. In
fact, their NP-hardness and complexity in being solved make them notably suitable for
being benchmarks for (meta)heuristics testing. Moreover, in our global, connected, con-
sumerist and fast-paced world, we often take for granted how beautifully complex it can
be to manage such a large and unpredictable environment. Plenty of requests are placed
every second, tons of goods have to be shipped every hour, deadlines are getting tighter
and tighter, customers’ satisfaction standards are steadily increasing and many other
factors are the reasons why the logistic sector generates more and more complex prob-
lems to be solved. These new and "always closer to reality" problems are often referred
to as rich vehicle routing problems (rich VRP or RVRP). In addition, these problems are of
decisive impact for companies since transportation costs are usually a significant com-
ponent of the cost of a product (about 10%, Rodrigue et al., 2016).

In this dissertation, we analyze and solve three different VRP problems, all of which
are described in the following paragraphs.

THE BALANCED TRAVELING SALESMAN PROBLEM

The balanced traveling salesman problem (BTSP) is a CO problem that was first intro-
duced at the Metaheuristics Summer School 20185 under the format of a competition.
The BTSP is a variation of the traveling salesman problem (TSP, Lawler et al., 1985) which,
in turn, is a special case of VRP and it is likely to be the most studied combinatorial op-
timization problem ever (Applegate et al., 2011). In the TSP, a salesman has to travel
among a set of cities while making a Hamiltonian tour (i.e. a cycle which visits each
node exactly once). The objective of the salesman is to minimize the travelled distance.
Given its main application to logistics, distances are all strictly positive. In Figure 1.2, we
show an example of a graph and some different ways a salesman can travel it.

The BTSP is a variation of the TSP where arcs are associated with a cost, that can
either be positive or negative. The objective is to find an Hamiltonian cycle whose cost
is as close as possible to zero. This problem can find applications in, for instance, on-
route charging, where an electric vehicle can travel specific segments that can recharge
its battery without having to stop. In this way, some arcs have a negative cost (energy
spent to travel), others have a positive cost (energy recharged) and the objective is to
return the vehicle at its starting point with a battery -more or less- as charged as when it
left.

THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Thirty years ago, virtually nobody could expect the arrival of ride-hailing companies
such as Uber, Lyft, Curb or such. Now, some of those appear in Fortune 5006. Simi-
larly, it was difficult to forecast the role that ride-sharing and car-pooling would have

5MESS2018 https://www.ants-lab.it/mess2018/, website accessed: August 2021
6Fortune 500 is the list of the most successful U.S. businesses, https://fortune.com/company/

uber-technologies/fortune500/ website accessed in August 2021

https://www.ants-lab.it/mess2018/
https://fortune.com/company/uber-technologies/fortune500/
https://fortune.com/company/uber-technologies/fortune500/

1.3. PROBLEMS

1

9

Figure 1.2: From top left, clockwise, the graph and three possible Hamiltonian tours. In grey, the non-travelled
edges, in yellow, blue and pink, the travelled ones.

assumed in today’s society. The next transportation revolution is difficult to forecast, but
it will, most likely, involve self-driving vehicles. These autonomous vehicles have the
potential to transform personal mobility from private assets to on-demand services. In
addition, due to real-time information technologies, these vehicles can be coordinated
via an intelligent system aimed at optimizing the system optimum rather than the users’
optimum.

Figure 1.3: Example of transfer. On the top, two different destinations; on the bottom, vehicles (in yellow and
red) and passengers (in blue, pink and green). The colour of each arrow represents the vehicle or passenger it
refers to.

Another feature that the next transportation revolution might embrace is the pos-

1

10 1. INTRODUCTION

sibility of inter-vehicles transfers. We explain this via an example (see Figure 1.3). Let
us suppose to have three groups of people (A, B and C) requesting a ride. Imagine that
vehicle V1 is parked close to group A while group B and C are located fairly close to ve-
hicle V2. Finally, assume that groups A and B want to travel to the airport while group C
wants to go to the beach. A possible solution involving transfers is the following. Vehicle
V1, carrying group A, meets vehicle V2, carrying groups B and C , in a convenient spot
where group B transfers from V2 to V1. Afterwards, one vehicle goes to the airport while
the other goes to the beach.

SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

While delivering goods, minimizing costs is the main goal in mind; yet, this might not
be of such paramount importance in other contexts. For instance, when dealing with
people transportation, offering a good quality service may be more relevant than saving
a (small) portion of the costs. Clearly, there exists a trade-off between saving costs and
the quality of the service. How much one should reduce the quality of the service to save
transportation cost is a difficult question to answer.

Quality of service becomes even more important when transporting students with
disabilities (such as metachromatic leukodystrophy, attention deficit hyperactivity dis-
order, obsessive-compulsive disorder, etc.). since their well-being can easily be altered.
On one hand, transporting students with disabilities is quite expensive because special
vehicles and dedicated staff are required. On the other hand, blindly trying to mini-
mize costs leads to the design of routes that do not take into consideration the personal
preferences of the students who could be distressed when riding with people they are
unfamiliar with. A graphical example can be found in Figure 1.4.

Figure 1.4: Example of two possible routings, on the left, the school and the busses. On the right, the students.
Students that are comfortable with each other are depicted in the same colour. On the top, a routing aimed at
minimizing travel costs; on the bottom, a routing aimed at maximizing quality of the service.

Up to now, the problems treated were single-objective problems; in this case instead,

1.4. DISSERTATION OUTLINE

1

11

we are solving a multi-objective (bi-objective) problem since we are optimizing at the
same time for minimizing costs and maximizing the quality of the service.

1.3.2. KNAPSACK PROBLEM
Chapter 5 investigates a new take on one of the oldest NP-hard combinatorial problems,
the knapsack problem (Salkin and De Kluyver, 1975). The anecdote around the knapsack
problem is the following (see Figure 1.5 for a graphical representation).

Figure 1.5: Example of a possible instance of the knapsack problem. On the left, a knapsack of maximum
capacity one kilogram, on the right, a set of selectable objects, each one with its own weight and value.

Imagine you are a thief in a room full of objects, each having a value and a weight. You
have only one knapsack where to store the stolen objects. Unfortunately, your knapsack
is fragile and can hold only to a certain amount of weight. How do you choose which ob-
jects to pick to maximize your reward without violating the capacity constraint? Would
you pick the most valuable objects first and fill the remaining room in the knapsack with
small objects? Would you pick objects based on their ratio of value divided by weight?
None of these greedy techniques can guarantee an optimal solution; however, heuristics
can return excellent results in polynomial time.

1.4. DISSERTATION OUTLINE
The remainder of this chapter explains which problems are treated in each chapter and
how we dealt with them (see also Figure 1.1).

Chapter 2 discusses how to find good solutions for the balanced traveling salesman
problem with an adaptive metaheuristic. The BTSP was first introduced as a competi-
tion, to which we participated obtaining valid results. In fact, our algorithm achieved
the best known solution in many instances and ranked fifth in the overall competition
ranking.

In Chapter 3, we investigate how to precisely model and formulate the Dial-a-Ride
problem with transfers. Given its real-life application, we decided to design a quite com-

1

12 1. INTRODUCTION

plex and articulated model to capture many of the dynamics involved in people trans-
portation. Afterwards, we found, via a commercial solver, optimal routes for small in-
stances of this problem based on real-data from the region of South-Holland. Also, we
examine how much the possibility of transfers affects the quality of the optimal solu-
tions.

In Chapter 4, we explore the special education needs school bus routing problem
(both from an optimal and a metaheuristic point of view), focusing especially on how
to find the family of optimal solutions. We tested our metaheuristic on small instances
of which we were able to retrieve some of the points belonging to the Pareto front via
exact techniques. Once we assessed the performance of the metaheuristic on small in-
stances and thanks to the opportunity of working with a special education needs school
in the county of Kent (South-West England), we tested the metaheuristic on a real-life
case study, obtaining various different solution points.

Finally, inspired by the results obtained in other fields by machine learning, we de-
cided to apply end-to-end deep reinforcement learning with little to no human knowl-
edge input, to one of the most classical combinatorial optimization problems, the knap-
sack problem. Our result came extremely close (within 1%) to optimality suggesting that
RL can very well be an efficient tool to tackle combinatorial optimization problems.

2
ADAPTIVE ITERATED LOCAL

SEARCH WITH RANDOM RESTARTS

FOR THE BALANCED TRAVELLING

SALESMAN PROBLEM

Jacopo PIEROTTI, Lorenzo FERRETTI, Laura POZZI,
Theresia VAN ESSEN

Metaheuristics have been widely used to solve NP-hard problems with excellent results.
Among all NP-hard problems, the Travelling Salesman Problem (TSP) is potentially the
most studied one. In this chapter, a variation of the TSP is considered; the main differences
being, edges may have positive or negative costs and the objective is to return a Hamil-
tonian cycle with cost as close as possible to zero. This variation is called the balanced
TSP (BTSP). To tackle this new problem, we present an adaptive variant of the iterated
local search metaheuristic featuring also random restart. This algorithm was tested on
the MESS2018 metaheuristic competition and achieved notable results, scoring the 5th
position overall. In this chapter, we detail all the components of the algorithm itself and
present the best solutions identified. Even though this metaheuristic was tailored for
the BTSP, with small modifications its structure can be applied to virtually any NP-hard
problem. In particular, we introduce the uneven reward-and-punishment rule which is a
powerful tool, applicable in many contexts where fast responses to dynamic changes are
crucial.

Parts of this chapter have been published in "Metaheuristics for Combinatorial Optimization", 2021 doi:
10.1007978-3-030-68520-1

13

2

14 AILS-RR FOR THE BTSP

2.1. INTRODUCTION
In the Travelling Salesman Problem (TSP), a salesman has to visit a given set of cities
and, after travelling along all of them, has to return to the one he started from, hence,
completing a cycle. Given a set of cities V and a cost matrix D with entries di , j (i , j ∈V)
–in the standard TSP, costs represent the distance between cities–, the goal of the trav-
eller is to find the cycle of minimum cost covering all the cities. The TSP is an NP-hard
problem and, therefore, there are no known techniques able to provide an optimal solu-
tion efficiently. In this work, we consider a variation of the standard TSP. In particular,
we address the balanced TSP (BTSP). In this variant, the entries of the cost matrix can
be negative and the goal of the problem is to find the cycle, visiting all the cities, with
cost as close as possible to zero. Despite the complexity of these problems, the TSP and
its variants are widely studied and used in many different contexts. Typical applications
are: clustering (Lenstra, 1974), vehicle routing (Lenstra and Kan, 1981), computer wiring
(Lenstra and Kan, 1975), wallpaper cutting (Hahsler and Hornik, 2007), job-scheduling
(Whitley et al., 1989), DNA sequencing (Caserta and Voß, 2014) and pattern-allocation
(Madsen, 1988) problems. To cope with these problems and their complexity, many ap-
proaches have been proposed in the literature. The main discriminant among them is
their ability to obtain an optimal solution or to rapidly discover a near-optimal one. In
the latter, there is a trade off between the time required to identify the solution and the
quality of the solution provided.

Among the different approaches proposed in literature, some of the most relevant
are: Genetic Algorithms (GA), Ant Colony Optimisation (ACO), Tabu Search (TS), Adap-
tive Large Neighbourhood Search (ALNS), Simulating Annealing (SA), Local Search (LS)
and Iterated Local Search (ILS). The approach proposed by Juneja et al., 2019 exploits
the ability of population-based heuristics to search for multiple solutions in each iter-
ation of the algorithm and, by using various combinations of selection, crossover and
mutation techniques, to continuously improve the quality of current solutions. Dorigo
and Gambardella, 1997 were the first to introduce the possibility to use ACO, a heuristic
algorithm which navigates the solution space by mimicking ants finding food as a group,
as a viable strategy to solve the TSP. More recently, Escario et al., 2015 have refined this
approach introducing different types of agents –specialised ants– and population dy-
namics to organise the ants’ movements. The TS approach proposed by Toth and Vigo,
2003 is based on the use of restricted neighbourhoods, allowing to reduce the solution
space and leading to a more efficient implementation of candidate strategies proposed
for tabu search algorithms. The ALNS heuristic, proposed by Ribeiro and Laporte, 2012,
is based on the algorithm initially devised by Ropke and Pisinger, 2006 and extends the
large neighbourhood search of Shaw, 1997 by using destroy and repair methods within
the same search process. Differently from the previous metaheuristics, SA techniques
mimic the metal annealing process by considering probabilistic moves depending on a
temperature parameter. The SA methodologies proposed by Geng et al., 2011 and Malek
et al., 1989 have been adopted for the TSP resulting in a viable alternative to the above
mentioned metaheuristics. Lastly, LS and ILS techniques have been vastly used to solve

2.2. PROBLEM FORMULATION

2

15

the TSP, see Johnson, 1990, Voudouris and Tsang, 1999 and Paquete and Stützle, 2003. As
described in Lourenço et al., 2003, by using LS, a sequence of viable solutions is itera-
tively generated within the embedded heuristic.

In this work, we propose a variation of the ILS technique. ILS, differently from LS
techniques, alternates the search phase with the perturbation phase in order to escape
tenacious local optima. Given a graph, our approach searches for a Hamiltonian cycle
within it and, by iterating over a sequence of actions operating on the current solution,
navigates the neighbourhood of the current solution while searching for local optima.
Perturbations are then applied in order to escape local optima, hence searching differ-
ent regions of the solution space. The main contribution of this work consists in the
introduction of an uneven reward-and-punishment adaptation rule (see Section 2.3.2),
which in turn leads to a more reactive response to the current solution.

The chapter continues as follows: Sect. 2.2 presents the problem formulation, Sect.
2.3 describes the advantages of ILS techniques and introduces as proposed methodol-
ogy an Adaptive Iterated Local Search with Random Restarts (AILS-RR). Sect. 2.4 shows
experimental evidence for the effectiveness of the AILS-RR technique introduced and
finally, Sect. 2.5 concludes the chapter and presents final remarks.

2.2. PROBLEM FORMULATION
The goal of the TSP is to minimise the cost of the cycle connecting a set of given cities
that a salesman has to visit exactly once. The cycle of the salesman can be defined as a
sub-graph of graph G(V ,E) where V is the set of vertices –cities– and E is the set of edges
of the graph representing the connections between cities. Given two cities i , j ∈ V , we
define di j as the cost of travelling from city i to city j . In addition, we define a binary
variable xi j which specifies if the cycle of the salesman includes the edge from city i to
city j as follows:

xi j =
{

1, if edge i j ∈ E is in the cycle of the salesman

0, otherwise.
(2.1)

Then, we define the total cost of the cycle as:

Ctot al =
∑

i j∈E
di j xi j . (2.2)

In the classic TSP, all costs are strictly positive and the objective is to find the Hamilto-
nian cycle of minimum cost. In the BTSP, costs can be either positive or negative and the
objective is to find the Hamiltonian cycle of cost as close as possible to zero. A Hamilto-
nian cycle is a connected sequence of edges that joins a sequence of vertices, such that
each vertex in V is visited exactly once and the edge sequence is closed. A closed se-
quence starts from a vertex i and, through an ordered sequence of vertices connected
by edges, returns to the original vertex i . Given an ordered sequence, we name adjacent
vertices of a generic vertex its previous and its following vertex. In general, graphs are
not fully connected, i.e. not all vertices i , j ∈ V are connected by a direct edge. Edges
are undirected and each of them is associated with a cost which can be either positive or
negative. We define the degree of a vertex as the number of its outgoing edges.

2

16 AILS-RR FOR THE BTSP

The differences between the BTSP and the TSP translate the model of the classic TSP
in a similar one, hereby reported in (2.3) - (2.8):

min−Ctot al (2.3)

−Ctot al ≥
∑

i j∈E
di j xi j (2.4)

−Ctot al ≥− ∑
i j∈E

di j xi j (2.5)

− ∑
j∈V

xi j = 2 ∀i ∈V (2.6)∑
i , j∈T,i 6= j

xi j ≤ |T |−1 ∀T ⊂V ,T 6= ; (2.7)

−xi j ∈ {0,1} ∀i j ∈ E (2.8)

−Ctot al ∈R+ (2.9)

Objective function (2.3) and Constraints (2.6), (2.7) and (2.8) are standard TSP con-
straints. In particular, Constraints (2.6) impose the cycle to visit each vertex exactly once
–one incoming, one outgoing edge– while Constraints (2.7) avoid the presence of sub-
tours T in the cycle. Considering that is a minimisation problem, Constraints (2.4),
(2.5) and (2.9) impose variable Ctot to assume the absolute value of the cost of the cy-
cle. Lastly, constraints (2.8) force variables xi j to be binary and Objective function (2.3)
aims at minimising the absolute cost of the cycle. By minimising the absolute value, we
force the costs to be as close to zero as possible.

To solve this problem, we used AILS-RR, which is variant of ILS. We define as a feasi-
ble solution any Hamiltonian cycle and as objective function the cost of the cycle itself.
Thus, we aim at identifying the best candidate in the neighbourhood of the current so-
lution by applying modifications to the solution structure.

2.3. METHODOLOGY
The Iterated Local Search methodology repeatedly builds a sequence of solutions gener-
ated by a local search heuristic embedded in a framework. As defined by Lourenço et al.,
2003, given a current solution s, ILS generates an intermediate solution ŝ by applying
changes on s. Then, the embedded local search heuristic is applied to ŝ, which leads
to a new solution s′. If this solution improves s, it becomes the new current solution
in our sequence and, thus, we keep navigating the solution space modifying s′. Other-
wise, if s′ does not introduce an improvement with respect to s, ILS continues to apply
modification to s. Starting from a feasible solution, ILS explores its neighbourhood and
determines the best solution within it. Thus, this metaheuristic exploits the possibil-
ity to search for a solution in a reduced space defined by the output of the local search
heuristic, instead of searching over the entire solution space.

The methodology proposed in this chapter, i.e. AILS-RR, relies on ILS by searching
in the neighbourhood of an already existing solution. From a graph G(V ,E) (represent-
ing a BTSP instance), our methodology starts by generating an initial solution. Once a
solution has been identified, this is given as input to AILS-RR, which iteratively searches

2.3. METHODOLOGY

2

17

Finding an
initial

solution

Initial instance
G(V, E)

Initial 
Hamiltonian cycle

AILS-RR

Intermediate
solution

Candidate best  
solution

Figure 2.1: The AILS-RR framework and its phases.

for improving solutions until a certain stopping criterion is reached. Figure 2.1 shows an
overview of the steps of our methodology.

Details about the strategy adopted to identify an initial solution are presented in Sec-
tion 2.3.1, while the AILS-RR procedure is described in Section 2.3.2.

2.3.1. FINDING AN INITIAL SOLUTION
Determining whether there exists a Hamiltonian cycle in a not fully connected graph is
an NP-complete problem (Garey et al., 1976). In order to find a Hamiltonian cycle, we
used the Snakes-and-Ladders Heuristics (SLH) described in Baniasadi et al., 2014. The
SLH is a polynomial time algorithm inspired by the k-opt heuristic. In SLH, vertices are
ordered on a circle where edges between adjacent vertices represent the arcs of the cir-
cle while all other edges are considered as chords of the circle. The heuristic attempts to
place all edges of a Hamiltonian cycle on the circle by seeking changes in the arrange-
ment of vertices of the graph, with the goal of maximising the number of edges on the
circle.

For this work, we have relied on the online implementation of SLH provided by Ba-
niasadi et al., 2014 1. However, the online implementation accepts a maximum of 2000
vertices. To generate a cycle in the instances with more than 2000 vertices, we randomly
partitioned all the vertices in equally sized subsets, with size smaller than 2000. For each
of them, we independently found a Hamiltonian cycle; then, considering only edges
from one subset to another, we selected the k vertices with highest degree. Finally, for
each of the k vertices and its adjacent ones in the Hamiltonian cycle, namely A and B ,
we checked if they were connected to any couple of adjacent vertices in the other subset,
namely C and D . If so, it means that the two disjoint cycles can be united as A−first cy-
cle−B−C−second cycle−D−A. When none of the k vertices could be used to join the two
cycles, the whole procedure was repeated by randomly re-partitioning the nodes. Figure
2.2 shows a flowchart of the process used to identify an initial solution. For all the eval-

1"http://www.flinders.edu.au/science_engineering/csem/research/programs/flinders-hamiltonian-cycle-project/
slhweb-interface.cfm", website accessed 01-August-2018

http://www.flinders.edu.au/science_engineering/csem/research/programs/flinders-hamiltonian-cycle-project/slhweb-interface.cfm
http://www.flinders.edu.au/science_engineering/csem/research/programs/flinders-hamiltonian-cycle-project/slhweb-interface.cfm

2

18 AILS-RR FOR THE BTSP

Initial instance
G(V, E)

Initial 
Hamiltonian cycle

vertices #
> 2000?

Snake-and-Ladder
(S&L)

no

Graph partition

S&L

yes

S&L

Merge solutions

… Can be
merged? yes

no

Figure 2.2: Flowchart of the process to generate the initial solution.

uated instances, we were able to find an initial solution without having to re-partition
more than two times.

2.3.2. ADAPTIVE ITERATED LOCAL SEARCH WITH RANDOM RESTARTS
Once an initial feasible solution is found, we used AILS-RR to improve its objective value.
The AILS-RR procedure proposed in this work relies on four main phases: local search,
update, perturbation and random restart.

The procedure starts from the initial solution s provided by the method described
in Section 2.3.1. Then, a local search is performed on s and a solution s′ is returned.
This solution can be: a) a new solution different from s or b) the same solution s in case
no improving solution has been identified. Thus, the update phase amends the local
search heuristic according to the resulting solution generated. In this update phase, the
adaptive part of the algorithm takes place.

Once solution s′ has been generated and the update has been performed, we replace
sbest – the best solution found so far – with s′ if the latter strictly improves it. In case
no improved solution, with respect to s, was found after M axI ter ati on consecutive it-
erations, a perturbation to s is applied and a new solution is generated. Then, the next
AILS-RR iteration starts from the perturbed solution and the counter for the not improv-
ing solution is reset. Additionally, if for too many consecutive iterations, no solution has
improved sbest , a random restart from a good known solution is performed. In particu-
lar, details on the number of consecutive iterations needed and on what is considered
a good solution are presented in Section 2.3.2. Random restart is applied to avoid ex-
tensively searching unpromising regions of the solution space, hence moving to a more
fruitful one. Finally, the AILS-RR terminates whenever the stopping criterion is met. Fur-
ther details on the stopping criterion are given in Section 2.3.2.

A pseudo-code of the approach is illustrated in Algorithm 1. In the algorithm, there

2.3. METHODOLOGY

2

19

are five main functions: a) LocalSearch, b) Update, c) Perturbation, d) RandomRestart
and e) StoppingCriterion. Our algorithm differentiates from the standard ILS in terms of
the update phase as well as the introduction of the random restart from a known solu-
tion. In the following paragraphs, we explain each component of the algorithm in detail.

Algorithm 1 Adaptive Iterated Local Search with Random Restart

1: procedure AILS (Input: Graph G , Hamiltonian cycle s; Output: Hamiltonian cycle
sbest)

2: sbest = s;
3: not Impr ovi ng = 0;
4: while not StopCriterion() do
5: i = 0;
6: while i < MaxIterations do
7: s′=LocalSearch(s);
8: Update(LocalSearch());
9: if |Cost(s′)| < |Cost(s)| then

10: s = s′;
11: i = 0;
12: if |Cost(s′)| < |Cost(sbest)| then
13: sbest = s′;
14: not Impr ovi ng = 0;
15: else
16: not Impr ovi ng ++;
17: end if
18: else
19: i ++; not Impr ovi ng ++;
20: if not Impr ovi ng > Rest ar tF actor then
21: s = RandomRestart();
22: not Impr ovi ng = 0;
23: end if
24: end if
25: end while
26: s=Perturbation(s);
27: end while
28: return sbest

29: end procedure

LOCAL SEARCH

Starting from a current solution s, the local search aims at finding an improved solution
s′. It consists of applying modifications, which are dictated by different operators, to the
solution structure. An operator is a function that, given cycle s, applies modifications
on its structure to generate multiple cycles which are variations of cycle s. The resulting
cycles define a neighbourhood of s. Every solution in the neighbourhood is evaluated
and only the solution which most improves s is accepted. If no solution improves

2

20 AILS-RR FOR THE BTSP

Figure 2.3: Examples of single edge insertion. Dashed blue lines show the edge to be inserted; dotted red lines
indicate the edges that may or may not exist, while black lines show the edges belonging to the original cycle.
Figure (i) shows the original cycle, while figures (ii)–(ix) show the possible insertions.

s, s itself is returned. During the local search, the algorithm uses – with probability
depending on their weights – one of these three operators: one edge insertion, two edges
insertion and cycle modification. Each operator selects at least one edge to be inserted
in s. The insertion of an edge divides the original cycle in two subtours. Selecting the
edge to be inserted determines which subtours will be created. Dually, identifying a
desired subtour lets us establish which edge is to be inserted. Given the particular
structure of the instances, we have chosen to determine the edges first. More on this
is presented in Section 2.4.1. The following paragraphs introduce the operators adopted.

One edge insertion. Given a cycle s, the first operator selects, at random, one edge
AB which is not in s. The extreme points of the edge, A and B , are adjacent to two
vertices each in s –C and D for A, E and F for B . For the time being, we assume every
vertex to be different with respect to each other; straightforward modifications can be
applied if this is not the case. There is only a limited number of possibilities to insert
edge AB in the existing solution; at most, there are eight possible outcomes. The cost,
Equation (2.3), of all possible outcomes is evaluated and the best one is chosen. Since
the graph is not complete, in general not all the combinations exist. Indeed, naming
p the probability that an edge exists and assuming they are all independent, we can
analyse quantitatively the probability for each combination to exist. Figure 2.3 shows
all possible outcomes; the edge to be inserted is represented in blue, the edges that
may or may not exist are shown in red, while black indicates the edges belonging to the
original cycle. By construction, we know the existence of edges AB , AC , AD ,BE and BF .
Hence, we deduce there are two combinations with probability p, four combinations

2.3. METHODOLOGY

2

21

F

E

H

G

D

C

B

A

L

K

J

I

F

E

H

G

D

C

B

A

L

K

J

I

F

E

H

G

D

C

B

A

L

K

J

I

(i) (ii)

(iv)

F

E

H

G

D

C

B

A

L

K

J

I

(iii)

Figure 2.4: Example of two edge modification. (i) Initial cycle. (ii) Insertion of two edges and subtours gener-
ated. (iii) Reconstructed cycle with probability p3. (iv) Reconstructed cycle with probability p6. The original
edges are shown in black while dashed blue lines depict the inserted edges and dotted red lines depict the
edges existing with probability p.

with probability p2 and two combinations with probability p3.

Two edges insertion. Similarly to the previous operator, this process chooses two edges
not yet in the current solution and tries to insert them. If the four extreme vertices of
the two selected edges are all different, isolating them divides the cycle in four subtours.
Hence, the solution is now decomposed in six subtours – four from the original cycle and
two from the two inserted edges, that can be considered subtours as well, see Figure 2.4.

There are 10!!2 possible ways to combine the four subtours and the two edges. This
number comes from (2·(t−1))!!, where t is the number of subtours – six, in our case – and
−1 because a degree of freedom is lost for the intrinsic symmetry of cycles. A multiplica-
tive factor of 2 is added since each subtour can be linked to the next one through two
different endpoints. Having t subtours implies having, as their endpoints, 2t vertices.
Intuitively, the double factorial follows because a vertex can be connected to 2t −2 other
vertices, every vertex but itself and the other endpoint of its subtour. Once connected,
the following vertex can be connected to 2t −4 others. This includes all the vertices but
itself, the other endpoint of its subtour and the endpoints of the subtour to which it is
already linked to. Recursively, we can see how this develops, for the remaining vertices,
in a double factorial structure. Among these combinations, only the ones with at least
probability p3 to exist are considered by our methodology.

Generally speaking, these first two operators can be viewed as modified versions

2!! is double factorial, i.e. f !! = f · (f −2) · (f −4)...
In our case, 10!! = 3840

2

22 AILS-RR FOR THE BTSP

A

B

E

F

C

D

A

B

E

F

C

D

A

B

E

F

C

D

A

B

C

D

E

F
(i) (ii) (iii) (iv)

Figure 2.5: Example of cycle modification. (i) Original cycle. (ii) Selection of the edges to be inserted. (iii)
Construction of the existing path. (iv) Closing the cycle with edge EF which exists with probability p. Original
edges are shown in black, dashed blue lines depict the inserted edges and dotted red lines indicate the edges
that exist with probability p.

of k-opt. Figure 2.4 shows an example of two edges insertion. Starting from an initial
cycle – Figure 2.4i – two edges are inserted. The new edges divide the cycle into four
different subtours – Figure 2.4ii. Finally, Figure 2.4iii and Figure 2.4iv show an example
of a reconstructed cycle with probability p3 and p6, respectively.

Cycle modification. The two edge insertion generates multiple intermediate solutions,
but it is computationally more expensive with respect to the one edge insertion operator.
To compensate the computational requirements of the two edge insertion operator, we
introduce the cycle modification operator.

This operator selects, at random, an edge in the existing solution s. We name A and
B its extreme vertices, which are consecutive in the original solution s. Then, we se-
lect at random one edge, not in solution s, which is outgoing A and is entering, without
loss of generality, in C . At the same time, we select at random one edge, not in solution
s, which is outgoing B and is entering, without loss of generality, in D 6= C , see Figure
2.5ii. Subsequently, we consider the path, in the original cycle, from C to D , that passes
through A and B . In that cycle, we name E and F the follower of C and the predeces-
sor of D , respectively. By construction, there exist paths E A,C D ,BF and edges AC ,BD .
Hence, there exists a path connecting E A − AC −C D −DB −BF , see Figure 2.5iii. Fi-
nally, if edge EF exists, we obtain a feasible cycle, see Figure 2.5iv. In general, edge EF
exists with probability p. To increase the size of the neighbourhood, this procedure is
repeated for all outgoing edges of B . It is not, however, repeated for all combinations of
outgoing edges of A and outgoing edges of B , because this would be computationally
too expensive.

UPDATE

Each operator of the local search is applied with a probability proportional to its associ-
ated weight. These weights are constrained to be greater than a parameter Mi nW ei g ht
and their sum is forced to a value lower that the upperbound parameter M axW ei g ht s.
Whenever an operator returns a solution which does not improve the input solution, we
subtract f –in this work, f has value 1– from its associated weight. In case an operator re-
turns a better solution than the solution given as input, its associated weight is increased
by 10% and rounded up to the nearest integer. In addition, if the returned solution is
even better than the best known solution –sbest – the weight of the operator leading to

2.3. METHODOLOGY

2

23

the improved solution receives an extra reward of 10 f in addition to the normal reward
obtained for improving the previous solution. We call this discrepancy among a con-
stant decrease and a proportional increase an uneven reward-and-punishment adap-
tation rule. In our opinion, an even reward-and-punishment adaptation rule is more
suited to grasp stable characteristics, such as the ones related to the structure of the
g r aph itself, while an uneven rule is more keen to quickly adapt to variations, such as
the ones in the changing structure of the sol uti on.

PERTURBATION

The perturbation is applied when we are not able to improve a local solution for a sig-
nificant number of iterations –M axI ter ati ons. To perform a perturbation, the algo-
rithm uses the same operators as the local search. The main differences, with respect
to the local search, is that every change is accepted –not only an improving one– and it
is performed only once. There is no evidence that more perturbations results in better
solutions. In fact, more perturbations cause the current solution to drift too much away
from a promising part of the solution space. In addition, since the costs of the edges
are neither Euclidean nor we were able to find any pattern within them, even a slight
modification of a few edges can lead to dramatic changes in the objective function.

RANDOM RESTART

Perturbations allow to explore different regions of the solution space; nonetheless, some
of those regions could be unpromising. To avoid exploring inadequate regions of the
solution space, it is useful to restart the search from a region where good solutions are
known to exist. If, after too many consecutive iterations, no solution improved the best
known objective function, then a random restart from a good known solution is per-
formed. In particular, we define as Hi stor y an array storing the Hi stor ySi ze best so-
lutions and their number of occurrences. If, after Rest ar tF actor consecutive not im-
proving iterations, sbest was not improved, we perform a random restart from any of the
solutions stored in Hi stor y .

We define Rest ar tF actor as:

Rest ar tF actor = cM ax + MostV i st i tedSol uti on(Hi stor y)

Hi stor yStep
, (2.10)

where MostV i st i tedSol uti on(Hi stor y) assumes the value of the number of visits to
the most visited solution in Hi stor y , while cM ax and Hi stor yStep are parameters.
cM ax indicates the minimum number of iterations the algorithm has to perform before
a random restart can happen, while Hi stor yStep is a scaling factor. While we perform
the random restart to avoid going too far away from a region of the solution space where
good solutions exist, we reduce the frequency of restarts when the same solution is vis-
ited more and more times to escape that tenacious local minimum. In fact, it could
happen that too frequent restarts drives the local search to the same local minima. In
addition, restarting from any of the solutions stored in Hi stor y helps to maintain a cer-
tain degree of diversity.

2

24 AILS-RR FOR THE BTSP

STOPPING CRITERION

AILS-RR has no memory of all the solutions discovered since it started and in general
there is no guarantee of optimality. Hence, without a stopping criterion, it would indef-
initely search for improving solutions. The stopping criterion we implemented termi-
nates the execution of the algorithm if any of the following conditions is met: a) the solu-
tion cost is zero and, thus, we have reached the optimal solution, b) a user-defined time
limit was exceeded, c) the algorithm returned for more than M axI ter ati onHi stor y
times the same solution.

If condition a) is met, then, it is not possible to further improve the solution identi-
fied. Condition b) offers a knob for setting a reasonable usage of resources required to
search for improving solutions and condition c) is useful to avoid expensive explorations
of particularly tenacious local optima from where the algorithm cannot escape even with
its perturbation move.

2.4. EXPERIMENTS
In this section, we explain the experiments setup and the performance of our algorithm.
In Section 2.4.1, we describe the instances tested, in Section 2.4.2, the parameters used
and, lastly, in Section 2.4.3, the performance of our algorithm.

2.4.1. INSTANCES

The algorithm was tested on 27 given instances3 , which vary in size from 10 vertices and
40 edges, to 3,000 vertices and 12,000 edges. Hence, on average, each vertex has degree
4. This motivates the analysis on the probability of existence of an edge in the AILS-RR.
The absolute value of the costs of every edge can be written as k1 ·100,000 + k2, where
k1 and k2 are integers in the range [0,99]. We run the algorithm twice per instance. The
first time, we used as input the instances considering as cost only k1. In the following,
we refer to this change in the cost associated with the edges as a cost modification. With
this data, the algorithm was able to find a solution of cost zero for all instances. Then,
the algorithm was run a second time, starting from the previously found solution, with
the real costs of the arcs.

2.4.2. PARAMETERS TUNING
The local search procedure is repeated until for M axI ter ati ons = 100 consecutive iter-
ations no improving solution is found. Hi stor ySi ze, the number of how many good so-
lutions were stored in array Hi stor y , is set to 100. Parameters cM ax and Hi stor yStep,
which are used to determine when to restart from a random solution in Hi stor y , are
set to 1,000 and 100, respectively. Parameter M axI ter ati onHi stor y determines how
many times a solution can be visited before the stopping criterion is met and is set to
1,000,000. This means that a random restart can happen as often as after 1,000 con-
secutive not improving iterations, or as rarely as after 10,999 consecutive not improv-
ing iterations. In Paragraph 2.3.2, we explained how often the random restart happens
depending on how many times the most inspected solution is visited. We may have a
restart after 10,999 consecutive not improving iterations and not after 11,000 times as ex-

3available at "https://195.201.24.233/mess2018/home.html", Accessed 01-August-2018.

https://195.201.24.233/mess2018/home.html

2.4. EXPERIMENTS

2

25

Parameter name Value Description
M axI ter ati ons 100 maximum not improving cycles of LS
Hi stor ySi ze 100 dimension of array Hi stor y

cM ax 1,000
minimum number of cycles for a random
restart

Hi stor yStep 100 random restart parameter
M axI ter ati onHi stor y 1,000,000 stopping condition parameter
Mi nW ei g ht 1 minimum weight for each operator

M axW ei g ht s 1,000
maximum value of the sum of the weights of
all operators

M axT i me 2h maximum time per instance - modified costs
M axT i me 12h maximum time per instance - original costs

Table 2.1: Parameters tuning

pected if MostV i si tedSoluti on(Hi stor y) assumes value M axI ter ati onHi stor y . In
fact, MostV i si tedSoluti on(Hi stor y) cannot assume value M axI ter ati onHi stor y
in Equation (2.10) because, if so, the stopping criterion is met and the execution of the
whole algorithm is terminated. Every single operator weight is initially set to 333 and re-
stricted to integer values above Mi nW ei g ht = 1 and such that their sum does not exceed
M axW ei g ht s = 1,000. If the sum of the weights exceeds M axW ei g ht s, the weight of
every parameter is decreased by one, unless this violates the lower bound Mi nW ei g ht ,
until the threshold is respected. For the tests with the modified cost, the maximum run-
ning time for each instance was set to two hours while, for the tests with the original
cost, the maximum running time for each instance was set to twelve hours. Table 2.1
summarises all the parameters used in the algorithm.

2.4.3. PERFORMANCE

Instances were run overnight on different machines. In particular, instances up to 100
nodes were run on an Intel Core i7-6600U CPU @2.60GHz 2.80GHz with 8 GB RAM and
instances from 150 to 400 nodes on a Intel Core i7 @2.9 GHz with 8 GB RAM. Bigger in-
stances (500 to 3,000 nodes) were run on a 32 core machine with Intel Xeon E5-4650L
CPU @2.60GHz 3.1GHz with 500 GB of physical memory. Since the BTSP is a new prob-
lem, introduced for the MESS2018 solver challenge, no comparison with the state of the
art is possible. In general, optimal solutions are not known but they cannot have a bet-
ter objective function than zero. By executing the AILS-RR on the instances with modi-
fied costs of the edges, as explained in Section 2.4.1, we know that the optimal solutions
for all these modified instances have cost zero. In general, a zero cost solution for the
modified instances does not translate into an optimal solution for the original instances;
nonetheless, it is a good initial when solving the instance with original costs. In the fol-
lowing paragraphs, unless explicitly mentioned, results refer to the modified costs. For
the tests with the modified costs, we set a time limit of two hours and a limit of 10,000
iterations by counting how many times LocalSearch is called. In order to perform a quali-
tative analysis of the obtained results and of the operator effectiveness, we (re-)tested the

2

26 AILS-RR FOR THE BTSP

instances on a 32 core machine with Intel Xeon E5-4650L CPU @2.60GHz 3.1GHz with
500 GB of physical memory. Each test was run 10 times to obtain average results. In the
following paragraphs, we introduce in detail a meaningful instance case and, afterwards,
we present results for all instances.

INSTANCE 3,000 VERTICES

The instance presented in this section is representative of the entire set. In fact, Figure
2.6i and Figure 2.6ii display the trends of the objective function, for the same executions,
with respect to iterations and time while Figure 2.6iii and Figure 2.6iv show the evolu-
tion of the weights during the ten tests of the algorithm, with respect to iterations and
time. Since all the tests are plotted simultaneously, these figures give some idea on the
variance of the trends and how many tests terminated their execution in just a few iter-
ations. First of all, plotting results with respect to iterations or with respect to time only
slightly modifies the overall shape of the figures. This is due to the fact that comparable
amounts of time are needed for each operator to perform its local search. In Figure 2.6iii
and Figure 2.6iv, sharp peaks with slow decline are visible. This is exactly the effect of the
uneven reward-and-punishment adaptation rule; since increases are proportional while
decreases are constant, rapid changes in the weights of the operators are visible. In this
case, and basically also for all other instances, it is clear that operator cycle modification
performs better than the others. Secondly, Figure 2.6i and Figure 2.6ii show the absolute
value of the best solution found so far by the algorithm. Even though this instance is the
biggest one, even for the worst of the ten tests, our algorithm was able to find an optimal
solution in roughly two minutes.

RESULTS FOR ALL INSTANCES

Small instances were solved in a few iterations with no particularly interesting trend; be-
cause of that, in this paragraph, we consider only instances of size strictly greater than
one hundred vertices. Since no particular difference arises from plotting with respect
to the number of iterations or with respect to time, the figures in this paragraph refer to
the iterations. Furthermore, for the sake of readability, we decided to plot average re-
sults instead of all the 10 trends. Averaging the results highlights the trends but smooths
peaks which instead are visible in Figure 2.6iii and Figure 2.6iv. For instances with more
than one hundred nodes, trends of the weights of the operators and of the solution de-
velopments are shown in Figure 2.7 and Figure 2.8, respectively. These trends show the
average results for the ten tests. Figure 2.7 shows that, for all simulations, all tests over all
the instances, but one, returned the optimal solution within few iterations –resulting in
few minutes of execution time–, way before encountering the time or the iteration limit.
In our opinion, this is a powerful indicator of the effectiveness of our algorithm. Simi-
larly, Figure 2.8, shows how among all the instances, the cycle modification is the most
effective operator. Nonetheless, it is worth noticing that, while for the medium-sized
instances, weights are almost equivalently distributed among operators, the bigger the
instance, the greater the probability of cycle modification to be chosen.

FINAL RESULTS

In this section, for the sake of further comparison, we display the results submitted to
the competition. All the results proposed in this section are computed with the original

2.5. CONCLUSION

2

27

- - - absolute value of the objective function

0 50 100 150 200
Number of iterations

0

50

100

150

200

|C
os
t|

(i) Cost with respect to the number of iterations

0 50 100 150 200
Time in seconds

0

50

100

150

200

|C
os
t|

(ii) Cost with respect to the execution time

- - - one edge insertion - - - two edges insertion - - - cycle modification

0 50 100 150 200
Number of iterations

0

200

400

600

800

W
ei
gh

ts

(iii) Weights with respect to the number of iterations

0 50 100 150 200
Time in seconds

0

200

400

600

800
W
ei
gh

ts

(iv) Weights with respect to the execution time

Figure 2.6: Evolution of absolute cost of the solutions and operator weights with respect to number of iterations
and execution time. Results are shown for the instance with 3,000 vertices.

costs. In particular, Table 2.2 portraits: in the first column, the instance size –expressed
in the number of vertices– and, in the second column, the absolute value of the solutions.

2.5. CONCLUSION

This chapter illustrates the AILS-RR methodology applied to the balances travelling
salesman problem. With slight modifications of the local search operators, we believe
that the same metaheuristic can obtain significant results in many operational research
problems. The proposed metaheuristic is a variant of ILS and it features the adaptive
use of the local search operators and restart moves. Key advantages of the AILS-RR are:
its effectiveness in navigating the solution space, as shown in the achieved ranking in
the MESS2018 Metaheuristics Competition, its easiness to implement and its ability to
quickly obtain near optimal solutions. Additional motivations and a detailed description
of our algorithm are presented in Section 2.3, which presents the algorithm structure
focusing on the different phases of the metaheuristic. In particular, the description de-
tails the main contribution of the proposed methodology which lays in the newly intro-

2

28 AILS-RR FOR THE BTSP

- - - absolute value of the objective function

0 50 100
0

10

(i) 150 vertices

0 50 100
0

50

(ii) 200 vertices

0 50 100
0

50

100

(iii) 250 vertices

0 5000 10000
0

10

(iv) 300 vertices

0 50 100
0

100

200

(v) 400 vertices

0 50 100
0

20

(vi) 500 vertices

0 50 100
0

25

50

(vii) 600 vertices

0 100
0

25

50

(viii) 700 vertices

0 100 200
0

20

40

(ix) 800 vertices

0 50 100
0

100

(x) 900 vertices

0 100
0

50

100

(xi) 1,000 vertices

0 100 200
0

50

100

(xii) 1,500 vertices

0 100 200
0

200

(xiii) 2,000 vertices

0 100 200
0

25

50

(xiv) 2,500 vertices

0 100
0

100

(xv) 3,000 vertices

Figure 2.7: Evolution of the objective function over different instances. Number of iterations on the x-axis,
objective function value on the y-axis.

2.5. CONCLUSION

2

29

- - - one edge insertion - - - two edges insertion - - - cycle modification

0 50 100
200

400

600

(i) 150 vertices

0 50 100
200

400

600

(ii) 200 vertices

0 50 100
200

400

600

(iii) 250 vertices

0 5000 10000
200

400

600

(iv) 300 vertices

0 50 100
200

400

600

(v) 400 vertices

0 50 100
200

400

600

(vi) 500 vertices

0 50 100
200

400

600

(vii) 600 vertices

0 100
200

400

600

(viii) 700 vertices

0 100 200
200

400

600

(ix) 800 vertices

0 50 100
200

400

600

(x) 900 vertices

0 100
200

400

600

(xi) 1,000 vertices

0 100 200
200

400

600

(xii) 1,500 vertices

0 100 200
200

400

600

(xiii) 2,000 vertices

0 100 200
200

400

600

(xiv) 2,500 vertices

0 100
200

400

600

(xv) 3,000 vertices

Figure 2.8: Evolution of the weights assigned to the different operators over different instances. Number of
iterations on the x-axis, operators’ weights on the y-axis.

2

30 AILS-RR FOR THE BTSP

vertices |Solution cost|
10 105
15 271
20 296
25 375
30 433
40 473
50 717
60 918
70 1,056
80 929
90 1,098

100 1,245
150 2,035
200 2,657
250 3,811
300 4,846
400 6,509
500 8,418
600 9,784
700 17,989
800 18,233
900 20,596

1,000 22,597
1,500 37,662
2,000 49,882
2,500 36,607
3,000 24,423

Table 2.2: Results.

duced uneven reward-and-punishment adaptation rule. To the best of our knowledge,
this is the first time that such a strategy is used. Section 2.4 proves that our AILS-RR
achieves notable results, scoring remarkable positions in almost every instance ranking
and achieving the 5th position in the competition.

3
MILP MODELS FOR THE

DIAL-A-RIDE PROBLEM WITH

TRANSFERS

Jacopo PIEROTTI, Theresia VAN ESSEN

Automated vehicles (AVs) are becoming a reality. Expectations are that AVs will ultimately
transform personal mobility from privately owned assets to on-demand services. This
transformation will enhance the possibility of sharing trips, leading to shared AVs (SAVs).
The preeminent aim of this chapter is to lay foundations for fast and efficient algorithms
to be used in such new driving conditions. These algorithms must be able to solve Dial-a-
Ride problems with transfers (DARPT). Hence, they should efficiently assign passengers to
vehicles and routes while also: administering vehicles dispatch, determining convenient
parking for idling vehicles and managing vehicle routing in real-time. In this chapter,
we develop two integer linear programming models (one in continuous time and one in
discrete time) and their extensions to solve the DARPT. Our models take into account rout-
ing, service times, constraints on maximum route time-span, unserved requests, preferred
arrival and departure time, nonconstant travel times, convenient parking while optimiz-
ing routing costs and quality of the service. The models are tested on instances based on
Google Maps data by solving them with a commercial solver. The results of these tests are
the starting point for validating the performance of forthcoming, ad hoc metaheuristics to
be used in real-life sized scenarios.

Parts of this chapter have been published in EURO Journal on Transportation and Logistics , doi:
https://doi.org/10.1016/j.ejtl.2021.100037

31

3

32 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

3.1. INTRODUCTION
Automated vehicles (AVs) will reshape our transportation system. The opportunities and
potential they offer will lead to the most significant transportation revolution since the
introduction of the internal combustion engine (Spieser et al., 2014). In fact, nowadays,
cities are facing an increasing personal transportation demand combined with a grow-
ing population, while spatial resources remain static. Traditional solutions to congestion
(roads expansion, added bus services, new subway lines, etc.) cannot mitigate the traf-
fic escalation. In order to meet this expanding mobility demand, a new transportation
mentality involving shared autonomous vehicles (SAVs) is likely to become the dominant
mindset in the coming years (Fagnant and Kockelman, 2014, International Transport Fo-
rum, 2015). Although this SAVs system has some disadvantages, such as high initial cost
barriers (Fagnant and Kockelman, 2015, Conceição et al., 2017), loss of vehicles’ status
symbol (Correia and van Arem, 2016) and distrust from the public, this new mentality is
accelerated by the growing number of environmentally conscious citizens and the rising
popularity of on-demand ridesharing services, especially among young adults. In addi-
tion, thanks to the possible interactivity among SAVs and to a smart managing system on
top, lower and lower congestion levels will be achieved (Spieser et al., 2014, International
Transport Forum, 2015, Liang et al., 2017).

As pointed out by Spieser et al., 2014, while automated vehicle technology continues
to move forward, less attention has been devoted to the logistics of effectively managing
a fleet of potentially thousands of such vehicles. Accordingly, our work aims to fill this
gap to a certain degree by presenting exact formulations to solve the routing of SAVs. In
particular, we demonstrate the benefits of transfers and ridesharing for small instances.
The performance of forthcoming metaheuristics can be compared against these results.
A more formal definition of ‘ridesharing’ and ‘transfer’ is presented in Section 3.2. Since
organizing transfers is a meticulous and precise action that requires information on the
position of all vehicles, we assume vehicles to be autonomous and to be managed by a
centralized controller. Although these autonomous vehicles will most likely be electric,
we do not take battery consumption (A. Zhang et al., 2017) into account in this research,
since this will further complicate an already complex problem.

To simulate on-demand ridesharing systems, almost every aforementioned author
(Fagnant and Kockelman, 2014, Martinez et al., 2015, International Transport Forum,
2015,Fagnant and Kockelman, 2015, Liu et al., 2017) used agent based simulation. In
this chapter, instead, we use exact optimization techniques to achieve optimal solutions;
however, this limits the ability to solve real-life sized instances due to high computa-
tional times.

The problem we aim to solve shares many characteristics with two traditional prob-
lems in the vehicle routing problem (VRP) literature: the (Splittable) Pick Up and De-
livery Problem (PDP) and the Dial-A-Ride Problem (DARP). Since these are infamously
known to be NP-Hard and difficult to approximate (Masson et al., 2014), many authors
focused on heuristic solution methods.

PDP shares most of the routing structure with our problem. The main difference lies
in the fact that goods (typically letters or small parcels1) are carried instead of people.

1since small packages are moved, the problem is often treated as capacity unconstrained

3.1. INTRODUCTION

3

33

Hence, in the PDP, the quality of the time spent travelling is not considered. In addi-
tion, goods facilities may have time windows while, in general, there is no preferred ar-
rival or departure time. Also, transfers are considered, but only in a few predetermined
hubs. To solve the PDP with transfers, Rais et al., 2014 introduce an integer programming
model and use standard branch-and-bound while Cortés et al., 2010 adopt branch-and-
cut techniques. Also, Peng et al., 2019 developed a MILP formulation for the (selective)
PDP with transfers and compared its solution with a particle swarm optimization meta-
heuristic. Given the complexity of the problem, Peng et al., 2019, Cortés et al., 2010 and
Rais et al., 2014 solve instances with five, six and seven requests to optimality, respec-
tively. Thangiah et al., 2007 combined a constructive heuristic with local optimization
to quickly (under 5 seconds) solve the online version of the PDP. Danloup et al., 2018
tested two metaheuristics, namely large neighborhood search (LNS) and genetic algo-
rithms (GA), showing a very performing implementation of the latter. Masson et al.,
2013 developed an adaptive large neighborhood search (ALNS) algorithm with differ-
ent destroy and repair methods, showing its performance on real-life data from the area
of Nantes. Also, Petersen and Ropke, 2011 solve the pickup and delivery problem with
cross-docking opportunity (a variant of the PDP) using LNS. In addition, their algorithm
was tested on real-life instances with sizes ranging from 500 to 1000 requests (but only
one possible transfer node). All the aforementioned authors who solve the PDP consid-
ered only few nodes (hubs) as possible transfer nodes, while we consider all nodes as
possible transfer nodes.

On the other hand, the DARP consists of designing routes for vehicles and schedules
for users who specify pickup and delivery requests between origins and destinations.
DARPs are a well studied class of problems and extensive reviews can be found in Agatz
et al., 2012, Molenbruch et al., 2017 and Ho et al., 2018. In general, ridesharing is allowed
but transfers are not considered (Cordeau and Laporte, 2003). Since people are trans-
ported, the quality of the travel time has to be considered. Most authors state that min-
imizing the routing costs or minimizing the time of the routes implies minimizing the
loss of quality of the service. Although reasonable, we prefer a more explicit approach,
as detailed in Section 3.3.2 and Section 3.4.1. Even though standard DARP problems do
not take transfers into account, some papers do consider DARP with transfers (DARPT).
Masson et al., 2014 used an adaptive strategy combined with a ruin and repair mech-
anism while Deleplanque and Quilliot, 2013 developed a general insertion scheme. In
these papers, fast heuristic conditions were introduced to check if a repaired route was
feasible or not. Hou et al., 2016 developed a MILP formulation and a greedy heuristic
to compare electric taxi usage between the nontransferable taxi-sharing and the trans-
ferable one. They show that, during rush hours, transfers could improve the number of
served passengers and the shared travel distance by 22% and 37%, respectively. Never-
theless, transfers can only happen at recharging stations.

Moving outside the conventional boundaries of the DARP with transfers, Reinhardt
et al., 2013 and Posada et al., 2017 developed multi modal frameworks. In these papers,
transfers happen between different transport modes within an airport or between the
public and the private transportation, respectively.

Our contribution is the development of two MILPs -one in continuous time and one
in discrete time- to solve the DARP while considering:

3

34 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

• the possibility to transfer in all nodes of the network,
• routes with cycles such that a vehicle or a request can visit the same node several

times,
• the absence of a depot location, or equivalently, all nodes are considered to be

depots,
• non-constant travel times,
• focus on quality of time: requests’ preferred arrival and departure time and quality

loss due to transfers and waiting times,
• attention to convenient parking.
As shown by van den Berg and van Essen, 2019 and confirmed by our results (Sec-

tion 3.5.3), either the continuous time models or the discrete one can perform better
depending on the situation. In order to tie continuous and discrete variables in the con-
tinuous time model, we introduce the concept of ‘move’ (Section 3.3.1). To the best of
our knowledge, cycles have been handled by creating dummy copies of nodes, but they
have not been explicitly modeled in the literature. Also, cycles are very common in prac-
tical applications of people transportation, for instance, a taxi may visit the airport or the
city center multiple times during a work shift. As shown in this chapter, these features
increase the complexity of the standard DARP but allow for more flexibility.

The remainder of this chapter is organized as follows: the problem, our assumptions
and the notation used are described in detail in Section 3.2. Section 3.3 and Section
3.4 depict the model in continuous time and in discrete time, respectively. Section 3.5
details performance and computational results and, finally, Section 3.6 concludes the
chapter.

3.2. PROBLEM FORMULATION
In this chapter, we describe how to solve the Dial-a-Ride problem with transfers to op-
timality. The problem we consider is the following: given a set of requests R and a set
of vehicles V , minimize the generalized cost Z (routing and quality of service), allow-
ing transfers and ride sharing while considering time and vehicle limitations. Allowing
transfers means that each passenger may be picked up by a vehicle, taken to a certain lo-
cation, dropped off and picked up by another vehicle. This procedure may be repeated
multiple times. Without loss of generality, we suppose the initial time to be zero.

The road network is modelled as a graph with node set N connected by a set of arcs
A. For now, we assume that each vehicle can idle and each request can wait at every
node which, in turn, are all possible transfer nodes. In Appendix 3.B, we describe how
the set of transfer nodes can be limited.

We consider the length li j of arc (i , j) ∈ A with i , j ∈ N to be known. The travel time of
each arc is a function of the arc (i , j) ∈ A and the time t at which a vehicle starts travelling
on it, i.e. F (i j t). In this chapter, we consider two cases: the case where F (i j t) returns a
parameter dependent only on arc (i , j) ∈ A and the case where the travel time is depend-
ing on both arc (i , j) ∈ A and time t . In Section 3.3.3 and Section 3.4, we describe how to
derive a linear formulation even for non-constant travel times (travel times depending
on t).

Each request r ∈ R is characterized by nine parameters. The first one, er , determines
its earliest possible departure time; so, every request can be picked up only after time er .

3.3. CONTINUOUS TIME MODEL

3

35

The second parameter, l r , determines the time instant before which each request must
reach its destination; otherwise, it is considered unserved. Every request r ∈ R is also
characterized by parameters pd r and par . These parameters state the preferred time
instants for departure and arrival. It must hold that er ≤ pd r ≤ par ≤ l r . Parameters er

and l r define a hard time window (on the request, not on the node) while pd r and par

define a soft one. This newly introduced type of time limitation differs from standard
hard time windows, which are imposed on a node and not on a client, as well as from
maximum ride time, which are imposed on a client but do not consider departure and
arrival time per se but only their difference. The maximum number of transfers allowed
for request r ∈ R is given by br and the party size of the same request is given by qr . The
origin and destination of request r ∈ R is given by or ∈ N and d r ∈ N , respectively.

Each vehicle v ∈V is described by an initial position ov ∈ N and a capacity q v .
α,β,γ1,γ2,γ3,γ4,η and E are cost parameters detailed in Section 3.5.2, while B is a suffi-
ciently large number. We name ε the minimum travel time among any arc (i , j) ∈ A (i.e.
mini j∈A,t≥0 F (i j t)) and we let TM ax be equal to the maximum latest arrival time l r over
all requests r ∈ R (i.e. maxr∈R l r).

3.3. CONTINUOUS TIME MODEL
In this section, we detail the concept of a ‘move’ (Section 3.3.1), the core continuous
time model (Section 3.3.2) and its extension (Section 3.3.3). The extended model fulfills
the same aim as the core model (i.e. solving the DARPT), but also includes additional
features such as service times and non-constant travel times. These features are added to
have a closer resemblance to real-life. Both the continuous time and discrete time model
rely on the idea of tracking requests’ flows (from their origin to their destinations) and
forcing vehicles’ flows to overlap and be paired with them (more details in Section 3.3.2
and Section 3.4.1). We refer to the formulations based on this idea as flow formulations.

3.3.1. MOVES

While designing routes involves discrete variables, adopting a continuous time model
implies having variables in continuous time. Since discrete and continuous variables
influence each other and have to be considered simultaneously, we introduce the ‘move’
concept. A ‘move’ refers to the act of travelling an arc. In fact, we associate each request
r ∈ R with a set M r = {1,2,3, ..,M r }. The cardinality M r of this set is bigger than the
maximum number of arcs request r ∈ R can travel given its time limits (from er to l r). In
particular, given the time limitations on each request and a non degenerative graph (i.e.
each travel time is strictly greater than zero), there is a bound on the maximum number
of arcs a request can possibly travel. Equivalently, there is a bound on the maximum
number of arcs that a vehicle can travel; so, each vehicle v ∈ V is also associated with
a set of moves M v = {1,2,3, ..,M v }. The cardinalities of sets M r and M v are given by
M r = b l r −er

ε c and M v = bTM ax
ε c, respectively. Figure 3.1 graphically shows how these

moves are counted. The text next to each arc indicates who is travelling that arc and at
which move. The figure clearly shows that vehicles and requests can travel the same arc
at different moves.

All the parameters described in Section 3.2 and in this section are summarized in

3

36 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Figure 3.1: Example of moves. Colours refer to who is travelling that arc (red for vehicle V 0, yellow for vehicle
V 1 and green for request R). The text next to each arc indicates who is travelling that arc and at which move.

Table 3.1.

R set of requests
er earliest departure time for request r ∈ R
pd r preferred departure time for request r ∈ R
par preferred arrival time for request r ∈ R
l r latest arrival time for request r ∈ R
br maximum number of transfers allowed per request r
qr party size of request r ∈ R (how many people in request r ∈ R)
or origin of request r ∈ R
d r destination of request r ∈ R
M r set of all the possible moves for request r ∈ R
M r cardinality of set M r for request r ∈ R
V set of vehicles
ov origin of vehicle v ∈V
q v capacity of vehicle v ∈V
M v set of all the possible moves for vehicle v ∈V
M v cardinality of set M v , v ∈V
N set of nodes
A set of all arcs
li j length of arc (i , j) ∈ A
F (i j t) function that returns the travel time along arc (i , j) ∈ A at time t
TM ax time instant after which no requests can be delivered, i.e. TM ax ≥ l r ,∀r ∈ R
ε shortest travel time in the network, i.e. min(i , j)∈A,t≥0 F (i j t)
α,β,γ1,γ2,µ1,

cost coefficients.
µ2,µ3,µ4,η,E
B parameter with high value
Z generalized cost

Table 3.1: Sets, parameters and function

3.3. CONTINUOUS TIME MODEL

3

37

3.3.2. CORE MODEL
After introducing the concept of ‘move’, we dedicate this section to the description of
the core continuous model. This core model takes into account routing, timing, pairing,
capacity constraints, constraints on the maximum number of possible transfers and the
possibility of unserved requests while minimizing a trade off between routing costs and
the loss of the quality of the service.

VARIABLES

In this section, we describe the variables used in the model. To model the routing, we
employ binary variables xr

i j m which assume value one when request r ∈ R travels arc

(i , j) ∈ A in move m ∈ M r and zero otherwise. If considered in the order of the moves,
these variables describe the route of request r ∈ R. Next to the routing, variables describ-
ing the chronological framework are needed; for this, we introduce continuous variables
t r

m and w r
m for request r ∈ R and move m ∈ {0}∪M r . Since m defines the move from one

node to another, t r
m assumes the value of the time instant at which request r ∈ R arrives

in a node after move m ∈ M r , while w r
m assumes the value of how much time request

r ∈ R waits after move m ∈ M r . In the timing and waiting variables (t r
m and w r

m), the
additional move {0} is considered to determine the initial departure time which occurs
before the first move. Figure 3.2 depicts the relation between xr

i j m , t r
m and w r

m . In this

figure, we analyze the first two moves of the route travelled by request r ∈ R. We suppose
the origin or to be in node i ∈ N . The black arrows illustrate the moves; in particular,
the first move is from node i ∈ N to node j ∈ N while the second one is from node j ∈ N
to node k ∈ N . The red arrows are associated with the timing variables t r

m and indicate
which node the arrival time values refers to. The green boxes relate to the waiting times
w r

m and are depicted next to the nodes they are assigned to.

Figure 3.2: Example of routing (black arrows), timing (red arrows) and waiting variables (green boxes) for the
first two moves of request r ∈ R.

Equivalent variables for the vehicles are needed. For routing purposes, we introduce
binary variables y v

i j m which are one when vehicle v ∈ V travels arc (i , j) ∈ A at move

m ∈ M v and zero otherwise. In addition, continuous variables t v
m and w v

m are used to
characterize the timing of vehicle v ∈V for move m ∈ {0}∪M v .

Naming cr the actual arrival time of request r ∈ R to its destination d r , we define con-
tinuous variables c+r and c−r such that c+r = max(cr , par) and c−r = min(cr , par). Similar
considerations apply for continuous variables d+

r and d−
r which, in turn, are constrained

such that d+
r = max(zr , pd r) and d−

r = min(zr , pd r), where zr is the actual departure

3

38 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

time of request r ∈ R from its origin or . This is useful to penalize late or early arrival and
departure times, as described in Section 3.3.2.

Binary variables ar v are one when request r ∈ R is paired with vehicle v ∈V during its
route and zero otherwise. In addition, binary variables pr mr vmv are one when request
r ∈ R during move mr ∈ M r is paired with vehicle v ∈ V during move mv ∈ M v and
zero otherwise. The behaviour of these variables is explained in detail in Section 3.3.2.
Finally, we introduce binary variable ur which assumes value one when request r ∈ R is
unserved and zero otherwise. Table 4.3.2 reports all the variables previously described.

t r
m time variable indicating when request r ∈ R

arrives at a node after move m ∈ {0}∪M r

t v
m time variable indicating when vehicle v ∈V

arrives at a node after move m ∈ {0}∪M v

w r
m waiting variable indicating how much time request r ∈ R

waits after move m ∈ {0}∪M r

w v
m waiting variable indicating how much time vehicle v ∈V

waits after move m ∈ {0}∪M v

xr
i j m binary variable which is one if request r ∈ R travels arc (i , j) ∈ A

at move m ∈ M r , zero otherwise
y v

i j m binary variable which is one if vehicle v ∈V travels arc (i , j) ∈ A

at move m ∈ M v , zero otherwise
c+r variable indicating late arrival for request r ∈ R
c−r variable indicating early arrival for request r ∈ R
d+

r variable indicating late departure for request r ∈ R
d−

r variable indicating early departure for request r ∈ R
ar v binary variable which is one if request r ∈ R

is paired with vehicle v ∈V , zero otherwise
pr mr vmv binary variable which is one if request r ∈ R at move mr ∈ M r

is paired with vehicle v ∈V at move mv ∈ M v , zero otherwise
ur binary variable which is one if request r ∈ R is unserved, zero otherwise

Table 3.2: Variables continuous time model

OBJECTIVE FUNCTION

The objective function aims at minimizing the generalized cost Z . This cost is set equal
to the sum of the following eight terms. The first term indicates the travel cost of a solu-
tion which is given by:

α
∑

v∈V

∑
(i , j)∈A

∑
m∈M v

y v
i j m li j .

To penalize the time travelled by each passenger inside a vehicle (which is computed as
arrival time minus departure time and waiting time), we introduce the second term:

β
∑
r∈R

qr (t r
M r −

∑
m∈{0}∪M r

w r
m − t r

0).

3.3. CONTINUOUS TIME MODEL

3

39

In this second term, t r
M r assumes the value of the time instant at which a request ar-

rives at its destination. This is explained in detail in Section 3.3.2. Please note that the
previous term penalizes long trips more than short ones.

The third term handles early and late departure while the fourth term determines the
penalty for early and late arrival:

µ1
∑
r∈R

(pd r −d−
r)+µ2

∑
r∈R

(d+
r −pd r),

µ3
∑
r∈R

(c+r −par)+µ4
∑
r∈R

(par − c−r).

We assign a penalty related to the loss of quality every time there is a transfer. This is
taken into account by the fifth term:

η
∑
r∈R

∑
v∈V

ar v qr .

In order to penalize how much time passengers wait at transfer nodes, we add the fol-
lowing sixth term:

γ1
∑
r∈R

∑
m∈M r

qr w r
m .

In this sixth term, the first move (move number zero) is excluded because, for a request,
waiting at its origin node is already penalized as an early or late departure.

The seventh term determines parking costs, which are considered proportional to
the parking time:

γ2
∑

v∈V

∑
m∈{0}∪M v

w v
m .

Finally, the last term penalizes the unserved requests:

+E
∑
r∈R

ur qr .

Hence, the generalized cost Z is given by:

Z = α
∑

v∈V

∑
(i , j)∈A

∑
m∈M v

y v
i j m li j +β

∑
r∈R

qr (t r
M r −

∑
m∈{0}∪M r

w r
m − t r

0)+

µ1
∑
r∈R

(pd r −d−
r)+µ2

∑
r∈R

(d+
r −pd r)+µ3

∑
r∈R

(c+r −par)+µ4
∑
r∈R

(par − c−r)+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
m∈M r

qr w r
m +γ2

∑
v∈V

∑
m∈{0}∪M v

w v
m +E

∑
r∈R

ur qr .

(3.1)

Although this objective function is quite elaborate, it approximates real-life.

ROUTING CONSTRAINTS

Firstly, to model the routing, we have to impose that, at each move, at most one arc can
be chosen. This is provided by constraints (3.2).∑

(i , j)∈A
xr

i j m ≤ 1,∀r ∈ R,∀m ∈ M r (3.2)

3

40 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Also, we have to ensure that each request is either unserved (i.e. ur = 1) or starts at
its origin, possibly travel through some nodes and finally ends at its destination. This
is ensured by constraints (3.3)-(3.5). In particular, constrains (3.3) enforce that, if a re-
quest moves (i.e. is served), it has to start from its origin. Constraints (3.4) establish flow
conservation in each node while constraints (3.5) impose that request r ∈ R has either to
arrive at its destination or it is unserved.

∑
(or , j)∈A

xr
or j 1 ≥

∑
(i , j)∈A

xr
i j 1,∀r ∈ R, (3.3)

∑
(i , j)∈A

xr
i j m = ∑

(j ,k)∈A
xr

j k(m+1),∀r ∈ R,∀m ∈ M r \ {M r }, j 6= d r , (3.4)

ur + ∑
mr ∈M r

∑
(i ,d r)∈A

xr
i d r mr

= 1,∀r ∈ R (3.5)

Similar considerations hold for the vehicle flow. Constraints (3.6) restrict each vehicle
to select at most one arc per move while constraints (3.7) force a moving vehicle to start
from its origin. Constraints (3.8) ensures flow conservation in all nodes. In fact, this set of
constraints imposes that, if a vehicle uses exactly m̂ ≤M v arcs to reach its destination, it
holds that for each m ≤ m̂,

∑
(i , j)∈A y v

i j m = 1 and that after the m̂th move
∑

(i , j)∈A y v
i j m = 0.

The last move is not considered because it has no following move (m +1). Vehicles have
to obey constraints similar to the ones of the requests, but have no defined destination
node; hence, there is no associated constraint.

∑
(i , j)∈A

y v
i j m ≤ 1,∀v ∈V ,∀m ∈ M v (3.6)

∑
(ov , j)∈A

y v
ov j 1 ≥

∑
(i , j)∈A

y v
i j 1,∀v ∈V (3.7)

∑
(i , j)∈A

y v
i j m ≥ ∑

(j ,k)∈A
y v

j k(m+1),∀v ∈V ,∀m ∈ M v \ {M v },∀ j ∈ N (3.8)

TIMING CONSTRAINTS

Without loss of generality, we assume time to start at zero. Firstly, we ensure, through
constraints (3.9) and (3.10), timing and waiting variables to be positive.

t r
m ≥ 0,∀r ∈ R,∀m ∈ {0}∪M r (3.9)

w r
m ≥ 0,∀r ∈ R,∀m ∈ {0}∪M r (3.10)

Then, we impose chronological timing via the so-called precedence constraints.
With chronological timing, we mean that the arrival time at any node (but the first) is
the arrival time at the previous node plus the waiting time at the previous node plus the
travel time. This is ensured by constraints (3.11). Clearly, if F (i j t) is a time independent
parameter, constraints (3.11) are linear. Nonetheless, in Section 3.3.3, we derive a linear

3.3. CONTINUOUS TIME MODEL

3

41

formulation for the case where the travel time depends on the departure time. If no arc
is chosen, then

∑
(i , j)∈A xr

i j m is zero, hence t r
m+1 = t r

m +w r
m .

t r
m+1 = t r

m +w r
m + ∑

(i , j)∈A
xr

i j mF (i j (t r
m +w r

m)),∀r ∈ R,∀m ∈ {0}∪M r \ {M r } (3.11)

Also, we force the initial time of request r ∈ R to be its earliest time instant (con-
straints (3.12)) and we force its last time instant to be smaller than its latest arrival time
(constraints (3.13)).

t r
0 = er ,∀r ∈ R (3.12)

t r
M r ≤ l r ,∀r ∈ R (3.13)

To not have conveniently large waiting times at the end of the route to better fit time
preferences, we impose constraints (3.14). In fact, when no arc is chosen for a certain
move, i.e. request r ∈ R has reached its destination, we have no waiting time. This means
that t r

m = t r
m̂ for m ≥ m̂, with m̂ the move with which request r ∈ R has reached its desti-

nation.
w r

m ≤ B
∑

(i , j)∈A
xr

i j m ,∀r ∈ R,∀m ∈ M r (3.14)

Constraints (3.13) do not imply that we have to reach the destination node at the last
move. Rather, they say that if a request reaches its destination at move m̂, then t r

m = t r
m̂

for m̂ ≤ m ≤M r . This is ensured by the absence of waiting times once the destination is
reached (constraints 3.14).

For vehicles, we duplicate the equivalent of the timing constraints with small adjust-
ments; in particular, we impose:

t v
m ≥ 0,∀v ∈V ,∀m ∈ {0}∪M v , (3.15)

w v
m ≥ 0,∀v ∈V ,∀m ∈ {0}∪M v , (3.16)

t v
m+1 = t v

m +w v
m + ∑

(i , j)∈A
y v

i j mF (i j (t v
m +w v

m)),∀v ∈V ,∀m ∈ {0}∪M v \ {M v }, (3.17)

t v
0 = 0,∀v ∈V , (3.18)

t v
M v ≤ TM ax ,∀v ∈V , (3.19)

w v
m ≤ B

∑
(i , j)∈A

y v
i j m ,∀v ∈V ,∀m ∈ M r . (3.20)

DEPARTURE AND ARRIVAL TIMES CONSTRAINTS

We want variable d+
r to assume the maximum of the preferred departure time pd r and

the actual departure time t r
0 + w r

0 of request r ∈ R and d−
r to assume the minimum of

these two. Hence, we adopt the following constraints:

d+
r ≥ pd r ,∀r ∈ R (3.21)

d+
r ≥ t r

0 +w r
0 ,∀r ∈ R (3.22)

3

42 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

d−
r ≤ pd r ,∀r ∈ R (3.23)

d−
r ≤ t r

0 +w r
0 ,∀r ∈ R (3.24)

Similar constraints hold for the arrival time.

c+r ≥ par ,∀r ∈ R (3.25)

c+r ≥ t r
M r ,∀r ∈ R (3.26)

c−r ≤ par ,∀r ∈ R (3.27)

c−r ≤ t r
M r ,∀r ∈ R (3.28)

Given the previous constraints and the composition of the objective function, the
departure and arrival time will be forced to be as close as possible to pd r and par .

PAIRING

In this section, we explain how to pair vehicles and requests. We use moves to discretize
routes even though the timing is expressed in continuous variables. We use binary vari-
able pr mr vmv to pair couple [request r ∈ R - request move mr ∈ M r], with couple [vehicle
v ∈V - vehicle move mv ∈ M v]. On one hand, we impose that each request can be paired
to at most one vehicle per move in constraints (3.29); on the other hand, a vehicle can be
paired simultaneously with multiple requests as long as this does not violate its capacity,
as expressed in constraints (3.30).∑

v∈V

∑
mv∈M v

pr mr vmv ≤ 1,∀r ∈ R,mr ∈ M r (3.29)

∑
r∈R

∑
mr ∈M r

pr mr vmv qr ≤ q v ,∀v ∈V ,mv ∈ M v (3.30)

As long as a request and a vehicle are paired, they have to travel the same arcs (con-
straints (3.31) and (3.32)) at the same time (constraints (3.33) and (3.34)). Constraints
(3.31)-(3.34) are the linearization of:∑

(i , j)∈A
xr

i j mr
y v

i j mv
≥ pr mr vmv ,∀r ∈ R,∀mr ∈ M r ,∀v ∈V ,∀mv ∈ M v

and
pr mr vmv (t v

mv
− t r

mr
) = 0,∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v

which are always true when pr mr vmv = 0. The inequality in the first nonlinear set of
constraints is due to the fact that, by chance, a vehicle and a request may travel the same
arc while not being paired together.

xr
i j mr

≤ y v
i j mv

+ (1−pr mr vmv),∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.31)

xr
i j mr

≥ y v
i j mv

− (1−pr mr vmv),∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.32)

t r
mr

≤ t v
mv

+ (1−pr mr vmv)B ,∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v (3.33)

3.3. CONTINUOUS TIME MODEL

3

43

t r
mr

≥ t v
mv

− (1−pr mr vmv)B ,∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v (3.34)

Constraints (3.33) and (3.34) (in combination with the timing constraints (3.17)) im-
pose that, if a vehicle is paired to more than one request in i ∈ N , the arrival time in j ∈ N
of the vehicle and of all the paired requests is equal to the arrival time of the request that
arrived the latest in i ∈ N plus its waiting time plus the travel time through (i , j) ∈ A.

In addition, if a request is not paired with any vehicle, it cannot move (constraints
(3.35)). ∑

(i , j)∈A
xr

i j mr
≤ ∑

v∈V

∑
mv∈M v

pr mr vmv ,∀r ∈ R,∀mr ∈ M r (3.35)

Finally, we impose an upperbound on the maximum number of transfers a request can
experience (constraints (3.36) and (3.37)). Variable ar v captures if request r ∈ R has ever
been paired to vehicle v ∈ V . The number of transfers a request can encounter is the
number of vehicles the request has been paired with minus the first one.

B ar v ≥ ∑
mr ∈M r

∑
mv∈M v

pr mr vmv ,∀v ∈V ,∀r ∈ R (3.36)

∑
v∈V

ar v −1 ≤ br ,∀r ∈ R (3.37)

DOUBLE PICK UP

There is an extremely unlikely case where the model does not see a transfer. This even-
tuality never happens in our instances and rarely can happen in practice; nevertheless,
for the sake of completeness, we explain the possible problem throughout an example
(depicted in Figure 3.3). Suppose that we have 5 time instants in chronological order,
t1 < t2 < t3 < t4 < t5 and that vehicle v ∈V and request r ∈ R are paired at time t1. Then,
at time t2 the request is dropped off at node i ∈ N while the vehicle continues its route
reaching node j ∈ N at time t3. Finally, the same vehicle comes back to node i at time
t4 to pick up again request r ∈ R and brings it to node k ∈ N at time t5. This second
pick up is not counted in the model. In general, we can say that if a particular vehicle,
for multiple times, picks up and drops off the very same request consecutively, not all
the resulting transfers are properly counted. Please note that if two different vehicles se-
quentially pick up the same request, the transfer is correctly accounted for by the model
(as we show in the example depicted in Fig. 3.8ii). This double pick up by the same ve-
hicle can happen only when there are large time windows and tight capacity constraints
at the same time. In fact, the complete route of a new request should fit inside the route
of an already existing one. Time limitations make this possibility unlikely. Given the
extreme rarity of this situation, we do not consider this eventuality.

3.3.3. MODEL EXTENSION

In this section, we show how to extend the model such that it considers people depen-
dent service times (time for get-in operations). As motivated by Ichoua et al., 2003, Do-
nati et al., 2008 and Schmid and Doerner, 2010, we also consider nonconstant travel
times. Both features are added to have a closer resemblance to real-life.

3

44 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Figure 3.3: Example of a double pick up by the same vehicle. The black arrows represent the route of the vehicle
(o, i , j , i ,k). The red request has origin o and destination k while the green request has origin i and destination
j . The combined party sizes of the two requests exceeds the capacity of the vehicle.

PEOPLE DEPENDENT SERVICE TIME

In this section, we explain how to consider different service times for different requests
(people dependent service time). As service time, we consider the time needed to get
in a vehicle. Also, we assume each request r ∈ R to be picked up by a particular vehicle
v ∈ V at most once. Each request is considered to have a known service time named sr .
We introduce binary variable g r

m which assumes value one if request r ∈ R experiences
a get in operation at move m ∈ M r and zero otherwise. To ensure this, we impose the
following three constraints: constraints (3.38) for the first move of a request, constraints
(3.39) for the first move of a vehicle and constraints (3.40) for all other moves of requests
and vehicles.

g r
1 ≥ ∑

v∈V

∑
mv∈M v

pr 1vmv ,∀r ∈ R (3.38)

g r
mr

≥ ∑
v∈V

pr mr v1,∀r ∈ R,∀mr ∈ M r (3.39)

g r
mr

≥ pr mr vmv −pr mr −1vmv−1,∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R,∀mr ∈ M r \ {1} (3.40)

Constraints (3.40) exploit that, when a request is picked up, the vehicle and the re-
quest were not paired at the previous move (hence, pr mr −1vmv−1 = 0) while, at the cur-
rent move, they are paired (hence, pr mr vmv = 1). Thus, the difference between the two
values is one. The corresponding timing constraints (3.11) are then modified to:

t r
m+1 = t r

m +w r
m +g r

m sr + ∑
(i , j)∈A

xr
i j mF (i j (t r

m +w r
m)),∀r ∈ R,∀m ∈ {0}∪M r \{M r }. (3.41)

We assume that, when vehicle v ∈ V picks up two requests simultaneously from the
same node, only the largest service time is considered. In Appendix 3.A.1, we show a
different formulation for the case when service times add up.

3.3. CONTINUOUS TIME MODEL

3

45

To model this for vehicles, we introduce binary variables hvmr which assumes value
one if and only if two conditions apply. The first condition is that vehicle v ∈ V at move
m ∈ M v picks up request r ∈ R (and maybe some others). The second condition is that,
among all the requests picked up at move m ∈ M v by vehicle v ∈ V , request r ∈ R has
the highest service time. To ensure that hvmr can be one for only one request at move
m ∈ M v of vehicle v ∈V , we impose constraints (3.42).∑

r∈R
hvmr ≤ 1,∀v ∈V ,∀m ∈ M v (3.42)

To ensure the selection of the request with the highest service time, we impose the
following three constraints: constraints (3.43) for the first move of a vehicle, constraints
(3.44) for the first move of a request and constraints (3.45) for all other moves of requests
and vehicles. ∑

r∈R
hv1r sr ≥ pr mr v1sr ,∀v ∈V ,∀r ∈ R,∀mr ∈ M r . (3.43)

∑
r∈R

hvmv r sr ≥ pr 1vmv sr ,∀v ∈V ,∀mv ∈ M v ,∀r ∈ R. (3.44)

∑
r∈R

hvmv r sr ≥ (pr mr vmv −pr mr −1vmv−1)sr ,∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R,∀mr ∈ M r \ {1}.

(3.45)
For vehicle v ∈ V at move mv ∈ M v , constraints (3.43)-(3.45) force binary variables

hvmr to be one for request r ∈ R such that its related service time sr is greater than or
equal to the service times that the vehicle is experiencing. Then, we impose through
constraints (3.46) and (3.47) a tight upper bound. In fact, constraints (3.46) allow variable
hvmr to assume value one only if request r ∈ R was not paired to vehicle v ∈ V at the
previous move. Constraints (3.47) force hvmr to be zero if request r ∈ R is not paired
with vehicle v ∈V at move m ∈ M v .

hvmv r ≤ 1− ∑
mr ∈M r

pr mr vmv−1,∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R (3.46)

hvmv r ≤
∑

mr ∈M r
pr mr vmv ,∀v ∈V ,∀mv ∈ M v ,∀r ∈ R (3.47)

Finally, we change constraints (3.17) into:

t v
m+1 = t v

m +w v
m + ∑

r∈R
sr hvmr +

∑
(i , j)∈A

y v
i j mF (i j (t v

m +w v
m)),∀v ∈V ,∀m ∈ {0}∪M v \ {M v }.

(3.48)

NONCONSTANT TRAVEL TIME

So far, we have considered the generic function F (i j t). In this section, we show how
to linearize this function. A similar approach to deal with nonconstant travel times can
be found in Malandraki and Daskin, 1992. The main difference is that Malandraki and
Daskin, 1992 developed a method for the TSP; hence, for each node, exactly one incom-
ing and one outgoing arc is travelled. With our formulation instead, for each node, zero,
one, or more incoming and outgoing arcs can be travelled.

3

46 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Firstly, when nonconstant travel times are taken into account, we need to ensure the
same starting time for each pairing2. Hence, we add constraints (3.49) and (3.50). These
constraints explicitly force the starting time of a pairing to be the same.

t r
mr −1 +w r

mr −1 ≤ t v
mv−1 +w v

mv−1 + (1−pr mr vmv)B ,∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v

(3.49)
t r

mr −1 +w r
mr −1 ≥ t v

mv−1 +w v
mv−1 − (1−pr mr vmv)B ,∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v

(3.50)
Since variables t r

m and w r
m are defined for m ∈ {0}∪M r , constraints (3.49) can range

for all mr ∈ M r even though they refer to time and waiting variable at the previous move.
Similar considerations hold for constraints (3.50) and variables t v

m and w v
m . Secondly, we

define T S as the set of time slots in which we can have different travel times (e.g. three
time slots in Figure 3.4).

Figure 3.4: Example of three time slots

In order to have a finite number of time slots, the function F (i j t) must be piece-wise
constant. If not, it is still possible to approximate F (i j t) to a piece-wise discrete function
and use its approximation. We introduce binary variables T T r

i j mr k and T T v
i j mv k which

are one when arc (i , j) ∈ A is chosen for move mr ∈ M r of request r ∈ R and for move
mv ∈ M v of vehicle v ∈ V , respectively, in time slot k ∈ T S and zero otherwise. Param-
eters δi j k represent the amount of time needed to travel arc (i , j) ∈ A in the time slot
k ∈ T S. Each time slot k ∈ T S is defined by a lower and an upper bound - namely, lbi j k

and ubi j k , respectively - such that ubi j k−1 = lbi j k . Subsequently, we need to constrain
variables T T r

i j mk and T T v
i j mk to assume value one if and only if, at move m ∈ M v or

m ∈ M r , respectively, arc (i , j) ∈ A is chosen at time t which falls into time slot k ∈ T S.
To ensure this, we impose constraints (3.51), (3.52) and (3.53) for the requests and con-
straints (3.54), (3.55) and (3.56) for the vehicles.∑

k∈T S
T T r

i j mk = xr
i j m ,∀r ∈ R,∀m ∈ M r ,∀(i , j) ∈ A (3.51)

2For example, given time-dependent travel time T(t) such that T(t1) = 3,T(t2) = 2 and t2 = t1 +1, then different
starting times can lead to the same arrival time.

3.4. DISCRETE TIME MODEL

3

47

∑
(i , j)∈A

T T r
i j mk l bi j k ≤ t r

m +w r
m + g r

m sr ,∀r ∈ R,∀m ∈ M r ,∀k ∈ T S (3.52)

t r
m +w r

m + g r
m sr ≤ ∑

(i , j)∈A
T T r

i j mk ubi j k +B(1− ∑
(i , j)∈A

T T r
i j mk),∀r ∈ R,∀m ∈ M r ,∀k ∈ T S

(3.53)∑
k∈T S

T T v
i j mk = y v

i j m ,∀v ∈V ,∀m ∈ M v ,∀(i , j) ∈ A (3.54)

∑
(i , j)∈A

T T v
i j mk lbi j k ≤ t v

m +w v
m + ∑

r∈R
sr hvmr ,∀v ∈V ,∀m ∈ M v ,∀k ∈ T S (3.55)

t v
m+w v

m+∑
r∈R

sr hvmr ≤
∑

(i , j)∈A
T T v

i j mk ubi j k+B(1− ∑
(i , j)∈A

T T v
i j mk),∀v ∈V ,∀m ∈ M v ,∀k ∈ T S

(3.56)
Variables T T r

i j mr k and T T v
i j mv k can fully substitute variables xr

i j mr
and y v

i j mv
, as we

can clearly see from the equality constraints (3.51) and (3.54).
Finally, we change constraints (3.41) to:

t r
m+1 = t r

m +w r
m + g r

m sr + ∑
k∈T S

∑
(i , j)∈A

T T r
i j mkδi j k ,∀r ∈ R,∀m ∈ M r \ {M r }, (3.57)

and constraints (3.48) to:

t v
m+1 = t v

m +w v
m + ∑

r∈R
sr hvmr +

∑
k∈T S

∑
(i , j)∈A

T T v
i j mkδi j k ,∀v ∈V ,∀m ∈ M v \ {M v }. (3.58)

In this way, we obtain a linear formulation which is able to consider nonconstant
travel times.

3.4. DISCRETE TIME MODEL
In this section, we describe the core discrete time model (Section 3.4.1) and its extension
(Section 3.4.2). We assume the discretization step to be one time unit; if not, every time
related equation should be multiplied by a scaling factor. Given the introduction of the
discretization step, we define T as the set of all time instants, from the very first time
instant zero until the last possible time instant TM ax . Also, for every request r ∈ R, we
define T r as the set of all time instants in [er , l r −1]. For each request r ∈ R, the set T r

defines the time instants at which r could start traveling an arc without violating its latest
time instant.

For this model, we use a space-time network, which means that every node is du-
plicated for each considered time instant. Also, for every arc (i , j) ∈ A, i.e. the physical
network, there exist many arcs in the space-time network. In general, there exist one for
each time instant. Arcs are modelled as follows: in the space-time network, each node
i ∈ N at time t ∈ T is connected to each node j ∈ N at time t2 ∈ T such that t2 is equal to
t plus the travel time from i to j at time t , i.e. δi j t . Each node i ∈ N at time t is also con-
nected to node i ∈ N at time t+1. These last arcs are used to model parking or passengers
waiting for a(nother) vehicle. Figure 3.5 displays a simple example of how to transform

3

48 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

Figure 3.5: Example of space-time network. On the left, the original network; on the right, its associated space-
time network.

a standard network into a space-time network. The structure of the space-time network
allows to directly consider arcs with travel times depending on the departure time. We
denote the set of all arcs in the space-time network by A∗. Since the travel times are
embedded in the space-time formulation, routing variables embed timing causality. In
fact, we introduce, both as routing and timing variables, binary variables xr

i j t and y v
i j t .

The first variable assumes value one if request r ∈ R travels arc (i , j , t) ∈ A∗ and zero
otherwise; identically, the second variable assumes value one if vehicle v ∈V travels arc
(i , j , t) ∈ A∗ and zero otherwise. In addition, we introduce binary variables ar v and ar v t .
These variables are used to model request-vehicle pairing. In fact, ar v t assumes value
one if request r ∈ R is carried by vehicle v ∈ V at time t ∈ T and ar v assumes value one
if request r ∈ R was carried by vehicle v ∈ V at any time t ∈ T . Finally, we introduce
variable ur for request r ∈ R which assumes value one if the request is unserved, zero
otherwise. These sets, parameters and variables are summarized in Table 3.3 and Table
3.4.

T set of all time instants
T r set of time instants t ∈ T such that t ∈ [er , l r −1],∀r ∈ R
A∗ set of arcs in the space-time network
δi j t travel time of arc (i , j , t) ∈ A∗

Table 3.3: Sets and parameters for the discrete time model

Although they may appear similar, our formulation strongly differs from time-index
formulations (van den Bergh et al., 2016) because, in our formulation, vehicles are al-
lowed to travel the same arc multiple times. Moreover, some authors (Cortés et al., 2010,
Masson et al., 2014) modelled transfer nodes as a couple of dummy nodes (one node for
the drop-off and one for the pick-up) connected by a direct arc with zero travel time. The
main advantage of duplicating transfer nodes is that, in doing so, the chronological or-
der within the transfer is respected by construction. In general, this is a useful property,
but it is redundant in our case. In fact, in the discrete time case, the chronological order

3.4. DISCRETE TIME MODEL

3

49

xr
i j t binary variable which is one if request r ∈ R travels arc (i , j , t) ∈ A∗, zero otherwise

y v
i j t binary variable which is one if vehicle v ∈V travels arc (i , j , t) ∈ A∗, zero otherwise

ar v t binary variable which is one if vehicle v ∈V carries request r ∈ R at time t ∈ T ,
zero otherwise

ar v binary variable which is one if vehicle v ∈V carries request r ∈ R, zero otherwise
ur binary variable which is one if request r ∈ R is unserved, zero otherwise

Table 3.4: Variables for the discrete time model

within the transfer is also respected by construction in the space-time network. In the
continuous case instead, it is enforced due to explicit timing variables and constraints
(Section 3.3.2). Introducing duplicates for the transfer nodes would not exclude the need
for timing variables and constraints since we also aim at minimizing travel times, wait-
ing times at transfer nodes and premature/late arrival and departure, all of which still
has to be explicitly modelled via the timing variables and constraints that we introduce.

3.4.1. CORE MODEL

Before introducing the mathematical formulation, we explain how we model waiting and
parking. We model parking of vehicle v ∈ V at node i ∈ N at time t ∈ T , by moving from
node i ∈ N at time t ∈ T to node i ∈ N at time t + 1 ∈ T ; hence, variable y v

i i t assumes
value one. The same holds for requests when they are waiting.

We employ a similar approach to determine early or late arrival and departure. For
example, to know at what time request r ∈ R arrives at its destination d r ∈ N , we consider
the values of the flows xr

d r d r t from t = l r backwards. The time instant t ∈ T such that
xr

d r d r t−1 = 0 and xr
d r d r t = 1 is the time at which request r ∈ R arrived at its destination

d r ∈ N . Additionally, if request r ∈ R has preferred arrival time par ∈ T for destination
d r ∈ N , we compute

∑
t≥par (1− xr

d r d r t) to determine the number of time instants it was
late. Similar ideas are used to determine early or late arrival, early or late departure and
also to establish waiting times at transfer nodes.

OBJECTIVE FUNCTION

The objective function minimizes the generalized cost Z (i.e. routing cost and costs re-
lated to a loss of quality of the service) and it is composed of eight terms. Each term
penalizes one of the following: travel costs, passenger time spent in the vehicle, early or
late arrival and departure times, number of transfers, passenger time spent waiting at
transfer nodes, parking costs and unserved requests.

The first term determines the travel costs:

α
∑

v∈V

∑
(i , j ,t)∈A∗

y v
i j t li j .

The time spent by passengers in the vehicles is penalized in the second term:

β
∑
r∈R

∑
(i , j ,t)∈A∗,i 6= j

xr
i j tδi j t qr .

3

50 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

The third and fourth terms are composed of two components each and determine the
incurred penalty for departing and arriving early or late. To define the penalty for de-
parting early, we use

µ1
∑
r∈R

∑
t<pd r ∈T r

(1−xr
or or t)qr

while the penalty if a client departs too late is regulated by

µ2
∑
r∈R

∑
t≥pd r ∈T r

xr
or or t qr .

The penalty for arriving early is given by

µ3
∑
r∈R

∑
t<par ∈T r

xr
d r d r t qr

while the penalty for arriving late is defined by:

µ4
∑
r∈R

∑
t≥par ∈T r

(1−xr
d r d r t)qr .

The fixed penalty for each transfer is given by the fourth term:

η
∑
r∈R

∑
v∈V

ar v qr .

To consider the reduction of the quality of the service due to waiting at transfer nodes,
we introduce

γ1
∑
r∈R

∑
(i ,i ,t)∈A∗

xr
i i t qr

with i 6= or and i 6= d r . To determine the parking cost, we add:

γ2
∑

v∈V

∑
(i ,i ,t)∈A∗

y v
i i t .

Finally, to penalize the unserved requests we add:

E
∑
r∈R

ur qr .

Hence, the generalized cost Z is given by:

Z = α
∑

v∈V

∑
(i , j ,t)∈A∗

y v
i j t li j +β

∑
r∈R

∑
(i , j ,t)∈A∗,i 6= j

xr
i j tδi j t qr +µ1

∑
r∈R

∑
t<pd r ∈T r

(1−xr
or or t)qr+

µ2
∑
r∈R

∑
t≥pd r ∈T r

xr
or or t qr +µ3

∑
r∈R

∑
t<par ∈T r

xr
d r d r t qr +µ4

∑
r∈R

∑
t≥par ∈T r

(1−xr
d r d r t)qr+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
(i ,i ,t)∈A∗

xr
i i t qr +γ2

∑
v∈V

∑
(i ,i ,t)∈A∗

y v
i i t +E

∑
r∈R

ur qr .

(3.59)

3.4. DISCRETE TIME MODEL

3

51

ROUTING AND TIMING CONSTRAINTS

Because of the structure of the space-time network, routing constraints directly translate
to timing constraints. For each request r ∈ R, we enforce its flow to start from its origin
at t = er (constraints (3.60) and (3.61)) and either to end at t = l r or to be unserved
(constraints (3.62)). ∑

i , j∈N ,i 6=or
xr

i j er = 0,∀r ∈ R (3.60)

∑
j∈N

xr
or j er = 1,∀r ∈ R (3.61)

∑
i∈N

xr
i d r t2

+ur = 1,∀r ∈ R, t2|t2 +δi j t2 = l r (3.62)

For each vehicle, we impose that its route starts from its origin at time t = 0 (con-
straint (3.63) and (3.64)) and ends at t = TM ax (constraint (3.65)).∑

i , j∈N ,i 6=ov
y v

i j 0 = 0,∀v ∈V (3.63)

∑
j∈N

y v
ov j 0 = 1,∀v ∈V , (3.64)

∑
i∈N

∑
j∈N

y v
i j t = 1,∀v ∈V ,∀t ∈ T |t +δi j t = TM ax (3.65)

We establish flow conservation through constraints (3.66) and (3.67).∑
i∈N

xr
i j t2

= ∑
i∈N

xr
j i t ,∀r ∈ R,∀ j ∈ N ,∀t ∈ T r (3.66)

∑
i∈N

y v
i j t2

= ∑
i∈N

y v
j i t ,∀v ∈V ,∀ j ∈ N ,∀t ∈ T /{T max } (3.67)

where t2 +δi j t2 = t and t2 ∈ T .

PAIRING CONSTRAINTS

In this section, we explain how to pair vehicles and requests. Firstly, we have to impose
that each request at any time instant can be paired to at most one vehicle (constraints
(3.68)). A request can be paired with no vehicle for some time; for example, when it is
waiting. ∑

v∈V
ar v t ≤ 1,∀r ∈ R,∀t ∈ T r (3.68)

Differently, a vehicle can be paired with more than one request, as long as this does
not violate its capacity constraint, which is given by:∑

r∈R
ar v t qr ≤ q v ,∀v ∈V ,∀t ∈ T. (3.69)

Also we have to impose that, as long as a vehicle and a request are paired, they have to
travel the same route, i.e. if ar v t = 1, then xr

i j t = y v
i j t ,∀(i , j , t) ∈ A∗. We do so by imposing

3

52 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

xr
i j t ≤ y v

i j t + (1−ar v t),∀r ∈ R,∀v ∈V ,∀(i , j , t) ∈ A∗|t ∈ T r (3.70)

and

xr
i j t ≥ y v

i j t − (1−ar v t),∀r ∈ R,∀v ∈V ,∀(i , j , t) ∈ A∗|t ∈ T r . (3.71)

Yet, constraints (3.70) and (3.71) can be equivalently rewritten as:

∑
j∈N

xr
i j t ≤

∑
j∈N

y v
i j t + (1−ar v t),∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r , (3.72)

∑
j∈N

xr
i j t ≥

∑
j∈N

y v
i j t − (1−ar v t),∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r , (3.73)

∑
i∈N

xr
i j t ≤

∑
i∈N

y v
i j t + (1−ar v t),∀r ∈ R,∀v ∈V ,∀ j ∈ N , t ∈ T r , (3.74)

∑
i∈N

xr
i j t ≥

∑
i∈N

y v
i j t − (1−ar v t),∀r ∈ R,∀v ∈V ,∀ j ∈ N ,∀t ∈ T r . (3.75)

Constraints (3.70)-(3.75) are always true when ar v t = 0. The first formulation (3.70)
and (3.71) is composed by 2·|N |2 ·|T r |·|R|·|V | constraints, while the second formulation
(3.72)-(3.75) requires only 2/|N | of those constraints. Even though fewer constraints do
not necessary mean that the problem is easier to solve (valid inequalities are an exam-
ple), in this case it does.

Additionally, to enforce that whenever a request is not paired to any vehicle, it has to
wait, we impose constraints (3.76).

∑
i∈N

xr
i i t ≥ 1− ∑

v∈V
ar v t ,∀r ∈ R,∀t ∈ T r (3.76)

Finally, to model that each request may have a maximum of br transfers, we intro-
duce constraints (3.77) and (3.78):

B ar v ≥ ∑
t∈T

ar v t ,∀v ∈V ,∀r ∈ R, (3.77)

∑
v∈V

ar v −1 ≤ br ,∀r ∈ R. (3.78)

3.4.2. MODEL EXTENSION

As for the continuous time case (Section 3.3.3), we show how to extend the model in or-
der to consider people dependent service time (time for get-in operations). Differently
with respect to the continuous time model, nonconstant travel times are directly em-
bedded in the structure of the space-time network.

3.4. DISCRETE TIME MODEL

3

53

PEOPLE DEPENDENT SERVICE TIMES

In this section, we present how to introduce people dependent service times. We can set
any finite integer number of time steps (sr) as service times through constraints (3.79).

∑
i∈N

xr
i i t ≥ ar v t −ar v t−sr ,∀t ∈ T r |t − sr ∈ T r ,∀r ∈ R,∀v ∈V (3.79)

If, at the same time, more than one request are picked up, only the longest one is
considered. How to model the sum of all service times instead of the longest service
time is shown in Appendix 3.A.2. Figure 3.6 shows an example of how constraints (3.79)
work. In this example, there are three requests; request r0 is already in the taxi at time t0

and it dropped off at time t1. The other two requests, r1 and r2, can be picked up at t1 the
earliest (the time the taxi arrives in i ∈ N). Nevertheless, the service time of r2 (sr2 = 4)
constraints the vehicles to move at t5 the earliest. Hence, while the pick up process of r2

starts immediately, the boarding process of r1 (service time sr1 = 2) starts at time t3.

Figure 3.6: Example of service times. Request r0 is already on vehicle v at time t0 and drops off at time t1.
Request r1 has a service time sr1 = 2 time instant and leaves node i at time t5. Request r2 has a service time
sr2 = 4 time instant and leaves node i at time t4.

Also, introducing service times leads to the following modifications of the two terms
related to departure in the objective function (3.59):

∑
r∈R

∑
t<(pd r +sr)|t∈T r

µ1(1−xr
or or t)qr

and ∑
r∈R

∑
t>(pd r +sr)|t∈T r

µ2xr
or or t qr .

In fact, the service time causes the departure time and the time at which the node is
left to differ by sr time instants. Given the different approach in modeling early and late
departure, these modifications are not needed in the continuous time model.

3

54 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

3.5. COMPUTATIONAL EXPERIMENTS
Even though the DARPT is an NP-hard problem, the number of variables and constraints
in both the continuous time and discrete time formulations are bounded by polynomial
functions in the size of the problem. Table (3.5) summarizes variables in the continuous
and in the discrete model.

Continuous time model Discrete time model
t r

m –
t v

m –
w r

m –
w v

m –
xr

i j m xr
i j t

y v
i j m y v

i j t

c+r –
c−r –
d+

r –
d−

r –
ar v ar v

pr mr vmv ar v t

g v
mv

–
g r

mr
–

T T v
i j mk –

T T r
i j mk –

ur ur

Table 3.5: Variables in continuous and discrete time model

In order to compare the models, we assume the discrete time step to be ε; then, it
holds that |M v | = |T | and |M r | = |T r |. It follows that the variables in the continuous time
model are more than the ones in the discrete time model. In fact, the continuous time
model is composed of 3·|R|·|T r |+3·|V |·|T |+|R|·|A|·|T r |+|V |·|A|·|T |+5·|R|+|R|·|V |+|R|·
|T r |·|A|·|K |+|V |·|T |·|A|·|K |+|R|·|T r |·|V |·|T | variables (of which 2|R|·|T r |+2|V |·|T |+4|R|
are continuous), while the discrete time model has |R| · |A| · |T r |+ |V | · |A| · |T |+ |R| · |V | ·
|T r |+ |R| variables (all binary). Although these are two (almost) equivalent models, the
continuous time one has 2 · |R| · |T r |+2 · |V | · |T |+4 · |R| continuous variables more and
|R| · |V | · |T |(|T r | − 1)+ |V | · |T v | + |R| · |T r | + |V | · |T v | · |A| · |K | + |R| · |T r | · |A| · |K | binary
variables more.

Table 3.6 shows the number of constraints, divided by type, in both models. Also
in this case, the discrete time model has less constraints with respect to its continuous
counterpart.

3.5.1. BENCHMARK
To test the models, we apply the minor changes explained in Appendix 3.C; then, we
create the following benchmark, based on real-life data. In general, in order to be use-

3.5. COMPUTATIONAL EXPERIMENTS

3

55

Type of constraints Continuous time model Discrete time model
Routing 2|R| · |T r |+2|R|+2|V | · |T |+ |V | 3|R|+ |R| · |N | · |T r |

+3|V |+ |V | · |N | · |T |
Timing 4|R| · |T r |+2|R|+4|V | · |T |+2|V | –
Departure and arrival 8|R| –

2|R| · |T r |+ |V | · |T |+ |R| · |V | 2|R| · |T r |+ |V | · |T |
Pairing +2|A| · |R| · |T r | · |V | · |T | +4|R| · |V | · |N | · |T r |

+2 · |R| · |T r | · |V | · |T |+ |R| +|R| · |V |+ |R|
|R|+ |R| · |T r |+ |V | · |T |

People depending service time +|R| · |T r | · |V |+3|R| · |V | · |T | |R| · |V | · |T r |
+|R| · |T r | · |V | · |T |

2|R| · |T r | · |V | · |T |+ |R| · |T r | · |A|
Nonconstant travel time +2|R| · |T r | · |T S|+2|V | · |T | · |T S| –

+|V | · |T | · |A|+ |R| · |T r |+ |V | · |T |
Table 3.6: Constraints in continuous and discrete time model

ful, transfers ask the length of the trips to be longer than the deviation and the stop
of the vehicle. Hence, we choose to test our models with interurban trips. We select
the twenty most populated cities (the central station of each city has been considered
as the exact coordinate) in the most densely populated province of the Netherlands,
i.e. South Holland. In particular, we choose: Rotterdam, Delft, Capelle aan den IJssel,
Schiedam, Gouda, The Hague, Rijswijk, Voorburg, Leiden, Zoetermeer, Dordrecht, Zwi-
jndrecht, Gorinchem, Spijkenisse, Vlaardingen, Barendrecht, Maassluis, Alphen aan den
Rijn, Ridderkerk and Papendrecht. We connect these cities as shown in Figure 3.7.

Figure 3.7: South Holland region with our network.

3

56 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

We collected travel data, i.e. length and time of each arc, from Google Maps. On July
17, 2019 we acquired (expected) travel times for July 18, 2019 from 8:00AM to 9:45AM
with time intervals of 15 minutes each. The chosen day is an average commuting day
(Thursday) where no major road blocks were present. In our tests, we used a time step
of one minute; hence, we set travel times for the time instants in between two collected
data points to the value of the earliest data point. On this map, we test ten times each
of the following cases: V2R3, V2R4, V2R5, V3R4, V3R5, V3R6, V3R7, V4R5, V4R6, V4R7,
V4R8, V4R9. By Vi R j , we mean that there are i vehicles and j requests in the instance.

Vehicles are initially positioned to give a good coverage of the area. Better coverage
configurations could exist (Jagtenberg et al., 2015); however, this falls outside the scope
of this paper. We position the first vehicle in Dordrecht, the second one in Vlaardingen,
the third one (if any) in Alphen aan den Rijn and the last one (if any) in Rotterdam. The
positions of the vehicles are indicated by the black nodes in Figure 3.8. The capacity q v

of each vehicle is set to 6.
We set the destination d r of each request to The Hague (the green node in Figure 3.8)

and the latest arrival time l r to 10:00. This increases the chances that the last parts of
some requests’ routes overlap in space and are close in time. This makes transfers more
likely to happen.

All requests have randomly chosen parameters such that the origin or is different
from The Hague and such that the time preferences are coherent. In fact, we set the
earliest time er to be earlier than the preferred departure time pd r which in turn should
be earlier than the preferred arrival time par which also has to be earlier than the latest
arrival time l r . In addition, we set the preferred arrival time par to be later than the
preferred departure time pd r plus the service time sr . In formulas, this translates to: er ≤
pd r ≤ pd r + sr ≤ par ≤ l r . These random choices are repeated until 1.2SPP ≤ l r − er ≤
1.5SPP , where SPP is the shortest possible time to go from origin or to destination d r

(in the constant travel time configuration). For each request, the maximum number of
transfers br and the party size qr are uniformly randomly chosen among {1,2,3}. Service
times sr are set to qr minutes.

All the above described instances and their logs with detailed solutions are available
online3. The instances are tested in continuous and discrete time, both in the core and
enlarged configurations. For comparison reasons, we also test the same instances in a
no transfer setting by fixing the maximum number of transfers br to zero.

3.5.2. TUNING PARAMETERS
To tune the parameters, we refer mainly to Correia and van Arem, 2016 which, in turn, es-
timated the cost parameters based on a semi-real case study of private and public trans-
portation in the Netherlands. The main differences and additions are the values of the
travel costs α, the cost of a transfer η and the cost of waiting at a transfer node γ1. The
value of the travel cost α was set to e1 per km, instead of e0.1 per km, because this
is closer to the prices for Dutch taxis (note that Correia and van Arem, 2016 referred to
privately owned vehicles, not an on-demand service). Also, we set the cost of waiting
at a transfer node γ1 equal to e1.106 per minute, in between the cost of the time spent
inside a vehicle β=e0.806 per minute and the cost of premature departure µ1 =e1.306

3http://doi.org/10.4121/uuid:1ad27269-cdcf-43ed-a639-8fea09c48449

3.5. COMPUTATIONAL EXPERIMENTS

3

57

per minute. In addition, we set the cost of late arrival µ4 to the cost of premature depar-
ture µ1and the costs of late departure µ2 and premature arrival µ3 toe0.306 per minute.
Finally, the cost of each transfer η is set toe1 and the penalty E for each unserved request
toe999. Table 3.7 displays all the values of the parameters.

Name Value Description
α 1e per km Travel cost per kilometer
β 0.806e per mi n Cost of time spent inside a vehicle per minute per person
γ1 1.106e per mi n Cost of waiting at transfer nodes per minute per person
γ2 1.81e per hour Cost of parking per minute
µ1 1.306e per mi n Cost of premature departure per minute per person
µ2 0.306e per mi n Cost of late departure per minute per person
µ3 0.306e per mi n Cost of premature arrival per minute per person
µ4 1.306e per mi n Cost of late arrival per minute per person
η 1e Cost of transfer
E 999e Penalty per person per unserved request

Table 3.7: Values of the parameters

3.5.3. TESTS
All tests are run on a Linux machine with the following architecture: x86_64, 4 CPUs
(Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz). It ran code written in Python 2.7 through the
Spyder interface and adopting Gurobi 7.5.2 as the MILP solver. A time limit of one hour
was set for the solution of each MILP.

EXAMPLES

Figure 3.8 shows the results for the third and eighth instance of V 4R7. In both cases, 4 ve-
hicles are used to serve 5 requests (two requests are unserved). The grey nodes represent
nodes that are simply passed by the vehicles (no pick up or transfers); the colored arcs
indicate the path of each vehicle (one colour per vehicle) while their origin nodes are de-
noted by the black nodes. The red nodes represent nodes where a transfer happens, the
origin nodes of the requests are depicted by yellow nodes while the green node indicates
their final destination. The three nodes with double colors represent nodes where mul-
tiple actions happen. In particular in Figure 3.8i, the yellow and red node denotes the
origin node of a request as well as a transfer node; in Figure 3.8ii, the yellow and black
node denotes the origin node of a request as well as the origin node of a vehicle while
the red and black node describes the origin node of a vehicle as well as a transfer node.

Figure 3.8i shows a transfer between the green and the pink vehicle and a transfer
between the yellow and the blue vehicle. Figure 3.8ii shows a sequence of two transfers,
from the green and the pink vehicle to the blue vehicle.

AVERAGE RESULTS

Table 3.8 shows the average results of the conducted tests. We remind that, for each
scenario, 10 different instances were generated. The rows illustrate the features of the

3

58 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

(i) Two unrelated transfers (ii) Two sequential transfers

Figure 3.8: Examples of transfers. The colored arcs indicate the path of each vehicle and their origin nodes are
denoted by the black nodes. The origin nodes of the requests are depicted by yellow nodes while the green
node indicates their final destination. The red nodes represent nodes where a transfer happens and the grey
nodes represent nodes that are simply passed by the vehicles.

solutions. The first row indicates the number of vehicles |V | and requests |R| in the in-
stances. The following eight rows specify how many instances were solved to optimality
within the time limit for the various cases. The cases differ in continuous (C) and discrete
(D) time model, core (Core) and enlarged (Enl) model and transfers (T) and no transfers
(No-T) case.

Then, the following four rows indicate how many instances present at least one trans-
fer. The number in brackets indicates how many of the instances not solved to optimal-
ity present at least one transfer in their incumbent solution. After showing how many
instances have transfers, we display the total number of transfers happening over all in-
stances per case. Similarly as before, the number in brackets indicate how many trans-
fers happen in the incumbent solution of the instances not solved to optimality.

Succeeding the rows on transfers, we present features regarding the computation
time and the objective function for the continuous time and discrete time models where
transfers are allowed. The presented values of the objective functions and computation
times are the averages over the values of the instances that both models could solve to
optimality. In some cases, one of the two models could not solve any instance. Only in
these cases, the average objective values and computation times of the model that could
solve some instances are calculated on all these instances solved to optimality.

The following four rows indicate the gap percentage in the objective function and
computation time between the continuous time and discrete time models. Each pa-

rameter is computed as
VD −VC

VD
, where VD can assume either the value of the objective

function or the computational time of the discrete time model and VC assumes either
the value of the objective function or the computational time of the continuous time
model.

Finally, the last eight rows assess the benefits (in the objective functions) of intro-
ducing transfers. Since setting br = 0 is not the best way to model the standard DARP
without transfers, we do not present the computational time of the no transfers case. In

3.6. CONCLUSIONS

3

59

these rows, each parameter is computed as
VNo−T −VT

VT
, where VT assumes the value of

the objective function in the models where transfers are allowed while VNo−T assumes
the value of the objective function of the models where transfers are not allowed.

For all models, we notice that when an empty vehicle has to move, it tries to do so
during a traffic jam. This can easily be explained by looking at the objective function.
Since for empty vehicles travelling costs are only related to travel distance and not to
travel time, vehicles try to maximize their commuting time to minimize their parking
fees. This does not hold when a request is being served by the vehicle, because a time-
related penalty has to be paid.

Continuous time instances may achieve lower objective function values because of
the quality loss implied in discretization itself. For example, if the best departure time
for a request is generic t , in discrete time, it would need to rely on t ’s closest time in-
stant. A time step of one minute is small enough to curtail the error embedded in the
discretization itself. In fact, the gap in the objective function is at most 0.39%.

Analyzing the results, we can state that, in general, discretizing the time results in
slightly worse solutions in terms of objective function value but better results in terms of
computational times. Although most of the discretized instances were solved in consid-
erably less time than their continuous counterpart, this seems not to hold when the size
of the problems increases. Indeed, the continuous time model solved more instances to
optimality (and often in less time) in every scenario where 4 vehicles are present. This
confirms the conclusions of van den Berg and van Essen, 2019 which states that for dif-
ferent conditions, the continuous or discrete model could yield better results in terms of
computation time.

Since more instances are solved within the time limit in the core models compared
to the enlarged models, we can deduce that including service times and variable travel
times increases the level of difficulty in solving the problem.

Although transfers are thought to save travel costs, this does not always show in ran-
domly created small instances. Nevertheless, transfers improve the average best solution
by 12.24% in V 3R7 (for the enlarged discrete case). In this case, one instance can serve all
requests when transfers are allowed while it can serve all requests but one when transfers
are not allowed. This creates the difference in the objective function values. It may seem
that, in some cases, allowing transfers makes the problem easier (for instance, in con-
tinuous enlarged V 4R6, more instances were solved when allowing transfers). Since the
models and instances used (both for the transfer and the no transfers case) are designed
to include and favour transfers, this comparison would be unfair.

The number of transfers (considering also transfers in the incumbent solutions)
seems to increase steadily as the instance size grows. This is a very promising feature
of this problem. We conjecture that transfers can lead to considerable savings in bigger
instances.

3.6. CONCLUSIONS
In this chapter, we described and tested two mixed integer linear models and their exten-
sions, for the DARPT where cycles are allowed. Additionally, we introduced the ‘move’
concept. This is useful when modelling loops and relating continuous variables (timing

3

60 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS
size

V
2R

3
V

2R
4

V
2R

5
V

3R
4

V
3R

5
V

3R
6

V
3R

7
V

4R
5

V
4R

6
V

4R
7

V
4R

8
V

4R
9

#
In

stan
ces

O
p

tC
T

C
o

re
9/10

7/10
6/10

10/10
8/10

8/10
3/10

9/10
9/10

6/10
3/10

2/10
#

In
stan

ces
O

p
tD

T
C

o
re

10/10
10/10

10/10
10/10

10/10
9/10

9/10
5/10

5/10
5/10

2/10
0/10

#
In

stan
ces

O
p

tC
T

E
n

l
9/10

3/10
4/10

8/10
3/10

1/10
1/10

7/10
5/10

4/10
1/10

1/10
#

In
stan

ces
O

p
tD

T
E

n
l

10/10
10/10

10/10
10/10

10/10
8/10

10/10
2/10

1/10
0/10

0/10
0/10

#
In

stan
ces

O
p

tC
N

o
-T

C
o

re
10/10

8/10
7/10

10/10
9/10

8/10
3/10

9/10
7/10

2/10
2/10

0/10
#

In
stan

ces
O

p
tD

N
o

-T
C

o
re

10/10
10/10

10/10
10/10

10/10
10/10

10/10
8/10

8/10
7/10

6/10
4/10

#
In

stan
ces

O
p

tC
N

o
-T

E
n

l
8/10

5/10
3/10

8/10
5/10

0/10
1/10

2/10
1/10

0/10
0/10

0/10
#

In
stan

ces
O

p
tD

N
o

-T
E

n
l

10/10
10/10

10/10
10/10

10/10
10/10

10/10
7/10

8/10
3/10

1/10
2/10

#
In

stan
ces

Tran
s

C
T

C
o

re
1

(0)
0

(1)
1

(0)
1

(0)
2

(0)
1

(0)
0

(0)
4

(0)
3

(1)
3

(4)
2

(3)
1

(6)
#

In
stan

ces
Tran

s
D

T
C

o
re

1
(0)

1
(0)

1
(0)

1
(0)

2
(0)

1
(0)

1
(0)

2
(2)

2
(2)

4
(2)

1
(4)

0
(4)

#
In

stan
ces

Tran
s

C
T

E
n

l
0

(0)
0

(1)
2

(0)
0

(0)
0

(1)
1

(0)
0

(2)
3

(0)
2

(2)
3

(6)
1

(3)
0

(6)
#

In
stan

ces
Tran

s
D

T
E

n
l

0
(0)

0
(0)

1
(0)

0
(0)

1
(0)

1
(0)

1
(0)

0
(3)

0
(4)

0
(5)

0
(4)

0
(4)

#
Tran

s
C

T
C

o
re

1
(0)

0
(2)

1
(0)

1
(0)

2
(0)

1
(0)

0
(0)

4
(0)

3
(1)

3
(6)

2
(3)

1
(8)

#
Tran

s
D

T
C

o
re

1
(0)

2
(0)

1
(0)

1
(0)

2
(0)

1
(0)

1
(0)

2
(2)

2
(2)

6
(2)

1
(8)

0
(4)

#
Tran

s
C

T
E

n
l

0
(0)

0
(2)

2
(0)

0
(0)

0
(1)

1
(0)

0
(2)

3
(0)

2
(2)

3
(8)

1
(3)

0
(8)

#
Tran

s
D

T
E

n
l

0
(0)

0
(0)

1
(0)

0
(0)

1
(0)

1
(0)

1
(0)

0
(3)

0
(4)

0
(7)

0
(8)

0
(7)

T
im

e
C

T
C

o
re

112.92
1442.01

988.76
490.19

1001.09
1036.39

466.98
1265.61

967.57
2691.73

1425.74
2905.04

T
im

e
D

T
C

o
re

9.99
41.67

413.77
231.87

186.61
826.32

190.60
1733.12

1446.40
2646.50

1739.84
–

T
im

e
C

T
E

n
l

787.35
481.26

1346.05
1888.43

1300.43
3348.60

2329.74
2671.78

1890.01
3254.65

2213.50
3187.35

T
im

e
D

T
E

n
l

13.80
41.69

202.08
339.98

223.91
335.19

507.51
121.36

2450.13
–

–
–

O
b

jC
T

C
o

re
640.67

1227.71
2495.72

593.31
830.24

1081.63
760.88

819.11
102.77

1157.01
1032.88

1312.12
O

b
jD

T
C

o
re

640.67
1227.71

2495.72
593.31

830.24
1081.63

760.88
819.11

104.06
1159.16

1036.92
–

O
b

jC
T

E
n

l
868.60

519.04
2418.89

582.16
679.04

958.48
861.21

455.01
1073.34

1219.85
1259.39

1353.13
O

b
jD

T
E

n
l

871.19
521.86

2420.95
582.63

679.13
960.59

861.46
455.51

1075.59
–

–
–

G
ap

C
/D

T
O

b
jC

o
re

(%
)

0
0

0
0

0
0

0
0

0.13
0.19

0.39
–

G
ap

C
/D

T
T

im
e

C
o

re
(%

)
-1030.74

-3360.56
-138.97

-111.41
-436.46

-25.42
-145.00

26.98
33.10

-1.71
18.05

–
G

ap
C

/D
T

O
b

jE
n

l(%
)

0.30
0.54

0.09
0.08

0.01
0.22

0.03
0.11

0.21
–

–
–

G
ap

C
/D

T
T

im
e

E
n

l(%
)

-5605.46
-1054.25

-566.10
-455.46

-480.77
-899.00

-359.06
-2101.47

22.86
–

–
–

G
ap

T
/N

o
-T

C
O

b
jC

o
re

(%
)

0.06
0.00

2.22
0.04

0.08
0.04

0.00
0.44

0.25
0.11

0.02
–

G
ap

T
/N

o
-T

C
O

b
jE

n
l(%

)
0.00

0.00
0.02

0.00
0.00

–
0.00

0.00
0.00

–
–

–
G

ap
T

/N
o

-T
D

O
b

jC
o

re
(%

)
0.04

0.01
1.40

0.04
0.06

0.03
6.31

0.54
0.12

0.26
0.23

–
G

ap
T

/N
o

-T
D

O
b

jE
n

l(%
)

0.00
0.00

1.21
0.00

11.23
0.02

12.24
0.00

0.00
–

–
–

Tab
le

3.8:C
o

m
p

u
tatio

n
alresu

lts

3.6. CONCLUSIONS

3

61

variables) to binary ones (routing and causality variables). We showed how much trans-
fers increase the complexity of the problem (more instances were solved to optimality
in the no transfers case compared to the case where transfers were allowed) and how
much cost savings (in the objective functions) they can lead to. Also, we illustrated a
method to create instances based on Google Maps data. Clearly, this method can easily
scale up and create real-life sized instances which would be useful in practice for testing
(meta)heuristics.

All the models proposed in this chapter allow for a great deal of flexibility. In fact,
requests and vehicles can have different dimensions and, in general, there is no need for
parameters α,β,γi ,µi to be constant or equal for every passenger or vehicle. In practical
applications, it would be possible to dynamically tune these parameters depending on
the history of a customer. In such a way, it is possible to ensure an equally distributed
quality of service among clients.

Interestingly, transfers are not explicitly modelled. In fact, transfers and their related
complexity are embedded in the flow formulation of the vehicles and of the requests.
This formulation easily allows for sequences of transfers and transfers with multiple ve-
hicles. Also, with this flow formulation, the number of variables is not affected by how
many transfers are allowed. However, since the resulting models have many equality
constraints, they may be computationally more challenging than formulations where
only inequality constraints are used.

Some of the small instances were not solved to optimality within the given time limit.
This was expected since we faced a more complex variant of an infamous NP-hard prob-
lem. Nevertheless, the sizes of the solved instances are in the range of the ones solved in
the literature for similar problems.

This work lays the foundations for other interesting developments such as the offline
large-scale DARPT and its online counterpart. Most likely, these problems can be solved
only with heuristic methods.

APPENDIX

3.A. MODIFICATIONS ABOUT PEOPLE DEPENDENT SERVICE

TIMES
In Sections 3.3.3 and 3.4.2, we explained how to include people dependent service times
under the assumption that, if multiple requests are picked up simultaneously, only the
largest service time is considered. In this appendix, we consider the same problem un-
der the assumption that, if multiple requests are picked up simultaneously, their sum is
considered.

3.A.1. CONTINUOUS TIME MODEL
The constraints related to the requests ((3.38) - (3.41)) hold also in this case while the
ones related to the vehicles ((3.42) - (3.47)) are modified as follows.

To ensure that hvmv r assumes value one whenever request r ∈ R is picked up by ve-
hicle v ∈ V at move mv ∈ M v , we impose the following three constraints: constraints
(3.80) for the first move of a vehicle, constraints (3.81) for the first move of a request and
constraints (3.82) for all other moves of requests and vehicles.

hv1r ≥
∑

mr ∈M r
pr mr v1,∀v ∈V ,∀r ∈ R (3.80)

hvmv r ≥ pr 1vmv ,∀v ∈V ,∀mv ∈ M v ,∀r ∈ R (3.81)

hvmv r ≥ (pr mr vmv −pr mr −1vmv−1),∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R,∀mr ∈ M r \ {1} (3.82)

To ensure a tight upper bound, we impose constraint (3.83). Since
∑

v∈V
∑

r∈R avr sr

is exactly the sum of all service times that actually took place, constraint (3.83) prohibits
hvmr to assume value one just to have conveniently large waiting times to better fit time
preferences. ∑

v∈V

∑
mv∈M v

∑
r∈R

hvmv r sr ≤
∑

v∈V

∑
r∈R

avr sr (3.83)

The modified timing constraints (3.48) remain unchanged.

3.A.2. DISCRETE TIME MODEL
For the discrete time model, we introduce binary variable hr v t which assumes value one
if request r ∈ R is being picked up by vehicle v ∈ V at time t ∈ T . Hence, we substitute
constraints (3.79) by:

hr v t ≥ ar v t −ar v t−sr ,∀r ∈ R,∀v ∈V ,∀t ∈ T r |t − sr ∈ T r (3.84)

63

3

64 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

and ∑
r∈R

hr v t ≤ 1,∀v ∈V ,∀t ∈ T. (3.85)

This allows to consider one request at a time, hence the total service time experi-
enced becomes the sum of the single service times. To ensure a tight upper bound, we
impose constraint (3.86).

∑
v∈V

∑
t∈T r

∑
r∈R

hr v t sr ≤
∑

v∈V

∑
r∈R

avr sr (3.86)

3.B. IDLING, PARKING, TRANSIT AND TRANSFER NODES
In this appendix, we define constraints to model the nodes with restricted accessibility.
This is useful, for instance, to model nodes situated near historical attractions. Requests
can easily be directed there but parking is not allowed. For the sake of ease, we define:

– an idling node as a node where a request can wait but a vehicle cannot park.

– a parking node as a node where a request cannot wait but a vehicle can park.

– a transit node as a node where a request cannot wait and a vehicle cannot park.

– a transfer node as a node where a request can wait and a vehicle can park.

3.B.1. CONTINUOUS TIME MODEL
To model this in the continuous time model, we impose:

– w v = 0 for every idling and transit node.

– w r = 0 for every parking and transit node.

Given a disjoint partition N1 of idling nodes, N2 of parking nodes, N3 of transit nodes
and N4 of transfer nodes, we impose the following set of constraints:

w r
m ≤ ∑

(i , j)∈A| j∈N1∪N4

xr
i j mB ,∀r ∈ R,m ∈ {0}∪M r . (3.87)

We impose a similar set of constraints for parking, with the addition that a vehicle
should still be able to stop to pick a request up at any idling node.

w v
m ≤ ∑

(i , j)∈A| j∈N2∪N4

y v
i j mB + ∑

r∈R
hvmr sr ,∀v ∈V ,∀m ∈ {0}∪M v (3.88)

3.B.2. DISCRETE TIME MODEL
To model idling, parking, transit and transfer nodes in the discrete time model, we im-
pose:

– y v
i i t = 0 for every idling and transit node.

– xr
i i t = 0 for every parking and transit node.

3.C. EQUIVALENT MODELS

3

65

Given a disjoint partition N1 of idling nodes, N2 of parking nodes, N3 of transit nodes
and N4 of transfer nodes, we impose the following sets of constraints:∑

r∈R

∑
(i ,i ,t)∈A∗|i∈N2∪N3,t∈T r

xr
i i t = 0 (3.89)

and ∑
t∈T

y v
i i t ≤

∑
r∈R

hr v t ,∀i ∈ N1 ∪N3,∀v ∈V ,∀t ∈ T. (3.90)

3.C. EQUIVALENT MODELS
Even though the continuous and discrete time model share the same foundations, some-
times their objective functions differ despite having the same routing and timing solu-
tion. This appendix explains how to modify the models such that, for the same solution,
they return the same objective function value. These modifications do not affect the val-
ues of the routing and timing variables, which are already equivalent for the two models.

3.C.1. UNSERVED REQUESTS AND LATE ARRIVAL
When a request is not served, a penalty has to be paid. In the continuous time model,
this is in addition to the (presumed) late departure and arrival term. Since the penalty
for late departure is irrelevant with respect to the one for unserved requests, this does
not affect the general routing. In order to obtain from both models the same objective
function value, we modify constraints (3.26) into:

c+r ≥ t r
Mv

−Bur ,∀r ∈ R. (3.91)

Similarly, we modify constraints (3.24) into:

d−
r ≤ t r

0 +w r
0 +Bur ,∀r ∈ R. (3.92)

3.C.2. OBJECTIVE FUNCTIONS
Only in the discrete time model, the service time is considered as waiting time; therefore,
vehicles have to pay parking costs during the service times. To balance this difference,
we add

+γ2
∑
r∈R

∑
v∈V

∑
m∈M v

hr vm sr

to the objective function of the continuous time model, whereγ2 represents the park-
ing costs per minute.

Finally, we add the following term to the continuous time objective function:

+γ1
∑
r∈R

∑
v∈V

∑
m∈M v

hr vm sr .

By doing so, the service time of a request is equally penalized by a γ1 factor in both
models when the request is waiting at a transfer node. Recall that γ1 represents the cost
of waiting at a transfer node per minute per person.

3

66 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

3.D. COMPLETE MODELS

In this appendix, we present the complete models. This appendix does not add or modify
any constraints with respect to the ones previously introduced.

3.D.1. CONTINUOUS TIME MODEL - CORE

minimize Z = α
∑

v∈V

∑
(i , j)∈A

∑
m∈M v

y v
i j m li j +β

∑
r∈R

qr (t r
Mr

− ∑
m∈{0}∪M r

w r
m − t r

0)+

µ1
∑
r∈R

(pd r −d−
r)+µ2

∑
r∈R

(d+
r −pd r)+µ3

∑
r∈R

(c+r −par)+µ4
∑
r∈R

(par − c−r)+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
m∈M r

qr w r
m +γ2

∑
v∈V

∑
m∈{0}∪M v

w v
m +E

∑
r∈R

ur qr

(3.1)

such that
∑

(i , j)∈A
xr

i j m ≤ 1 ∀r ∈ R,∀m ∈ M r (3.2)∑
(or , j)∈A

xr
or j 1 ≥

∑
(i , j)∈A

xr
i j 1 ∀r ∈ R (3.3)∑

(i , j)∈A
xr

i j m = ∑
(j ,k)∈A

xr
j k(m+1) ∀r ∈ R,∀m ∈ M r \ {M r }, j 6= d r (3.4)

ur + ∑
m∈M r

∑
(i ,d r)∈A

xr
i d r m = 1 ∀r ∈ R (3.5)∑

(i , j)∈A
y v

i j m ≤ 1 ∀v ∈V ,∀m ∈ M v (3.6)∑
(ov , j)∈A

y v
ov j 1 ≥

∑
(i , j)∈A

y v
i j 1 ∀v ∈V (3.7)∑

(i , j)∈A
y v

i j m ≥ ∑
(j ,k)∈A

y v
j k(m+1) ∀v ∈V ,∀m ∈ M v \ {Mv },∀ j ∈ N (3.8)

t r
m ≥ 0 ∀r ∈ R,∀m ∈ {0}∪M r (3.9)

w r
m ≥ 0 ∀r ∈ R,∀m ∈ {0}∪M r (3.10)

t r
m+1 = t r

m +w r
m + ∑

(i , j)∈A
xr

i j mδi j ∀r ∈ R,∀m ∈ {0}∪M r \ {Mr } (3.11)

t r
0 = er ∀r ∈ R (3.12)

t r
Mr

≤ l r ∀r ∈ R (3.13)

w r
m ≤ B

∑
(i , j)∈A

xr
i j m ∀r ∈ R,∀m ∈ M r (3.14)

t v
m ≥ 0 ∀v ∈V ,∀m ∈ {0}∪M v (3.15)

w v
m ≥ 0 ∀v ∈V ,∀m ∈ {0}∪M v (3.16)

t v
m+1 = t v

m +w v
m + ∑

(i , j)∈A
y v

i j mδi j ∀v ∈V ,∀m ∈ {0}∪M v \ {Mv } (3.17)

3.D. COMPLETE MODELS

3

67

t v
0 = 0 ∀v ∈V (3.18)

t v
Mv

≤ TM ax ∀v ∈V (3.19)

w v
m ≤ B

∑
(i , j)∈A

y v
i j m ∀v ∈V ,∀m ∈ M r (3.20)

d+
r ≥ pd r ∀r ∈ R (3.21)

d+
r ≥ t r

0 +w r
0 ∀r ∈ R (3.22)

d−
r ≤ pd r ∀r ∈ R (3.23)

d−
r ≤ t r

0 +w r
0 ∀r ∈ R (3.24)

c+r ≥ par ∀r ∈ R (3.25)

c+r ≥ t r
Mr

∀r ∈ R (3.26)

c−r ≤ par ∀r ∈ R (3.27)

c−r ≤ t r
Mr

∀r ∈ R (3.28)∑
v∈V

∑
mv∈M v

pr mr vmv ≤ 1 ∀r ∈ R,mr ∈ M r (3.29)∑
r∈R

∑
mr ∈M r

pr mr vmv qr ≤ q v ∀v ∈V ,mv ∈ M v (3.30)

xr
i j mr

≤ y v
i j mv

+ (1−pr mr vmv) ∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.31)

xr
i j mr

≥ y v
i j mv

− (1−pr mr vmv) ∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.32)

t r
mr

≤ t v
mv

+ (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v (3.33)

t r
mr

≥ t v
mv

− (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v (3.34)

∑
(i , j)∈A

xr
i j mr

≤ ∑
v∈V

∑
mv∈M v

pr mr vmv ∀r ∈ R,∀mr ∈ M r (3.35)

B ar v ≥ ∑
mr ∈M r

∑
mv∈M v

pr mr vmv ∀v ∈V ,∀r ∈ R (3.36)∑
v∈V

ar v −1 ≤ d r ∀r ∈ R (3.37)

xr
i j m ∈ {0,1} ∀r ∈ R,∀(i , j) ∈ A,∀m ∈ M r (3.93)

y v
i j m ∈ {0,1} ∀v ∈V ,∀(i , j) ∈ A,∀m ∈ M v (3.94)

ar v ∈ {0,1} ∀r ∈ R,∀v ∈V (3.95)

pr mr vmv ∈ {0,1} ∀r ∈ R,∀mr ∈ M r ,∀v ∈V ,∀mv ∈ M v (3.96)

3

68 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

3.D.2. CONTINUOUS TIME MODEL - EXTENSION

minimize Z = α
∑

v∈V

∑
(i , j)∈A

∑
m∈M v

y v
i j m li j +β

∑
r∈R

qr (t r
Mr

− ∑
m∈{0}∪M r

w r
m − t r

0)+

µ1
∑
r∈R

(pd r −d−
r)+µ2

∑
r∈R

(d+
r −pd r)+µ3

∑
r∈R

(c+r −par)+µ4
∑
r∈R

(par − c−r)+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
m∈M r

qr w r
m +γ2

∑
v∈V

∑
m∈{0}∪M v

w v
m +E

∑
r∈R

ur qr

(3.1)

such that
∑

(i , j)∈A
xr

i j m ≤ 1 ∀r ∈ R,∀m ∈ M r (3.2)∑
(or , j)∈A

xr
or j 1 ≥

∑
(i , j)∈A

xr
i j 1 ∀r ∈ R (3.3)∑

(i , j)∈A
xr

i j m = ∑
(j ,k)∈A

xr
j k(m+1) ∀r ∈ R,∀m ∈ M r , j 6= d r (3.4)

ur + ∑
m∈M r

∑
(i ,d r)∈A

xr
i d r m = 1 ∀r ∈ R (3.5)∑

(i , j)∈A
y v

i j m ≤ 1 ∀v ∈V ,∀m ∈ M v (3.6)∑
(ov , j)∈A

y v
ov j 1 ≥

∑
(i , j)∈A

y v
i j 1 ∀v ∈V (3.7)∑

(i , j)∈A
y v

i j m ≥ ∑
(j ,k)∈A

y v
j k(m+1) ∀v ∈V ,∀m ∈ M v \ {Mv },∀ j ∈ N (3.8)

t r
m ≥ 0 ∀r ∈ R,∀m ∈ {0}∪M r (3.9)

w r
m ≥ 0 ∀r ∈ R,∀m ∈ {0}∪M r (3.10)

t r
0 = er ∀r ∈ R (3.12)

t r
Mr

≤ l r ∀r ∈ R (3.13)

w r
m ≤ B

∑
(i , j)∈A

xr
i j m ∀r ∈ R,∀m ∈ M r (3.14)

t v
m ≥ 0 ∀v ∈V ,∀m ∈ {0}∪M v (3.15)

w v
m ≥ 0 ∀v ∈V ,∀m ∈ {0}∪M v (3.16)

t v
0 = 0 ∀v ∈V (3.18)

t v
Mv

≤ TM ax ∀v ∈V (3.19)

w v
m ≤ B

∑
(i , j)∈A

y v
i j m ∀v ∈V ,∀m ∈ M r (3.20)

d+
r ≥ pd r ∀r ∈ R (3.21)

d+
r ≥ t r

0 +w r
0 ∀r ∈ R (3.22)

d−
r ≤ pd r ∀r ∈ R (3.23)

d−
r ≤ t r

0 +w r
0 ∀r ∈ R (3.24)

3.D. COMPLETE MODELS

3

69

c+r ≥ par ∀r ∈ R (3.25)

c+r ≥ t r
Mr

∀r ∈ R (3.26)

c−r ≤ par ∀r ∈ R (3.27)

c−r ≤ t r
Mr

∀r ∈ R (3.28)∑
v∈V

∑
mv∈M v

pr mr vmv ≤ 1 ∀r ∈ R,mr ∈ M r (3.29)∑
r∈R

∑
mr ∈M r

pr mr vmv qr ≤ q v ∀v ∈V ,mv ∈ M v (3.30)

xr
i j mr

≤ y v
i j mv

+ (1−pr mr vmv) ∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.31)

xr
i j mr

≥ y v
i j mv

− (1−pr mr vmv) ∀v ∈V ,∀r ∈ R,∀(i , j) ∈ A,∀mr ∈ M r ,∀mv ∈ M v (3.32)

t r
mr

≤ t v
mv

+ (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v (3.33)

t r
mr

≥ t v
mv

− (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R∀mr ∈ M r ,∀mv ∈ M v (3.34)

∑
(i , j)∈A

xr
i j mr

≤ ∑
v∈V

∑
mv∈M v

pr mr vmv ∀r ∈ R,∀mr ∈ M r (3.35)

B ar v ≥ ∑
mr ∈M r

∑
mv∈M v

pr mr vmv ∀v ∈V ,∀r ∈ R (3.36)∑
v∈V

ar v −1 ≤ d r ∀r ∈ R (3.37)

g r
1 ≥ ∑

v∈V

∑
mv∈M v

pr 1vmv ∀r ∈ R (3.38)

g r
mr

≥ ∑
v∈V

pr mr v1 ∀r ∈ R,∀mr ∈ M r (3.39)

g r
mr

≥ pr mr vmv −pr mr −1vmv−1 ∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R,∀mr ∈ M r \ {1} (3.40)∑
r∈R

hvmr ≤ 1 ∀v ∈V ,∀m ∈ M v (3.42)∑
r∈R

hv1r sr ≥ pr mr v1sr ∀v ∈V ,∀r ∈ R,∀mr ∈ M r (3.43)∑
r∈R

hvmv r sr ≥ pr 1vmv sr ∀v ∈V ,∀mv ∈ M v ,∀r ∈ R (3.44)

∑
r∈R

hvmv r sr ≥ (pr mr vmv −pr mr −1vmv−1)sr ∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R,∀mr ∈ M r \ {1}

(3.45)

hvmv r ≤ 1− ∑
mr ∈M r

pr mr vmv−1 ∀v ∈V ,∀mv ∈ M v \ {1},∀r ∈ R (3.46)

hvmv r ≤
∑

mr ∈M r
pr mr vmv ∀v ∈V ,∀mv ∈ M v ,∀r ∈ R (3.47)

3

70 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

t r
mr −1 +w r

mr −1 ≤ t v
mv−1 +w v

mv−1 + (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v

(3.49)

t r
mr −1 +w r

mr −1 ≥ t v
mv−1 +w v

mv−1 − (1−pr mr vmv)B ∀v ∈V ,∀r ∈ R,∀mr ∈ M r ,∀mv ∈ M v

(3.50)

∑
k∈T S

T T r
i j mk = xr

i j m ∀r ∈ R,∀m ∈ M r ,∀(i , j) ∈ A (3.51)∑
(i , j)∈A

T T r
i j mk l bi j k ≤ t r

m +w r
m + g r

m sr ∀r ∈ R,∀m ∈ M r ,∀k ∈ T S (3.52)

t r
m +w r

m + g r
m sr ≤ ∑

(i , j)∈A
T T r

i j mk ubi j k +B(1− ∑
(i , j)∈A

T T r
i j mk) ∀r ∈ R,∀m ∈ M r ,∀k ∈ T S

(3.53)

∑
k∈T S

T T v
i j mk = y v

i j m ∀v ∈V ,∀m ∈ M v ,∀(i , j) ∈ A (3.54)∑
(i , j)∈A

T T v
i j mk l bi j k ≤ t v

m +w v
m + ∑

r∈R
sr hvmr ∀v ∈V ,∀m ∈ M v ,∀k ∈ T S (3.55)

t v
m +w v

m + ∑
r∈R

sr hvmr ≤
∑

(i , j)∈A
T T v

i j mk ubi j k +B(1− ∑
(i , j)∈A

T T v
i j mk) ∀v ∈V ,∀m ∈ M v ,∀k ∈ T S

(3.56)

t r
m+1 = t r

m +w r
m + g r

m sr + ∑
k∈T S

∑
(i , j)∈A

T T r
i j mkδi j k ∀r ∈ R,∀m ∈ M r \ {M r } (3.57)

t v
m+1 = t v

m +w v
m + ∑

r∈R
sr hvmr +

∑
k∈T S

∑
(i , j)∈A

T T v
i j mkδi j k ∀v ∈V ,∀m ∈ M v \ {M v } (3.58)

xr
i j m ∈ {0,1} ∀r ∈ R,∀(i , j) ∈ A,∀m ∈ M r (3.93)

y v
i j m ∈ {0,1} ∀v ∈V ,∀(i , j) ∈ A,∀m ∈ M v (3.94)

ar v ∈ {0,1} ∀r ∈ R,∀v ∈V (3.95)

pr mr vmv ∈ {0,1} ∀r ∈ R,∀mr ∈ M r ,∀v ∈V ,∀mv ∈ M v (3.96)

g r
m ∈ {0,1} ∀r ∈ R,∀m ∈ M r (3.97)

hvmr ∈ {0,1} ∀r ∈ R,∀v ∈V ,∀m ∈ M v (3.98)

3.D. COMPLETE MODELS

3

71

3.D.3. DISCRETE TIME MODEL - CORE

minimize Z = α
∑

v∈V

∑
(i , j ,t)∈A∗

y v
i j t li j +β

∑
r∈R

∑
(i , j ,t)∈A∗,i 6= j

xr
i j tδi j t qr+

µ1
∑
r∈R

∑
t<pd r ∈T r

(1−xr
or or t)qr +µ2

∑
r∈R

∑
t≥pd r ∈T r

xr
or or t qr+

µ3
∑
r∈R

∑
t<par ∈T r

xr
d r d r t qr +µ4

∑
r∈R

∑
t≥par ∈T r

(1−xr
d r d r t)qr+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
(i ,i ,t)∈A∗

xr
i i t qr+

γ2
∑

v∈V

∑
(i ,i ,t)∈A∗

y v
i i t +E

∑
r∈R

ur qr

(3.59)

such that:
∑

i , j∈N ,i 6=or
xr

i j er = 0 ∀r ∈ R (3.60)∑
j∈N

xr
or j er = 1 ∀r ∈ R (3.61)∑

i∈N
xr

i d r t2
+ur = 1 ∀r ∈ R, t2 ∈ T r |t2 +δi d r t2 = l r (3.62)∑

i , j∈N ,i 6=ov
y v

i j 0 = 0 ∀v ∈V (3.63)∑
j∈N

y v
ov j 0 = 1 ∀v ∈V (3.64)∑

i∈N

∑
j∈N

y v
i j t = 1 ∀v ∈V ,∀t ∈ T |t +δi j t = TM ax (3.65)∑

i∈N
xr

i j t2
= ∑

i∈N
xr

j i t ∀r ∈ R,∀t ∈ T r , t2 ∈ T r |t2 +δi j t2 = t ,∀ j ∈ N (3.66)

∑
i∈N

y v
i j t2

= ∑
i∈N

y v
j i t ∀v ∈V ,∀ j ∈ N ,∀t ∈ T /{T max }, t2 ∈ T |t2 +δi j t2 = t (3.67)

∑
v∈V

ar v t ≤ 1 ∀r ∈ R,∀t ∈ T r (3.68)∑
r∈R

ar v t qr ≤ q v ∀v ∈V ,∀t ∈ T (3.69)∑
j∈N

xr
i j t ≤

∑
j∈N

y v
i j t + (1−ar v t) ∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r (3.72)∑

j∈N
xr

i j t ≥
∑
j∈N

y v
i j t − (1−ar v t) ∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r (3.73)∑

i∈N
xr

i j t ≤
∑

i∈N
y v

i j t + (1−ar v t) ∀r ∈ R,∀v ∈V ,∀ j ∈ N ,∀t ∈ T r (3.74)∑
i∈N

xr
i j t ≥

∑
i∈N

y v
i j t − (1−ar v t) ∀r ∈ R,∀v ∈V ,∀ j ∈ N ,∀t ∈ T r (3.75)∑

i∈N
xr

i i t ≥ 1− ∑
v∈V

ar v t ∀r ∈ R,∀t ∈ T r (3.76)

B ar v ≥ ∑
t∈T

ar v t ∀v ∈V ,∀r ∈ R (3.77)

3

72 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

∑
v∈V

ar v −1 ≤ d r ∀r ∈ R (3.78)

xr
i j t ∈ {0,1} ∀r ∈ R,∀(i , j , t) ∈ A∗ (3.99)

y v
i j t ∈ {0,1} ∀v ∈V ,∀(i , j , t) ∈ A∗ (3.100)

ar v ∈ {0,1} ∀r ∈ R,∀v ∈V (3.101)

ar v t ∈ {0,1} ∀r ∈ R,∀v ∈V ,∀t ∈ T r (3.102)

3.D. COMPLETE MODELS

3

73

3.D.4. DISCRETE TIME MODEL - EXTENSION

minimize Z = α
∑

v∈V

∑
(i , j ,t)∈A∗

y v
i j t li j +β

∑
r∈R

∑
(i , j ,t)∈A∗,i 6= j

xr
i j tδi j t qr+

µ1
∑
r∈R

∑
t<(pd r +sr)∈T r

(1−xr
or or t)qr +µ2

∑
r∈R

∑
t≥(pd r +sr)∈T r

xr
or or t qr+

µ3
∑
r∈R

∑
t<par ∈T r

xr
d r d r t qr +µ4

∑
r∈R

∑
t≥par ∈T r

(1−xr
d r d r t)qr+

η
∑
r∈R

∑
v∈V

ar v qr +γ1
∑
r∈R

∑
(i ,i ,t)∈A∗

xr
i i t qr+

γ2
∑

v∈V

∑
(i ,i ,t)∈A∗

y v
i i t +E

∑
r∈R

ur qr

(3.59∗)

such that:
∑

i , j∈N ,i 6=or
xr

i j er = 0 ∀r ∈ R (3.60)∑
j∈N

xr
or j er = 1 ∀r ∈ R (3.61)∑

i∈N
xr

i d r t2
+ur = 1 ∀r ∈ R, t2 ∈ T r |t2 +δi d r t2 = l r (3.62)∑

i , j∈N ,i 6=ov
y v

i j 0 = 0 ∀v ∈V (3.63)∑
j∈N

y v
ov j 0 = 1 ∀v ∈V (3.64)∑

i∈N

∑
j∈N

y v
i j t = 1 ∀v ∈V ,∀t ∈ T |t +δi j t = TM ax (3.65)∑

i∈N
xr

i j t2
= ∑

i∈N
xr

j i t ∀r ∈ R,∀t ∈ T r , t2 ∈ T r |t2 +δi j t2 = t ,∀ j ∈ N (3.66)∑
i∈N

y v
i j t2

= ∑
i∈N

y v
j i t ∀v ∈V ,∀ j ∈ N ,∀t ∈ T /{T max }, t2 ∈ T |t2 +δi j t2 = t (3.67)∑

v∈V
ar v t ≤ 1 ∀r ∈ R,∀t ∈ T r (3.68)∑

r∈R
ar v t qr ≤ q v ∀v ∈V ,∀t ∈ T (3.69)

∑
j∈N

xr
i j t ≤

∑
j∈N

y v
i j t + (1−ar v t) ∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r (3.72)∑

j∈N
xr

i j t ≥
∑
j∈N

y v
i j t − (1−ar v t) ∀r ∈ R,∀v ∈V ,∀i ∈ N ,∀t ∈ T r (3.73)∑

i∈N
xr

i j t ≤
∑

i∈N
y v

i j t + (1−ar v t) ∀r ∈ R,∀v ∈V ,∀ j ∈ N ,∀t ∈ T r (3.74)∑
i∈N

xr
i j t ≥

∑
i∈N

y v
i j t − (1−ar v t) ∀r ∈ R,∀v ∈V ,∀ j ∈ N ,∀t ∈ T r (3.75)∑

i∈N
xr

i i t ≥ 1− ∑
v∈V

ar v t ∀r ∈ R,∀t ∈ T r (3.76)

B ar v ≥ ∑
t∈T

ar v t ∀v ∈V ,∀r ∈ R (3.77)

3

74 MILP MODELS FOR THE DIAL-A-RIDE PROBLEM WITH TRANSFERS

∑
v∈V

ar v −1 ≤ d r ∀r ∈ R (3.78)∑
i∈N

xr
i i t ≥ ar v t −ar v t−sr ∀t ∈ T r |t − sr ∈ T r ,∀r ∈ R,∀v ∈V (3.79)

xr
i j t ∈ {0,1} ∀r ∈ R,∀(i , j , t) ∈ A∗ (3.99)

y v
i j t ∈ {0,1} ∀v ∈V ,∀(i , j , t) ∈ A∗ (3.100)

ar v ∈ {0,1} ∀r ∈ R,∀v ∈V (3.101)

ar v t ∈ {0,1} ∀r ∈ R,∀v ∈V ,∀t ∈ T r (3.102)

4
SPECIAL EDUCATION NEEDS

SCHOOL BUS ROUTING PROBLEM

Jacopo PIEROTTI, Lina SIMEONOVA,Theresia VAN ESSEN

Schools for special education needs (SEN) students in the UK often organise the trans-
port of students from their homes to the school. This service significantly affects schools’
budgets because, in addition to having dedicated vehicles and drivers, attenders, i.e., spe-
cialised staff, are also needed to accompany the students for health and safety reasons.
Given the behavioural and learning needs of the SEN students, travelling to school can
be perceived as stressful and can cause anxiety or episodes of aggression. This often oc-
curs when SEN students travel to school with people they are unfamiliar with. A sufficient
level of familiarity with other students and staff on the bus can give the students a sense
of safety and comfort, which would make the journey smoother and more enjoyable. We
consider socio-economic trade-offs of two conflicting objectives, namely minimizing the
total distance travelled and maximizing student familiarity. Our problem is motivated
by a real-life case in the county of Kent in the United Kingdom and we use real data from
the area to design our problem instances. We firstly model the special education needs
bus routing problem (SENBRP) as an integer linear program and solve small instances to
optimality via a commercial solver. In order to solve real-life instances, a metaheuristic
approach is described, implemented and tested on the case study.

4.1. INTRODUCTION
The school bus routing problem (SBRP) is an important problem which impacts not only
transportation companies, but also public policy makers, local schools and millions of
families. Our research falls in a relatively under-researched area, namely School Bus

75

4

76 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Routing Problem for students with Special Educational Needs (SENBRP) and it is moti-
vated by the transport practices of a local school in the South East of England. Accord-
ing to the classification of the Kent County Council, our research focuses on students
with Behavioural and Learning needs (Bradley et al., 2002), which includes social, emo-
tional and mental health (SEMH) needs, Metachromatic Leukodystrophy (MLD), Atten-
tion Deficit Hyperactivity Disorder (ADHD), Obsessive-Compulsive Disorder (OCD) and
others.

Most of the research in the SBRP domain focuses predominantly on economic gains
through cost (Parvasi et al., 2017) and time (Li and Fu, 2002) optimisation, and there are a
few papers which also focus on sustainable operations from an environmental perspec-
tive (Chalkia et al., 2016). However, to the best of our knowledge, there is no research
which includes the social aspect of school bus routing, and more specifically for such
a vulnerable demographic. While having a robust and cost efficient routing schedule is
very important due to the limited school and council budgets, it is even more important
to plan the school bus routes in a considerate manner in order to minimize the potential
negative impact the journey to school can have on the students. In this paper, one of the
most important considerations when creating bus routes is to ensure that every student
boards a bus where students have a good level of familiarity with each other. Familiar-
ity with the school bus attendant and fellow students is a very important issue because
it provides stability, re-assurance and a feeling of safety and security. A positive expe-
rience during the journey can provide a good foundation for the school day ahead and
increase the general productivity of the students. According to local transport organis-
ers, if the journey is not pleasant, it can have a more serious impact on students with
special needs. This is also supported by research around the effect of travel on students
with disabilities and special needs and how important it is to address the social aspect
of bus routing (Buliung et al., 2021). Therefore, we formulate and solve our problem in a
bi-objective fashion, where we aim to minimize the cost of travel and maximise the level
of student familiarity.

Route familiarity has gained attention in the Operations Research (OR) community
as a key aspect for implementation and efficiency in routing. So far, it has mainly been
researched from the perspective of the drivers, ensuring they are familiar with their daily
routes (Intini et al., 2019) and they are consistent in satisfying customer demands at ap-
proximately the same times (Goeke et al., 2019). The research around optimising social
aspects of routing is fairly limited, in comparison to the environmental and economic
aspects. In the school bus routing domain even more so, as, to our best knowledge,
there is only one paper which explicitly incorporates special students needs. Caceres
et al., 2019 considered those students who require special equipment, such as ramps
and wheelchairs. Therefore, the problem focuses on the partitioning of buses, which
can accommodate a mix of wheelchairs and regular seats.

In many cases, in practice, schools outsource by hiring private cars to fill in any gaps
when there are insufficient spaces on buses (Parvasi et al., 2017). This leads to highly
inefficient and expensive routing and this is one of the main reasons why SBRP is an im-
portant optimization problem, which can lead to significant savings. On top of that, our
problem originates from schools with learning and behavioural needs, where students
are highly vulnerable. Therefore, when planning the school bus routing for students with

4.2. LITERATURE REVIEW

4

77

special needs, it is very important to consider efficiency and fitting into tight budgets, but
it is just as critical to ensure students’ health and safety and that their needs are properly
met.

The remainder of the paper is organized as follows. Section 4.2 illustrates an overview
of the state-of-the-art research on SBRP. In Section 4.3, we present a mathematical for-
mulation of the SENBRP and Section 4.4 explains the exact and heuristic methods we use
to solve the SBRP. We test these methods on a case study and computational results are
discussed in Section 4.5. The paper is concluded with some considerations in Section
5.4. Additional sensitivity analysis, Pareto optimal solutions (Marler and Arora, 2010)
and trade-offs are discussed in Appendix 4.A and Appendix 4.B.

4.2. LITERATURE REVIEW
The School Bus Routing Problem falls within the broad field of Vehicle Routing Problems
(VRP, Toth and Vigo, 2002). VRPs are an extensively studied class of optimization prob-
lems due to their practical relevance. VRPs deal with managing a fleet of vehicles under a
set of constraints (usually capacity, routing and timing constraints). The SBRP was firstly
introduced by Newton and Thomas, 1969, but it has received much less attention in the
literature than the classical VRP for freight applications. There is no dominant approach
to studying the SBRP and most of the solution methods proposed are very problem spe-
cific, typically motivated by different school practices and school transport contexts. A
lot of the research in this area examines North American contexts, where the school bus
routing is significantly different to the UK, which is the focus of our research. For in-
stance, in North America, private schools and larger buses are more common. The SBRP
review by Ellegood et al., 2020 shows that there is no research to date in a UK setting.

Similar to the VRP, the most common objective functions are minimizing the to-
tal distance, bus travel time or student travel time. When the objective of the SBRP is
to mimimize student walking distance, which is assumed to be the distance between
the home locations and the bus stops, the problem is called bus stop location problem
(Schittekat et al., 2013). Due to health and safety constraints, in our problem, each stu-
dent is picked up at their home address; thus, the walking distance is already at its mini-
mum.

In the SBRP, it is common to have contrasting objectives; thus, the problem is often
formulated as multi-objective, usually bi-objective (Zajac and Huber, 2021). To solve a
multi-objective problem means to retrieve the solution points which are not dominated.
In a bi-objective maximization problem, a solution s in solution space S is not domi-
nated if there does not exist a solution s′ ∈ S such that the objective function values of
s′ are larger (and at least one objective function value strictly larger) than the objective
function values of s. The set of non-dominated solutions is called the Pareto front or the
Pareto frontier (Marler and Arora, 2010).

The SBRP finds applications in an urban (Parvasi et al., 2017) or rural setting (Souza
Lima et al., 2016) and various applications for single (Park et al., 2009, Caceres et al.,
2019) or multiple schools (Li and Fu, 2002, Shafahi et al., 2018). The transportation of
students from different schools allows for consolidation of pick up locations and fewer
trips. Having a homogeneous fleet is much more common and that is also the assump-
tion in our case, but there are a few applications of heterogeneous bus fleets. Souza Lima

4

78 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

et al., 2016 addressed for the first time an SBRP which combines a heterogeneous fleet
and a mixed load, where students from multiple schools can ride the same bus. This is
a very interesting problem, which occurs in a rural setting in Brazil, where multi-grade
students attend the same classes. An application by Prah et al., 2018 also considers a
rural setting and incorporates the characteristics of the terrain using three-dimensional
geographical data.

The SBRP with school bell adjustment is also a popular problem in the literature,
which considers bus routing to multiple schools. In the SBRP with school bell adjust-
ment, schools’ start and end times need to be considered such that schools’ bus fleets
can be better utilised and serve multiple schools. Miranda et al., 2021 study the school
bell adjustment problem using a memetic algorithm and iterated local search. Wang
and Haghani, 2020 address a stochastic version of the problem with an algorithm which
incorporates aspects of Column Generation (Desaulniers et al., 2006), Simulated Anneal-
ing (Malek et al., 1989), Insertion Algorithm (Artigues and Roubellat, 2000) and Greedy
Randomized Adaptive Search Procedure (GRASP, Feo and Resende, 1995). There are a
few applications of the SBRP where authors consider multiple objectives. For instance,
Pacheco et al., 2013 aim to minimize the travel cost and minimize the longest route,
which is a cost-service trade-off. The authors use Tabu Search within a multi-objective
adaptive memory programming framework.

The SBRP literature also contains some sustainable applications. There are papers
that consider the environmental aspect of SBRP and some touch on the social aspect
of vehicle routing. Chalkia et al., 2016 considered student safety, both on transport and
student pedestrian routes, Ahmed et al., 2020 studied air pollution exposure reduction
and Mokhtari and Ghezavati, 2018 examined the multi-objective SBRP whose objectives
are minimizing cost and students riding time.

Given the typical schools’ sizes, the SBRP is usually solved via heuristic methods.
Park et al., 2009 solved the mixed load SBRP by a combination of Sweep, Hungarian
method and a post-improvement procedure. Shafahi et al., 2018 approached the SBRP
in an integrated manner solving the problem with a two-step heuristic with minimum
cost matching and post improvement. Lewis and Smith-Miles, 2018 considered a real life
SBRP, which includes aspects of bin packing, routing and set covering. The authors re-
searched aspects of merging and splitting routes and bus dwell times using a local search
in combination with a kick operator. Schittekat et al., 2013 also examined real-life sit-
uations, this time in Belgian schools. In the Flemish region of Belgium, students living
within certain distances of their school have access to free transportation systems to and
from school which is organized by the Flemish transportation company. The authors
implemented a column generation approach hybridised with an iterative metaheuristic
based on GRASP and Variable Neighbourhood Descend (VND, Hansen et al., 2010), to
find solutions to real life instances. Instead of relying on classical heuristic techniques,
Köksal Ahmed et al., 2020 introduced a reinforcement learning structure to minimize
students waiting time as well as bus operators costs. Most of the solution methodologies
to solve multi-objective routing problems are hybrid, population-based or multi-stage
(a detailed review can be found in Zajac and Huber, 2021) which makes them inherently
complex. In contrast, we propose to design a simple and general heuristic.

The contribution of our paper is three-fold.

4.3. PROBLEM FORMULATION

4

79

• Our problem is bi-objective, where we aim to maximize route familiarity (homo-
geneity) whilst minimizing the total distance travelled. To the best of our knowl-
edge, there is no research to date, which solves SBRP with a bi-objective function
balancing socio-economic gains.

• There is very little research in the area of SBRP with special needs and there is po-
tential for contribution and savings. Just in the county of Kent in the UK there are
22 schools with students with special needs, operating under very limited budgets.

• We propose an exact formulation (with efficient valid inequalities) for the SENBRP
and test its performance. Moreover, we develop an almost parameter-free meta-
heuristic able to tackle large size case studies.

4.3. PROBLEM FORMULATION
In this section, we describe how to model the special education needs bus routing prob-
lem. In this work, we consider only trips from the students home locations to the school.
Trips from the school to the students home locations can be found via the same meth-
ods explained in this work with few modifications. In accordance to the real-life case we
are examining, we assume the vehicles to be homogeneous. We consider the following
problem: given a depot location d , a school location s, a set of student home locations
H and a set of homogeneous buses B , we aim to design feasible routes visiting all home
locations while minimizing the travel cost Zt (routing and attendants costs) and maxi-
mizing the familiarity of the passengers Zq . For a route to be feasible, it has to start at
the depot d , end in the school node s and respect time constraints, bus capacity and
attendant safety limitations.

We model the road network as a graph with nodes N connected by a set of arcs A.
The set of nodes N is composed of the depot d , the school s and the set of all the student
home locations H . In the case study we are analysing, the school s and the depot d
are situated at the same node; nonetheless, we model those as two different nodes to
adopt a generic formulation. In cases where two or more students have the same home
location, they are modelled with multiple distinct dummy nodes. Doing so, each student
is uniquely associated with a node in H . From now on, depending on the context, when
referring to i ∈ H , we either refer to the student or to his/her home location. For each
student i ∈ H , we assume a maximum ride time R. In order to ensure that students needs
are met safely and professionally, at least one attendant needs to be present on the bus.
Therefore, we consider a set of attendants K , situated at depot d . Multiple attendants
can be present on the same bus in order to guarantee more safety and a higher quality of
the service. For an efficient scheduling of the personnel and to avoid overfilling buses,
the number of attendants per bus is limited to a maximum of Amax . The buses given by
set B are homogeneous with capacity Q. This capacity resource is gradually consumed
whenever a student i ∈ H or an attendant k ∈ K is riding on bus b ∈ B .

We consider the graph to be complete and that the triangular inequality holds. Each
arc (i , j) ∈ A is associated with a known travel time δ(i , j) and a travelling cost c(i , j). In
order to model the familiarity among students, we define a subset of arcs A f ⊆ A. A f

contains all and only the arcs among students which are familiar with each other. More-
over, we assume that each attendant is familiar with every student; thus, the quality of

4

80 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Table 4.3.1: Sets and parameters

d depot node, i.e. the starting point of the buses and attendants
s school node, i.e. the final destination
H set of the students or of their home locations
N H ∪ {d , s}
A set of all arcs
A f set of arcs connecting students who are familiar with each other
δ(i , j) travel time for arc (i , j) ∈ A
c(i , j) travel cost for arc (i , j) ∈ A
B set of homogeneous buses
Q capacity of each bus b ∈ B
K set of attendants
Amax maximum number of attendants per bus
R maximum ride time for each student i ∈ H
α cost of each attendant
γ weight coefficient to tune the trade-off between the objectives
fmi n minimum familiarity level to be guaranteed for each student

the service increases as more attendants are placed in a bus. In the following, we refer
to the familiarity level as the quality of the service. To avoid solutions with an unevenly
spread quality of the service (e.g. a solution where all students but one experience a high
quality of service and one student experiences an extremely low quality of service), a
minimum familiarity level of fmi n has to be guaranteed for all the students. For example,
a solution where 4 students experience a familiarity of 3 is to be preferred to a solution
where 3 students experience a familiarity of 4 and one student experience a familiarity
of zero. Table 4.3.1 summarises the used notation.

4.3.1. DECISION VARIABLES

In this section, we describe the variables used in the model. To model the routing, we
employ binary variables yb

(i , j), assuming value one if bus b ∈ B travels through arc (i , j) ∈
A and zero otherwise. To avoid cycles, integer variables ui ranging from one to Q −1 for
i ∈ H are introduced. These variables indicate the order in which students are picked up
and have upper bound Q −1 because at least one of the Q seats in each bus is reserved
for an attendant. To associate attendants with buses, we introduce integer variables ab

which assume the value of the number of attendants in bus b ∈ B .

To measure the familiarity, we utilise binary variables pb
(i , j) which assume value one

if and only if students i and j ∈ H are familiar (i.e. (i , j) ∈ A f) and sit on bus b ∈ B .

This means that variable pb
(i , j) exists only if (i , j) ∈ A f . Then, we adopt variables f b

i to

measure the familiarity of student i ∈ H if (s)he would sit on bus b ∈ B . These variables
are intermediate variables needed to compute the integer variables fi which assume the
familiarity value that student i ∈ H is actually experiencing.

Table 4.3.2 summarises the used variables.

4.3. PROBLEM FORMULATION

4

81

Table 4.3.2: Variables

yb
(i , j) binary one if bus b ∈ B travels arc (i , j) ∈ A, zero otherwise

ui integer variables to forbid cycling (see Constraints 4.9)
ab integer number of attendants on bus b ∈ B
pb

(i , j) binary one if bus b ∈ B picks up students i and j ∈ H and (i , j) ∈ A f

f b
i integer familiarity value of student i ∈ H if (s)he sits on bus b ∈ B

fi integer familiarity value of student i ∈ H

4.3.2. OBJECTIVE FUNCTION
The model aims to minimize the travel costs Zt while maximizing the familiarity value
Zq . Since these are in general conflicting objectives, we are solving a multi-objective
optimization problem. In order to achieve optimal solutions, we temporally reduce the
problem to a single objective optimization problem by defining generalized cost Z .

We define as routing costs:

Zt =
∑

b∈B

∑
(i , j)∈A

c(i , j) yb
(i , j) +α

∑
b∈B

ab , (4.1)

where α is the cost of hiring an extra attendant for one trip.
To consider the familiarity level, we maximize the sum of the familiarity levels.

Hence, we set:
Zq = ∑

i∈H
fi . (4.2)

Thus, we define the generalized cost as:

Z = γZt − (1−γ)Zq , (4.3)

where γ is a tuning parameter to modify the trade-off among the two objectives (see
Section 4.4). Finally, the objective function of our problem is:

min Z (4.4)

4.3.3. CONSTRAINTS
In this section, we discuss the constraints of our model. Firstly, we ensure that every bus
starts from the depot (Constraints 4.5) and ends at the school (Constraints 4.6).∑

(i , j)∈A
yb

(i , j) ≤Q
∑
j∈H

yb
(d , j),∀b ∈ B (4.5)

∑
j∈H

yb
(d , j) =

∑
i∈H

yb
(i ,s),∀b ∈ B (4.6)

Constraints (4.5) does not force the solution to use all the available buses. In fact, given
the capacity limitation, each bus can pick up at most Q−1 students (one seat is reserved
for the attendant), which results in a total of Q travelled arcs (Q −1 to pick up students
plus one to go reach the trip’s destination, i.e. the school).

4

82 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Secondly, we have to ensure flow conservation (Constraints 4.7) and to visit all the
home locations of the students (Constraints 4.8) .

∑
i∈N

yb
(i , j) −

∑
k∈N

yb
(j ,k) = 0,∀ j ∈ H ,∀b ∈ B (4.7)

∑
b∈B

∑
j∈N

yb
(i , j) = 1,∀i ∈ H (4.8)

Constraints (4.5)-(4.8) alone do not suffice to avoid cycles, hence, we introduce or-
dering Constraints (4.9).

ui −u j + (Q +1)
∑

b∈B
yb

(i , j) ≤Q,∀i , j ∈ H , i 6= j (4.9)

This set of constraints forces u j to assume a value greater than or equal to ui +1, if any
bus travels arc (i , j) ∈ A. This prevents cycling. Note that, in general, variables ui have to
be in strictly increasing order, but they do not have to be increasing by one. Hence, for a
bus picking up students 1,2,3 (in that order), u1 = 2,u2 = 5,u3 = 8 can be an acceptable
solution.

The capacity limitations are modelled via Constraints (4.10).∑
(i , j)∈A|i 6=d

yb
(i , j) +ab ≤Q,∀b ∈ B (4.10)

In order to enforce the maximum ride time, we use the fact that for each bus, the
student who is picked up first, travels the most. This corresponds to the whole bus route
without the first arc (the one from the depot). Hence, we set:

∑
(i , j)∈A|i 6=d

yb
(i , j)δ(i , j) ≤ R,∀b ∈ B (4.11)

When students with special needs ride in a bus, for safety reasons, there should be at
least one attendant. By imposing ∑

i∈H
yb

(d ,i) ≤ ab ,∀b ∈ B , (4.12)

we ensure that if the bus is not empty, at least one attendant is present.
In addition, we have to ensure to use at most |K | attendants, thus we enforce:∑

b∈B
ab ≤ |K |. (4.13)

To bound variables pb
(i , j), to assume the value of one when students i ∈ H and j ∈ H

are familiar with each other and sit on bus b ∈ B , we impose Constraints (4.14).

pb
(i , j) ≤ 0.5(

∑
k∈N

yb
(i ,k) +

∑
k∈N

yb
(j ,k)),∀b ∈ B ,∀(i , j) ∈ A f (4.14)

4.4. METHODS

4

83

Once variables pb
(i , j) are bounded, we determine the value of variables f b

i through

Constraints (4.15) and (4.16).

f b
i ≤ ∑

(i , j)∈A f

pb
(i , j) +ab ,∀b ∈ B ,∀i ∈ H (4.15)

f b
i ≤ (Q −1)

∑
j∈N

yb
(i , j),∀b ∈ B ,∀i ∈ H (4.16)

On one hand, Constraints (4.15) impose an upperbound on variable f b
i to a maxi-

mum composed by the sum of the students on bus b with whom student i ∈ H is famil-
iar with plus the number of attendants on the same bus. On the other hand, Constraints
(4.16) force variables f b

i to zero if bus b ∈ B does not visit student i ∈ H . We determine
the value of the actual familiarity level of student i ∈ H , i.e. fi , via Constraints (4.17).

fi ≤
∑

b∈B
f b

i ,∀b ∈ B ,∀i ∈ H (4.17)

For each i ∈ H , Constraints (4.17) let variable fi assume the value of the only non-zero
variable among f b

i . To ascertain a minimum level of familiarity for each student, we
impose Constraints (4.18).

fi ≥ fmi n ,∀i ∈ H (4.18)

Finally, we impose the following binary and integer constraints.

yb
(i , j) ∈ {0,1},∀(i , j) ∈ A (4.19)

ui ∈ {0, · · · ,Q −1},∀i ∈ H (4.20)

ab ∈ {0, · · · , Amax },∀b ∈ B (4.21)

pb
(i , j) ∈ {0,1},∀b ∈ B ,∀(i , j) ∈ A f (4.22)

f b
i ∈ {0, · · · ,Q −1},∀b ∈ B ,∀i ∈ H (4.23)

fi ∈ {0, · · · ,Q −1},∀i ∈ H (4.24)

4.4. METHODS
To find optimal solutions belonging to the Pareto frontier, we use the weighted sum
method (Marler and Arora, 2010). This technique consists of iteratively solving the same
instance of a problem while modifying the weight coefficient γ (see Eq. 4.3) of the single
objective function. By doing so, we explore different trade-offs between the two objec-
tive functions.

4

84 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

4.4.1. VALID INEQUALITIES

In order to reduce the computation time, we introduce valid inequalities. By definition,
valid inequalities are constraints that do not reduce the solution space of an ILP but they
reduce (and simplify) its relaxation. Instead, we allow valid inequalities to remove some
optimal solutions from the solution space, provided that at least one optimal solution
is left. This is helpful to reduce the computational time needed to solve a problem with
many symmetric solutions (for example, a solution where bus b1 serves only student
h1 and bus b2 serves only student h2 is identical to a solution where bus b1 serves only
student h2 and bus b2 serves only student h1). To implement such valid inequalities, we
impose an ordering of the buses. We write b1 < b2 to state that b1 precedes b2.

Note that, given the capacity constraints and |H | students to visit, at least

⌈ |H |
Q −1

⌉
buses have to be routed. Hence, we set the outgoing flow from the depot of the first⌈ |H |

Q −1

⌉
buses (set B

′
) to one and we set their number of attendants to be greater than

or equal to one via Constraints (4.25) and (4.26), respectively.

∑
(d , j)∈A

yb
(d , j) = 1,∀b ∈ B

′
(4.25)

ab ≥ 1,∀b ∈ B
′

(4.26)

In addition, we impose that the buses have to carry a decreasing number of students.

∑
(i , j)∈A

yb1
(i , j) ≥

∑
(i , j)∈A

yb2
(i , j),∀b1,b2 ∈ B ,b1 < b2 (4.27)

To start with a tighter bound on Zq , we consider that it is composed of two terms.
The first term is related to the familiarity among the students while the second term is
related to the increase in familiarity due to the presence of attendants. The familiarity
among the students can be upper-bounded by considering the arcs in A f . Hence, we
define F̃ =∑

i∈H min(Q −2,
∑

(i , j)∈A f
1). The minus two comes from the fact that, among

the Q possible seats, one is reserved for the student him/herself and at least another one
is reserved for the attendant.

Adding an attendant to a bus b ∈ B with sb students, would increase Zq by sb (be-
cause sb students would increase their familiarity level by one). More in general, the
increase in familiarity given by the attendants is

∑
b∈B ab sb , where ab and sb are the

number of attendants and students on bus b ∈ B , respectively. Hence, we determine
an upper bound on the familiarity due to the presence of attendants by solving the fol-
lowing integer quadratic problem (IQP).

4.4. METHODS

4

85

max
∑

b∈B
ab sb (4.28)

s.t.
∑

b∈B
ab ≤ |K | (4.29)∑

b∈B
sb = |H | (4.30)

sb +ab ≤Q ∀b ∈ B (4.31)

(Q −1)ab ≥ sb ∀b ∈ B (4.32)

ab ∈ {0,1, .., Amax } ∀b ∈ B (4.33)

sb ∈ {0,1, .., |H |} ∀b ∈ B (4.34)∑
b∈B ab sb is the increase in familiarity due to introducing attendants and we name

this quantity Ã. Constraints (4.29) and (4.30) impose to use at most |K | attendants and
to visit all |H | students, respectively. Constraints (4.31) act as capacity constraints and
Constraints (4.32) impose to have at least one attendant on bus b if it is not empty. Con-
straints (4.33) and (4.34) are integrality constraints and bound the maximum values of
variables ab to Amax and sb to |H |. Although this is an IQP, it can be solved within a
fraction of a second.

Resulting from this, we impose the valid inequality that variable Zq can be at most
the sum of Ã and F̃ .

Zq ≤ Ã+ F̃ (4.35)

4.4.2. METAHEURISTIC METHOD
When solving large sized SENBRP instances in reasonable time (see Section 4.5),
(meta)heuristics are needed. As discussed in Section 4.2, multi-objective bus routing
problems are heuristically predominantly solved with evolutionary algorithms (EA) or
a hybrid approach with an evolutionary element. The multi-objective (MO) solution
approaches are typically rather complex structures such as multi-component or multi-
phase heuristics, hybrid metaheuristics or matheuristics. In this paper instead, we
propose a simple randomised metaheuristic approach, where only a generalised local
search operator (GLSO) is used as a solution generation mechanism. The idea of using a
single and relatively simple operator stems from the solution method adopted by Geiger
and Graf, 2019 to solve the VeRoLog Solver challenge 20191. In the solution method of
Geiger and Graf, 2019, a single random operator has been applied to a single objective
VRP problem and it showed very strong performance both in terms of solution quality
and computation time. We conjecture that a single effective operator can yield very good
results also in a multi-objective setting.

Our ambition is to implement and test a solution approach, which is in line with the
fundamental characteristics of metaheuristics, namely: simplicity, generalisability, flex-
ibility and efficiency. In addition, multi-objective metaheuristic methods usually make
use of various empirically-tuned parameters, which are related to the search intensity,

1https://verolog2019.ortec.com/, website accessed in November 2021.

4

86 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

perturbation, goodness of fit, etc. In contrast, we aim to limit the problem specific pa-
rameters in order to maintain simplicity and robustness.

METAHEURISTIC OVERVIEW

Our metaheuristic iteratively generates new solutions and collects the non-dominated
ones in set S. Set S is initialised with the solution returned via the Sweep method (Section
4.4.2). Then, the algorithm iteratively explores the solutions in S and, given a solution
s ∈ S, it generates a new solution s′ by applying the GLSO and 2-opt (Section 4.4.2). The
new solution s′ is accepted if it satisfies the acceptance criterion (Section 4.4.2) and it
is added to S if it is not dominated. For each solution s ∈ S, this process is repeated
for λmax consecutive non-improving iterations before moving to the following solution
in S. Once every solution in S has been considered, the set S is reduced only to the
non-dominated solutions and the process is repeated until a stopping criterion (based
on a time limit) is met. We need to remove non-dominated solutions from S because
an intermediate solution s could be accepted, only to later discover solution s′ which
dominates it. Possible speedups are discussed in Section 4.4.2. Algorithm 2 summarises
the overall structure.

Algorithm 2 Algorithm overview

1: S = {Sweep(i nst ance)}
2: while stopping criterion do
3: for s ∈ S do
4: λ= 0
5: while λ≤λmax do
6: s′ ← GLSO & 2−opt of s
7: if acceptance criterion s′ then
8: s ← s′
9: if s′ is non-dominated then

10: S ← S ∪ {s′}
11: λ= 0
12: end if
13: else
14: λ←λ+1
15: end if
16: end while
17: end for
18: S ← only non-dominated solutions S
19: end while
20: return S

INITIAL SOLUTION

To generate an initial solution, we use the Sweep algorithm (Gillett and Miller, 1974).
We compute the relative angles between the depot and each student location and sort
the students in ascending order. Starting with an empty route, we assign it a random

4.4. METHODS

4

87

number of attendants from one to Amax . Then, we collect students in order until either
a capacity or a time violation occurs. When a violation occurs, another vehicle is added.
This is repeated until all students are assigned to a bus.

GLSO
While current VRP literature uses various shift, swap, insert and eject operators (Toth and
Vigo, 2002), each with their advantages and disadvantages, we propose to use one sin-
gle versatile operator which encompasses all possible inter-route operations among two
routes. We call such an operator a generalised local search operator (GLSO). Given a so-
lution s, the GLSO selects two routes r1 and r2 at random. From each route, a chain (i.e.
a sequence of consecutive nodes) is isolated, where an empty chain is also allowed. The
starting point of the chain is chosen uniformly at random among the student home lo-
cations within a route, the length of the chain is a random integer number between zero
and the number of student home locations after the starting point (extremes included).
The two chains are then swapped, creating the new routes r ′

1 and r ′
2. The GLSO can per-

form swaps or insertions (if one of the chains is empty) of virtually any dimension, which
makes the operator universal. All other routes in the solution remain unchanged.

After swapping the chains, we check if both routes are feasible. We compute the min-
imum number of attendants needed (multiple attendants could be needed to satisfy the
minimum familiarity level requirement, see Constraints (4.18)) and we assign them to
the routes. Not all GLSO operations return a feasible solution. A solution is infeasible
(and will not be accepted) if any of the following applies: there are not enough avail-
able attendants, we cannot fit the needed attendants in the vehicles or any route is not
feasible from a capacity or a timing point of view. Otherwise, if both routes are feasible
and more attendants are available, an extra attendant can be assigned to the first route
uniformly at random (i.e. with 50% probability). The same applies for the second route.

Since the GLSO is an inter-route operator, it means that intra-route improvements
are not explored. Therefore, to find better sequencing between the nodes, we perform
2-opt on the new routes r ′

1 and r ′
2 and we obtain the new solution s′. We chose to apply

2-opt because it is powerful and computationally cheap (Barma et al., 2019). Figure 4.4.1
shows two possible GLSO (and 2-opt) operations, the first being a swap and the second
being an insertion (meaning that one of the randomly selected chains is empty).

ACCEPTANCE CRITERION

A new solution s′ is accepted, but not yet added to S, if at least one of the following two
conditions applies. The first condition is that solution s′ weakly dominates solution s,
i.e. either the routing cost of s′ is strictly lower than the routing cost of s, or the total
familiarity of s′ is strictly higher than the one of s. The second condition states that solu-
tion s′ can still be accepted (even if it does not weakly dominate solution s) with a fixed
probability p. While the first condition ensures us to not discard promising solutions,
the second condition allows us to introduce some randomness to encourage exploration
and escaping local minima. Moreover, if s′ is not dominated by any other solution in S,
s′ is added to set S. The overall algorithm contains merely three parameters, namely the
maximum computation time, the maximum number of non-improving iterations (λmax)
and the probability of accepting non-improving solutions (p).

4

88 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Figure 4.4.1: Two examples of possible GLSO operations. On the top, two nonempty chains are swapped; on
the bottom, one chain is empty. Green and blue arrows show the two routes, in red there is the depot (which
coincides with the school), and pink and yellow nodes show the selected chains.

SPEEDUP

Although this work was motivated by the search for an efficient, simple and robust meta-
heuristic, problem-specific speedups can increase the performance in solving a specific
problem (yet they usually decrease the performance for other problems). Given a spe-
cific type of problem, most likely, there exist a number Cmax such that, if we sometimes
impose the algorithm to choose chains of at most length Cmax , the metaheuristic perfor-
mance increases. This is due to the fact that exchanging large chains can lead to trans-
formations which are too radical and do not let the metaheuristic explore enough of the
neighbourhood close to the current solutions.

Introducing this simple speedup of limiting the maximum length of a chain leads
to an increase in performance (see Appendix 4.B); however, it introduces at least two
extra parameters. The first one is the probability of choosing this speedup instead of the
completely random approach (i.e. without limiting the dimension of the chain). The
second parameter is the maximum chain length Cmax . In the following, we call guided
the search done while limiting the maximum dimension of the chain and random the
one done without limitations. The introduction of new parameters makes the algorithm
a bit more complex and slightly less robust (as these parameters have to be handpicked
and are problem specific).

4.5. COMPUTATIONAL RESULTS
The dataset is generated based on real data purchased from a third-party company that
specialises in travel time estimation in the UK, for Heavy Goods Vehicles (HGVs), smaller
lorries, vans and cars. The exact locations of the students are not used for data protection

4.5. COMPUTATIONAL RESULTS

4

89

reasons, but approximate locations are generated using a reduced postcode method.
The postal codes in the UK typically have 7 digits, for instance CT18 5EQ. We used the
reduced version CT18 5** to generate the locations of students. Based on the informa-
tion given to us by the SEN school, there are 10 classes for a total of 168 students. Then,
we used the time and distance matrix dataset from the third-party data provider for 168
students’ locations. We partitioned the dataset into 14 instances of 12 students, where
each student belongs to exactly one instance. Each of the 12-students instances has
been randomly created such that each student knows at least two other students (i.e.∑

j∈H |(i , j)∈A f
1 ≥ 2,∀i ∈ H) and that the average student knows three other students (i.e

|A f | ≥ 3|H |). In each instance, six attendants and three buses with a capacity of nine
seats are present. The cost coefficient α (attendants’ cost) is set to twelve, the maximum
ride time R is set to one hour and the minimum familiarity level fmi n for each student
is set to two. The school has advised us that there can be up to two attendants per bus
due to efficient human resource management; so, we have designed our method in ac-
cordance with this (i.e. Amax = 2).

We also generated larger instances with 50, 75 and 100 students to test the meta-
heuristic (see Appendix 4.B). The larger sized problems have some overlap, where some
students belong to more than one instance. According to the local school transport and
teaching team, there are three types of familiarity between students and these are the
rules by which we have generated the student familiarity:

• Students from the same class mostly get along with each other, but not always.
Therefore, our approximation is that 80% of students in each class are familiar with
each other and can be comfortably transported together on the same bus.

• Students from the same level (primary, secondary) are familiar with approximately
40% of the students from that level, because they attend the same assembly, may
live in the same neighbourhood/town or by other means.

• Students between levels are familiar with approximately 10% of the other levels,
because they may be from the same neighbourhood/town or by other means.

4.5.1. EXACT SOLUTIONS
The ILP model (4.1)-(4.27) is useful to obtain optimal solutions, but its solution process
is computationally challenging. Hence, it can be tested in reasonable time only on the
12-students instances. The solutions of these smaller instances are used to compare if
and how fast the metaheuristic can achieve the same results.

The 12-students instances are solved with the following coefficient γ values (see Eq.
4.3): 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.01. We did not test for γ ∈ {0,1}
to avoid extreme solutions (such as, for example, solutions with non-optimal routing
because transportation costs do not appear in the objective function).

We solve the ILPs iteratively in the order of the values of γ we presented and update
the bounds; so, for example, the transportation cost for the solution for γ equal to 0.7 will
be a lower bound for the transportation cost of the problem with gamma equal to 0.6,
since we minimize the transportation cost and the weight is reduced, and the quality of
the service for the solution for γ equal to 0.7 will be a lower bound for the quality of the

4

90 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

service of the problem with gamma equal to 0.6, since we maximize the quality of service
and the weight is increased. The optimal solution of a weight coefficient value is fed as
the initial solution for the following coefficient value. All tests are run on an Intel(R)
Core(TM)2 Quad CPU Q8400 @2.66GHz machine using Gurobi Optimizer version 9.0.1
as the MILP solver (Gurobi Optimization, LLC, 2021).

As detailed in Marler and Arora, 2010, using a weighted sum for multi-objective op-
timization problems lets us discover some points belonging to the Pareto frontier but, in
general, not all of them. In fact, if the region is non-convex, we might not find some of the
points in the Pareto frontier. Nonetheless, in our experiments, even using the weighted
sum method, we have found good solution diversity, which was the purpose of the ILP.

Figure 4.5.1 shows the observed Pareto frontier of the 13th instance. Clearly, we can
see the trade-off between minimizing the travel costs and maximizing the quality of
travel. We can also observe the logarithmic-like shape of the trade-off curve which is
typical for bi-objective optimization problems.

Figure 4.5.1: Observed Pareto frontier of the 12-students instance number 13. On the x-axis the routing cost;
on the y-axis, the quality of the service.

EXACT METHOD SOLUTION TIMES

To analyse the speed-up due to valid inequalities (Section 4.4.1), we test the 12-students
instances with and without the valid inequalities. In this section, Constraints (4.25),
(4.26) and (4.27) are called symmetry breaking inequalities and Constraint (4.35) is called
familiarity valid inequality.

In Figure 4.5.2, we display the barplot of the total average computation times. As
we can see, combining both sets of valid inequalities yields the best result (meaning the
least computation time). When considering the sets of valid inequalities independently,
the symmetry breaking inequalities are the best performing, reducing the computation
time by 22.20%. Surprisingly, adding the familiarity valid inequality alone decreases the
solution speed; however, when combined with the symmetry breaking constraints, it

4.5. COMPUTATIONAL RESULTS

4

91

Figure 4.5.2: Barplot of the average computation times in seconds (y-axis) with respect to valid inequalities
(x-axis). In red, no valid inequality is applied; in blue, only the symmetry breaking constraints are applied; in
yellow, only the familiarity constraints are applied; in green, both of the previous are applied.

boosts the solution speed. This can be explained by considering that, in general, adding
constraints increases the computation time needed to solve a problem. Valid inequali-
ties are an exception to the previous statement; however, their effectiveness depends on
the polytope. It might be the case that, with respect to the original polytope (the ones
where no valid inequalities have been applied), the familiarity inequality is not effec-
tive. However, it becomes effective when applied to the polytope obtained by adding the
symmetry breaking constraints. In fact, when both symmetry breaking and familiarity
inequalities are introduced, they sped up the solution process with the average speed-
up being 29.18% of the computation time.

In Figure 4.5.3, we show the boxplots of the computation times with respect to the
values of γ. For readability reasons, in Figure 4.5.3, we plot tests’ results when both sets
of valid inequalities or none of the sets were considered. As we can see, including valid
inequalities reduces the median computation time for 9 over 11 values of γ.

We noticed that increasing the number of students per instance rapidly increases the
solution times. In addition to the obvious reasons related to NP-hardness, we want to
mention that valid inequalities fail to reduce the solution space when the number of stu-
dents is increased. This is mainly due to the fact that F̃ (which represent the familiarity
due to the presence of the students themselves, defined as

∑
i∈H min(Q −2,

∑
(i , j)∈A f

1),
see Section 4.4.1) becomes too optimistic. When the number of students is increased,
the quantity

∑
(i , j)∈A f

1 increases as well. Since this happens for all students, the cor-
responding value for each student saturates at Q − 2 due to the min operator. Hence,
the growth of their sum eventually makes the upperbound too large, making the valid
inequality not binding.

OBJECTIVE VALUES

Table 4.5.1 shows the average results for the conducted tests. The first column (names)
presents the name of the instance and the second column (points) shows the number

4

92 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Figure 4.5.3: Boxplot of the computational times in seconds (y-axis) with respect to the γ values (x-axis). In red,
results when no valid inequalities are applied; in green, results when both sets of valid inequalities are applied.

of observed distinct points which determine the Pareto frontier. Subsequently, columns
min VRP, avg VRP and max VRP report the minimum, the average and maximum value
for the transportation costs, respectively. Similarly, columns min Qual, avg Qual and
max Qual display the minimum, the average and maximum value for the quality of the
service, respectively.

Table 4.5.1: Average results for the 12 students instances

names points min VRP avg VRP max VRP min Qual avg Qual max Qual
s12_1 5 121.49 140.87 183.948 30 39.91 58
s12_2 2 85.69 94.41 109.68 38 43.09 52
s12_3 3 93.85 102.66 148.36 38 42.91 52
s12_4 4 119.20 138.13 177.02 26 35.27 52
s12_5 3 113.74 132.14 172.28 28 35.82 52
s12_6 5 126.11 138.79 165.92 38 44.91 56
s12_7 3 131.04 146.30 183.25 28 33.36 46
s12_8 4 71.38 81.90 110.08 36 40.27 50
s12_9 4 123.70 133.33 158.68 32 35.64 44
s12_10 3 81.096 88.73 105.10 40 43.91 52
s12_11 5 74.34 84.03 104.11 32 42.09 52
s12_12 4 111.42 121.58 140.04 32 38.36 48
s12_13 6 82.728 96.09 151.76 36 43.18 54
s12_14 4 83.49 95.44 150.17 38 42.73 54

4.5. COMPUTATIONAL RESULTS

4

93

4.5.2. METAHEURISTIC RESULTS

To test the efficiency of the metaheuristic, we first run it on the 12-students instances
and compare the results of the metaheuristic with the results of the exact algorithm. All
the optimal solutions found by the exact method were found by the metaheuristic in, on
average, 8 seconds (with 10 out of 14 instances solved under one second). The meta-
heuristic was able to find also other non-dominated solutions which were not found by
the exact algorithm due to non-convexity. In particular, over the 14 instances, the exact
method found a total of 55 optimal solutions, while the metaheuristic found 101 solu-
tions belonging to the estimated Pareto frontiers (the metaheuristic found the 55 solu-
tions also found by the exact method and 46 extra ones). In Appendix 4.A, we graphically
show the plots of these results.

Since the metaheuristic was able to identify all the solutions found by the exact al-
gorithm in significantly less time, we tested the metaheuristic on bigger and bigger in-
stances. Instances of size 50, 75 and 100 were tested and extensive results can be found
in Appendix 4.B.

Finally, we tested the metaheuristic on the case study (168 students). For this test, we
implemented the speedup technique described in Section 4.4.2, setting the probability
of limiting the length of the chain to 50% and Cmax , the maximum length of the chain,
to one. In Appendix 4.B, we present a sensitivity analyses regarding the probability of
limiting the chain and the length of the chain. The metaheuristic was run for one hour
on the case study and it ultimately estimated a Pareto frontier composed of 116 different
points. Figure 4.5.4 shows the dynamics of the solution points estimated by the meta-
heuristic. For readability reasons, we display only the estimated Pareto front after 5, 10,
15, 30 and 60 minutes.

Figure 4.5.4: Observed Pareto frontier on the case study (168 students). On the x-axis, the routing cost; on the
y-axis, the quality of service.

4

94 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

4.6. CONCLUSIONS
In this paper, we propose, model and analyse a new bi-objective optimization problem:
the school bus routing problem for students with special educational needs (SENBRP).
Our research was informed by a real-life case study, a school for students with special
needs in the region of Kent (UK). In a typical VRP setting, costs are proportional to the
distance travelled, but when transporting students with special needs, their comfort and
well-being is equally important. Travelling with unfamiliar people could cause them dis-
tress and discomfort; hence, the most efficient route distance-wise might not be the best
solution. Similarly, focusing only on the students’ comfort could lead to economically
unacceptable solutions, which is also not feasible, as schools and local councils operate
on very tight budgets. Therefore, we model the SENBRP as a bi-objective problem and
we solved it via the weighted sum method. By doing so, we are able to identify some
of the non-dominated points which constitute the Pareto frontier. Given its complexity,
we were able to retrieve points of the Pareto front only for small instances via this exact
method. In order to address our case study with a size of 168 students, we implemented
a robust and versatile metaheuristic, with very few parameters. Our metaheuristic is
based on the idea of having one universal randomised local search operator. To test the
metaheuristic effectiveness, we compare the metaheuristic solutions with the results ob-
tained by the exact method on the small instances. Our metaheuristic was able to find all
the known Pareto frontier points in roughly one second for almost all the small instances.
We then tested its performance on larger instances ranging from 50 - 168 students, which
can be found in Section 4.5 and Appendix 4.B. For each instance, we recorded the time
needed to reach a stable estimated Pareto front, which shows a clear trade-off between
travel cost and the quality of service. Finally, we tested the metaheuristic on the case
study returning a set of diverse possible solutions.

Our method is simplistic and almost parameter-free and it is able to find very diverse
sets of solutions for all instances. Therefore, we believe it to be effective and robust,
and it could be generalised to other similar problems with multiple and even conflicting
objectives.

Whilst reviewing the literature on SBRP, we found that there are very few applica-
tions on sustainable school bus travel from both environmental and social perspective.
Transportation to school for students with special needs is an important problem, which
needs to receive more attention, because it is often an alternative to individual private
hire transportation. The SENBRP provides a balanced approach to the triple bottom
line, where schools need to carefully balance tight budgets and ensuring the safety of a
vulnerable student population.

APPENDIX

4.A. GRAPHICAL RESULTS FOR THE 12-STUDENTS INSTANCES
Figure 4.A.1 displays the observed Pareto frontiers of the 14 instances with 12 students.
In green, we display the solutions found by both the exact algorithm and the meta-
heuristic; in violet, we present the solutions found only by the metaheuristic.

4.B. SENSITIVITY ANALYSIS
Figures 4.B.1, 4.B.2 and 4.B.3 display results for instances of size 50, 75 and 100, respec-
tively. In all the tests, we can see the trade-off between the quality of service and routing
costs. As expected, the number of points belonging to the Pareto frontier increases as the
size of the instance grows. It is also very interesting to notice different instances’ time dy-
namics. Most 50-students instances converge (meaning the metaheuristic does not find
any new solution for 5 minutes) to a stable frontier after 5 or 10 minutes, while no bigger
instance converges within 15 minutes. However, after 15 minutes, most of the instances
seem to have found a fairly stable Pareto front.

In this appendix, we empirically show why, in the case study, we set the probability
of limiting the chain length to 50% with a maximum chain length Cmax of 2. In this
appendix, we exhibit empirical proof of our choice.

Figure 4.B.4 shows different estimated Pareto frontiers for the case study (168 stu-
dents) depending on the probability of limiting the maximum chain length (guided
search) or not (random search). For readability reasons, we display only a completely
random approach (100% random), a fairly guided approach (20% random and 80%
guided) and a 50%-50% approach, which is the one used in the case study.

Figure 4.B.5 shows the different estimated Pareto frontiers obtained by the algorithm
for different Cmax values (tests are run for one hour on the case study, i.e. 168 students
locations). Considering all the solution points of the estimated Pareto frontiers of the
tests at the same time, the algorithm with the value of Cmax = 2 is the one that returns
the most non-dominated solutions (101 out of 116).

95

4

96 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Figure 4.A.1: Observed Pareto frontiers of the instances with 12 students. On the x-axis, the routing costs; on
the y-axis, the quality of service. In green, points found solving the ILP and by the metaheuristic; in violet,
points found only by the metaheuristic.

4.B. SENSITIVITY ANALYSIS

4

97

Figure 4.B.1: Estimated Pareto frontiers via the metaheuristic at different time instants for instances of size 50
students.

4

98 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Figure 4.B.2: Estimated Pareto frontiers via the metaheuristic at different time instants for instances of size 75
students.

4.B. SENSITIVITY ANALYSIS

4

99

Figure 4.B.3: Estimated Pareto frontiers via the metaheuristic at different time instants for instances of size 100
students.

4

100 SPECIAL EDUCATION NEEDS SCHOOL BUS ROUTING PROBLEM

Figure 4.B.4: Different estimated Pareto frontiers depending on the probability of selecting a guided search.
On the x-axis, the routing cost; on the y-axis, the quality of service.

Figure 4.B.5: Estimated Pareto frontiers for different Cmax values. On the x-axis, the routing cost; on the y-axis,
the quality of service.

5
REINFORCEMENT LEARNING FOR

THE KNAPSACK PROBLEM

Jacopo PIEROTTI, Maximilian KRONMÜLLER,Javier
ALONSO-MORA,Theresia VAN ESSEN, Wendelin BÖHMER

Combinatorial optimization (CO) problems are at the heart of both practical and theoret-
ical research. Due to their complexity, many problems cannot be solved via exact meth-
ods in reasonable time; hence, we resort to heuristic solution methods. In recent years,
machine learning (ML) has brought immense benefits in many research areas, including
heuristic solution methods for CO problems. Among ML methods, reinforcement learn-
ing (RL) seems to be the most promising method to find good solutions for CO problems.
In this work, we investigate an RL framework, whose agent is based on self-attention, to
achieve solutions for the knapsack problem, which is a CO problem. Our algorithm finds
close to optimal solutions for instances up to one hundred items, which leads to conjec-
ture that RL and self-attention may be major building blocks for future state-of-the-art
heuristics for other CO problems.

5.1. INTRODUCTION
In recent years, machine learning (ML) has shown super-human capabilities in speech
recognition, language translation, image classification, etc. (Bontemps et al., 2016;
O’Shea and Nash, 2015; Vaswani et al., 2017). Lately, more and more combinatorial opti-
mization (CO) problems have been studied under the lens of machine learning (Bengio

Parts of this chapter have been published in: Optimization and Data Science: Trends and Applications, volume
6 of 5th AIROYoung Workshop and AIRO PhD School 2021, AIRO Springer Series. 1st edition, 2021 ISBN: 978-
3-030-86285-5.

101

5

102 REINFORCEMENT LEARNING FOR THE KNAPSACK PROBLEM

et al., 2021). Among these CO problems, NP-hard problems are of interest because, so far,
solving them to optimality (via so-called exact methods) takes exponential time; thus, for
many classes of CO problems, obtaining good solutions for large or even medium sized
instances in reasonable time can only be achieved by exploiting handcrafted heuristics.
Instead of creating a heuristic by hand, one can also use ML to train a neural network to
predict an almost optimal solution for given or randomly generated CO instances (Ben-
gio et al., 2021). This way heuristics can be learned without expert knowledge of the
problem domain, which is also called end-to-end training. Reinforcement learning (RL)
seems to be the most promising end-to-end method to solve combinatorial problems
(Bello et al., 2016). In fact, in difference to supervised ML, RL does not need to know the
solutions to given training instances to learn a good heuristic. This way one can learn
a heuristic without any domain knowledge and, in principle, one could find a heuristic
that works better than any a human would be able to design. RL has been used to train
the neural networks used by heuristics designed to solve CO problems (Joshi et al., 2020;
La Maire and Mladenov, 2012; Nazari et al., 2018), including the knapsack problem (KP,
Bello et al., 2016). The aim of this work is to develop an RL end-to-end algorithm for
the knapsack problem based on attention (Vaswani et al., 2017), in difference to prior
work that used either recurring neural networks (RNN, Bontemps et al., 2016) or con-
volutional neural networks (CNN, O’Shea and Nash, 2015) which are popular NN for
end-to-end methods. By developing such an algorithm for a relatively easy CO problem
(the KP, Pisinger, 2005), we want to assess if RL with attention can be a fruitful method to
tackle other, more complex, CO problems, which will be the focus of future research.

The remainder of the chapter is organized as follows. The formulation of the KP,
our motivations on how and why we use attention (and not RNNs or CNNs) and model
architecture are presented in Section 5.2. The training distributions (i.e. benchmarks
of instances) used for testing and evaluating as well as the computational results are
detailed in Section 5.3. Finally, in Section 5.4, we illustrate our conclusions.

5.2. PROBLEM FORMULATION AND BACKGROUND INFORMA-
TION

The knapsack problem (KP) is one of the most studied CO problems (Pisinger, 2005). As
input, we have a set of objects (denoted by set N) and a knapsack of capacity W . Each
object i ∈ N has a positive profit pi and a positive weight wi . The objective of the prob-
lem is to maximize the sum of the profits of the collected objects without violating the
capacity constraint. Introducing binary variables xi , which assume value one if object
i ∈ N is selected and zero otherwise, we can write the problem as follows:

max
∑

i∈N
xi pi (5.1)∑

i∈N
xi wi ≤W (5.2)

xi ∈ {0,1} ∀i ∈ N . (5.3)

The objective function (5.1) maximises the total profit of the selected objects, Con-

5.2. PROBLEM FORMULATION AND BACKGROUND INFORMATION

5

103

straint (5.2) acts as the capacity constraint and Constraints (5.3) force the variables to
be binary. This integer linear program (ILP) belongs to the class of NP-hard problems
(Pisinger, 2005), which means that the computation time for obtaining optimal solutions
with known exact solution methods grows exponentially with the number of objects. A
simple yet very powerful heuristic is to sort the objects in non-increasing order of their

ratio, i.e., qi = pi

wi
for i ∈ N and collect them in order as long as Constraint (5.2) is re-

spected (collecting non-consecutive objects is allowed). In the following, we refer to this
as the simple heuristic.

5.2.1. REINFORCEMENT LEARNING FRAMEWORK

In this section, we give an overview of how we implemented our algorithm. For more
details on RL, we refer the reader to Sutton and Barto, 2018. Our algorithm belongs to
the area of multi-task RL (Vithayathil Varghese and Mahmoud, 2020), where a task is an
instance of the knapsack problem. The difference between single and multi-tasks is that:
in single-task, we want to learn a policy to always solve the same (instance of a) problem;
in multi-task, we want to learn a policy to solve a family of different instances of a prob-
lem (or even different problems). Moreover, while in single-task the initial state is always
the same, this does not hold in multi-tasks. In order to describe a state in our case, we
first define how we embed the objects into vectors. At any given time step, each object
i ∈ N is uniquely associated to a vector. Each vector is of the form ti = [pi , wi , qi , x̄i ,u],
where x̄i is a binary parameter assuming value zero when object i has already been se-
lected or cannot be selected due to the capacity constraint (5.2) and one otherwise and u
is the residual capacity of the knapsack (i.e., W minus the weights of the already selected
objects).

We name the selection of an object an action. Actions (A) are chosen based on the
Q-value of each object (see Section 5.2.1). The algorithm that determines the Q-values
is called the agent (see Section 5.2.2). In RL, a state represents the available information
about the process at a given moment. We represent the observation of a state by the
matrix obtained stacking all the |N | object vectors together. Given a non-final state, the
agent has to select an action; however, not all objects can be chosen in any state. While
choosing an action, the non-selectable objects are momentarily removed, which is called
masking. In our case, generic action (object) i is masked when x̄i equals zero. The initial
state has u = W and x̄i = 1 for all i ∈ N , while we define a state as final if x̄i = 0 for
all i ∈ N . Our algorithm sequentially selects objects until no additional object can be
selected, in which case the algorithm terminates.

Given a state, each action leads to a new state and a reward. In our case, the reward
r of choosing object i ∈ N is the profit of the chosen object (i.e. r = pi when choos-
ing object i ∈ N). The series of states in between an initial and a final state is called
an episode. The final objective of an RL algorithm is to maximize the (discounted) cu-
mulative reward observed in an episode. In general, we discount the future reward to
avoid problems arising with very long or non-finishing episodes. In our case, episodes
are relatively short and they always terminate (worst case scenario, they terminate in |N |
steps); so, there is no need to discount the future rewards. We call the sequence of old
state s, chosen action a, observed reward r and new state s′ a transition. A set (of fixed

5

104 REINFORCEMENT LEARNING FOR THE KNAPSACK PROBLEM

name definition
Task An instance of the KP

Multi-task RL
RL algorithm to solve a family of tasks (virtually any
KP problem in our case)

Action The selection of an object

State
The available information (profits, weights, which objects have
been selected and which have not,..) at a given time moment

Action The selection of an object
Initial state State where no objects have been selected yet
Final state State where no more objects can been selected
Episode Series of visited states from the initial state to the final state
Masking The removal of the unselectable actions
Reward The profit of the selected object

Transition
A sequence of an old state, a chosen action, an observed
reward and a new state

Minibatch A set of non-consecutive1 transitions

Training distribution
Distribution from which we draw the instances to train
the algorithm

Table 5.2.1: Summary of the definitions needed for our reinforcement learning framework

size, in our case) of non-consecutive1 transitions is called a minibatch. The transitions
in the minibatches are used to compute the loss (which is needed in order to learn) in
the learning step (Section 5.2.1). Finally, we train and evaluate the algorithm by solving
randomly drawn tasks from the so called training distribution. Table 5.2.1 summarises
the introduced definitions.

DOUBLE Q-LEARNING

Our RL algorithm falls under the general umbrella of Q-learning (Watkins and Dayan,
1992). Given a state s, and a set of possible actions A, the idea of Q-learning is to
estimate the expected future cumulative rewards for each possible action (called Q-
values Q(s, a),∀a ∈ A) and select one action based on a exploration/exploitation strat-
egy. On one hand, exploration is fundamental to search the state-action space. In fact,
in (non-deep) Q-learning, if one could explore for an infinite amount of time, the op-
timal Q-values would be retrieved. On the other hand, the agent should concentrate
more on promising actions to improve convergence to an optimal policy. As explo-
ration/exploitation strategy, we use ε-greedy, which greedily chooses the best action (i.e.
the action with the highest Q-value) with probability 1-ε or a random action with prob-
ability ε. Often the Q-learning algorithm can be too optimistic while estimating the Q-
values. One common solution to this problem is to adopt double Q-learning (Hasselt,
2010). In deep RL, double Q-learning is enforced by having two identically structured
neural networks. The current network is used to select the best action at the next state
while the other one (called the target network) is used to compute the Q-value of the
next state. In this work, we use a similar method which helps stabilizing our results. The

1Transitions do not have to be consecutive, but, by chance, they could be.

5.2. PROBLEM FORMULATION AND BACKGROUND INFORMATION

5

105

difference being that the Q-values are always computed via the current network and the
target network is used to determine the action. Naming Q ′ the function to compute the
Q-values associated with the target network, our revised Bellman equation becomes:

Q(s, a) = r (s, a)+Q(s′,argmax
a

(Q ′(s′, a))). (5.4)

Equation (5.4) is needed in the learning step, where the parameters of the Q
function are tuned in such a way that the distance between Q(s, a) and r (s, a) +
Q ′(s′,argmaxa(Q(s′, a))) is minimized.

LEARNING STRATEGY

Our algorithm works by generating and solving new tasks of different dimensions (i.e.
|N | is not a constant between two different tasks). Let us assume that we train our al-
gorithm to solve instances of k different sizes. Every time a new instance is generated
and solved, all the transitions are stored in a replay buffer (S. Zhang and Sutton, 2017).
Our algorithm has k different fixed-size replay buffers (one for each possible dimension
of |N |) where transitions are stored with a FIFO (first in first out) strategy. A FIFO policy
guarantees that the algorithm always keeps in memory the newest generated informa-
tion. Transitions of instances with the same dimensions are stored in the same buffer.
When a minibatch is needed, we randomly choose one of the k replay buffers and extract
a minibatch from there. Given the multiple replay buffers, each state in the minibatch
has the same dimension and, thus, can be stack together, easing the computation. It is
important to note that different tasks have different gradient magnitude: a task with 100
objects is likely to have a different gradient than a task with 2 objects. In fact, we are using
a NN to approximate the Q-values and, reasonably, the approximation becomes more
and more difficult (thus less and less accurate) with an increasing number of objects. A
less accurate Q-value approximation would likely lead to greater gradient magnitudes;
thus, different tasks present different gradient magnitude. However, since each time we
choose the replay buffer uniformly at random, we are averaging the gradients; thus, we
are not introducing any bias. When the algorithm has accumulated enough transitions
in the replay buffers, it begins to learn. We do so by selecting, uniformly at random, from
one random replay buffer, t transitions (or all the transitions if less than t transitions are
present in that replay buffer). Transitions which have never been selected before have
priority over transitions that were. We call these t transitions a minibatch. For generic
transition i (si , ai ,ri , s′i) in the minibatch, we compute the loss as:

lossi =
(
Q(si , ai)− (

ri +Q(s′i ,argmax
a

(Q ′(s′i , a))
))2

(5.5)

Then, we backpropagate the average of the t losses. Sometimes, the loss function is
so steep that blindly following its gradient would lead outside of the region where the
gradient is meaningful. To prevent this, we clip the gradient (J. Zhang et al., 2020) to
a maximum length of 0.1. The parameters of the agent are updated via the RMSprop
method2 (Duchi et al., 2011). Finally, the target network is updated via a soft-update
(Fox et al., 2016), i.e., naming p any generic parameter of the agent, pt its correspond-
ing one in the target network and τ (constant equal to 0.05 in our case) the soft-update
parameter: pt ← (1−τ)pt +τp.

2http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

5

106 REINFORCEMENT LEARNING FOR THE KNAPSACK PROBLEM

5.2.2. AGENT
The agent receives the observations of the states and outputs the Q-values. It is com-
posed by three main blocks, all using ReLU as activation function. The first and last
block are composed of two fully connected linear layers of dimension 512 each. The first
block enlarges the feature space of each object vector from five to 512 and the last block
reduces the features to one (the Q-value). The second block is a transformer (Section
5.2.2). In most CO problems, there is no clear ordered object structure. Even if we in-
troduce an arbitrary order, the problem would be permutation invariant. In the KP, a
permutation of the elements would neither change the optimal solution of the problem
nor its structure. For this reason, we decide to base our agent on self-attention, which
is permutation invariant (unlike CNNs or RNNs). While most agents for end-to-end ap-
proaches involve CNNs and/or RNNs (Nazari et al., 2018), we conjecture that, for the
KP and other CO problems, the effectiveness of an algorithm does not lie within those
structures. In fact, CNNs are an excellent tool to extract local features (O’Shea and Nash,
2015), but they are only useful when there is a clear ordered object structure (such as
pixels in an image). RNNs sequentially embed a sequence of inputs, where each output
depends also on the sequence of previous inputs. This is very useful when states are par-
tially observable (Bontemps et al., 2016); however, the KP satisfies the Markov property,
i.e., the distribution of future states depends only on the current state. This memory-
less property makes the problem Markovian. Thus, given the Markovian property of our
problem and the absence of an underlying ordered structure, we decide to base our im-
plementation on a variation of the transformer (Vaswani et al., 2017) without CNNs or
RNNs. The transformer accepts as input a variable-length (dt) tuple of objects (where
all objects have the same dimension do) and returns a tuple of same length and dimen-
sion (do for each single output, dt for the whole tuple). It is composed by a series of
multi-head attention mechanisms in a layer structure (see Section 5.2.2). Attention is a
powerful mechanism that allows to look at the input and generate a context vector based
on how much each part of the input is relevant for the output. Doing so, the algorithm
learns to isolate from a set of features the one(s) relevant for that particular state.

SELF-ATTENTION, MULTI-HEAD AND MULTI-LAYER TRANSFORMER

Self-attention is a powerful ML technique that takes a set of objects and returns an
equally sized set of vectors. In our case, the objects taken as input are matrices obtained
via linear transformations of the object vectors. These matrices, called queries Q, keys
K and values V , have size dq , dn and dn , respectively. Self-attention is a function that
measures the similarity of queries and keys with a dot product; then, a softmax of that
similarity is used to weight the values in a linear combination. So, naming W Q ,W K and
W V the matrices of learnable parameters for the linear transformations and S̄ ∈ Rn×dn

the embedded state observation (i.e., the matrix obtained by stacking the object vectors
of dimension 512), we obtain:

Attention(Q,K ,V) = softmax

(
QK >√

dn

)
V = softmax

(
(S̄W Q)(S̄W K)>√

dn

)
(S̄W V).

Instead of a single self-attention mechanism on vectors of dimension dn , Vaswani et
al., 2017 discovered that it was beneficial to linearly project the queries, keys and values

5.2. PROBLEM FORMULATION AND BACKGROUND INFORMATION

5

107

Figure 5.2.1: Full model architecture of the transformer. Image source: Vaswani et al., 2017, the positional
encoding is used in language translation, not in our problem.

h times (called a head; hence, multi-head) with different, learned linear projections on a

smaller dimension of size dv = dn

h
. The outputs are computed in parallel, concatenated

and reprojected once again (via a learnable matrix W 0). Formally, this becomes:

MultiHead(S̄) = [head1, · · · ,headh]W 0,

where headi = Attention(S̄W Q
i , S̄W K

i , S̄W V
i) and W Q

i ,W K
i ,W V

i are all learnable matrices
for all i ∈ [1, ...,h]. This multi-head self-attention mechanism is repeated for L layers.
Each layer is composed of two units which both produce outputs of the same dimension
as their input, i.e., dn . The first unit is indeed the multi-head self-attention mechanism,
the second unit is a fully connected feed-forward network with ReLUs. Both these units
adopt also a residual connection and a layer normalization (Ba et al., 2016); i.e. naming
x the input to the unit itself and f (x) its function (the multi-head self-attention or the
fully connected feed-forward network), the output of each unit is the normalization of
x + f (x). In fact, if we assume function y = f (x) to be learnable; then, it is reasonable to
assume function y = f (x)−x to be learnable as well. The residual connection was proven
to facilitate learning (He et al., 2016).

This overall structure is called the transformer and Figure 5.2.1 displays its graphical
representation.

5.2.3. MODEL ARCHITECTURE
In each instance, all objects are normalized such that the maximum profit and weight
is one. The agent has a two layer fully connected neural network to expand the 5 fea-
tures of a vector into 512 features. The resulting vector is fed to a transformer encoder3

3for details see https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html. Many op-
tional parameters were set to the default values, such as the feedforward dimension was set to 512 and the
probability of dropout to 0.1

https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html

5

108 REINFORCEMENT LEARNING FOR THE KNAPSACK PROBLEM

with six layers and eight heads per layer. Normalization is applied after each layer. After
the transformer, another two fully connected neural network layers are used to reduce
the 512 features to a single one (the Q-value associated with the action of selecting the
corresponding object). The learning rate of the optimizer is set to 10−6 and ε linearly
decreases with the episode number from one to 0.05. Each replay buffer can store up to
a maximum of 105 transitions, the minibatch size is set to 512 and the soft update pa-
rameter τ is set to 0.05. The overall structure of the algorithm is given in Algorithm 3. For
a total of 105 times, the algorithm generates and solves one instance. Its transitions are
saved in the replay buffer and the algorithm takes a learning step. In order to partially
fill the replay buffers, the algorithm starts to learn only after the 512th iteration. Dur-
ing the training, ten equally spaced greedy test evaluations over one hundred randomly
generated instances are conducted in order to assess the algorithm progress.

Algorithm 3 RL algorithm overview

1: for i = 0, · · · ,105 do
2: task ← generate new task
3: transitions ← solve the task with an ε-greedy policy
4: store transitions in replay buffer
5: if i ≥ 512 then
6: learning step
7: end if
8: if i mod 104 = 0 then
9: evaluate the algorithm with a greedy policy

10: end if
11: end for

5.3. COMPUTATIONAL RESULTS
Two different training distributions are used to generate the tasks. In the first distribu-
tion, |N | is chosen uniformly at random between 2 and 100 every time a new instance is
generated. Moreover, the profit and weight of each object are also chosen uniformly at
random in the closed interval [10−6,1]. An upper bound of one is enforced because it is
well-known that neural networks perform better when the input data has absolute value
lower than or equal to one. A lower bound of 10−6 is enforced to avoid numerical errors.
We call this distribution random. The second distribution (named Pisinger) are some of
the small, large and hard instances taken from Pisinger, 2005. These Pisinger instances
were generated in order to be difficult to be solved via a MILP solver. These small, large
and hard instances are further subdivided in six, six and five groups, respectively. From
these groups, we select instances with 20, 50 and 100 objects. Each pair group-number
of objects contains one hundred instances, for a total of 3200 instances (because not all
groups have the 20 objects instances).

We train our algorithm twice from scratch, thus obtaining two different versions of
the same model. We train the first version exclusively on the random instances while we
train the second one exclusively on the Pisinger instances. We evaluate the trained al-
gorithms both on random instances and on Pisinger’s. When evaluating and testing, we
compare our results with the simple heuristic (see Section 5.2) which achieves, on av-

5.4. CONCLUSION

5

109

erage, 99% of the optimal solution’s value (hence, it is a good measure for comparison).
In Figures 5.4.1 and 5.4.2, every result is normalized with respect to the optimal solu-
tions (in the Pisinger distribution) or with respect to the heuristic solution. Figure 5.4.1
displays the evaluations of the algorithm during training on one hundred random in-
stances. For the sake of brevity, we report only the most meaningful results, i.e., the hard
Pisinger instances with one hundred objects. Figure 5.4.2i shows the boxplot of the gap
to the optimal solution for the hard Pisinger instances of the algorithm trained on the
random distribution. Although the results are overall satisfactory, the algorithm trained
on random instances performs badly on some types of Pisinger instances. The most
likely reason is that the algorithm trained on random instances has an extremely small
probability of seeing some Pisinger instances (which have been hand crafted), thus it
does not generalise over those particularly complex instances. On the other hand, when
the algorithm is evaluated on randomly generated instances (Figure 5.4.1i), results are
very close to the heuristic solution, thus, to the optimal solution. Figure 5.4.2ii displays
the same gap for the algorithm trained on the Pisinger distribution. In this case, results
are very satisfactory since the algorithm consistently achieves near-optimal solutions.
Also while evaluating on randomly generated instances (Fig. 5.4.1ii), results are very
close the heuristic solution, thus to the optimal solution; however, results are slightly
worse than the results obtained by the algorithm trained on the random distribution.
As expected, we conclude that training the algorithm on randomly generated instances
boosts performance in the average case, but it is less effective to complex instances,
while training the algorithm on the Pisinger distribution performs (sligthly) worse on
the average case, but is much more robust (both on the random and on the complex
Pisinger instances).

5.4. CONCLUSION
In this work, we introduced a deep Q-learning framework with a transformer as the main
deep architecture for the KP problem. The algorithm achieves results very close to op-
timality within a split second on instances up to one hundred objects. These results are
promising; however, in the KP, also a simple conventional heuristic returns very solid re-
sults. Nonetheless, our results suggests that "attention is all you need" may also hold in
end-to-end methods for CO problems. Future research will explore a transformer-based
RL method on other CO problems where conventional heuristics fail to give good solu-
tions in a short amount of time. Moreover, our algorithm computes the Q-values which
are difficult quantities to estimate. Instead, one could aim to learn directly the policy
with whom to take actions (i.e. the probability distribution of the actions for a given
state). This policy could be learned by firstly using behavioural cloning (Torabi et al.,
2018) (to imitate the heuristic) and, secondly, RL to explore more possible state-action
combinations.

5

110 REINFORCEMENT LEARNING FOR THE KNAPSACK PROBLEM

(i) Training on the random distribution (ii) Training on the Pisinger distribution

Figure 5.4.1: During training evaluation on 100 random instances. On the x-axis, the number of iterations
and on the y-axis, the averaged normalized cumulative reward are shown. The blue dots indicate the average
cumulative reward, the vertical lines indicate the standard deviation.

(i) training on random distribution (ii) training on Pisinger distribution

Figure 5.4.2: Evaluation on the hard, 100 objects Pisinger instances. Green lines for the RL and purple lines
for the simple heuristic. On the x-axis, different groups of instances, on the y-axis, the average normalized
cumulative rewards are displayed. Please note the different scale of the y-axis.

6
CONCLUSION

In this chapter, we summarize all results from this thesis and discuss them in light of
their scientific and technical implications for society. In this dissertation, we discussed
three novel routing problems (Chapter 2, Chapter 3 and Chapter 4) and a new approach
on a classical combinatorial combinatorial optimization problem (Chapter 5). All of the
treated problems are NP-hard. Their NP-hardness implies that exact methods and com-
mercial software will eventually fail to return optimal solutions when the size of the in-
stances increases; hence, efficient heuristics are needed.

In Chapter 2, we described our contribution for the MESS2018 competition, where
we designed a metaheuristic to solve the balanced travelling salesman problem. Our al-
gorithm stems from the well-known (adaptive) iterated local search algorithm and adds
two features. The first one is an uneven reward-and-punishment rule. In our opinion,
unevenly adapting the operators’ weights lets the algorithm be more responsive to sud-
den changes in the structure of the current solution, which is a dynamic component,
rather than to the structure of the network, which is static. Given the competition in-
stances that use graphs with no known metric and high cost, each change performed by
the algorithm, independently from the operator, would result in a considerable modifi-
cation of the solution structure, to which the algorithm would have to rapidly adapt. This
idea does not have to be limited to this particular problem or instances; on the contrary,
we think it can be easily applied wherever the adaptive metaheuristic (not necessarily
iterated local search) substantially modifies the current solution.

Many CO problems, among which the TSP, have the characteristic of having many
local optima very close to each other. Intuitively, we can see that by imagining a solution
where most of the nodes are in the optimal order and only a few nodes are swapped.
A solution may well be a local optimum and there can be more in its proximity. This
means that once a local optimum is found, an intense local search should be carried out
in its neighbourhood. In order to perform such an intense local search, we introduced
a second feature, namely random restarts. Randomly restarting the algorithm from
a local optimum ensures us to abundantly and intensively search the solution space
close to known good solutions. Clearly, searching just in the neighbourhood of a subset

111

6

112 6. CONCLUSION

of solutions does not allow the algorithm to explore enough throughout the whole
solution space. For this reason, the random restarts become less and less frequent as
fewer new good solutions are found. This trade-off allows us to profoundly search the
neighbourhoods of known good solutions without getting endlessly stuck.

Chapter 3 discusses the dial-a-ride-problems with transfers. Dial-a-ride-problems
are a well-studied class of problems where vehicles have to pick up and deliver requests
under specific constraints, e.g. capacity and time constraints. Often, given the complex-
ity of the problem, it is simplified in order to solve medium sized instances.

Instead of adopting simplifying assumptions, we introduce very articulated models
in order to be as close as possible to reality. Moreover, we allow requests to be trans-
ported by multiple vehicles instead of adopting the conventional unique pairing be-
tween vehicles and requests. This is done by the possibility of transfers and was in-
spired by some commercial enterprises. In fact, in some industrial applications, goods
are picked up and delivered in intermediate hubs where they wait for the next vehicle to
pick them up. On the one hand, usually, there are just a few of these hubs and, to limit
the complexity of the problem, just one transfer is considered. On the other hand, when
transporting people, multiple transfers may come in handy and they do not have to be
limited to the presence of hubs. In fact, generally speaking, all the nodes in the network
can be possible transfer points.

Moreover, most authors in the literature on routing problems do not allow vehicles or
requests to travel the same arc multiple times, while this can well be the case in practice
(imagine taxis going back and forth from the airport). To model this leap in complexity
(travelling multiple times the same arc, providing multiple transfer nodes and allowing
multiple transfers) we introduce the flow formulation. The idea is to model both vehi-
cles’ and requests’ paths as flows between nodes in time and then force the requests’
flow on the arcs to be paired with any of the vehicles’ flow. Doing so, we do not have to
explicitly model any transfer.

The articulated model limits us to be able to solve only small instances; nevertheless,
even in these small instances, we can already see the benefits of introducing the option
of transfers. In addition, we proposed core and extended models (i.e., more and more
complex models to capture often neglected small features), both in continuous and
discrete time. Conclusions were drawn on how much the extended models were more
complicated than the core ones. Similar analyses were conducted to highlight the
difference between the continuous and discrete time models. Finally, we conjecture
that bigger and bigger instances will amplify the benefits of transfers and future work
will be directed in the direction of designing metaheuristics able to solve the dial-a-ride
problem with transfers and prove (or disprove) our conjecture.

Also the project described in Chapter 4 stems from a real-world problem. In this
case, we collaborated with a school for students with special needs in the county of Kent
(United Kingdom). The aim of this project is to ease the commuting experience of spe-
cial education needs students without sacrificing attention to travel costs. Indeed, trans-
porting SEN students, in addition to being stressful, is a very expensive task to perform
due to special busses and attendants (i.e. staff) costs. Having two conflicting objectives

6

113

(minimizing travel costs and maximizing the quality of the service) means that there
does not exist one single optimal solution, but there exists a family of optimal solutions.
This increases the complexity of solving such a problem.

In Chapter 4, we described how to model and solve the biobjective school bus routing
problem for students with special needs, both from an exact and a metaheuristic point
of view. We applied the exact method to small instances derived from the case study
because they could be solved to optimality in reasonable time. Our valid inequalities are
based on symmetry breaking constraints and on an overestimation of the quality of the
service. Even though an integer quadratic problem needs to be solved to introduce these
valid inequalities, these valid inequalities caused a decrease of about one quarter of the
overall computation time.

Despite the speedups, large instances are still too complex to be solved via exact
methods. Hence, we designed a metaheuristic. We developed a simple, robust and effi-
cient general metaheuristic for multi-objective problems and we tested it on instances
of increasing size. Metaheuristics for vehicle routing problems usually entails the use of
many different operators such as insertion, swap, 2-opt, longest route selection, etc. We
unified all of these different operators in a single general operator that chooses at ran-
dom two routes to modify and one, possibly empty, chain of students per route. All the
above mentioned decisions (which routes to pick, how to choose the chains, etc.) are
taken following an uniformly distributed probability distribution. Although one could
argue that other more effective choices should be performed, for instance, giving prior-
ity to longer routes, we motivate our choice stating that these more effective decisions
might not be worth the extra computation power needed.

Medium sized instances (50 to 100 students) were reasonably solved in about 15 min-
utes. For the case study instead, we added an intensified search feature, meaning that
the algorithm was more prone to select smaller chains, and confront the performance
with and without the intensified feature. Both versions were run for one hour. Although
the algorithm with the intensified search feature converged faster to a Pareto frontier,
both algorithms returned stable Pareto frontiers within an hour of computation time.
This leads us to conjecture that, instead of letting almost all decisions be decided via a
uniformly distributed probability, other distributions, which could be learned, can be
used and they could lead to an increase in performance.

The design of our metaheuristic arises from the work that Martin Josef Geiger
developed for the Verolog challenge 20191. In this work, an almost aparametric meta-
heuristic was introduced and it achieved incredible results obtaining second place in
the competition. In our opinion, aparametric metaheuristics are extremely interesting
because, even if they might not be as performing as metaheuristics with plenty of
carefully hand-tuned parameters, they usually are much more robust. In fact, while
carefully handpicking parameters may increase the performance of an algorithm on a
specific problem, it is very likely to decrement its performance on all other problems
where the same algorithm can be applied. Future directions of research would include
modifying our almost aparametric algorithm such that the few tunable parameters
would self-tune, either using adaptiveness or using some hybrid machine learning
technique.

1https://verolog2019.ortec.com/ link accessed October 2021

6

114 6. CONCLUSION

Finally, in Chapter 5, we present our contribution in one of the most promising di-
rections in the metaheuristic field, machine learning-based heuristics. Artificial intelli-
gence and machine learning seemingly endless potential revolutionised entire areas of
human knowledge and, in our opinion, they will play a crucial role in future metaheuris-
tics. Some may say that they are already present in state-of-the-art heuristics; in fact,
one can see adaptiveness as an early form of artificial intelligence.

In order to quickly generate heuristic solutions from instances, reinforcement learn-
ing seems to be the most promising algorithm. In addition, reinforcement learning
comes with some effective features. Firstly, it does not need a data set of known good
or optimal solutions in order to learn, which means it can directly be applied to new, yet
unstudied problems. Second, since little to no human information regarding the specific
problem to be solved has to be passed to the algorithm, reinforcement learning seems to
be an extremely versatile tool to solve large classes of problems. For instance, almost all
Atari 2600 games can be played with superhuman performances by the same algorithm2.

Our contribution is to design, implement and test a reinforcement learning structure
that could learn to solve the knapsack problem without any problem-specific knowl-
edge, except for masking out the unselectable objects. We chose the knapsack prob-
lem because we wanted to test the effectiveness of our algorithm on a very well-known
combinatorial problem. Moreover, many current machine learning architectures are ei-
ther bounded by a constant-size vector, for instance, recursive neural network (RNN),
or can work only with inputs of specified dimensions, for instance, convolutional neural
network (CNN). To avoid those limitations, we chose to rely on the transformer (a self-
attention based mechanism). This has the advantage of not being size-dependent, i.e.
our algorithm can solve instances with 2 or with 100 objects without any modifications.
Furthermore, none of the intermediate context vectors are bounded by a constant-size
threshold; this means that the length of the context vector grows with the size of the
instance being solved.

After training, our algorithm returns close to optimal solutions, on average within
one percent of the optimal solution, in a split second. These results are promising, but
in the knapsack problem, there already exist non-machine learning based heuristics
with similar results. Nonetheless, our results are encouraging and future work will be
directed in applying a similar reinforcement learning framework to various other CO
problems.

In this dissertation, on the one hand, we have solved very complex models to op-
timality; yet, this encompasses that the size of the instances must be sacrificed, even
when using speed-ups techniques such as valid inequalities. On the other hand, when
using heuristics, we demonstrated that aparametric, meaning with few parameters or
with self-tuning parameters, algorithms can achieve optimal or close to optimal results
in both single and multi-objective problems. Finally, we gave a contribution in the blos-
soming field of machine learning and artificial intelligence for combinatorial optimiza-
tion.

2The algorithm structure is the same, the training is game-specific.

BIBLIOGRAPHY

Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic ride-
sharing: A review. European Journal of Operational Research, 223(2), 295–303.

Ahmed, S., Adnan, M., Janssens, D., & Wets, G. (2020). A route to school informational
intervention for air pollution exposure reduction. Sustainable Cities and Society,
53.

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2011). The traveling salesman
problem. Princeton University Press.

Artigues, C., & Roubellat, F. (2000). A polynomial activity insertion algorithm in a multi-
resource schedule with cumulative constraints and multiple modes. European
Journal of Operational Research, 127(2), 297–316.

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Balcan, M.-F., Dick, T., Sandholm, T., & Vitercik, E. (2018). Learning to branch. Interna-
tional Conference on Machine Learning, 344–353.

Baniasadi, P., Ejov, V., Filar, J. A., Haythorpe, M., & Rossomakhine, S. (2014). Deterministic
“Snakes and Ladders” Heuristic for the Hamiltonian cycle problem. Mathemat-
ical Programming Computation, 6(1), 55–75.

Barma, P. S., Dutta, J., & Mukherjee, A. (2019). A 2-opt guided discrete antlion optimiza-
tion algorithm for multi-depot vehicle routing problem. Decision Making: Ap-
plications in Management and Engineering, 2(2), 112–125.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940.

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. European Journal of Operational Re-
search, 290(2), 405–421.

Bollobás, B. (1998). Modern graph theory (Vol. 184). Springer Science & Business Media.
Bontemps, L., McDermott, J., & Le-Khac, N. (2016). Collective anomaly detection based

on long short-term memory recurrent neural networks. International Confer-
ence on Future Data and Security Engineering, 141–152.

Bradley, R., Danielson, L., & Hallahan, D. P. (2002). Identification of learning disabilities:
Research to practice. Lawrence Erlbaum Associates, Inc.

Buliung, R., Bilas, P., Ross, T., Marmureanu, C., & El-Geneidy, A. (2021). More than just a
bus trip: School busing, disability and access to education in Toronto, Canada.
Transportation Research Part A: Policy and Practice, 148, 496–505.

Caceres, H., Batta, R., & He, Q. (2019). Special need students school bus routing: con-
sideration for mixed load and heterogeneous fleet. Socio-Economic Planning
Sciences, 65(100), 10–19.

Caserta, M., & Voß, S. (2014). A hybrid algorithm for the DNA sequencing problem. Dis-
crete Applied Mathematics, 163, 87–99.

115

6

116 BIBLIOGRAPHY

Censor, Y. (1977). Pareto optimality in multiobjective problems. Applied Mathematics
and Optimization, 4(1), 41–59.

Chalkia, E., Grau, J. M. S., Bekiaris, E., Ayfandopoulou, G., Ferarini, C., & Mitsakis, E.
(2016). Safety bus routing for the transportation of pupils to school. Traffic
Safety (283–299). John Wiley & Sons Ltd.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman
problem (Technical Report No. 388). Graduate School of Industrial Administra-
tion, Carnegie Mellon University.

Conceição, L., Correia, G. H., & Tavares, J. P. (2017). The deployment of automated ve-
hicles in urban transport systems: A methodology to design dedicated zones.
Transportation Research Procedia, 27, 230–237.

Cordeau, J., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-
a-ride problem. Transportation Research Part B: Methodological, 37(6), 579–594.

Correia, G. H., & van Arem, B. (2016). Solving the user optimum privately owned auto-
mated vehicles assignment problem (UO-POAVAP): A model to explore the im-
pacts of self-driving vehicles on urban mobility. Transportation Research Part B:
Methodological, 87, 64–88.

Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem
with transfers: formulation and a branch-and-cut solution method. European
Journal of Operational Research, 200(3), 711–724.

Danloup, N., Allaoui, H., & Goncalves, G. (2018). A comparison of two meta-heuristics for
the pickup and delivery problem with transshipment. Computers & Operations
Research, 100, 155–171.

Dantzig, G. B., Orden, A., & Wolfe, P. (1955). The generalized simplex method for mini-
mizing a linear form under linear inequality restraints. Pacific Journal of Math-
ematics, 5(2), 183–195.

Deleplanque, S., & Quilliot, A. (2013). Transfers in the on-demand transportation: the
DARPT dial-a-ride problem with transfers allowed. Multidisciplinary Interna-
tional Scheduling Conference: Theory and Applications (MISTA), 185–205.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2006). Column generation (Vol. 5).
Springer Science & Business Media.

Dijkstra, E. W. et al. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1), 269–271.

Donati, A. V., Montemanni, R., Casagrande, N., Rizzoli, A. E., & Gambardella, L. M. (2008).
Time dependent vehicle routing problem with a multi ant colony system. Euro-
pean Journal of Operational Research, 185(3), 1174–1191.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman prob-
lem. Biosystems, 43(2), 73–81.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12(7).

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of mathematics, 17, 449–
467.

Ellegood, W. A., Solomon, S., North, J., & Campbell, J. F. (2020). School bus routing prob-
lem: Contemporary trends and research directions. Omega, 95(100).

BIBLIOGRAPHY

6

117

Escario, J. B., Jimenez, J. F., & Giron-Sierra, J. M. (2015). Ant colony extended: Experi-
ments on the travelling salesman problem. Expert Systems with Applications,
42(1), 390–410.

Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles:
Opportunities, barriers and policy recommendations. Transportation Research
Part A: Policy and Practice, 77, 167–181.

Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of
shared autonomous vehicles, using agent-based model scenarios. Transporta-
tion Research Part C: Emerging Technologies, 40, 1–13.

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization, 6(2), 109–133.

Fox, R., Pakman, A., & Tishby, N. (2016). Taming the noise in reinforcement learning via
soft updates. Proceedings of the Thirty-Second Conference on Uncertainty in Ar-
tificial Intelligence, 202–211.

Garey, M., Johnson, D., & Tarjan, R. (1976). The Planar Hamiltonian Circuit Problem is
NP-Complete. SIAM Journal on Computing, 5(4), 704–714.

Geiger, M. J., & Graf, B. (2019). VeRoLog Solver Challenge 4: implementierungswet-
tbewerb der EURO arbeitsgruppe vehicle routing and logistics optimization.
Gesellschaft für Operations Research.

Geng, X., Chen, Z., Yang, W., Shi, D., & Zhao, K. (2011). Solving the traveling sales-
man problem based on an adaptive simulated annealing algorithm with greedy
search. Applied Soft Computing, 11(4), 3680–3689.

Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch problem.
Operations Research, 22(2), 340–349.

Goeke, D., Roberti, R., & Schneider, M. (2019). Exact and heuristic solution of the consis-
tent vehicle-routing problem. Transportation Science, 53(4), 1023–1042.

Goldreich, O. (2010). P, np, and np-completeness: The basics of computational complex-
ity. Cambridge University Press.

Gurobi Optimization, LLC. (2021). Gurobi Optimizer Reference Manual. https://www.
gurobi.com

Hahsler, M., & Hornik, K. (2007). TSP-infrastructure for the traveling salesperson prob-
lem. Journal of Statistical Software, 23(2), 1–21.

Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood search:
Methods and applications. Annals of Operations Research, 175(1), 367–407.

Hartmanis, J. (1982). Computers and intractability: A guide to the theory of NP-
Completeness. SIAM Review, 24(1), 90.

Hasselt, H. (2010). Double Q-learning. Advances in Neural Information Processing Sys-
tems, 23, 2613–2621.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition,
770–778.

Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey of
dial-a-ride problems: Literature review and recent developments. Transporta-
tion Research Part B: Methodological, 111, 395–421.

https://www.gurobi.com
https://www.gurobi.com

6

118 BIBLIOGRAPHY

Hou, Y., Zhong, W., Su, L., Hulme, K., Sadek, A. W., & Qiao, C. (2016). TASeT: Improving
the efficiency of electric taxis with transfer-allowed rideshare. IEEE Transactions
on Vehicular Technology, 65(12), 9518–9528.

Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research, 144(2), 379–396.

International Transport Forum. (2015). Urban mobility system upgrade. (6). https://doi.
org/10.1787/5jlwvzdk29g5-en

Intini, P., Colonna, P., & Ryeng, E. (2019). Route familiarity in road safety: A literature
review and an identification proposal. Transportation Research Part F: Traffic
Psychology and Behaviour, 62, 651–671.

Jagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2015). An efficient heuristic for real-time
ambulance redeployment. Operations Research for Health Care, 4, 27–35.

Johnson, D. S. (1990). Local optimization and the traveling salesman problem. Interna-
tional Colloquium on Automata, Languages, and Programming, 446–461.

Joint Research Centre. (2021). Transport sector economic analysis [website accessed in
December 2021]. https : / / ec . europa . eu / jrc / en / research - topic / transport -
sector-economic-analysis

Joshi, C. K., Cappart, Q., Rousseau, L.-M., Laurent, T., & Bresson, X. (2020). Learning TSP
requires rethinking generalization. arXiv preprint arXiv:2006.07054.

Juneja, S. S., Saraswat, P., Singh, K., Sharma, J., Majumdar, R., & Chowdhary, S. (2019).
Travelling Salesman Problem Optimization Using Genetic Algorithm. 2019
Amity International Conference on Artificial Intelligence, 264–268.

Kojima, M., Mizuno, S., & Yoshise, A. (1989). A primal-dual interior point algorithm for
linear programming. Progress in Mathematical Programming (29–47). Springer.

Köksal Ahmed, E., Li, Z., Veeravalli, B., & Ren, S. (2020). Reinforcement learning-enabled
genetic algorithm for school bus scheduling. Journal of Intelligent Transporta-
tion Systems, 1–19.

Korte, B. H., Vygen, J., Korte, B., & Vygen, J. (2011). Combinatorial optimization (Vol. 1).
Springer.

La Maire, B. F. J., & Mladenov, V. M. (2012). Comparison of neural networks for solving the
travelling salesman problem. 11th Symposium on Neural Network Applications
in Electrical Engineering, 21–24.

Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming
problems. Econometrica, 28(3), 497–520.

Lange, K. (1994). An adaptive barrier method for convex programming. Methods and Ap-
plications of Analysis, 1(4), 392–402.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1985). The trav-
eling salesman problem: A guided tour of combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics.

Lenstra, J. K. (1974). Clustering a data array and the traveling-salesman problem. Opera-
tions Research, 22(2), 413–414.

Lenstra, J. K., & Kan, A. H. G. R. (1975). Some simple applications of the travelling sales-
man problem. Journal of the Operational Research Society, 26(4), 717–733.

Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling
problems. Networks, 11(2), 221–227.

https://doi.org/10.1787/5jlwvzdk29g5-en
https://doi.org/10.1787/5jlwvzdk29g5-en
https://ec.europa.eu/jrc/en/research-topic/transport-sector-economic-analysis
https://ec.europa.eu/jrc/en/research-topic/transport-sector-economic-analysis

BIBLIOGRAPHY

6

119

Lewis, R., & Smith-Miles, K. (2018). A heuristic algorithm for finding cost-effective solu-
tions to real-world school bus routing problems. Journal of Discrete Algorithms,
52, 2–17.

Li, L. Y. O., & Fu, Z. (2002). The school bus routing problem: A case study. Journal of the
Operational Research Society, 53, 552–558.

Liang, X., Correia, G. H., & van Arem, B. (2017). An optimization model for vehicle rout-
ing of automated taxi trips with dynamic travel times. Transportation Research
Procedia, 27, 736–743.

Liu, J., Kockelman, K. M., Boesch, P. M., & Ciari, F. (2017). Tracking a system of shared
autonomous vehicles across the Austin, Texas network using agent-based sim-
ulation. Transportation, 44(6), 1261–1278.

Lodi, A., & Zarpellon, G. (2017). On learning and branching: A survey. Top, 25(2), 207–
236.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. Handbook of
metaheuristics (320–353). Springer.

Madsen, O. B. G. (1988). An application of travelling-salesman routines to solve pattern-
allocation problems in the glass industry. Journal of the Operational Research
Society, 39(3), 249–256.

Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: For-
mulations, properties and heuristic algorithms. Transportation Science, 26(3),
185–200.

Malek, M., Guruswamy, M., Pandya, M., & Owens, H. (1989). Serial and parallel simulated
annealing and tabu search algorithms for the traveling salesman problem. An-
nals of Operations Research, 21(1), 59–84.

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective opti-
mization: New insights. Structural and Multidisciplinary Optimization, 41(6),
853–862.

Martinez, L. M., Correia, G. H., & Viegas, J. M. (2015). An agent-based simulation model
to assess the impacts of introducing a shared-taxi system: An application to Lis-
bon (Portugal). Journal of Advanced Transportation, 49(3), 475–495.

Masson, R., Lehuédé, F., & Péton, O. (2013). An adaptive large neighborhood search for
the pickup and delivery problem with transfers. Transportation Science, 47(3),
344–355.

Masson, R., Lehuédé, F., & Péton, O. (2014). The dial-a-ride problem with transfers. Com-
puters & Operations Research, 41, 12–23.

Mayer, T., Uhlig, T., & Rose, O. (2018). Simulation-based autonomous algorithm selec-
tion for dynamic vehicle routing problems with the help of supervised learning
methods. 2018 Winter Simulation Conference (WSC), 3001–3012.

Miranda, D. M., de Camargo, R. S., Conceição, S. V., Porto, M. F., & Nunes, N. T. (2021).
A metaheuristic for the rural school bus routing problem with bell adjustment.
Expert Systems with Applications, 180.

Mitchell, T. (1997). Machine learning. McGraw Hill Burr Ridge.
Mokhtari, N., & Ghezavati, V. (2018). Integration of efficient multi-objective ant-colony

and a heuristic method to solve a novel multi-objective mixed load school bus
routing model. Applied Soft Computing, 68, 92–109.

6

120 BIBLIOGRAPHY

Molenbruch, Y., Braekers, K., & Caris, A. (2017). Typology and literature review for dial-
a-ride problems. Annals of Operations Research, 259(1), 295–325.

Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. V. (2018). Reinforcement learning for
solving the vehicle routing problem. Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, 9861–9871.

Newton, R. M., & Thomas, W. H. (1969). Design of school bus routes by computer. Socio-
Economic Planning Sciences, 3(1), 75–85.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458.

Pacheco, J., Caballero, R., Laguna, M., & Molina, J. (2013). Bi-objective bus routing: an
application to school buses in rural areas. Transportation Science, 47(3), 397–
411.

Paquete, L., & Stützle, T. (2003). A two-phase local search for the biobjective traveling
salesman problem. International Conference on Evolutionary Multi-Criterion
Optimization, 479–493.

Park, J., Tae, H., & Kim, B. (2009). The effects of allowing mixed loads in the commuter
bus routing problem. Proceedings of the 10th Asia Pacific Industrial Engineering
and Management Systems Conference, 14–21.

Parvasi, S. P., Mahmoodjanloo, M., & Setak, M. (2017). A bi-level school bus routing prob-
lem with bus stops selection and possibility of demand outsourcing. Applied
Soft Computing, 61, 222–238.

Peng, Z., Al Chami, Z., Manier, H., & Manier, M. A. (2019). A hybrid particle swarm opti-
mization for the selective pickup and delivery problem with transfers. Engineer-
ing Applications of Artificial Intelligence, 85, 99–111.

Petersen, H. L., & Ropke, S. (2011). The pickup and delivery problem with cross-docking
opportunity. Computational Logistics, 101–113.

Pisinger, D. (2005). Where are the hard knapsack problems? Computers & Operations Re-
search, 32(9), 2271–2284.

Poole, D., Mackworth, A., & Goebel, R. (1998). Computational intelligence. Oxford Uni-
versity Press.

Posada, M., Andersson, H., & Häll, C. H. (2017). The integrated dial-a-ride problem with
timetabled fixed route service. Public Transport, 9(1), 217–241.

Prah, K., Keshavarzsaleh, A., Kramberger, T., Jereb, B., & Dragan, D. (2018). Optimal bus
stops’ allocation: A school bus routing problem with respect to terrain elevation.
Logistics & Sustainable Transport, 9, 1–15.

Prouvost, A., Dumouchelle, J., Scavuzzo, L., Gasse, M., Chételat, D., & Lodi, A. (2020).
Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. arXiv preprint arXiv:2011.06069.

Rais, A., Alvelos, F., & Carvalho, M. (2014). New mixed integer-programming model for
the pickup-and-delivery problem with transshipment. European Journal of Op-
erational Research, 235(3), 530–539.

Reinhardt, L. B., Clausen, T., & Pisinger, D. (2013). Synchronized dial-a-ride transporta-
tion of disabled passengers at airports. European Journal of Operational Re-
search, 225(1), 106–117.

BIBLIOGRAPHY

6

121

Ribeiro, G. M., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for
the cumulative capacitated vehicle routing problem. Computers & Operations
Research, 39(3), 728–735.

Rodrigue, J.-P., Comtois, C., & Slack, B. (2016). The geography of transport systems. Rout-
ledge.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4),
455–472.

Salkin, H. M., & De Kluyver, C. A. (1975). The knapsack problem: A survey. Naval Research
Logistics Quarterly, 22(1), 127–144.

Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., & Springael, J. (2013). A
metaheuristic for the school bus routing problem with bus stop selection. Eu-
ropean Journal of Operational Research, 229(2), 518–528.

Schmid, V., & Doerner, K. F. (2010). Ambulance location and relocation problems with
time-dependent travel times. European Journal of Operational Research, 207(3),
1293–1303.

Schrijver, A. (2003). Combinatorial optimization: Polyhedra and efficiency (Vol. 24).
Springer Science & Business Media.

Shafahi, A., Wang, Z., & Haghani, A. (2018). Speedroute: Fast, efficient solutions for
school bus routing problems. Transportation Research Part B: Methodological,
117, 473–493.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle
routing problems. APES Group, Dept of Computer Science, University of Strath-
clyde, Glasgow, Scotland, UK.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mas-
tering the game of Go with deep neural networks and tree search. Nature,
529(7587), 484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without
human knowledge. Nature, 550(7676), 354–359.

Souza Lima, F. M., Pereira, D. S., Conceição, S. V., & Ramos Nunes, N. T. (2016). A mixed
load capacitated rural school bus routing problem with heterogeneous fleet: Al-
gorithms for the brazilian context. Expert Systems with Applications, 56, 320–
334.

Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., & Pavone, M. (2014). Toward
a systematic approach to the design and evaluation of automated mobility-on-
demand systems: A case study in Singapore. Road Vehicle Automation (229–
245). Springer.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Thangiah, S. R., Fergany, A., & Awan, S. (2007). Real-time split-delivery pickup and deliv-

ery time window problems with transfers. Central European Journal of Opera-
tions Research, 15(4), 329–349.

6

122 BIBLIOGRAPHY

Torabi, F., Warnell, G., & Stone, P. (2018). Behavioral cloning from observation. Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18, 4950–4957.

Toth, P., & Vigo, D. (2002). The vehicle routing problem. SIAM.
Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle-

routing problem. Informs Journal on Computing, 15(4), 333–346.
van den Berg, P. L., & van Essen, J. T. (2019). Scheduling non-urgent patient transporta-

tion while maximizing emergency coverage. Transportation Science, 53(2), 492–
509.

van den Bergh, J., Quttineh, N.-H., Larsson, T., & Beliën, J. (2016). A time-indexed gener-
alized vehicle routing model for military aircraft mission planning. Operations
Research Proceedings 2014, 605–611.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

Vithayathil Varghese, N., & Mahmoud, Q. H. (2020). A survey of multi-task deep rein-
forcement learning. Electronics, 9(9), 1363.

Voudouris, C., & Tsang, E. (1999). Guided local search and its application to the traveling
salesman problem. European Journal of Operational Research, 113(2), 469–499.

Wang, Z., & Haghani, A. (2020). Column generation-based stochastic school bell time
and bus scheduling optimization. European Journal of Operational Research,
286(3), 1087–1102.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279–292.
Whitley, L. D., Starkweather, T., & Fuquay, D. (1989). Scheduling problems and traveling

salesmen: The genetic edge recombination operator. 3rd International Confer-
ence on Genetic Algorithms, 89, 133–40.

Zajac, S., & Huber, S. (2021). Objectives and methods in multi-objective routing prob-
lems: A survey and classification scheme. European Journal of Operational Re-
search, 290(1), 1–25.

Zhang, A., Kang, J. E., & Kwon, C. (2017). Incorporating demand dynamics in multi-
period capacitated fast-charging location planning for electric vehicles [Green
Urban Transportation]. Transportation Research Part B: Methodological, 103, 5–
29.

Zhang, J., He, T., Sra, S., & Jadbabaie, A. (2020). Why gradient clipping accelerates train-
ing: A theoretical justification for adaptivity. International Conference on Learn-
ing Representations.

Zhang, S., & Sutton, R. S. (2017). A deeper look at experience replay. arXiv preprint
arXiv:1712.01275.

ACKNOWLEDGEMENTS

In the first graduate school course I attended, they defined PhD candidates as mush-
rooms because they are kept alone in dark rooms for months until supervisors check on
them for harvest. My slightly tanned skin begs to differ!

I was not alone in a room, I was lucky to have an office in a building full of interesting
and inspiring people. In addition to them, there were also Tom and Yuki. Yuki, I am
grateful that you come to me for relationship advises, but you are not woke enough to
realize that I am always single. Tom, I appreciate that you have let me in your life and it
was a pleasure to be there for you when you needed me. For instance, I was there when
Eline cheated on you. I was there. Thanks for tolerating all the chaos we were doing to
all the others PhD candidates in our group: Qiaochu, Naqi, Remie, Esther, kLara, Josse,
Renfei, Merel and Willem. Thanks also to the optimization professors team, Anurag,
David, Teun, Fernando, Krzysztof, the second nicest hair in the office Mark, de echte
italiaans Nikolaas, Leo with his happy and contagious laugh, Sherlock Holmes Dion, and
my lunchmaatje Jos (my last hope to learn Dutch is to attend your wife’s classes).

I’m grateful for the chance to work with outstanding researchers such as Laura Pozzi,
Maxi, Javier, our lord and saviour Wendelin and the barley doctor Lorenzo. Thanks also
to all the people of LNMB for the mind-stimulating conversations. I am indebted to the
support staff, thanks Dorothée, Joeffrey and Xi Wei and I am especially indebted to Kees,
who always has the patience to explain me that I cannot solve all my Linux problems
with ls and cd, no matter how hard I bruteforce it. A word of appreciation goes also to
the ones who briefly shared their journey with us at TU Delft: thanks Etienne, Trevis,
Berry, Guillermo and especially Luigi.

In addition to the people who helped me in the groundbreaking and revolutionary
research that I surely conducted at TU Delft, I want to thank all the fioi with whom I
shared dinners, nights and ‘more, much ‘more. Grazie di cuore to my boyfriend Edo,
you are the most propositve person I know, Jack, the one who most desperately tries to
copycat me perché le sai far tutte (sport, spettacolo, nazionali ed internazionali? Ciccio
ti dico che le so far tutte!), l’asse Doelenplein-Spoorsingel, Giups -si sta una crema con
te-, ‘weekly pleasure’ Billy, Spritz, my little sister and bronsa coerta Isa, her twin miss
Laretta che mi charga up sempre, Dani with our bromance, the best roomie ever Irene,
the worst roomie ever Benji, la mia futura cicala Roci (yo te voy a buitrear), la Franci,
Benni (ma quanto son ganze le Grazian?), my second favourite Mexican Emily, Simo,
Anna, Ale, Cate, Fabio, Carlos, Marcello, Alan, Frank, gli amici di una vita Davide, Mu,
Samuel, Gloria, Cla and all the other wonderful people I can’t think of right now.

Thanks to my close family, fratello Francesco, sorella Nicole e mamma Fiore per es-
sere stata ed essere ancora la mia roccia (e adés che ta laùret piò, pota, al par de es in
ferie). Thanks to my extended family as well, nonna, zie, zii, cugini vari e parenti acquisiti
(troppi per nominarvi tutti, ma vi voglio bene lo stesso!). Voglio peró fare un ringrazia-
mento speciale alla zia Monica per il supporto e per non farmi sentire solo anche quando

123

6

124 ACKNOWLEDGEMENTS

ballo -dignitosamente brillo- sui tavoli.
Finally, I want to state my outermost appreciation and gratitude for the two people

who made my PhD happen. Thank you Karen so much for having trusted me back in
2017, when I sent you an email saying I was interested in doing a PhD with your group. I
can now admit it. I had no idea what I was getting into, but I am so lucky it all worked out
meravigliosamente. And it happens so perché sei una promotor fantastica e metti tutta
te stessa in ció che fai. Theresia, I have told you one hundred times and now once more.
You are way too good and kind. You made me feel gezellig thuis and you were there to
support me even when I was slacking more than a non-binding inequality constraint.
You two motivated me to put my energy into my work and you encouraged me to learn
new skills and experiment with those. I will be eternally grateful to you for these four
geweldige years. I can in all honesty say that you are two excellent supervisors.

To you all, grazie di cuore, é stato un viaggio incredibile! Per aspera ad astra

CURRICULUM VITÆ

Jacopo PIEROTTI

26-04-1993 Born in Bergamo, Italy.

EDUCATION
2012–2015 B. Automation Engineering

Politecnico di Milano

2015–2017 M. Control Engineering
Politecnico di Milano
Thesis: The EVRP-TW with heterogeneous recharging sta-

tions. An exact branch-and-price method.
Supervisors: Prof. Dr. F. Malucelli, Prof. Dr. G. Desaulniers, Dr. F.

Errico

2018–2022 PhD Optimization
Delft University of Technology
Thesis: Models and Heuristics for Hard Routing and Knap-

sack Problems
Promotor: Prof. dr. ir. K.I. Aardal
Copromotor: Dr. ir. J.T. van Essen

125

LIST OF PUBLICATIONS

3. Pierotti, J., Kronmüller, M., Alonso-Mora, J., van Essen, J. T. & Böhmer, W. (2021). "Re-
inforcement learning for the knapsack problem". Optimization and Data Science: Trends
and Applications, volume 6 of 5th AIROYoung Workshop and AIRO PhD School 2021, AIRO
Springer Series. 1st edition

2. Pierotti, J., & van Essen, J. T. (2021). "MILP models for the Dial-a-ride problem with trans-
fers". EURO Journal on Transportation and Logistics, 10.

1. Pierotti, J., Ferretti, L., Pozzi, L. & van Essen, J. T. (2021). "Adaptive Iterated Local Search
with Random Restarts for the Balanced Travelling Salesman Problem". Metaheuristics for
Combinatorial Optimization. Springer Nature.

127

https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1016/j.ejtl.2021.100037
https://doi.org/10.1007/978-3-030-68520-1
https://doi.org/10.1007/978-3-030-68520-1

	Summary
	Samenvatting
	Introduction
	Combinatorial optimization
	Complexity
	Linear programming models

	Solution methods
	Exact solution method
	Heuristics
	Artificial intelligence
	Pareto frontier

	Problems
	Routing problems
	Knapsack problem

	Dissertation outline

	AILS with RR for the BTSP
	Introduction
	Problem formulation
	Methodology
	Finding an initial solution
	Adaptive iterated local search with random restarts

	Experiments
	Instances
	Parameters tuning
	Performance

	Conclusion

	MILP models for the Dial-a-Ride problem with transfers
	Introduction
	Problem formulation
	Continuous time model
	Moves
	Core model
	Model extension

	Discrete time model
	Core model
	Model extension

	Computational experiments
	Benchmark
	Tuning parameters
	Tests

	Conclusions

	Appendices
	Modifications about people dependent service times
	Continuous time model
	Discrete time model

	Idling, parking, transit and transfer nodes
	Continuous time model
	Discrete time model

	Equivalent models
	Unserved requests and late arrival
	Objective functions

	Complete models
	Continuous time model - core
	Continuous time model - extension
	Discrete time model - core
	Discrete time model - extension

	Special education needs school bus routing problem
	Introduction
	Literature review
	Problem formulation
	Decision variables
	Objective function
	Constraints

	Methods
	Valid inequalities
	Metaheuristic method

	Computational results
	Exact solutions
	Metaheuristic results

	Conclusions

	Appendices
	Graphical results for the 12-students instances
	Sensitivity analysis

	Reinforcement learning for the knapsack problem
	Introduction
	Problem formulation and background information
	Reinforcement learning framework
	Agent
	Model architecture

	Computational results
	Conclusion

	Conclusion
	Bibliography
	Acknowledgements
	Curriculum vitæ
	List of publications

