

Delft University of Technology

Designing an active recommender framework to support the development of reasoning
mechanisms for smart cyber-physical systems

Tepjit, S.

DOI
10.4233/uuid:943cabcf-697f-4e82-8d51-480d0f171496
Publication date
2022
Document Version
Final published version
Citation (APA)
Tepjit, S. (2022). Designing an active recommender framework to support the development of reasoning
mechanisms for smart cyber-physical systems. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:943cabcf-697f-4e82-8d51-480d0f171496

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:943cabcf-697f-4e82-8d51-480d0f171496
https://doi.org/10.4233/uuid:943cabcf-697f-4e82-8d51-480d0f171496

Designing an active recommender framework
to support the development

of reasoning mechanisms
for smart cyber-physical systems

Sirasak Tepjit

Designing an active recommender framework
to support the development of reasoning mechanisms for

smart cyber-physical systems

Proefschrift

ter verkrijging van de grad van doctor
aan de Technische Universiteit Delft,

op gezag van
de Rector Magnificus prof.ir. T.H.J.J van der Hagen,

voorzitter van het College voor Promoties,
in het openbaar te verdedigen op

Woensdag, 6, April, 2022 om 12.30 uur

door
Sirasak Tepjit

Master of Science in Logistics and Supply Chain Management
University of Portsmouth, United Kingdom,

geboren te Yala, Thailand

This dissertation has been approved by the promotor:
Prof. Dr. I. Horváth

Composition of the Doctoral Committee:
Rector Magnificus Chairman
Prof. Dr. I. Horváth Delft University of Technology

Independent members:
Prof. Dr. Y. Zeng Concordia University, Canada
Prof. Dr. E. Du Bois University of Antwerp, Belgium
Prof. Dr. B. Tekinerdogan Wageningen University, the Netherlands
Assoc. Prof. Dr. C. Anutariya Asian University of Technology, Thailand
Prof. Dr. R.H.M. Goossens Delft University of Technology
Prof. Dr. F.E.H.M. Smulders Delft University of Technology

Reserve member:
Prof. Dr. J.P.L. Schoormans Delft University of Technology

This Ph.D. research was funded by the Scholarship of the Royal Thai Government.

Designing an active recommender framework to support the development of reasoning
mechanisms for smart cyber-physical systems

Keywords: smart cyber-physical systems, application-specific reasoning mechanisms,
active recommender framework, context-sensitive recommendation, automated
parking assist system

Printed by Proefschriftmaken
Proofread by Brent Jones
Cover design by Sirasak Tepjit
Design and layout by Prangnat Chininthorn

Ph.D. dissertation
Delft University of Technology, Delft, the Netherlands
ISBN: 978-9-46-384299-0
Copyright © by Sirasak Tepjit
All right reserved.

An electric copy of this dissertation is available at the repository of Delft
University of Technology

i

Summary

Background of the research

Modern engineered systems are becoming more and more intellectualized. This trend
of the current development of CPSs called for a new classification and identification
of the various generations of CPSs. This promotion research focused on the 2G-CPSs
(also referred to as ‘smart cyber-physical systems’, S-CPSs). The built-in computational
intelligence makes them capable of building awareness, reasoning about the objectives
and states of operations, planning adaptations, and providing services even in dynamically
changing contexts. Typically, S-CPSs apply one specific reasoning strategy and mechanism
for simple problems and a combination of reasoning strategies for compound problems.
Designing complex reasoning mechanisms (RMs) is a complicated task requiring a high-
level abstraction and asufficiently comprehensive logical model. Due to the proliferation of
S-CPSs, there is a growing need for different task-orientated, application-specific reasoning
mechanisms (ASRMs). They should be in synergic connections with each other according
to the logic of knowledge that they process and reason with. Designing ASRMs for CPSs
with smart capabilities is a new issue both for systems research and for system development.

The advancement of technologies and the growing demand for applications offer more
and more opportunities for designing smart systems. However, any rapid change in the
technologies creates difficulty for system designers. If they are not equipped with the
latest technological and methodological knowledge, their innovation potential and
competitiveness are reduced. The need to support designing reasoning mechanisms
for S-CPSs by computer-aided design systems can be considered from two aspects, (i)
technology aspect and (ii) human aspect. From the aspect of technology, S-CPSs should be

Designing an active recommender framework to support
the development of reasoning mechanisms for smart
cyber-physical systems

ii

based on the integration of multiple novel technologies. The issue and challenging nature
of technology combinations should be resolved. From a human perspective, designers
should be (i) protected against knowledge obsolesces and deficits, (ii) defended against
unknown technologies and unmanageable complexities,and (iii) supported in solving their
design tasks efficiently and reliably.

Research problems

Our research concentrated on a problem recently emerged related to S-CPSs.
The essence of the problem is that S-CPSs are based on application-specific reasoning
mechanisms (ASRMs) that enable them to generate context-dependent solutions for
various application problems. The promotional research was conceptualized and conducted
according to the research hypothesis that a computer-aided design support tool can be
conceived as an ‘active recommender framework’ (ARF) for a compositional design of
ASRMs of S-CPSs. The ARF can be characterized by multiple system-level functional
features, from which the interrelated process monitoring and decision support functionalities
have been considered in the promotion research. The research problems were addressed on
three levels: (i) the entire phenomenon of supporting the design of ASRMs by an ARF; (ii)
the services of an active recommender framework, in particular in the context of S-CPSs
and the methodology to support the development of ARF, and (iii) the application context
in which the ARF was supposed to provide recommendation services to support solving
procedural and knowledge related problems, as an intellectualized assistive system.

Research methodology and activities

The whole research project was methodologically framed by a logical flow of four research
cycles. Each research cycle addressed different aspects of the ARF development. The
selected application context was a specific part of the design process of an automated
parking assist system, as the target ASRM. The research activities included: (i) knowledge
aggregation, demarcation of the domain of interest, and specification of requirements; (ii)
functional and architectural conceptualization of the active recommendation framework;
(iii) computational implementation and operationalization of the demonstrative modules;
and (iv) validation of the usefulness of the recommendations generated by the implemented
demonstrative modules of the ARF.

Research cycle 1

The objectives of the first research cycle were: (i) to get a deeper insight into the studied
research phenomenon, (ii) to get an overview of state of the art based on the related
scientific literature and professional web repositories,and (iii) to synthesize a starting
‘home base’ for the investigations and a knowledge platform that can be used follow-
up developments. Knowledge aggregation included the study of the system engineering
frameworks (SEFs) that were implemented and used to develop systemlevel reasoning in

iii

the context of S-CPSs (i.e., system knowledge, situation awareness, context-sensitive
reasoning, decision-making, and system adaptation). A comprehensive literature study was
done by applying both quantitative and qualitative methods. The quantitative study aimed
at exploring the landscape of publications related to the overall research phenomenon and
the closely related specific phenomena. A bibliometric map was constructed based on a wide
range of key terms.

According to the reasoning model, the qualitative analysis was narrowed down to three
domains: (i) the domains that provided the context information for the research, namely:
cyber-physical systems and system smartness, (ii) the domain of discourse of the research
including the methodological details of framework development from multi-perspectives,
and (iii) the domains that provided content information for studying frameworks. The
requirements for the ARF were derived by considering the implications of the findings. The
requirements were formulated in regular textual form and their relationships were explored
and represented as semantic maps.

Research cycle 2

In this research cycle, we worked on a novel concept of the ARF for the development of
ASRMs. At the first step, the operation of the ARF was deepened by setting up a comprehensive
scenario for the design of ASRMs. Based on this, the service packages to be provided by
the ARF were defined. The two essential mechanisms needed for the implementations of the
functions of process monitoring and decision-support were devised. Concerning the
process monitoring functionality, the conceptualization of the ARF was done according to
the case of type B observation of an NUE. Towards systematic methodological approach,
the ARF development process was modeled by the four-layer structure that included (i)
specification of functionality, (ii) allocation of the functionality into system architecture,
(iii) specification of computational algorithms and data structure, and (iv) organization of
the operation workflow, including communication with the designer. The computational
mechanisms of the ARF have been decomposed into six main functions. Assuming a one-to-
one relationship, each function was mapped onto one architectural module: (i) facial expression-
based non-usual event recognition (NUE-D); (ii) dialogue-based obstacle identification (DOI);
(iii) construction of the reference process protocol (CRP); (iv) reference process protocol-based
procedural obstacle identification (ROI); (v) advisory content generation (ACG); and (vi)
designer’s decision evaluation (DDE).

Research cycle 3

The goal of the third research cycle was to realize the two selected computational mechanisms
of the ARF. The efforts were invested in (i) the implementation of the demonstrative
modules of the ARF, and (ii) the application testing of the system-level functionality of the
ARF in the context of an automated parking assist system (APAS). From a computational
point of view, the implementation of the whole ARF had an innate complexity and it could

iv

not be implemented in full scale. Therefore, with a view to the time and capacity available,
only a demonstrative part was specified. Nevertheless, this demonstrative part was able to
display the novel functional abilities of the fully-fledged implementation. The divide-and-
conquer strategy was applied to avoid an uncontrollable complexity of the implementation. It
involved using (i) a multi-layer structure, (ii) modular design technique, and (iii) object-oriented
programming. This reduced the implementation efforts to four modules closely associated
with recommendation generation. The implemented modules included: (i) the DOI module; (ii)
the CRP module; (iii) the ROI module; and (iv) the ACG module. The functional validation
of the demonstrative part was completed by focusing only on the design process elements in
the working principle exploration (WPE) session of the APAS. Concretely, this aimed at the
development of search algorithms for selecting the proper motion path for the actual parking
problem. The testing of the functionality was done based on a scenario that included the
design actions relevant for the WPE session.

Research cycle 4

The fourth research cycle focused on the quality of the recommendations provided by
the ARF. Usefulness was chosen as the measure of the quality, and it was captured by
indicators. The objective of the fourth research cycle was to validate the usefulness of the
recommendation provided by the ARF. We aimed at examining how useful the provided
recommendations were for the designer to overcome possible procedural obstacles in the
design process. The concept of a synthetic validation agent (SVA) was introduced as the
surrogate of designers. This proved to be an appropriate means to handle the situation.
An SVA was conceptualized to simulate the decision-making behavior of (human)
designers as a new validation means and approach. In our context, the SVA mimicked
the flow of procedural decisions of the human designer as they were made after obtaining
the recommendations. The expected outputof the behavioral simulation made by using the
agent was a data set that included the patterns of the decisional behavior of the designer.
We aimed at using this synthesized dataset to validate the usefulness of the individual
recommendations.

Main findings and conclusions

Our main findings can be summarized as follows:

 • From the viewpoint of a computational system, the ARF was proposed as a design action
driven context-sensitive recommender system. The ARF is capable of (i) monitoring
what is happening in the design process, (ii) identifying where a procedural obstacle
is, and (iii) offering personalized recommendations to the designer to help proceed in the
design process. This assumes not only monitoring of the process but also dealing with
the information contents of the design activities.

 • The main contribution of the demonstrative implementation was the context-sensitive
recommendation generation by relying on the RPP. This process representation lent

v

itself to a systematic exploration of the potential design activity flows as well as to
the investigation of the design process and its action elements. The hybrid inference
was proposed as a novel functionality of the ARF system. It determined which design
entities and methods had to be involved in the process analysis-based recommendation
generation.

 • The proposed ARF has been equipped with the abilities to support the design of ASRMs in
the target application context of APAS. A ML-type algorithm has been developed based
on typifying the design activities and representing the design activity flow in the RPP.
The functionality test confirmed that the adapted ML-type algorithm was able to select
the proper parking cases.

 • In the evaluation of the usefulness of recommendations, the decisional modes had
direct relations with the acceptance probability of the recommendation. A higher probability
of acceptance offered a higher possibility of having a useful recommendation. A key
issue was how to determine the optimal proportion of the common knowledge that
was shared by the SVA-mimicked useful recommendation. A key issue was how to
determine the optimal proportion of the common knowledge that was shared by the SVA-
mimicked designer and the RPP. We argued that this information could be used to
enhance the usefulness of recommendations.

Initially proposed by researchers of the hosting Section of Cyber-Physical Systems
Design, the concept of an active recommendation framework as significant novelty
and supposed to play an influential role in the future. The term “framework” was used to
refer to a purposeful enabler that arranges and rationalizes design activities, information
processing, and designer-system interaction. The term “recommender” expresses that,
as a complex system, the ARF derives context-dependent advice for the designer based
on a comprehensive system model of the concerned (specific) design process. The term
“active” refers to the fact that the ARF continuously monitors the design process and
spontaneously interacts with the designer wherever it is needed in the design process. Our
conclusions have been that the ARF goes well beyond the concepts of traditional SEFs and
static recommender systems.

vii

Achtergrond van het onderzoek

Moderne geconstrueer de systemen krijgen een steeds intellectueler karakter. Deze trend
in de huidige ontwikkeling van cyberfysieke systemen (CPS’en) vroeg om een nieuwe
classificatie en identificatie van de diverse CPS-generaties. Dit promotieonderzoek
richtte zich op intelligente cyberfysieke systemen, ook wel afgekort tot 2G-CPS of
S-CPS (smart cyber-physical systems). De ingebouwde computationele intelligentie
stelt deze systemen in staat bewustzijn te ontwikkelen, doelstellingen en de toestand
van bewerkingen te beredeneren, plannen aan te passen en diensten aan te bieden, zelfs
binnen een dynamisch veranderende context. Gebruikelijk is dat S-CPS’en één specifieke
beredeneringsstrategie en -mechanisme toepassen op eenvoudige problemen, en een
combinatie van beredeneringsstrategieën op samengestelde problemen. Het ontwerpen van
complexe beredeneringsmechanismen (reasoning mechanisms, RM’s) is ingewikkeld en
vereist een hoge mate van abstrahering en een logisch model dat voldoende omvattend is.
De razendsnelle groei van S-CPS’en brengt een toenemende behoefte aan verschillende
taakgeoriënteerde en applicatiespecifieke beredeneringsmechanismen (application-specific
reasoning mechanisms, ASRM’s) met zich mee. Deze dienen in synergische verbinding met
elkaar te staan, uitgaande van de logica van de kennis die wordt verwerkt en beredeneerd.
Het ontwerpen van ASRM’s voor CPS’en met intelligente functionaliteit schept een nieuw
vraagstuk op het gebied van zowel systeemonderzoek als systeemontwikkeling.

De voortschrijdende ontwikkeling van technologieën en de toenemende behoefte aan
applicaties bieden steeds meer kansen voor het ontwerpen van intelligente systemen.
Elke snelle technologische verandering brengt echter problemen voor systeemontwerpers
met zich mee. Indien de meest recente technologische en methodologische kennis hierin
niet is meegenomen, blijft hun innovatief en competitief potentieel beperkt. De behoefte
aan ondersteuning bij het ontwerpen van beredeneringsmechanismen voor S-CPS’en
door CAD-systemen (computer aided design) kan vanuit twee gezichtspunten worden
benaderd: (i) het technologische gezichtspunt en (ii) het menselijke gezichtspunt. Vanuit
technologisch gezichtspunt moeten S-CPS’en worden gebaseerd op integratie van
meerdere nieuwe technologieën. Ze moeten een oplossing bieden voor het problematische,
uitdagende karakter van technologische combinaties. Vanuit menselijk gezichtspunt dienen
ontwerpers (i) te worden beschermd tegen veroudering en tekortkomingen van kennis, (ii)
te worden beschermd tegen onbekende technologieën en onbeheersbare complexiteiten,
en (iii) te worden ondersteund bij het op efficiënte en betrouwbare wijze oplossen van hun

Samenvatting

viii

ontwerpproblemen.

Onderzoeksproblematiek

Ons onderzoek richtte zich op een onlangs gesignaleerd probleem met cyberfysieke
systemen (cyber-physical systems, S-CPS’en). De kern van het probleem is dat S-CPS’en
gebaseerd zijn op applicatiespecifieke beredeneringsmechanismen (application-specific
reasoning mechanisms, ASRM’s) waarmee ze contextafhankelijke oplossingen voor diverse
applicatieproblemen kunnen genereren. Uitgangspunt voor de conceptualisatie en uitvoering
van het promotieonderzoek was de onderzoekshypothese dat een CAD-ontwerphulpmiddel
kan worden opgevat als een ‘actief aanbevelingskader’ (active recommender framework,
ARF) voor een compositioneel ontwerp van ASRM’s voor S-CPS’en. Het ARF wordt
gekenmerkt door meervoudige functionaliteit op systeemniveau, op basis waarvan de
functionaliteit voor intergerelateerde procesbewaking en besluitvormingsondersteuning is
meegenomen in het promotieonderzoek. De onderzoeksproblemen werden op drie niveaus
benaderd: (i) het fenomeen van ontwerpondersteuning van ASRM’s door een ARF in zijn
totaliteit; (ii) de diensten van een actief aanbevelingskader, in het bijzonder in de context
van S-CPS’en en de methodiek voor ondersteuning van de ontwikkeling van een ARF, en
(iii) het toepassingsgebied waarbinnen het ARF aanbevelingsdiensten dient te leveren ter
ondersteuning van het oplossen van procedurele en kennisgerelateerde problemen, in de
vorm van een geïntellectualiseerd assistentiesysteem.

Onderzoeksmethoden en -activiteiten

Het onderzoeksproject als geheel werd methodisch ingekaderd binnen een logische stroom
van vier onderzoekscycli. Iedere onderzoekscyclus richtte zich op specifieke aspecten van
de ARF-ontwikkeling. Het geselecteerde toepassingsgebied vormde een specifiek onderdeel
van het ontwerpproces van een assistentiesysteem voor geautomatiseerd parkeren als doel-
ASRM. De onderzoeksactiviteiten omvatten: (i) kennisaggregatie, afbakening van het
interessegebied en specificatie van eisen; (ii) functionele architecturale conceptualisatie van
het actieve aanbevelingskader; (iii) computationele implementatie en operationalisatie van
de demonstratieve modules; en (iv) validatie van de bruikbaarheid van de aanbevelingen
die werden gegenereerd door de geïmplementeerde demonstratieve modules van het ARF.

Onderzoekscyclus 1

De doelstellingen van de eerste onderzoekscyclus waren: (i) een dieper inzicht
verwerven in het bestudeerde onderzoeksfenomeen, (ii) een overzicht krijgen van de
‘state of the art’ op basis van de relevante wetenschappelijke literatuur en professionele
webrepository’s, en (iii) het synthetiseren van een ‘uitvalsbasis’ voor het onderzoekswerk
en een kennisplatform dat kan worden gebruikt om ontwikkelingen te blijven volgen. De
kennisaggregatie omvatte onderzoek naar de systeemontwerpkaders (system engineering
frameworks, SEF’s) die werden geïmplementeerd en gebruikt voor het ontwikkelen

ix

van redeneringen op systeemniveau binnen de context van S-CPS’en (systeemkennis,
situationeel bewustzijn, contextgevoelig redeneren, besluitvorming en systeemadaptatie).
Er is uitgebreid literatuuronderzoek verricht met toepassing van zowel kwantitatieve als
kwalitatieve methoden. Het kwantitatieve onderzoek richtte zich op de verkenning van
het landschap aan publicaties met betrekking tot het onderzoeksfenomeen in algemene
zin, alsmede nauw verwante specifieke fenomenen. Er werd een bibliometrische kaart
geconstrueerd op basis van een breed spectrum aan kernbegrippen. Uitgaande van het
beredeneringsmodel werd de kwalitatieve analyse toegespitst op drie gebieden: (i) de
gebieden die de contextinformatie voor het onderzoek leverden, namelijk: cyberfysieke
systemen en systeemintelligentie, (ii) het gebied van het discours over het onderzoek,
met inbegrip van de methodologische details van kaderontwikkeling vanuit meerdere
gezichtspunten, en (iii) de gebieden die contentinformatie leverden voor het bestuderen
van kaders. De eisen voor het ARF werden afgeleid door te kijken naar de implicaties van
de bevindingen. Deze eisen werden in standaard tekstvorm geformuleerd en de onderlinge
relaties werden verkend en weergegeven als semantische kaarten.

Onderzoekscyclus 2

In deze onderzoekscyclus werkten we aan een nieuw ARF-concept voor de ontwikkeling
van ASRM’s. Als eerste stap werd de werking van het ARF verfijnd door het opzetten
van een uitgebreid ontwerpscenario voor ASRM’s. Op basis hiervan werden de door het
ARF te leveren dienstenpakketten gedefinieerd. Voorts vond ontwikkeling plaats van de
twee essentiële mechanismen die nodig waren voor de implementatie van de functies van
procesbewaking en besluitvormingsondersteuning. Met betrekking tot de functionaliteit
voor procesbewaking werd de conceptualisatie van het ARF uitgevoerd in overeenstemming
met de casus van type B-observatie van een NUE. Om tot een stelselmatige methodologische
aanpak te komen werd het ARF-ontwikkelingsproces gemodelleerd volgens een vierlaagse
structuur die het volgende omvatte: (i) specificatie van functionaliteit, (ii) toewijzing van de
functionaliteit aan systeemarchitectuur, (iii) specificatie van computationele algoritmen en
gegevensstructuur, en (iv) organisatie van de operationele workflow, inclusief communicatie
met de ontwerper. De computationele mechanismen van het ARF werden opgesplitst in
zes hoofdfuncties. Uitgaande van een één-op-éénrelatie werd iedere functie toegewezen
aan één architectuurmodule: (i) gezichtsexpressie-gebaseerde NUE-D (non-usual event
recognition, herkenning van ongebruikelijke gebeurtenissen); (ii) DOI (dialooggebaseerde
obstakelidentificatie); (iii) CRP (constructie van het referentieprocesprotocol); (iv) ROI
(op het referentieprocesprotocol gebaseerde procedurele obstakelidentificatie); (v) ACG
(adviescontentgeneratie); en (vi) DDE (designer’s decision evaluation, evaluatie van de
beslissing van de ontwerper).

Onderzoekscyclus 3

Doel van de derde onderzoekscyclus was het verwezenlijken van de twee geselecteerde
computationele mechanismen van het ARF. Er werd gekeken naar (i) de implementatie

x

van de demonstratieve modules van het ARF en (ii) applicatietests van de functionaliteit
op systeemniveau van het ARF binnen de context van een geautomatiseerd
parkeerassistentiesysteem (automated parking assist system, APAS). Vanuit computationeel
oogpunt bezat de implementatie van het ARF als geheel een inherente complexiteit die
implementatie op volledige schaal onmogelijk maakte. Met het oog op de beschikbare tijd
en capaciteit werd dan ook alleen een demonstratief deel gespecificeerd. Niettemin bleek
dit demonstratieve deel in staat de nieuwe functionele mogelijkheden van een volwaardige
implementatie zichtbaar te maken. De verdeel-en-heersstrategie werd toegepast teneinde
onbeheersbare complexiteit van de implementatie te vermijden. Dit omvatte het gebruik van
(i) een meerlaagse structuur, (ii) een modulaire ontwerptechniek, en (iii) objectgeoriënteerde
programmering. Hierdoor bleef de implementatie beperkt tot vier modules die nauw
verband hielden met het genereren van aanbevelingen. De geïmplementeerde modules
omvatten: (i) de DOI-module; (ii) de CRP-module; (iii) de ROI-module; en (iv) de ACG-
module. De functionele validatie van het demonstratieve deel werd afgerond door ons
uitsluitend te concentreren op de ontwerpproceselementen binnen de WPE-sessie (working
principle exploration) van het APAS. Concreet richtte deze zich op de ontwikkeling van
zoekalgoritmen voor het selecteren van het juiste bewegingstraject voor het daadwerkelijke
parkeerprobleem. Testen van de functionaliteit vond plaats op basis van een scenario waarin
de relevante ontwerpacties voor de WPE-sessie waren opgenomen.

Onderzoekscyclus 4

De vierde onderzoekscyclus richtte zich op de kwaliteit van de aanbevelingen die door
het ARF waren gedaan. Bruikbaarheid werd gekozen als maat voor de kwaliteit en werd
vastgelegd door middel van indicatoren. Het doel van de vierde onderzoekscyclus was het
valideren van de bruikbaarheid van de door het ARF verstrekte aanbeveling. We wilden
onderzoeken hoe bruikbaar de geleverde aanbevelingen voor de ontwerper waren voor het
wegnemen van mogelijke procedurele obstakels in het ontwerpproces. Het concept van
een SVA (synthetic validation agent) werd geïntroduceerd als vervanging van ontwerpers.
Dit bleek een geschikte methode te zijn om de situatie aan te pakken. Er werd een SVA
geconceptualiseerd teneinde het besluitvormende gedrag van (menselijke) ontwerpers
als nieuwe methode en benadering van validatie te simuleren. Binnen onze context
simuleerde de SVA de stroom van procedurele beslissingen van de menselijke ontwerper
na het verkrijgen van de aanbevelingen. De verwachte output van de gedragsmatige
simulatie met gebruikmaking van de agent was een dataset waarin de patronen van het
besluitvormingsgerichte gedrag van de ontwerper waren geïntegreerd. We wilden deze
gesynthetiseerde dataset gebruiken om de bruikbaarheid van de afzonderlijke aanbevelingen
te valideren.

Belangrijkste bevindingen en conclusies

De belangrijkste bevindingen kunnen als volgt worden samengevat:

 • Vanuit het gezichtspunt van een computationeel systeem werd het ARF voorgesteld

xi

als ontwerpactiegestuurd, contextgevoelig aanbevelingssysteem. Het ARF is in staat
tot (i) het bewaken van wat er in het ontwerpproces gebeurt, (ii) het identificeren van
een procedureel obstakel, en (iii) het bieden van gepersonaliseerde aanbevelingen
aan de ontwerper ter ondersteuning van de voortgang van het ontwerpproces. Hierbij
wordt niet alleen verondersteld dat er procesbewaking plaatsvindt, maar ook dat de
inhoudelijke informatie met betrekking tot de ontwerpactiviteiten wordt verwerkt.

 • De belangrijkste bijdrage van de demonstratieve implementatie was het genereren
van contextgevoelige aanbevelingen op basis van het RPP (referentieprocesprotocol).
Deze procesrepresentatie bleek geschikt voor stelselmatige verkenning van potentiële
ontwerpactiviteitsstromen, maar ook voor het analyseren van het ontwerpproces en
de bijbehorende actie-elementen. De hybride gevolgtrekking werd voorgesteld als
nieuwe functionaliteit van het ARF-systeem. Deze bepaalde welke ontwerpentiteiten
en -methoden in het procesanalyse-gebaseerd genereren van aanbevelingen dienden te
worden meegenomen.

 • Het voorgestelde ARF is uitgerust met functionaliteit ter ondersteuning van het ontwerp
van ASRM’s binnen de doelapplicatiecontext van APAS. Op basis van de typering van
de ontwerpactiviteiten en het representeren van de ontwerpactiviteitsstroom in het RPP
werd een algoritme van het ML-type ontwikkeld. De functionaliteitstest bevestigde
dat het aangepaste algoritme van het ML-type in staat was de juiste parkeersituaties te
selecteren.

 • Bij de evaluatie van de bruikbaarheid van de aanbevelingen waren de
besluitvormingsmodi rechtstreeks gerelateerd aan de waarschijnlijkheid van acceptatie
van de aanbeveling. Een hogere mate van waarschijnlijkheid van acceptatie vergroot
de kans op een bruikbare aanbeveling. Een belangrijk probleem was hoe te bepalen
wat het optimale aandeel moest worden van de algemene kennis die door de SVA-
gesimuleerde ontwerper en het RPP werd gedeeld. Wij stelden dat deze informatie kon
worden gebruikt om de bruikbaarheid van aanbevelingen te vergroten.

Het concept van een actief aanbevelingskader, dat in eerste instantie werd voorgesteld
door de als gastheer fungerende afdeling Cyber-Physical Systems Design, is een
baanbrekende nieuwe ontwikkeling die naar verwachting een belangrijke rol zal gaan
spelen in de toekomst. De term “kader” verwijst hier naar een doelgerichte enabler die
ontwerpactiviteiten, informatieverwerking en de interactie tussen ontwerper en systeem
rangschikt en rationaliseert. De term “aanbeveling” duidt erop dat het complexe ARF-
systeem contextafhankelijk advies voor de ontwerper afleidt op basis van een uitgebreid
systeemmodel van het betreffende (specifieke) ontwerpproces. De term “actief” verwijst
naar het feit dat het ARF het ontwerpproces continu bewaakt en telkens spontaan interactie
met de ontwerper aangaat wanneer dit noodzakelijk is binnen het ontwerpproces. Wij
kwamen tot de conclusie dat het ARF de concepten van traditionele SEF’s en statische
aanbevelingssystemen in ruime mate overtreft.

xiii

Table of contents

Summary ���i
Samenvatting ���vii
Table of contents ��xiii

CHAPTER 1: INTRODUCTION
1�1� Background of the research ��1

1.1.1. Manifestation and evolution of cyber-physical systems 1
1.1.2. Paradigmatic features of smart CPSs .. 2
1.1.3. Complexification of the functionality of S-CPSs 5
1.1.4. The need to support designing reasoning
 mechanisms for S-CPSs ...6

1�2� Description of the addressed research challenges ������������������������8
1.2.1. The essence of designing reasoning mechanisms for S-CPSs 8
1.2.2. Application-independent versus application-specific
 reasoning mechanisms for S-CPSs ... 9
1.2.3. The issue of compositionality in an application-specific
 reasoning mechanism .. 12
1.2.4. Challenges of designing application-specific ...13
 reasoning mechanisms .. 13
1.2.5. The chosen research problems and the related challenges 14

1�3� Research methodology ��15
1.3.1. Research vision and assumption ... 15
1.3.2. Research objectives ... 16
1.3.3. Research questions and hypotheses ... 17
1.3.4. Overall methodological framing of the research work 18

1�4� Structure of the thesis ���21
1�5� List of own publications ��22
References ���22

xiv

CHAPTER 2: AGGREGATION OF KNOWLEDGE AND
EXPLORATION OF REQUIREMENTS

2�1 Objectives and methodological framing of
 the first research cycle ���27

2.1.1 Objectives .. 27
2.1.2 Methodological framing of the first research cycle 28

2�2 Design of the literature study ���30
2.2.1 Procedural phases of the literature study .. 30
2.2.2 Devising the reasoning model for the original literature study 32
2.3.1 Progress in the development of cyber-physical systems 37
2.3.2 Achievement in the implementation of system smartness 39

2�4 Investigation of system-engineering frameworks
 for S-CPSs ��40

2.4.1 Progress in the area of system-engineering frameworks 40
2.4.2 Ontological dimension of system-engineering frameworks 42
2.4.3 Epistemological dimension of system engineering
 frameworks... 43
2.4.4 Analysis of the system-level functionalities of
 active frameworks .. 46
2.4.5 Exposition of the findings and first propositions 46

2�5 Investigation of the enablers of system-level reasoning �������������48
2.5.1 Phenomenon of system-level reasoning ... 48
2.5.2 Knowledge as enabler of system-level reasoning 49
2.5.3 Awareness as enabler of system-level reasoning 51
2.5.4 Reasoning mechanisms as enabler of system-level reasoning 52
2.5.5 Decision making as enabler of system-level reasoning 53
2.5.6 Adaptation as enabler of system-level reasoning 55
2.5.7 Recommendation generation as form of system-level services 57
2.5.8 Compositionality in system-level reasoning 65
2.5.9 Issues of computational implementation of
 system level reasoning .. 66
2.5.10 Overview of the major findings and their implications 68

2�6 Exploration of requirements for an active
 recommender framework��69

2.6.1 The idea of active recommender frameworks 69
2.6.2 Identification of types of requirements .. 70
2.6.3 Identification of requirements for system-level framework 71
2.6.4 Identification of requirements for mechanism level 73

xv

2�7 Assessment of the requirements for the active
 recommender framework��74

2.7.1 Approach to assessing of requirements ... 74
2.7.2 Assessment of system-level requirements ... 75
2.7.3 Assessment of the mechanism-level requirements 77

2�8 Conclusions ���79
2.8.1 Conclusions concerning reasoning mechanism development 80
2.8.2 Conclusions concerning active recommender
 framework development ... 81
2.8.3 Conclusions concerning the requirements for
 an active recommender framework development 82

References ���83

CHAPTER 3: CONCEPTUALIZATION OF
 A DEMONSTRATIVE PART OF THE

PROPOSED ACTIVE RECOMMENDER
FRAMEWORK

3�1 Objectives and methodological framing of the second
 research cycle��99

3.1.1 Objectives .. 99
3.1.2 Research methodology ... 100

3�2 Generic assumptions concerning the active
 recommender frameworks��101

3.2.1 Assumptions with respect to complexity management 101
3.2.2 Assumptions concerning the reasoning mechanism
 development... 105
3.2.3 Assumptions concerning the design process and
 design actions .. 105
3.2.4 Assumptions concerning the active recommender
 framework .. 106
3.2.5 Generic and specific services provided by the proposed
 active recommender framework ... 107
3.2.6 Goal of conceptualization ..110

3.3 Setting up a design scenario for an application-specific
 reasoning mechanism���110

3.3.1 Automated parking assist system – A practical case requiring
 application-specific reasoning ...110

xvi

3.3.2 Procedural and computational implementation of
 working principle exploration ...112
3.3.3 Specification of the design tasks for working
 principle exploration ...113

3�4 Fundamentals of conceptualization of the active
 recommender framework��116

3.4.1 On the duality of the active recommender
 framework development ...116
3.4.2 Event management related to design actions by the active
 recommender framework ...117
3.4.3 Typifying the ways of observation of non-usual events119
3.4.4 Recognition of a non-usual event ..119
3.4.5 Interaction of the active recommender framework
 and the designer in the targeted segment of
 the design process .. 121
3.4.6 Principle definitions of a reference protocol and
 its constituents .. 122
3.4.7 Modelling the design activity flow by a reference
 process protocol .. 124
3.4.8 Generation of recommendation in the case of type B
 observation of non-usual events ... 125

3.5 Functional specification of the computational operations
 in the case of type B observation of non-usual events ����������������127

3.5.1 Functional specification for recognition of non-usual event
 based on a designer’s facial expression ... 127
3.5.3 Functional specification for a construction of reference
 process protocol .. 128
3.5.4 Functional specification for an identification of procedural
 obstacle in a design process ... 128
3.5.5 Functional specification of generation of advisory content 130
3.5.6 Functional specification for an evaluation of the quality of
 recommendation ... 130

3�6 Allocation of functions to architectural constituents ������������������131
3.6.1 Reasoning about the allocation of functions to architectural
 constituents ... 131
3.6.2 Architectural specifications of process monitoring mechanism 132
3.6.3 Architectural specification of decision support mechanism 135

3.7 Allocation of algorithms to the specified architectural
 constituents ��137

xvii

3.7.1 Allocation of algorithms to the non-usual event detector
 module .. 137
3.7.2 Allocation of algorithms to the dialogue-based obstacle
 identifier module .. 138
3.7.3 Allocation of algorithms to the reference process protocol
 creator module .. 139
3.7.4 Allocation of algorithms to the reference process-based
 procedural obstacle identified module .. 140
3.7.5 Allocation of algorithms to the advisory content generation
 module .. 141
3.7.6 Allocation of algorithms to the quality examiner module 142

3�8 Presenting the operation of the conceptualized
 demonstrative part ��142

3.8.1 Setting up a case of reasoning mechanism design for
 automated parking .. 142
3.8.2 Scoping the demonstrative example to retrieve the most
 appropriate parking case .. 144
3.8.3 Integration of the conceptualized part of the active
 recommender framework considering the interactions
 with the designer ... 145
3.8.4 Generation of recommendation using exact inference 149
3.8.5 Construction of the reference process protocol 150
3.8.6 Generation of recommendation using the hybrid inference 152

3.9 Discussion of the findings ��155
3.9.1 Implications of the findings with regards to the implementation
 of the demonstrative part ... 155
3.9.2 Identification of requirements for the implementation of the
 demonstrative part ... 157

References ���159

CHAPTER 4: IMPLEMENTATION OF A DEMONSTRATIVE
PART OF THE ACTIVE RECOMMENDER
FRAMEWROK

4�1 Objectives and methodological framing of the third
 research cycle��163

4.1.1 Research and development objectives ... 163
4.1.2 Methodological framing ... 164

4�2 Strategic issues of the demonstrative implementation ���������������165
4.2.1 Transformation of the implementation requirements 166

xviii

4.2.2 Possible approaches to implementation of the demonstrative
 algorithms.. 166
4.2.3 Determining the critical algorithms for the demonstrative
 implementation .. 168
4.2.4 Forerunning considerations .. 170
4.2.5 Selection of computational resources for the working
 environment .. 171

4�3 Tactical issues of the demonstrative implementation �����������������173
4.3.1 Fundamentals for the implementation dialogue-based
 obstacle identifier module ... 173
4.3.2 Fundamentals for the implementation of reference
 process protocol creator module ... 175
4.3.3 Fundamentals for the implementation of reference process
 protocol-based procedural obstacle identifier module....................... 182
4.3.4 Fundamental for the implementation of advisory content
 generator module .. 184

4.4 Specification of the resources used for the working
 environment ���185

4.4.1 Fundamental programing language .. 185
4.4.2 Built-in functions .. 186
4.4.3 Applied toolboxes .. 187
4.4.4 Library of user development functions .. 188

4.5 Specification of the implementation of the demonstrative
 modules ��188

4.5.1 Architecting and implementation the dialogue-based
 obstacle identifier module ... 188
4.5.2 Architecting and implementation of the reference process
 protocol creator module .. 192
4.5.1 Architecting and implementation of the reference
 protocol-based procedural obstacle identifier module 203
4.5.2 Architecting and implementation the advisory content
 generator module of the ARF .. 216

4�6 Putting the demonstrative implementation into
 application context ��219

4.6.1 On the necessity of testing the demonstrative implementation
 in application context .. 219
4.6.2 Introducing the concrete application context 220
4.6.3 Overview of the testing of the demonstrative implementation
 in the concrete application context .. 221

xix

4.6.4 Development of machine learning algorithm for predicting
 the most appropriate parking case .. 223
4.6.5 Supporting the development of ML-type algorithm A01
 by the demonstrative implementation of the active
 recommender framework .. 224

4�7 Observed limitations and other concluding remarks ������������������231
4.7.1 Observed limitations of the demonstrative implementation 231
4.7.2 Improvement opportunities of the demonstrative
 implementation ... 232
4.7.3 Concluding remarks .. 232

References ���232

CHAPTER 5: VALIDATION OF THE USEFULNESS OF THE
RECOMMENDATION PROVIDED BY THE
IMPLEMENTED DEMONSTRATIVE MODULES

5�1 Objectives and methodological framing of the fourth
 research cycle��235

5.1.1 Research objectives .. 235
5.1.2 Methodological framing of the fourth research cycle 236

5�2 Main issues of validation of the demonstrative
 implementation part ��237

5.2.1 Criteria and measures of usefulness validation of procedural
 recommendations ... 238
5.2.2 Consideration of a simplified decisional behavior of
 the designers... 238
5.2.3 Reason and requirements for a synthetic validation agent 241
5.2.4 The process of validation of the usefulness of procedural
 recommendations.. 242

5�3 Preparation stage of the validation process ���������������������������������243
5.3.1 Specification of design activities in the application context 243
5.3.2 Identification of the implemented modules taking part in
 recommendation generation ... 244
5.3.3 Development of the synthetic validation agent as surrogate
 of the designer .. 245
5.3.4 Testing the synthetic validation agent ... 253
5.3.5 Deriving indicator for usefulness ... 257

xx

5�4 Execution of the usefulness validation of procedural
 recommendations��259

5.4.1 Identification of the validation scenarios ... 259
5.4.2 Operationalization of the synthetic validation agent 259
5.4.3 Identification of the obstacle in the design process 262
5.4.4 Generation of case-related recommendations 262

5�5 Evaluation of the usefulness of recommendations ��������������������265
5.5.1 Descriptive statistical analysis of the data for validation 265
5.5.2 Investigation of correlations between the considered
 variables and the decision options .. 267
5.5.3 Opportunities for improving the recommendation
 generation process ... 269

5.6 Discussion and interpretation of the findings ������������������������������271
5.6.1 Assessment of the validation methodology 271
5.6.2 Evaluation of the usefulness of recommendation in action 273
5.6.3 Some improvement opportunities for the validation 274
5.6.4 Some recognized limitations ... 274

References ���275

CHAPTER 6: REFLECTIONS, CONCLUSIONS,
PROPOSITIONS, AND RECOMMENDATIONS

6.1 Reflections on the scientific and professional
 contributions of the research ���277

6.1.1 Contribution to the academic and practical knowledge 278
6.1.2 Contribution to the development of active recommender
 frameworks.. 279
6.1.3 Contribution to the design methodology of application-specific
 reasoning mechanisms ... 282
6.1.4 Contribution to solution generation for a real-life automatic
 parking problem .. 283

6�2 Main conclusions ��284
6.2.1 Conclusions concerning research cycle 1 ... 284
6.2.2 Conclusions concerning research cycle 2 ... 286
6.2.3 Conclusions concerning research cycle 3 ... 287
6.2.4 Conclusions concerning research cycle 4 ... 289

6�3 Propositions���291
6.3.1 Scientific propositions .. 291
6.3.2 Socially-contextualized propositions ... 296

xxi

6.3.3 Self-reflective propositions .. 296

6�4 Recommendations and future works ��297
6.4.1 Possible short-term research ... 297
6.4.2 Possible long-term research .. 297

List of figures ���301
List of tables ��307
List of acronyms ��311
Acknowledgements ���315
about the auther ��317

1

1�1� Background of the research

1�1�1� Manifestation and evolution of cyber-physical systems
Modern engineered systems are becoming smart. Cyber-physical systems (CPSs) have the
affordances to behave as general smart systems. The notion of ‘cyber-physical systems’ was
introduced in 2006 by researchers previously working in related fields such as embedded
systems, advanced robotics, real-time systems, hybrid systems, and control systems
[1]. Although numerous papers have been published on functional and architectural
definitions of CPSs, achieving a shared understanding has been difficult due to the different
backgrounds and viewpoints of researchers [2]. There is currently no agreement on the
exact definition of CPSs, but they are essentially understood to be systems that closely
integrate constituents from the cyber and physical domains [3]. The cyber components
are discrete, logical, and connected, and responsible for computation, communication, and
control through a network of sensors and actuators. The physical components operate in
continuous time and are responsible for changing material and energy flows, system states,
and stakeholder and environment interactions. CPSs can be applied to various domains
such as manufacturing, transportation, infrastructure, healthcare, and defense.

The current state of advancement of information technology and communication
systems enables system nodes to connect and communicate with the other systems and
their environments. CPSs may be implemented on various scales, ranging from the nano-
world to large-scale systems of systems [4]. This feature enables an ensemble of CPSs to
manifest as a system of systems (SoSs), which are supposed to dynamically adapt to the
changes in the environment and manage the resources that are needed to achieve the shared

Introduction

Chapter 1

2

operational objectives and performance [5]. On the other hand, there is an increasing need
for a higher-level intelligence for CPSs in order to deal with increasing uncertainty and
unpredictable situations. This is also needed because of unforeseen dynamic and emerging
behaviors that can occur during runtime operation [6].

The characteristics of recent CPSs are gradually evolving beyond what were identified by
the early definitions of CPSs. They are becoming non-composite, open, smart, autonomous,
agent-like, resilient, adaptive, evolutional, and replicative [7]. Engell et al.indicated a shift
in the upcoming generation of CPSs towards more sophisticated operations, which poses
research challenges such as [8]: (i) situation awareness in large distributed systems with
decentralized management and control; (ii) handling large amounts of data in real life to
monitor the system performance and to detect faults and degradation; (iii) learning good
patterns from past examples, autoreconfiguration, and adaptation; and (iv) monitoring user
behaviors, analysis of needs, and detecting anomalies. Due to the increasing need to clarify
the theoretical, methodological, and computational issues of system smartness, the above
topics have been identified as objectives in various branches of CPSs research.

In our view, CPSs must be seen as networked, knowledge-intensive, and multi-actor
systems. On the other hand, the literature offers only very few progressive classifications of
CPSs. The trends and traits of the current development of CPSs call for new classification
and identification of the upcoming generations of CPSs. The changing functional and
control paradigms indicate that they can be assumed to evolve through generations. The
generations can be classified based on two aspects: (i) the level of intelligence, and (ii) the
level of organization [9]. The identified generations of CPSs are shown in Figure 1.1. This
reflects the reasoning model of our research team, which has been dealing with cognitive
engineering of cyber-physical systems.

In the light of this reasoning model presented in [9], conventional (plant-type) CPSs are
deemed the first-generation CPSs (1G-CPSs). They are self-regulatory and self-tuning
systems. Thus, an embedded system is seen as a representative of the zeroth generation
CPSs (0G-CPSs). It applies to look-alikes, embedded systems, and partial implementation
of CPSs, which are regulated by feedback-based control sub-systems. Self-awareness and
self-adaptation are the distinctive features of second-generation CPSs (2G-CPSs), which
are often referred to as smart-CPSs. Smartness is regarded as a system-level characteristic
of these systems. The third-generation CPSs (3G-CPSs) are self-cognizance and self-
evolution systems. The fourth-generation CPSs (4GCPSs) predicted to behave as self-
conscious and self-reproducing systems.

1�1�2� Paradigmatic features of smart CPSs
A paradigmatic feature is a system-level feature that refers either to a logically-based or
a physically-based abstraction of a system as a whole. The set of paradigmatic features
differentiate one generation or manifestation of CPSs from other comparable systems [10].
As mentioned above, self-regulation and self-tuning are the distinguishing paradigmatic
features of the first generation of CPSs. Basically; CPSs are regulated by a feedback control

3

Figure 1.1: Generations of CPSs (taken over from [9])

loop that means they are the self-regulated systems by nature. Self-tuning is the capability
of managing performance and resource allocation in order to satisfy the requirements of
different users [11]. These systems include algorithms and software components to enable
the feedback control loop. The second-generation CPSs have been distinguished by self-
awareness and self-adaptation as paradigmatic features. Self-awareness is a characteristic
of those CPSs that are able to understand a changing situation based on the extent of
information available. When a system can realize what the most possible situation is, it
can respondto the situation accordingly. In fact, as situations are changing over time,
second-generation CPSs should be able to adapt themselves to deal with the dynamic
situations while maintaining a level of performance, or even improving it when the systems
are confronted repeatedly with similar situations.

According to [9], the third-generation CPSs are going to be characterized by selfcognizance
and self-evolution. This makes them self-supervised. Self-cognizance is a new term in
the field of CPSs. It is a cognitively higher-level ability than selfawareness. It can be
interpreted in the following way: While system awareness can build a world model in a
given operational situation, system cognizance is supposed to be able to differentiate the
different situations and develop multiple models from various perspectives. Thus, self-
cognizance is the capability of recognizing and building awareness of the operational
situations in a given local world and proposing and adopting a finite number of situated

4

operation models. The term ‘evolving systems’ refers to systems that can adjust themselves
according to dynamic or even evolving environments based on life-long learning and
adaptation. Practical examples of 3G-CPSs are expected from the development of AI-
enabled complex problem solving systems.

The distinguishing paradigmatic features of 4G-CPSs are self-consciousness and
selfreplication. Self-consciousness is a manifestation of human-like consciousness. It is
deemed to be a capability that allows the system to view and model itself based on objectives,
operations, experiences, and social relationships. Although there have been attempted to
create machine consciousness, what we have today is far from humanconsciousness. For
instance, in papers [12]-[15] a replica of human biological consciousness is sought after
in the form of machine consciousness. Many researchers have considered the human brain
as an analogue computing device. The most fundamental mechanism of consciousness has
not been explained yet. Pragmatic theories view it as a result of the operation of a series of
integrated bio-physiological, psychological, and cognitive activities

Machine consciousness, as well as robot consciousness, is reduced to the process of
informing, reasoning, and computation with digital data. However, from the perspective
of the 4G-CPSs, the notion of consciousness is not elaborated sufficiently either from an
ontological point of view, or from a methodological point of view. Just as with humans,
consciousness of the 4G-CPSs should operate as an all underpinning phenomenon and
work simultaneously with an infinite number of world models. Selfreplication is another
paradigmatic feature of 4G-CPSs. Self-replication is an essential feature in the context
of living things [16]. However, no system can self-replicate itself without being in the
necessary intellectual conditions and having the necessary resources [17]. Self-replication
should be seen as an emergent (non-preprogrammed, but conditioned) property and an
essential characteristic of 4G-CPSs.

As far as the necessary intellectual conditions and resources are concerned, knowledge
acquisition and generation by reasoning and learning are of paramount importance.
Sophisticated mechanisms of these are not yet clarified theoretically or computationally. It
is unclear if they can be derived based on an extrapolation from the current mechanisms.
For instance, networked CPSs interact as distributed systems and share knowledge with
each other. The individual bodies of knowledge shared by the component systems can
be further synthesized and used to create new systems, which are cognitively enhanced
versions of the predecessors. Together with selfconsciousness and self-replication, this
form of knowledge synthesis also contributes to the progression of the paradigms of CPSs
towards 4G-CPSs. Only the future will tell how artificial general intelligence will influence
their self-consciousness and selfreplication potentials.

The classification of CPS generations gave opportunity for the research team to
envisage a research and development roadmap for the next generation CPSs. In view of
this, we focus on 2G-CPSs referred to as ‘Smart Cyber-physical systems’ in this research.
These systems are equipped with such level of computational intelligence that makes them

5

capable of building awareness, reasoning about the fulfilment of the objectives, the results
of completing operations, the state of the system, and the necessity and possibility of self-
adaption.

1.1.3. Complexification of the functionality of S-CPSs
CPSs embed computational devices for, among other things, (i) physical or visual
sensing, (ii) processing and storing data, (iii) energy harvesting, and (iv) wired/wireless
communication [18]. The generalized operation process of firstgeneration CPSs typically
starts with detecting, monitoring, and streaming sensor data. The computing parts process
the input data, and the results are channeled to the effector parts, which actuate the intended
state of the physical components and processes. These generic tasks are included in the
Sensing-Processing-Actuation loop [19]. This closed-loop operation is a simplification
that cannot describe the operation process of open networked CPS configurations, as
additional functional nodes may join or may leave the ensemble. Wireless sensor networks
can provide both local and remote control over the networked devices [20]. Data can be
accessed at the device and network levels. These technological opportunities enhance
both the flexibility and the expandability of CPSs [21], while they also allow for timing
variability andstochastic behavior [22]. Harmonized operation of all constituents requires
a network managing function.

Using Internet of Things resources, CPSs can operate as networked information systems [23].
The quality of the data collected from different sources is usually location and time dependent.
Extension of CPSs increases the amount of the to-beprocessed dataexponentially [24].
The acquired data may be stored both as structured and as unstructured data. Extracting
information and deriving patterns from massive unstructured data requires dedicated data
analytics and data mining [25], [26]. In addition, a wide variety of simulation models –
ranging from low-level physical signals through high-level data constructs to abstract
events – are also needed.

Processing data or pieces of information on statistical or syntactic levels might not be
sufficient to support cognitive capabilities of S-CPSs. For example, more is needed
for situation-awareness, decision-making, and problem-solving. The data should be
transformed into semantically rich constructs, context information, and applications
pecific knowledge. Situated reasoning and semantic reasoning are the two basic functions
to ensure that data arriving from several sources are processed with the same meaning and
communicated consistently over all processes [27], [28]. In addition, many other reasoning,
learning, and integration processes are needed to make CPSs truly smart.

Considering the abovementioned operations, a generic function diagram of S-CPSs is
shown in Figure 1.2. All functions are co-dependent; changing one of them in design
will directly impact the other functions of the concerned system [29]. This is becoming
a serious issue as S-CPSs is becoming functionally and architecturally more complex.
It means that designers should take care of a high number of interactions among the
components inside and outside the S-CPSs and should pay attention to the increase of

6

complexity of the embedding environment. These characteristics render many traditional
design methodologies inadequate or irrelevant, especially if they focus on a separation of
concerns during the system design and implementation processes. It is a new challenge
for designers to think about heterogeneous and complex systems (including hardware,
software, and cyberware constituents) in a holistic manner, and to take all functions and
functional interaction into account. The fact of the matter is that, in addition to functions,
the computationally implemented operations and the behavior expected under regular and
irregular circumstances should also be given attention. The result is an extra mental and
professional load on the designers.

1�1�4� The need to support designing reasoning
mechanisms for S-CPSs

The advancement of the technologies and the growing demand for application offer more and more
opportunities for designing smart systems. However, any rapid change in the technologies creates
difficulty for a system designer..If the designers are not equipped with the latest technological
and methodological knowledge, their innovation potential and competitiveness are reduced.
Continuous learning helps, but it also takes a lot of time from the creative work and cooperation.
These are all reasons why both researchers and managers have recognized that designers require
effective system support in their processes. This also concerns designing application specific
reasoning mechanisms for smart CPSs, which are also getting more complex and sophisticated.
The need for the support of designing reasoning mechanisms for S-CPSs by computer aided
design systems can be considered from two aspects, (i) technology aspect, and (ii) human aspect.
From the aspect of technology, as mentioned above, S-CPSs should be based on multiple novel
technologies and the challenging nature of technology combination should be resolved. From a
human perspective, designers should be (i) protected against knowledge obsolesces and deficits,
(ii) defended against unknown technologies and unmanageable complexities, and (iii) supported
in solving their design tasks in an efficient and reliable manner.

The above argumentation underpins the emerging need for non-conventional design
support tools. The non-conventionality means that they may utilize novel design principles
and operationalize novel approaches to providing support. The support systems should
provide tailored and convenient support for the designer in an effective (visible) manner
without diverting the attention of the designer from the work. In the history of office
automation systems, there are many examples of useful support solutions. For instance,
implementation of a spell checker function in a text/document editing programs (such as
a word processor, chatting apps, or search engine) is a relevant example. A spell-checker
automatically checks and corrects for misspellings or even grammatical errors and style
issues in a text. Technically, there are two functions included in this service, namely (i)
informing function, and (ii) corrective function. The former function interprets the meaning
of an unusual word and offers synonyms and application examples. The latter function
automatically corrects observed typing errors without any human interaction and rephrases
a complete sentence if a more obvious or appealing formulation is possible. The active
recommendation framework tried to apply this analogy in a more complex context, i.e., in

7

the support of designing application specific reasoning mechanism for S-CPSs – a problem
which soon moves out from academic research laboratories and into industrial design
offices.

The computational support of designers has been based on the following consideration.
In the context of designing, an informing function is needed when the designer needs
information about an existing system component, a technological process, a design action,
or a corresponding part of the design problem. The corrective function is activated when the
designer generates content and commits content and procedural errors in the design process.
Our active recommender framework concept rests on these conceptual ideas. A novel ARF
functionality is proposed in terms of integration of the dedicated informing functions and
corrective functions. The active recommender framework was intended to offer two types
of the recommendation services. Providing content related recommendations represents
the informing part of support. Providing procedure related recommendations in various
situations represents the corrective part of support. There are many challenges to take into
account at applying the concept of ARF in the development of a design support tool for
the above-described purpose. The most significant ones are (i) the novelty of the software
technologies, (ii) inherent functional complexity, (iii) conceptual interrelationships and
dependences, (iv) technological complicatedness and technology sensitivity, (v) the design
orientation and the non-standard design approach, and (vi) the integration of all demands
in a holistic approach.

Figure 1.2: Generic functionality of S-CPSs (based on [29])

8

1�2� Description of the addressed research challenges

1�2�1� The essence of designing reasoning mechanisms for
S-CPSs

Reasoning is the logical process of drawing a specific conclusion by utilizing human
problems-solving strategies [30]. Typical instances of logic-based reasoning are deductive
reasoning, inductive reasoning, case-based reasoning, probabilistic reasoning, fuzzy
reasoning, intuitivist reasoning, and analogical reasoning. In addition to these computational
(evaluational) approaches of reasoning, the literature also shows interpretative (explanatory)
approaches, and the juxtaposition of these two approaches. The human mind can handle
both of them very well, but interpretative reasoning is extremely difficult to implement on
computers that do not have an intrinsic sense of semantics and meaning in context. There
were sophisticated reasoning strategies proposed, which assume data exchange with physical
processes or within a network of connected devices, and application specific information.
One example is procedural abduction [31]. The abovementioned three categories, as well
as, their purpose-driven combinations, are regarded as potential reasoning strategies for
SCPSs. These S-CPSs are supposed to be able to extract, collect, and combine data and
information even from a dynamically changing, noisy, and uncertain physical environments,
and to convert them into useful system cyberware (useable knowledge) in real time.

Conceptually, S-CPSs are supposed to apply one specific reasoning strategy for simple
problems or a combination of reasoning strategies for compound problems. Designing
complex reasoning mechanisms is a complicated task that needs a high-level abstraction
and a sufficiently comprehensive logical model. It should be guaranteed that the knowledge
provided for problem solving by the reasoning mechanisms is ‘fitfor-purpose’, that is, it
(i) has the power to address the task, (ii) is coherent and consistent with regards to its
elements, and (iii) can be used for the computational scheduling and interlinking of the
algorithms included in the mechanisms. As mentioned above, a representative example of
this is procedural abductive reasoning that involves multiple procedural elements, such as (i)
ambient sensing, (ii) event recognition, (iii) building awareness, (iv) dynamic contexts
evaluation, (v) situated reasoning, (vi) operation strategy planning, (vii) selective
decision-making, (viii) functional and/or structural adaptation, and (ix) actuating effectors
[31]. A metaframework of this complex operation and control is shown in Figure 1.3.

Operationally, the manifestation of procedural abductive reasoning (PAR) mechanisms in
S-CPSs starts with the acquisition of raw data with sensor devices from several sources,
and continues with a combination of syntactic and semantic data processing, recognizing
events based on context information, inferring and identification of a situation, and learning
from dynamic shifts of situations. The transformations of the knowledge throughout the
stages of reasoning require appropriate computational methods and algorithms. These
need to be individually selected, adapted, or developed. For the compositional operation
of the PAR, a two-level control is required. The operation controller (which activates the
necessary reasoning algorithms) provides the lower-level control, whilst the strategic

9

controller (which arranges the actual contents of the reasoning engine) provides the higher-
level control. The cognitive capability of the reasoning mechanism may eventually lead (or
is likely to lead) to novel useful information and/or knowledge concerning the task at hand
and the solution process, in addition to those available at the start of the reasoning process.

As a first design activity in the process of reasoning mechanism development (RMD), the
smart reasoning components are conceptualized on the system level and these specifications
are used as contracts for the implementation of the components. To support this procedure,
various architectural and behavioral models are created and used concurrently. As a result,
S-CPSs will implement a form of computational creativity, at least in terms of a combined
use of reasoning, decision-making, and adaptiveness in specific contexts. It is practically
impossible to implement these reasoning enablers by one single computational means – a
fact that calls for multiple interoperating reasoning mechanisms.

1.2.2. Application-independent versus application-specific
reasoning mechanisms for S-CPSs

The reasoning mechanisms of S-CPSs, which are used in real-life operations, can be sorted
into two types. The first is application-independent reasoning mechanisms (AIRM) – which
are content-independent software systems doing generic inference and problem-solving
without referring to any application contexts. Typical examples are, for instance, rule-based
reasoning, case-based reasoning, and probabilistic reasoning. The second is application
specific reasoning mechanisms (ASRM) – which are content-dependent software systems
designated for managing a particular application. This section discusses the differences

Figure 1.3: A meta-framework for procedural abduction as a reasoning mechanism
 for S-CPSs (modified from [31])

10

between these two types of reasoning mechanisms in detail, as well as the challenges of
designing ASRMs. The comparison of characteristics of AIRM and ASRM is shown in
Table 1.1.

1�2�2�1� Application-independent reasoning mechanism

Often replaced by the acronym AIRMs, the term application-independent reasoning
mechanisms is known from the research done in the field of artificial narrow intelligence.
These reasoning mechanisms are often also referred to as general problem solvers [32].
AIRMs are problem-driven (rather than application-driven) configurations of directly
coupled computational algorithms such as a production rules-based reasoning engine [33],
or a procedural abduction mechanism [31]. In addition to the proprietary algorithms, they
also include standard computational algorithms. An AIRM executes a logically complete
reasoning process that is needed to solve a given inference, reasoning, or decision-making
problem. AIRMs can be implemented in various forms, for example, as deterministic
mechanisms (such as rule-based or analogy-based reasoning), or as probabilistic mechanisms
(such as neural networks, Bayesian classifiers, and hidden Markov models). Procedural
reasoning systems implement multiple sense-plan-act loops. Knowledge-intensiveness of
AIRMS is increased either by task-specific knowledge repositories, or by computational
ontologies. Ontology-based reasoning uses various language-specific representations of
specifications of conceptualizations of entities and their relationships [34].

The AIRMs are utilized by putting them in the application context. Figure 1.4, for example,
shows the conventional rule-based and case-based reasoning applied in the reasoning
mechanism of the computer aided detection and diagnosis (CAD&D) system [33]. The rule

Table 1.1: Comparison of application independent reasoning mechanisms and
 application specific reasoning mechanisms

aspects AIRM ASRM
theoretical basis formal logic and inferring complex semantic computational

procedures
purpose general purpose inference without

context
domain-specific inference with
consideration of context

reasoning process relying on a single or a hybrid
reasoning process

require multiple forms of
reasoning processes

Computational
implementation

either composable or compositional
configuration

compositional configuration

problem solving
method

task and goal-driven solution purpose and context-driven
solution

knowledge handling uniform representation of
knowledge

several forms of knowledge
representation are combined

design methodology able to comply the conventional
design methodology

require an adaptive design
methodology

11

base stores the experience of a doctor’s diagnosis, and the case base stores some typical
cases in the diagnosis task. Using a Bayesiannetwork, the system recommends the most
likely tasks for the doctor according to the diagnosis results, and simultaneously providing
a reference for medical decision-making. The generality of AIRMs is an advantage in
development, but it results in a disadvantage from the perspective of applicability. This
has become obvious with the appearance of multiapplication oriented smart cyber-physical
systems and/or systems of systems S-CPSs and/or S-CPSoSs

1.2.2.2. Application-specific reasoning mechanisms

We introduced the term ‘application-specific reasoning mechanism’ to refer to
complexapplication dependent computational mechanisms. As the term implies, ASRMs
are application-driven (or application context-driven) configurations of directly coupled
computational algorithms that are (i) tailored to specific application objectives and
tasks, (ii) not exclusively reliant on one of the conventional forms of reasoning (e.g.,
logical, semantic, procedural, qualitative, probabilistic, analogical, etc. reasoning), and
(iii) benefiting from the background information, underpinning knowledge, and context
information of the problem. As a combined software and cyberware, an ARSM enables
S-CPSs to solve concrete real-life problems based on data elicited from the target
application. Computationally, the reasoning process of ASRMs is a continuous runtime-
activated sequence of the operations of software components. Typical examples are (i)
automated parking assist systems, (ii) autonomous mobile robots, (iii) and manufacturing
execution system (MES) which are based on context-dependent logical, cyber-physical, spatial,
temporal, etc., reasoning.

Figure 1.4: Workflow of the reasoning mechanism of the CAD system supported by
 rule-based and case-based reasoning (Modified from [33])

12

One example of an ARSM is shown in Figure 1.5. The proposed reasoning mechanisms
were architecturally constructed by three interconnected modules (e.g., semantic modelling
module, semantic information processing module, and semantic autonomous navigation)
to enable the robot to perform cognitive tasks. The procedural reasoning process converts
the sensors’ data with the sematic information processing to endow the robot with cognitive
vision capability. The visual object recognition encompasses metric information, geometric
features, and image information that can be measured using a set of sensors. Then, the
inference is performed to localize the place using the objects present in the surrounding
environment. It leverages the recognized objects with the semantic information stored in its
database. In the next stage, the mission task planning is performed through a sequence of
necessary actions (e.g., behavior planning, motion planning, and task planning). These tasks
were performed by using different types of algorithms. The interoperation of thesoftware
components should be guaranteed at runtime in the dynamic situations. These components
are also needed to be modified or require an interface to couple them seamlessly and the
processes are influenced by both structural adaptation and implementation constraints.
This characteristic of ASRMs is known as compositionality. It is one of the challenges at
designing an ASRM which may not be taken into account when designing an AIRM.

1.2.3. The issue of compositionality in an application- specific
reasoning mechanism

Designing ASRMs differs conceptually from designing AIRMs. It goes beyond a
conventional composability orientated approach that systems can be composed in a bottom-

Figure 1.5: Interrelationships of the architectural components of an ARSM for an
 intelligent robot (based on [35]).

13

up manner by interfacing non-adaptable components [36]. Compositionality was introduced
as a fundamental system manifestation principle for the development of reasoning
mechanisms that intend to create a synergy among the functional elements of the systems
in order to realize system-level smartness [37]. The hypothesis that compositionality is
necessary in the case of smartly behaving S-CPSs originates in the fundamental assumption
of classicalcognitive science, that complex mental representations are compositional.

ASRMs are multi-functional and knowledge-integrated systems. They are supposed to be
a compositional arrangement of multiple computational algorithms where the wholeness
(e.g., completeness and orientatedness) of problem solving creates not-composable
interrelationships among the algorithms. The compositionality regarding ASRMs is
assumed to be manifested in two levels, (i) concerning operation level, which should
ensure that the interoperation of software components will be synergistic at runtime, and
(ii) concerning system-level, which should confirm that the transformation of required
knowledge and information has been done throughout the entire computational process for
multi-task problem solving. Hence, the requirements for ASRMs will be defined based on
the overall objectives and role of the planned S-CPSs at design time. The computational
components (executables) are in compositional relationship since they should connect and
work in a synergic way to meet the objectives of operation. This also applies to the chunks
of the process control and problem solving knowledge required by the ASRMs since they
are semantically interrelated with each other and should be composed into a proper body
of knowledge at runtime [38].

1.2.4. Challenges of designing application-specific
 reasoning mechanisms

The functional specificities and contextualized nature of ASRMs make their development
more sophisticated and challenging than what is typical for AIRMs. Numerous
conventional methodological approaches are used in system design engineering,
for instance, feature-driven development, V-model, waterfall model, agile software
development, and spiral model. However, there is no standard approach for the
development of ASRMs for S-CPSs. Evidently, the concomitant challenges vary
according to the issues related to the target applications, but there are challenges that are
to a large degree independent from concrete applications. These are: (i) the difficulty of
foreseeing a real-life situation during design-time, (ii) the need for an adaptive learning
mechanism to reason with imperfect information, (iii) the need for multiple algorithms that
work in synergy in the implemented ASRMs, (iv) the increased computational complexity
as the number and interrelationships of components grow, and (v) the need for verification
of the system-level reasoning at design time to guarantee that the ASRM will be properly
composed at runtime.

As an example of ARSMs for intelligent mobile robots, discussed in Section 1.2.2.2, the
reasoning mechanisms need multiple algorithms of different types for the realization of their
functionality. For the visual object recognition, the above reasoning mechanism requires

14

deep learning type algorithms (e.g., convolutionneural network). For the localization, the
inference engine requires ontologically-based reasoning. For the mission planning task,
it requires reinforcement learning-type algorithms. In the real-life operation, the different
types of algorithms must interoperate in a compositional manner. When the robot is
moving, a different As an example of ARSMs for intelligent mobile robots, discussed in
Section 1.2.2.2, the reasoning mechanisms need multiple algorithms of different types for
the realization of their functionality. For the visual object recognition, the above reasoning
mechanism requires deep learning type algorithms (e.g., convolution neural network).
For the localization, the inference engine requires ontologically-based reasoning. For the
mission planning task, it requires reinforcement learning-type algorithms. In the real-life
operation, the different types of algorithms must interoperate in a compositional manner.
When the robot is moving, a different situation happens and some required data might be
missing. This may lead to a visual recognition failure. To handle this unfavorable situation,
functional adaptation at runtime is required. We believe that through the discussed example
we demonstrate that ARSMs are indeed complex by nature and pose several previously
unexperienced design challenges.

1�2�5� The chosen research problems and the related
challenges

 1�2�5�1� Designing the smartness

Designing ASRMs for CPSs with smart capabilities is a new issue both for systems research
and for system development. Smartness is an inherent quality of human thinking, feeling,
doing, and making. In our view, it is not equivalent with, but a subset of the elements of
human intelligence [39]. A distinctive characteristic of smart systemsis that the relationships
among the component properties create unique patterns of operation on a system level that
can only be assigned to the whole and not to any individual components. In this sense, as
performed by S-CPSs, smartness is a holistic system characteristic. Smartness implies the
need for compositional system engineering, like safety, dependability, andadaptiveness. To
achieve system-level smartness, the functional synergy and purposeful (inter) operation of
all hardware, software or cyberware components at the low-level of operationalization of
S-CPSs are assumed.

Smartness also raises the need for reasoning mechanisms designed for specific
applications of S-CPSs. The practical implementation assumes a procedural synthesis of
various computational mechanisms such as context-based reasoning, goal-driven strategy
planning, functional adaptation, and behavioral evolution. The interplay of software
components should be designed so as to produce and take care of smart behaviors. The
traditional design methodologies have not been developed to support the designing of smart
features of S-CPSs. Thus, the issue of developing novel dedicated design methodologies
is combined with the theoretical underpinning and technological realization of software-
induced smartness. With regard to knowledge engineering and reasoning mechanisms
development, consideration of compositional manners is inevitable. This was one of the
background concerns at conceptualization of the proposed ARF.

15

1.2.5.2. Specification of the research problems

The essence of the problem was that S-CPSs are based on ASRMs that enable them to generate
context-dependent solutions for various application problems. Our research concentrated
on a newly emerged problem related to the designing of a reasoning mechanism for S-CPSs.
More specifically, the embedding research project looks for a theory, a methodology, and
a computational realization to support a designing of the smartness capability in S-CPSs.
The research problems were addressed at three levels as follows:

Research problem 1: the entire phenomenon of supporting design by the active
framework concept is not sufficiently known yet.

Research problem 2: the concept of an active recommender framework (ARF) is new,
in particular in the context of S-CPSs, and thus development
methodologies for ARF are not available yet.

Research problem 3: there is very limited practical experience with using ARFs
in the development of ASRMs for various application contexts.

1�3� Research methodology

1�3�1� Research vision and assumption
Conventional system engineering frameworks (SEFs) play multiple roles in the design
processes such as, explaining a phenomenon, addressing a problem and proposing problem-
solving methods, offering means of creating a new concept, providing an architectural
structure for developing a system, and evaluating and testing system performances. We
argue that this type of framework does not provide sufficient support for designing ARSMs
for S-CPS, which feature cognitive capabilities such as reasoning, learning, and adapting
themselves. Ideation and design of ASRMs are complicated and require diverse cognitive
processes, which need both creative thinking and practical pragmatism from the designers.
Based on the strong need to support design activities for the development of ARSMs, we
proposed the concept of active framework for this purpose.

The research vision was to have a design enabling tool called ‘an active recommender
framework (ARF)’ supporting the development of ASRMs. The integration of process
monitoring and decision support functions was proposed as the novel functionality.
This makes the ARF capable to identify an obstacle in the design process and to offer a
recommendation to a designer in order to remove the obstacleand continue the design
process. The computational mechanisms of the ARF were able to perform the (semi-)
automated operation with the minimum number of the interactions with the designer to
generate the personalized recommendation, including process related and content related
recommendations.

Due to the challenges and the complicated nature of the research topic, we have made
the following assumptions concerning the methodological aspect in order to conduct the
research:

16

Assumption 1: the project should be properly scoped so as to achieve a rationally manageable
complexity and challenge, even if it means ignoring many related issues
and simplifying processes;

Assumption 2: the research process as a whole can be decomposed into a minimal number
of logically connected research cycles;

Assumption 3: the objectives of the research cycles can be defined so as to bridge knowledge
aggregation through concept development and implementation, as well as
to testing of the proposed theories and implementation principles;

Assumption 4: the ARF can be elaborated on from theoretical, methodological,
interaction, epistemology, and praxiological dimensions up to the level
that presents it as a new paradigm of active recommender systems;

Assumption 5: the lively interaction between (the development of) the ARF and real-life
application problems can be demonstrated in the promotion research by
including a concrete application problem;

Assumption 6: the research activities can show the parallels between two activity
flows, namely (i) the framework-orientated knowledge aggregation and
development of ARF algorithms, and (ii) the application problem solving-
orientated knowledge aggregation and development of ASRM algorithms;

Assumption 7: with a view to the foreseen complexity and capacity investment
issues, the promotion research is not supposed to be exhaustive,
but to achieve a decent level of theoretical clarification and computational
demonstration;

Assumption 8: in addition to the propositions closely related to the conduct and
content of the promotion research, attention is given to the broader scientific
meaning and implications of the studied phenomena, principles, and
inventions.

1�3�2� Research objectives
The overall objective of the research was to develop a theory, a methodology, and a
feasible demonstrative implementation for an ARF to actively and insightfully support the
development of ARSMs of S-CPSs. The specific objectives of the research were (i) to
aggregate knowledge concerning the development of reasoning mechanisms for SCPSs and
system engineering frameworks (SEFs); (ii) to specify the requirements and the alternative
approaches for conceptualization of ARF for RMD; (iii) to conceptualize an ARF that
systematizes the development of application specific reasoning mechanism (ASRM); (iv)
to propose the novel functionality of the ARF and identify the required algorithms and
data structure; (v) to develop a computational implementation of the demonstrative parts
of the ARF for a particular design session of an ASRM in an application context; (vi)
to validate the functionality of the implemented modules of the ARF in the considered
application context; and (vii) to validate the usefulness of the recommendations generated

17

by the demonstrative modules of the ARF.

1�3�3� Research questions and hypotheses
To achieve the main objective, the following guiding research question was formulated:

In what way can an active recommender framework (ARF) support a designer in
the development of an application specific reasoning mechanism for a particular
family of S-CPSs?

With regard to the specific objectives, a number of working research questions was
synthesized. The questions were classified into four groups. The first group focused on
the epistemological aspects of ARF development, concerning knowledge aggregation,
specification of requirements, and building a knowledge platform for the follow-up research
activities.

RQ1: What framework concepts are currently used to support the implementation of
system smartness with regard to S-CPS?

RQ2: What knowledge is needed for a designer concerning the conceptualization and
implementation of ARSMs for S-CPS?

RQ3: What requirements have to be fulfilled by an ARF in order to efficiently support
a designer in RMD processes?

The second group of research questions dealt with the ideation, conceptualization, and
specification of constituents of an ARF:

RQ4: What is the underpinning principle of the conceptualization of an ARF and what
structured methodological approach can be used?

RQ5: What functionalities are to be considered at the conceptualization of an ARF?

RQ6: What algorithms are needed for a computational implementation and functional
validation of the ARF in the application context of ASRM?

The third group of research questions concerns the implementation phase of the ARF,
specifically focusing on the detailing, computational implementation, and testing of the
implemented modules:

RQ7: What modules of the ARF should be implemented to arrive at a demonstrative
implementation?

RQ8: What critical algorithms and data constructs are needed for the realization
of the functionality of an evidencing demonstrative part?

RQ9: What way can the implemented modules be functionality tested in the
application context?

Finally, two research questions were posed concerning the validation of the implemented
modules and to confirm the quality of recommendations:

RQ10: What way can the performance of the implemented modules be validated

18

concerning the usefulness of the recommendations?

RQ11: What is an indicator and measure of the usefulness of the recommendations?

Based on these research questions and the forerunning knowledge aggregation,
the following hypothesis was formulated:

Research hypothesis: A computer-aided design support tool with new features, including
a purposeful coupling of the process monitoring and the decision
support functionalities towards a compositional design of application
specific reasoning mechnism for S-CPSs, is the needed new paradigm
for realization of an active recommender framework.

1�3�4� Overall methodological framing of the research work
At the early stage of the PhD. research project, the Topic and Work Specification (TWS)
was documented. This section was revised based on the contents of the TWS. For the
methodological framing of the promotional research, a multi-methodological framework
was introduced. This includes a combination of research in design context (RiDC), the design
inclusive research (DIR), and practice based research (PBR) approaches [40]. Basically,
RiDC and PBR involve two phases: (i) explorative research actions, (ii) confirmative
research actions. Besides these, the DIR involves a set of constructive design/prototyping
actions as a ‘transitive relation’ between the explorative phase of the research cycle. Thus,
this link formed by creative/design activities extends the kernel cycle procedurally with a
third stage.

Focusing on data generation and theory development, the explorative phase was divided
into three stages: (i) knowledge aggregation, (ii) stating research assumptions, and (iii)
theory development. Focusing on theory justification and validation, the confirmative phase
consisted of three stages: (i) logical justification, (ii) validation of the conduct and the
findings, and (iii) consolidation of the new knowledge. The goal of this systematic approach
was to properly explore, describe, understand, and explain the studied phenomenon and its
implications.

Design inclusive research uses evolving design as a research means in order to access
information and knowledge that cannot be accessed and studied otherwise. As briefly
mentioned above, the DIR cycle is extended with a constructive phase. The constructive
phase is actually an embedded design and/or construction process, including three
stages: (i) conceptualization, (ii) detailing, and (iii) prototyping. The explorative and
confirmative research actions are conducted as with the RiDC approach. The research
means can be an artifact, a process, a visual/virtual entity, a chunk of knowledge, and a
synthetic phenomenon. Some external factors can be considered in the design phase such
as technological opportunities, implementation requirements, and usable resources. The
goals of the design phase can be achieving a better understanding, inventing new concepts,
constructing physical and/or digital models, devising methodologies, and providing a
better solution through creating pilot versions of an artefact.

19

Concerning the specific objectives of the whole research project, the research design
was elaborated with a view towards the research constructs, processes, and means/
instruments. The overall research process was then divided into four research cycles
which included a logical flow of activities. The methodological framing applied to the
research cycles resulted in the overall research approach shown in Figure 1.6.

Research cycle 1 focused on the description of the phenomenon regarding the need for a
new framework paradigm to support the development of reasoning mechanisms for S-CPS.
The first research cycle was framed according to RiDC methodology. The objectives of this
cycle were (i) to describe and explain the above generic phenomenon, (ii) to gain sufficient
insights into and to explore fundamental principles related to the studied phenomenon, and
(iii) to provide a comprehensive knowledge and a rigorous description of it. The completed

Figure 1.6: The methodological framing of the promotional research

20

literature study focused on (i) the proliferation and features of S-CPSs, (ii) the essence
of system engineering frameworks (SEFs) development, (iii) the enablers of system-level
reasoning and services. Both quantitative and qualitative methods were used in a mixed
way. A reasoning model was developed for the qualitative analysis of the contents. An
objective critique was applied with regard to the SEFs currently used in the development
of reasoning mechanisms. Furthermore, the knowledge required for the development of an
ARF was circumscribed. Subsequently, a gap between the currently available knowledge
and the specific knowledge needed for conceptualization and implementation of an ARF
was identified. The implications of the findings as well as their interplay were critically
analyzed with the goal of deriving the requirements for the ARF development.

Research cycle 2 focused on conceptualization of the active recommender framework for
supporting ASRM development. The proposed concept was validated and tested in the
application context of APAS. In this research cycle the design inclusive research (DIR)
approach was applied. The design activities concerned the functional conceptualization
and system level architecting (decomposition and integration) of the constituents of
the ARF. The specification of the functions of the ARF started out from the conceived
design actions of the APAS development. Critical system thinking combined with actions
of design science research was used to predict what the overall architecture and the
functional specification of the framework should look like. Three main research activities
were carried out. In the explorative phase, a broadly-based knowledge aggregation
was conducted to provide input for the ideation about what services an ARF can offer
to a designer. Various assumptions for the development of the ARF were formulated.
The design scenario for the development of ASRMs was also analyzed and critically
discussed. In the constructive phase, the fundamental concepts of the ARF were specified
based on the assumptions and the implications of the concrete findings in the pre vious
stage. The ARF was conceptualized based on a multi-perspective approach, which
progressed through (i) specification of the functionality of the mechanisms, (ii) system-
level architecting and specification of the modules, (iii) construction and specification
of algorithms and data constructs, and (iv) organization of the computational workflow.
In the confirmative phase, the research activities centered on the feasibility testing of the
overall concept and on the demonstration of the operations of the conceptualized part
of the ARF in the target application context. In addition, the goal of this phase was to
explore and formulate requirements for the implementation of the demonstrative part.

Research cycle 3 was methodologically framed as a DIR approach. The main research
activities concentrated on the implementation of the demonstrative moules of the ARF.
The activities were completed in three procedural phases. The first phase included the
explorative research actions. In the second phase the necessary design actions were
performed. In the third phase, the results were processed and conclusions were drawn based
on the confirmation research actions. In the exploration phase, a technical specification for
the implementation of the demonstrative part of the ARF was elaborated. The research
activities focused on the specification of the principles of the implementation of the targeted
demonstrative modules and the analysis of the resources (programming environment)

21

available for the implementation. In the constructive phase, the contents of demonstrative
modules were specified on the module, component, and algorithms level. The confirmative
phase placed the implemented WPE algorithms into the specific context of the APAS. The
set of algorithms develop for the APAS represented a demonstrative implementation of a
particular ASRM in the target application. This demonstrative part was intended to test the
functionality of the proposed ARF could be implemented with success in the above specific
application context.

Research cycle 4 dealt with the validation of the demonstrative implementation with a view
towards the usefulness of the recommendations. The research cycle was methodologically
framed according to the structure of a practice based research (PBR) approach. The
validation aimed at generating indicators for the usefulness of the recommendations. A
synthetic agent was designed to act (decide) as a human designer does. Based on this, an
agent-oriented validation process was developed and completed. It aimed at mimicking
the decisional behavior of the designer and generating an input dataset for validation
without including human designers in the validation process. The research activitieswere
completed in two phases. The explorative phase dealt with the development of the synthetic
validation agent (SVA) and the operationalization of the SVA. As mentioned above, the
output of the explorative phase was the validation dataset generated by means of the SVA.
In the confirmative phase, the statistical analysis of the dataset and the correlation testing of
the considered variables were conducted. Various indicators, derived by using prognostic
reasoning, were proposed to measure the usefulness of the recommendations. The final
stage incorporated the discussion and the interpretation of the findings with the goal of
evaluating the methodology and the usefulness of the recommendations.

1�4� Structure of the thesis
The overall methodological framing presented in the previous sub-chapter was also
considered at the structural organization of the thesis. The concrete research activities
completed in the four research cycles are discussed in the subsequent chapters. Chapter 2
is dedicated to the second research cycle. It starts with a presentation of the design of the
literature study, followed by the conducting of the systematic literature review, analysis
of the contents, and then discussion of the findings. A set of requirements for the ARF
development was derived based on the implications of findings in the knowledge aggregation
procedure. In Chapter 3, the process of conceptualization of the ARF is discussed. This
chapter first provides a notional clarification, and then defines the needed functionality,
and deals with the issues of efficient architecting and system integration. It also deals with
various aspects of ASRM development. In addition, the specification of the modules and
algorithms and the planning of and the requirements for implementation are considered.

Chapter 4 is dedicated to the implementation of the demonstrative part of the ARF.
The fundamental concepts of the implementation are discussed and the details of the
implementation of the modules and the computational algorithms are presented. The
implemented modules were tested in the application context of the chosen ASRMs. In

22

Chapter 5, the validation of the usefulness of the recommendation was conducted. This
chapter presents the argumentation about the decisional behavior of the designers, describes
its simulation with the synthetic validation agent, the analysis of the validation dataset, and
the evaluation of the usefulness of recommendations. In Chapter 6, the completed research
project is summarized, including self-reflections on the contributions of the research from
various perspectives, as well as the conduct and outcomes of the individual research cycles.
This chapter also includes the detailed descriptions of the scientific propositions and makes
recommendations for future research.

1�5� List of own publications
1. Tepjit, S., Horváth, I., & Rusák, Z. (2019). The state of framework development

for implementing reasoning mechanisms in smart cyber-physical systems: A literature
review. Journal of Computational Design and Engineering, 6(4), 527-541.

2. Tepjit, S., Horváth, I., & Rusák, Z. (2018). An analysis of the state of framework
development for reasoning in smart cyber-physical systems. In Proceedings of the 25th
ISPE Inc. International Conference on Transdisciplinary Engineering, (Vol. 7, pp. 82-
92). IOS Press.

3. Horváth, I., Tepjit, S., & Rusák, Z. (2018). Compositional engineering frame-works for
development of smart cyber-physical systems: A critical survey of the current state
of progression. In Proceedings of the International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (Vol. 51722,
pp. 1-14). ASME

4. Tepjit, S., Horváth, I., & Rusák, Z. (2020). Conceptualization of an active
recommendation framework system to support application-driven reasoning mechanism
development for smart cyber-physical systems. In Digital Proceedings of TMCE (pp.
1-16).

5. Tepjit, S., Horváth, I., & Rusák, Z. (2022). Conceptualization of algorithms for an
active recommender framework to support exploration of application-specific working
principles. (in preparation).

References
[1] Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts,

applications, and challenges in cyber-physical systems. KSII Transactions on
Internet and Information Systems (TIIS), 8(12), 4242-4268.

[2] Horváth, I., and Gerritsen, B. (2012). Cyber-physical systems: Concepts, technologies
and implementation principles. In Proceedings of TMCE 2012 (Vol. 1(2), pp. 7–11).

[3] Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems
research. KSII Transactions on Internet and Information Systems (TIIS), 5(11),
1891-1908.

[4] Rajkumar, R., Lee, I., L. Sha, and Stankovic, J. (2010). Cyber-physical systems: the next

23

computing revolution. In Proceedings of the Design Automation Conference (pp.
731–736).

[5] Poovendran, R. (2010). Cyber-physical systems: Close encounters between two
parallel worlds. In Proceedings of the IEEE (pp.1363–1366).

[6] Dumitrache, I. (2011). Cyber-physical systems-new challenges for science and
technology. Journal of Control Engineering and Applied Informatics, 13(3), 3-4.

[7] Horváth, I., Rusák, Z., Hou, Y., and Ji, L. (2014). On some theoretical issues of
interaction with socialized and personalized cyber-physical systems. In Lecture
Notes in Informatics (LNI), Proceedings-Series of the Gesellschaft fur Informatik
(GI) (pp.1995-2000).

[8] Engell, S., Paulen, R., Reniers, M. A., Sonntag, C., & Thompson, H. (2015).
Core research and innovation areas in cyber-physical systems of systems. In
International Workshop on Design, Modeling, and Evaluation of Cyber Physical
Systems (pp. 40-55). Springer, Cham.

[9] Horváth, I., Rusák, Z., and Li, Y. (2017). Order beyond chaos: Introducing the
notion of generation to characterize the continuously evolving implementations of
cyber-physical systems. In Proceedings of the ASME Design Engineering Technical
Conference (pp.1–12).

[10] Pourtalebi, S., Horváth, I., and Opiyo, E. Z. (2014). First steps towards a mereo-
operandi theory for a system feature-based architecting of cyber-physical systems.
In Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur
Informatik (GI) (pp. 2001–2006).

[11] Salehie, M and Tahvildari, L. (2009). Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2),
1-42.

[12] Zhang, X., and Le Zhou, C. (2013). From biological consciousness to machine
consciousness: An approach to make smarter machines. International Journal
Automation and Computing, 10(6), 498–505.

[13] Long, L. N., and Kelley, T. D. (2009). The requirements and possibilities of creating
conscious systems. In AIAA Infotech at Aerospace Conference and Exhibit and AIAA
Unmanned...Unlimited Conference (pp. 1949).

[14] Mainzer, K. (2015). The emergence of self-conscious systems: From symbolic AI to
embodied robotics. In Philosophy, Computing and Information Science (pp. 57–66).
Taylor and Francis.

[15] Kubota, N., Kojima, F., and Fukuda, T. (2001). Self-consciousness and emotion
for a pet robot with structured intelligence. In Annual Conference of the North
American Fuzzy Information Processing Society - NAFIPS (pp.2786–2791).

[16] Chirikjian, G. S., and Suthakorn, J. (2003). Toward self-replicating robots. In
Experimental Robotics VIII (pp.392–401).

[17] Lee, K., and Chirikjian, G. S. (2007). Robotic self-replication. IEEE Robotice and
Automation Magazine, 14(4), 34–43.

[18] Crepaldi, M., Grosso, M., Sassone, A., Gallinaro, S., Rinaudo, S., Poncino, M.,... &
Demarchi, D. (2014). A top-down constraint-driven methodology for smart system
design. IEEE Circuits and Systems Magazine, 14(1), 37-57.

24

[19] Nawaz, K., Petrov, I., and Buchmann, A. P. (2014). Configurable, energy efficient,
application- and channel-aware middleware approaches for cyber-physical systems.
In Studies in Computational Intelligence (pp. 3–65).

[20] Ali, S., Bin Qaisar, S., Saeed, H., Khan, M. F., Naeem, M., and Anpalagan, A.
(2015). Network challenges for cyber physical systems with tiny wireless devices: A
case study on reliable pipeline condition monitoring. Sensors (Switzerland), 15(4),
7172–7205.

[21] Xia, F., Kong, X., and Xu, Z. (2011). Cyber-physical control over wireless sensor
and actuator networks with packet loss. In Wireless Networking Based Control (pp. 85–
102).

[22] Lee, E. (2008). Cyber physical systems: Design challenges. In Proceedings of the
11th IEEE Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (pp. 363–369).

[23] Dillon, T. S., Zhuge, H., Wu, C., Singh, J., and Chang, E. (2011). Web-of-things framework
for cyber-physical systems. Concurrency and Computation: Practice and Experience,
23(9), 905–923.

[24] Wang, J., Zhao, Q., and Zhao, Y. (2013). An effective framework to simulate the cyber-
physical systems with application to the building and energy saving. In Chinese Control
Conference (CCC) (pp. 8673–8641).

[25] Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S.,and Bunte,
A. (2015). Data-driven monitoring of cyber-physical systems leveraging on big data and
the internet-of-things for diagnosis and contro. In CEUR Workshop Proceedings
(pp. 185–192).

[26] Sharma, A. B., Ivančić, F., NiculescuMizil, A., Chen, H., and Jiang, G. (2014). “Modeling
and analytics for cyber-Physical systems in the age of big data. Performance
Evaluation Review, 41(4), 74–77.

[27] Dasgupta, R and Dey, S. (2013) A comprehensive sensor taxonomy and semantic
knowledge representation: Energy meter use case. In Proceedings of the International
Conference on Sensing Technology (pp.791–799).

[28] Smirnov, A., Levashova,T., Shilov,N., and Sandkuhl, K. (2014). Ontology for
cyber-physical-social systems self-organisation In Conference of Open Innovation
Association (FRUCT) (pp.101–107).

[29] Seshia, S. A., Hu, S. Y., Li, W.C., and Zhu, Q. (2017). Design automation of cyber-
physical systems: Challenges, advances, and opportunities. IEEE Transactions on
Computer aided Design of Integrated Circuits Systems, 36(9), 1421–1434.

[30] Håkansson, A., Hartung, R., and Moradian, E. (2015). Reasoning strategies in smart
cyber-physical systems. Procedia Computing Science, 60, 1575–1584.

[31] Horváth, I. (2017). Procedural abduction as enabler of smart operation of cyber-
physical systems: Theoretical foundations. In 2017 International Conference on
Engineering, Technology and Innovation (ICE/ITMC) (pp. 124-132). IEEE.

[32] Hao, J. G., Bouzouane, A., Bouchard, B., and Gaboury, S. (2018). Activity inference
engine for real-time cognitive assistance in smart environments.Journal of Ambient
Intelligence and. Humanized Computing, 9(3), 679–698.

[33] Chen, R., Hua, Q., Ji, X., Liu, Y., Wang, H., Li, J., ... & Feng, J. (2017). An interactive

25

task analysis framework and interactive system research for computer aided diagnosis.
IEEE Access, 5, 23413–23424.

[34] Mart, E. (2015). Adaptive sensor fusion architecture through ontology modeling and
automatic reasoning. In 2015 18th International Conference on Information Fusion
(Fusion) (pp. 1144-1151). IEEE

[35] Joo, S. H., Manzoor, S., Rocha, Y. G., Bae, S. H., Lee, K. H., Kuc, T. Y., & Kim,
M. (2020). Autonomous navigation framework for intelligent robots based on a
semantic environment modeling. Applied Sciences, 10(9), 3219.

[36] Tanik, U. J., & Begley, A. (2014). An adaptive cyber-physical system framework for cyber-
physical systems design automation. In Applied cyber-physical systems (pp. 125-140).
Springer, New York.

[37] Horváth, I., & Gerritsen, B. H. M. (2013). Outlining nine major design challenges of open,
decentralized, adaptive cyber-physical systems. In Proceeding of International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (pp. 1-12). ASME.

[38] H. Muccini, M. Sharaf, and Weyns, D. (2016). Self-adaptation for cyber-physical
systems: A systematic literature review. In Proceeding of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (pp. 75-81).

[39] Horváth, I., Zeng, Y., Liu, Y., & Summers, J. (2021). Smart designing of smart
systems. AI EDAM, 35(2), 129-131.

[40] Horváth, I. (2008). Differences between ‘research in design context’ and ‘design
inclusive research’ in the domain of industrial design engineering. Journal of Design
Research, 7(1), 61-83.

27

Chapter 2

2.1 Objectives and methodological framing of the first
research cycle

2�1�1 Objectives
As mentioned in the first chapter, the need for generating and processing coherent and
consistent problem solving and process steering system knowledge flow makes SCPSs
compositional in nature. It means that a compositional S-CPS manifests as a purpose-driven
arrangement of computational reasoning mechanisms, which in turn are purpose-driven
arrangements of computational reasoning algorithms. A system that can automatically find
a parking lot and park a car is a typical example for such computational mechanisms and
algorithms. Such applications need situation dependentand/or context-driven reasoning in
runtime operation, since it is not feasible to pre-program all possible parking solutions.
Eventually, computational reasoning mechanisms are data-driven. Due to their complexity
and compositionality, application specific, runtime active reasoning mechanisms pose
many novel design challenges, particularly in terms of creating system-level smartness
and constructing applicationtailored knowledge flows. Traditionally, system-engineering
frameworks (SEFs) have been used to support the activities of designers.

The objectives of the first research cycle were (i) to get a deeper insight into the studied
research phenomenon, (ii) to get an overview of the state of the art based on the related
scientific literature and professional web repositories, and (iii) to synthesize a starting
‘home base’ for the investigations and a knowledge platform that can be used follow-up
developments. Knowledge aggregation included the study of the SEFs proposed for supporting

Research cycle 1:
Aggregation of knowledge and exploration of
requirements

28

the development of a reasoning mechanism for S-CPSs. The content development was based
on the assumption that the overall objective of the promotion research was the development
of a new generation of active framework to support (at least a part of) the design process of
application-specific runtime reasoning mechanisms.Specific attention was given to SEFs
that are used for the development of system-level design reasoning in the context of
S-CPSs.

The objectives of the completed survey were:

(i) to study the SEFs available for the development of reasoning mechanisms from the
perspective of S-CPSs (more specifically, the frameworks that are proposed for
handling the fuzzy front end of the reasoning mechanism’s development process);

(ii) to investigate the enablers of system-level reasoning as necessary ingredients of
implementing smartness in S-CPSs;

(iii) to identify the requirements for the development of an active recommender framework
supporting the design process of ASRMs.

In addition, the knowledge aggregation activities included the identification of the existing
knowledge gaps and collection of requirements as part of the knowledge platform for an
active recommender framework (ARF) development. The guiding research question was how
an ARF had to facilitate the development of ASRMs for SCPSs. Towards an underpinning
theory, answering the following three questions was the focus of the knowledge aggregation
activities:

(i) What was the state of the art of SEFs in the field of system design and engineering?

(ii) What knowledge was needed by a designer for the implementation of a reasoning
mechanism for S-CPSs?

(iii) What requirements had to be fulfilled for an ARF to support a designer in the
development of ASRMs?

2.1.2 Methodological framing of the first research cycle
In line with the above-described objectives (i.e., knowledge aggregation and require-
ments exploration), the research cycle was methodologically framed as research in design
context (RiDC). The research context was the targeted support of designers in RMD
processes by a dedicated ARF. The research cycle was executed in twoconsecutive
phases as shown in Figure 2.1. In the explorative phase, after identification of relevant
sources of publications, a systematic literature study was conducted at the earlier stage
of the research project. The obtained information was used to map the questions-relevant
literature publications to a landscape of concerns related to SEFs. In combination with
critical system thinking, both quantitative and qualitative methods were applied. As far
as the quantitative method was concerned, a bibliometric map of the publicationswas
constructed with the goal to visualize the relationships of the specified key terms included
in the corpus (the collection of publications). The reasoning model was derived based on

29

the findings of the quantitative analysis. It would
be used for the qualitative analysis.

Since the time of this first conducted literature
study, many related research efforts and results
have been published in the literature. Therefore,
in the process of preparing the dissertation, the
original bibliometric map has been updated in
line with a new additional collection of
publications. Besides updating the first literature
study, the second analysis was also intended to
confirm that a proper choice was made concerning
the phenomenon and methodological orientation
of the promotion research.The robustness of the
choice was indicated by the facts that (i) other
researchers also initiated research on the same or
related topics, and (ii) the topic of the literature
study was far from exhausted. Nevertheless,
though the original reasoning model could be
reused, the need for an extension arose (see Figure
2.6).

The content analysis was used as the qualitative
method. It was narrowed down to three domains
according to the reasoning model: (i) the domains
that provided the context information for the
research, namely: cyber-physical systems and
system smartness, (ii) the domain of discourse of
the research including the details of framework
development from multi-perspectives, and (iii)
the domains that provided content information
for studying frameworks. It complicated our
study that there were many epistemological and
methodological relationships among the domains
and their elements.

The confirmative phase was orientated to the
logical consolidation of the findings. First, the
findings concerning the research and development
opportunities of the SEFs were synthesized to
support the design process of ASRMs. Currently,
representative examples of SEFs are used in
various domains of interest. The most important
characteristics of an ARF have been identified as

Figure 2.1: The procedural approach
 of RC1

30

the provided functionality, the architectural components, the implementation principles,
and appropriateness of recommendations. To benefit from these, the ideation process of the
ARF was completed with a view to the specific operational characteristics including, for
example, the possible services, the primary support functionality, the software architecture,
and computational mechanisms.

Having the potential characteristics of an ARF identified, various sets of requirements were
identified based on the findings of the literature study, employing brainstorming technique,
and critical systems thinking. The fact of the matter is that most of the requirements were
drawn by analyzing the implications of the findings of the literature study. They were
collected from multiple sources and analyzed to arrive at a technically meaningful and
logically consistent list of requirements for an ARF. The requirements were clustered into
groups (e.g., functional requirements, structural requirements, computational requirements,
and application-oriented potential requirements) for the purpose of further analysis. The
requirements were justified by critical system thinking and their consistency within and
across groups were checked. In addition, with the aim of validation of their feasibility, the
whole set of requirements was evaluated for achievability and practicability.

2�2 Design of the literature study

2�2�1 Procedural phases of the literature study
Including the follow-up complementing study, the literature studies were completed
in three subsequent phases, namely: (i) orientation and source exploration, (ii) content
analysis, and (iii) synthesis and consolidation of the findings. In the first and the third
phases, critical system thinking was the main method of analysis. In the second phase, both
quantitative analysis and qualitative interpretation were used. In the web-hosted study, (i)
various search engines, (ii) a reference management tool, and (iii) a (bibliometric map)
visualization tool was used as a research instrument. The primary criteria for picking up
a document for further examination were (i) relevance of content, (ii) time of publication,
and (iii) the quality (recognition and reliability) of the source. We intended to achieve
both comprehensiveness and coherence throughout all phases of the study. We used the
reference management software not only to sort the publications into clusters, but also to
support the storage of the corpus.

As the primary source of data, the core collection of the Web of Science was used. To
extend the base of the literature study, other sources, for example, databases in specific
CPSs-related disciplines and web repositories were also used. The term framework was
considered as a main keyword. The exploration of frameworks for reasoning was to be
done in the context of S-CPSs, which was considered as a family of CPSs. Other relevant
keywords were defined including self-awareness, self-adaptation, smartness, smart
cyber-physical systems, system knowledge, context and situation awareness, reasoning
mechanisms, and system adaptation. The preliminary inquiry hypothesis addressed the
relationships of the keywords to each other. These relationships were investigated in the

31

completed content analysis.

According to the original literature study published in 2018, the publications included
in the study were covered over the past ten years (2008-2017) at the time of compilation of
the papers. There were 807 publications that fulfilled the criteria of the conducted search
and served as the knowledge base for the literature study. While preparing the dissertation,
we developed the complementing study by updating the publications from 2018 to mid-
2021. The objectives of the study update were: (i) what new results were published in the
domains identified by the original reasoning model, (ii) what important novelties emerged
that were not included in the original reasoning model, but are important, (iii) what similar
works have been initiated since 2018 in the same field of interest, and in different fields of
interest (e.g., law, commerce, and education), to create active recommender frameworks
(i.e., for supporting the design of application-specific reasoning mechanisms), Since the
time of performing the original literature research, the sample has grown with a number
of 1,249 publications. Thus, the extended corpus of the complete literature study was a
total of 2,096 publications. The statistical trend of yearly publications is shown in Figure 2.2.
The increased number of publications over the period of the completed study gave us the
impression that the topic chosen for the promotion research was interesting for the concerned
research communities (e.g., in the field ofCPS development, cognitive system engineering,
and multi-disciplinary information engineering).

Figure 2.2: Number of publications included in the literature study over the period
 from 2008 until mid-2021.

32

In the third phase, a bibliometric map was constructed. This map relied both on the initial
search words/phrases and on the found key terms (Figures 2.3 and 2.4). The objective
of constructing the map (notional landscape) was to capture and visualize the network
formed by the key terms extracted from the corpus. The VOSviewer software was used for
this bibliometric mapping. The exploration using the VOSviewer was conducted in three
steps: (i) extraction of key terms from the collected publications by using text-mining
technique, (ii) manual filtering (removing or merging) key terms that resembled each other,
and (iii) creating the map as a network of co-occurring key terms (with nodes and edges).
The software assigned the nodes of the map to a cluster for which it was assumed to be
relevant. Technically, the clustering used by VOSviewer was based on optimization using
the smart local moving algorithm [1].

In the original literature study, the bibliometric map contained 67 nodes and over 2,000
links. These were sorted into three main clusters as shown in Figure 2.3. These clusters
were regarded as knowledge domains and (intuitively and manually) named as: (i) systems
engineering, (ii) knowledge processing, and (iii) system behaviors. It was interesting to
observe that an intersection of the above three clusters was formed and populated with key
terms such a framework, models, structure, and application. The key term ‘framework’
appeared as an intermediary link across different terms in the different domains.

The original bibliometric map was modified according to the additional new publications.
As a result, the modified map contained a total of 26 nodes and over 2,500 links (see
Figure 2.4). The key terms were also sorted in the tree clusters, which could be identified
with the same domains of knowledge. The term ‘framework’ had been the intermediary
link across the domains. Some new terms appeared, for instance, related to (i) cognition
in system behaviors, (ii) artificial intelligence (e.g., machine learning, deep learning), (iii)
recommendation in knowledge processing, and (iv) application contexts in the field of
system engineering of CPSs (e.g., industry 4.0, smart city). In spite of the emergence of
some new terms, the main key terms and their relationships remained relevant in the map.
This confirmed the correctness of the starting hypothesis, which expressed the need for
proper SEFs in the development of S-CPSs.

2�2�2 Devising the reasoning model for the original literature
study

In the quantitative analysis, the number of occurrences of the key terms ‘singular’ occurrence
and ‘coupled’ occurrence were taken into account. In the case of a coupled occurrence, two
or more key terms simultaneously appeared in a particular publication. The key terms
were visualized as node of the map, and the links among them as edges. This ‘landscape
map’ provided information about the distribution as well about the interrelatedness of the
key terms. Based on the number of the incoming and outgoing edges, the centrality of the
individual key terms could be seen. The ones with large number of interconnections formed
a kind of hub. Thus, our quantitative analysis could use both frequency analysis and topical
distance evaluation.

33

Fi
gu

re
 2

.3
: O

rig
in

al
 b

ib
lio

m
et

ric
 m

ap
 o

f t
he

 sp
ec

ifi
ed

 se
ar

ch
 p

hr
as

es
 a

nd
 th

e
fo

un
d

ke
y

te
rm

s (
B

as
ed

 o
n

th
e

ow
n

pu
bl

ic
at

io
 [n

o.
3]

)

34

Figure 2.4: The updated bibliometric map (Modified from the own publication [no.3])

The topical distance of the key terms was enumerated based on the total number of
intermediate nodes on the shortest path (sequence of edges) between considered two key
terms. The number of edges between the key terms (i.e., the number of mutual occurrences)
was used as a strength indicator of their interrelationships. Concerning the complete set of
the search words/phrases we used, it was observed that some key terms were only weakly
related to others. Having omitted these weaker relationships, the map size was reduced and
was named power map. The outcome of this quantitative characterization was used in the
qualitative interpretation of the bibliometric map.

The road to the reasoning model led through the following preparatory steps: (i) defining
the concept structure, (ii) formulation of a tree of search words/phrases, (iii) generation of
the bibliometric map, and (iv) contents analysis of the network formed by the key terms.

35

Contents analysis is a widely used qualitative research method for literature studies. It is
a systematic review that draws conclusions based on a single, or multiple bodies of text
to explore trends, themes, and other common (or even distinct) characteristics of data.
Usually, contents analysis applies specific coding and assigns a structure of meta-data to
the textual data.

We also completed these activities of contents analysis in our study. The meta-data were
such as: (i) descriptors of the clusters, (ii) chronological tendency of citation, and (iii) the
type of contents (as knowledge). Based on the latter, the relationships found between the key
terms were characterized qualitatively. As shown in Figure 2.5, the key term ‘framework’
has strong couplings with other key terms, such as decision-making, knowledge-based,
and cyber-physical systems. This indicated the roles of frameworks in these areas (e.g.,
decision-making framework, knowledge-based frameworks).

Notwithstanding, continuous paths could be observed among many weakly coupled key
terms (e.g., self-awareness, system adaptation). Based on the power map, the original
reasoning model was derived to guide the literature study. Our considerations and decisions
concerning the interest domains included in a possible reasoning model were as follows:
‘Cyber-physical systems’ was taken into consideration as a broad domain of context

Figure 2.5: Power map of the network of keywords embedded in the updated
bibliometric map (Modified from the own publication [no.3])

36

and ‘system smartness’ as a narrower domain of context for our investigation. ‘System
engineering frameworks’ were taken into consideration as the primary domain of discourse.

As pertinent subject matters (domains of contents) for the investigation, (i) system-level
reasoning, (ii) synthetic knowledge, (iii) system reasoning, (iv) system awareness, (v)
decision making, and (vi) system adaptation were considered. According to the modified
bibliometric map, the term ‘recommendation generation’ was introduced to the domain
of contents. This is shown in Figure 2.6. The relationships of the subject matters were
made explicit based on this formal reasoning model, and were used in the qualitative
interpretation of all collected relevant publications. The next sub-chapters and sections
were arranged according to the brushed up reasoning model shown in Figure 2.6. It must be
also mentioned that some sections included below have been published in our publications
no. 1 and no. 3. The revised versions of these contents were included in Sections 2.3.1-2,
Sections 2.4.1-3, and Sections 2.5.1-5. The textual modifications were included with the
intent of improvement.2.3 Overview of the state of the art in the context domains

Figure 2.6: Derived reasoning model for the literature study (taken over and modified
from the own publication [no.1])

37

2�3�1 Progress in the development of cyber-physical systems
Cyber-Physical Systems was coined around 2006 by the group of researchers previously
working in related domains of interest such as embedded systems, advanced robotics, real-
time systems, hybrid systems, and control systems [2]. In 2007, there were twelve papers
found when ‘Cyber-Physical Systems’ was searched on Web of Science. Recently (2021), it
has increased exponentially to over 12,800 papers in total. This indicates that CPSs are the
informed engineered systems, which have been developed intensively since the last decade.
On the scientific domain, CPSs seem to be a kind of model for next generation engineered
systems. They have emerged from the integration of two dominant areas that are (i) system
with embedded software, and (ii) global data networks [3]. However, there are various
perspectives on CPSs that could not be defined by a unified term. This is one reason why
their ontological, epistemological, and methodological foundations are still missing.

Another one is the observable rapid shift in the paradigm. While ‘a tight integration
of computing and physical parts’ was an agreement on the essence of CPSs [4], ‘deep
penetration into physical, biological, social, human, cognitive, etc. processes in a self-
organized manner’ is now getting accepted by the majority of experts [5]. This makes
it possible to introduce CPSs in various human, social, etc. task domains, and not only
in purely industrial application fields. Many of these applications could be not addressed
successfully by other paradigms of engineered systems. Most of the CPSs are highly
heterogeneous conglomerates of interconnected analogue and digital hardware, control
software platforms and application tools, and structured knowledge repositories and data
streams as cyber-ware [6].

CPSs are capable to provide a very wide range of functionalities, since they usually
incorporate a large number of networked actor nodes that can perform smart anticipating
behavior. From an architectural perspective, these networked actor nodes form either a
closed or an open system, which in turn can be a constituent of a more complex system of
systems [7]. The IoT-based interconnection of distributed devices via the Internet offers
quasi-real time connections to both users and the physical world. The proliferating cloud
platforms offer a wide variety of capabilities and provide virtually unlimited on-demand
resources for current implementations. Modern CPSs are designed to be functionally
dependable, secure and safe, adaptive and selfsupporting [8]. Self-adaptive software
architecture plays a paramount role in the implementation of adaptive CPSs [9].

Many researchers have put the issues of evolutional and replicative CPSs in their research
portfolios as well [10]. The typical methodological strategy of designing and managing
1G-CPSs is using a model-based approach. In the overwhelming majority of cases,
model-based design is complemented with component-based realization. Both of these
have reached the status of a de facto standard. System models are multifold and varied
in terms of their contents, representation, and interoperation. However, they are based
on knowledge structures, and workflows implied by the traditional systemengineering
frameworks (TSEFs). They usually capture descriptive and prescriptive data/information,

38

which may be extended with predictive information in the form of situational and inferential
rules, but do not support fully data-driven development and/or operation [11].

An intense diversification can be observed not only in terms of the application fields, but
also in the system functionalities [12]. There are systems whose output is dominantly
information service, while other systems provide transformative services for real-life
processes and stakeholders. Due to the gradual intellectualization of operations of CPSs,
the concept of cognitively enabled CPSs has emerged. This gives a ground to new research
and design challenges such as:

(i) attaining situation awareness in the case of large distributed systems with
decentralized management and control [13];

(ii) handling large amounts of data in real time with the objectives of (i) providing adapted
services, (ii) monitoring system performance and environmental dynamics, and (iii)
detecting faults and degradation [14];

(iii) learning useful patterns of auto-reconfiguration and self-adaptation from past examples
[15]; and

(iv) analysis and smart reasoning concerning user behavior, exploration of non-
predefined needs, and detection of intents and activities [16].

As examples of cognitively enabled CPSs, 2G-CPSs: (i) deeply penetrate into physical,
computational, social, cognitive, emotional, etc. real-life processes, (ii) collect data and
derive information runtime, (iii) generate alternative operation strategies based on the
acquired data, and (iv) operationalize the best matching strategy through functional and
architectural adaptation. Normally, they manifest as system of systems [17]. The capability
of building awareness and making adaptations is crucial for 2G-CPSs [18]. This enables
them to work properly in emergent situations and/or in dynamically changing environments.
However, the former is still limited by the premature computational reproduction of self-
consciousness, the latter by the physical constraints of resource provisioning [19].
Preprogrammed system/control models either pose significantrestrictions on runtime
alteration and adaptive behavior or simply do not support them [20].

System level reasoning and synthetic knowledge are two major enablers of this kind of
operation [21]. None of these can be associated with one single component of a system. In
the light of the above facts, our major methodological findings are:

(i) the methods and tools available for (system-level) synthesis and modeling of CPSs rest
on the principle of reductionism and show an incompatible diversity,

(ii) though compositionality is recognized as a paradigmatic feature of smart systems, its
manifestation in artefactual and servicing contexts is not sufficiently understood [22], and

(iii) no specific system engineering framework has been proposed for compositional
realization of smart CPSs.

39

2�3�2 Achievement in the implementation of system smartness
The term ‘smartness’ is ambiguously defined and interpreted in the current literature, and
is used in diverse perspectives [23]. In certain publications ‘smart’ is used as a synonym of
‘modern’, ‘sophisticated’ and ‘up-to-date’, whereas in other publications it is equivalent of
‘intelligent’, ‘adaptable’, and ‘cognitive’[24]. For example, it is stated that SCPSs exhibit a
high level of ‘intelligence’ in terms of opportunistic cooperation, dynamic self-organization,
self-healing, and self-adaptation as a characteristic feature[25]. Other authors claimed that
S-CPSs could adaptively collaborate with other systems at runtime [26]. Consequently,
there are still ambiguity and uncertainty related to ‘smart cyber-physical systems’, although
the concept has appeared in scientific publications since 2014 (See for example [21], [27]).
System theory interprets smartnessas a holistic behavioral characteristic [28]. This holistic
view is rooted in the following:

(i) the overall behavior of the whole system cannot be explained by decomposing it into
isolated parts, and

(ii) the relationships among the components of a system may give rise to distinctive
behavioral patterns that may largely differ from the intrinsic properties of the individual
parts.

Smartness of systems may come from interpreting and reasoning with incoming sensor
data and combining the outcome with the knowledge owned by the system concerning the
respective processes and with the knowledge of how the system works internally [29]. This
leads to situated reasoning and decision making in contexts.

S-CPSs have been identified as the next rational step in realization of industrial systems
[30]. In order to show ‘system intellect’ in their operation, their control regime must be
more sophisticated and capable to implement many self-*characteristics. In the process
of transitioning from 1G-CPSs to 2G-CPSs, the system capabilities of self-regulation and
self-tuning are supposed to be replaced by self-awareness and self-adaptation. These go
beyond (i) self-adjustment, (ii) self-healing, (iii) self-optimization, and (iv) self-protecting
capabilities, and the other forms of selfmanagement and self-organization normally
expected from 1G-CPSs [31].

Smartness enables systems to build their own model concerning what the most probable
operational situation is, and how to respond to this situation with a preferable objective and in
a favorable manner. Should the situation (task, state, environment, etc.) dynamically change
over time, a smart system must adapt itself to deal with the dynamics while maintaining the
requested level of performance or even improving it when repeatedly confronted with the
similar situations. Wang (2009) presented a cognitive reference model of architectures and
behaviors of cognitive robots, which reveals the architectural differences and behavioral
characteristics of cognitive robots beyond conventional imperative robots [32].

Higher-level system intelligence and operational autonomy need even more advanced
system understanding, knowledge intensiveness, and complex anticipation [33]. Evidently,

40

these expectations go together with many new challenges for conceptualization and design
of next-generation CPSs. One of the design challenges is ‘partial design’ This means that
systems are not (cannot be) defined exhaustively in the design stage, because they adapt
and/or develop themselves during runtime according to the internal and external operational
conditions, the predefined and the possible objectives, and the available or acquirable
resources. This ultimately means that a part of the design tasks is delegated to CPSs that
learn, reason, and evolve (under a ‘remote’ strategic supervision of humans). Future system
intelligence is conceived as a multi-functional abstract intelligence (αI) that blends the core
of neural, cognitive, functional, social, and logical inferences into a common and unified
framework [34].

Our conclusion has been that system smartness, as with other holistic system level features,
assumes a compositional design that in turn needs to be based on a compositionality-
enabling framework [35]. In compositional systems, the function and the architecture of
a non-primitive component depend on the wholeness that is formed by the total of the
components [36]. The necessary function and architecture of each component can be
determined by means of applying some sort of recursive behavioral composition rules that
work in parallel with physical interoperation composition rules. This is actually the so-
called ‘principle of compositionality of system behavior’.The realization of this typically
raises the need for adaptation of the components by the designers in the design stage, or for
self-adaptation of the system in the operation stage [37].

2�4 Investigation of system-engineering frameworks for
S-CPSs

2�4�1 Progress in the area of system-engineering frameworks
System-engineering frameworks (SEFs) are starting points at the development of systems.
They propose a structure of thinking that establishes a body of concepts and provides
representations for conceptualizations. Frameworks are also regarded as blueprints that can
be converted into various artefact and process models instrumental for building concrete
solutions [38]. Typically, frameworks are discussed from ontological, epistemological,
and methodological viewpoints. In line with the objective explained in Section 2.1, we
contemplated frameworks only from an ontological viewpoint (what exists in the form
of frameworks) and from an epistemological viewpoint (what bodies of knowledge
a framework captures). However, we intentionally ignore discussing them from a
methodological viewpoint (e.g., how a framework can be operationalized in practice).

Based on the survey, the notion of framework is defined as an essential supporting
structure underlying a system, a concept, or a text. But the survey also emphasized
that there was no consensus either on the definition of the term, on the epistemological
consistency, or on any rules in the usage of it [39]. The fundamentals of SEFs found in the
literature could be classified into four concepts, namely:

41

(i) A framework as a structure of logical thinking [39]

This is a general concept of a traditional framework. It is a structure of something serving
a particular purpose. For example, in [40], the framework shows the logic flow of the
recommendation process.

(ii) A framework as a meta-model of a system

A framework represents an abstract level conceptualization of a system that can be
developed into multiple models. Its aims at providing a user with modelling elements,
a concept structure, and a set of constraints for creating a system model [41]. A concept
structure is used as a frame describing how modelling elements are connected in a particular
application model, as seen in a model-based framework of design and verification [42], and
four-layer decision cycle framework [43].

(iii) A framework as a model integration

In contrast with a meta-model, a framework allows multiple models integrated at a higher
level of abstraction [45]. In the OpenMETA integration framework [44], multiple models are
converted into a meta-level model. Based on this, a range of concepts, models, techniques,
and methodologies can be clarified and/or integrated as shown in Figure 2.7.

(iv) A framework as a concept creation tool

A framework provides a set of concepts and possible connections. The relationship of
concepts either within or across domains of concepts is able to create a new concept for
system development [46]. Within the dual cognition design framework [47], it exemplifies
the ideation on product development that is created by the interrelationships of domains

Figure 2.7: OpenMETA – model integration framework (courtesy of [44])

42

of design processes (included inspiration, decomposition, and integration) and domain of
design spaces (included problem space, idea space, and concept space).

2�4�2 Ontological dimension of system-engineering
frameworks

In the most general meaning of the word, framework is an arrangement of interrelated things
with a particular objective based on a set of non-conflicting assumptions. Frameworks
are created by human intention and thinking. In this sense, they are transcriptions of
human mental models into some kind of formal representation. Cognitive frameworks are
generated intuitively based on conscious thoughts and memories. They are used to guide
daily activities and longer-range decision making without any formal representations [48].
Obviously, the content captured by a framework strongly depends both on the objective of
creation and on the context of application [49].

For example, a theoretical framework is defined as a composition of (elements of) theories
and a set of assumptions about their proper relationships. This type of framework can be
used, for instance, to describe, explain, and predict a phenomenon in a particular discipline
or across disciplines. In the field of software engineering, the notion of “framework” is
interpreted as a set of cooperating classes that forms the basis of a reusable design for a
specific class of software and that provides architectural guidance by partitioning thedesign
into abstract classes and defining their responsibilities and collaborations.

Based on our study, it revealed that in the domain of system design, the most frequently
discussed frameworks are:

General frameworks – (i) arrange entities and represent their relationships by
flowcharts and causal diagrams, (ii) outline structure, modules, and entities, (iii)
identify main topics related to the content, and (iv) list the requirements [50].
The overall and formal system frameworks can be sorted into this category
[51], [52].

Conceptual frameworks – arrange a set of notions, conceptual definitions, buildingblocks
and relevant variables, or concept variations in contexts [53]. Usually, these are presented
as narratives, but can also be graphics, causal diagrams, procedures, and algorithms [54].

Logical frameworks – are typically used to define and consistently/coherently arrange
abstract or concrete entities. They can capture logical or procedural connectivity of
artefactual and/or process entities for specific purposes [55]. Primary representations
are logical languages, logical expressions, logical variables, functions, predicates, and
inference rules, but formal models, class diagrams, constraints networks, requirements
trees, and computational procedures are pertinent too [56].

Architectural frameworks – specify the blueprints of system structures on various
levels of abstraction or concreteness in both design and re-design processes [57]. They may
represent the developed system in (i) static and dynamic dimension (entities, arrangement,

43

interactions, behavior), (ii) design domain dimension (contextual, functional/logical, and
physical viewpoints) [58]. and (iii) abstract dimension (objectives, interdependences,
instantiations) [59].

Component-based frameworks – focus on physical manifestation and relationships
of designed or existing system components that are usually reusable, replaceable,
and extensible modules and elements [60]. These frameworks provide guidelines for a
component developer on how to produce custom components[61]. Typical representations
are UML, class diagrams, use-case diagrams, schematic representations, and computational
algorithms.

Model-based frameworks – reflect abstractions and simplifications of modeled systems
[62]. A model-based framework, such as MoZaRT, is the basis and a tool for constructing of
a set of models. Ontologies play the role of models [63]. The objective is to help designers
to cope with scheduling analysis and to be more autonomous during the analysis stage [64].

Contextual frameworks – make conceptual distinctions by referring and organizing
things and ideas that are supplementary, but influential in a situation [65]. They are also
an analytical means to handle possible variations, models, or conflicts of contexts [66].
Frameworks for context data modeling and analytics form a special group of these [67].

Temporal frameworks – are means for arrangement of events and relations in chronological
order [68]. They also provide underpinning mechanisms for articulating temporality from:
(i) a diachronic/synchrony aspect, and (ii) an instant/duration aspect. Some frameworks
capture spatial or procedural characteristics and uncertainties [69].

Composite frameworks include sub-sets or any arbitrary combinations of the
previously mentioned types of frameworks in purpose-driven manner [70]. For
instance, Feng, S. et al. (2016) proposed a framework for cyber-physical systems with a
human in the loop [71].

2�4�3 Epistemological dimension of system engineering
frameworks

Concerning the knowledge captured, framework specifications can be decomposed into four
major elements: (i) the purpose and contexts of creating the framework, (ii) the set/
kinds of entities included in the framework, (iii) the explicit/implicit relationships of the
entities, and (iv) the explanation provided by logical interpretation of the framework.
As it comes from the ontology of frameworks, the possible sets/kinds of entities can
be theories, concepts, functions, definitions, components, variables, notations, and
methods. They can be uttered verbally and textually, but are typically visualized in
various graphical forms. The (possible) relationships of the entities depend on both
their semantics and manifestations. Usual representations of relationships are causal
relationships, hierarchical diagrams, logical expressions, topology graphs, connectivity
diagram, flowchart, and mathematical models.

The specification of a framework (intent-driven, semantically proper interconnecting of

44

entities) is supposed to provide sufficient information about the consequences (implications)
of applying the framework. It may provide the information in several forms, i.e., as
prescriptive guidance, explanatory accounts, generative constructs, logical mechanisms, or
predictive models. The main criteria for justification of a framework are consistency and
coherence. A properly constructed framework captures a pattern that enables prediction
at above the chance level. Aspects of validation are such as completeness, parsimony,
and feasibility. The prediction provided by a framework can be in the logical, virtual,
spatiotemporal, or material domain. Recognition of and elaboration on the logical/semantic
pattern offered by a framework help recognize, for example, cause and effect relationships
and prediction of other dependences.

Computationally, a framework is represented as a purposeful arrangement of data structures
derived based on a network of concepts. This is, however, nothing other than a reductionist
attempt to create computational models based on mental structures. In the interpretation
of Bridgens and Lilley (2017), a framework is intended to lend itself as a tool, which can
be used to combine information from multiple sources [72]. They presented a framework,
which shows nteraction of material type, intrinsic and extrinsic properties, stimuli, physical
material changes, and experiential responses to changes. A compositional example is a framework
for error recoverable software, which provides a set of reusable abstractions for [73]: (i)
defining recoverable units; (ii) detecting and diagnosing errors; (iii) providing coordination
and control protocols necessary for recovery; and (iv) providing communication protocols
between recoverable units. Handling compositional abstractions seems to be an important
issue [74].

Our study had to reveal that no formal approach or standard model exists for framework
specification in engineering, whilst the established SEFs are supposed to guarantee not
only the synergy of the modeling knowledge, but also the consistent operation and event
orders of the developed system. The frameworks currently used for the development of
1G-CPSs usually benefit from the principle and opportunity of composability. The existing
frameworks that were found in the literature were usually developed by one or more
approaches in five categories:

(i) Ad-hoc development

Ad-hoc development constructs a new framework from scratch. There is no standard
procedure in a development of framework. It is a kind of bespoke systems dependingon
a developer’s expertise and viewpoints without any formal guidelines [75]. However,
without a rigorous approach, it is not possible to achieve correct, efficient, reliable, and
robust designs.

(ii) Holistic approach

The Holistic approach abstracts or adapts an existing meta-model to develop a framework.
The iterative-incremental development at the core of the design process generates the
methodology in a top-down fashion [76]. It initiates from the general lifecycle to the
details of activities by using the requirements and methodology descriptions as a basis. A

45

development framework is usually constructed in the multiple-layer structure that provides
the relationships of components in multiple viewpoints [43], [77]. The hierarchical layers
also range from the high level of abstraction to the concreate structure of the system [78].

(iii) Model-based approach

The Model-based approach creates simplified representations of a system that helps a
designer understand its characteristics at a certain level of abstraction. A model can be used
as the first artefact driving the framework development process. In Anwar et al. (2019),
they used the model-driven framework represents structural, behavioral and verification
requirements at a higher abstraction level. The development framework is supposed to be
a model integration which provides modelling formalism tointegrate multiple models [79].
In the different classes of models, semantics are needed for the integration process [44].

(iv) Architecture-based approach

An architecture-based approach conceptualizes a (logical) structure to support the
development of the concrete architecture and specific functionality of a system. The
architectural structure represents the first design choices in creating conducive and effective
architecture descriptions, as discussed in [80]. Typically, the architectureimplied system
engineering approaches capture different concerns (aspects) of system development. These
can be sorted into three classes: (i) service-oriented architecture (SOA)-based frameworks
[81], (ii) multi-agent system (MAS)-based frameworks [82], and (iii) other aspect-oriented
frameworks [83]. Compared to SOA-based frameworks, MAS-based frameworks are more
lightweight and more scalable in practice. In addition, multi-aspect formal frameworks
have also been proposed to improve the functional performance of CPS.

(v) Component-based approach

A component-based approach operationalizes a framework through identifying and
interrelating components retrieved from a repository. Components are constituents
of systems characterized by their interfaces (e.g., an abstraction that is adequate for
composition and re-use). Component-based approach manifests in a bottom-up way of
working. In software engineering, this approach is in relation to object-oriented software
design, and implementation [84]. The process commences with the evaluation of the
known functional requirements [75], and identifies a set of components that satisfies the
requirements. In the next step of the process, a large variety of components, each having
different characteristics, are dealt with. An example is provided in [85]. The develoment
framework itself helps identify those key components which play an important role in early
modelling of a system. In some cases, a component-based framework allows the designers
to consider components that are unavailable at the construction time and to integrate them
into the application later, when the deployment is going on [86]. The major challenge of this
approach is a composition of such components to ensure that they interoperate correctly. It
needs semantic interpretation encompassing heterogeneous composition [87].

46

2�4�4 Analysis of the system-level functionalities of active
frameworks

The functionality of a system is the total set of all its functions. It was noted in the previous
section that the traditional frameworks play multiple roles in the design processes. These
roles implied by their functionalities included:(i) supporting obser-vation and understanding
of a phenomenon, (ii) addressing problems and proposingproblem-solving methods; (iii)
offering means to combine cross-domain knowledge to create new concepts, (iv) providing
a logical structure to verify conceptual ideas, and (v) providing multi-level architectural
structure that can be seen as a blueprint for designing a system. The utilization of these
frameworks was done in a passive manner. They cannot capture the behavior change in the
procedural process of working environments.

We argue that a framework will be actively performed if it is able to recognize the changes
in states of the observed system, to reason what situation is happening, and to take an action
to response to the situation. The action can be considered in several levels of automation,
namely: (i) warning a user when an anomaly is detected, (ii) proposing a decision-support
recommendation to a user to solve a problem, or (iii) automatically solving the problem
by the framework itself. This section aims at exploring and analyzing the system-level
functionalities of SEFs by focusing on: (i) process monitoring; (ii) context modelling; (iii)
situation reasoning; (iv) decision support; (v) problem-solving, as shown in Table 2.1.

As proposed in [88], the Trace and Trigger framework is an agent-based adaptive
framework that helps agents detect adaptation requirements dynamically at runtime. It
consists of two main mechanisms – a dynamic monitoring mechanism and an adaptation
assistant mechanism. Functionally, it performs the event-based monitoring which observes
traces in the event log file. By using event tracing, agents can publish, request, and cancel
subscriptions dynamically in order to send and retrieve only the information that is
interesting at each moment. Interestingly, two resembling frameworks as proposed in [89]
and [90]. They have the same set of system-level functionalities, i.e., process monitoring,
context modelling, situation reasoning, and decision support. Both of them collect
information about the user’s daily activities real-time. The former offers suggestions to an
individual user, who responds dynamically to the situations at runtime. The latter provides
a personalized routine plan to the user about physical activities. As indicated, only the
former one performs in an active manner. According to the findings, we conclude that the
frameworks having process monitoring functionality were able to perform in an active
manner by collecting data in real-time, processing the data, and providing the services,
which responds to the runtime operations [91]–[94].

2.4.5 Exposition of the findings and first propositions
The primary objective of the knowledge aggregation was to explore the need and the
progress concerning SEFs for a compositional synthesis, modeling, analysis, simulation,
verification, and validation of S-CPSs. The major findings and first propositions can be
summarized as follows:

47

A SEF may play several roles in the development of these systems [100]. For instance,
it may: (i) specify the range and boundaries of the target system, (ii) serve as a starting
arrangement of concepts from various fields in an integral system concept (ISC), (iii)
provide a rational basis for the functionality and feasibility of an ISC, and (iv) provide
multi-aspect representations as blueprint for the implementation of an ISC. A SEF should
safeguard the proper outcome of synthesis and modeling of S-CPSs, as well as of the
other downstream activities of system development. The task is to identify or specify
synergistically interoperating constituents, rather than only interfaceconnected, self-

Table 2.1: Analysis of system-level functionalities of frameworks

frameworks

functions

av
tiv

e
m

an
ne

r

application context

pr
oc

es
s m

on
ito

rin
g

co
nt

ex
t m

od
el

lin
g

si
tu

at
io

n
re

as
on

in
g

de
ci

si
on

-s
up

po
rt

pr
ob

le
m

-s
ol

vi
ng

Reasoning-based FW [92] • • • Y driving safety warning system

OpenMETA [44] • • N designing CPSs

ACPSF [51] • • N design adaptive CPSs

Trace &Trigger FW [88] • • Y business process management

Context-aware adaptive FW [95] • • • N e-health monitoring system
Situation reasoning FW [96] • • • N situation inferring using IOT

sensor data
Computational intelligence FW
[97]

• • N design support

Fog computing-based FW [98] • • N predictive maintenance in cyber-
manufacturing

KN-based reasoning &
recommendation FW [90]

• • • • N personal activity for wellness
recommender system

Context-aware reasoning FW [89] • • • • Y smart home recommender
systems

Predictive process monitoring [93] • • Y business process management

Risk-based decision FW [91] • • • N structural health monitoring

POLAR++ [99] • • N recommender systems

MAS-based self-healing FW [94] • • • Y fault tolerance & automatic
restoration in distribution
networks

48

contained components. A SEF should explain how to bring them into operational and
architectural relationshipsconsidering varying contexts.

Considering the recent trends, we believe that the time has come for a rigorous
investigation of this topic, starting with idea generation. It is with high probability that a
single monolithic framework will not be sufficient for these purposes. Instead, some form
of composite frameworks is foreseen that is able to capture multiple aspects of system
manifestation in one construct. However, the majority of existing academic publications
focused on traditional frameworks, which are, in the overwhelming majority of cases, static
knowledge (concept, function, etc.) structures. They cannot capture procedural or behavioral
changes, which are typical in constructive processes as well as in recommendation services.
Changing the architecture and updating the knowledge of a static framework typically needs
experts [101], and tailoring and using their contents in dynamic applications go together
with heavy limitations. They are not able to learn and adapt to situational dynamics. Based
on the analysis of system-level functionalities of SEFs, two essentialfunctionalities should
be considered to equip a framework with an active manner: (i) real-time process monitoring;
and (ii) runtime recommendation provision.

2�5 Investigation of the enablers of system-level reasoning

2�5�1 Phenomenon of system-level reasoning
Informally, system-level reasoning (SLR) is a capability that makes cognitive
inference by intellectualized systems in an orchestrated manner. SLR is performed as
recurrent cycles of sensing, inferencing, learning, and adaptation activities. In principle,
it may involve all constituents of a system, no matter if they are hardware, software, or
cyberware components [102]. The concept of SLR has arisen in the context of traditional
(mission-critical) systems. Implementation of SLR needs more than only specific
artificial intelligence algorithms, though each of the above mentioned four activities
can be supported by or can be based on AI algorithms [103].They are assumed to be
functionally,architecturally, and computationally coupled and complemented. System-level
reasoning can be implemented on various behavioral modes using analytic and synthetic
approaches.

A practical example of an analytic computational approach is the vehicle-level reasoning
system presented in [104], which deduces information about the overall operational
health of an aircraft. The reasoning is based on a combination of hardware devices and
an artificial intelligence-based software application, whose computationalfunction is
to generate conclusions from available knowledge using logical techniques of deduction,
diagnosing and prediction or other forms of reasoning. SLR fuses information from the
several sub-systems. Analytic SLR is also crucial to achieve smartness and other holistic
qualities in large software systems. In addition, means of analytic reasoning about system-
level properties have been pioneered in the areas of security and authentication[105]. In
the case of CPSs, SLR is still a maturing research phenomenon. If the system does not

49

have self- managing intelligence, then usually a wide range of traditional abstraction-based
modeling and functional simulations are considered in the design phase. A major challenge
is that sub-system level data and results are not available on the system level.

A synthetic computational approach of SLR is based either on a single or on a composite
logical theory and/or computational approach such as induction, deduction, abduction,
retrospection, probability, analogy, learning, or production. The term‘synthetic’ means that
the reasoning architecture, process, and results are produced by computational synthesis
and that synthetic computational reasoning tries to achieve a relatively high fidelity in
comparison with human reasoning. Artificial intelligence and machine learning research
extensively studied these fundamental logical mechanisms, as well as their specific
combinations [106]. Based on the analogy of human reasoning, common, modular,
distributed, and collaborative reasoning approaches have been identified as distinct forms.
The fact is that SLR intends to mimic human reasoning during information processing
and knowledge development in complex situations, whereas classical artificial intelligence
systems use dedicated methods to solve specific problems in a way, which can be measured
and assessed concerning humanistic results.

Crowder et al. (2014) proposed a collaborative cognitrons framework called Synthetic,
Evolving, Life Form – Dialectic Argument Search (SELF DAS). Its constituents work
towards distinct and separate learning objectives [107]. The architecture included
unsupervised and semi-supervised cognitrons. An active resonance theory-based, fuzzy,
unsupervised neural network (FuNN) structure was used for the implementation of SELF
DAS, which included shared fuzzy antecedents and conclusion classifiers, and processing
nodes for fuzzy inference rules. It must be recognized that the number of possible links
among the entities may grow fast if systems become bigger. It may lead to a combinatorial
explosion, which means that no computer or living cognitive system could ever compute it
[108]. Lieto et al. (2002) presented a rationale for knowledge-level integration in a cognitive
system, DUAL-PECCS, which supported conceptual representation and categorization
with two different cognitive architectures[108].

2�5�2 Knowledge as enabler of system-level reasoning
Knowledge is awareness and familiarity of the semantic meaning of information, and the
cognitive potential of solving explicit problems in a given context. Recently, structured and
coded knowledge has become an essential enabler of smart CPSs, but also other genres of
engineered systems, such as AI applications [30] [109]. Coded human knowledge and self-
acquired synthetic knowledge allows engineered systems to perform cognitive processes
such as sensing, event detection, situation recognition, reasoning, action planning, and
actuating through a feedback-controlled loop [20]. However, a purposeful integration of
various kinds of knowledge is needed to perform specific task. For instance, (i) common
sense knowledge is needed to reason about the utility of common (everyday) things, (ii)
spatial-temporal knowledge is needed to describe system states at different points of time,
and (iii) encyclopedic knowledge is needed to define actions and objects, as discussed in
[110].

50

System knowledge is the symbolization process of knowledge that is deeply linked to learning
and reasoning processes [111]. It can be obtained from different sources and captured by
knowledge representation. The construction of new knowledge also demands the use of
previous knowledge and different cognitive processes. It can be obtained from different
sources and represented in several forms, including distributed, symbolic, non-symbolic,
declarative, probabilistic, and rule-based [112]. The knowledge has been modelled that
ranged from very informal as Object-AttributeValue scheme to strictly formal as OWL DL.
Almeida and Lopez-de-Ipina (2012) claimed that ontology is regarded as one of the best
approaches to transform context information into knowledge [113].

KnowRob is an example of knowledge processing system which uses ontology representing
domain-specific knowledge of daily-tasks, household objects, and events and temporal
things needed by service robots [110]. As shown in Figure 2.8, the knowledge contents
and functionality of the KnowRob can be extended with the difference modules i.e., for
reasoning about knowledge and for grounding the knowledge in the robot’s perception
and action system. However, in reality, it is difficult to create an engineering ontology
manually that could cover all permutations of the enormous number of entities, properties,
and attributes. Technically, as the number of triples in the ontology increases, the inference
time for environment actions becomes unsustainable [113]. This is actually a well-known
drawback of the knowledge engineering-based approach to knowledge modeling.

Figure 2.8: Architecture of KnowRob – a knowledge processing infrastructure for
cognition-enabled robots (courtesy of [110])

51

2�5�3 Awareness as enabler of system-level reasoning
Awareness is a product of knowledge processing, and monitoring [114]. It encompasses
context, situation, and self-awareness. Systems operating in a dynamically changing
environment should be able to build up awareness about (i) their context of operation (e.g.,
need for dynamic adaptation of tasks and objectives as response to external factors), (ii)
the situation they are operating in (e.g., understanding of the impact of the environment on
the operation), and (iii) self-awareness of themselves (e.g., understanding of the system’s
abilities and the availability of its resources for performing operations).

Context can be considered as a kind of knowledge [116]. It refers to any information that
used to characterize a situation of an observed entity. A system probably does not recognize
a situation from an isolated entity. Context awareness needs multiple entities i.e. person,
place, physical or virtual object that combined to model the semantic context to understand
the environments and make an adaptation [117]. It also implies an effective exploitation
of contexts.

To provide different context treatments, it can comply with the general lifecycle of
context awareness included four primary phases as shown in Figure 2.9 [115], namely:
(i) context acquisition – to obtain necessary context data; (ii) context modelling – to
represent contexts in a machine-readable and process-able form; (ii) context reasoning
– to derive high-level contexts from available contexts; and (iv) context dissemination – to
distribute useful contexts. It is usually assumed that context modelling using knowledge
engineering techniques will create complete accurate models. Different approaches
have been used for reasoning considering certain context information. The most widely
documented in the literature are, for instance, (i) fuzzy logic, (ii) probabilistic logic, (iii)
ontology-based reasoning, (iv) Bayesian networks, (v) hidden Markov models, and (vi)
the Dempster-Shafter theory of evidence [118]. Each of these approaches has its own
advantages and disadvantages, as it is evidenced by the review presented in [119]. In order to

Figure 2.9: Life cycle of context awareness [115]

support knowledge-intensive context
reasoning, ontology-based models
proved to be the most promising
technique to yield meaningful context
information [115].

Situation awareness is a computing
paradigm, which usually involves the
use of the concept of the situation in
real life. If a situation is specified as a
set of relations with other objects, then
both the objects and their relationships
may change with in terms of time
and location. In the framework for
cognitive situation modelling [120],

52

situation awareness is a part of situation management, which is based upon the steps of
sensing and perception, and is aimed at building an understanding of a current operational
situation. Situation modelling and inferring can range from using simple conditional rules
to application of more complex techniques. They are classified into specification-based
techniques (e.g. formal logic, spatiotemporal logic, and evidence theory), and learning-
based techniques (e.g. Bayesian deviations, Artificial Neural Network, and web mining)
regarding their correlation to increasing complexity of problem descriptions [121].

Self-awareness can be seen as a higher level of situation awareness [122] forinstance,
a system is continuously aware of its operational and servicing states and behaviors.
In other words, self-awareness refers to the capability of a system to gather
and process information from its environment and to autonomously understand the
situation of those external and internal entities that can affect the system in
the accomplishment of its operational goal [123]. This capability is based on self-
monitoring that is typically implemented by a network of hardware and software sensors.
From the engineering perspective, the self-awareness can be considered as an emergent
property of the collective systems [124]. As a paradigmatic feature of S-CPSs, self-awareness
plays a crucial role in realizing dependable operation under changing circumstances during
runtime.

2�5�4 Reasoning mechanisms as enabler of system-level
reasoning

Reasoning is the ability to manipulate previously acquired knowledge to draw novel
inferences or answer new questions [125]. Consisting of a composition of computational
algorithms, a reasoning mechanism is a means to operationalize smart systems. Various
reasoning methods were applied in the context of smart systems, intelligent systems, and
autonomous systems. Rule-based reasoning offers a natural way of handling and inferring
knowledge. A rule-based knowledge system that features modular structure can easily
be extended with additional rules, and provides a uniform representation of knowledge
[126]. However, it provides limited expressiveness to describe certain complex features
and therefore cannot fully exploit the potential offered by events. Case-based reasoning
is frequently used in the decision- making process [127]. It generates a conclusion or new
knowledge based on the available knowledge or information at hand [128]. Ontology based
reasoning is used for conceptualizing the relationships between entities to create knowledge.
It is typically combined with other reasoning methods such as rule-based reasoning in order
to infer a situation from context information [129], or case-based reasoning in order to
automate the decision-making process.

Probabilistic reasoning, such as Bayesian Networks (BNs), and Hidden Markov Models
(HMM), is appropriate for reasoning with uncertainty [69] .BNs are used for the analysis of
data and expert knowledge, especially in the context of uncertainty. They can easily process
probabilistic knowledge from different sources in a mathematically coherent manner
[130]. HMM’s have more flexibility to capture unobserved variables and thereby provide

53

a basis for reasoning about emergent behavior of the system. Fuzzy logic is a well-known
approach to deal with uncertainty, imprecision, and other non-deterministic problems [131].
Hybrid reasoning approaches have been proposed in the more recent relevant publications.
Combining fuzzy logic with ontologies, and probabilistic modelling, it can cope with
qualitative interpretation of probability, treat probability with natural language expressions,
and human- like decision making [132]. The degree of integration can be performed in
several models [133] i.e. sequential processing, embedding processing, and co-processing.

In complex reasoning mechanisms for such smart CPSs, however, they require multimodal
processing with more specific temporal, non-monotonic reasoning, and learning from data.
For example to be able to realize a situation, to be aware of the changes in the situation,
and to make decisions based on a dynamic situation. Many factors should be taken into
consideration to integrate multiple reasoning methods in the procedural reasoning mechanism
i.e. domains of applications, an objective of the developing systems, nature of obtained data,
and required system performances [134]. In addition, for dynamic processes, reasoning
mechanisms should be composed during runtime with high level of interoperability.
Although, some methods are able to work together in several degrees of integration,
many of these methods are not yet interoperable. Their computational components need
to be modified or require an interface to couple them seamlessly. This implies the need
for different conceptual framing of reasoning mechanisms and different design principles,
since they need holistic compositional approach in terms of the implemented reasoning
process and synergy in terms of the generated knowledge.

Several frameworks for reasoning have been proposed in the recent literature. For
example, system-level reasoning in AI is usually summarized through the expression
‘Sense-Think-Act’ [23] that mimics human thinking by using deductive reasoning [135].
Belief-Desire-Intention (BDI) paradigm is one of the operational architectures commonly
suitable used for building complex agent-systems. A classical framework embedded this
architecture is the Procedural Reasoning System (PRS) [136]. It includes three main
processes: perception, interpretation, and execution. Another example is the FUSION
framework, which implements a Detect, Plan, and Effect procedure. The computational
implementation of this procedure can be used for designing and implementing the underlying
adaptation logic of adaptive software systems. For instance, it supports rule development
for adaptation, such as if the system works (e.g. satisfies the user, obtains the goal), do not
change it; when it breaks, find the best fix for only the broken part [137]. The Sense-Plan-
Act loop is also used as a reasoning concept for self-adaptive systems [102]. These cycles
are basically executed by using rule-based reasoning which is implemented based on the
principle of deduction [138].

2�5�5 Decision making as enabler of system-level reasoning
A decision is interpreted as a cognitive process of choosing (expectedly, the best) alternative
from the various possible actions for attaining a given goal or multiple goals. Decision-
making often involves the integration of data from multiple sources, and harnesses
knowledge from multiple domains [139]. The goal of a decision-making process is to

54

choose the best alternative from a set of possible alternatives that satisfies an objective, or
multiple objectives. An optimization is a common problem solving method in decision
making [140]. In real-world problems, multiple objectives are always taken into account.
They may possibly be in conflict with each other. As the number of m-objectives increased,
the number of solutions increase exponentially [141]. The challenge is how to handle the
computational explosion issues. That is why an optimization model with multiple objectives
is not suitable in practice.

The process needs to evolve and adapt in a dynamic situation when a decision-
making process is confronted with new situations, goals, and kinds of data. This requires
reasoning methods, which is often based on more than logical conclusions [143]. In a
human decision-making process, system-level reasoning can be made as a closed loop, for
example Observe-Orient-Decide-Act (OODA) loop [142]. A decision maker performs the
OODA loop repeatedly as shown in Figure 2.10. As discussed in the above publication, the
systematic procedure of the OODA loop is as follows:

Step I: observe the facts by capturing, fusing, and filtering data about the entities and
environment,

Step II: condense the information from the facts to Orient with the revealing situation
by applying prior knowledge,

Step III: formulate hypotheses to explain the observations and Decide based on the best
scenario, and

Step IV: act following the internal guidance from the orient process and test the
hypotheses.

Figure 2.10: Feedback structure of the Observe-Orient-Decide-Act loop (modified based
on [142])

55

Corresponding to the OODA loop, Knowledge Intensive Data System (KIDS) framework is
an example of self-adaptive decision making [144]. The framework proposed a flexible data
structure based on ontology. Four main reasoning functions are represented by Classify-
Asses-Resolve-Enact (CARE) loop. Through the reasoning processes, it transforms input
data into facts, perception, hypotheses, and directives, respectively. Each of these is the
input of one reasoning function and the output of another. The manifestation of CARE loop
can be accomplished in two ways: (i) to customize the reasoning function by adjusting
its parameters; (ii) to select different reasoning methods when the current used function is
no longer adequate. For instance,reducing data into facts at the classification task would
generally use statistical reasoning, but in some cases, logical and probability reasoning
was also preferable. This can be explained by various reasons such as (i) change in the
environment, (ii) change in the goal of operation, and (iii) a new kind of incoming data
construct. The functional and architectural adaptation is needed to response the changes in
the decision-making process.

2�5�6 Adaptation as enabler of system-level reasoning
System adaptation is the planning of adaptation based on the outcome of previous processes.
In the context of engineered systems, implementation of system adaptation is inspired by
biological and natural systems, which have the ability to modify themselves according to a
new condition when its environment or purpose changes [145]. The modification is done by
adjusting the parameters of the system in response to change in the system itself or in their
environments. It also adapts to similar settings without explicitly being ported to them and
adapts to solve a new problem [146]. However, no absolute optimization exists in complex
systems [147]. The operation of these systems changes to a desired stable state over time.
Frequently, there are multiple point attractors [148]. Although the system can modify
the parameters and somewhat reach the desired state, it might be shifted to another point
as a consequence of the actions. Therefore, the self-adaptive capability should incorporate
reasoning about the objective of the system operation, investigating possible strategies for
performing adaptation, and planning and executing adaptation plans based on available
cyber and hardware resources [9].

In the self-adaptive software research community, self-*properties are organized
into levels where self-adaptiveness is at the top, while self-awareness is a primary
level like context awareness [149]. A self-adaptive system is typically implemented
by control loop mechanisms [145]. Self-adaptive control mechanisms typically
include sequential iterative processes of: (i) sensing the context and reasoning,
(ii) deciding what kind of adaptation is required, and (iii) implementing the adaptation
by reconfiguration [150]. An Event-Condition-Action (ECA) rule is usually implemented
in the self-adaptation of service based processes [26], [151]. It is also used to describe
different responses to various runtime events. The semantics of the rule is as follows: ‘when
the event has been detected, evaluate the condition, and if the condition is satisfied, then
execute the action’. The general syntax is ‘on event-if conditions-do actions’ [152]. In
a software adaptive system, Monitoring-Analyzing-Planning- Executing with knowledge
(MAPE-K) loop is one of the most well-known adaptation mechanisms [18].

56

Although the terms and notions used for describing the above self-adaptive methods are
different, the general process of self-adaptation is implemented based on a rather common
concept. This concept includes the following: (i) perceive the current state from input data,
(ii) monitor and analyze changes, and (iii) plan and adapt the process/system to the optimal
state. The concept of closed loop mechanism limits the possibilities of adaptation when
open-loop interaction with the external environment is becoming a fundamental aspect of
the system [144]. Zhou et al. (2017) extended the self-adaptation process of CPSs which
included the interaction of cyber world and physical world [35] as shown in Figure 2.11.
The extended self-adaptation process includes the interaction of long-term and short-
term loops. The long-term loop provides decision-support based on the causal reasoning
of the MAPE-K loop. The short-term loop is the conventional feedback control loop for
dependable decision process that influences the operationalization of the physical world.
However, approaches to true self-adaptive behavior are still in their infancy.

Figure 2.11: The environment-in-the-loop selft adaptation process of CPSs (modified
based on [35])

57

2�5�7 Recommendation generation as form of system-level
services

 2�5�7�1 Types of recommendation systems

Recommendation systems (RSs) have been gaining increasing popularity in various areas
of application. Typical examples are e-commerce systems (e.g., Amazon, e-Bay), social
networks (e.g., Facebook, Twitter), personalized recommendations (e.g., Spotify, Netflix), and
knowledge-sharing platforms (e.g., ResearchGate, Mendeley). The systems help users to find
preferred items in the collection and facilitate the task of deciding on appropriate items.
Recently, the concept of recommendation systems has also attracted considerable attention
from the domain of multi-disciplinary decision-support systems, such as medical diagnosis
systems [153], traffic management systems [154], and design support systems [155]. Often,
these systems are also referred to as recommender systems. They manifest in software tools
and use algorithmic techniques to provide advisory recommendations concerning the most
appropriate content to a user. With a view to their real-life applications, recommendation
systems are classified into three main classes: (i) commercial recommendation systems, (ii)
social recommendation systems, and (iii)engineering recommender systems.

Commercial recommendation systems are sub-classes of information filtering systems that
deal with the problem of information overload [156]. Driven by business intentions, the
goal of commercial RS is to support sales and to increase purchase intent [157]. They are
typically implemented as websites that collect customer data and automatically analyze
them to generate customized recommendations for the customer. Widely-used techniques
to match the user’s preference and the purchase items are (i) memory-based advising,
(ii) collaborative filtering, (iii) content-based filtering, and (iv) demographically-based
recommendation techniques [40]. However, there is a need for providing better customer
experience than that just offering the best item by means of pure data-driven techniques
[156]. Towards this end, developers integrate merchandising rules into the recommendation
generation process. These rules include for instance, rules to prevent cold start problems, or
rules to prevent out-of stock goods.

Social recommendation systems use information about the user’s preferences, environmental
influences, and social relations to other users to predict the most useful recommendation
[159]. Under this assumption, social recommendation leverages user correlations implied
by social relations to push information to target groups both timely and accurately [160].
Various collaborative filtering techniques are adopted in combination with social correlation
theories. For example, trust ensemble, trust propagation, and social regularization are
applied at building social recommendation systems [158]. Originally published by the
abovementioned authors, the concept of a generic user trust network is shown in Figure
2.12, where: ui is users, vj is recommendation items, the blue edges are relations of users,
and the numbers on the red edges mean rating the items vj by user ui.

Engineering recommender systems have been developed alongside the concept and

58

Figure 2.12: User trust network involved in social
recommendation generation [158]

social recommendation systems. In the promotion research, we focused on theoretical
concepts, which underpinned engineering recommender systems. Cena et al. (2020)
defined recommender systems as “systems that produce individualized recommendations
as output, or drive the user in a personalized way to interesting or useful objects in a space
of possible options” [161].

From our point of view, recommender systems integrate recommendation services
into such smart systems. They can profit from the traditional RSs by allowing a user to
augment the recommendation engine with quantitative and qualitative information and
users’ preferences which cannot be captured in pure data-driven algorithms [162]. For
example in the domain of design-support application, Jannach et al. (2016) developed add-
on recommendation service to the RapidMiner framework to support the user during the
development of ML-based model by recommending additional operations to insert into
the currently developed workflow [163]. In the domain of medical treatment services, Bao
and Jiang (2016) developed the universal medicine recommender system by applying data
mining technologies to the medical diagnostic and recommending the proper medicine for
a patient [164].

2�5�7�2 System-level operation of recommender systems

Based on the exploration of the related literature, the following system-level activities will
be addressed below: (i) information filtering, (ii) information/knowledge aggregation and
structuring, (iii) context management, (iv) problem-driven inferring and reasoning, (v)
recommendation generation, and (vi) interaction/communication with stakeholders. The
purpose of the analysis is to find reusable knowledge, principles, and solutions about the
core functionalities.

(i) Information filtering

Engineering recommender systems should purposefully filter in order to avoid
theinformation overload and to make the best suggestion to the user. The simplest solution
to information filtering is a popularity-based approach. Basically, it filters the ever-growing

principles of recommendation
systems, but they are applied in
specific engineering application
domains. In the studied literature,
we could not find a generally
accepted definition for these types
of recommendation systems, and
there seemed to be no agreement
with regard to their functionalities
and implementations. In the rest
of thisdissertation, we use the
term ‘recommender systems’ to
distinguish these systems from
the tradition commercial and

59

flood of information (which often happens in real-time on social network websites) with
the goal to identify the news stories that are the most popular and most current at that
moment [165]. However, this filtering technique does not consider users’ profiles or other
relevant information in the filtering process. The information filtering techniques used
to build recommender systems are classified into (i) collaborative filtering methods, (ii)
content-based filtering methods, and (iii) hybrid filtering methods.

Collaborative filtering generates recommendations using information about the rating
profiles of different users. It can be done because users give explicit preference judgments
about items in the form of ratings in the process of data collection [166]. The major limitation
of the collaborative filtering method is sparsity of the rating matrix. The recommendation
cannot be made unless and until the item is either rated by other users or correlated with
other similar items. If users rated only a small subset of the available items then most of
the cells in the rating matrix are empty [167]. Content-based filtering recommends items,
which are similar to the ones the user preferred in the past. The rating of items is based
on the ratings assigned by the user to items that are similar to the new item. The success
of applying content-based filtering depends on two major conditions, as it is discussed in
[168]: (i) each recommendation item needs to be characterized by well-defined features;
and (ii) the users should recognize how these features relate to their requirements. Content-
based filtering is not free of limitations. Typical ones are: (i) limited content analysis
(e.g., insufficient identified features of items), (ii) indistinguishable features of different
item classes, (iii) overspecialization from users’ rating, and (iv) less reliable rating due
to additional new users. Hybrid filtering methods commonly combine two methods
to overcome the limitations of both methods in order to make the system more robust.
Seven categories of hybrid recommendation approaches were proposed (i) weighted, (ii)
switching, (iii) mixed, (iv) feature combination, (v) feature augmentation, (vi) cascade, and
(vii) metalevel [169].

However, all of these methods based on data-driven techniques are known to suffer from
a cold-start problem. The reliability of recommendation is still low due to an initial lack
of ratings. In the engineering recommender systems, for example in emergency landing
planner [162], it assists air-traffic control operators with choosing a diversity airport for
distressed aircraft. These data-driven filtering methods are not applicable for these types of
recommender systems. The post-evaluation of the recommendations is needed to examine
the quality of recommendations based on whether the users agreed upon the solution
provided by the systems. The specific set of criteria is defined for the evaluation. These
criteria as well as technical constraints will be converted into the decision criteria. A user
will be able to provide the information by using weighting techniques or query-based
filtering to pre-configure constraints and user’s preferences [66]. As result, the possible
situations are selected for further processing the recommendation generation.

(ii) Information/knowledge aggregation and structuring

Conventionally, recommendation systems operate on an extensive user-item relationship
matrix. As mentioned in the previous sub-section, the rating system underpinned by this

60

approach is not applicable in specialized recommender systems that isfor limited numbers
of users to rate the recommendation items. Recommender systems use formal knowledge
representations, which can be processed computationally during recommendation
generation. The literature states that knowledge in recommender systems can be stored in
various types of structures. Considering the plans for the development of ARF, four types
of knowledge representation were investigated: (i) lookup table; (ii) digital corpus; (iii)
knowledge graph; and (iv) concept ontology.

A lookup table is one of the simplest ways to create a formal knowledge. It contains three
primary elements, decision rules, decision conditions, and actions. A rule set is defined by a
Boolean value to map the decision conditions to the corresponding actions. The conditions
in the rules and the input data in the schema of the data source must be compliant and
mapped to one another for successful integration. The knowledge in the lookup table is
static. If the data requirements or mapping for the conditions of the rules are not specified
and well defined in advance, recommendation generation will fail [90]. Knowledge is
recorded in the digital corpus. It usually used in the recommender systems that already
stored a vast collection of records in machine readable format for instance, an Electronic
Medical Record (EMR) system [153], and knowledge services for product design developed
by [155]. To retrieve relevant documents from the knowledge sources, text similarity
techniques are typically used to measure the degree of similarity between the queries which
appear in the documents [170].

A knowledge graph (KG) is a heterogeneous graph, where nodes function as entities, and
edges represent relations between entities [171]. In tradition recommendation systems, the
user-item relationships are converted into a graph model where users and items represent the
nodes, and edges express the interactions between user-user or user-item [172]. It generally
leverages the semantic representation of user/items in the KG for recommendations. In
addition to the user-item graph, Cognitive map (CMs) and Bayesian networks (BNs) have
also frequently used to represent a formal knowledge in recommender systems. Cognitive
maps (CMs) construct the causal relationships among concepts that presented at nodes and
directed links defining the relationships among them. CMs are extended by fuzzy logic as
called fuzzy cognitive maps (FCMs) that defines fuzzy set into the casual relations between
concepts [173]. They are an effective tool for modelling decision support systems and time
series predictions.The value defining between concepts can be changed over time due to
the dynamics of the model. Hence, FCMs can be applied for a dynamic recommendation
generation. They are also constructed in both machine-readable and human-understandable
forms. The drawback of FCMs is that the construction of FCMs is time-consuming with a
large data set [174].

Supporting such product design process, and manufacturing process, demands
a representation of process flow models. They include multiple decision points throughout
the entire process, for example selecting semi-finished parts, selecting production
techniques, and sequencing manufacturing process [175]. It requires knowledge at every
single point to support the decision-making. The consequence from the preceding decision

61

also influences the next decision like a dependency graph. Bayesian networks can be
developed for modelling the process flow. It is a probabilistic model representing random
variables and conditional dependencies in a directed acyclic graph. Through this method,
variable connections can be qualitatively defined with a network structure, and correlations
between related variables are quantitatively determined using conditional probability
distributions [176]. A very useful aspect of BNs is that they can produce good prediction
accuracy even with rather small sample sizes. Discovering the patterns in the BNs is also
possible. However, BNs support only linear processes, thus it is impossible to represent the
iterative processes with feedback loops.

Ontologies are an expert-defined standardized common vocabulary describing the
knowledge of a domain [177]. They are expressed in a form of a hierarchy concept
tree. The most common role of ontology in recommendation system design consists of
providing a taxonomic classification of items [178]. In recommender systems, ontology
is an explicit specification of conceptualization consisting of classes, relations, functions,
and other objects in the shared domain knowledge. For example, in lighting system design
[179], there are various classified concepts and related objects, for instance daylight sensor,
lighting controller, power driver, light, communication unit, etc. These concepts should
be closed to the objects and relationships in the domain specific knowledge. In general
knowledge-based systems, ontologies are increasingly being used because they provide
the flexibility, extensibility, and generality to bridge the gap between the requirements of
mapping domain knowledge into machine-readable and human-understandable formats
[180]. In knowledge-based recommendation systems, ontologies were applied to reduce
content heterogeneity and improve content retrieval [181]. The major limitation of using
ontologies is the difficulty of transferring specialized knowledge from domain experts to
abstract and effective representation.

(iii) Context management

In the context-aware recommendation systems, they promote incorporation of additional
contextual information such as time, day, season, user’s personality along with users and
items related information into recommendation process [182]. Context information found
in the recommendation systems can be classified into two types: (i) direct context and
(ii) indirect context. The direct context is basically derived from user’s profile, user’s
preferences, features of recommendation items, and rating of items. These are the essential
information which directly influence the generation of recommendations. The indirect
context refers to additional information for instance, locations, time, and temperature. These
contexts occur in the surroundings which do not directly influence the recommendation
generation, but they can capture the state of the observed systems in a specific moment.
Observing the changes in indirect contexts allows for describing the dynamic situation.
Taking the indirect context into account in the recommendation process produces more
accurate results [183]. It potentially supports the dynamic recommendation generation.

The context information can be represented in either explicit or implicit ways. The
explicit context related to user’s profile and recommendation items is typically

62

managed in a matrix representation. In the user domain, two aspects of implicit
context can be considered. One is the level of attention a user has while the systems
recommend items to him as well as the degree of interruption a user is willing to accept [184].
These contexts are not shown explicitly in a formal representation. An input from users is
needed to expose the context. Discovering patterns in the dataset requires data mining
techniques. Another types of context information which mainly include: (i) attributive
context refers to the attributive characteristics of an entity (e.g., color, dimension,
temperature, quality), (ii) temporal context refers to time (e.g., time-stamp, date, day
time, night time, month, year), (iii) spatial context refers to space (e.g., represented in
latitudeand longitude data, Cartesian coordination, relative locations and direction), and
(iv) spatio-temporal context which considers both data related to space and time. The
direct and indirect context information can be constructed in the formal representation for
instance in a data table with the grading data format which contains instances about users,
recommendation items, event, ranking, and time stamp [185].

(iv) Problem-driven inferring/reasoning

Recommender systems support automated information filtering by using sophisticated
algorithms that incorporate preferences rules and heuristics to reduce a potential large
number of recommendation items into a smaller cardinality and more manageable subset
[186]. The inference mechanisms can be employed to reason about context information to
generate a personalized recommendation supporting decision-making in order to solve a
problem. In this section, four reasoning approaches are discussed, namely: (i) rule-based
reasoning, (ii) knowledge-based reasoning, (iii) model-based reasoning, and (iv) machine
learning-based reasoning, which are most frequently used in problem-driven reasoning
mechanisms.

Rule-based reasoning is a simple approach to equip a system with intellect and then to
manually enter an expert’s knowledge or automatically infer probabilistic rules [187].
This method can work without any specific knowledge about the application context.
However, it is too expensive in the case of systems with a large amount of data, due to it
is manual nature [188]. Knowledge-based reasoning finds solutions that match desires and
requirements based on domain specific knowledge about users’ profiles, recommendation
items, and context information [159]. It is useful in domains where rating-based systems
do not work. Case-based reasoning, for instance is applied to solving a problem based on
the information/knowledge in the historical cases. It matches the similarity between the
desired case with input provided by a user and the cases that are available in the repository
[189]. Ontology is informative for knowledge representation which is defined as an explicit
specification of conceptualization.Ontology-based reasoning is used in semantic inferring
by identifying the similarities among concepts and information provided by a user and
select the most similar one into the process of recommendation generation [181].
Using ontology-based reasoning is limited to static recommendation generation due to the
domain-specific knowledge.

Model-based reasoning is an analogical inference method which uses deductive

63

logic to explain the physical world. Several methods have been used in recommender
systems. For instance, graph-based reasoning uses a graph representation, where users and items
are represented as nodes, and the edges express the interactions between user and user, or
user and item. It is capable to model various implicit relations between users and items
which reveal the preferences of users on consuming items [171]. Probabilistic inference
(using means of Bayesian networks, Dempster-Shafer theory, and fuzzy logic) has been
extensively used in designing recommender systems to handle uncertainty, impreciseness,
and vagueness in item features and users’ behavior [184].

Various forms of machine learning-based reasoning are typically applied to discover
the patterns of a vast and high dimensional data set [190]. Recommending classification
algorithms based on k-NN method was proposed in [191]. It aimed at assisting a user in
selecting algorithms from a large number of candidates for a new classification problem.
In [192], the collaboration of clustering and classification algorithms was applied to the
medical advice and diagnosis system. The clustering model is used to cluster all patients’
medical advice rating into the similar objects. The classification model analyze spatients
into distinguished group based on the identified features. These classes are interpreted
to a set of medical advices. Another example, decision tree classifier [193] was used
in context aware recommender systems. The ID3 algorithm was applied for learning
users’ contextual preferences in the recommendation process and predicting unknown
ratings using collaborative filtering approach.

(v) Recommendation generation

Recommender systems are directly involved in assisting users to make decisions and
satisfying their current information need. User preferences are always changing depending
upon a range of factors, for instance context, time, location, trust, and new experiences.
A static user profile and historical preference cannot judge the actual preference of a user
over a period of time. The changing needs of user preferences influence the process of
recommendation generations were discussed: (i) static recommendation generation; and
(ii) dynamic recommendation generation. Table 2.2 shows examples of application context
in different types of recommendation generation and responses to the recommendation.

In static recommendation generation, a recommendation is made at any instant of time
depends on the given relations of user preferences and item features. Traditional filtering
techniques adopt a static view of the recommendation process and treat it as a prediction
problem [194]. The process of recommendation generation works in a sequential manner
where at each stage a new list is recalculated based on the users’ past feedback [195]. Two
common ways to obtain relevance feedback are to use information given explicitly (e.g.,
rating, text comments, evaluation of recommendations) or to get information implicitly (e.g.,
purchased history, time spent) from the user’s interaction. Although the recommendation
generated is inherently dynamic to some degree, the changes of user preferences and
item features over time in the current scenario are beyond its coverage [196]. Without the
consideration of the dynamic aspect of users’ behavior and involved context information,
the recommendation generation is still static. It cannot recommend different types of items

64

context information from a dynamic data stream [199]. Rana and Jain (2015) defined
dynamic recommender systems as “the systems which are able to capture the temporal
changes occurring in the different domains i.e., user and items related data as well
as other environmental changes implicitly or explicitly and accordingly modify their
recommendations to the users” [196]. In online recommendation generation for example,
the recommendation engine analyzes the current state of user’s preferences based on the
actual activities done by the user and produces the immediate response for the user [200].
In this sense, dynamic refers to information retrieval patterns over time e.g., the order in
which different items are searched by a user [201].

Dynamic recommendation generation is characterized by six aspects [196]: (i) temporal
changes – considering changes in user’s preferences in time when selecting the next item
to recommend and recognize temporal characteristics of recommendation items, (ii) real-
time dynamics – considering real-time data related to user behavior and generation of
recommendation immediately in response. (iii) context – describing a particular state of
the user or the environment at any given period of time, (iv) novelty of recommendation
– considering the discovery of new and original items for users, (v) serendipity of
recommendation – considering the quality of propensity for making fortunate discoveries
while looking for unrelated items; and (vi) diversity of recommendation – which means the
variety of choices breaking the barrier of similarity. We focus our attention on the first three
aspects for a development of ARF.

(vi) Interaction/communication with users

The section discussed the interaction of stakeholders and the recommender systems
in term of communication modality. We assume that the recommender system monitors the
behavior of its users over time and then presents a customized set of recommendations in
pre-defined navigational situations. Since the recommendation is made, the user takes an
action and provides feedback to the systems.

In the conversational recommender systems [202], three types of input and output modalities
can be designed as shown in Figure 2.13. In the general recommender system, two main

Table 2.2: Types of recommendation generation (RG)
and the responses to the recommendation

static RG dynamic RG

reactive
responses

web search engine
routing navigator

stock market
online shopping
personalized activity
recommendation

active
responses

manufacturing process-
ing planning
predictive maintenance
medical diagnostic

fire evacuation
traffic management
fault detection in the
distribution network

that change with time based on
their underlying relations to
user preferences and working
environments as seen in [188]
and [197].

Dynamic recommendation
generation offers the
recommendation which is
sensitive to the changes
of situation at the moment
in time [198]. It is able to
learn user preferences and

65

forms of inputs and outputs, either as the only modality or combined in hybrid approach are:
(i) based on form and structure layouts, as in a tradition webbased application, (ii) based on
natural language either in written or spoken form. Approaches that are exclusively based on
structure layouts include textual-based representation [203],[204] (e.g., Q&A multi-turn
dialogue, textual description), and query-based form [66], [205] (e.g., binary input, string-
based, selection of choices). Natural language interaction-based approaches were usually
found in chatbots. They are also implemented in a smart speaker like Amazon Alexa and
Google home. Hybrid approaches that combine natural language with other modalities are
not uncommon.

In the application environments, the design choices depend on several factors such as types
of application context, the level of user controls, and the support devices. The possible
approaches are interactive map as seen in [197], the recommendation shows the best route
in the map according to the query of user’s preference, representing in 3-D space in interior
design application [206], or combined graphical model, text descripting and navigator as
seen in the recommender system for emergency landing planner [162]. For users’ responses,
it is mainly based on structure layouts for rating, text-based description in term of user
reviews, comments , shared experiences [207] and post-evaluation of recommendations
[162]. The most common approach is the rating system which is represented as a unary
value (showing only the relevant items), binary (allowing to distinguish between good and
bad items), or as a numerical value on one finite scale [167].

2�5�8 Compositionality in system-level reasoning
The term ‘compositionality’ was first introduced in the fields of linguistics, mathematics,
and semantics. In linguistics it is defined as the principle to realize the meaning of a complex
expression that is determined by the meanings of its constituents [208]. In the context
of systems, the set of basic words are the components and modules, and the modifiers

Figure 2.13: Categories of input and output modalities [202]

66

are the functional, architectural, or morphological adaptations that areneeded to achieve a
synergetic behavior of the system as a whole. Natural languages are also good examples of
compositional system of systems in the sense that sentences represent primitive systems and
the language itself is a complexity (system of systems) formed by (a potentially infinite) set
of sentences. System compositionality is interpreted as it is typical in the context of human
natural languages where it guarantees that functionally, semantically and grammatically
correct sentences are created from a set of basic words (verbs, nouns, adjectives, adverbs,
etc.) using modifiers (affixes, suffixes, extensions, tokens, recursive syntactic rules, etc.).

In system science, composability and compositionality have been interpreted as
different system development principles (SDPs). At the same time, they were often used
interchangeably in the literature [209]. As an SDP and characteristics, composability means
that the intended overall behavior of a system can be achieved in an aggregative manner and
that the properties of the components do not change by virtue of f interactions with other
components. As an alternative of the interpretation of compositionality, Tripakis (2016)
argued that “it assumes that the overall behavior of a system is more than the summative
operation of its components and that necessary interoperation of components may influence
their manifestation” [74]. In computer science, compositionality is the principle of adapting
system operation by composing and connecting system components together, and reasoning
about the whole system [210].

Driven by the compositional paradigm, the requirements for smart behavior will be defined
based on the overall objectives and role of the planned S-CPSs. While smartness cannot be
reduced to an aggregation of the operational results of the components of S-CPSs, it needs
a particular synthesis of various mechanisms such as context-based reasoning, goal-driven
strategy development, functional adaptation and behavioral evolution that interplay in a
synergistic manner to produce smartness. In each of the above examples, functional self-
tuning and/or architectural self-adaptation are used by the system to achieve a synergistic
high-level behavior [211]. The trustworthiness of a semi-intelligent manufacturing system
is an example of the need for compositionality through manifestation of abstraction. Yu
et al. (2017) interpreted and characterized trustworthiness as a composite paradigmatic
feature that can be controlled and measured in terms of three metrics, namely, reliability,
availability, and security, but only on system level [212]. Compositionality measures how
much trustworthiness as system-level feature can be realized by local properties of the
system components. In the field of system design, compositionality frameworks are used
for system-level verification [213], system awareness [70], and schedulability [74], but not
yet for implementing system-level reasoning as well as reasoning mechanisms for S-CPSs.

2�5�9 Issues of computational implementation of system level
reasoning

An implementation of system-level reasoning can be constructed on multiple behavioral
levels using analytic and synthetic computational approaches. The former is based on a
combination of hardware devices and software application,whose computational function

67

is to generate conclusions from available knowledge using logical reasoning. The latter
is based either on a single logical theory or on a composite logical theory, and/or a
computational approach that tries to achieve a relatively high fidelity in comparison with
human reasoning. According to the literature, these two approaches are normally used in
different levels of abstraction.

An analytical approach offers the computation methods for reasoning about the system-
level behaviors. In Dragomir et al. (2016), a compositional semantic and analysis
framework is proposed for hierarchical block diagrams of a simulation model [214].
The framework provides a series of predicates and property transformers as semantics of
composition in a series, in parallel incorporating the feedback of individual blocks. The
approach aims at reducing the complexity of the real system to an abstraction model. For
example, a compositional reasoning is proposed in [215] for model-based verification as
part of designing embedded systems. incorporating the feedback of individual blocks. The
approach aims at reducing the complexity of the real system to an abstraction model. For
example, a compositional reasoning is proposed in [215] for model-based verification
as part of designing embedded systems. This compositional reasoning applies a formal
semantics to capture the features of the system components at a high level of abstraction.
On the level of the system model, the reasoning should confirm that the system and its
application models have the same behaviors with respect to the considered properties.
However, it is a limitation of this approach that it does not include computational models
for reasoning about how smart systems are to operate. That is the limitation appears on
the control side of the system. It is also important to mention that abstraction is captured
in formal or computational models through coding processes in the domains of software
engineering, computer science, and AI practices [216], [217].

In a synthetic computation approach, the term synthetic means that the reasoning
architecture, processes, and results are produced by computational synthesis. This approach
is usually applied in the field of cognitive robots, context-aware systems, and self-adaptive
systems by means of AI-based [218], Machine learning [219], and cognitive architecture
[220]. For example, Memory-Attention-Composition (MAC) framework [125] is an end-
to-end differentiable architecture to perform a multi-step reasoning process. To solve a
problem, the model is decomposed into a series of inferred reasoning steps associated with
computational units. In [221], the framework is proposed for computational cognitive
affordances. The cognitive cycle consists of two parts, namely logical-based representation
and a computational architecture that performs a synthetic reasoning, Action-Planning-
Reasoning-Sense-Making tasks. The abovementioned approaches do not address the
compositionality issue explicitly. An attempt to improve compositionality in CPSs was
found in [35]. Several structures of component composition for reliability and durationare
illustrated. The composition rules are formulated. These rules confirm compositionality
at component level, but an achievement of system-level compositionality cannot be
guaranteed. It assumes that if the entire systems are manifested by the composition rules,
system-level properties can be achieved.

68

2.5.10 Overview of the major findings and their implications
The finding confirmed that smartness is not only a collective property of a system, but it
is also a holistic and synergistic behavioral characteristic. The orchestration of synergetic
interoperation of reasoning methods goes beyond condition-based composition. It should
utilize the complementary and strengthening effects of reasoning methods. Designing
of a compositional reasoning mechanism requires comprehensive means for supporting
the entire design process. This is the expectation that S-CPSs should be able to select
and handle knowledge synthesis mechanisms that operate with heterogeneous and/or
incomplete knowledge. As far as the applied knowledge representation is concerned, it
seems to be necessary that they are equipped with multiple knowledge representation
means (in order to be able to cope with the challenges of possible representational variety).
Knowledge should be constructed with a wide range of formalisms (i.e., from generic
domain knowledge to specific task knowledge).

System awareness is a fundamental ability of S-CPS from the point of view of realization
of the overall smart behavior of the system. This ability enables systems to control their
performance and operation, and to interact with their embedding environment purposefully.
Awareness is built by syntactic and semantic processing of data obtained from a range of
hardware and software sensors. Designing for system awareness also requires computational
data fusion technologies and models, and various inference mechanisms for transforming
data to information and knowledge.

The design process of decision-making mechanisms needs to consider: (i) when a decision
can be made by the system based on acquired and inferred knowledge, (ii) what methods
of decision making are the most suited for the problem and the knowledge at hand, (iii)
how to verify the decisions with regards to the objectives of the system, and (iv) how to
evaluate and learn from the consequences of the decisions. Another challenge is designing
systems for runtime adaptations. System adaptation goes together with the need to develop
strategies for generating alternative operation modes for the system. It requires computational
mechanisms (i) to transformthe changing system objectives into feasible action plans, (ii) to
decide on the operationalization and timing of the chosen action plan, and (iii) to execute
the adaptation in a fully controlled manner.

Designing of reasoning mechanisms covers (i) the selection of the modality of reasoning
(i.e., deductive, inductive, abductive) that is the most suited for building awareness,
making decisions and adaptation of the system, (ii) composition of reasoning methods, (iii)
design of compositional reasoning workflow, (iv) interfacing the elements of the reasoning
mechanism for a seamless interoperability, and (v) verification of compositional framework
of reasoning. Despite the facts that some of the computational reasoning mechanisms are
able to imitate some aspects of human like reasoning, most of them remain data driven and
operate according to statistical and/or rule-based methods. While computers are strong in
processing of, and making decisions based on, large amount of data and predefined rules,
they are currently weak in reasoning with analogies and intuitive inferencing. Efforts, on

69

the other hand, are already visible in the state-of-the-art literature that aim to mimic human
like reasoning and extend the existing approaches with human like capabilities such as
intuitive belief network generation.

Towards a development of system-level reasoning, the recommendation generation is
considered as the decision support service. The recommender systems recently have been
used in the domains of engineering systems (e.g., product design support systems, medical
treatment systems, monitoring and warning system, and traffic management systems).
The concept of their recommender engines, such as the probabilistic inference, ontology-
based reasoning and the ML-based reasoning, are designed to offering personalized
recommendations to individual users. According to the various methodological approaches
concerning the system-level operation of recommender systems, the traditional filtering
techniques are not applicable to context-sensitive process of designing reasoning
mechanisms. It needs the interaction with a designer to capture the know-ledge and context
information about the design process. The recommendation generation should consider: (i)
changes in preferences of users and in the features of recommendation items, (ii) changes
in context information concerning the procedural aspects of reasoning mechanism, (iii)
proper knowledge representation and reasoning, which potentially handle the changes
in the design process, (iv) responsiveness to the changes in runtime, and (v) proper
communication modalities which can actively interact with a designer.

2�6 Exploration of requirements for an active recommender
framework

2�6�1 The idea of active recommender frameworks
Active recommender framework (ARF) is a conceptual idea that allows ‘the framework’
facilitating a designer to develop smart systems by monitoring the activity of a user,
reasoning and understanding what is being attempted, and then proactively providing
smart assistance during execution of the design session for a development of a reasoning
mechanism. This concept seems to be new in the contemporary literature, which
typically focuses on providing recommendation, task-dependent advising, and support
of decision making in non-engineering contexts. They can potentially be applied to offer
recommendation services to a designer, but less content- and contextsensitive manner than
as can be expected from a specialized ARF system. The specific objective of the ARF
is to facilitate the development of a smart reasoning mechanism(integral sets of smart
algorithms) by recognizing what is being attempted by the designers and by monitoring their
activities, reasoning and performance, and providing context-sensitive recommendation in
design sessions proactively. Recommendation includes not only design problem solving
information, but also selecting the suitable computational methods and making a proper
decision.

To facilitate an achievement of the system-level reasoning in smart RM, the
realization of the ARF assumes a comprehensive meta-model (MM), which brings

70

the foundational concepts into synergy from a computational point of view. This MM
can capture and integrate epistemological entities (including chunks of knowledge,
modelling constructs, sets of constraints, support services, etc.) as well as the procedural
and methodological elements (overall approach, support actions, computational steps,
communications, etc.). With regard to its representation, this MM is more of an intuitive
cognitive model, rather than a formal information model. This is the reason why it is not
specified exactly from an information engineering viewpoint, but remains in the background
of the ideation.

2.6.2 Identification of types of requirements
A requirement is defined as a statement that reflects a need, expectation, and/or constraints.
The principle of requirement engineering was applied to identify the requirements for the
development of ARF. The purpose of requirement engineering is to define the needs for the
systems with a set of clear and complete statements and to ensure that the implementable
functionalities are correct, reasonable, and effective. Generally, the requirements are
classified into two main types: functional requirements and non-functional requirements.

The functional requirements imply the expectation about what the ARF should be
manifested in and not about how should it be implemented. The latter is the topic
of implementation requirements. Non-functional requirements describe the general
properties of the ARF. Several aspects of non-functional requirements can be considered,
for instance, (i) performance (e.g., processing time, percentage of accuracy, levels of
system stability), (ii) interoperation (standards) requirements (e.g., be compatible with
ISO 30401:2018 standard), and (iii) business requirements (e.g., increased revenue,
reduced expenses, improved customer satisfaction). With a view to the proposed idea of
the ARF, to the implications of the findings of the completed literature study, and to the
outcome of the brainstorming within the research group, the non-functional requirements
are sorted according to five aspects. These are: (i) structural requirements:
(ii) computational requirements; (iii) knowledge management requirements;
(iv) interaction requirements; and (v) application-oriented| requirements.

The evidential goal of exploration of requirements is to provide orientation, guidance,
and factual expectations for conceptualization of the ARF. This is a complex task, which
needs systematization. With this in mind, the exploration of functional requirements
was done on four levels, which reproduces the overall decomposition structure of the
ARF, namely, (i) framework level (which reflects the characteristics of the whole of the
ARF); (ii) mechanism level (which expresses the expectations for the manifestation of
the computational mechanisms); (iii) module level (which concerns the lower-level
components of the computational mechanisms); and (iv) algorithm level (which deals with
the individual algorithms). In this chapter, the exploration of the requirements for the first
two levels is discussed. The requirements for the other two levels would be explored
in the next chapter, dominantly in the context of implementation of the components
and algorithms. It was done by associating the detailed descriptions with the application
context. The description of the target application would be elaborated in the sub-section

71

3.3.5 of the next chapter.

2.6.3 Identification of requirements for system-level
framework

Functional requirements

As mentioned in the idea of an ARF, it is supposed to be a context-sensitive recommender
system which supports a designer during an execution of the design process of ASRMs.
Process monitoring and decision support capabilities are proposed as the fundamental
characteristics of the ARF. Hence, the two essentials of functional requirements (FRs) of
the whole ARF are:

FR-F01: The ARF should support designers interactively (adapting its operation to the pace of
human interaction) in the development process of ASRMs.

FR-F02: The recommendation generated by the ARF should rely on the information actually
processed by the designer and the (dynamically changing) contexts associated with the
design processes.

Structural requirements

Structural requirements determine the final quality and justify the design decisions that
constrain the implementation of functional requirements. The requirements are indicated
by quality factors that should be achieved in the implementation of systems,for instance,
efficiency, portability, safety, robustness, and maintainability. To deal with the complexity
of the ARF, the goal is how to realize the proposed functionality with the lowest possible
complexity of architectural structure. Concerning the systemlevel architecture of the
ARF, the structural requirements focus on the aspects of implementation simplicity and
adaptability.

SR-F01: The system-level architecture of the ARF should be constructed of the lowest
possible number of mechanisms.

SR-F02: Within the system-level architecture, the mechanisms should induce the lowest
possible number of functional, computational, and control relationships and
dependencies with each other.

SR-F03: The structural adaptation of the whole ARF should be done with the
lowest possible efforts in terms of the number of adapted constituents

SR-F03: The structural adaptation of the whole ARF should be facilitated by the lowest
possible number of modifications of the algorithms.

Computational requirements

Computational requirements are the expected specifications of computational
capabilities of an ARF. At the system-level operation, the overall service level should
be taken into consideration in order to satisfy the expectation of an end user. From the
developer perspective, the availability of resources should be taken into consideration. The

72

computation mechanism of whole ARF should be testable in a demonstrative case under
the resource constraints.

CR-F01: The computational mechanisms of the whole ARF should generate
recommendations for the designers in less than 10 seconds in order to keep the
designer’s attention on the design task.

CR-F02: The (computational) adaptation of the whole of the ARF should be facilitated by
the largest possible number of standardized or pre-programmed constituents.

Knowledge management requirements

Knowledge management requirements refer to the needs and/or expectations of the ways to
deal with knowledge, for instance capturing, organizing, classifying, reasoning, and storing
knowledges. For system-level requirements, we expect the ARF should have a capability to
learn. It implies that the system-level knowledge will be growing when the ARF has been
utilized by designers. Two possible ways can be considered to extend the knowledge: (i)
capturing knowledge from designers, (ii) updating additional knowledge by experts.

KR-F01: The system-level knowledge of the ARF should be extendable internally (by the ARF)
or externally (by the knowledge engineers) as needed by the design processes and the
required support.

KR-F02: The information/knowledge conveyed by the recommendation should be constructed
in both machine-readable and human-understandable forms.

Interaction requirements

We considered the interaction requirements from two aspects: (i) the interactionbetween the
ARF and the designer, and (ii) the interaction between the components of the ARF. In the
process of recommendation generation, the ARF requires information from the designer.
However, too many interactions requested by the ARF might not be supportive to the
creative work of the designer and may attract the designer’s intention away from the actual
task. At the system level, the mechanisms communicate with each other by exchanging
situation-dependent data and/or information. In addition, the ARF navigates the designer
to the webpage that contains the advisory contents to execute the design action. Hence, the
ARF should operate online. Three interaction requirements are addressed:

IR-F01: The communications between the ARF and the designer should be processed
with lowest possible number of interactions.

IR-F02: The flow of information should be timely harmonized as requested by the
mechanisms in near zero-time operation.

IR-F03: The ARF should connect to the internet during the generation of advisory
contents.

Application oriented requirements

To develop ASRMs, the application context should be identified. Basically, it shouldrepresent
the characteristics of S-CPSs which can be used to test the proposed concept of ARF. Many

73

practical cases belonging to the family of S-CPS can be supported by an ARF. We selected an
automatic parking assist system (APAS) and used it as a demonstrative case for exploring
application-oriented requirements.

Two system-level requirements for the ARF are as follows.

AR-F01: The ARF should provide the specialized recommendation services to support a
development of reasoning mechanism for an APAS.

AR-F02: The ARF should offer content-related recommendations of searching a proper
parking plan for a street parking problem.

2.6.4 Identification of requirements for mechanism level
Functional requirements

FR-M01: The process monitoring mechanism should continuously perform activity-based
monitoring throughout the entire processes of RMD at runtime during the design
session.

FR-M02: The process monitoring mechanism should recognize doubtful (unexpected)
events in the design sessions in quasi-real time.

FR-M03: The process monitoring mechanism should identify an obstacle in the actual flow
of design actions based on the procedural network with higher than 45% of
justified objective decisions.

FR-M04: The decision support mechanism should capture at least three relationships
of design actions included the logical, temporal, and methodological
relationships.

FR-M05: The decision support mechanism should computationally model design
actions and interconnect into a procedural network with lower than 5% of
incorrect relationships.

FR-M06: The decision support mechanism should propose a feasible recommendation in
human-understandable format.

Structural requirements

SR-M01: All computational mechanisms should consist of the lowest possible number of
architecting modules.

SR-M02: All interrelationships among modules should be created based on the lowest
possible number of dependencies.

SR-M03: The structural adaptation of mechanisms should be done with the lowest possible
efforts when modification of algorithms is needed.

74

Computational requirements

CR-M01: All computational mechanisms are supposed to be operationalized by using
minimum computational resources.

CR-M02: The process monitoring mechanism should be able to implement near zero-time
processing.

CR-M03: The decision support mechanism should generate a recom mendation for the
designer in less than 10 seconds.

Knowledge management requirements

KR-M01: The knowledge belonging to the decision support mechanism should
be shared and jointly utilized by multiple modules

KR-M02: For the decision support mechanism, formal knowledge should be constructed
either in a model-based or in a sematic-based format.

Interaction requirements

IR-M01: The flow of information throughout the mechanisms should be harmonized in time as
requested by the modules with the least possible number of interactions.

IR-M02: The process monitoring mechanism should communicate directly with the
designer using the lowest possible number of interactions.

2�7 Assessment of the requirements for the active
recommender framework

2�7�1 Approach to assessing of requirements
Before operationalization in conceptualization and design, the collected set of requirements
has to be assessed with regard to their demands, implications, and characteristics. The
latter includes properties such as (i) consistency requirements are supposed to be not
contradictory), (ii) completeness (all relevant requirements should be included in the
requirements model), (iii) feasibility (the demands conveyed by requirements should be
feasible both technically and economically), (iv) understandability (the description of the
requirements should fulfill quality standards), and (v) reusability (the requirements are
supposed to be reusable in other contexts and future projects). These are to be considered
when assessing if the above-discussed requirements are relevant and do not conflict with
each other. The different aspects of assessment imply the need for using different techniques.
To assess the consistency, the complete body of requirements should be examined.

The individual requirements can be assessed from a theoretical point of view, or from
a practical point of view, or from both concurrently. Typically, the former assessment is
based on analysis of documents. In our work, the implications of the major findings of
the literature study have been used as the basis of deriving requirements, but this does
not guarantee the fulfillment of the expectations for proper requirements. The practical

75

assessment can be completed by testing the implications in an application context. Actually,
such assessment can be done at syntactic level, i.e., by checking for compliance
with standards and guidelines. However, in the case of assessment of the system-level and
the mechanism-level requirements, the consistency resides at a semantic level (i.e., in
the practical meaning). To facilitate the exploration of semantic relationships, we apply
a formal representation to the set of requirements. The representation in the form of a
semantic net facilitates not only checking the contradictions of requirements, but also the
interpretation of the requirement relationships with regard to their technical feasibility.

2�7�2 Assessment of system-level requirements
Fourteen system-level requirements were specified for the ARF. Their sematic relationships
of the requirements have been identified, as shown in Figure 2.14. We found that ten of the
system-level requirements can be met technically (e.g., their expectations can be satisfied
at the conceptualization of the ARF). The direction of the arrow indicates the causality of
the requirements. For example, the requirement IRF02 has an influence on the requirements
FR-F01. It means that if the ARF would interact with a designer in real-time, it should
communicate with him by the lowest number of interactions. In addition, it is possible that
a requirement has multiple relationships to others, and vise-versa. At the system-level, it
should ensure that two functional requirements are fulfilled, including: (i) FR-F01 – the
ARF should interact with the designer in real-time; and (ii) FR-F02 – the ARF should
provide contextsensitive recommendation at runtime.

Figure 2.14: Semantic relationships of the system-level requirements

76

According to their relationships in the semantic diagram, they have influence on four
non-functional requirements (see the color boxes in Figure 2.14), namely (i) IR-F02 –
the information exchange should happen in a near zero-time operation, (ii) CR-F01 – the
processing time of recommendation generating should be no longer than 10 seconds, (iii)
SR-F01 – the system-level architecture of the ARF should be constructed of the lowest
possible number of mechanisms, and (iv) SR-F02 – the mechanisms should induce the lowest
possible number of functional, computational, and control relationships and dependencies
with each other. All of them are presented at the terminal nodes. They have no influences on
other requirements. Therefore, it could be claimed that if these requirements are fulfilled,
all system-level requirements would be satisfied.

However, three sets of requirements seem to be in conflict with each other, as shown in
Figure 2.15. They cannot be satisfied simultaneously. Therefore, a compromise should be
found in terms of their goal (expectations). In the case of a particular set of requirements,
SR-F03 – providing structural adaptation with the lowest possible effort and SR-F04 –
allowing modification of algorithms with the lowest possible effort, it is difficult, or even
impossible, to meet the requirement CR-F02 – maintaining the largest number of standard
preprogrammed algorithms as well as to meet the requirement KR-F01 (extending the
system-level knowledge as needed by the design processes and the required support). In
the meantime, the requirements KR-F01 and IR-F01 (communicatingwith the designer
by lowest possible number of interactions) are inconsistent. Two of them have direct
relationships with the functional requirements FR-F01. This implies an opportunistic
solution with multi-objective decision-making.

Considering the requirement KR-F01, it is the expectation for the scalability of the ARF
which implies its learning capability. If there is the need for new knowledge as requested by
either the design processes or the service support, the system knowledge of the ARF should
be extendable. The knowledge can be extended by two ways: (i) the external modification –

Figure 2.15: Trade-off issue in the case of inconsistent
system-level requirements

the knowledge engineer updates
the new knowledge; and (ii) the
internal modification – the ARF
obtains context information from
the designer and converts them
into the system knowledge. The
latter requires the increasing
number of interactions with the
designer and the adaptation of
the architectural structure to
perform this process.Thus, it
is impossible to concurrently
meet these requirements. To deal
with this challenge and to avoid
the uncontrollable complexity
in the conceptualization,

77

implementation, and validation of the ARF, we assume that the knowledge is added by the
knowledge engineers with minimum efforts for the functional, structural, and computational
modifications, when it is needed.

To this end, the relationships of the requirements can be simplified as shown in Figure
2.16. Four key requirements should be tested to validate the system-level functionality of
the whole ARF as shown in the green boxes. It can be assumed if these requirements are
satisfied, the system-level functionality will be achieved. All the rest of requirements are
satisfied without the needs of testing.

Figure 2.16: Simplified relationships of system-level requirements

2�7�3 Assessment of the mechanism-level requirements
There are eighteen identified requirements in total at the mechanism level. As shown in
Figure 2.17, the semantic map is constructed by the relationships of sixteen requirements.
Five requirements are presented at the terminate nodes including: (i) FRM03 – the process
monitoring mechanism should identify an obstacle with a higher than 45% of justified
objective decisions, (ii) SR-M01 – all computational mechanisms should consist of the
lowest possible number of architecting modules, (iii) IR-M01 – the flow of information
throughout the mechanisms should be harmonized in time as requested by the modules
with the least possible number of interactions, (iv) CR-M02 – the process monitoring
mechanism should be able to implement near zero-time processing, and (v) CR-M03 – the
decision support mechanism should generate a recommendation for the designer in less
than 10 seconds. Based on the interpretation of the semantic relationships, it assumes that
if these requirements are satisfied, the expectations of the mechanism-level functionality
will be achieved.

However, it seems that two groups of inconsistent requirements occurred. One of them is
the group formed by the requirements FR-M03 and IR-M02 as shown in Figure 2.18 The

78

justified objective decision on the acceptance of the identified obstacle may not reach a
higher than 45%, if the lowest number of interactions between the ARF and the designer
is happening. It might be the case that the ARF requests the further information for an
investigation of the actual design flow.

According to the semantic map, the FR-M03 is considered as the key functional requirement,
thus the requirement IR-M02 should be adjustable. Just as with the inconsistency of the
requirements CR-M01 and CR-M02, they might not be concurrently satisfied. In some
cases, the operationalization of the process monitoring in near zero-time consumes a huge
number of computational resources. To meet the key requirement CR-M02, the CR-M01
should be compromised. Based on this analysis, five key requirements should be tested to
ensure that the conceptualization of the ARF meet the expectation at the mechanism level
as shown in the green boxes in Figure 2.19. Two requirements should be compromised

Figure 2.17: Semantic relationships of the mechanism-level requirements

79

including IR-M02 and CR-M01 in
order to meet all requirements at the
mechanism level.

2�8 Conclusions
As discussed by many researchers,
the paradigm of cyber-physical
systems is rapidly evolving, and
the domains of investigations,
implementations, and applications
are proliferating quickly. This is the
reason why thinking in generations
of CPSs was proposed in [222]. It
can be seen that while CPSs are
showing more ‘system intellect’ in
their operation, their control regime
must be more sophisticated, and they
should be equipped with many self-*
characteristics.

Figure 2.18: Trade-off issue in the case of
 inconsistent mechanism-level
 requirements

Figure 2.19: Simplified relationships of mechanism-level requirements

80

S-CPSs present many system-level operational characteristics, as opposed to the
component operation driven aggregative manifestation of system characteristics.
They go beyond what can be analyzed and designed based solely on reductionism
and the traditional model-based approach. These statements are becoming our
research challenge regarding how to develop smart CPSs with the capabilities of self-
awareness and self-adaptation. Compositional conceptualization and design of S-CPSs
need new principles (e.g., system level synergy) and a different (top-down specification)
approach. The study was completed by using mixed qualitative and quantitative methods.
The publications related to CPSs and system smartness represented the broader and the
narrower contexts of the study. The domain of discourse included the domain of system
engineering frameworks in the contexts of designing system-level reasoning and its
enablers. The major requirements were explored concerning the development of a novel
ARF. The knowledge aggregation was concludedas follows:

2�8�1 Conclusions concerning reasoning mechanism
development

Reasoning about emerging conditions and their effect on system performance creates
a complexity that cannot be tackled by predefined reasoning methods. This complexity
is caused not only by demands for real-time computational requirements or by the need to
cope with incomplete information, but also by the problem of finding optimal reasoning
and adaptation strategies matching the nature of the emerging situation. It requires runtime
composition of reasoning strategies and adaptive use of reasoning methods. The challenge
for designers of a reasoning mechanism is to narrow down the solution space of composition
of reasoning mechanisms that provide synergetic operation of S-CPS. The conclusions
concerning RMD are:

 • It is difficult, if not possible, to apply a single reasoning method to tackle complex
reasoning problems that S-CPSs are typically facing. As S-CPSs operate under
unpredictable, emerging conditions, their ability to runtime adapt to changing
conditions in a safe and predictable way is essential for their robust operation.

 • Synthetic computational approaches have the ability to compose reasoning methods at
runtime. They, however, implement a low-level smartness by straight-forward composition
of methods that are only activated if given conditions are fulfilled. Without a rigorous
unifying framework, synthesis reasoning and an integration of the analysis results
based on analytical computational approaches remain ad hoc.

 • Compositionality regarding reasoning mechanisms manifests in different levels of
abstraction that are: (i) on the system level, it achieves a synergy of knowledge through
the entire reasoning processes that is needed for multitask problem solving; and (ii)
on the component level, systemcomponents should be interoperated in compositional
manner.

 • This requires a multi-aspect framework that can integrate system-level reasoning on
various abstraction levels ranging from defining system objectives to concreate
implementation of adaptation at runtime.

81

2�8�2 Conclusions concerning active recommender
framework development

Typical SEFs for specifying manifestations of non-compositional systems can be
clustered as: (i) generic, (ii) conceptual, (iii) logical, (iv) architectural, (v) functional, (vi)
component-based, (vii) model-based, (viii) temporal, (ix) contextual, and (xi) composite
frameworks. Though many SEFs have been developed for composable systems, they
cannot be transferred directly to compositional systems. 2G-CPSs assume SEFs that facilitate
synergistic definition, synthesis, and adaptation of all system components. Besides smart
reasoning, the target SEFs should support the implementation of other system- level
features of S-CPSs such as dependability, security, and openness. Within the framework,
we scope our attention to the reasoning part of S-CPSs, which is able to create system-
level smartness. It consists of the compositional tasks of in S-CPSs that provide logical
computational processes including creating semantic knowledge structures, inferring within
reasoningmechanisms, building situation awareness, enabling dependent decision-making,
and performing system adaptation. The conclusions concerning the content development
of the ARF are as follows:

 • The results of the literature study showed that no SEF was developed so far, which
would cover all enablers of system level-reasoning (i.e., system knowledge, situation
awareness, context sensitive reasoning, decision-making, and system adaptation). There
are two possible trajectories for the development of such a framework. One is the
development of a new concept from scratch. Another one is to integrate the relevant parts
of existing frameworks into one holistic framework. However, in the latter case, the
functionally relevant parts may not be simply interconnected. These parts should be
reconsidered and interpreted on a higher level of abstraction, and that way they may
be integrated into a novel designsupport framework.

 • Due to the complexity of system-level reasoning, the ARF cannot be a singleaspect,
monolithic and universal arrangements of interrelated things, but instead should be
multi-aspect composite structures (constructs) that show a wide variety depending on the
purpose of operations and the application contexts.

 • The existing SEFs are operationalized in a static manner. Most of them cannot capture the
changes in the system behaviors, thus they cannot provide the solutions at runtime
operation. We concluded that the traditional SEFs cannot support a development of
smart-reasoning mechanisms effectively.

 • Two system-level capabilities are needed to equip a framework with an active
manner: (i) real-time process monitoring, and (ii) runtime decision support. Therefore,
the essence of the ARF is the combination of the process monitoring functionality with
context aware recommendation services to support the development of reasoning
mechanisms focusing on the enables of system-level reasoning.

 • A synergistic fusion of the procedural reasoning process (e.g., event recognition,
building awareness, context-based reasoning, decision-making, and functional and
adaptation planning) of S-CPSs is needed for a development of ASRMs.

82

 • Considering the computational algorithms included in ARSMs as knowledge elements, the
ARF should handle these knowledge elements and realize their design process and
tasks. Without this domain specific knowledge, the ARF cannot recognize the actual
state of design process. Therefore, in the lack of sufficient knowledge, the possibility
that the ARF will propose an incorrect recommendation to the designer may be large.

 • The ARF should facilitate the system designer with the following services: (i)
recognizing the changes in the design process, (ii) communicating with a designer during
the execution of the design process, (iii) providing the design guideline at the higher level of
abstraction, (iv) guiding how to select the right computational method with proper design
action at lower-level of design operation, (v) providing an example of the best
coupled design actions, (vi) comparing alternatives for the integration of multiple methods, and
(vii) giving a recommendation about the feasible solutions varying on the application contexts.

2�8�3 Conclusions concerning the requirements for an active
recommender framework development

The exploration of requirements for the ARF had been done in two levels: (i) systemlevel,
and (ii) mechanism-level. The individual requirements were derived from the implications
of the findings of the literature study. However, we observed that some of them had
relationships to each other. It required an analysis of the semantic meanings of their
relationships in the whole. Therefore, semantic maps were constructed to investigate the
relationships of the requirements on different levels of abstraction. From the point of view
of the development process of the ARF, the conclusions concerning the requirements are
as follows:

 • Two functional system-level requirements are related to: (i) process monitoring; and (ii)
decision support functionality.

 • It is feasible to test the system-level functionality of the ARF with four key system-
level requirements: (i) the construction of system-level framework should be done
with the lowest possible number of mechanisms, (ii) the mechanisms should induce
the lowest possible number of functional, computational, and control relationships
and dependencies with each other, (iii) the information exchange should happen in a
near zero-time operation, and (iv) the processing time of recommendation generating
should be no longer than 10 seconds.

 • Regarding the mechanism-level requirements, five of them were considered as the key
requirements: (i) the process monitoring mechanism should identify an obstacle with a
higher than 45% of justified objective decisions, (ii) all computational mechanisms
should consist of the lowest possible number of architecting modules, (iii) the flow of
information throughout the mechanisms should be harmonized in time as requested by
the modules with the least possible number of interactions, (iv) the process monitoring
mechanism should be able to implement near zero-time processing, and (v) the decision
support mechanism should generate a recommendation for the designer in less than 10
seconds.

83

The abovementioned requirements described the conceptual idea of the ARF, as follows:

 • The findings in Section 2.4.5 imply that two system-level functionalities are needed
to equip the framework with an active design support capability: (i) realtime process
monitoring, and (ii) run time recommendation provision.The latter is integral part of
decision support. From the system-level requirement.SR-F01 follows that the ARF should
be constructed with the lowest possible number of architectural elements. This optimum
can be achieved in two possible ways: (i) putting all elements together in one mechanism,
and (ii) mapping one service functionality to one mechanism.

 • At the mechanism-level, five functional requirements have influences on the architectural
modules. Thus, if a function is mapped to a module in a one-to-one manner, then five
modules are formed: (i) activity-based monitoring, (ii) unexpected event recognition,
(iii) design actions and their relationship identification, (iv) a procedural network of
design action construction, and (v) recommendation generation.

 • With this number of mechanisms and modules, it is possible to keep the lowest number of
functional, computational, and control dependencies between and within the mechanisms
and to exchange the information flow with near zero operation time.

 • With a view to keeping the designer’s attention on the design task, it can be conceived
that the computational process of recommendation generation can be done within 10
seconds.

 • The last requirement that should be considered is the performance of the process
monitoring mechanism and the decision made by the designer. If the ARF recognizes
an unexpected event and identifies the obstacles based on the procedural network of
design actions with a high percentage of correctness, and the designer accepts the offer
with a high number of probabilities, this implies the quality of procedural network and
the improvement opportunities for the recommendation generation.

References
[1] Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer

program for bibliometric mapping. Scientometrics, 84(2), 523–538.
[2] Esterle, L. & Grosu, R. (2016). Cyber-physical systems: challenge of the 21st

century. Ei Elektrotechnik Und Informationstechnik, 133(7), 299–303.
[3] Broy, M., Cengarle, M. V., & Geisberger, E. (2012). Cyber-Physical Systems: Imminent

Challenges. in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 1–28).

[4] Pourtalebi, S., Horváth, I., & Opiyo, E. (2013). Multi-aspect study of mass
customization in the context of cyber-physical consumer durables. In
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (Vol. 55911, p. V004T05A006). American
Society of Mechanical Engineers.

[5] Krupitzer, C., Roth, F. M., Van Syckel, S., Schiele, G., &Becker, C. (2015). A
survey on engineering approaches for self-adaptive systems. Pervasive and mobile

84

computing, 17, 184–206.
[6] Poovendran, R., (2010). Cyber-physical systems: Close encounters between two

parallel worlds. In Proceedings of the IEEE, (pp. 1363–1366).
[7] Díaz, J., Pérez, J., Pérez, J., & Garbajosa, J. (2016). Conceptualizing a framework

for cyber-physical systems of systems development and deployment. In Proceedings of
the 10th European Conference on Software Architecture Workshops - ECSAW ’16
(pp.1-7).

[8] Smirnov, A., Levashova, T., Shilov, N., & Sandkuhl, K. (2014). Ontology for
cyberphysical-social systems self-organization. In Conference of Open Innovation
Association, FRUCT (pp. 101-107).

[9] Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and research
challenges. ACM Transaction on Autonomous and Adaptive System, 4(2), 1-42,
2009.

[10] Lee, K., & Chirikjian, G. S. (2007). Robotic self-replication. IEEE Robotics & automation
magazine, 14(4), 34-43.

[11] Wang, S., Zhang, C., & Li, D. (2016). A big data centric integrated framework and typical
system configurations for smart factory. In Industrial IoT Technologies and
Applications (pp. 12-23). Springe International Publishing AG, Cambridge.

[12] Dumitrache, L. (2011). Cyber-physical systems - new challenges for science and
technology. Journal of control engineering and applied informatics, 3(3), 3-4.

[13] Salerno, J., Hinman, M., & Boulware, D. (2004). Building a framework for
situation awareness. In Proceedings of the Seventh International Conference on
Information Fusion (pp. 219–226).

[14] Sharma, A. B., Ivančić, F., NiculescuMizil, A., Chen, H., & Jiang, G. (2014).Modeling
and analytics for cyber-physical systems in the age of big data. ACM SIGMETRICS
Performance Evaluation Review, 41(4), 74–77.

[15] Sene, A., Kamsu-Foguem, B., & Rumeau, P. (2015). Telemedicine framework
using case-based reasoning with evidences. Computer Methods and Programs in
Biomedicine, 121(1), 21–35.

[16] Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on
cyber-physical systems technologies: Prototype implementations and challenges.
Computer in Industry, 81, 11–25.

[17] Engell, S. (2014). Cyber-physical systems of systems - Definition and core research
and innovation areas. Retrieve from https://www.cpsos.eu/wp-contentuploads/2015/07/
CPSoS-Scope-paper-vOct-26-2014.pdf.

[18] Macías-Escrivá, F. D., Haber, R., del Toro, R., & Hernandez, V., (2016).
Self-adaptive systems: A survey of current approaches, research challenges and
applications. Expert Systems with Applications., 40(18), 7267–7279.

[19] Mainzer, K. (2015). The emergence of self-conscious systems: From symbolic AI to
embodied robotics. In Philosophy, Computing and Information Science (pp. 57–66).
Taylor and Francis.

[20] Metzler, T. & Shea, K. (2010). Cognitive products: definition and framework. In Design
(pp. 865–874).

[21] Håkansson, A., Hartung, R., & Moradian, E. (2015). Reasoning strategies in smart

85

cyber-physical systems. Procedia Computer Science., 60, 1575–1584.
[22] Mostéfaoui, S. K., & Hirsbrunner, B. (2003). Towards a context-based service

composition framework. In Proceedings of the International Conference on Web
Services (pp. 42–45).

[23] Raducanu, B., & Vitrià, J. (2008). Learning to learn: From smart machines to
intelligent machines. Pattern Recognition Letters, 29(8), 1024–1032.

[24] Horváth, I. (2021). Connectors of smart design and smart systems. AI EDAM, 35(2),
132–150.

[25] Saarinen E., & Hämäläinen, R. P. (2010). The originality of systems intelligence. Essays
on Systems Intelligence., 9–28.

[26] Daniel, F., Matera, M., & Pozzi, G. (2008). Managing runtime adaptivity through
active rules: the bellerofonte framework, Journal of Web Engineering, 7(3), 179–199.

[27] Daun, M., Brings, J., Bandyszak, T., Bohn, P., & Weyer, T. (2015). Collaborating multiple
system instances of smart cyber-physical systems:a problem situation, solution idea,
and remaining research challenges. In the 1st International Workshop on Software
Engineering for Smart Cyber-Physical Systems (pp. 48–51). IEEE/ACM.

[28] Zhang X. Y., & Le Zhou, C. (2013). From biological consciousness to machine
consciousness: an approach to make smarter machines. International Journal of
Automation and Computing, 10(6), 498–505.

[29] Scheidl, D.I. R. (2016). Actuators and sensors for smart systems. In Proceedings of the
10th International Fluid Power Conference (pp. 367–384).

[30] Lanting C., & Lionetto, A. (2015). Smart systems and cyber physical systems paradigms
in an IoT and Industrie/y4.0 context. In Proceedings of 2nd International
Electronic Conference on Sensors and Applications.

[31] Okon, S., & Asagba, P. (2014). Self-organization and self-healing: Rationale and
strategies for designing and developing a dependable software system. International
Journal of Innovative Research in Computer and Communication Engineering, 2(4),
3687–3698.

[32] Wang, Y. (2009). On cognitive computing. International Journal of Software Science
and Computation Intelligence, 3(1), 1–15.

[33] Zhuge, H. (2011). Semantic linking through spaces for cyber-physical-socio
intelligence: A methodology. Artificial Intelligence, 175(5), 988–1019.

[34] S. Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its
impact on society and firms. Futures, 90, 46–60.

[35] Zhou, P., Zuo, D., Hou, K. M., & Zhang, Z. (2017). A decentralized compositional
framework for dependable decision process in self-managed cyber physical systems.
Sensors (Switzerland), 17(11), 1–33.

[36] Skyttner, L. (1996). General systems theory: Origin and hallmarks. Kybernetes, 25(6),
16–22.

[37] Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next
computing revolution. In Proceedings of Design Automation Conference (pp.
731–736).

[38] Datta, P., Dey, S., Paul, H. S., & Mukherjee, A. (2014). ANGELS: A framework for
mobile grids. In Proceedings of the International Conference on Applications and

86

Innovations in Mobile Computing (pp. 15–20). IEEE.
[39] Stamer, D., Zimmermann, O., & Sandkuhl, K. (2016). What Is a Framework? - A

Systematic Literature Review in the Field of Information Systems. In International
Conference on Business Informatics Research (pp. 145–158)

[40] Aguilar, J., Valdiviezo-dı, P., Riofrio, G., Valdiviezo-Díaz, P., & Riofrio, G. (2017). A general
framework for intelligent recommender systems. Applied Computing and Informatics,
13(2), 147–160.

[41] Cicirelli, F., Fortino, G., Guerrieri, A., Spezzano, G., & Vinci, A. (2016). A metamodel
framework for the design and analysis of smart cyber-physical environments. In the
20th International Conference on Computer Supported Cooperative Work in Design
(pp. 687–692). IEEE.

[42] Anwar, M. W., Rashid, M., Azam, F., Kashif, M., & Butt, W.H. (2019). A model
driven framework for design and verification of embedded systems through System
Verilog. Design Automation for Embedded Systems., 23(3–4), 179–223.

[43] Levin, M.S. (2011). Four-layer framework for combinatorial optimization problems
domain. Advance in Engineering Software, 42(12), 1089–1098.

[44] Sztipanovits, J., Bapty, T., Neema, S., Howard, L., & Jackson, E. (2014).physical
systems. In From Programs to Systems. The Systems Perspective in Computing (pp.
235-248). Springer, Berlin, Heidelberg.

[45] Clark, K., Hengst, B., Pagnucco, M., Rajaratnam, D., Robinson, P., Sammut, C., & Thielscher,
M. (2016). A Framework for Integrating Symbolic and Sub-Symbolic Representations. In
Proceeding of the International Joint Conference on Artificial Intelligence (pp.
2486-2492).

[46] Blersch, M., Landhäuer, M., &Mayer, T. (2018). Semi-automatic generation of
active ontologies from web forms for intelligent assistants. In Proceedings of the
International Conference on Software Engineering (pp. 28–34).

[47] Marques, P. D., Silva, A. J., Henriques, E. M., & Magee, C. L. (2014). A descriptive
framework of the design process from a dual cognitive-engineering perspective.
International Journal of Design Creativity and Innovation, 2(3), 142–164.

[48] Long, L., & Kelley, T. (2009). The requirements and possibilities of creating conscious
systems. In AIAA Infotech@ Aerospace Conference and AIAA Unmanned...
Unlimited Conference (p. 1949).

[49] U. Demiryurek, F. Banaei-kashani, & C. Shahabi, C. (2009). TransDec: A data-
driven framework for decision-Making in transportation systems. Transport Research
Forum, 1–15.

[50] Manzoni, S., Sartori, F., & Vizzari, G. (2005). Towards a general framework for
substitutional adaptation in case-based reasoning. In Congress of the Italian
Association for Artificial Intelligence (pp. 331-342). Springer, Berlin, Heidelberg.

[51] Tanik, U. J., & Begley, A. (2014). An adaptive cyber-physical system framework for cyber-
physical systems design automation. In Applied cyber-physical systems (pp. 125-
140). Springer, New York, NY.

[52] Zhang, L., & He, J. (2011). A formal framework for aspect-oriented specification of
cyber physical systems. In Proceedings of the International Conference on Hybrid
Information Technology (pp. 391-398). Springer, Berlin, Heidelberg.

87

[53] Lieto, A., Radicioni, D., Rho, V., & Mensa, E. (2017). Towards a unifying framework
for conceptual represention and reasoning in cognitive systems.Intelligenza
Artificiale, 11(2), 139-153

[54] Pavlić, M., Han, Z. D., & Jakupović, A. (2015). Question answering with a conceptual
framework for knowledge-based system development “Node of Knowledge”. Expert
systems with applications, 42(12), 5264-5286.

[55] Kim, M., Stehr, M. O., & Talcott, C. (2013). A distributed logic for networked
cyber physical systems. Science of Computer Programming, 78(12), 2453-2467.

[56] Rabe, F., & Sojakova, K. (2013). Logical relations for a logical framework. ACM
Transactions on Computational Logic, 14(4), 1-34.

[57] de Roo, A., Sözer, H., Bergmans, L., & Akşit, M. (2013). MOO: An architectural framework
for runtime optimization of multiple system objectives in embedded control software.
Journal of Systems and Software, 86(10), 2502-2519.

[58] Sözer, H., Tekinerdoğan, B., & Akşit, M. (2009). FLORA: A framework for
decomposing software architecture to introduce local recovery. Software: Practice
and Experience, 39(10), 869-889.

[59] Rogers, Y., & Muller, H. (2006). A framework for designing sensor-based interaction
to promote exploration and reflection in play. Journal of Human-Computer Studies,
64(1), 1-14.

[60] Jeong, S., Baek, Y., & Son, S. H. (2020). Component-based interactive framework for
intelligent transportation cyber-physical systems. Sensors, 20(1), 264.

[61] Jung, M. Y., Deguet, A., & Kazanzides, P. (2010). A component-based architecture for
flexible integration of robotic systems. In Proceedings of International Conference
on Intelligent Robots and Systems (pp.16107-6112). IEEE.

[62] Nayak, A., Reyes Levalle, R., Lee, S., & Nof, S. Y. (2016). Resource sharing in
cyberp hysical systems: modelling framework and case studies. International Journal of
Production Research, 54(23), 6969-6983.

[63] Petnga, L., & Austin, M. (2016). An ontological framework for knowledge modeling
and decision support in cyber-physical systems. Advanced Engineering Informatics, 30(1),
77-94.

[64] Napp, N., & Klavins, E. (2011). A compositional framework for programming
stochastically interacting robots. The International Journal of Robotics
Research, 30(6), 713-729.

[65] Horváth, I., Li, Y., Rusák, Z., van der Vegte, W. F., & Zhang, G. (2017). Dynamic
computation of time-varying spatial contexts. Journal of Computing and Information
Science in Engineering, 17(1).

[66] Jearanaiwongkul, W., Anutariya, C., & Andres, F. (2019). A semantic-based
framework for rice plant disease management. New Generation Computing, 37(4),
499-523.

[67] Sakr, S., & Elgammal, A. (2016). Towards a comprehensive data analytics framework
for smart healthcare services. Big Data Research, 4, 44-58.

[68] Shih, C. S., Hsiu, P. C., Chang, Y. H., & Kuo, T. W. (2016). Framework designs to
enhance reliable and timely services of disaster management systems. In International
Conference on Computer-Aided Design (pp.1-8). IEEE.

88

[69] Romdhane, R., Bremond, F., & Thonnat, M. (2010). A framework dealing with
uncertainty for complex event recognition. In Proceedings of the 7th international
conference on advanced video and signal based surveillance (pp. 392-399). IEEE.

[70] Kappé, T., Arbab, F., & Talcott, C. (2016). A compositional framework for preference-
aware agents. In Electronic Proceedings in Theoretical Computer Science, (Vol. 232,
pp. 21-35). Open Publishing Association.

[71] Feng, S., Quivira, F., & Schirner, G. (2016). Framework for rapid development of
embedded human-in-the-loop cyber-physical systems. In Proceedings of the 16th
international conference on bioinformatics and bioengineering (pp. 208-215). IEEE.

[72] Bridgens, B., & Lilley, D. (2017). Understanding material change: Design for
appropriate product lifetimes. In PLATE: Product Lifetimes and The Environment
(pp. 54-59). IOS Press.

[73] Chaki, S., Ouaknine, J., Yorav, K., & Clarke, E. (2003). Automated compositional abstraction
refinement for concurrent C programs: A two-level approach.Electronic Notes in
Theoretical Computer Science, 89(3), 417-432.

[74] Tripakis, S. (2016). Compositionality in the science of system design. Proceedings of the
IEEE, 104(5), 960-972.

[75] Alonso, D., Sanchez-Ledesma, F., Sanchez, P., Pastor, J. A., & Alvarez, B. (2014).Models
and frameworks: a synergistic association for developing component-based applications.
The Scientific World Journal, 14, 1–17.

[76] Rahimian, V., & Ramsin, R. (2008). Designing an agile methodology for mobile
software development: A hybrid method engineering approach. In Proceedings of
the 2nd International Conference on Research Challenges in Information Science
(pp. 337-342). IEEE.

[77] Sokolova, M. V., & Caballero, A. F. (2012). Design and Implementation of the
DeciMaS Framework. In Decision Making in Complex Systems (pp.47-88).
Springer, Berlin, Heidelberg.

[78] Jannaschk, K., & Polomski, T. (2010). A data mining design framework- a preview.
In East European Conference on Advances in Databases and Information Systems
(pp. 571-574). Springer, Berlin, Heidelberg.

[79] Sander, I., Jantsch, A., & Attarzadeh-Niaki, S. H. (2017). ForSyDe: System design
using a functional language and models of computation. In Handbook of Hardware/
Software Codesign (pp. 99–140).

[80] Ståhl, D., & Bosch, J. (2017). Cinders: The continuous integration and delivery
architecture framework. Information and Software Technology, 83, 76-93.

[81] Kang, W., Lee, J., Jeong, Y.-S., & Park, J. (2015). VCC-SSF: service-oriented Security
framework for vehicular cloud computing. Sustainability, 7(2), 2028–2044.

[82] Prabawa, P., & Choi, D. H., (2020). Multi-agent framework for service restoration
in distribution systems with distributed generators and static/mobile energy storage
systems. IEEE Access, 8, 51736–51752.

[83] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., & Steenkiste, P. (2004).Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, 37(10),
46–54.

[84] Stanojević, V., Vlajić, S., Milić, M., & Ognjanović, M. (2011). Guidelines for

89

framework development process. In Proceedings of the 7th Central and Eastern
European Software Engineering Conference (pp. 1-9). IEEE.

[85] Crnkovic, I., Sentilles, S., Vulgarakis, A., & Chaudron, M. R. (2010). A classification
framework for software component models. IEEE Transactions on Software Engineering,
37(5), 593-615.

[86] PArv, B., Motogna, S.-C., Czibula, I.-G., & Laz, C.-L. (2011). ComDeValCo framework:
designing software components and systems using MDD, executable models, and TDD.
Acta Universitatis Sapientiae Informatica, 3(1), 48–75.

[87] Sifakis, J. (2005). A framework for component-based construction. In Proceedings of the 3rd
International Conference on Software Engineering and Formal Methods (pp. 293–
299). IEEE.

[88] Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., & García-Fornes, A. (2014). An
adaptive framework for monitoring agent organizations. Information Systems
Frontiers, 16(2), 239-256.

[89] Pahal, N., Jain, P., Saxena, R., Srivastava, A., Chaudhury, S., & Lall, B. (2019).Context-
Aware Reasoning Framework for Multi-user Recom mendations in Smart Home. In
International Conference on Pattern Recognition and Machine Intelligence (pp. 302-
310). Springer, Cham.

[90] Ali, R., Afzal, M., Sadiq, M., Hussain, M., Ali, T., Lee, S., & Khattak, A. (2018).
Knowledge-based reasoning and recommendation framework for intelligent decision
making. Expert Systems, 35(2), e12242.

[91] Hughes, A. J., Barthorpe, R. J., Dervilis, N., Farrar, C. R., & Worden, K. (2021). A
probabilistic risk-based decision framework for structural health monitoring Mechanical
Systems and Signal Processing, 150, 107339.

[92] Wu, B. F., Chen, Y. H., Yeh, C. H., & Li, Y. F. (2013). Reasoning-based framework
for driving safety monitoring using driving event recognition. IEEE Transactions on
Intelligent Transportation Systems, 14(3), 1231-1241.

[93] Di Francescomarino, C., Dumas, M., Maggi, F. M., & Teinemaa, I. (2019). Clustering-
based predictive process monitoring. IEEE Transactions on Services Computing,
12(06), 896-909.

[94] Guan, L., Chen, H., & Lin, L. (2021). A multi-agent-based self-healing framework
considering fault tolerance and automatic restoration for distribution networks.
IEEE Access, 9, 21522–21531.

[95] Mshali, H. H., Lemlouma, T., & Magoni, D. (2015). Context-aware adaptive
framework for e-health monitoring. In International Conference on Data Science
and Data Intensive Systems (pp. 276-283). IEEE.

[96] Seyoung, P., Mye, S., Haeran, J., & Lee, H. (2016). Situation reasoning framework
for the Internet of Things environments using deep learning results. In International
Conference on Knowledge Engineering and Applications (pp. 133–138). IEEE.

[97] Thaduri, A., Kumar, U., & Verma, A. K., (2017). Computational intelligence
framework for context-aware decision making. International Journal of System
Assurance Engineering and Management, 8, 2146–2157.

[98] Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A.
(2017). A fog computing-based framework for process monitoring and prognosis in

90

cyber-manufacturing. Journal of Manufacturing Systems, 43, 25-34.
[99] Du, Z., Tang, J., & Ding, Y. (2019). POLAR++: Active One-shot Personalized Article

Recommendation. IEEE Transactions on Knowledge and Data Engineering,
33(6), 2709-2722.

[100] Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems research.
KSII Transactions on Internet and Information Systems, 5(11), 1891-1908.

[101] Petersson, H., Motte, D., Eriksson, M., & Bjärnemo, R. (2013). Integration of
computer aided design analysis into the engineering design process for use by
engineering designers. In Proceedings of International Mechanical Engineering
Congress and Exposition (Vol. 56413, pp. V012T13A002). ASME.

[102] Steinbauer G., & Wotawa, F. (2013). Model-Based Reasoning for Self-Adaptive Systems
– Theory and Practice. In Assurances for Self-Adaptive Systems (pp. 187–213).
Springer Berlin Heidelberg.

[103] Zhang, H., Li, F., Wang, J., Wang, Z., Shi, L., Zhao, J., ... & Szczerbicki, E. (2017).
Adding intelligence to cars using the neural knowledge DNA. Cybernetics and
Systems, 48(3), 267-273.

[104] Khan, F., Eker, O. F., Sreenuch, T., & Tsourdos, A. (2014). Multi-domain modeling
and simulation of an aircraft system for advanced vehicle-level reasoning research
and development. International Journal of Advanced Computer Science and
Applications, 5(4), 86-96.

[105] Lu, T., Zhao, J., Zhao, L., Li, Y., & Zhang, X. (2015). Towards a framework
for assuring cyber physical system security. International Journal of Security
 and Its Applications, 9(3), 25-40.

[106] Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new
frontier in artificial intelligence research [research frontier]. IEEE computational
intelligence magazine, 5(4), 13-18.

[107] Crowder, J. A., Carbone, J. N., & Friess, S. A. (2014). Artificial cognition
architectures. New York: Springer.

[108] Riegler, A. (2002). When is a cognitive system embodied?. Cognitive Systems Research,
3(3), 339–348.

[109] Petnga, L., & Austin, M. (2013). Ontologies of time and time-based reasoning for MBSE
of cyber-physical systems. Procedia Computer Science, 16, 403-412.

[110] Tenorth M., & Beetz, M. (2013). KnowRob: A knowledge processing infrastructure
for cognition-enabled robots. International Journal of Robotics and Research, 32(5),
566–590.

[111] Kunze, L., Hawes, N., Duckett, T., Hanheide, M., & Krajník, T. (2018).Artificial
intelligence for long-term robot autonomy: A survey. IEEE Robotics and
Automation Letters, 3(4), 4023-4030.

[112] Rajeswari, P. V. N., & Prasad, T. V. (2012). Hybrid Systems for Knowledge
Representation in Artificial Intelligence. International Journal Advance Research in
Artificial Intelligence, 1(8), 31–36.

[113] Almeida, A., & Lopez-de-Ipina, D. (2012). A Distributed Reasoning Engine Ecosystem
for Semantic Context-Management in Smart Environments. Sensors, 12(8), 10208–10227.

[114] Li, X., Martinez, J.-F., & Rubio, G. (2015). Context Aware Middleware Architectures:

91

Survey and Challenges. Sensors, 15(8), 20570–20607.
[115] Li, X., Martinez, J.-F., & Rubio, G. (2017). Towards a Hybrid Approach to Context

Reasoning for Underwater Robots., Applied Science, 7(2), 183.
[116] Gomes, P. E., Marques, A., Costa, Â., Novais, P., & Neves, J. (2010). Patient monitoring

under an ambient intelligence setting. In Ambient Intelligence and Future Trends-
International Symposium on Ambient Intelligence (pp. 185-188). Springer, Berlin,
Heidelberg.

[117] Gouin-Vallerand, C., Abdulrazak, B., Giroux, S., & Dey, A. K. (2013). A contextaware
service provision system for smart environments based on the user interaction
modalities. Journal of Ambient Intelligence and Smart Environments, 5(1), 47-64.

[118] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., &
Riboni, D. (2010). A survey of context modelling and reasoning techniques.
Pervasive and mobile computing, 6(2), 161-180.

[119] Gilman, E. (2015). Exploring the use of rule-based reasoning in ubiquitous computing
applications (Doctoral dissertation, University of Oulu, Finland).

[120] Jakobson, G., Buford, J., & Lewis, L. (2006). A framework of cognitive situation
modeling and recognition. In Military Communications conference (pp. 1-7). IEEE.

[121] Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in
pervasive computing: A review. Pervasive and Mobile Computing, 8(1), 36–66.

[122] Lewis, P. R., Chandra, A., Parsons, S., Robinson, E., Glette, K., Bahsoon, R., ... &
Yao, X. (2011). A survey of self-awareness and its application in computing systems.
In Proceedings of the 5th Conference on Self-Adaptive and Self-Organizing Systems
Workshops (pp. 102-107). IEEE.

[123] Schlatow, J., Moostl, M., Ernst, R., Nolte, M., Jatzkowski, I., Maurer, M.,... &
Herkersdorf, A. (2017). Self-awareness in autonomous automotive systems. In
Design, Automation & Test in Europe Conference & Exhibition (pp.1050-1055). IEEE.

[124] Gurgen, L., Gunalp, O., Benazzouz, Y., & Gallissot, M. (2013). Self-aware cyber-
physical systems and applications in smart buildings and cities. In Design, Automation &
Test in Europe Conference & Exhibition (pp. 1149-1154). IEEE.

[125] Hudson, D. A., & Manning, C. D. (2018). Compositional attention networks for
machine reasoning. In International Conference on Learning Representations
(pp.1-20).

[126] Basu, C., Agrawal, A., Hazra, J., Kumar, A., Seetharam, D. P., Béland, J.,... & Lafond,
C. (2014). Understanding events for wide-area situational awareness. In Innovation
Smart Grid Technologies (pp. 1-5). IEEE.

[127] Sene, A., Kamsu-Foguem, B., & Rumeau, P. (2015). Telemedicine framework using
case-based reasoning with evidences Computer Methods and Programs in Biomedicine,
121(1), 21-35.

[128] Subbaraj R., & Venkatraman, N. (2016). Reasoning in context aware computing
 – a review issn. International Journal of Pharmacology and Technology, 8(4),
 5021–5032.

[129] Cimino, M. G., Lazzerini, B., Marcelloni, F., & Ciaramella, A. (2012). An adaptive
rule-based approach for managing situation-awareness. Expert Systems with
Applications, 39(12), 10796-10811

92

[130] Uusitalo, L., (2007). Advantages and challenges of Bayesian networks in
environmental modelling. Ecological Modelling, 203(3-4), 312–318.

[131] Pan, I., & Bester, D. (2018). Fuzzy Bayesian Learning. IEEE Transaction on Fuzzy
Systems, 26(3), 1719–1731.

[132] Yan, K.-Y. (2012). Fuzzy-probabilistic logic for common sense. In Proceedings of the
International Conference on Artificial General Intelligence (pp. 372-379). Springer,
Berlin, Heidelberg.

[133] Prentzas, J., & Ioannis, H. (2011). Case-based reasoning integrations: approaches and
applications. Case-based reasoning: process, suitability and applications, 1–28.

[134] Hao, J. G., Bouzouane, A., Bouchard, B., & Gaboury, S. (2018). Activity inference
engine for real-time cognitive assistance in smart environments. Journal of Ambient
Intelligence and Humanized Computing, 9(3), 679–698.

[135] Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171(10–15), 619–641.

[136] Caillou, P., Gaudou, B., Grignard, A., Truong, C. Q., & Taillandier, P. (2017). A simple-
to-use BDI architecture for agent-based modeling and simulation. In Advances in
Social Simulation (pp. 15-28). Springer, Cham.

[137] Elkhodary, A., Esfahani, N., & Malek, S. (2010). FUSION: a framework for
engineering self-tuning self-adaptive software systems. In Proceedings of the 18th
ACM SIGSOFT international symposium on Foundations of software engineering
(pp. 7).

[138] Berka, P. (2011). NEST: A Compositional approach to rule-based and case-based
reasoning. Advance in Artificial Intelligence, 1–15.

[139] Tsafnat, G., & Coiera, E. W. (2009). Computational reasoning across multiple models.
Journal of American Medical Informatics Association, 16(6), 768–774.

[140] Yu, C., & Luo, Y. (2006). Research on the modeling system for decision-making
problems based on knowledge. In International Conference on Machine Learning
and Cybernetics (pp. 1960-1966).

[141] Li, B., Li, J., Tang, K., & Yao, X. (2015). Many-objective evolutionary algorithms:
A survey. ACM Computing Surveys, 48(1), 1-35.

[142] Senne, K. D., & Condon, G. R., (2007). Integrated Sensing and Decision Support.
Lincoln Laboratory Journal, 16(2), 237–244.

[143] Ong, D. C. C., Khaddaj, S., & Bashroush, R. (2011). Logical reasoning and decision
making. In Proceedings of the 10th International Conference on Cybernetic
Intelligent Systems (pp. 26–31). IEEE.

[144] Baclawski, K., Chan, E. S., Gawlick, D., Ghoneimy, A., Gross, K. C., & Liu, Z.
H. (2017). Self-adaptive dynamic decision making processes. In Conference on
Cognitive and Computational Aspects of Situation Management (pp. 1-6). IEEE

[145] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,...&
Shaw, M. (2009). Engineering self-adaptive systems through feedback loops. In
Software Engineering for Self-adaptive Systems (pp. 48-70). Springer, Berlin,
Heidelberg.

[146] Berka, P. (2002). Adaptive features of machine learning methods. In Proceedings
 of the 1st International IEEE Symposium Intelligent Systems (Vol. 2, pp.

93

40–43). IEEE.
[147] Levin, S. A. (2002). Complex adaptive systems : exploring the known, the unkknown

and the unknowable. Bulletin of the American Mathematic Society, 40(1), 3–19.
[148] Watson, R. A., Buckley, C. L., & Mills, R. (2011). Optimization in ‘self-modeling’ complex

adaptive systems. Complexity, 16(5), 17–26.
[149] Cámara, J., Bellman, K. L., Kephart, J. O., Autili, M., Bencomo, N., Diaconescu,

A.,...& Tivoli, M. (2017). Self-aware computing systems: Related concepts
 and research areas. In Self-Aware Computing Systems (pp. 17-49). Springer,
 Cham.

[150] Amara-Hachmi, N. (2006). An Ontology-based Model for Mobile Agents Adaptation
in Pervasive Environments. In International Conference on Computer Systems and
Applications (pp. 1106–1109). IEEE.

[151] Wang, X., Feng, Z., Huang, K., & Tan, W. (2017). An automatic self-adapttion framework
for service-based process based on exception handling. Concurrency and Computation:
Practice and Experience, 29(5), e3984.

[152] Papamarkos, G., Poulovassilis, A., & Wood, P.T. (2003). Event-Condition-Action rule
languages for the semantic web. In Proceedings of Conference on Semantic Web
and Databases (pp. 309-327).

[153] Goodwin, T. R. & Harabagiu, S. M. (2017). Knowledge representations and inference
techniques for medical question answering. ACM Transaction on Intelligent Systems
and Technology, 9(2), 1-26).

[154] Bui, K. H. N., Pham, X. H., Jung, J. J., Lee, O. J., & Hong, M. S. (2015). Contextbased
traffic recommendation system. In International Conference on Context Awareness
Systems and Applications (pp. 122-131). Springer, Cham.

[155] Wu, Z., Li, L., & Liu, H. (2020). Process Knowledge Recommendation System for
Mechanical Product Design. IEEE Access, 8, 112795–112804.

[156] Konstan, J. A., & Riedl, J. (2012). Recommender systems: From algorithms to user
experience. User Modelling and User-adapted Interaction, 22(1–2), 101–123.

[157] Aldrich, S. E. (2011). Recommender systems in commercial use. AI Magazine, 32(3),
28-34.

[158] Tang, J., Hu, X., & Liu, H. (2013). Social recommendation: a review. Social Network
Analysis and Mining, 3(4), 1113-1133.

[159] Shokeen, J., & Rana, C. (2020). A study on features of social recommender systems.
Artificial Intelligence Review, 53(2), 965–988.

[160] Li, Y., Liu, J., & Ren, J. (2019). Social recommendation model based on user
interaction in complex social networks. PLoS One, 14(7), 1–17.

[161] Cena, F., Rapp, A., Musto, C., & Semeraro, G. (2020). Generating recommendations
from multiple data sources: A methodological framework for system design and its
application. IEEE Access, 8, 183430–183447.

[162] Dao, A.Q., Koltai, K., Cals, S.D., Brandt, S. L., Lachter, J., Matessa, M.,...& Johnson,
W.W. (2015). Evaluation of a recommender system for single pilot operations.
Procedia Manufacturing, 3, 3070-3077.

[163] Jannach, D., Jugovac, M., & Lerche, L. (2016). Supporting the design of machine
learning workflows with a recommendation system. ACM Transactions on Interactive

94

Intelligence Systems, 6(1), 1-35.
[164] Bao, Y., & Jiang, X. (2016). An intelligent medicine recommender system framework.

In Proceedings of the 11th Conference on Industrial Electronics and Applications,
ICIEA 2016 (pp. 1383–1388). IEEE.

[165] Jonnalagedda, N., & Gauch, S. (2013). Personalized news recommendation using
twitter. In Proceedings of the International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (Vol. 3, pp. 21-25). IEEE.

[166] Kartoglu, I. E., & Spratling, M. W. (2018). Two collaborative filtering recommender
systems based on sparse dictionary coding Knowledge and Information Systems,
57(3), 709–720.

[167] Cacheda, F., Carneiro, V., Fernández, D., & Formoso, V. (2011). Comparison of
collaborative filtering algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM Transactions on the
Web,5(1), 1-33.

[168] Ma, K. (2016). Content-based Recommender System for Movie Website. (Master’s
thesis, Examensarbete Inom Informations- OCH Kommun. Tek).

[169] Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2014). Hybreed: A software framework
for developing context-aware hybrid recommender systems. User Modeling and
User-Adapted Interaction, 24(1-2), 121-174.

[170] Gomaa, W.H., & Fahmy, A.A. (2013). A survey of text similarity approaches.
International Journal of Computer Applications, 68(13), 13-18.

[171] Cao, Y., Wang, X., He, X., Hu, Z., & Chua, T. S. (2019). Unifying knowledge graph
learning and recommendation: Towards a better understanding of user preferences.
In The World Wide Web Conference (pp. 151-161).

[172] Liu, J., & Duan, L. (2021). A Survey on Knowledge Graph-Based Recommender Systems.
In Proceedings of the 5th Advanced Information Technology, Electronic and
Automation Control Conference (Vol. 5, pp. 2450-2453). IEEE

[173] Aguilar, J., Valdiviezo-Díaz, P., & Riofrio, G. (2017). A general framework for
intelligent recommender systems. Applied computing and informatics, 13(2), 147-
160.

[174] Poczeta, K., Papageorgiou, E. I., & Gerogiannis, V. C. (2020). Fuzzy Cognitive Maps
Optimization for Decision Making and Prediction. Mathematics, 8(11), 2059.

[175] Willmann, R. (2019). Product design with integrated holistic validation of economics
of metal-based 3d-printing by the help of a recommender system. In International
Conference on Industrial Technology (pp. 806-811). IEEE.

[176] Chen, G., & Ge, Z. (2020). Hierarchical Bayesian Network Modeling Framework
for Large-Scale Process Monitoring and Decision Making. IEEE Transactions on
Control Systems and Technology, 28(2), 671–679.

[177] Demelo, J. & Sedig, K. (2021). Forming cognitive maps of ontologies using interactive
visualizations. Multimodal Technology and Interaction, 5(1), 1–39.

[178] Sheridan, P., Onsjö, M., Becerra, C., Jimenez, S., & Dueñas, G. (2019). An
OntologyBased Recommender System with an Application to the Star Trek
Television Franchise. Future Internet, 11(9), 182.

[179] Hu, C. J., Cheng, C. C., Wu, H. Y., & Chao, N. T. (2014). An Ontology Based

95

Recommendation Mechanism for Lighting System Design. In International
Symposium on Computer, Consumer and Control (pp. 239-243). IEEE.

[180] Rodriguez, N. D. (2011). A Framework for Context-Aware Applications for Smart
Spaces. In International Symposium on Applications and the Internet (pp.218–221).
IEEE.

[181] Esheiba, L., Elgammal, A., Helal, I., & El-Sharkawi, M. E. (2021). A hybrid knowledge-
based recommender for product-service systems mass customization. Information,
12(8), 296.

[182] Gabriel De Souza, P. M., Jannach, D., & Da Cunha, A. M. (2019). Contextual hybrid
session-based news recommendation with recurrent neural networks.IEEE Access, 7,
169185-169203.

[183] Mahmoud, H., & Akkari, N. (2016). Shortest Path Calculation: A Comparative study for
location-based recommender system. In World Symposium on Computer Applications
& Research (pp. 1-5). IEEE.

[184] Jain, A., & Gupta, C. (2018). Fuzzy logic in recommender systems. In Fuzzy Logic
Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real
Applications (pp. 255-273). Springer, Cham.

[185] Jie, H., ChangSheng, L., & ChengLi, L. (2019). Design and implementation
of the cross-harmonic recommender system-based on spark. In International
Conference on Advanced Hybrid Information Processing (pp. 461-474). Springer,
Cham.

[186] Jallouli, M., Lajmi, S., & Amous, I. (2017). Designing recommender system:
Conceptual framework and practical implementation. Procedia Computer Science,
112, 1701-1710.

[187] Glodek, J. (2013). Recommender System for a Knowledge Base. (Doctoral
dissertation, Warsaw University of Technology).

[188] Mahmood, M. A., Al-Shammari, E. T., El-Bendary, N., Hassanien, A. E., & Hefny,
H. A. (2013). Recommender system for ground-level Ozone predictions in Kuwait. In
Federated Conference on Computer Science and Information Systems (pp. 107-110).
IEEE.

[189] Laseno, F.U., & Hendradjaya, B. (2019). Knowledge-based filtering recommender
 system to propose design elements of serious game. In International Conference on

Electrical Engineering and Informatics (pp. 158-163). IEEE.
[190] Taghipour, N., Kardan, A., & Ghidary, S.S. (2007). Usage-based web recommendations:

A reinforcement learning approach. In Proceedings of the ACM conference on
Recommender systems (pp. 113-120).

[191] Song, Q., Wang, G., & Wang, C. (2012). Automatic recommendation of classification
algorithms based on data set characteristics. Pattern recognition, 45(7), 2672-2689.

[192] Hussein, A. S., Omar, W. M., Li, X., & Amer Hatem, M. (2014). Smart
collaboration framework for managing chronic disease using recommender system.
Health Systems, 3(1), 12-17

[193] Linda, S., & Bharadwaj, K. K. (2018). A decision tree based context-aware recommender
system. In Proceedings of the International Conference on Intelligent Human
Computer Interaction (pp. 293-305). Springer, Cham.

96

[194] Shani, G., Heckerman, D., & Brafman, R. I. (2005) An MDP-based recommender system.
Journal of Machine Learning and Research, 6, 1265–1295.

[195] Montaner, M., López, B., & De La Rosa, J. L. (2003). A taxonomy of recommender agents on
the internet. Artificial Intelligence Review, 19(4), 285–330.

[196] Rana, C., & Jain, S. K. (2015). A study of the dynamic features of recommender systems.
Artificial Intelligence Review, 43(1), 141–153.

[197] Unnikrishnan, G., Mathew, D., Jose, B. A., & Arvind, R. (2019). Hybrid Route
Recommender System for Smarter Logistics. In IEEE 5th Intl Conference on
Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE Intl Conferenceon Intelligent Data
and Security (IDS) (pp. 239-244). IEEE.

[198] Rabiu, I., Salim, N., Da’u, A., & Osman, A. (2020). Recommender system based on
temporal models: a systematic review. Applied Sciences, 10(7), 2204.

[199] Sun, B., &Dong, L. (2017). Dynamic model adaptive to user interest drift-based on
cluster and nearest neighbors. IEEE Access, 5, 1682–1691.

[200] Tareq, S. U., Noor, M. H., & Bepery, C. (2020). Framework of dynamic recommendation
system for e-shopping. International Journal of Information Technology, 12(1), 135-140.

[201] Ning, X., Fan, Z., Burgun, E., Ren, Z., & Schleyer, T. (2021). Improving information
retrieval from electronic health records using dynamic and multi-collaborative
filtering. Plos one, 16(8), e0255467.

[202] Jannach, D., Manzoor, A., Cai, W., & Chen, L. (2021). A Survey on conversational
recommender Systems. ACM Computing Surveys, 54(5), 1-36.

[203] Zhao, G., Zhao, J., Li, Y., Alt, C., Schwarzenberg, R., Hennig, L., ... & Xu, F. (2019).
MOLI: Smart Conversation Agent for Mobile Customer Service. Information, 10(2),
63.

[204] Paul, A., Haque Latif, A., Amin Adnan, F., & Rahman, R. M. (2019). Focused domain
contextual AI chatbot framework for resource poor languages. Journal of Information
and Telecommunication, 3(2), 248-269.

[205] Brenas, J. H., Shin, E. K., & Shaban-Nejad, A. (2019). A hybrid recommender system to
guide assessment and surveillance of adverse childhood experiences. In Health Informatics
Vision: From Data via Information to Knowledge (pp. 332-335). IOS Press.

[206] Lin, K. S., & Ke, M. C. (2015). A virtual reality based recommender system for
interior design prototype drawing retrieval. In New trends in intelligent information
and database systems (pp. 141-150). Springer, Cham.

[207] Aciar, S., Zhang, D., Simoff, S. & Debenham, J. (2006). Recommender system based
on consumer product reviews. In International Conference on Web Intelligence (pp.
719–723). IEEE.

[208] Hoeksema, J. (2000). Compositionality of meaning. In Morphology: A Handbook
on Inflection and Word-Formation (pp. 851–857). Berlin: Walter de Gruyter

[209] Skyttner, L., (2006). General systems theory: Problems, perspectives, practice.
[210] Ghani, N., Hedges, J., Winschel, V., & Zahn, P. (2018). Compositional game theory. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(pp. 472–481).

[211] Muccini, H., Sharaf, M., & Weyns, D. (2016). Self-adaptation for cyber-physical systems:

97

A systematic literature review. In Proceedings-11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2016 (pp. 75–
81).

[212] Yu, Z., Zhou, L., Ma, Z., & El-Meligy, M.A. (2017). Trustworthiness modeling and
analysis of cyber-physical manufacturing systems. IEEE Access, 5, 26076–26085.

[213] Rajhans, A., Bhave, A., Ruchkin, I., Krogh, B. H., Garlan, D., Platzer, A., & Schmerl,
B. (2014). Supporting heterogeneity in cyber-physical systems architectures. IEEE
Transactions on Automatic Control, 59(12), 3178-3193.

[214] Dragomir, I., Preoteasa, V. & Tripakis, S. (2016). Compositional semantics and
analysis of hierarchical block diagrams. In International Symposium on Model
Checking Software (pp. 38-56). Springer, Cham

[215] Schaefer, I., & Poetzsch-Heffter, A. (2008). Compositional reasoning in model-based
verification of adaptive embedded systems. In Proceedings of the 6th International
Conference on Software Engineering and Formal Methods (pp. 95-104). IEEE.

[216] Saitta, L. & Zucker, J.-D. (2013). Abstraction in different disciplines. In Abstraction
in Artificial Intelligence and Complex Systems (pp. 11–47). Springer New York.

[217] Subagdja, B., & Tan, A. H. (2016). Interactive Teachable Cognitive Agents: Smart
Building Blocks for Multiagent Systems. IEEE Transactions on Systems, Man and
Cybernetics, 46(12), 1724–1735.

[218] Guo, K., Lu, Y., Gao, H., & Cao, R. (2018). Artificial intelligence-based semantic
internet of things in a user-centric smart city. Sensors (Switzerland), 18(5), 1341.

[219] Majewski, M. & Kacalak, W. (2017). Smart control of lifting devices using patterns
and antipatterns. In Computer Science On-line Conference (pp. 486-493).Springer, Cham.

[220] Ng, K. H., Du, Z., & Ng, G.W. (2017). DSO cognitive architecture: unified reasoning
with integrative memory using global workspace theory. In International
Conference on Artificial General Intelligence (pp. 44-53).

[221] Sarathy, V., & Scheutz, M. (2018). A logic-based computational framework for inferring
cognitive affordances. IEEE Transactions on Cognitive and Developmental Systems,
10(1), 26–43.

[222] Horváth, I., Rusák, Z., & Li, Y. (2017). Order beyond chaos: introducing the notion
of generation to characterize the continuously evolving implementations of
cyber-physical systems. In Proceedings of the ASME Design Engineering Technical
Conference (p. V001T02A015).

99

3�1 Objectives and methodological framing of the second
research cycle

3�1�1 Objectives
In Chapter 2, the activities and results of the knowledge aggregation and requirement
engineering completed in the first research cycle were discussed. This intelligence was
used to form a robust idea about an active recommender framework (ARF) as an enabling
tool to support the designers of application-specific reasoning mechanism (ASRM).
Concerning a comprehensive conceptualization of the targeted ARF, the requirements
were specified at two levels, namely, (i) on the level of the framework as a whole, and (ii)
on the level of the computational mechanisms included in the framework. Two primary
functional requirements for the entire framework were specified as follows. The ARF
should: (i) simultaneously perform process monitoring and design support in real-time;
and (ii) generate a recommendation based on the information processed by a designer and
the dynamically changing context associated with the design processes.

On the level of computational mechanisms, six major functional requirements were defined
as follows: (i) perform activity-related process monitoring throughout the various processes
of reasoning mechanism development (RMD); (ii) recognize doubtful (unexpected)
eventsit the design sessions in real-time; (iii) capture the logical, temporal, and methodological
relationships of design actions; (iv) identify any obstacle in the design process as deviation
from a target procedural network; (v) propose a feasible recommendation in human-
readable format; and (vi) evaluate the designer’s decision and the effects of the received
recommendation.

Research cycle 2:
Conceptualization of a demonstrative part of
the proposed active recommender framework

Chapter 3

100

The overall objective of the second research cycle was conceptualization of the
computational enablers for a particular realization of an ARF. Conceptualization was
challenging because the ARF was supposed to provide support not only to design
decision-making, but also to the management of the design activities and to the
development process of ASRMs. Two concrete goals were addressed in this research
cycle. On the one hand, we intended to elaborate and operationalize a dedicated
methodology to help the realization of the conceived functionalities of the ARF. On the
other hand, we intended to specify the support functions that RMDs can expect from a
partial implementation of this ARF. In order to achieve these goals, proper underpinning
knowledge (theories) were needed including (i) the conceptual clarification of the notion
of ARFs; (ii) the essence and implementation details of the facilitating methodology; and
(iii) the expectations for the functionality of the ARF required when designing ASRM for
concrete practical cases.

Based on these objectives, the guiding research question was formulated in the following
way:

RQ: What constituents enable a feasible and efficient (i) functionality, (ii) architecture,(iii)
computational operation, and (iv) implementation of an ARF, which resolves
procedural obstacles in a design process and provides decisional benefits for
designers of ASRMs in the case of a family of S-CPSs?

3�1�2 Research methodology
Design inclusive research (DIR) was applied as a methodological frame for
conducting this research cycle. There were three phases of research actions:
(i) explorative phase; (ii) constructive phase; and (iii) confirmative phase. In the
explorative phase, the research actions started with a broad and systematic knowledge
aggregation and continued with the ideation of what services an ARF can offer to a
designer with the goal to support the logical and computational development of reasoning
mechanisms. The technical input information for conceptualization was derived from the
requirements which were stated and analyzed in the previous chapter, and this was extended
with information by brainstorming and critical systemic thinking.

In general, conceptual-ization of an ARF is a complicated matter for the reason
that (i) the process of designingASRMs and (ii) the specific functionality, interoperation,
development process, and implementation methodology of the ARF should concurrently be
taken into consideration. This is referred to as duality of development. Thus, the concept
of ARF wasdeveloped based on assumptions about a particular family of ASRMs, its
design process and actions, and the specific supportive role of an ARF.

In the constructive phase, concrete conceptualization and design actions were planned
and completed. In the first place, the fundamentals of conceptualization of the ARF were
discussed. The conceptualized mechanisms of the ARF included (i) process monitoring
and (ii) design decision support. For the operational concept of the former mechanism,

101

event-based monitoring of the changes in the behavior of the designer was considered.
The observation of a non-usual event in a design process is typified in five ways (type
A-E) according to the contribution levels of the ARF to the design process. For the latter
mechanism, non-usual event type B was selected as a fundamental for a generation of
recommendations.

The ARF was conceptualized based on the proposed multi-perspective method. In the
conceptualization process, the major activities were: (i) specification of functionality,
(ii) system and component architecting, (iii) planning of the computational process, and
(iv) specification of the algorithms and data constructs. In the last confirmative phase, the
research actions focused on testing the feasibility of the concept, considering a specific part
of an ARSM design process. The considered part of this ARSM design process concerned
the working principle exploration (WPE) session of an automated parking assist system
(APAS).This made it possible to conclude about and consolidate the findings on the
conceptualization. Regarding the conclusions, the identification of requirements for the
computational implementation of the ARF played a crucial role.

3�2 Generic assumptions concerning the active
recommender frameworks

3�2�1 Assumptions with respect to complexity management

3�2�1�1 Assumptions concerning the manifestations of
complexity in real-life cases

Smart CPSs are supposed to incorporate capabilities necessary for handling an unforeseen
situation with incomplete information and limited control in the real-life problem. This
means a smart CPS must be able to adapt its reasoning process to deal with dynamic
situations in the target application. The complexity of a situation can be characterized
by three factors: (i) the type of entities, (ii) the number of entities, and(iii) the number
of relationships among the entities. If the local world comprises only few entities and a
limited number of relationships, then one situation is probably sufficient to find an optimal
solution for the application problem.

However, the complexity will increase in the real-life problems when the states of the
entities and their relationships change over time. In addition, interplay among multiple
situations may also happen in the local world. Therefore, we had to come to the conclusion
that one situation might not be enough for finding an optimal working principle in the case
of our actual real-life problem (working principle exploration for an automated parking
assist system). The fact of the matter is that multiple situations should be considered,
which are to be categorized into a group of similar situations. To handle this particular
manifestation of complexity, the following generic assumptions were formulated:

Assumption 1: In a local world, a situation features a linearly (non-dynamically and non-
exponentially) changing number of entities and relationships among them.

102

Assumption 2: A new situation is caused and defined by the change in the number of
entities and/or their relationships.

Assumption 3: In a regular case, consideration of one situation is sufficient to end up with
an optimal working principle.

3�2�1�2 Assumptions concerning the handling of application
complexity

An automated parking assist system (APAS) was selected as the target application and design
context. The reasoning mechanisms of ARSMs perform multiple reasoning processes. Due
to the complexity of the APAS as application and the abundance of the related context
information, we had to impose strong scoping. Towards this end, we decided to focus only
on the working principle exploration (WPE) for an APAS. In essence, a working principle
is defined as a set of rules or conditions that underpin the completion of a work or a task
at hand. In the case of the APAS, the working principle depends on the arrangement of
the actual parking area. The included objects, their eometric measures, their distances and
orientations may be different. All of these cannot be precisely considered. The working
principle also depends on the type of parking situation, i.e., if it is parallel, slanted, or
perpendicular. For each of them a dedicated/optimal working principle should be found
based on an approximate arrangement of a parking case. This means that one working
principle can offer multiple alternative solutions, but optimization is not really necessary.
A selection of the most appropriate (‘good enough’) working principles can be done based
on the parking criteria. A collision-free and fast parking is a common criterion at evaluating
a motion path trajectory for parking. It should be determined as a (‘good enough’)rather
than as a case-dependent absolute solution.

Assumption 4: A specific useful working principle should be found for each concrete
parking situation, but it can be sub-optimal.

Assumption 5: The selection of the best matching working principle should be based on a
good enough approximation of the arrangement and features of a parking
case.

Assumption 6: The selected working principle should be the first appropriate (good enough)
for safe and fast parking

3�2�1�3 Assumptions concerning the handling of implementation
complexity

Engineering systems are typically made up of a large number of inter-related subsystems,
modules, and components. The complexity of the systems should be considered from six
main sources: (i) the number of components; (ii) the functionality of the components, (iii)
the functional interrelationships of components; (iv) the architectural interrelationships of
components; (v) numbers of their interrelationships, and (vi) the operational scenario of the
system and its components. The degree of complexity of an ARF should also be evaluated
based on these factors. The design process of the whole of the ARF is a rather complex one

103

and it is a challenge to capture it as a single design problem. The strategy of divide-and-
conquer is to be applied. This necessitates the decomposition of the design process of the
ARF into self-contained process element. The above considerations were the basis of the
assumptions that were made concerning the implementation complexity.

Assumption 7: The use of minimal number of constituents reduces the implementation
complexity of the ARF in a natural manner.

Assumption 8: If pre-produced constituents can be used in an unchanged or a (slightly) modified
form, and if their interfaces are proper, then it also can simplify the
implementation complexity.

Assumption 9: The internal dependences of the constituents should be kept minimal in order
to reduce operational and implementation complexity.

Assumption 10: Standard system development methods such as modular construction and
component-based design should be applied to reduce implementation
complexity.

3�2�1�4 Assumptions concerning the methodological
approach to conceptualization of the active recommender
framework

Conceptualization of the ARF includes a huge set of activities, which needs a systematized
(systemic and systematic) approach. In order to consider all relevant intelligence
and constraints, a top-down approach was used. This simultaneously considered two
perspectives, namely (i) the identification the potential needs for support servicesbased on
the analysis of the schematized design scenario, and (ii) the specification (decomposition)
of the functionality and the architecture of the ARF.

To make the decomposition systematic, we used the concept of ‘multi-layers’ in the
specification process of the ARF. The following layers were considered: (i) determination
of the required services, (ii) specification of the functionalities, (iii) allocation of system
components (architecting), (iv) development of algorithms and data constructs, (v) planning
of the computational and interaction process, and (vi) validation (testing). These layers and
their arrangement are shown in Figure 3.1. The introduced decomposition to activity layers
facilitated the integration of the computational functions, the software components, the
process flow, the algorithms/data constructs, and the external interactions.

A function is an abstraction of an operation, activity, process, or action performed by
the constituents of the ARF to achieve a particular objective within a prescribed set of
requirements. As customary, the functional specification started out from the main functions
and specified various levels of sub-functions, which mainly represented computational
actions that the ARF should accomplished. The functional decomposition was completed by the
specification of the elementary functions that could be implemented by various algorithms.
The constituents of the ARF are composed according to a multi-level, logical (functional)
and architectural structure,which provides the framework. The process of the concomitant

104

architectural structuring of the
software went through the definition
of the computational mechanisms,
the modules, the units, and the
algorithms.

There were several generic
assumptions conceived concerning
the methodological approach to the
conceptualization of ARF. The most
significant ones were formulated as
follows:

Assumption 11: The whole
conceptualization
is driven by the
idea of service-
p r o v i s i o n i n g
systems.

Assumption 12: Due to the
complexity and
the novelty, a
path finding
and iterative
approach has to be
methodologically
preferred instead
of a linear or
a waterfall-
type procedural

Figure 3.1: Methodological approach
to conceptualization and
implementation of the ARF

scheme.

Assumption 13: The conceptualization should go through the stages of (i) specification of
the functional concept, (ii) elaboration of the architecting concept, (iii)
specification of the algorithms concept, and (iv) organization of the
workflow and interaction concepts.

Assumption 14: The implementation should concretize the conceptual elements as
computational elements.

Assumption 15: The compatibility and interoperability of algorithms should be tested
(validated) in the context of application

105

3�2�2 Assumptions concerning the reasoning mechanism
development

Typically, a reasoning mechanism executes a complicated inference process that
involvesmultiple logical operations on logical expressions/statements to draw conclusions
[1]. In the case of smart CPSs, included in the reasoning mechanisms, the computational
algorithms process the input data and derive new knowledge based on the pre-programmed
inferring/reasoning logic in a particular context for a given purpose. As mentioned above,
an APAS is selected as the target application (design context). Its reasoning mechanism
performs those procedural reasoning processes, which include multiple feedback loops.
Due to this innate complicatedness, the design process of the ASRM should be decomposed
into multiple design sessions. These considerations formed the basis of the assumptions
concerning the ASRM development.

Assumption 16: Conceptualization of ASRMs for the APAS includes four design sessions,
namely (i) problem specification; (ii) situation analysis; (iii) working
principle exploration; and (iv) decision logic generation.

Assumption 17: The reasoning mechanisms of the APAS belong to a class or subclass
of reasoning mechanisms for S-CPSs.

Assumption 18: The construction of a reasoning mechanism for a CPS generally includes
multiple feedback loops, which assume information exchange between the
phases of designing.

Assumption 19: Conceptualization of APAS needs to consider seven computational
processes, namely (i) continuous sensing, (ii) recognizing an event, (iii)
inferring a situation, (iv) exploring working principles, (v) decision-
making, (vi) adapting to a new situation, and (vii) actuating.

3�2�3 Assumptions concerning the design process and design
actions

As briefly mentioned above, designing of a reasoning mechanism for smart CPSs is a
complicated process because of the natural complexity of reasoning mechanisms. It is
not only the result of the set of the past (historic) design actions, but also a contingent
process of evolution. In general, a design process is series of activities to find a solution
to a problem. Changes in the design scenario and the design contexts imply changes in
design processes. More specifically, in the RMD context, the design process is a purposeful
arrangement of design actions to solve a design problem. It is structured as a finite set of
design actions that procedurally can be arranged sequentially or parallel, depending on the
needs of input data from the successive design actions. As element of a design process, a
design action is a focused, but lasting effort towards a virtual elaboration of an artefact or
knowledge. A design action can be identified at any point in the design process, where a set
of input data is converted into knowledge or a new content. The possible arrangements and
relationships among design actions create multiple design solutions. We argue that without
specific knowledge and contextual information about the design process, the ARF is not

106

able to observe changes in the state of design actions.

These considerations led to the principal assumptions concerning the design process and
design actions:

Assumption 20: ARF should have its own knowledge repository to store various domain
specific bodies of knowledge about the design process and the design
actions in the WPE session.

Assumption 21: Real-life design processes can be formalized based on the problem solving
logic.

Assumption 22: Decision logic has a dual nature in the sense that choosing a design action
is inseparable from choosing a design solution.

3�2�4 Assumptions concerning the active recommender
framework

Evidentially the main role of a designer is to apply scientific knowledge to find the right
solution to design problems in the course of RMD. Due to the algorithmic or big data
complexity of reasoning mechanisms, it can be foreseen that designers may face a knowledge
deficit while designing these mechanisms. In addition, finding an advantageous design
solution may be made complicated by other issues such as (i) clarity of the definition of
the problems to be solved, (ii) uncertainty of the design procedures, (iii) lack of analysis
capabilities needed for the design process, and/or (iv) the choice of decisions on multiple
objectives or multiple alternatives. In some cases, a designer may need the assistance of
an expert analyst when unexpected difficulties occur during the analysis processes, and
when interpreting the results. The considerations mentioned below implied the following
assumptions concerning the ARF:

Assumption 23: The ARF should have sufficient synthetic knowledge to perform the process
monitoring tasks and to generate context sensitive recommendations.

Assumption 24: The ARF should be able to provide services for (i) process monitoring, (ii)
process management, (iii) recommendation generation and should do
it continuously in harmony with the individual phases of RM designing
scenario.

The overall conceptualization is driven by the notion of service-provisioning systems. The
ARF provides recommendation services to support a designer in solving a design problem.
The ARF needs to be built around a specific working scenario that has been derived from
a hypothesized process model of designing a family of not purely logical or artificial
intelligence-based reasoning mechanisms. As a means of depicting the support provided
by the ARF the concept of (recommendation) services was utilized. It is shown graphically
in Figure 3.2.

107

Figure 3.2: The schematized process of designing ASRMs

3.2.5 Generic and specific services provided by the proposed
active recommender framework

As an intellectualized software system, the ARF is a composition of various
mechanisms,which provide service packages - dedicated to the various stages of the design
process - for the designers of ASRMs. In our case the ASRMs are those constituting the
intellectualized constituents of the APAS software system. An allembracingrepresentation
of the fundamental concepts underlying the developed ARF is shown in Figure 3.3. The
left upper quadrant of this figure specifies the service packages that are associated with the
concerned stages of the systematized RMD process as well as the design process dependent
service packages. The right upper quadrant shows the component services included in these
service packages and those stages of the implementation of the RM that are not supported
by the ARF at all. The lower quadrant specifies the service packages that include design
process independent services, while the right lower quadrant shows the component services
included in these service packages. This conceptualization provided the basis for the
architectural specification, in which there was one mechanism assigned to each service
package, and a respective number of functional modules were assigned to each module.

One set of services of the ARF is related to process monitoring. This captures information
on (i) the actions of the designer(s), (ii) the application of computer aided design tools, and/
or (iii) the use of communication means. Another set of services concerns the support of
actual design problem solving activities and the related decision making. The services for
the other stages can be developed using the same principles.

Based on the above, the advisory services were sorted into two categories, namely: (i)
process related recommendations, which deal with information and knowledge deficits
within the information process, and (ii) content related recommendations, which

108

Figure 3.3: R
elationships am

ong the stages of the A
SR

M
 design process and the provided service packages and com

ponent
 services provided by the A

RF

109

concern the development of the technical contents of ASRM algorithms. Content-
based services were defined to support the development of contents for the identified
design sessions, which are: (i)problem formulation (PF), (ii) situation modelling
(SitM), (iii) working principle exploration (WPE), and (iv) decision modelling (DeM).

A problem formation is a process of identifying relevant information including
objectives, constraints, assumptions, and contextual information and systematically
organizing this information in the design space to determine a design problem. All of
possible parameters should be considered as potential design variables. This allows for
analyzing different possibilities to see the problem in a different context. A situation model
is a logical representation of the interrelationship of the entities included in the defined
problem. A situation can be inferred by the integrating and abstracting information about
multiple events according to certain defined rules. In the situation modelling session, the
ARF provides content-based recommendation for situation representation, situation
analysis, and situation inference.

For example, to represent a situation, the ARF provides a set of rules concerning how to
separate a continuous stream of multiple situations of the real-life problem into a set of
separated single situations, or to advise the designer on this segmentation. When the parking
situation is sufficiently known, the next design session concentrates on the tasks of WPE.
In order to solve the WPE problem, several procedural rules are to be operationalized. In
general, it is possible to find multiple working principles for a particular situation. Thus,
to find an optimal working principle, the possibilities are to be converted into a decision
model, which can then be used in the computer supported decision making session. In
general, decision-making is a cognitive process of finding the best option from multiple
choices.

The decision model was constructed in the form of a decision logic diagram. It can
be seen as a network of decision points and actions. This representation allows the
reasoning mechanisms to solve the particular problem. The optimal path of the network
is selected as the best parking principle (strategy) in the course of making decision.
In the circumscribed process, all conceptual elements will be converted into
computational elements with a view to possible implementation of the reasoning mechanism.

For the second categories of services, which are process-based services, three packages
were conceived. These are: (i) process monitoring, (ii) process management, and (iii)
recommendation generation. Process monitoring includes three service components,
namely: (a) event-based monitoring, (b) design process-based monitoring, and (c) dialogue
management. Process management deals with capturing the information flow related to
using the computer-aided software tool (more precisely, from the perspective of software
execution). It offers three service components including (a) information management, (b)
error management, and (c) communication management. Recommendation generation
concerns three service components that are (a) solution provider, (b) advisory content
provider, and (c) decision evaluation. In the conceptualization of an ARF, the focus of our

110

research was placed on those specific process monitoring and recommendation generation
services, which are applied in the WPE session of the APAS development.

3�2�6 Goal of conceptualization
In the form of the ARF, we propose a knowledge-intensive system equipped with
specialized process monitoring and design-support capabilities. As discussed above,these
are the fundamental concepts of the ARF. The conceptualization was considered
as the process of transforming the idea of the ARF into the testable concept. It should
ensure that the technical specification satisfies all requirements. Thereby, the goal of
conceptualization was to generate a testable blueprint of a limited, demonstrative part of
the ARF which can support a particular stage of the development of ASRMs.To achieve this
goal, two content domains were considered: (i) the development process,which included
a high-level conceptualization of the ARF; and (ii) the technical contents, which are to
demonstrate the concept in the application context.Domain knowledge about the design
process of an APAS had to be explicitly specified. However, it had to deal not only with the
provisioning of the technical contents, but also the changes in the design process. Capturing
the procedural, content, and context changes make the knowledge contents dynamic.

The ARF operates as a smart assistant and, as such, it represents a specific subclass of
context-aware recommender systems. The ARF has been conceptualized to be capable
to communicate interactively with the designers and to participate in the execution
of a concerned part of the design process whenever and wherever it is needed. The
interoperation of two abovementioned mechanisms was needed in order to provide the
required recommendation services. The process monitoring mechanism observes the
design process in real-time and the decision support mechanism provides contextsensitive
recommendation to solve the design problem at runtime. To demonstrate how the proposed
concept works, it was tested in the application context. Towards this end, the WPE design
session of the design process of an APAS was elaborated upon based on the set-up design
scenarios.

3.3 Setting up a design scenario for an application- specific
reasoning mechanism

3�3�1 Automated parking assist system – A practical case
requiring application-specific reasoning

An automated parking assist system (ASAP) is a sub-class of driver assistant systems (e.g.,
collision avoidance assist system, maneuvering assist system, and adaptive cruise assist
systems). It aims to offer the comfort and safety of parking for drivers. The range of the
implementation of automatic operations of an APAS vary from information systems (e.g.,
solely distance control or parking space measuring) to fully autonomous parking assists
(automated steering and speed control). To safely park a vehicle in a confined space, an
APAS must perform numerous complicated tasks subject to various constraints including
environment detection, steering, acceleration, braking, and gear shifting while moving the

111

car. It generally employs acoustic and/or radar distance sensors that detect the presence
or absence of other vehicles and obstacles. This is a necessary condition to find a parking
space and to complete safe parking maneuver. In line with the latest trends in vision-based
technology, it can employ imaging sensors that are able to visualize the parking environment
(for the driver/passenger).

The reasoning procedure for parking of an APAS starts with detecting obstacles in
theenvironment of the concerned vehicle and finding a suitable parking space. Should
the best parking space be found, it assesses the best approach of getting into that space
by considering variables such as (i) the position and orientation of the vehicle, (ii) the
direction of the parking lot, (iii) the planned motion path, and (iv) the capabilities of the
vehicle to be parked. The reference motion path should be planned before performing the
parking maneuvers. Then, the system navigates forward to reach a ready-to-park position.
Finally, the parking maneuvers are executed by continuously estimating the changes in
the state of the vehicle and by tracking the planned motion path as accurately as possible.
These tasks are finished by interconnected sub-systems which are - as an example - shown
in Figure 3.4.

The planning is the most crucial task in the reasoning process of an APAS. Initially, APASs
were developed as semi-automated systems to park the vehicle for parallel parking, but
recently systems for perpendicular and angled parking became available commercially.
Many methods to tackle the motion path planning problem have been presented in the
literature. They can typically be divided into two categories based on [3]: (i) stabilization of
the vehicle to a target point, and (ii) planning a feasible path that connects initial and goal
configurations. Most of the conventional methods carry out the path planning in two phases

Figure 3.4: Components of an automated parking assist system (adapted from [2])

112

[4]: (i) planning a geometric collision-free path without taking non-holonomic constraints
of the vehicle into account, and (ii) performing sub-divisions on the path until all end points
can be linked to their neighbors by an admissible collision-free path using a local planner.

The challenge in the development of the reasoning mechanism of an APAS is that it
typically consists of multiple processes in different levels of thinking which works not
only in geometric domain but also works in logical domain. Within the latter domain,
a designer has to deal with intangible elements such as knowledge, algorithms
and rationality based on the logic. A smart assistant for complex real-life task needs
specialized reasoning which manifest in multiple various ways. A contextualized
reasoning mechanism for an APAS is one of the examples. The following sub-sections
set up a design scenario in particular WPE design session to demonstrate the concept and
feasibility of the proposed ARF.

3�3�2 Procedural and computational implementation of
working principle exploration

The stage chosen for technical elaboration in this research cycle is working principle
exploration (WPE). In other words, it means finding the most effective motion trajectory
for the car to be parked, considering a low level of maneuvering activities by the car and
the maximum safety and reliability that can be achieved at all. There are several reasons
behind this choice. The first reason why this stage was selected for detailing is that it is rich
in design activities, which in turn raise the need for a sophisticated process monitoring.
The second reason is that this stage implies the need for several services from the ARF
to support process management. Actually, a remarkable complexity is faced when we
consider the total number of support services needed to complete this stage and the number
of computational functions needed to implement the related activities. The third reason is
that it involves many decision points, which are purpose and context dependent.

In the process of developing a multi-mechanism solution for automated car parking, a
designer must find or develop relatively most effective working principle for a given parking
situation. For example, if forward parking is selected as a working principle, it means that
there are various sets of maneuverings that satisfy the parking. The term ‘working principle
exploration’ (WPE) is used to denote the procedure of construction of the motion plan and
segmentation of the maneuvering activities. WPE considers the actual parking opportunity
and situation, and provides information about the best trajectory (motion path of the car)
to be followed and the physical parameters of maneuvering (speed, acceleration, ranges,
stopping points, etc.).

For conducting the WPE design session, it is assumed that the parking situation has been
analyzed and understood from spatial, temporal, maneuvering, technical, etc. points of view
in the session focusing on situation analysis. A so-called ‘situation blueprint’ is generated,
which provides information about the arrangement of the physical entities in the vicinity
of the parking spot, including the layout of parking zone, the natural objects, the number

113

of neighboring parking cars, the spatial arrangement of parking cars, the geometry of the
space that can be used for parking, the position of the car to be parked, the geometric sizes
of the car to be parked, and the type (maneuvering capabilities) of the car to be parked.
As well as, it is assumed to have information about the position and nature of possible
(incidental) objects, if any.

Based on this input information and the expected output of WPE session, a designer can
establish its own reasoning process. It should be kept in mind that this reasoning process
will be implemented in the ASRM for an APAS. Thus, it should confirm that the process
which works (semi-) manually at the time of design will work automatically and function
correctly at runtime. Concerning the support of the designer by availing knowledge for
modelling a reasoning process, our assumption is that an optimal motion path for parking
is found based on the comparison of morphological structures of a current parking plan and
past parking cases. As shown in Figure 3.5, the reasoning process consists of transformations
of information in six sub-processes. It is seen as a reference model which corresponds to a
design process.

3.3.3 Specification of the design tasks for working principle
exploration

Basically, the major design activity of the reasoning mechanism development is the
construction of algorithms for different computational problem-solving purposes. In the
multi-stage process of reasoning mechanism design and in the process of implementation,
the specific algorithms are integrated. A design process itself is regarded as a sequence
of thinking-type and doing-type design actions, which are computationally interpreted as
transformative events. A design task represents an element of the design process that a
designer should complete in order to realize the process. In other words, the realization
of the reasoning process is decomposed into a set of reasoning sub-processes - each of
which is further decomposed into a sequence of design tasks. Using symbolic expressions,
the relationships of the reasoning (sub-)processes and the design tasks can be formally
described as follows:

 RsPi := {d1, d2, d3,… dk} (3-1)

where: RsPi is a sub-process ith of reasoning process RsPi ∈ RP, i ∈ Ns, Ns is total number of
sub-processes, d1, d2, d3,… dk ∈ Di is a sequence of design tasks belonging to RsPi and k is
total number of design tasks for a completion of RsPi.

In the case of each reasoning sub-process, an essential design task is to construct the
algorithms, which together can solve the problem of exploring the working principle
(e.g., finding a motion path, or reducing the maneuvers) for parking in a real-life situation.
The exploration of the working principle involves the completion of eight design tasks,
which are shown in Figure 3.6, as elements of a workflow diagram. To accomplish any of
these tasks requires one or more algorithms for the ARSM. These design tasks should be

114

completed at the time of design in order to
assure that the reasoning process will work
(automatically and without any deficiency)
at runtime.

The description of design tasks are as
follows:

D
1.0

 Construction of an algorithm for
searching for and retrieving past
parking cases from the repository
of the APAS concerning the actual
parking situation (ASRM-Algorithm
A01)

D
2.0

 Construction of an algorithm
for extracting the morphological
(topological, geometric, attributive)
information structures from the
N-appropriate parking cases
(ASRM-Algorithm A02).

D
3.0

 Construction of an algorithm for
comparing the topological sub-
structures of the motion paths of the
past parking cases and selecting the
most advantageous topological sub-
structures (ASRM - Algorithm A03).

D
4.0

 Construction of an algorithm for
calculation of the 2D spatial position
and distances (between the entities)
information structure (geometry) of
the parking plan (ASRM-Algorithm
A04)

D
5.0

 Construction of an algorithm
for determining the geometric
resemblance by comparing the
relevant geometric sub-structures
of the selected (topologically best
matching) past parking cases with
the geometric sub-structure of the
parking plan, and selecting the most
affine geometric sub-structure of the
selected past parking cases (ASRM-
Algorithm A05)

Figure 3.5: Reasoning process concerning
WPE session of the APAS

115

D
6.0

 Construction of an algorithm for extraction of the attributive information sub-
structure (size information of the entities) of the parking plan (ASRM-Algorithm
A06)

D
7.0

 Construction of an algorithm for determining the attributive resemblance by
comparing the relevant attributive sub-structures of the selected (geometrically best
matching) past parking cases with the attributive sub-structure of the parking plan,
and selecting the optimally-matching motion path of the reduced past parking cases
(ASRM-Algorithm A07)

D
8.0

 Construction of an algorithm for adapting the optimally-matching motion path of
the reduced past parking cases to the parking plan by considering the attributive
information sub-structure of the parking plan and providing a description of the
adapted optimally-matching motion path cases (ASRM-Algorithm A08)

Figure 3.6: Workflow diagram identifying the design tasks needed to accomplish the
 exploration of a proper working principle for a parking problem

116

3�4 Fundamentals of conceptualization of the active
recommender framework

3�4�1 On the duality of the active recommender framework
development

 From the system design engineering point of view, the duality of the ARF development
means that, on the one hand, it supports the development of the application-specific
reasoning mechanisms and algorithms by offering recommendations for making correct
design decisions. On the other hand, it supports the design actions made by the designers
with continuous process monitoring and resolving obstacles in the design process by
making procedural recommendations. More specifically, the ARF is characterized by two
main capabilities, process monitoring and decision-support capabilities which offers a
context sensitive recommendation to a designer. Hence, the manifestation of the ARF is
done by the interoperation of two mechanisms, process monitoring and decision-support
mechanisms. The process monitoring mechanism is responsible for observing the behavior
of a designer through the entire design process and recognizing when the designer has a
problem. The decision-support mechanism provides knowledge and recommendations to
resolve the problem.

Figure 3.7: Duality of the ARF development

117

From the knowledge engineering point of view, it concentrates on creating knowledge
for the ARF. In the context of ASRMs, the knowledge is about the enablers of system-
level reasoning of S-CPSs. To develop an ARF, the domain-specific knowledge should be
available when it is needed at any stages of designing ASRMs. This is considered as the
duality of ARF development in term of the resembling knowledge of ARF and ARSMs. It
means that knowledge in the ARF will be transformed into knowledge for the reasoning
process of ASRMs.

Considering the design task, it is a knowledge element of ARSMs to construct the algorithms
which together to solve the real-life problem. For the ARF, it is supposed to know what is
needed for designing these algorithms and include these knowledge elements into the ARF.
Figure 3.7 illustrates the duality of ARF development. The design process of ASRMs can
be seen as the knowledge modelling for the development of ARF.

3�4�2 Event management related to design actions by the
active recommender framework

The major role of an ARF is to support a designer by making a recommendation when
achieving the purpose of a design process is blocked (obstructed) for any procedural,
informational, cognitive, or technical reason. To do this, the ARF observes an event which
is the changes in the state of design process and reasons in context what a designer is
doing at that moment. Theoretically, an event is derived by learning the differences of two
subsequent states of an entity at different points in time and location with a combination of
context information [5]. In order to monitor an event in the design process, two approaches
are taken into a consideration. A simplified schematic diagram can be seen in Figure 3.8.
One is a process-based monitoring which can be detected and monitored process flow
within the observed system. Another is an activity-based monitoring which is observed in
the changes of a designer’s behavior.

A process-related event is captured by a change in the states of information flow in a system.
For example, in the typical business process model, an event is detected by changes of the
state of control flow and data flow [6]. This type of event can be inferred by collecting
software execution data from log file [7]. Symbolically:

 evs
t = ∆(ss

t , ss
(t+n)) (3-2)

where: evs
t represents a process-related event, which is detected by the deviation of state ss

t
and state ss

(t+n) in an interval of time t and t+n, and n > 0.

An activity-based event is detected and monitored by considering the changes in a designer’s
behavior during the design process. This type of event can be reflected in their body
movements, for instance facial expressions, and eye movement [8]. When the changes in
the two different states in behaviors are detected at a given moment in time, it could infer
that an event in the design process is occurred. Symbolically:

118

 evd
t = ∆(sd

t , sd
(t+n)) (3-3)

where: evd
t is an activity-based event, sd

t and sd
(t+n) are designer behaviors, which are

observable in an interval of time t and t+n, and n > 0.

For the conceptualized ARF, an event management deals with the latter approach because
the event is inferred to the cognitive process of a designer during the design process. Since
an event has been detected, inferring the event with a context of a design process of ASRM
will give a semantic meaning related to a design action. Symbolically:

 αt = infer(evd

t) (3-4)

where: αt is a design action, which is inferred according to an event evd
t .

To monitor the design process, we classify an event into two main types, namely: (i) a
usual event, which refers to a regular completion of the design action as expected by the
design protocol, and (ii) a non-usual event, which refers to the fact that the completion of
a design action deviated from the expectation of the design process protocol. For example,
when a designer cannot progress in the design process (is procedurally, informationally,
cognitively, or technically blocked with a design action), an event happens which indicated
that the state of the designer is changing differently from what would be expected based
on the design process. If there is an unusual event captured in whatever way, then decision

Figure 3.8: Simplified schematic diagram representing the event-based monitoring
 throughout the interaction of designer’s activities and system execution

119

on the type of recommendation should be made by the ARF and the actual content should
be constructed accordingly. As an option, the designer busy with a design action may ask
support from the ARF by making a note/query. This is an unusual event, which is recognized
by a designer. The ARF can contribute to supporting the designer at performing the design
process in various ways, which are discussed in the Section 3.4.3. The different ways of
contribution by the ARF are regarded as the fundamental principles for conceptualization
of the process monitoring mechanism of the ARF.

3�4�3 Typifying the ways of observation of non-usual events
The occurrence of an unusual event (a non-usual event – NUE) may become known in three
ways: (i) based on the observation of the designer (Type A), (ii) based on an interaction
between the ARF and the designer, and (iii) based on the investigation of the ARF (Type
E). Since the designer and the ARF may have different (extents of) contribution to the
observation and handling of the occurrence of an NUE related to the execution or results
of a design action a NUE, three further cooperative types (Types B, C and D) have been
distinguished. They are shown in Figure 3.9 and interpreted below.

Type A: An NUE is suspected or observed by the designer himself (that is, he recognizes
that he cannot start (input issue), proceed (conduct issue), or complete (output
issue) the design action at hand without the support of the ARF and initiates a
dialogue with it towards a resolution of the situation.

Type B: An NUE is suspected or observed based on a smaller contribution of the ARF and
a larger contribution of the designer (that is, the ARF observes some change in the
designer’s behaviors e.g., change of body posture or face expression) and initiates
a dialogue with the designer towards a resolution of the situation.

Type C: An NUE is suspected or observed based on a balanced (equal) contribution of the
ARF and the designer (that is, the ARF recognizes something odd (e.g., a decisional
error) and notifies the designer about it, and if the designer acknowledges it, then
it initiates a dialogue with the designer towards a resolution of the situation.

Type D: An NUE is suspected or observed based on a larger contribution of the ARF and
a smaller contribution of the designer (that is, based on the reference protocol,
the ARF observes a deviation from it and makes a recommendation based on
the available knowledge (e.g., offering a list of design tools, design methods, or
related resources, but the final decision is made by the designer.

Type E: An NUE is suspected or observed by the ARF, which automatically makes
a decision or execute a design action on behalf of the designer, without his
involvement.

3�4�4 Recognition of a non-usual event
The fundamental of event recognition of the conceptualized ARF is based on an observation
of the facial expressions of the involved designer. This approach was underpinned by the
assumption that the designer will express the certain pattern of emotions on his face when

120

he has a problem in the design process. There were several publications on this phenomenon
in the literature [8]. The observation of the facial changes is the starting point for the ARF
to interact with a designer. A recognition of facial expression is the process of identifying
human mental status from the expressions and cognition has human on his face [9].

In general, the process of facial expression recognition consists of three main stages
[10]: (i) face detection; (ii) facial feature landmark extraction; and (iii) facial expression
recognition (FER) as shown in Figure 3.10. Face detection is the process that detecting
human’s face through images. It typically focuses on deviating features of human faces
from images without recognizing an individual person. The most widely used algorithm for
face detection is Viola and Jones Haar-cascade [11]. Recently, commercial software (e.g.,
Amazon Recognition, Face++, and Azura Cognition Services Face API) as well as open
sources (e.g., Deepface, FaceNet, and InsightFace) have been developed for face detection.

Within the detected face, facial landmarks for instance the eyes and eye corners, brows,
mouth corners, and nose tips are detected. The internal face model is justified in position,
size, and scale in order to match to the actual face. Feature landmark extraction is the process
of extracting key information from the detected face as a basis of facial recognition. The
feature extraction is usually done by one of two approaches [12]: (i) processing the whole
frontal face in order to collect information for classifications of facial expressions or, (ii)
dividing the whole face image into subordinate sections and processing each of them to get
information that can be used as classification input. Once a simplified face model is available,

Figure 3.9: Contribution of the ARF and a designer in an execution of design process of
 RMD

121

Figure 3.10: Facial expression
recognition process [10]

the key features are selected including position
and orientation information is fed as input for
the feature classification. The machine learning
classifiers are commonly used for this purpose
e.g., multi-layer perceptron, SVM, Naïve
Bayes, and k-NN.

Convolutional neural network (CNN) is the
state of the art in the deep learning algorithms
for FER [13]. To train the facial expression
recognition algorithms, two types of input
images are used. One type is the learning
image using which classifiers are trained to
recognize any pattern. Another one is input
image on which the learned classifier is
tested. The collection of images can be taken
from various databases for instance Google
Face dataset, CASIA-Webface, and Labelled
face on the wild (LFW) database. The facial
expressions are classified into eight categories,
which include: (i) anger, (ii) disgust, (iii) fear,
(iv) happiness, (v) contempt, (vi) neutral,
(vii) sadness, and (viii) surprise. In addition,
there has been a proliferation of commercial
tools for FER solution available in the software market. In [14], the authors compared the
performances of eight commercial software tools (for instance CrowdEmotion, MorphCast,
and Human Observers).

3�4�5 Interaction of the active recommender framework and
the designer in the targeted segment of the design
process

The fundamental for a conceptualization of this part was using a human-machine
interaction method through a dialogue. This aims at exploring the possibility of solving a
problem in a design process which a designer may not have recognized by themselves. A
dialogue is activated when an unusual event is detected. It starts with inviting a designer to
a dialogue by offering help. If the designer accepts this offer, the ARF possess a question
what design action a designer is working on. With domain-specific knowledge stored in
the repository, the ARF contextualizes the available knowledge with the considered design
process. When the current design action is recognized, the information including a set of
questions, decision table, and contents of design action is retrieved. The set of questions is
designed related to this particular design action which is about trying out the given search
program. The dialogue will be organized to collect the current states of design action. The
flow of questions is controlled based on pre-defined orders according to a certain design

122

action. The ARF communicates with
a designer in textual or verbal forms
(in the latter case, using natural
language processing) and captures
the patterns of replied answers by a
designer.

The goal of the interaction process
between the ARF and the designer is
to find out the solution to eliminate
the obstacle at the current design
action. The solutions were defined

contents pattern 1 pattern 2 pattern n
criteria 1 yes no yes
criteria 2 no yes yes
criteria 3 no yes no
criteria 4 yes no no
solution A x
solution B x
solution C x

Table 3.1: Simplified structure of a decision table

according to the patterns of decision criteria used in the historical cases as shown in Table
3.1. If the best match between the pattern of replied answers and the decision criteria in the
decision table is found, the corresponding solution would be retrieved. However, it might
be the case that the matched pattern could not be found. It can be assumed that the cause of
obstacle would be occurred in one of the preceding design actions. This implies the need
to investigate the procedural obstacle in the design process using the reference process
protocol.

3.4.6 Principle definitions of a reference protocol and its
constituents

The protocol of the design process (e.g., of all design actions) is supposed to be known by
the ARF in the form of a computational model, or part thereof, called reference process
protocol (RPP). On the one hand, the design protocol is seen as the basis for the design
guideline by which the ARF provides information and instruction for the designers
concerning the approach of dealing with the entire set of the design tasks and the included
individual design tasks, at the beginning of the design session. This will not be elaborated
in our work. On the other hand, the design protocol serves as a reference process protocol
for the ARF to monitor the design actions done by the designer as well as the results of
the completed design actions in the process of designing. If the observed execution of the
design actions or the data processed by the executed design actions deviate from what is
captured in the reference process protocol, the ARF may infer about the occurrence of an
unusual event.

The principled definitions of a reference protocol and its constituents will be in this section
as follows:

Definition A: Reference process protocol (RPP)

A reference process protocol is a prescriptive instrumental model of a design process, or
part thereof, established by three constituents, formally:

 RPP = {TAM,PFM,DTM} (3-5)

123

where: TAM is a timed (design) actions model, PFM is a process flow model, and DTM is
a decision tree model. From an information engineering point of view:

 RPP = TAM ∪ PFM ∪ DTM (3-6)

where: ∪ is symbolic union. The RPP is a network of design actions and a set of decision
points. A protocol is a system of rules or procedures that allow two or more design actions
creates their relationships. It captures the pattern of the design processes and their expected
outcomes.

Definition B: Timed action model (TAM)

A timed action model is a finite non-zero set of design actions together with their input and
output (parameters) variables. A TAM is represented as a split matrix, whose half matrices
are arranged according to the temporal sequence of design actions, and captures the input
parameters and output parameters (computational variables) with regard to each design
action. Formally:

 TAM = {α, ts, te, m(αP(in,m),αP(out,m))} (3-7)

where: DA is a finite, non-zero set of design actions, ts is the start point in time of αi ∈ DA,
te is the end point in time of αi, m is a finite, non-zero set of the alternative methods of
computational execution of αi, αP(in,m) is a finite, non-zero set of input design parameters
related to a particular m, and αP(out,m) is a finite, non-zero set of output design parameters
related to a particular m.

Definition C: Process flow model (PFM)

A process flow model (PFM) is a state-transition model of design process, including a
finite, non-zero set of the process flow elements representing the design actions as
computational transitions and the input and output states of the design actions represented
by the (evaluated) values of the design parameters (variables).

For the purpose of computation, a process flow model is represented as a petri net, which
is a bipartite directed multigraph consisting of two different types of nodes formed by
(i) the set of transitions, associated with design actions, Tα, and (ii) the set of states of
design actions, Sα. With these dispositions, a process flow model (PFM) can be expressed
symbolically as:

 PFM = {Tα, Sα, W, M} (3-8)

where: Tα is a finite, non-zero set of computational transitions related to design actions α,
Sα is a finite, non-zero set of process states, W is a finite, non-zero set of relations among
the elements of the set Tα, and the elements of the set Sα, represented as arcs of a bipartite
directed multigraph process model, and M is a finite, non-zero set of markings. The PFM
captures the pattern of the design actions and their expected outcomes.

124

Definition D: Decision tree model (DTM)

A decision tree model is defined as a computational means, which allows decision making
on the relevance of a computational transition related to design action α ∈ DA and the
computational method, m ∈M. Computationally, a DTM is a classifier algorithm for
finding a proper method of a computational execution of design actions

 DTM = {w, Mα, R} (3-9)

where: α represents a design action, w is a finite set of decision variables, M is a finite set
of potential computational methods for an execution of design action, and R is a finite set
of decision rules.

3.4.7 Modelling the design activity flow by a reference
process protocol

The network of design actions is a representative of a reference process protocol (RPP).
In other words, it can be seen as a process model based on which a framework developer
models (the part of) of the reasoning mechanism development process. In the design process
of RMD, the procedural structure of the design process formed by the design actions can
be captured in and modelled by the RPP. It provides a complete specification or design
procedure to be followed to complete the design process. Based on the relationships of
design actions in the RPP, multiple pathways can be created for a development of ASRMs.

In order to explore the possible design flows within the RPP, the causal relationships of
design actions are constructed by Bayesian network (BN). It is a probabilistic graphical
model which represents in a directed acyclic graph. A graph consists of a set of nodes and
a set of directed edges between nodes. In context of the RPP, a node represents a design
action. An edge connects nodes in the direction of influence to create a design flow. A
BN plays a role in a decision support to select the best coupled design actions based on
the probabilistic reasoning. It is possible that multiple usable methods are available to
execute the considered design action. A decision tree model will be applied to select the
best option. The probabilistic reasoning incorporates with decision tree models can infer
the most informative design flow.

A graphical representation of conceptualization of an RPP is shown Figure 3.11. A rectangle
box represents a process flow model. The circles and shaded/rounded rectangles in a process
flow model represent a state and a transition, respectively. A dot line represents a composition
relationship between two subsequent design actions. A black diamond represents a decision
tree model for every decision point. A sequence of design actions in the network shows
their temporal relationships. The variable pi is a probabilistic relationship of design actions.

The design activity flow is represented by a sequence of design actions. Formally:

 P := {αi,αj,αk,…,αn} (3-10)

125

where: P is a design activity flow, and αi ∈DA.

3�4�8 Generation of recommendation in the case of type B
observation of non-usual events

The goal of recommendation generation is to propose the most proper design activity
flow which can rectify the conducted design actions and continue the design process
when it is blocked. Two types of inference methods are applied for the generation of
recommendations: (i) exact inference method which finds the perfect match between the
pattern of designer’s answers and the patterns of decision conditions which are pre-defined
in the lookup table, and (ii) hybrid inference method which utilizes the RPP based on the
incorporation of probabilistic reasoning and decision tree models. The generic workflow of
the recommendation generation in case on type B observation of non-usual event is shown
in Figure 3.12.

Since the ARF recognizes a non-usual event, the process of recommendation generation
follows these steps:

Step 1: notify a non-usual event,
Step 2: identify the current design action,
Step 3: organize a dialogue,
Step 4: capture the pattern of answers replied by the designer,

Figure 3.11: Conceptualization of a reference process protocol

126

Figure 3.12: Generic workflow of the recommendation generation in the case of
 NUE type B

127

Step 5: execute the pattern matching of designer’s answers and decision criteria in the
lookup table, if the best match found, retrieve the best solution then go to step
10, otherwise go to the next step,

Step 6: investigate backward in the RPP to find the proper design action by using
probabilistic reasoning,

Step 7: infer the potential design flow which includes (i) preceding design action, (ii)
current design action, and (iii) next design action,

Step 8: select the proper method to execute the identified design action, if there are
multiple choices of usable method then apply a decision tree to select the best
one, otherwise go to the next step,

Step 9: generate the process-based recommendation,
Step 10: generate the advisory contents for the recommendation,
Step 11: present the recommendation,
Step 12: evaluate designer’s decision on the proposed recommendation.

As a result, the process-based recommendation is constructed in form of the design activity
flow which can be found in the RPP. Each of them involves the proper usable method to
perform the design process. For example, the proposed process-based recommendation is
shown by the sequence of design actions and their connections with the full lines in Figure
3.11.

3.5 Functional specification of the computational
operations in the case of type B observation of non-
usual events

The ARF is a multi-mechanism software system. The included mechanisms, which provide
context-sensitive services for a designer, have specific functionalities. According to NUE
type B, the computational mechanisms of the ARF are decomposed into six main functions
included: (i) F1.0 – to recognize NUE based on a designer’s facial expressions; (ii) F2.0 – to
identify an obstacle at a certain design action using a dialogue; (iii) F3.0 – to construct a
reference process protocol; (iv) F4.0 – to identify a procedural obstacle in a design process
using a reference process protocol; (v) F5.0 – to generate an advisory content; and (vi) F6.0
– to evaluate the quality of recommendation. The decomposition of the sub-functions is
shown in Figure 3.13. The requirements considered at the specification of functionalities
were identified in Chapter 2. Below the specified functions are explained with more
technical details.

3.5.1 Functional specification for recognition of non-usual
event based on a designer’s facial expression

The main function F1.0 is to recognize a non-usual event based on the facial expression of the
designer. The function was specified based on the requirements FR-M02 - the mechanism
should recognize doubtful (unexpected) events in the design sessions in quasi-real time. To
realize this function, the sub functions were specified according to the regular process of
face recognition and the notification function.

128

This includes the following six sub-functions. The sub-function F1.1 is to capture video
image. It is an input sub-function, which activates a device and captures a designer’s image
from a video camera. The sub-function F1.2 detects a designer’s face in the video image. The
captured image is preprocessed in order to highlight the face region.

Normalization and equalization were performed on the original images. Since the face
region was detected, it is registered into the database. The sub-function F1.3 is to extract facial
landmark features as input for training a machine-learning algorithm. The sub-function
F1.4 applies the machine-learning model to classify the certain type of facial expressions.
The sub-function F1.5 learns the patterns of facial expressions and predicts an event. If the
designer shows the pattern of facial expressions which are defined as a non-usual event, the
sub-function F1.6 concludes about a non-usual event and notify the designer about it.

3.5.3 Functional specification for a construction of reference
process protocol

A reference process protocol is considered as a content-oriented model for an investigation
of the intended design process. It can be seen as a network of design actions and decision
points. A decision point is not only a terminal node of preceding action, but it is also a node
initiates follow up actions. The objective of this function F3.0 is to construct a reference
process protocol with the composition of three constituent elements includes process flow
models, a timed action model, and decision tree models. The sub-functions are related to
the creation of these constituent elements and management of their knowledge.

The main function is decomposed into seven sub-functions. The sub-function F3.1 is to
create a data model representing design action. The model is a computational representation
of design action called as a design entity. Each entity contains the specific information
which is distinct from each other. After modelling the design actions, the sub-function
F3.2 establishes a repository to store the collect of design entities and related knowledge
elements. The sub-function F3.3 is to create a representative of process flow model. To
identify the temporal relationships of the design entities, the sub-function F3.4 creates a
sequence of design tasks and assigns a design entity to the certain design task. Based on
the relationships of design entities, the sub-function F3.5 constructs a timed action model.
The sub-function F3.6 is to construct a decision tree model. Lastly, all three elements are
consolidated by the sub-function F3.7 to compose a reference process protocol.

3.5.4 Functional specification for an identification of
procedural obstacle in a design process

The goal of this main function is to find the most appropriate sequence of design actions to
generate the process-based recommendation. The conducted design actions can be rectified
by the proposed design actions. The next design action is predicted to continue the design
process. The reference process protocol is used to investigate the considered design process.
To achieve this goal, the main function is decomposed into seven sub- functions. Once the
current design action was identified, the sub-function F4.1 aims at exploring the possible

129

Fi
gu

re
 3

.1
3:

 F
un

ct
io

na
l d

ec
om

po
sit

io
n

of
 th

e A
RF

130

sets of process flow models representing the design process in context. It steps back to
investigate in the RPP to find the possible design actions which produce an input data for
the current design action. The sub-function F4.2 determines the probabilistic relationships
of elements in the candidate PFMs and selects the optimal one. Here, the PFM representing
the amended actual design flow is available.

The sub-function F4.3 applies a decision tree model to select the proper method for each
design action. The output of this function is the best combination of the current design
entity and its preceding one. To ensure that all required input-output data is available for the
coupled design entities, the sub-function F4.4 checks the reachable conditions of states and
transitions of the PFM. As a next step, the sub-function F4.5 selects the next design action
based on the probabilistic relations in the RPP. At this point, three design entities (i.e.,
the proposed current design action, its preceding and next ones) and their proper usable
methods are specified. The sub-function F4.6 generates a proposal to continue the design
process. A proposal is a basis for the generation of process-based recommendation which
includes the abovementioned elements. To ensure that all required data is available when
it is needed, the sub-function F4.7 checks the completeness of information flow throughout
the recommended design flow.

3.5.5 Functional specification of generation of advisory
content

The advisory content is a part of the content-based recommendation. It provides an
informative document related to the proposed design flow and its elements. The generation
of advisory content function aims at finding the most informative contents to support the
exaction of the design process and presenting them in meaningful media. The fundamental
concept for the generation of advisory contents is related to information retrieval. The
main function is decomposed into seven sub-functions. The sub-function F5.1 pre-processes
knowledge to generate a recommendation item. It extracts the main contents from a
knowledge source based on the identified terms, processes the most relevant contents, and
converts them into a document as a recommendation item.

The sub-function F5.2 establishes a repository of recommendation items. It is a specific
location to store the recommendation items. Here, the collection of items is available. Since
the proposal is generated, the sub-function F5.3 explores the possible recommendation items
to support the utilization of process-based recommendation. If there are multiple choices
of recommendation items, the sub-function F5.4 selects the best one which provides the
most informative contents and navigates the designer to the knowledge source. Lastly,
the sub-function F5.5 consolidates all required contents and constructs them in the human-
understandable format.

3.5.6 Functional specification for an evaluation of the quality
of recommendation

The function for an evaluation of the quality of recommendation aims at examining

131

the quality of recommendation from the perspective of the designers. The process of
recommendation generation works in a closed loop. The feedback from the historical
activities of the designer will be used to recalculate the impacts on the recommendation
item selection. The results from the evaluation of the designer’s decision are also used to
improve the performances of recommendation generation engine. Four sub-functions are
specified. The sub-function F6.1 captures the designer’s responses on the recommendation.
It is possible that the designer does not accept the proposed recommendation provided by
the ARF. Two approaches are applied to capture the decision made by the designer: (i)
providing the form-based user interface to directly obtain information from a designer; (ii)
determining the deviation between the proposed item and the alternatives.

Based on two sources of information, the sub-function F6.2 determines the impact factors
of the designer’s decision on the recommendation. The sub-function F6.3 determines the
performances of recommendation. Various metrics can be used e.g., perceived accuracy,
novelty of recommendation, coverage of recommendation, and time-saving. To this
end, the sub-function F6.4 determines the overall performances of the recommendation
generation. It takes both the impact factors from the designer side and the performances of
recommendation engines into the consideration.

3�6 Allocation of functions to architectural constituents

3�6�1 Reasoning about the allocation of functions to
architectural constituents

Software mechanisms are the highest-level architectural constituents. They implement
several operations in order to provide services. A software mechanism includes multiple
software modules. A module is an abstraction of interrelated software components that
serve for a specific purpose. Every lower-level element works to accomplish some higher-
level goals. A component includes a set of interrelated algorithms to realize its functions.
This hierarchical decomposition makes the architecture of the ARF rigorously ordered
and staged transition from the highest-level specification to lowest-level implementation.
Designing an appropriate architectural structure of the ARF is important to meet the
requirements for functional specification, interaction of designer, and allocation of
computational components.

According to the requirements SR-F01, and SR-F02, the highest-level modules are
constructed by one-to-one connection of the main functions of the ARF. They are either
for process monitoring or for supporting decision-making related to the development of
ASRM algorithms. Figure 3.14 shows the system-level architecting of the ARF, included
the user interfaces. The process monitoring mechanism comprises three modules, namely:
(i) module 1.0 – non-usual event detector (NUE-D); (ii) module 2.0 – dialogue-based
obstacle identifier (DOI); and (iii) module 4.0 - reference protocol-based obstacle identifier
(ROI). The design support mechanism has three modules: (i) module 3.0 – reference
process protocol creator (RPC); (ii) module 5.0 – advisory content generator (ACG);

132

and (iii) module 6.0 – quality examiner (QE) module. The technical specifications of the
architecting module were given in the following sections.

3.6.2 Architectural specifications of process monitoring
mechanism

The overall architecture of the mechanism performing the process monitoring functionality
is shown in Figure 3.15. It consists of three modules which were designed following the
requirements SR-M01 and SR-M02. The NUE-D module implements the function F1.0 to
notify a design when a non-usual event is recognized. The DOI module implements the
function F2.0 that allows the ARF to gather some required information about the current
design action and to investigate the current state of design action by creating a dialogue.
The ROI module performs the function F4.0 to investigate the design process by using the
RPP. The following sub-sections discuss the sub-module level.

3.6.2.1 Architectural specification of non-usual event detector
module

The non-usual event detector (NUE-D) module observes the designer’s facial expressions,
monitors an event based on the patterns of facial expressions, and notifies a designer if a
non-usual event is recognized. The NUE-D module is composed of four interrelated sub-

Figure 3.14: System-level architecting of the ARF for handling NUE type B

133

modules: (i) the face detector; (ii) the facial feature manager, (iii) the designer’s behavior
analyzer, and (iv) the event manager. The face detector sub-module connects to the video
camera in order to obtain video images and capture the designer’s face. It implements
the computational operations which analyzes the area of face in the captured image and
registers it the computable format. Two sub-functions are allocated to this sub-module
including F1.1 (capturing video images), and F1.2 (detecting a designer’s face).

The facial feature manager sub-module deals with the data and information about the
features of faces and facial expressions including an extraction of facial landmark features,

Figure 3.15: Architecture of process monitoring mechanism

134

a selection of the key features, and storing the features. This sub-module performs the sub-
function F1.3 and organizes the collections of facial expressions, and their features which
are stored in the database. The designer’s behavior analyzer sub-module is dedicated to two
sub-functions F1.4 (classifying the facial expressions), and F1.5 (predicting an event). If an
irregular pattern is found, the event manger sub-module receives the pattern and finds the
best match in the database. This sub-module performs the sub-function F1.6 to conclude an
event and send a notification message to a designer.

3.6.2.2 Architectural specification of dialogue-based obstacle
identifier module

The dialogue-based obstacle identifier (DOI) module comprised three interrelated sub-
modules: (i) the design action identifier; (ii) the knowledge manager; (iii) the dialogue
manager. The computation process of this module transforms the information from a
designer to the best solution based on the exact inference. The design action identifier sub-
module implements the computational components for a realization of two sub-functions,
F2.1 (to activate a dialogue) and F2.2 (to identify an actual design action).

The knowledge manage sub-module is dedicated to three sub-functions including F2.3 (to
organize knowledge elements), F2.4 (to handle the patterns of decision conditions), and F2.5
(to retrieve the questions). This sub-module organizes the formal knowledge and context
information related to the design action. It provides the knowledge elements as input
data to the dialogue management sub-module. This sub-module uses the knowledge to
contextualize the current state of design action. It organizes a dialogue and infers the best
solution. Thereby, two sub-functions are allocated to this sub-module, which are F2.6 (to
organize a dialogue) and F2.7 (to conclude the best solution). The expected output of the
whole module is the proper usable method for the rectification of the actual design action.

3.6.2.3 Architectural specification of reference protocol-based
obstacle identifier module

The reference protocol-based obstacle identifier (ROI) module performs the main function
F4.0. From the architecture point of view, this module contains the main functional and
computational elements which are considered as the main contribution of our research. The
expected output is the proposal for solving the procedural obstacle in the design process.
Three interrelated sub-modules are organized to implement seven sub-functions. The
context sensitive design process identifier sub-module is dedicated to two sub-functions
including F4.1 (to explore the possible set of preceding design entities), and F4.2 (to identify
the best representative of the actual design flow).

The inference engine sub-module performs the hybrid inference in order to find the most
proper design entities and their usable methods. These elements are input for generating a
proposal. Three sub-functions are assigned to this sub-module, which are the sub function
F4.3 (to select the usable method), F4.4 (to check the reachable conditions of a PFM), and
F4.5 (to predict the next design entity). The obstacle resolver sub-module constructs the

135

elements necessary to create the most informative process flow model and to investigate
the coverability of the model. This sub-module performs two sub-functions, which are: F4.6
(to generate a proposal), and F4.7 (to check the completeness of information flow through
the model).

3.6.3 Architectural specification of decision support
mechanism

The overall architecture of the decision support mechanism comprises three modules
as shown in Figure 3.16. It aims at performing the decision support functionality. Each
module is dedicated for the main function. The CRP module is dedicated to the function
F3.0 to construct a reference process protocol. The ACG module is allocated to the function
F5.0 to create an advisory content for the content-based recommendation. The QE module
is dedicated to the function F6.0 which is for the evaluation of the recommendation. The
detailed descriptions of the sub-modules are given in the following sections.

3.6.3.1 Architectural specification of reference process
protocol creator module

The reference process protocol creator (RPC) module is the core component of the decision
support mechanism. It comprises four interrelated sub-modules: (i) design entity modeler;
(ii) process flow model configurator; (iii) timed action model builder; and (iv) reference
process protocol creator. The design entity modeler sub-module deals with the organization
of knowledge elements related to a design action. It builds a design entity model for
handling knowledge contents representing a design action. This sub-module serves for the
realization of the sub-function F3.1 (building a data model) and F3.2 (establishing a repository
of data models).

The process flow model configurator sub-module builds a state-transition model to
represent a process flow model. It employs the structure of a Petri net model to classify
the configuration of PFMs. The sub functions F3.3 (to represent a process flow model is
assigned to this sub-module. The timed action model builder sub-module plans to devise
the two sub-function F3.4 (sequencing design tasks) and F3.5 (constructing a TAM). Lastly,
the RPP representation creator sub-module is dedicated to two sub-functions including F3.6
(to build a decision tree model) and F3.7 (to compose of a reference process protocol). The
expected output of the whole module is a representation of an RPP.

3.6.3.2 Architectural specification of advisory content
generator module

The advisory content generator module is composed of three interrelated sub-modules:
(i) recommendation item generator; (ii) recommendation item manager; and (iii)
advisory content provider. The module consolidates the relevant contents for generating
the comprehensive recommendation. The recommendation item sub-module is the
computational operation of processing knowledge contents. It is dedicated to the sub-
function F5.1 (to create a recommendation item). The recommendation item manager sub-

136

module serves the sub-function F5.2 (to establishes a repository of recommendation items).
The advisory content provider sub-module finds the most information for the advisory
contents and presents the comprehensive recommendation. Three interrelated sub-
functions are planned to allocate to the sub-module, which are F5.3 (to explore the possible
recommendation items), F5.4 (selects the best recommendation item), and F5.5 (conclude the
comprehensive recommendation).

3.6.3.3 Architectural specification of quality examiner module

The quality examiner module comprises three interrelated sub-modules: (i) designer’s
decision reviewer; (ii) performance calculator; and (iii) performance evaluator. The
ultimate goal of this module is to obtain the feedback designer’s decision on the quality
of recommendation. The designer’s decision reviewer sub-module intends to serve two

Figure 3.16: Architecture of decision support mechanism

137

sub functions including F6.1 (to capture the designer’s responses), and F6.2 (to determine
the impact factors of the designer’s decision). The performance calculator sub-module
is reserved for the sub-function F6.3. Lastly, the sub-function F6.4 (evaluate the overall
performance) is allocated to the performance evaluator sub-module.

3.7 Allocation of algorithms to the specified architectural
constituents

The functionality of the modules has been realized either by adapting existing algorithms
or by developing a set of new algorithms. Basically, an elementary function or a group of
elementary functions is executed by an algorithm. In the case of complicated interrelated
elementary functions, typically more than one algorithm or a purposeful composition of
them is needed. It is an advantage that some existing algorithms can be reused without
any change or can be adapted for differing functions. Not only structural integration of the
algorithms, but also their harmonization in the time dimension is important. All specified
algorithms, which are discussed in this section, concern and belong to the case of type B
observation of NUEs.

3�7�1 Allocation of algorithms to the non-usual event detector
module

Eight algorithms are required for the realization of the functionality for facial expression
recognition (FER). They are listed in Table 3.2. These algorithms are interrelated to detect
an unusual event in the design process. It could assume that a designer shows the identified
facial expression during the execution of a design process. ARF Algorithm A1.01 captures
video images from a video camera. ARF Algorithm A1.02 is a face detection algorithm.
The Viola-Jones cascade classifier can be employed for this task. Algorithm A1.03 registers
the detected face into a database. These three algorithms are interrelated. Thus, they are
assigned into the sub-module1.10 (face detector). Two algorithms, A1.04, and A1.05 deal

FN. required algorithms sub-module

F1.1 A1.01: video image capturing
sM1.10F1.2 A1.02: face detection

A1.03: face registration
F1.3 A1.04: facial feature extraction

sM1.20
A1.05: feature selection

F1.4 A1.06: classification of facial
expressions

sM1.30
F1.5 A1.07: recognition of the patterns of

facial expressions
F1.6 A1.08: Notify an NUE based on the

pattern of facial expression sM1.40

Table 3.2: Allocation of algorithms to the NUE-D modulewith the features. They are
allocated to the sub-module
(facial feature manager). The
algorithm A1.04 is facial
feature extraction algorithm.
The output of feature
extraction algorithm contains
separable and classifiable
vectors. Several algorithms
for feature extraction can be
applied for instance, Gabor
filters, Susan algorithm,
and K-mean clustering. The
algorithm A1.05 is feature
selection algorithm.

138

Two algorithms, A1.06 and A1.07, are interrelated in the process of recognition of facial
expressions. They are devised to implement in the sub-module 1.30. The algorithm A1.06
is the ML-based feature classifier. The algorithm can be trained to follow one of the face
recognition approaches which were mentioned in the literature. For validation the algorithm
A1.06, several standard databases can be used (e.g., Cohn-Kanade dataset, T-FED, and ILF).
They store a collection of images which represents eight primary different facial emotional
expressions including neutral, anger, happiness, fear, contempt, surprise, sadness, and
disgust. The algorithm A1.07 applies the learning algorithm to learn the pattern of facial
expressions of a designer at runtime during an execution of design process.

When an irregular pattern of the facial expressions is detected, the algorithm A1.08 matches
that pattern and the identified patterns which are stored in the database to recognize an
indicator of a non-usual event. It is solely implemented in the sub-module 1.40 (event
manager). A designer will receive a notification message according to the recognized NUE
from this sub-module. However, if the best match cannot be found, then the notification is
sent regularly to the designer and the service is offered. It is the automated verification of an
unknown event. If the designer accepts the offer, the irregular pattern will be recorded and
recognized as a non-usual event. Otherwise, it will be stored and classified as a suspicious
event to be verified.

3�7�2 Allocation of algorithms to the dialogue-based obstacle
identifier module

The realization of the main function F2.0 required eight algorithms, as shown in Table 3.3.
The Algorithm A2.01 activates the dialogue. It aims at inviting a design to provide the
information about the design process. At the beginning, the algorithm provides information
about the services and poses the very first question. A form-based user interface is used
for this purpose. Algorithm A2.02 obtains context information from the designer. This
information is contextualized with the available knowledge identify the current design

FN. required algorithms sub-module
F2.1 A2.01: activate a dialogue

sM2.10F2.2 A2.02: identify a current design
action

F2.3 A2.03: construct a knowledge
repository of design
entities sM2.20

F2.4 A2.04: construct a decision matrix
F2.5 A2.05: retrieve a set of questions
F2.6 A2.06: organize a dialogue

sM2.30
F2.7 A2.07: execute pattern matching

Table 3.3: Allocation of algorithms to the DOI module
action. These two algorithms
are planned to implement in the
sub-module 3.10 (design action
identifier).

Three algorithms are related to
the organization of knowledge
elements including algorithm
A2.03, A2.04, and A.2.05. They
are allocated to the sub-module
3.20 (knowledge manager).
The algorithm A2.03 constructs
a knowledge repository of
design entities. The knowledge
elements contain the profile

139

of design entities, a collection of questions, and the lookup tables. The algorithm A2.04
converts a lookup table into the computable matrix and algorithm A2.05 retrieves the most
relevant set of questions. The outputs of these three algorithms are used at the execution of
the sub-module 3.30 (dialogue management). It is planned to implement two algorithms for
the realization of F2.6 and F2.7, which are A2.06 (organize the dialogue) and A2.07 (execute
pattern matching).

3�7�3 Allocation of algorithms to the reference process
protocol creator module

The RPC module is dedicated to the main function F3.0. For the realization of this
functionality, the planned implementation of the module including thirteen interrelated
algorithms as listed in Table 3.4. Two algorithms, A3.01 and A3.02 are allocated to the sub-
module 3.10 (design entity modeler). The algorithm A3.01 builds a data model representing
a design action. The algorithm A3.02 organizes the data models and their related knowledge
elements. To build a process flow model, a design entity is a primary element for building a
process flow model. The algorithm A3.03 is designed to perform the function F3.3 (construct
a PFM). For a development of algorithm A3.03, it could be modified based on the Petri net
modelling algorithms. The algorithm A3.04 classifies the configuration of the process flow
models. These two algorithms are assigned to the sub-module 3.20 (process flow model
configurator).

When building a timed action model, two functions, F3.4, and F3.4, were taken into account.
Thereby, five interrelated algorithms, A3.05, A3.06, A3.07, A3.08, and A3.09, were assigned
to the sub-module 3.30 (timed action model builder). The algorithm A3.05 arranges the

Table 3.4: Allocation of algorithms to the RPC module

FN. required algorithms sub-module
F3.1 A3.01: modelling a design action

sM3.10
F3.2 A3.02: generation of a repository of design entities
F3.3 A3.03: construction of the petri-net-like model

sM3.20
A3.04: net configuration identifier

F3.4 A3.05: sequencing design tasks

sM3.30
A3.06: classification of entity2task

F3.5 A3.07: construct a matrix to handle relations of d-entities
A3.08: construct a matrix to handle composition relations of d-entities
A3.09: timed action modelling

F3.6 A3.10: train a decision tree classifier

sM3.40
A3.11: d-tree induction

F3.7 A3.12: assemble a reference process protocol
A3.13: graph construction to represent a reference process protocol

140

sequence of the design tasks for a particular design process. The algorithm A3.06 classifies
a design entity to the relevant design task. The algorithm A3.07 identifies the temporal
relationships of design entities according to the sequence of design tasks. The algorithm
A3.08 identifies the compositional relationships of design entities. The algorithm A3.09
constructs the timed action model based on the identified relationships of design entities.

The implementation of the reference process protocol creator sub-module needed four
interrelated algorithms. The first two of them were algorithms A3.10 (decision tree induction
algorithm), and A3.11 (training the classifier algorithm). The other two algorithms were
A3.12 for assembling the elements of the reference protocol, and A3.13 for construction of
the graph that represents the reference protocol.

3�7�4 Allocation of algorithms to the reference process-based
procedural obstacle identified module

To realize the reference protocol-based obstacle identification functionality, ten algorithms
were designed and integrated in the ROI module as presented in Table 3.5. The required
algorithms were classified into three groups. Each of them is assigned to a sub-module.
The first group, including the algorithms A4.01, A4.02, and A4.03, was implemented in
the sub-module 4.10. They interoperate in order to select the candidate PFMs which best
represent the actual design process. The algorithm A4.01 aims at exploring the possible
preceding design actions. The algorithm A4.02 calculates the probability of the preceding
design actions, which appeared in the actual design process. The algorithm A4.03 selects
the PFM which best represents the actual design process.

FN. required algorithms sub-module
F4.1 A4.01: identify the n entities of the

segment design process

sM4.10F4.2 A4.02: calculation of joint distribution
probability of PFM

A4.03: select the most representative
PFM in context

F4.3 A4.04: select the best method for the
PFM in context

sM4.20F4.4 A4.05: reachability checker
F4.5 A4.06: predict the next design action

A4.07: assembling the extended PFM
F4.6 A4.08: proposal generation

sM4.30F4.7 A4.09: building the coverability tree
for the extended PFM

A4.10: coverability checker

Table 3.5: Allocation of algorithms to the ROI moduleIn the next group, four
algorithms, namely
A4.04, A4.05, A4.06, and
A4.07, are combined.
They were assigned to
the sub-module 4.20
(inference engine). Two
inference approaches
were incorporated to
construct the most
informative design
flow and to select the
next design action. The
algorithm A4.04 selects
the best usable method
for the considered design
action. The algorithm
A4.05 evaluates the
fulfilment of data

141

requirement throughout the proposed design flow. The algorithm A4.06 selects the most
potential design action in order to continue the design process. The algorithm A4.07
consolidates all constituent elements to construct the extended PFM. This model is the basis
of the proposal generation actions. The sub-module 4.30 encapsulates three algorithms,
which generate a proposal and check the coverability condition of a PFM. The algorithm
A4.08 is responsible for the former tasks, while the algorithms A4.09 and A.4.10 perform
the latter task. The common coverability tree algorithm was modified to create the algorithm
A4.09. With the intention to check the information flow through the PFM, simulation of the
coverability tree is realized by the algorithm A4.10.

3�7�5 Allocation of algorithms to the advisory content
generation module

As presented in Table 3.6, nine algorithms were required for the realization of the
recommendation content generation functionality. They were allocated to three sub-
modules. Four algorithms, including A5.01, A5.02, A5.03, and A5.04, were assigned to
the sub-module 5.10 (recommendation item generator). Conceptually, the four algorithms
are individually responsible for the four steps of converting the unstructured knowledge
in a knowledge source into the informative contents. The algorithm A5.01 aims at pre-
processing the knowledge obtained from the source into texts. The algorithm A5.02
finds the relevant contents by matching a query in text. The algorithm A5.03 generates a
document that contains relevant information about the design actions. The algorithm A5.03
extracts the terms most frequently occurring in the document.

The task of the sub-module 5.20 (recommendation item manager) is syntactic organization

 FN. required algorithms sub-module
F5.1 A5.01: convert knowledge

sources to texts
sM5.10A5.02: match a query in texts

A5.03: generate a document
A5.04: find top K words

F5.2 A5.05: RecItem modelling
sM5.20A5.06: RecItem repository

generation
F5.3 A5.07: calculate similarity of

K terms & RecItem

sM5.30F5.4 A5.08: top N rank of RecItem
F5.5 A5.09: wrap up the

comprehensive
recommendation

Table 3.6: Allocation of algorithms to the ACG module
of the recommendation items.
Two algorithms were assigned
to this sub-module, including the
algorithm A5.05 (modelling the
recommendation items) and the
algorithm A5.06 (establishing a
repository of recommendation
items) Three sub-functions were
dedicated to the process of finding
the most informative content.
Each of them was supposed
to be realized by a particular
algorithm. Thus, three algorithms
were assigned to the sub-module
5.30 (advisory content provider).
The algorithm A5.07 finds the
best matching solution for a
recommendation item. The
algorithm A5.08 explores the most

142

informative contents and ranks them by similarity scores. The algorithm A5.09 concludes
about the use of a particular advisory content and presents the constructed recommendation.

3�7�6 Allocation of algorithms to the quality examiner module
Six required algorithms are specified for the realization of the evaluation of the designer’s
decision functionality as listed in Table 3.7. Three sub-modules are organized for the four sub-
functions. For the implementation of the sub-module 6.10 (designer’s decision reviewer),
two algorithms are assigned, including algorithm A6.01, and A6.02. The algorithm A6.01
captures the decision of the designer. The algorithm A6.02 calculates the impact factors of
designer’ decision on the recommendation. The sub-module 6.20 (performance calculator)
plans to implement two algorithms, which are algorithm A6.03 and A6.04. The algorithm
A6.03 calculates the performance of recommendation. The algorithm and A6.04 perform
cross-validation to measure the performances.

The sub-module 6.30 (performance evaluator) was prepared for embedding two algorithms,
namely A6.05 and A6.06. The algorithm A6.05 determines the correlation between the
‘performance’ of the recommendation in terms of its impacts on the designer’s decisions.
Finally, all data was brought together to evaluate the overall performance by algorithm
A6.06. The output of this algorithm is returned to the process of recommendation generation.

3�8 Presenting the operation of the conceptualized
demonstrative part

3�8�1 Setting up a case of reasoning mechanism design for
automated parking

The setting-up design scenario is that the parking problem is already defined in the problem
formulation (PF) session. Specifically, the case is as follows: A car is going to parallel
park between two cars on the side of the road. Several situations can happen during
parking, for example, other cars may come in (and through) the scene, pedestrians may

 FN. required algorithms sub-module
F6.1 A6.01: capture a designer’s decision

sM6.10
F6.2 A6.02: calculate the impact factors on the decision of designer
F6.3 A6.03: calculate the performance measurements of

recommendation sM6.20
A6.04: cross validation of the performance measurements

F6.4 A6.05: calculate the correlation of performances and designer’s
decision sM6.30

A6.06 evaluate the overall performances of recommendation

Table 3.7: Allocation of algorithms to the ACG module

143

move through the parking space and along
the sideway, etc. Accordingly, to capture
these, situation models are developed
and stored in the knowledge repository.
The situation models captured spatio-
temporal information of the relevant
entities involved in the parking case.
This information (e.g., the identification
number of entities, the entity properties,
the location and orientation of the entities,
and the relationship of entities) at a point
in time is stored in the spatial reference
feature (SFR) matrices as described in Li
(2019) [15]. As shown in Figure 3.17.a-c,
the parking situations in different moments
of time are recorded in SFR matrices. The
multiple SRF-matrices are composed and
mapped onto the context information
reference (CIR)-cube with regard to spatial
and attributive context information, as
shown in Figure 3.18.

Regarding this parking scenario, there are
three cars in the parking scene. Each SFR
matrix records the distances between the
target car and the other cars. These are
measured by a set of sensors at a point
in time t. The contents of all cells in the
SFR matrices are used in the dynamic
computation process. All relative distances
can be computed for logical/semantic
inferring the implications of dynamic
contexts.

Figure 3.17.a: Parking situation at the time t

Figure 3.17.c: Parking situation at the time t
+(l-n)dt

Figure 3.17.b: Parking situation at the time
t+dt

The reader should be informed here that the impacts of the contextual situations on the
solution opportunities were determined at the situation analysis stage. At this point,
we assume that a collection of situation models is already available in the knowledge
repository. The assignment for a designer is to develop an algorithm which is able to select
the best parking case in the repository to perform the parking maneuver in the real-life
street parking problem.

144

3�8�2 Scoping the demonstrative example to retrieve the most
appropriate parking case

In the sample case, the designer is engaged in the design process in the WPE session. The
objective is to accomplish the design task formulated as below:

D1.0 ‘Construction of an ASRM-algorithm A01 for searching for and retrieving past
parking cases according to actual situation from the repository of the APAS’.

We assumed that the developed reference process protocol contains the relationships of the
design actions. These relationships were considered also as the context of the development
of a machine learning-based algorithm. The detailed description of design sub-tasks and
related design actions are given below.

(i) Data preparation, which is a task to process raw data into a suitable format prior
to using these data in processing and analysis. Design actions involved in this sub-
task are, for instance, such as data (i) cleansing, (ii) blending, (iii) reshaping, (iv)
reformatting, and (v) dimensionality reduction.

Figure 3.18: The theoretical model of the CIR cube for storing and inferring (based on
[15])

145

(ii) Feature selection, which is a task to select the most discriminatory features out of the
available ones. Design actions to accomplish this sub-task are, for instance, such as (i)
conducting statistical analysis, (ii) doing feature transformation, and (iii) conducting
principle component analysis.

(iii) Model training, which is the process of applying an algorithmic model, built from
a historical dataset, to explore the patterns of data and learning from the patterns to
predict the dependent variable. Design actions for training the model are, for instance,
such as (i) selecting a training algorithm, (ii) examining the training set, and (iii)
attempting to find the finest model.

(iv) Metric selection, which is the task to choose the right metrics for evaluating a learning
model. The selection of the metrics depends on several criteria, for instance, (i)
the objective of the model, (ii) the statistical characteristics of dataset, and (iii) the
expected performances of the model. Design actions are, for example, such as (i)
identifying the objective, (ii) performing a statistical analysis, and (iii) developing an
optimization model.

(v) Model scoring, which is the task to compute the metric for the evaluation of the
performances of the trained model. Design actions involved in this task are, for
example, such as (i) doing a statistical analysis, and (ii) applying the model with an
optimization function.

(vi) Model validation, which is the task to test if the trained model is correct and suitable
in the context of interest. The test is done by applying the model with a new dataset.
Several methods could be applied to conduct a design action, for instance, (i) the fitting
performances, (ii) ROV curve, (iii) hyper-parameter optimization, and (iv) statistical
measures.

Concerning the development of the ML-based model, the list of design actions belonging
to the considered design sub-tasks are listed in Table 3.8. Throughout the design process,
the functionalities of the conducted process monitoring support the designer at executing
the design task. Below, we further elaborate on how the conceptualized ARF works with
this task in the WPE session.

3�8�3 Integration of the conceptualized part of the active
recommender framework considering the interactions
with the designer

The sequence diagram in Figure 3.19 shows the workflow of the ARF supporting the
designer to perform the design process. The interaction of the ARF and the designer
happens through user interfaces. In the first computational cycle, the process monitoring
functionality is activated by the module 1.0 - NUE-D to monitor the designer’s behavior.
A video camera captures a designer’s face and detects the changes of the facial expression.
The recognition of an event is based on the available time-distributed information and
knowledge. Whenever, a suspicious event was detected based on the recognition of
recorded facial expressions during the execution of the concerned design action. It gives an

146

indication of the occurrence of a non-usual event (NUE). The possible causes of an NUE
are from lack of information or a wrong assumption with may lead to wrong decision by
the designer.

For example, suppose that the algorithm A1.07 detects an irregular pattern of facial
expressions as shown in Figure 3.20. It sends the information about this pattern to the
algorithm A1.08 in order to find the best match with the pre-defined patterns in the
database. Once this pattern is recognized as a non-usual event, it will show a notification
message to the designer and offer the service. If the designer accepts the offer, the dialogue
is activated by the module 2.0 (DOI). At this point, the domain specific knowledge and
context information about the design process of ASRM-algorithm A01 should be available.
Conceptually, the collection of formal knowledge is stored in the knowledge repository.
The dialogue poses the first question to identify the current design action in the third
computation cycle. For example, the designer is working on the feature selection task, and
struggling with ‘select the attributes’. The ARF should recognize this design action and
retrieve a set of related questions.

In the fourth computational cycle, the multi-turn dialogue is organized to collect more
information about the current state of design action. The number of interactions through
the dialogue is equal to the total number of questions related to the identified design action.
This process is a part of the recommendation generation using the exact inference approach.
The detail description of this computational process will be discussed in the Section 3.8.4.
Based on the exact inference, two possible alternatives are determined, either positive or
negative results. If it is positive, the solution will be found. In this example, the solution
is the proper method for executing the design action, ‘select the attributes’. If the proper
solution is not found, the investigation in the design process is required to find a procedural
obstacle in the design process. The module 4.0-ROI is activated for the generation of

design sub-tasks examples of design actions belonging to the sub-task
data preparation cleansing data (e11), dimensionality reduction (e12), split data (e12),

blending variables (e14)
feature selection select the attribute (e21), generate new features (e22),

investigate the features (e23)
model training train a classification model (e31), train a regression model (e32),

train a clustering model (e33)
metric selection perform a cross validation (e41), analyses statistical testing (e42),

develop an optimization model to select the metrics (e43)
model scoring calculate loss of the model (e51), apply a simulation model (e52),

apply the trained model with an optimization function (e53)
model validation hyper-parameter optimization (e61), cross validation method (e62),

sequential feature selection (e63)

Table 3.8: Example for design actions of the development of ML-based algorithm

147

Figure 3.19: Sequence diagram representing the computational workflow of the
conceptualized part of ARF

process-based recommendation. The descriptions of this computational process will be
discussed in details in the Section 3.8.6.

To generate the content-based recommendation, the module 5.0 (ACG) receives two
options of input data. They can be: (i) the solution produced by the module 2.0 (DOI), or
(ii) the process-based recommendation generated by the module 4.0 (ROI). For the former

148

on the fundamental of text mining operations. It makes a query on key terms and find the most
informative contents to support the execution of the design action. In the conceptualization
of the module 5.0, the fundamental concept of the text similarity is applied. The key terms
are extracted from knowledge in web pages. In the fifth computational cycle, the output of
this process is the content-based recommendation as presented in Figure 3.21 that provides
(i) the contents of design action, (ii) the proposed method, and (iii) the hyperlink that
navigates the designer to the informative knowledge source.

For the second option, the operation is in the seventh computational cycle. The input data
is the proposal provided by the module 4.0. It consists of three design actions and their
proper methods which represent the most informative design flow. The contents of the

option, it is operated in the
fifth computational cycle.
The input data consists of
the context information
about the design action and
the proposed method. The
information includes the
profile of the design action
i.e., a set of input and output
variables, textual description
defining the design action,
the usable method, and key
terms indexing the method.
The process of advisory
content generation is based

Figure 3.20: Graph representing the real-time monitoring
of the patterns of facial expressions

Figure 3.21: Structure of content-based
recommendation

recommendations for all three elements
have the same structure as the content-
based recommendation as abovementioned.
In addition, the process-based
recommendation shows the procedural
relationships of these three design actions.
As a result, the recommendations are
presented to the designer. She may accept
the recommendation or select another way
to rectify the design process.

In the eighth computational cycle,
the module 6.0 (QE) will capture the
decision of thedesigner and use it as
an input to evaluate the quality of the
recommendations. The output of this
process will be feedback to the module
3.0 in order to improve the performances

149

of recommendation generation in the next cycle of the services. This comes to the final
stage of the recommendation generation. The designer is back to the design process and
continues the next design action. It returns to the first computational cycle, the module 1.0
(NUE-D) continuously monitors the designer’s behaviors and provides the services until
the end of the design process.

3�8�4 Generation of recommendation using exact inference
The conceptualization of the process of recommendation generation using the exact inference
aims at finding the solution to continue the certain design action. The computational
workflow of the module 2.0 (DOI) is shown in Figure 3.22. It starts with receiving the
input data from the designer to identify the current design action by the algorithm A2.02.
In this demonstrative example, let us suppose that the designer is obstructed at ‘selecting
the attribute’. The algorithm A2.05 will retrieve the set of questions related to this design
action in the knowledge repository. The dialogue aims at investigating the characteristics
of data set in order to provide the recommendation to select the proper usable method as
shown in Table 3.9. According to the criteria in the lookup table, four main questions will
be posed to the designer by the algorithm A2.06:

 • Q1: Does your dataset have high data dimensionality? yes (if number of features > 20),
no (otherwise)

 • Q2: Does your dataset have the heterogeneity of features? Yes (if the features follow
different distribution, no (otherwise)

 • Q3: Does your dataset have the high correlation of features? yes (if two features have
correlation > 80%, no (otherwise)

 • Q4: Does your dataset contains an imbalanced data? yes (if the total number of different
two classes is greater than 20%, no (otherwise)

The designer will respond with binary answers to these questions. The ARF captures the
pattern of the responses of the designer. The set of decision criteria in the lookup table will
be converted into the binary decision matrix by the algorithm A2.04. The pattern similarity
is applied to find the perfect match of the patterns. The algorithm A2.07 is employed for
this task. The solution is found if the sequence of binary value in two patterns is perfectly
matched.

Let us suppose the designer replied the answers to the questions following this pattern {yes,
yes, no, yes}. The combination of these answers describes the characteristics of the dataset
as follows: the data set contains more than 20 features, each of them follows different
statistical distributions, less than 20% of the features have correlations among them, and at
least one feature contains imbalanced data. According to the knowledge in the lookup table,
it concludes that the best method is ‘Chi-square test’. If the designer replies the answers
which are diverse from the patterns of decision criteria in the lookup table, it means that no
proper method suited for this dataset. This implies that the dataset should be modified in
the previous design action. Thus, the investigation of the design process is needed to find

150

Figure 3.22: Computational workflow of recommendation generation through a dialogue

the preceding design actions and to offer the recommendation for the modification of the
dataset.

3�8�5 Construction of the reference process protocol
To demonstrate the generation of a process-based recommendation, the reference process
protocol (RPP) should be constructed to represent the design process in the target application
context. This section describes the computational workflow for building a graph representing
the RPP as shown in Figure 3.23. This workflow is a part of computational operation in

151

the RPC module. Four types of input data should be provided by the sub-module (3.10-
3.30) included: (i) finite set of design entities, (ii) the timed action model, (iii) the decision
tree models, and (iv) the historical data about the frequency of co-occurrences of design
actions. We assume the design actions listed in Table 3.8 are members of the set of design
entities for the construction of the RPP. A directed graph (G) representing an RPP is defined
as G = (N,L,F) where: N is a finite set of nodes ni ∈ N and L is a finite set of links lij ∈ L,
which are ordered pair of elements of N, and fij ∈ F is the weight connection of nodes ni and
nj. It is the frequency of co-occurrence between entity ei and ej.

The procedure starts with finding the temporal relationships of design entities in the TAM.
If the relationship is found, then assign the number of frequencies of co-occurrences
between two entities. The next step creates a finite set of nodes without links. Assign each
of all design entities to each node. If the frequencies of co-occurrences between entity ei
and ej is greater than 1, connect node ni and nj with a link lij and label the link lij with fij.
Otherwise find the next ej+1. Repeat these steps until all entities are included in the graph.
The direct graph is acyclic. Thus, it checks that no loop has occurred in the graph. If a loop
is found, remove the link which opposes the sequence of design tasks. Here, the output
is the directed graph representing the network of design entities. In the next part, it is to
include the decision tree models into the graph. A decision tree model helps the designer to
select the proper method for the considered design entities.

For all entities represented by the nodes of the graph G, if multiple choices of methods mi
∈M are occurred at ni, then find a decision tree model, which corresponds to design entities
ei. To do this, it could assume that the decision tree models are constructed and available in
the knowledge repository. The output of the computational operation is shown as example
in Figure 3.24. The RPP is supposed to be known by the ARF for the investigation of

Table 3.9: Lookup table containing the decision conditions associated with the
useable methodfor the design action, ‘selecting the attribute’

criteria opt.1 opt.2 opt.3 opt.4 opt.5 opt.6
high data dimensionality no no yes yes no yes
heterogeneity of data yes yes yes yes no yes
high correlation of features no yes no no yes yes
imbalanced data no no no yes yes no

usable methods
Pearson’s correlation coefficient 1 0 0 0 0 0
ANOVA correlation coefficient 0 0 1 0 0 0
Kendall’s rank coefficient 0 1 0 0 0 0
Information gain ratio 0 0 0 0 1 0
Chi-square test 0 0 0 1 0 0
Neighborhood component analysis 0 0 0 0 0 1

152

Figure 3.23: Computational workflow of a construction of graph representing RPP

procedural obstacle in the design process.

3�8�6 Generation of recommendation using the hybrid
inference

Since the operation of exact inference in the DOI module gave the negative result, the function
F4.0 is activated. The ROI module is operationalized to identify the procedural obstacle
in the design process and propose the recommendation to resolve it. The computational
workflow of this process is shown in Figure 3.25. It starts with identifying a design entity
which represents the current design action in the reference protocol. Following the same

153

example in the previous section, the current design action is ‘selecting the attribute (e21)’.

It could be assumed that the cause of the obstacle in the current design action occurred at
the preceding one. Then, the algorithm A4.01 uses the RPP to find the possible preceding
design entities. Three options are considered as shown in Table 3.10. Each of them consists
of three design entities that connects to the current design entity e21. To select the most
informative PFM, the probabilistic reasoning is applied by using the algorithm A4.02 and
A4.03. As results, the second option of candidate PFMs gives the highest value of JDP.
Three entities are included (e11, e12, e21) in the process flow model.

Here, the preceding design entity ‘dimensionality reduction (e12)’ is selected. The knowledge
contents stored in the data model will be retrieved as necessary information for generating
a proposal. In the next step, the proper method will be selected to rectify the current design
action by using the algorithm A4.04. The design tree model is used for this purpose. To
predict the proper method, the prediction variables are the pattern of designer’s answers. If
the designer already answered the questions concerning the design entity (e12), that pattern
will be retrieved from the knowledge repository. In case of no historical data concerning
the particular design entity, the dialogue will be organized. As an example, suppose all
required data for the prediction is available as shown in Table 3.11. As results, two design
entities and their proper methods are composed of the informative PFM {(ectx, m̂ctx), (ectx,
m̂ctx)}. The algorithm A4.05 is deployed to check the completeness of the required data.

Next, the probabilistic reasoning will be used to find the next design entity in the RPP. The
algorithm A4.06 finds the possible design actions presented at the nodes in the next step,

Figure 3.24: Graph representing the RPP for the demonstrative case

154

Figure 3.25: Computational workflow of recommendation generation using a hybrid
inference

155

candidate
PFMs

joint distribution
probability (JDP)

e0→e11→e21 25/(25+6) * 12/
(24+12+30+13) = 0.12

e11→e12→e21 30/(24+12+30+13)
* 35/(35+10) = 0.299

e11→e13→e21 24/(24+12+30+13)
* 7/(7+16) = 0.094

Table 3.10: Calculation of JDP for
candidate PFMs

calculates the JPD based on two design entities
and candidate next design entities, and select
the best one with the highest value of JPD. In
this example, the train a classification model
(e31) is selected for the next design action. The
knowledge contents stored in the data model
of the next design entities will be retrieved as
contents for recommendation generation. Based
on the hybrid inference, the process flow model
including three design entities and their proper
method {(e12, m̂ctx), (e21, m̂ctx), (e31, mpost)} are
proposed as the process-based recommendation.

decision variables of DTM replied answers
high data dimensionality no
heterogeneity of data yes
high correlation of features yes
imbalanced data no
noise in dataset yes
missing value no
outlier no
Learning algorithm
(Classification or Regression) C

ways of contribution in the design
process. The conceptualization of
the ARF was done according to the
case of type B observation of non-
usual events. Two mechanisms
are devised to perform two
essential functionalities, process-
monitoring and decision-support.
The activity-based monitoring is
applied as the fundamental concept
for the conceptualization of the
process monitoring mechanism.
The reference process protocol
is proposed as the computational
means for the conceptualization of

Table 3.11: Sample of prediction variables used for
selecting the proper method for (e12)

As the last step, the algorithm A4.09 and A4.10 check the coverability of the proposal. If
all required data is completed through the proposal. The content-based recommendation
will be generated included the advisory contents in the ACG module. As a result of
the computational operations of the demonstrative part of ARF, the process-based
recommendation and content-based recommendation are combined in the comprehensive
recommendation as shown in Figure 3.26.

3.9 Discussion of the findings

3.9.1 Implications of the findings with regards to the
implementation of the demonstrative part

We proposed a novel concept of ARF for the development of ASRMs for a particular APAS.
At the first step, the notion of the ARF is initiated with a set-up designing ASRMs scenario.
Based on this initiative idea, the service packages provided by the ARF are proposed to
support the setup design processes. The ARF can support the designer in the different

156

the decision support mechanism. Two inference approaches are employed for the generation
of recommendation: (i) exact inference, and (ii) hybrid inference. The implications of
the conceptualization of the ARF for the implementation of the demonstrative part are
addressed as follows:

 • Based on the methodological assumptions, a four-layer framework was proposed
as the methodological basis of conceptualization of the ARF. The design task D1.0
‘Construction of an ASRM-algorithm A01’ will be used as the demonstrative case to test
the system-level functionality. The concept of a particular WPE session will be brushed
up in the implementation phase.

 • Being forced by the complexity of the implementation of the ARF, we needed to prefer
implementing a demonstrative part, rather than that of the whole ARF prototype.

 • The selection of the demonstrative modules was based on their main contributions to

Figure 3.26: The comprehensive recommendations provided by the ARF

157

the conceptualized mechanisms. They were supposed to show the main characteristics
of the implemented mechanism-level functionalities.

 • Monitoring the process flow is needed to observe the design activities which possibly
obstruct the design process. From the sequence diagram, the involvement of the
designer in the decision-making process can be observed.

 • The hybrid inference was regarded as the main contribution of the implementation
of the process-based monitoring mechanism and generation of process-based
recommendations. At least three sub-modules were considered for the implementation:
(i) the dialogue manager, (ii) the context-sensitive design process identifier, and (iii)
the inference engine.

 • For the implementation of the decision support mechanism, the sub-modules related to
the construction of the reference process were included in the demonstrative part. The
chunks of knowledge for the construction of RPP are derived from the design process
of the example use case.

 • The algorithms are regarded as the lowest-level architectural elements of the ARF.
They are planned to be included in multiple various computational components.
The implementation of these components should be planned according to the
conceptualization of the higher-level of architectural elements.

3.9.2 Identification of requirements for the implementation of
the demonstrative part

Based on the implications for the implementation of the demonstrative part, the requirements
for the demonstrative implementation are explored. They are categorized into two levels:
(i) the module level, which is considered as the functional requirement, and (ii) the
algorithm level which is considered as the computational requirement. The requirements
were specified based on the considered sub-modules which were discussed in the previous
section.

3�9�2�1 Functional requirements

FR01: the DOI module should recognize the actual design situation (state of design
actions) based on the lowest possible number of answers

FR02: the DOI module should use the lowest possible number of decision criteria to find
a solution for the problem at hand

FR03: the DOI module should reply a question posed by the designer within 0.1 second

FR04: the RPC module should include the relationships of design actions with a lower
than 5% of incorrectness of their relations

FR05: the RPC module should construct an extendable network of design actions with a
higher than 90% of coverage of the considered design process

FR06: The RPC module should model individual design actions or chains of design

158

actions which are extractable from the computational representation of the network
of design actions.

FR07: the ROI module should be able to predict and provide proper corrective action (to
resolve the obstacle in the design process) with a higher than 90% of reliability rate

FR08: the ROI module should be able to identify the conducted design action with a
probability higher than 90% of accuracy rate

FR09: the ROI module is supposed to generate a recommendation at runtime with a rate
of higher than 45% justified objective decisions in line with the actual context

FR10: the ROI module should provide a process-based recommendation for the designers
concerning the avoidance of procedural hindrances with a higher than 90% of
reliability rate

FR11: the ACG module should offer a content-related (decision making) recommendation
in varying procedural contexts with a higher than 45% justified objective decisions
in line with the actual context

3�9�2�2 Computational requirements

CR01: the algorithm A2.07 should provide a near zero-time response to a returned question

CR02: the algorithm A2.08 should select the best solution with a lower than 5% of
incorrectness ratio

CR03: the algorithm A3.09 should construct a Timed action model with a lower than 5%
of incorrect relationships between the concerned design actions

CR04: the algorithm A3.10 should predict the most usable method for a design action with
a higher than 90% of accuracy rate

CR05: the algorithm A3.11 should construct a process flow model with a lower than 5% of
incorrectness rate in terms of the number of mismatched elements

CR06: the algorithm A3.12 should include the design entities and decision tree models in
a graph representing RPP with a lower than 5% of incorrectness rate in terms of the
number of mismatched elements

CR07: the algorithm A4.01 should include the design entities in the process flow model
with a higher than 90% of reliable rate in term of the relationships between the
design entities

CR08: the algorithm A4.03 should retrieve the candidate PFMs in context with a higher
than 75% of accuracy rate

CR09: the algorithm A4.06 should predict the next design action that includes in the
proposed recommendation selected by a designer with a higher than 45% of justified
subjective decisions.

CR10: the algorithm A4.07 should generate a process flow model within less than 0.1
seconds

159

CR11: the algorithm A4.08 should include the design entities in the proposal with a higher
than 90% of reliable rate in term of the relationships between the design entities

CR12: the algorithm A5.07 should select the recommendation item for a certain design
action with a less than 5% of incorrectness rate

The technical implementation of these requirements (i.e., architectural design, algorithmic
programming, specification of resources, and design scenario for the testing case) will be
discussed in Section 4.2.1 in Chapter 4.

References
[1] Patokorpi, E. (2006). Role of abductive reasoning in digital interaction. [Doctoral

thesis, Åbo Akademic University].
[2] Szádeczky-Kardoss E., & Kiss, B. (2008). Path planning and tracking control for an

automatic parking assist system. In European Robotics Symposium (pp. 175–184).
Springer Berlin Heidelberg.

[3] Moon, J., Bae, I., & Kim, S. (2019). Automatic parking controller with a twin
artificial neural network architecture. Mathematics Problems in Engineering.

[4] Choi, S., Boussard, C., & D’Andréa-Novel, B. (2011). Easy path planning and robust
control for automatic parallel parking. IFAC Proceedings, 44(1), 656-661

[5] Seyoung, P., Mye, S., Haeran, J., & Lee, H. (2016). Situation reasoning framework
for the Internet of Things environments using deep learning results. In IEEE
International Conference on Knowledge Engineering and Applications (pp.133-
138).

[6] Liu, C., Van Dongen, B., Assy, N. & Van Der Aalst, W. M. P. (2017). Component
behavior discovery from software execution data. In IEEE Symposium Series of
Computational Intelligence (pp.1-8). IEEE.

[7] Saadah S., & Wulandari, G. S. (2015). Anomaly detection from log files using data
mining techniques. In Information Science and Applications (pp. 449-457). Springer,
Berlin, Heidelberg.

[8] Sun G., & Yao, S. (2011). A new framework of studying the cognitive model of
creative design. In International Conference on Engineering Design.

[9] Lu, Y., Wang, S. & Zhao, W. (2019). Facial expression recognition based on discrete
separable shearlet transform and feature selection. Algorithms, 12(1), 11.

[10] Wang, Y., Ai, H., Wu, B., & Huang, C. (2004). Real time facial expression recognition
with adaboost. In Proceedings of the 17th International Conference on Pattern
Recognition (Vol. 3, pp. 926-929). IEEE.

[11] Dino, H. I., & Abdulrazzaq, M. B. (2020). Comparison of four classification
algorithms for facial expression recognition. Polytechnic Journal, 10(1), 74–80.

[12] Kantharia, K. J., & Prajapati, G. I. (2015). Facial behavior recognition using soft
computing techniques: A survey. In Proceeding of the 5th International Conference
on Advanced Computing & Communication Technologies (pp. 30-34). IEEE.

[13] Balaban, S. (2015). Deep learning and face recognition: the state of the art. In
Biometric and Surveillance Technology for Human and Activity Identification XII

160

(Vol. 9457, p. 94570B). International Society for Optics and Photonics.
[14] Dupré, D., Krumhuber, E. G., Küster, D., & McKeown, G. J. (2020). A performance

comparison of eight commercially available automatic classifiers for facial affect
recognition. PLoS One, 15(4), 1–17.

[15] Li, Y. (2019). Utilizing dynamic context semantics in smart behavior of informing
cyber-physical systems. [Doctoral dissertation, Delft University of Technology]

161

163

4�1 Objectives and methodological framing of the third
research cycle

4�1�1 Research and development objectives
The goal of the third research cycle was to realize the computational mechanisms of the
ARF, which (i) support various stages of the design process of ASRMs in the case of
particular S-CPSs; (ii) include multiple computational resources for handling the various
stages of the design process; (iii) provide recommendations based on process monitoring
and involvement in design problem solving/decision making; and (iv) gradually aggregate
data, information and knowledge concerning the design processes and learn support
opportunities. This chapter presents the implementation principles and procedures of the
computational mechanisms of the demonstrative part of the ARF, which is dedicated to a
non-usual event type B.

Based on the forerunning conceptualization of the ARF, we realized that the complexity
of the computational mechanisms is one of the major challenges in the implementation
phase. The algorithm-level functional implementation of the considered computational
mechanisms required fifty-two interoperating algorithms. To cope with structural
complexity, the architecture of the ARF was decomposed to self-contained sub-modules,
with due attention to optimizing the functional relationships amongst the computational
components. This was necessary since the number of components and their relationships
contributed to the increase of complexity. Putting everything together, we have managed to
draw up a realistic scope for a demonstrative implementation, which is intended to clarify

Research cycle 3:
Implementation of a demonstative part of the
active recommender framework

Chapter 4

164

the main characteristics of the ARF, but also avoid any unmanageable complexity of the
computational implementation.

To achieve the goals and deal with the challenges of the implementation, there were seven
specific objectives:: (i) to operationalize the requirements for the implementation; (ii) to
select the demonstrative parts for the implementation; (iii) to clarify the principles for the
implementation; (iv) to specify usable resources in the programming environments; (iv)
to specify the contents of the demonstrative modules; (v) to implement the demonstrative
modules; (vi) to implement the contents of the demonstrative modules in the given contexts;
and (vii) to validate the demonstrative implemented modules in the target application
context. These objectives were considered while setting up an appropriate implementation
scenario.

4�1�2 Methodological framing
The research cycle was framed methodologically according to the procedural structure of
design inclusive research (DIR) [1]. The main contribution of the research cycle was the
computational implementation of the chosen demonstrative part of the ARF. The inquiry
activities were driven by the need for (i) knowledge aggregation, (ii) completion of the
constructive (design) activities, and (iii) validation of the implementation. Accordingly,
there were three procedural phases defined that started with the exploratory research actions,
continued with the design actions, and concluded the confirmatory research actions. The
ARF conceptualization knowledge was completed with implementation related knowledge.

The exploratory phase considered three kinds of issues concerning the implementation of
the demonstrative part of the ARF, namely (i) strategic issues, (ii) tactical issues, and (iii)
operational issues. The strategic issues concerned four research activities: (i) transformation
of requirements; (ii) identification of the possible approaches to implementation of the
demonstrative algorithms; (iii) determining the critical algorithms for the demonstrative
implementation; and (iv) selection of computational resources for the working environment.
The research activities concerning the tactical issues focused on the specification of the
implementation principles for the targeted demonstrative modules. The operational issues
were related to the programming resources available in programming environments,
including the fundamental programming language, its built-in functions, applied toolboxes,
and the library of application development functions.

In the constructive phase, software engineering activities were conducted that concentrated
on the elaboration of the contents of the demonstrative modules. The whole of the ARF
was conceptualized as a compound of six modules. However, the demonstrative part was
reduced to the four modules which were closely associated with recommendation generation.
These were: (i) the dialogue-based obstacle identification module; (ii) the reference process
protocol construction module; (iii) the reference protocol-based procedural obstacle
identifier module; and (iv) the advisory content generating module. As far as architecting
of the different modules was concerned, they were specified on three levels: (i) on the
sub-modules level, (ii) on the components level, and (iii) on the algorithms level. The

165

elaborated architectural models arranged both the architectural elements and their structural
interrelationships on the respective levels. The constructive phase was completed by the
implementation of all algorithms necessary for the demonstrative part of the ARF.

The confirmatory phase commenced with placing the architectural constituents into the
context of the target application. The major research activities were: (i) identification of the
content and procedural elements of the design process in the given context, (ii) specification
of the design actions in the target application context, (iii) actual operationalization of
the computational algorithms, and (iv) assessment of the operation against the derived
implementation requirements. The confirmatory phase ended with a detailed elaboration on
the findings related to the computational implementation and validation. The results of the
validation were expected to confirm that the proposed concept and the resources offered by
the ARF could be utilized in the defined application context.

4�2 Strategic issues of the demonstrative implementation
The conceptualization of the ARF gave priority to two interoperating mechanisms, which
were decomposed into six modules. We regarded the reference process protocol (RPP) as a
most novel and most essential constituent in terms of generating recommendations. Two of
the modules were directly related to the RPP. One of them was Module 3.0 (for construction
of the RPP) and another one was Module 4.0 (for utilization of the RPP in identification
of a possible procedural obstacle in the design process). The major challenges of the
demonstrative implementation were (i) to capture knowledge about the design process in
the RPP), (ii) to utilize it when inferring the actual state of the design activity flow, and (iii)
to generate process-based recommendations. However, these two modules do not interact
with the designer. Therefore, to complete the entire process of recommendation generation
we selected two other modules. One of them was Module 2.0 (for direct communication
with the designer through a dialogue), and the other is Module 5.0 (for consolidating the
recommendations and providing an advisory content to the designer).

Thus, four demonstrative modules have been selected for implementation in this part of the
promotion study. These are shown in Figure 4.1. From a computational point of view, they
demonstrate the entire process of context-sensitive recommendation generation. Before
entering the implementation phase, we have analyzed what computational components
should be implemented for the ARF. As an outcome of this functional and architectural
analysis and conceptualization, forty-one algorithms were required and included in the
demonstrative modules of the ARF. Dedicated implementation specifications were
elaborated and operationalized for each specific module. In addition, a forerunning
usability evaluation of the required algorithms was completed based on critical system
thinking and the criticality of the algorithms from the point of view of the demonstrative
implementation. An early reflection was also made from the perspective of feasibility by
considering candidate programming languages and the available developer resources (e.g.,
methods, functions and libraries) of the existing programming environments.

166

4�2�1 Transformation of the implementation requirements
The goal of the transformation of the implementation requirements was to systematically
convert them into technical specification for algorithmic programming, knowledge
acquisition, and testing scenario in an application context. The requirements provided
guidelines not only for functional and other expectations, but also formulated the criteria
to fulfill in order to meet the requirements. All requirements had to be considered in order
to functionally harmonize the operations of the implemented modules of the ARF and to
produce the expected output. The results of the analysis are shown in Table 4.1. It includes
a technical specification of the modules of the demonstrative implementation

4�2�2 Possible approaches to implementation of the
demonstrative algorithms

In order to reduce the unnecessary time, costs, and workload that are concomitant with the
development of algorithms purely from scratch, we applied a different strategy. We also
considered the availability, applicability, and adaptability of proprietary and commercialized
algorithms needed for computational implementation. Accordingly, based on the extent of
their reusability, we classified the relevant algorithms into three groups, namely: (i) existing
algorithms that can be reused without any modification; (ii) existing algorithms that can
be adapted for the purpose of application; and (iii) brand new algorithms that should be
deigned and coded for the specific purpose. The classification of the required algorithms is
shown in Table 4.2. The classification was based on the below considerations.
As briefed above, the first group included existing algorithms, which were tested and used
as solutions for particular tasks: for instance, search algorithms, matrix operations, string
similarity comparators, and descriptive statistical analyzers. Usually, they are available

Figure 4.1: The general workflow of the recommendation generation according to the
demonstrative implementation

167

in the form of built-in functions or library items of programming environments. If the
computational functions provided by them are needed, they can be reused in software
development without modification. The second group included existing algorithms,
which partially fulfil the needs for certain computational functions, complying interface
specifications, or handling certain data constructs. However, they offer the opportunity of
modification for the purpose with reasonable efforts.

Typically, these are also available in common programming libraries, but they often
represent proprietary codes or programs that are computational functions shared within
online communities of software developers. The extent of adaptation needed for making
this type of algorithms applicable in software engineering, depends on technical, economic,
knowledge and practical factors and can be largely influenced by the target software and
environment.

In our case, these were all considered when selecting and making decisions on the use of
adaptable codes in the demonstrative computational components. The last group includes
novel algorithms that have not been designed and coded previously and cannot be derived
by modifying existing ones. In the process of development of the demonstrative part
of the ARF, several brand-new algorithms were needed for the realization of the target

modules algorithmic
programming

knowledge resources requirements

DOI pattern similarity
algorithm

knowledge contents about the
computational methods for
performing design actions

FR01, FR02,
FR03, CR01,
CR02

CRP graph construction,
visualization and
analysis
decision tree modelling
matrix-oriented
operations

domain knowledge about design
actions and process for ML-
algorithm development
knowledge about the
characteristics of dataset for
training ML-algorithm

FR04, FR05,
FR06, CR03,
CR04, CR05,
CR06

ROI probabilistic
computation and
analysis
process flow

FR07, FR08,
FR09, FR10,
FR11, CR07,
CR08, CR09,
CR10, CR11

ACG data mining
text-similarity

knowledge contents about the
computational methods for
performing design actions

FR12, CR12

application
context -
APAS

ML-based development
statistical analysis

simulation of parking problem FR10

Table 4.1: Technical specification of the modules of the demonstrative implementation

168

functionalities. Despite these differences, all the three groups of algorithms had to go
through various rigorous pre-application and post-application testing.

4�2�3 Determining the critical algorithms for the demonstrative
implementation

This Section discusses the criticality of the algorithms from the perspective of implementation
of demonstrative modules. Our assumption was that critical algorithms are (i) novel in
multiple aspects (new designs and not yet exhaustively tested in practical applications)
and play a crucial role (influential in the computational implementation of the ARF). In
addition, we assumed that focusing on the critical algorithms is necessary and sufficient
for a crude but effective functionality validation of the demonstrative implementation (but
not for competing with long lasting tests in practical applications). Typically, a critical
algorithm is an algorithm that influences the operation of a large number of other algorithms
of a software system. Changes in a critical algorithm may have a large impact on other
algorithms regarding data provisioning, procedural timing, and operational reliability.

This is especially important because many algorithms are designed to be reactive and
mutable to inputs. They are often unpredictable in the sense that their outcomes are not easy
to anticipate and they may produce unexpected effects. They can also be sensitive to data
values and to change of computational constrains, but they may also depend on multiple
other factors. What these facts meant for us was that one aspect is probably not sufficient
and adequate to identify a critical algorithm. Therefore, we determined the criticality of
algorithms based on a combination of three criteria: (i) complexity of functionality – which
ranks algorithms according to the complexity of the computational function they realize,
(ii) data sensitivity – which refers to the impacts of change in the amount of input data on
the computational performance of an algorithm, and (iii) intensity of human interaction –
which refers to the degree or intensity to which an algorithm demands input from the user.
Figure 4.2 shows a Venn-diagram, which classifies the required algorithms according to the
implementation criteria.

FN.
type of the required algorithms

adoptable adaptable to be generated
F2.0 A2.01, A2.02 A2.03, A2.04, A2.05, A2.07 A2.06
F3.0 A3.02, A3.08 A3.01, A3.03, A3.10, A3.11 A3.04, A3.05, A3.06, A3.07,

A3.08, A3.09, A3.12, A3.13
F4.0 A4.02, A4.05, A4.09, A4.10 A4.01, A4.03, A4.04, A4.05,

A4.07, A4.08
F5.0 A5.01, A5.02, A5.03,

A5.04, A5.06
A5.05, A5.07 A5.08, A5.09

Table 4.2: Classification of the required algorithms according to their reusability for
the demonstrative implementation

169

The criticality analysis of the algorithms was based on those detail descriptions, which
were included in Section 3.7 in Chapter 3. Interestingly, as shown in Figure 4.2, algorithm
A4.04 – ‘Select the best method for the process flow model (PFM) in context’ was found to
be the most critical algorithm. The reason for this was that one of the related requirements
considered formulated the need to limit the number of interactions with the designer to
the lowest possible minimum. This in turn imposed a limitation on the total number of
questions that could be posed to the designer in a dialogue.

Regardless, most of required algorithms were determined according to the first two
expectations and do not require direct input from the designer. The investigation of the
interrelationships among the computational components found that eight of the algorithms
generated from scratch fell into the overlapping areas in the Venn diagram. These
algorithms will be further discussed in Section 4.5, which focuses on the specification
of the computational implementation. Here we talk about the following algorithms: (i)
algorithm A2.07 – organizes a dialogue, (ii) algorithm A3.12 – assembles the RPP, (iii)
A3.13 – visualizes the graph of the RPP, (iv) algorithm A4.01 – identifies the n entities
of the PFM in context, (v) algorithm A4.03 – selects the candidate PFMs in context, (vi)
algorithm A4.07 – predicts the next design action, (vii) algorithm A4.08 – assembles the
extended PFM, and (viii) algorithm A4.09 – generates a proposal.

Figure 4.2: The classification of the required algorithms according to criteria

170

4�2�4 Forerunning considerations
The lowest level of the implementation of the demonstrative part of the ARF raised a number
of concerns. In addition to the above productivity concerns, the selection of the working
(programming) environment was also high on the list of concerns. It has an influence on the
coding (first-time and adaptive) as well as on the logical and data integration of the outcome
required algorithms. The primary intention was to use as many standard (commercialized),
widely used, and tested computational resources as possible. The below considerations and
decisions were made with this in mind.

In general, a programming language is the formal language with a set of instructions which
provide the desired output. Every programming language is based on certain syntactic and
semantic rules. In the field of information engineering, several programming languages
have been widely used, for example, C, Java, Python, and C++. Currently, the computer
programming languages have evolved into the fifth generation (5GLs). However, this is the
result of a gradual evolution, rather than an overnight action, which was instructive for us

The first- and second-generation languages (1GLs and 2GLs) were closely related to
the computational architectures and computational mechanisms [2]. The first-generation
software was written in machine codes. The second-generation languages were low-level
assembly languages that were specific to a particular computer and processor [3]. The concept
of higher-level programming appeared in the case of the third-generation languages (3GLs).
These languages are generally translated by compliers into machine language/code of the
target computers for execution. The high-level programming languages were developed for
general application purposes. Typical representatives are C, C++ and Java. They have been
applied in business and scientific programming, as well as in other commercial applications.
The fourth-generation languages (4GLs) include statements similar to statements in human
languages. These were used mainly in database programming and scripting. Commonly
known examples of these languages are Perl, Python, Ruby, Go, R and MATLAB. All
4GLs were designed to reduce programming effort compared with the earlier generations
[4]. The fifth-generation programming languages are based on constraint-driven problem
solving. Dedicated mechanisms are applied in the development of the program, rather
than algorithms written by a programmer. In other words, 5GLs are designed to make the
computer able to solve a certain problem for a user [5].

According to the specific programming requirements, the DOI module is dedicated to identify
an obstacle related to a particular design action and to offer a solution based on the exact
inference. The module monitors what a designer was doing at that time through a dialogue.
The principles of human-machine interaction using a dialogue, content-oriented decision
table, and a pattern similarity measure were taken into consideration. The PRC module
focused on building a reference process protocol and provision of knowledge concerning
the constituent elements of RPP including (i) matrix representation for timed action model,
(ii) construction of ML-based decision tree classifier, and (iii) construction of a graph and
network. The implementation of ROI module required probabilistic inferring by means of

171

a Bayesian network, and semantic inferring by using the interoperation of a decision tree
model and probabilistic reasoning. Finally, the implementation of ACG modules required
an information retrieval approach. For instance, using a context-based similarity measure
and semantic matching algorithms to select the most informative contents for the proposed
recommendation. To this end, it required the integration of the implemented modules and
functionality testing in the application context of street parking problems.

4�2�5 Selection of computational resources for the working
environment

As posited by the title of the chapter, this research cycle aimed at the implementation
of a demonstrative part of the active recommender framework. For the purpose of
implementation, 4GLs were considered. There were however many candidate languages
and programming environments available. To select the most appropriate one, an IEEE’s
survey on the top programming languages1 was used, in addition to the consideration of
the implementation requirements. The former included data from IEEE sources that used
the above languages and programming environments for academic purposes. The survey
of the IEEE ranked them based on a relative weighting and by combining eleven metrics
from eight sources (e.g., Google Search, GitHub, and IEEE Library). The abovementioned
website allowed us to rank the programming languages based on customized metrics and
preferred data sources. In view of the requirements and expectations for programming, (i)
the ranking was based on IEEE spectrum, (ii) data sources from IEEE Xplore digital library
were selected, and (iii) language types used for enterprise, desktop, scientific applications
and referenced in academic publications in the years 2019 and 2020 were preferred.

The list of the top ten programming languages is shown in Figure 4.3. From these, there
were four languages belonging to the category of 4GLs, namely Python: (second ranked),
R (fourth ranked), Processing (fifth ranked), and MATLAB (sixth ranked). Considered
the required algorithms, the Processing® package was deemed not to be aligned with our
application context. It is a software tool that is created to facilitate the development of
visualization-oriented applications with an emphasis on animation. Thus, the candidate
working environments to choose from were Python, R, and MATLAB. Table 4.3 shows
the results of a comparison of the working environments from the perspective of the
demonstrative implementation.

Our investigation considered not only the main features of the programming languages, but
also if there were widely tested resources (for instance, built-in computational functions,
component libraries, and toolboxes) included in the working environments. The candidate
working environments were compared based on the appropriateness of the useable resources
for the target implementation (i.e., natural language processing, process modelling, machine
learning algorithms, and context-aware recommendation options as presented in Table 4.4.
The brief descriptions of the abovementioned three working environments are as follow.

1 https://spectrum.ieee.org/top-programming-languages/

172

Python® is a general-purpose
programming language. It is an
interpreted language (without
compiling a program source code
into machine-language instructions.
Therefore, it is suited for web
programming and data science.

R® is a programming language/
environment that has been massively
used in various businesses for
statistical analytics and machine
learning applications. R supports
scripting-based application
development and programming. The
environment includes scripts that can
be executed independently within
various applications. The scripts can
control the applications and can be
used for the purpose of automation.

MATLAB® is a procedural
(imperative) programming
environment mainly for matrix manipulations, implementing algorithms, plotting functions
and data, and developing user interfaces. As a kernel concept, MATLAB interprets a
procedure as a set of instructions that can be referenced through a procedure call. This helps
developers in reusing the library functions and codes. This programming environment
(language) is widely used for engineering calculations and simulation purposes because it
is focused on mathematical procedures and models.

Figure 4.3: Top ten programming languages as
used and referenced in the academic
publications (source: [2])

Python R MATLAB
basic language object-oriented

programming language
interpreted language math and matrix- oriented

language
primary
objective

general purpose statistic software
and data analysis

engineering and technical
computing

functionalities high-performance linear
algebra, graphics, and
statistics

statistical computing
and graphics
support

testing algorithm without the
act of compiling
software development tools

libraries extensive support
libraries

widely range
packages

standard library, toolboxes,
user’s development libraries

Table 4.3: Comparison of the working environments from the perspective of the
demonstrative implementation

173

Concerning the required algorithms for the demonstrative modules, there were no significant
differences in the resources provided by the three programming languages/environments.
In the context of application for the roadside parking problem, we found that the reusable
functions/programs supported the simulation of the Ackerman steering. Several functions
were available in the robotics system toolbox and the user’s development library of the
MATLAB for automatic parking. After a qualitative comparison of the three programming
languages/environments, the MATLAB package was preferable for the demonstrative
implementation and for the testing of the computational operation in the context of the
target application.

4�3 Tactical issues of the demonstrative implementation

4�3�1 Fundamentals for the implementation dialogue-based
obstacle identifier module

The implementation of the dialogue-based obstacle identifier module was based on three
fundamental principles: (i) human-machine interaction through a dialogue; (ii) content-
oriented decision table; and (iii) exact inference using pattern similarity measure. To
identify an obstacle in the design process, the ARF communicates directly with a designer.
It aims at recognizing the current state of design action by capturing the pattern of answers
supplied by a designer. Natural language is the basis of the communication. Typically, task-
based dialogue systems and Chatbots are used in conversational recommender systems [3].
The proposed task-based approaches were designed for a particular task and set up to have

demo modules Python R MATLAB
DOI module string matching

text processing
services

text-process
functionality

text similarity measures
matrix-oriented operation
distance-based similarity measure
function

RPC module network library
similarity matrix

matrix operation matrix-oriented operation
graph and networks algorithms

ROI module machine learning
modeling
graph visualization
and analysis

machine learning
modeling

statistical analysis and machine
learning toolbox
graph visualization and analysis

ACG module string matching text-process
functionality

text analytic processing toolbox
semantic-based algorithms

application
context -
APAS

N/A N/A Ackerman Kinematics-Robotics
system toolbox
Ackerman auto parking
simulation – developer’s library

Table 4.4: Comparison of usable resources for implementing the required algorithms

174

short conversation to get information from a user in order to complete the task. Chatbots are
systems designed for extended conversations, with the goal of mimicking the unstructured
conversational characteristic of human-human interactions [4]. Therefore, to simplify the
implementation of the DOI module, we preferred a task-oriented approach.

The ARF interacts with a designer through a multi-turn dialogue. Form-based user interface
and structured texts for the input are commonly used in the application specific context.
The very first question is regarding the current design action. The designer replies to the
question with the term or phase identifying the design action. The text similarity measure is
applied to match the answer with the design action available in the knowledge repository.
String-based similarity is used to compare two terms. Each term is modelled as a set of
tokens. The similarity between the two strings is assessed by manipulating sets of tokens
such as terms, words, or phrases. Once the current design action is recognized, a set of
questions will be retrieved. The number of questions is varied according to the actual design
action. The designer follows the pre-defined dialogue path and replies to the questions with
binary (i.e., positive or negative) answers. The combination of replies is defined as the
pattern of answers and will be used as an input for the exact inference.

The design content-orientated decision table contains information to support decision-
making concerning a particular design action. The pieces of information included in the
table were derived from the condition patterns concerning the decision criteria. To build
a decision table, we needed to (i) determine the maximum size of the possible solutions,
(ii) eliminate any impossible situations concerning inconsistencies and redundancies of
the conditions, and (iii) simplify the table with the potential solutions. A combination of
different conditions, which corresponds to a certain solution, defines a pattern of decision
conditions. To find the best solution, exact inferring is applied based on the similarity
measure of the patterns. The similarity measure is a way of measuring how data samples
are related or close to each other. It is usually expressed as a numerical value. The similarity
value gets higher when the data samples are more alike. If two patterns were exactly the
same, then the similarity value was set to 1, and the solution associated with the pattern of
decision criteria was selected. Otherwise, no solution was found. It can be assumed that an
obstacle occurred somewhere in the preceding design actions.

This was the basis of exact inference. Formally:

 (4-1)

where: solution(j) is the method usable for a particular design action (which corresponds
to the pattern of decision variable j in the decision table), and vij is the similarity value
between patterns i and j.

With the intention to calculate the similarity of the patterns, the decision conditions are
converted into binary values stored in the decision matrix, DMi←{0,1}(m×n), where (1)
represents the considered criterion, and (0) means otherwise. The pattern similarity can be

175

expressed formally as:

 (4-2)

where: v is similarity between and , ←{0,1}n is a vector of answers supplied by
a designer to a certain sequence of questions, where (1) means a positive answer, and (0)
means a negative answer, ←{0,1}n is the vector of the considered pattern of binary value
representing the condition of decision criteria in row k of DMi, n is the total number of
questions, and m is the total number of patterns in the decision table.

Calculated using this formula, the value of distance-based similarity is the smallest
distance between each pair of points. The currently used metrics are: (i) cosine similarity –
measuring the distance based on the cosine of the angle between two vectors projected onto
a multi-dimensional space, (ii) the Manhattan distance – calculating the distance between
two points based on the sum of the absolute difference of their Cartesian coordinates, (iii)
the Euclidean distance – calculating the distance based on the square root of sum square
of deviations between two coordinates, and (iv) the Minkowski-distance – expressing
a generalization of the Euclidean and Manhattan distances. Considering the reusable
resources that were available in the libraries, the principle of cosine similarity was used as
the measure of similarity of the patterns. Symbolically:

 (4-3)

4�3�2 Fundamentals for the implementation of reference
process protocol creator module

The principal definition of the concept of the reference process protocol (RPP) was
described in Section 3.4.6 in Chapter 3. There are other constitutional elements included
in it: (i) the process flow model (PFM); (ii) the timed action model (TAM); and (iii) the
decision tree model (DTM). The PFM is a fundamental element of the RPP to represent
a design entity and its contents (including input-output data, computational method). In
the implementation of the module, a design entity is a computational representation of
a design action. As an element of a formalized design process, a design entity contains
specific contents (which are distinct for each of them). A network of design entities is
constructed by creating relationships among them in the TAM. If multiple relationships
occur in the case of any design entity in the network, it defines a decision point, which may
need decision-support. This support concerns the action of selecting the subsequent design
entities and the most appropriate method.

The hybrid inference approach was used for the purpose of selecting the subsequent design
entities and the most appropriate method. In these actions the RPP is utilized. Eventually,
the hybrid inference is based on the combination of probabilistic reasoning by means of

176

the Bayesian networks and the model-based reasoning that relies on using the decision tree
model. To be able to investigate a design process, the RPP was supposed to be known by the
ARF. In this context, ‘knowing’ means having the specification of the relationships among
the design entities, rather than knowing the outcome of completing the design entities.

4.3.2.1 Fundamentals to construct a process flow model

A process flow model (PFM) is a state-transition model of the design process, or part
thereof. It is represented by a Petri-net like model which is represented by the incidence
matrix. Symbolically:

 PN = (S,T,Cpre,Cpost) (4-4)

where: si ∈ S is a finite, non-zero set of n states, tj ∈ T is a finite, non-zero set of m transitions,
Cpre is the input incidence matrix, cpre

(i,j)←{0,1}, and Cpost is the output incidence matrix,
cpost

(i,j)←{0,1}. The incidence matrix representation of PFM is defined by:

 CPFM = (Cpost - Cpre)(n×m) ←{-1,0,1} (4-5)

The elements of the matrix CPFM represent flow relations of the net configuration of the
process flow model, PFM, where cpFM

(i,j) ←{-1,0,1} is the directed arc f(i,j) ∈ F←(S×T) ∪
(T×S), which is defined by the following conditions:

 (4-6)

where: i ∈ n, and j ∈ m.

The Petri-net models provides various patterns for modelling the net configuration of
the design process. The basic configuration of Petri-net is a 1-to-1 state machine, which
comprises one input state and one output state connected by a transition. As shown in Figure
4.4, all sample types of net configurations are the extensions of a 1-to-1 state machine.

Using Petri-net model in the implementation of the demonstrative part of the ARF makes
the challenge less complicated and allows keeping the resulting extension of the PFM
feasible. A configuration of design actions is classified according to three considered
patterns, where: 1 ≤ m ≤3 as follows:

177

Figure 4.4: Different types of net configuration [5]

Figure 4.5: Fluent configuration of a state machine

Pattern 1: 1-to-1 state machine configuration

 S := {sin, sout}, T := {t1}, F:={(sin, t1),(t1,sout)} (4-7)

Pattern 2: n-to-1 synchronization, which consists of n input states and one output state
connected by a transition

 S := {s1
in, s2

in,..., sn
in, sout}, T := {t1},

 F := {(s1
in, t1), (s2

in, t1),..., (sn
in, t1), (t1,sout)} (4-8)

Figure 4.6: Confluent configuration of n-to-1 synchronization

178

Pattern 3: 1-to-n distribution, which consists of one input state and n output states
connected by a transition

 S := {sin , s1
out, s2

out,..., sn
out, }, T := {t1},

 F := {(sin, t1), (t1, s1
out), (t1, s2

out),.... (t1, sn
out)} (4-9)

Figure 4.7: Configuration of 1-to-n distribution

These patterns are the basic elements of a process flow model, which is extended by a
connector. As a chosen transition, it is included in those cases where n number of input
states of a process flow element are identical to n number of output states of the preceding
ones.

 S = {spre
out, spost

in}, T = {tcon },
 F ={(spre

out, tcon),(tcon, spost
in)}, spre

out ≡ spost
in (4-10)

Figure 4.9: Configuration of PFM included an assembly of consecutive process flow
elements with a connector

4�3�2�2 Fundamentals to construct a decision tree model

Decision trees (DTs) are widely used learning techniques to build classification models that
closely resemble human cognition [6]. They mimic human thinking logic while making
a decision. In turn, the designer is able to interpret and understand the logic behind the
decision process by extracting the interpretable rules with their constraints [7]. Decision
trees are widely recognized as interpretable models, which divide a complex classification
task into several simpler ones. As presented in Figure 4.9, a simplified tree classifier can
be implemented as a hierarchical tree structure, G(V,E), where: V ∈ {V1,V2 } is a finite,
non-empty set of nodes, V1 is a set of leaf nodes containing the class value, and V2 is the

179

to learn from a small size of a training set, the decision tree induction (DTI) algorithms
were preferred over the other learning algorithms [9]. The algorithm was used to build
a tree structure through a series of binary splits from a root node via branches passing
several decision nodes, until coming to the leaf nodes. Splitting is the process of dividing
the decision node/root node into sub-nodes according to the given conditions. Various DTI
algorithms concerning the splitting criteria i.e., ID3, C4.5, CART, CHAID, QUEST have
been development over years. The most widely used metrics for determining the splitting
point are based upon information gain and the Gini Index [10]. The metrics measure the
impurity in the candidate nodes and suggest how heterogeneous or homogeneous a given
set of data is. If the impurities turn out to be zero, it meant that the data set was classified.

The information gain is an impurity-based criterion that measures the entropy of a dataset.
It is interpreted relative to the attribute in the dataset, which is defined as the difference
between the entropy of set S and the entropy of S_v under the given attribute conditions. The
concept of the information gain was used in the algorithms ID3 and C4.5. The information
gain was calculated using the following equation:

 (4-11)

where: g(S,A) is the information gain of attribute A concerning the dataset S, V(A) is the
set of all possible values for attribute A, and Sv is the subset of S for which attribute A has
value v. The information gain of learning on the decision tree is equivalent to the mutual
information of classes and attributes in the dataset.

The concept of Entropy originates from the information theory, and it measures the amount
of disorder and the unpredictability in a system. At the implementation of the decision tree,

set of intermediate nodes corresponding
to one of the attributes. The set of edges
E represents distinct attribute values.
The user can reveal the decision-making
process by following the tree structure.
The decision model is created as a black
box in other machine learning algorithms
(e.g., in SVM and ANN). This means
that the user, or even the designers of the
decision algorithm, cannot understand
how variables are being combined to make
predictions [8]. This is a reason why the
concept of a decision tree was selected as a
decision support means for the RPP.

Because of their (i) flexibility, (ii) robustness
to noise, (iii) the low computational cost
for model construction, and (iv) the ability

Figure 4.9: Simplified structure of decision
tree

180

it was defined as the expected value of information measuring the uncertain data present
in the dataset.

 (4-12)

where: pi is the probability of S belonging to class i.

The Gini Index (GI) is another impurity-based criterion that measures the divergence
between the probability distributions of the target values of the attributes. It is used in the
CART algorithm. The formula for a calculation of the Gini impurity is as follows:

 (4-13)

where: IG is the measure of the Gini impurity, n is a number of classes present in the nodes,
and pi = ni ⁄n is the probability of class n.

Common evaluation metrics are used to evaluate the decision tree model, for instance, (i)
classification-related metrics (e.g., precision, recall, accuracy), and (ii) statistical methods
(e.g., root mean square error, mean absolute error). The choice of the evaluation metrics
depends on the task given, for instance, (i) classification, (ii) regression, or (iii) clustering.

The rest of this section discusses the decision tree model for the classification task. The
key concept of classification-related metrics is derived from the confusion matrix. It is a
two-by-two table that contains four outcomes produced by a binary classifier [9]: (i) true
positive (TP) means an outcome that the decision model correctly predicts the positive
class, (ii) true negative (TN) is an outcome that the model correctly predicts the negative
class, (iii) false positive (FP) is an outcome that the model incorrectly predicts the positive
class, and (iv) false negative (FN) is an outcome that the model incorrectly predicts the
negative class. A descriptive statistical processing of these outcomes provides a meaningful
metrics as shown in Table 4.5. The evaluation measure aims to reach the operating point that
minimizes misclassification rate [11]. Commonly, these metrics are used for a comparison
purpose. To select the optimal model, it can decide based on multiple metrics for instance,
speed, robustness, scalability, and rule structure [12].

4�3�2�3 Fundamentals to compose the reference process
protocol

A reference process protocol is represented in the causal probabilistic network of design
entities. The network consists of the interrelations of multiple sets of a sequence of concurrent
design entities. Each sequence can be seen as a design activity flow that transforms and/
or adds value to a set of inputs with the common purpose of developing an algorithm.
The relationships of entities in the network are determined by the timed action model
(TAM), which is organized according to two conditions: (i) compositional relationship –
which considers the dependency of the output and input states of two subsequent design
entities; and (ii) temporal relationships – which assumes that there are no compositional

181

relationships between two considered design entities.

In the latter context, the temporal arrangement of the design entities depends on the sequence
of design tasks that they belong to. If these two conditions are fulfilled, then it is guaranteed
that every single entity is placed in the right order in a TAM. However, it is possible that
multiple relationships occur at any design entities in the network. That means that there
are multiple alternatives to create a design activity flow. Without acquiring supplementary
information from a designer, based on the probabilistic reasoning by means of a Bayesian
network, the RPP provides the necessary decision support.

In the context of the RM design process, a graphical representation of the RPP was
constructed in the form of a Bayesian network. The nodes of this network represented
the design entities, ei ∈ ℇ, and the directed arcs between the entities, l(i,j) ∈ L, captured
the conditional relationships. The probability distribution of the network was symbolical
expressed as follows [13]:

 (4-14)

where: p(ei) ∈ P is the conditional probability of entity ei ∈ ℇ, and p(e0) is the conditional
probability of entity epre. The entity e0 ∈ ℇ represents a node of origin in the graph representing
RPP. The backward probability distribution p(e0 |epre) is determined by the frequency of co-
occurrence of any pair of entities in the historical processes.

 (4-15)

where: freq(ei, epre) is the frequency of the co-occurrence of entities ei, and epre ∈ ℇ.

In order to compose an RPP, the decision tree model had been trained and stored in the
knowledge repository. Should there be a need for decision support because of the multiple
options occurring at an arbitrary decision point, the decision tree model will be used to
select the best support option.

metrics equations description
Accuracy (A) (TP+TN)/(TP+TN+FP+FN) the ratio of correctness prediction to the total

number of samples in a data set
Precision (P) TP/(TP+FP) the ratio of the number of correct positive

predictions to the total number of positive
predictions

Recall (R) TP/(TP+FN) the ratio of the number of correct positive
predictions to the total number of correct
predictions

F1-score (F) (2×(P×R))/(P+R) harmonic mean of precision and recall

Table 4.5: Metrics for evaluation of the classification performances

182

4�3�3 Fundamentals for the implementation of reference
process protocol-based procedural obstacle identifier
module

4�3�3�1 Probabilistic inference by means of Bayesian network

Based on the RPP, this investigation of the design process is performed at two levels: (i)
focusing on the design actions (in which case, the contents of individual design actions are
investigated), and (ii) focusing on the design activity flow (in which case, the relationships of
the design actions are investigated). To identify a procedural obstacle in the design process,
the latter is exposed to backward reasoning in order to trace back the preceding design
actions in the RPP. We interpreted this approach as a rationality-based event processing,
which observes an obstacle in the design process based on the relationships of the elements
in the RPP. According to our interpretation, the event processing is concerned with which
design actions are possible to be done in the design process.

The fundamental principle of probabilistic inference is inferring the actual design activity
flow based on the probability relationships of n design entities in the RPP. It is calculated
by the joint probability distribution (JPD) of the segment of the process flow model, PFM.
Fundamentally, a process flow model is a state-transition model of the design process. As
such, it represents the actual (current) state of design process. The process flow model
includes the possible sets of related design entities. Each set can be constructed as a design
activity flow as the procedural basis of the procedural recommendation generation. The
actual design activity flow is selected by the candidate segments with the highest value of
JPD. Symbolically:

	 Pctx = max (p(P1), p(P2),…, p(Pn)) (4-16)

where: Pctx is the actual design activity flow, p(P1) is the joint probability distribution
of the segment of the process flow model, PFM, Pi ={ei-(n-1), ei-(n-2), ei-(n-3),…,ei}, n is the
total number of entities in that segment, and i > n. Adapting the notation of [14], the joint
probability distribution is calculated as follows:

 (4-17)

where: en ∈ ℇ is a preceding node of entity ei ∈ ℇ

Let us suppose that the design entity ectx is present at Node e31 in the RPP. It is possible that
the segments of actual design activity flow, Pctx, can be found in multiple pathways. This
situation is shown in Figure 4.10. In this case there happen to be three options for candidate
segments. They and their elements are described by Equation (4-18):

183

 (4-18)

The possible preceding entities are present at Node e21 and Node e22. With respect to Node e22,
there are two candidate entities e0, which are present at Node e11 and Node e13. Considering
Node e21, the entity e0 is present at Node e12. To find the best representative segment of Pctx,
we applied probabilistic inference based on the joint probability distribution (JPD) of the
segment of the PFM, as defined in Equation (4-16).

4�3�3�2 Hybrid inference for the generation of process-based
recommendation

Hybrid inference combines probabilistic reasoning and model-based reasoning to infer the
design entities and their proper methods, which should be included in the most informative
PFM. Once a segment of the PFM is selected in a given context, the design entities
included in the PFM are identified. To rectify the actual design activity flow, computational
methods are selected for the current design entity and the design entity that precedes it.
We employed the decision tree classifier to select the most appropriate method M for the
considered design entities. Machine learning algorithms can generate predictive models on
target classes for each test case of the datasets. Classification is the task of learning a target
function that maps each attribute in a dataset to one of the predefined class labels.

The classifier acquires data in the form of xi ∈ X ⟶ , where xi is an attribute derived
from the patterns of decision criteria corresponding to the class labels , and mi ∈ is
the method for a given design entity. The classification process for prediction of usable
methods can mathematically be described as a function:

Figure 4.10: Backward reasoning for the investigation of the actual design activity flow
(ectx = e21, n = 3)

184

 (4-19)

where: is a set of classes representing the usable method of the new sample, is a
vector of answers replied by the designer, <cls_f> is the classification function, Φ is the
parameter set of the classification function, and is the class label of the training set.

Initially, two design entities with the proper methods are composed. In the next step,
the forward investigation for the next design entity is performed by using probabilistic
reasoning. The candidate entities will be explored based on their relations to the current
design entity in the RPP. The selection process includes the calculation of the joint
probability distribution of the extended process flow model, which considers three design
entities. The formula of the extended PFM, Pext, can be expressed symbolically as follows:

 Pext := {(êpre), (êpre),(epost)} (4-20)

where: Pext is an extended PFM, êpre is the preceding design entity, êctx is the current design
entity, and epost is the next design entity. As reference for the process-based recommendation
generation, the extended process flow model is selected that is characterized by the highest
value of joint probability distribution (JPD).

4�3�4 Fundamental for the implementation of advisory content
generator module

The advisory contents were considered as sets of knowledge to support the execution of the
design actions and the proposed method. Knowledge can be stored in various forms, such as
(i) descriptive texts in a document, (ii) corpus of domain specific knowledge, (iii) structural
representation of knowledge, and (iv) unstructured texts in webpages. In our case, the
content-based recommendations are generated based on two sources: (i) the profile contents
of the design action included in the data model, and (ii) the contents included in knowledge
sources. For the demonstrative implementation of this module, we used webpages as
knowledge sources. The fundamental concepts of the computational implementation are
related to the information retrieval. In the pre-processing stage, information in the web
pages has been processed and transformed into a recommendation item. The computational
processes involved (i) extracting the raw texts, (ii) finding the main contents, (iii) creating
a document, and (iv) indexing the document with key terms.

Text similarity measurement is widely used in text mining operations such as (i) searching
and information retrieval, (ii) text classification, (iii) information extraction, and (iv)
document clustering. Recommendations can be computed by several techniques, for
instance, by estimating text similarity of two documents, and making queries on keywords.
Measuring the similarity of two documents can be based on four different indicators: (i)
string-based similarity operates on string sequence and character composition, (ii) corpus-
based similarity determines the similarity between two concepts based on the information

185

extracted from a corpus, (iii) knowledge-based similarity uses information from semantic
networks to identify the degree of words similarity, and (iv) hybrid text similarities aim to
combine the mentioned methods to reach the better performance by adopt their benefits.

We preferred a hybrid method to generate advisory contents. The most informative contents
are retrieved by making queries based on the key terms defining the usable method. The
computational process executes the best matching algorithm (called BM25). It is one of the
hybrid similarity techniques, which combine string-based and corpus-based similarities.
The BM25 measures the frequency of documents in the collection, in which the given term
has appeared. This measure is called inverse document frequency (IDF). The best matching
algorithm is defined by the function:

 BM25(D,Q) = ∑t∈Q (IDF(t)×Wt,D) (4-21)

where: D is a document, Q is a query, and IDF(t) is the measure of the inverse document
frequency of the t-th term in the query terms. IDF(t) can also be looked at as a statistical
weight used to measure a kind of ‘informativeness’ of the term t in a text document
collection and expressed as a weight factor Wt,D. For the BM25, the actual value of IDF(t)
is calculated by the following formula:

 IDF(t) = log (N-df(t)+0.5)/(df(t)+0.5) (4-22)

where: N is the number of documents in the input data, and df(t) is the number of documents
in the input data containing each term. The weight factor, Wt,D, of IDF(t) can be computed
by the following formula:

 (4-23)

where: tf(t,D) is the frequency of appearance of the term (t) in a document (D), k1 is the
parameter that controls the scaling function between the term frequency of each matching
terms and the final relevance score of a document-query pair, k1 > 0, b is the parameter that
captures how the length of a document affects the relevance score, 0 < b < 1 [15].

4.4 Specification of the resources used for the working
environment

4�4�1 Fundamental programing language
MATLAB is a proprietary programming environment often used for scientific research,
in engineering projects, and numerical computation. It has sophisticated data structures,
contains built-in editing and debugging tools, and supports object-oriented programming
to create the procedural programming. The demonstrative implementation of the ARF

186

follows the object-oriented and procedural techniques which involve (i) identifying the
computation components, (ii) analyzing the shared characteristics of the components, and
(iii) classifying the components based on their similarities. A computation component is
constructed in an object-oriented programming. An object is specified in a proprietary
formalism of the MATLAB. It includes a function with a parameter [output]. The function
is a transformation of (inputs) by the logical operations of <function>. Thus, a formal
expression of a computational component is as follows:

 component [output] = function(inputs) (4-24)

The construction of the computational process should take into account the states and the
output-input transitions of multiple components to achieve the desired state. As evidenced
above, we followed the computational programing style of MATLAB. To implement a
module, the related computational components were constructed in the style (form) of
procedural programming. Putting together everything, the legacy of MATLAB is proven
by the facts that it (i) included effective resources for programming the algorithms, and (ii)
facilitated the demonstrative implementation by its built-in functions and toolboxes.

4�4�2 Built-in functions
Matrix operations

The most basic MATLAB data structure is the matrix. A matrix is a two-dimensional,
rectangular array of data elements arranged in rows and columns. The elements can be
numbers, logical values (true or false), dates and times, and strings. Matrix operations
follow the rules of linear algebra. The required size and shape of the inputs in relation to
one another depends on the operation. In the demonstrative implementation, data structures
of main variables, for example, decision matrix, Times action model, Process flow model,
and reference process protocol are constructed in the matrix representations.

Data constructs

Various built-in functions were used for data modelling and knowledge repository building.
The data model of the object, i.e., a design entity, and the recommendation item were
constructed in a form of structure arrays, which consisted of multiple fields. Each field
contains properties of an object which is distinct from each other. These data models are
stored in the knowledge repository. The functions used for implementing these components
were: <struct>, <cell2struct>, and <table2struct>.

Graph and network algorithms

A graph model G(V,E) comprises nodes, vi ∈ V, and edges, ei ∈ E. The structure of a graph
(its network) is determined by the connections among the nodes. Each node represents an
entity and each edge represents a connection between two nodes. The connections can be
definitive or probabilistic. The reference process protocol was conceptualized as a causal
probabilistic graph. The graph management functions of MATLAB were helpful to support
the development of the algorithms related to the CRP and ROI module. Several built-in

187

functions could be used, for instance,
 • <digraph> to construct a directed graph connecting nodes with directional edges
 • <predecessors>/<successors> to find the preceding or successive nodes in directed

graph
 • <inedges>/<outedges> to count the number of incoming/outgoing edges from/to a

node in a directed graph
 • <shortestpath> to find the shortest path between two nodes.

4�4�3 Applied toolboxes
Text analytic processing toolbox

The text analytic processing (TAP) toolbox provides algorithms and visualizations for pre-
processing, analyzing, and modelling text data. The TAP includes tools for processing raw
text from several sources such as equipment logs, web services, surveys, and operator
reports. The built-in functions of the TAP toolbox can support various tasks, for example:
(i) extracting text from files, (ii) extracting individual words, (iii) converting text into
numerical representation, (iv) computing textual similarity, (v) conducting sentimental
analysis, and (vi) building statistical models. The functions used in the implementation of
the ARF were:
 • text similarity measure functions (which offer several options for computing textual

similarity of contents in a document and contents in queries, viz., tfidf, PageRank, and
best matching (bm25))

 • text mining functions (viz., <tokenizedDocument>, <BagOfWord>, <topkword>
 • document generation functions (viz., <joinWords>, <removeStopWords>,

<extractSummary>.

Statistical analysis and machine-learning toolbox

The statistical analysis and machine-learning toolbox supports the implementation of
components that are needed for the construction of a decision tree model. The relevant
functions are as follows:
 • to train the binary classification tree, <fitctree>
 • to compute the cross-validated classification error, <cvloss>
 • to predict the usable method using the classification tree, <predict>.

Robotics system toolbox

The robotics system toolbox includes tools, functions, and algorithms for designing,
simulating, and testing mobile robots. We found that some of these resources can be applied
to simulate parking scenarios as well as to test the operation of the implemented modules.
For instance:
 • to create a car-like model that uses Ackerman steering, <AckermannKinematics>
 • to find an obstacle-free path between start and goal locations within roadmap path

planner, <findpath>.

188

4�4�4 Library of user development functions

Ackerman auto parking

The program implementing the Ackerman auto parking was developed by Khaled [16].
It is able to simulate roadside parking and to use the Ackerman steering functions. Both
the program and its functions can potentially be modified for various parking scenarios.
This is an important opportunity from the viewpoint of testing the functionality of the
demonstrative implementation of the ARF. The simulation is able to show the motion paths
and to ensure that a parking plan selected by the developed algorithm is working properly.

4.5 Specification of the implementation of the
demonstrative modules

4�5�1 Architecting and implementation the dialogue-based
obstacle identifier module

The dialogue-based obstacle identifier (DOI) module comprises three interrelated sub-
modules, namely: (i) sub-module 2.10 – design action identifier, which contains two
computational components (2.11-2.12); (ii) sub-module 2.20 – knowledge manager, which
comprises three interrelated computational components (2.21-2.23); (iii) sub-module 2.30
– dialogue manager which comprises two computational components (2.31-2.32). Figure
4.11 shows the interrelationships of the computational components within the DOI module.
Altogether, eight algorithms were implementation for the DOI module. Here we discuss
only two algorithms: Algorithm A2.07 – ‘organize a dialogue’ and Algorithm A2.08 –
‘execute pattern matching’. The list of variables used in the computational components
included in the DOI module is shown in Table 4.6.

4.5.1.1 Sub-module 2.10: Design action identifier

The design action identifier sub-module includes the computational components 2.11 and
2.12. It aims at activating a dialogue and obtaining information directly from the designer
to identify the current design action. The goal is to introduce a purposeful change in a given
state of the design activity flow.

Component 2.11 captures and evaluates the designer’s response and activates a dialogue.
The input data consists of (i) an event which represents a moment in time when the ARF
recognizes the pattern of designer’s facial expressions, (ii) the response of the designer to
inquiry of the ARF. The computational process obtains the response from the designer and
returns a Boolean parameter, which is true if the designer accepts the offer, and returns false
otherwise. It is an entry point where the ARF interacts with the designer.

Component 2.12 identifies a design action in a given context. When a dialogue is activated,
the ARF poses the first question to the designer. It asks about the design action, which
the designer was working on. When the designer replies, the response is used to identify
the related design entity (which is a knowledge-based representation of a design action).

189

The designer’s answer is captured as a descriptive text in the form-based user interface.
The technique of token-based similarity is applied to find a design entity. It compares the
similarity of the terms in order to identify the design action. The identifier of design entity is
stored in the database. We used the built-in function <contains> of MATLAB to determine
the similarity of the terms. The function returns 1 (true) if the term denoting the design
action is found in the recorded name of a design entity and returns 0 (false) otherwise.

4�5�1�2 Sub-module 2�20: Knowledge handler

The knowledge handler sub-module includes three components (viz., components 2.21
– 2.23), which are interrelated. Component 2.21 generates a repository of knowledge
elements related to the interpretation of a design action. This component aims at handling the
domain-specific knowledge, which is needed to find the equivalent design entity. The input
is a data table, which contains three knowledge elements: (i) a finite set of questions, (ii)

Figure 4.11: The interrelationships of the computational components of the DOI module

190

a collection of lookup tables containing
a set of decision criteria, and (iii) the
identified conditions and the potential
solutions. The computational process
of generating the repository involves
the mapping of the relationships of the
knowledge elements in the data table
into the relational database.
Component 2.22 constructs a decision
matrix to capture the binary values
representing the conditions of the
decisional options. The matrix captures
the patterns of conditions to derive
potential solutions based on the contents
of the lookup table. Exact inference and
static knowledge representation are used
for finding a solution. The computational
process completed by component 2.22
can be expressed symbolically so as:

variables description
ectx design entity in context
ℇ finite set of design entities available

in the knowledge repository
Qs collection of questions available in

the knowledge repository
cn decision criteria

DMi decision matrix
dDi vector of answers replied by a

designer
pi,j identified conditions of decision

criteria
sm possible solutions

sbest the best matching solution

Table 4.6: List of variables used in the
computational components
included in the DOI module

 [DEC_M] = capture_DecisionCond(LUT) (4-25)

where: [DEC_M] is a matrix containing possible patterns of conditions corresponding to
the decisional options, and [LUT] is a collection of lookup tables. The lookup table is
manipulated to capture the decision conditions. It can be expressed in a matrix form as
follows:

 (4-26)

where: sm ∈ S is a finite, non-zero set of potential solutions, cn ∈ C is a finite, non-zero set of
decision criteria, and [DMi] is the decision matrix for a design entity ei ∈ ℇ. Mathematically,
it is specified as follows:

 (4-27)

Each element of this matrix, p(i,j), represents a condition {0,1} for the decision variable
Ci, so as p(i,j) ←{0,1}, where: (1) indicates that the condition is considered at selecting the
potential solutions, and (0) means that the condition is not considered. Each row represents
a pattern of identified conditions for a certain set of decision variable. The size of the matrix
is m × n, where: m is the total number of patterns of the decision conditions, and n is the

191

total number of the decision variables.

Component 2.23 retrieves a set of questions that are related to a design entity in a given
context. Whenever a design entity is recognized in the given context, the ARF will search
and retrieve sets of relevant questions as contents for making a dialogue.

4�5�1�3 Sub-module 2�30: Dialogue manager

The sub-module 2.30 includes the computational components 2.31 and 2.32. Each
component serves a specific purpose, but they also interact. The goal of their interaction is
(i) to organize a dialogue, (ii)to capture the pattern of responses given by the designer to
the questions, and (iii) to find the best matching solution, which corresponds to the pattern
of decision conditions presented in the decision matrix.

Component 2.31 organizes the dialogue between the designer and the ARF. The related
context information is derived based on the set of questions and collected as structured
information from the lookup table. The objective of this process is to capture the pattern of
designer’s responses to a set of decision options. Symbolically:

 [dD] = organizeDial(entQs, designerSays) (4-28)

where: [dD] is a vector capturing the pattern of the designer’s answers. The size of this
vector is equal to the total number of questions. The dialogue is organized by the algorithm
A2.06 – ‘organize a dialogue’, which manages the sequence of questions and captures
the pattern of designer’s answers. Computationally, the input data is a finite number of
questions (Qs) and the responses (answers) by the designer [DesignerSays]. The total
number of questions is related to the number of decision options in the lookup table for a
particular design entity. The output data is a vector, dDi←{0,1}, where: (1) means that the
received answer is ‘yes’, and (0) means that it is ‘no’.

Component 2.32 finds the best match between the designer’s responses and the set of
patterns of the decision conditions in the decision matrix. Symbolically:

 [SB] = findBSolution(DEC_M, dD) (4-29)

where: [SB] is the best matching solution, which is retrieved from a set of solutions
corresponding to the pattern of conditions in the decision matrix. We used algorithm A2.07
to calculate the similarity of the patterns of answers provided by the designer and the pattern
of decision conditions. The best matching solution is found if the similarity value is equal
to 1. This means that the patterns of answers and the patterns of decision conditions should
be exactly the same. Otherwise, the algorithm A2.07 concludes that no potential solution
was found. The algorithm finds a set of design entities in the repository that correspond to
the concerned design entity. The results are input data for the ROI module and help further
investigate the obstacle occurring in the design process.

192

4�5�2 Architecting and implementation of the reference
process protocol creator module

The reference process protocol creator (RPC) module has been developed for handling
process related knowledge in the reference protocol. Figure 4.12 shows the architecture and
the interrelationships of the components of the module. The computational processes were
divided into two groups. One group was mainly based on the provision of RPP contents. It
focused on the principles of gaining information about the constituting elements of RPP.
They were processed in the sub-modules 3.10-3.30.

Another group was for the composition of constituent elements of the reference protocol.
It was operationalized in the sub-module 3.40. The implementation of the whole module
required thirteen algorithms in total. Four algorithms, including A3.10-A3.13, were the
main constituents for this module. The detailed descriptions of these algorithms are given
in this section. The variables used for the computational components are listed in Table 4.7.

ARF Algorithm A2.06: organize a dialogue

193

ARF Algorithm A2.07: execute pattern matching

4�5�2�1 Sub-module 3�10: e-Data model builder

In the computational process of constructing the reference process protocol, we defined
a design entity as a computational representation of a design action. It is a data model,
which contains the data representing the properties of a design action. This sub-module is
intended to handle sets of knowledge related to a design entity. It has two computational
components: the first component is for modelling an individual design entity, the other is
for construction of a repository to store design entities.

Component 3.11 creates a data model to handle the contents of a design action. The data
model is composed of five elements, which are formally described as follows:

 [entD] = mdl_EntD(task,Id,inP,outP,mth,dT) (4-30)

where: [Task] is a design task, [ID] is an identifier of a design entity represented as a
textual description of a design action, [inP] is a set of input parameters, [outP] is a set

194

of output parameters related to [Mth], [dt] is a duration of completing a design action,
which is computationally executed by a method [Mth], and [entD] is a data model of
a design entity.

The purpose of component 3.12 is to construct a repository of the design entities. The
computational implementation is symbolically expressed as:

 [Repo_entD] = genRentD(entD) (4-31)

where: [Repo_entD] is the location of the storage of knowledge resources for construction
of a reference process protocol. It contains a finite, non-zero set of design entities ei ∈ ℇ.

4.5.2.2 Sub-module 3.20: Process flow model configurator

A process flow model (PFM) is a state-transition model of a design process. Its primary
element is represented by a design entity. The sub-module 3.20 uses a Petri-net-like
structure to represent a PFM and identifies its pattern in order to classify the configuration
of design entities. There are two interrelated components in this sub-module, component
3.21 and component 3.22.

Figure 4.12: Interrelation of computational components of RPC module

195

Component 3.21 creates a representation
of the process flow model, which is,
as mentioned above, a Petri net-like
structure. The model comprises three
basic elements that are: (i) a finite set
of states S, (ii) a finite set of transitions
T, and (iii) a set of arcs F. The
computational function <create_PN>
finds a deviation of incidence matrix
CPFM ← (Cpost - Cpre), and assigns a set
of markings m0 ← {0,1} to the states
indicating the initial behavior of the
model. Formally:

 [PFM] = create_PN(Pre,
 Post, M0) (4-32)

where: [Pre] is an input incidence
matrix, and [Post] is an output
incidence matrix. The dimensions of
the matrices are m × n , where m is the
total number of the transitions, and n is
the total number of the states, [M0] is
the initial markings on each state, and
[PFM] represents a process flow model.

In this representation: si ∈ S is a set of
states, tj ∈ T is a set of transitions, and
f(i,j) ∈ F is a set of arcs connecting a state
and a transition, and vice versa. An arc
expresses the flow relation, which is
captured based on the contents of the
incidence matrix: c(i,j) ←{-1,0,1}.

 (4-33)

Component 3.22 identifies a structure
of design entity based on the patterns of
Petri-net configurations. A design entity
is an element of the process flow model.

variables description
D finite set of design tasks
di design task i

D design process

ei design entity i
ep

i design entity i associated with a
certain pattern p of a PFM

et
i design entity i associated with a

certain design task t
ℇ finite set of design entities stored

in the knowledge repository
fi,j flow relation of state i and

transition j
si state i of a PFM
ti transition i of a PFM
M finite set of patterns of PFM

S finite set of states of a PFM
T finite set of transition of a PFM
F finite set of flow relations of a

PFM
finite set of computational
methods

mi method for an execution of
design entity i

dT decision tree model

P process flow model

R reference process protocol

extR(ei, ej) external relation of (ei, ej)
intR(ei) internal relation of ei

seq(et
i, ek

i) temporal relation of (ei, ej)
concerning a sequence of design
tasks (dt, dk)

freq(ei, ej) frequency of co-occurrences of
(ei, ej)

Table 4.7: List of variables used in the
computational components included
in the RPC module

196

This component identifies a certain pattern of design entities, which can be composed into
a process flow model. Symbolically:

 [ePFM] = classify_PN(entD) (4-34)

where: [ePFM] is a finite non-zero set of design entities, which were identified by certain
patterns of the Petri-net configuration ep

i ← (ei, mp), and mp ∈ M is a set of the defined
patterns of the Petri-net configuration. Figure 4.13 shows an example of net configuration
of a process flow model created by using Algorithm A3.03.

4�5�2�3 Sub-module 3�30: Timed action model builder

A timed action model (TAM) is a time-stamped arrangement of design entities in a design
process. It is an element of the reference process protocol, which aims at representing
(and controlling) a sequence of design entities in a design process. The construction of a
timed action model consists of five interrelated components, which are 3.31-3.35. They are
implemented as follows:

Component 3.31 organizes the sequence of design tasks. This organization process aims
at clarifying a set of design tasks for a given design process and finding the temporal
relationships among design tasks. Their relationships allow the ARF to find a sequence of
these tasks. The computational implementation can symbolically be expressed as:

 [SeqTask] = sequence_Tasks(D_Task, rules) (4-35)

where: [D_task] is a finite, non-zero set of design tasks, dt ∈ D, and [rules] is a
finite, non-zero set of rules. Each rule has a Horn’s clause form of ri : p1 ∩ p2…∩ pm →
ci where p1 ∈ P is the condition part of the rule, ri ∈ R , ci ∈ C is a conclusion defining a
temporal dependence relation of a pairwise design tasks dt,dt+n ∈ D and t,n ≥ 1. [SeqTask]
contains a set of conclusions concerning the relations of the considered design tasks.

Component 3.32 classifies a design entity according to its relevance to design tasks. This
process assigns the design entities to a given task whose completion needs them. Each
task has a chronological order in the design process. To complete the design process, the
designer may take actions step-by-step, following the sequence of the design tasks, if both
the starting task and ending task are defined. Without consideration of the composition
relationships between the design entities, the temporal relationship regulates the places

Figure 4.13: Information representing a configuration of process flow model – ‘2-to-1
synchronization’

197

of design entities in a design activity flow (i.e. it determines which one should be placed
before or after another one). The component implementing this is formally expressed as
follows:

 [entD_T] = catg_entD(D_Task, entD) (4-36)

where: [entD_T] is a finite, non-zero set of design entities associated with a certain type
of design task, et

i ← (ei, dt).

Component 3.33 constructs a matrix to represent temporal relations of design entities. The
matrix contains all numerical data needed to capture the arrangement of design entities with
regard to the possible sequences of the design tasks. It is a computational representation for
the construction of a timed action model. Symbolically:

 [eTM] = const_ETM(SeqTask, entD_T) (4-37)

where: [eTM] is a square matrix, n×n, identifying an arrangement of a couple of design
entities, and Ne is total number of design entities. The relationship of the entities in the
matrix qi,j ←{0,1} follows the rule:

 r1 : p1 ∩ p2 → c1: dt ≺ dt+n (4-38)

 (4-39)

where: p1 and p2 is a finite, non-zero set of design tasks dt, dt+n ∈ D for a design process D
and t, n ∈ N

Component 3.34 constructs a matrix to represent the composition relationships of the
design entities. It aims at capturing the (logical) relations of the entities and converting
them into a computational representation. Formally:

 [eRM] = const_ERM(entD) (4-40)

where: [eRM] is an entity-relation matrix of dimension n×n. This matrix contains all
composition relationships between the couples of design entities (ei, ej). There are three
types of entity relations accounted for, namely: (i) internal relation (which refers to a
transition from an input state to an output state established by means of an entity ei); (ii)
external relation (which exists in the case where an output variable of an entity ei is identical
to an input variable of an entity ej); and (iii) no relation (which means that the entity couple
made up by ei and ej has no direct relationship). The relationship of the entities ϱi,j ← {0,1,2}
in the matrix is defined by the following conditions:

198

 (4-41)

where: intR(ei, ej) represents an internal relation of design entities i and j, and extR(ei, ej)
represents an external relation of design entities i and j, where i ≠ j, and i, j ∈ Ne.

Component 3.35 constructs a matrix to represent a timed action model. It is a square matrix,
which specifies the relationships of design entities according to the sequence of design
tasks and the external interactions. Formally:

 [TAM] = construct_TAM(eRM, eTM) (4-42)

where: [TAM] is a square matrix representing a timed action model, whose rows and
columns are design entities, ei, ej ∈ ℇ. The dimension of the matrix is n×n, where n is total
number of the considered design entities, and i,j ∈ n. In a TAM, the entity composition
relationships ti,j ← {0,1} are defined by the external relations of the entities ei and ej.
These entities are considered as the intended actions to complete design tasks dt and dt+n,
respectively.

 (4-43)

where: extR(ei, ej) ← {0,1} is the external relation of ei and ej. It is equal to 1, when entities
ei and ej have an external type of compositional relationship with each other, otherwise it
equals to 0. The formula seq(et

i, et+n
j) ← {0,1} represents a timed transition of ei and ej. It

equals to 1, when (i) ei belongs to a design task tt and ej belongs to a design task tt+n, and
(ii) these two design tasks have a temporal dependence relation, otherwise it equals to 0. A
timed action model is constructed by using the algorithm A3.09. The matrix representing a
TAM is shown in Figure 4.14.

4�5�2�4 Sub-module 3�40: Reference process protocol creator

The sub-module 3.40 comprises three interrelated components (3.41-3.43). The component
3.41 develops a design tree classifier as one of the main components of the reference
protocol. The classifier plays a crucial role in the process of design support. It selects the
most appropriate method concerning a design action and presents it to the designer as a
recommendation. Component 3.42 is the main contributor to the implementation of the
proposed ARF. The reason is our fundamental assumption that a mathematical representation
of a reference protocol can be generated for the computational implementation of
provisioning process-context dependent recommendations. Component 3.43 is designed
to visualize a graphical model of the reference protocol for the purpose of communication.

199

The component 3.41 constructs a decision tree model to allow selecting the most appropriate
method for execution of a design action. This component uses a tree-based non-parametric
supervised learning approach for classification of the considered methods. The decision
tree model is trained from the training dataset, which is formed by varying the features
of the characteristics of the predictors. The component 3.41 employs a learning algorithm
(LA) for the identification of the classification model. This LA is supposed to provide the
best fitting relationship between a set of predictors and the associated class labels. The
computational component is expressed symbolically as:

 [DTM] = constr_DTM(Mth, DR, DF, S) (4-44)

where: [DTM] is a decision tree classifier, and [Mth] is a set of methods usable for a
computational execution of design action.

Each method is identified as a response to a training set. [DR] is a set of decision rules in
the form of IF-THEN statements. Each rule contains one condition or multiple, conditions,
that are associated with a prediction. [DF] is a set of data features. Each feature represents
a decision condition. [S] is a training set containing the instances of the data features.

The component 3.41 employs the algorithm A3.10 ‘training a decision tree classifier’ to
train the model. A decision tree was constructed based on an inductive method as presented
in [7]. A cross-validation technique is applied to determine the accuracy of the model.
The training set is partitioned into K folds. The prediction accuracy is calculated by the

Figure 4.14: Matrix representing a Timed Action Model (n = 48)

200

following equation.

 (4-45)

where: Ai is the prediction accuracy of the model, N is the number of class labels, and ci,j is
the total number of the predicted class i that was classified to the actual class j.

The ARF Algorithm A3.11, ‘Decision tree induction’, creates a tree-like structure that
classifies the instances in one of the given classes by learning some decision rules deduced
from the data features, or a conditional probability distribution defined on the features and
classes. The algorithm starts with a training set and an empty tree. In the first step, the
feature which best splits the training data will be determined as the root node of the tree.
Selecting the best split is based on the degree of impurity of the child nodes. The training
set si is partitioned with the aim of having each of the partitions as pure as possible. In the
demonstrative implementation, the Gini impurity measure is applied as the splitting criteria
due to the fact that the response to the training data is categorical.

The instances are tested according to the splitting criteria and assigned to the child node,
recursively, until it reaches the leaf node, which sorts the instance into the respective class.
The algorithm terminates if any one of the following three situations occurs: (i) all training
sample are of the same class, si ∈ L; (ii) the current feature set is empty, X={∅}; (iii) no
training samples exist, S={∅}. A detailed description of the Algorithm A3.11 is as follows:

ARF Algorithm A3.10: train a decision tree classifier

201

The decision tree model (DTM) supports the selection of the computational methods
for testing the performances of the predictive model. Figure 4.15 shows an example of
the simplified decision tree model and the decision rules, which were extracted from the
model. The decision variables include (i) the prediction time, (ii) simplicity, and (iii)
robustness. The five candidate methods are: (i) hyper-parameter optimization, (ii) feature
transformation, (iii) cross validation, (iv) Chi-square test, and (v) ensemble learning. To
avoid any fundamental mistakes, it should be mentioned that the training set was arbitrarily
generated for the demonstrative purpose.

Component 3.42 is the RPP builder. The component constructs a matrix to represent a
reference process protocol. The matrix contains a set of process flow models and a set of

ARF Algorithm A3.11: Decision tree induction (DTI)

202

a: Example of a decision tree model

b: Rule set extracted from the model

Figure 4.15: An example of the simplified decision tree model and the decision rules

computational methods. Each PFM represents a segment of the design process. It is created
by a set of design entities and their relationships that are determined in the timed action
model. A method for the execution of a design entity is selected by using the design tree
model. The scope of the component is formally represented as follows:

 [RPP] = compose_RPP (DTM, TAM, ePFM) (4-46)

where: [RPP] is a matrix representation of a reference process protocol, which contains a
finite, non-zero set of process flow models. The dimensions of the matrix are m × n , where
m is the total number of the process flow models, and n is the total number of the design
entities.

Each process flow model Pi is represented as a vector, which contains Boolean parameters

203

vi,j ← {0,1}. Each element of the vector corresponds to one of the design entities in the
model. The Boolean parameter is set to value ‘1’ if the entity is contained in the design
process or a part thereof, and ‘0’ otherwise. With these, the design entities are composed
into the process flow model Pidx. Some of the design entities may require decisional support
in order to select the best method. The decision tree classifier couples the entities with
multiple potentials methods. The computational notations of a reference protocol and its
elements are formally expressed as follows:

 (4-47)

 (4-48)

 dT ≔ {dti,dtj, dtk ,…, dtn}T (4-49)

where: R is a reference protocol, Pidx is a process flow model idx ∈ m, and dT is a set of the
decision tree for a selection of the most appropriate method for a certain design entity of
Pidx. Two algorithms were implemented in this component: (i) algorithm A3.12 – compose
an RPP; and (ii) algorithm A3.13 – graph construction to represent an RPP.

The content of the RPP is visualized as a graphical representation of a Bayesian network
with decision points. The network is constructed based on the conditional independence
relations of the design entities included in the segments of the design process. The set of
concerned design entities ei ∈ ℇ is represented as nodes. The relations among the entities
are represented in the network as directed arcs li ∈ L.

Their relationships are quantified by the frequency of co-occurrences of subsequent entities,
ei, ej ∈ ℇ. For every decision point, the decision process is done by using the decision tree
model. The ARF Algorithm A3.13 is used to construct the graph representing the contents
of the RPP. An example of a graphical visualization of a reference protocol is shown in
Figure 4.16.

4�5�1 Architecting and implementation of the reference
protocol-based procedural obstacle identifier module

The reference protocol-based procedural obstacle identifier (ROI) module is the key
contributor to the demonstrative implementation of the ARF. It comprises three procedural
sub-modules (4.10, 4.20 and 4.30) as shown in Figure 4.17. The implementation of
this module aims at demonstrating the computational processes of the utilization of the
reference process protocol. The output is a proposal, which is a basis of the process-based
recommendation.

The sub-module 4.10 investigates the RPP in a backward manner in order to find a possible

204

obstacle in the design process. The sub-module 4.20 utilizes the hybrid inference approach
to select the best method to execute the actual design activity flow and predict the next
design action. The sub-module 4.30 consolidates the elements of the proposed design
activity flow and their contents to generate a proposal. The detailed descriptions of five
algorithms are given below, including algorithms A4.10, A4.03, A.4.04, A.4.06, and A4.08.

4�5�1�1 Sub-module 4�10: Context-sensitive design process
identifier

The component 4.11 identifies the candidate PFMs that can be representatives of the design
process in context. Once the current design entity was identified by the DOI module, the
component 4.11 component finds the preceding design entities in the reference protocol,
so as:

ARF Algorithm A3.12: compose an RPP

205

 [PFM_ctx] = idn_PFM(RPP, entD_ctx) (4-50)

where: [PFM_ctx] is the process flow model representing the design process in context,
Pctx ∈ R. It is assumed that the entity in context ectx, is the last design action in the segment

ARF Algorithm A3.13: graph construction to represent an RPP

206

of the conducted design process. The PFM is segmented with the n number of entities. This
can be expressed formally as follows:

 Pctx ∶={ectx -(n-1), ectx -(n-2), ectx -(n-3)…, ectx } (4-51)

where: Pctx is the PFM representing the segment of the design process in context. To
investigate the states of the design process, it is assumed that an obstacle occurred in the
preceding actions. The investigation is performed in multiple iterations. For example, it is
supposed that there are three subsequent entities included in the PFM, Pctx ∶={eo, epre, epost}.

The entity in context, ectx, is the last element of the model. The preceding entity epre is in the
middle. The entity eo is the first one. These elements are composed to represent the segment
of the design process in context, where n = 3. The Algorithm A4.01 was implemented to
execute this component.

Component 4.12 selects the best representative process flow models. This component relies
on probabilistic inference.The fundamental concept of the implementation was explained
in sub-section 4.3.3.1 The computational process includes (i) identification of considered
design entities, (ii) composition of segment of the process flow model, (iii) calculation of
the joint probability distribution of the segments, and (iv) selection of the best segment,
which represents the process flow model in context. The candidate segments with the
highest joint probability are selected as the best ones. Symbolically:

 [PFM_B] = select_BP(PFM_ctx) (4-52)

Figure 4.16: Visualization of graph representing an RPP (number of nodes = 16, number of
edges = 59)

207

where: [PFM_B]is the best representative segment of process flow model in context.
Included in this component, the Algorithm A4.03 was implemented to select the best
representative process flow model in context.

Figure 4.17: Interrelation of computational components of ROI module

Table 4.8: List of variables used in the computational components of the ROI module

variables description
dT decision tree model
Pi segment of process flow model

ep
post successive design entity of the entity in context

ep
ctx design entity in context

ep
pre preceding design entity of the entity in context

set of the best methods
p(p̂k) joint probability distribution of a segment of design process
cPctx candidtae process flow model in context

Pinf informative process flow model

Pext extended process flow model

R proposal

CTi total sum of vector elements of the input/output sates of R

208

4�5�1�2 Sub-module 4�20 – Inference engine

This sub-module includes three interrelated components (4.21- 4.23). The component 4.21
was designed to explore the possible PFM Pctx options according to the context and to infer
the most informative one Pinf. Using this result, the component 4.22 checks the reachability
of Pinf. Furthermore, the component investigates the proposed design entity in context ectx,
to confirm that all required input data are available.

ARF Algorithm A4.01: find candidate PFMs in context

209

If the reachability is proven, then it confirms that the configuration of Pinf is completed.
Otherwise, it will identify the missing entity and add it into the process flow model. The
reachability condition of the Pinf is rechecked. The process is done iteratively until the
reachability condition of the Pinf is fulfilled. Then, the component 4.23 predicts the next
design action, which best matches to Pinf.

Component 4.21 selects the best methods for the elements of the most informative PFM by
using the decision tree model. The input data consists of (i) the best segment PFM determined
by the component 4.12, (ii) the decision tree models, and (iii) the captured patterns of the
designer’s responses, which relate to the design entities belonging to the considered PFM.
The computational operation of the component is symbolically represented as follows:

 [iPFM] = hybrid_inf(PFM_ctx, DTM, dD) (4-53)

where: [iPFM] is the representation of the most informative process flow model which
includes the design entities with the best method. The computational process is executed by

ARF Algorithm A4.03: selection of the best representative PFMs in context

210

using Algorithm A4.04 – ‘select the best method for the PFM in context’

The component 4.22 checks the reachability of the process flow model. Here, the term
‘reachability’ simply refers to the possibility of getting from one node to another node
within a graph.

211

As explained related to the sub-module 3.20, there are three primary types of net
configurations of a design entity. Each type consists of varied number of input and output
states. When Pinf is identified, this component checks if the reachability of the design
entity êctx is achieved when all output-input states of the subsequent elements of êctx are
composed perfectly. The output is the vector of initial markings mi, which contains Boolean
parameters.

The length of the vector is the total number of input parameters of the target entity in the
instance. A vector element represents the similarity of the output-input parameters of two
subsequent entities mi ←{0,1}. It returns (1), if they are identical and (0), otherwise. The
condition defines that the reachability of a process flow model is achieved should all vector
elements of mi be equal to 1.

 (4-54)

ARF Algorithm A4.04: select the best method for the PFM in context

212

where: mi is a vector element of [M0], spre
out is an output state of a preceding design entity,

and sin is an input state of the target entity.

If the reachable condition fails, it means that at least one input parameter of the target
entity is missing. The procedure for checking the reachability is iterated in the next run by
searching for another preceding design entity having the highest number of co-occurrence
frequencies with the target entity, to fulfil the missing marking. The investigation of
state-transition of the design activity flow is done at the lower level of the PFM. In the
demonstrative implementation, we assumed that the reachable conditions of the PFMs are
satisfied for all trials.

The component 4.23 creates a recommendation by predicting the next design entity
concerning Pinf. The component calculates the joint probability distribution of the extended
PFM Pext, which includes two elements of êpre, êctx ∈ Pinf and the successive design entity

213

epost ,. It selects the epost that makesthe Pext, having the highest value of JPD. Symbolically:

 [PFM_ext, iEntD] = infer_ST(iPFM, RPP) (4-55)

where: [PFM_ext] is the extended process flow model, [iEntD] is the identified design
entity that makes Pext having highest value of JPD. The inference process is executed by
using the AFR Algorithm A4.06 – ‘predict the next design action’. The detailed description
of the AFR algorithm A4.06 is given below.

4�5�1�3 Sub-module 4�30 – Obstacle resolver

The sub-module comprises two interrelated components (4.31-4.32). The component 4.31
– proposal generation, implements algorithm A4.09 to wrap up the contents for a proposal
as a process-based recommendation to resolve the procedural obstacle. The component
4.32 – PFM coverability checker, implements two algorithms (A4.10-A4.11) for building a

ARF Algorithm A4.06: predict the next design action

214

coverability tree of the proposal and using the tree to check the fulfillment of input/output
states throughout the proposal.

Component 4.31 generates the proposal concerning the extended process flow model. At
this point, all elements of the extended process flow model are identified. They comprise
three subsequent design entities representing the proposed PFM. This component aims at
consolidating the information related to (i) the entities included in the net configuration
of the extended process flow model, (ii) the specification of input-output parameters, and
(iii) the most appropriate method for each entity. To create recommendation content, this
component retrieves the key terms related to the contents of recommendation items, which
are stored in its data model. The symbolic representation of the component is as follows:

 [PS, eT] = Gen_PS(ePFM, iEntD) (4-56)

where: [eT] is a collection of key terms related to the design entities, and [PS] is a
proposal to resolve the cause of the identified obstacle. The proposal R is formulated by
using the reference protocol. Symbolically:

 (4-57)

where: R̂ is a proposal, Pext is the extended process flow model, m̂i, m̂j is a set of the best
approach corresponding to the given entities epre and ectx, and mk is a method, which is the
most frequently used for execution of entities epost. The proposal is generated by using ARF
Algorithm A4.08 – ‘proposal generation.

The component 4.32 checks the fulfilment of the proposal. This component builds the net
configuration representing the state-transition models of R and analyzes the coverability
of the net. It checks if (i) all required data are available, (ii) all connections in the state-
transition models of R are fulfilled, and (iii) the expected output was correctly produced.
The output is the coverability of the extended process flow model. The algorithm A4.10 –

ARF Algorithm A4.08: Proposal generation‘coverability checker’ returns a logical
value [true] when the coverability
condition is satisfied, otherwise it
returns [false]. Should the latter be the
case, it indicates what required data
is missing or where the output-input
connection between the subsequent
design entities is broken. This
information is a supplement to the
proposal. The coverability of the PFM
is formally expressed as follows:

215

 (4-58)

where: CTi is total sum of vector elements of the input/output states of R, sin is an input
state, and sout is an output state of the entities of R, n is the total number of data elements
for the output states, m is the total number of data elements for the input states, and t is the
total number of transitions t = N-1. The variable N stands for the total number of design
entities of R.

As mentioned in Sub-section 4.3.3.1, the investigation of the design process was performed
on two levels. One level is the design action level, and another is the state and transition of
design activity flow level). The coverability of the net configurations of the proposed PFM
is checked. It is performed iteratively until the convertibility of the PFM is achieved. The
operational goal of the component 4.32 is confirming that all required data are available for
all elements of the PFM. With regard to the demonstrative implementation, we assumed

Figure 4.18: Interrelation of the computational components of the ACG module

216

that the coverability condition of PFM is fulfilled for all proposals.

4�5�2 Architecting and implementation the advisory content
generator module of the ARF

The advisory content generation module consists of three architectural sub-modules with
nine interrelated computational components as shown in Figure 4.18. The sub-module
5.30 is considered to be crucial contribution to the implementation of this module. It finds
the best recommendation item by computing the similarity of terms by identifying the
elements in the proposal and the terms indexing the recommendation item. The item is a
knowledge model that contains (i) the knowledge source, (ii) the main contents, and (iii)
its key terms. Should the best recommendation item be found, it navigates the designer
to the knowledge source. The advisory content generation aims at providing descriptive
information related to the proposed process-based recommendation. The contents support
the designer to operate according to the recommendation. The other two modules (5.10 and
5.20) are responsible for the processes of modelling the recommendation item and building
the knowledge repository.

4�5�2�1 Sub-module 5�10: Recommendation item generator

The recommendation item generator sub-module is designed (i) to extract the main
contents from the knowledge source, (ii) to compile them into a recommendation item, and
to (iii) index with the key terms. The implementation of the sub-module consists of four
interrelated computational components (5.11 - 5.14). The implemented algorithms were
modified based on the built-in functions included in the text analysis process toolbox of
MATLAB.

Component 5.11 converts the knowledge sources into a text description. It aims at decoding
contents included in the knowledge sources into a human-readable format. Each source
contains descriptive contents related to a given design action. Knowledge sources can be

variables description
Sα knowledge source of

recommendation contents
Tα terms included in a

recommendation content
D document containing a

recommendation content
simv similarity value
R repository of recommendation

items

Table 4.9: List of variables used in the
computational components of
the ACG module

in several formats, for instance, webpage,
electronic corpus, and technical documents.
An input data is a finite set of strings of
raw texts τi ∈ Tα decoded from knowledge
sources. This component is executed by using
the reusable functions including web-access
(e.g., Webread) and content processing (e.g.,
findElement, extractHTMLText) provided
by MATLAB. The output is a collection
of raw texts extracted from the knowledge
sources, si ∈ Sα.

The component 5.12 finds the main contents
in raw texts. They most probably contain
irrelevant information concerning the

217

description of a solution how to progress in the design process. The computational process
selects the relevant contents by finding a query that contains each line of the texts. The
input data are (i) raw texts, and (ii) a query (which is a set of search strings used to find
the most relevant content). The output data is a finite set of strings of the main content
ci ∈ Cα with regard to a query. The component is represented by algorithm A5.02, which
matches a query to raw texts. This algorithm has been realized by modifying existing code
according to the built-in functions (e.g., split function, tokenizedDocuments function, and
token-based similarity function).

The component 5.13 generates a document and extracts frequently used words. This
component organizes the contents into a well-structured document and analyzes the
frequency of the words used in the document. The input data is a set of the strings related
the main content, so as ci ∈ Cα. The output data are (i) a document, which stores contents
for understanding the word, and (ii) a collection of words frequently used in the document
called a bag of words. Algorithm A5.03 is implemented based on the modification of the
built-in functions (e.g., extractSummary, BagOfwords).

Component 5.14 extracts key terms indexing the document. It counts the frequencies of
words appeared in the documents and selects the most frequently used terms to index the
document. The output is a finite set of key terms indexing the document. Algorithm A5.04
– extract key terms, was modified based on the built-in function <topkwords>.

4�5�2�2 Sub-module 5�20: Recommendation items repository
builder

The sub-module 5.20 comprises two interrelated components 5.21-5.22. They aimed at
constructing the repository of recommendation items. First, component 5.21 builds a data
model representing a recommendation item. The model is constructed with three fields
of its profile contents included: (i) a knowledge source of recommendation item; (ii) a
document containing the descriptive contents of a solution; (iii) key terms that represent
the main content in the document. The output is a data model of a recommendation item.
We used a built-in function <struct> to create the model.

Second, the component 5.22 constructs a repository of the recommendation items. The
input data is a collection of knowledge sources. They are evaluated to ensure that each
knowledge source corresponds to a particular solution. It is stored with a finite set of pairs
of the knowledge source and the corresponding key terms. The output is a knowledge
repository stored as a finite set of recommendation items.

4�5�2�3 Sub-module 5�30: Advisory content provider

The advisory content provider sub-module consists of three interrelated components (5.31-
5.33). The ultimate output is a comprehensive process-based recommendation and its
advisory contents.

The component 5.31 determines the similarity of the terms defining a solution and

218

a recommendation item. The computational process calculates the similarity of the
recommendation items and the string arrays defined a solution.

 simValue_M = simKterms(query, RECiTem) (4-59)

where: [simValue_M] is a matrix containing the similarity values of a set of
recommendation items and the textual description of a solution, and [Repo_RiTems]
is a repository storing a finite set of recommendation items. This component includes
the algorithm A5.07 to measure the similarity of the terms defining the solution and the
recommendation items.

The component 5.32 selects the most relevant recommendation content. According to
the similarity of recommendation items and the term defining the identified solution, this
component generates a short-list of the recommendation items ranked according to the
similarity scores. The best solution is at the first rank which offers URL name to navigate the
designer to webpage, which contains the most informative advisory content. Symbolically,
it is specified as:

[BRiTem] = select_BiTem(simValue_M, ReciTems) (4-60)

where: [BRiTem]represents the best recommendation item.

This component employs the algorithm A5.08 to find the top N ranked recommendation
items and then creates a ranking of candidate items. It calculates the average value of the
similarity between the term indexing recommendation items available in the knowledge
repository and the textual description of the solution/proposal.

ARF Algorithm A5.07: Calculate text similarity of k-terms and ReciTems

219

The component 5.33 displays the recommendation. The process concludes which overall
contents related to the best recommendation item, and the intended design entity. By using
a form-based user interface, the component provides the necessary information structure,
which, as mentioned earlier, includes the process-based recommendation and its related
advisory contents. Should the elements of a process-based recommendation be generated,
the description of the advisory contents is filled in the form.

 [CR] = genCR(BRiTem,PS) (4-61)

where: [CR]represents the final form of the recommendation, and [PS] is the proposal.

4�6 Putting the demonstrative implementation into
application context

4�6�1 On the necessity of testing the demonstrative
implementation in application context

This section discussed the testing of the realized functionality of the demonstrative
implementation in the application context of designing a reasoning mechanism for an
automated parking assist system (APAS). The testing would show how the implemented

ARF Algorithm A5.08: Top N rank of recommendation items

220

modules and components of the concerned mechanisms of the ARF work in the WPE session
with the design task D1.0. According to the reasoning process of APAS in section 3.9.2 in
Chapter 3, the task was defined as a development of a machine learning-type algorithm A01
to predict the most appropriate parking case for an actual parking scenario. The ML-type
algorithm is not only built into the reasoning mechanisms of the APAS, but it is also known
for the ARF at the end of the design process.

To evaluate if the selection of the most applicable motion path for the car to be parked is
correct, the testing should show that the adapted machine learning-type algorithm builds a
reasoning model to properly select the motion path. The subject of immediate testing is the
appropriateness of the machine-learnt model in the given application context. We applied
the reasoning-with-consequences principle to reason about and to test the functionality
of the implemented demonstrative part of the ARF. As the ultimate output, the chosen
motion path fits (appropriate for) the actual parking scenario, that the ML-type algorithm
works correctly. However, not only the proper working of the machine learning algorithm,
but also its proper training/learning should be assumed. If these are shown to be correct,
then the concerned algorithm fulfils the requirements related to the functionality of the
demonstrative implementation.

Considering these, the testing process was decomposed to the following stages: (i) showing
that the selected motion paths are correct (or which one is better); (ii) claiming that then
the operation of the machine learning algorithm had to be correct; (iii) claiming that then
the data and training of the machine learning algorithm had to be correct; (iv) claiming
that then the support provided by the ARF for the design task had to be correct. It must be
mentioned that this did not allow us to conclude about what might be and what might not be
proven with regard to a full-scale support of the entire reasoning mechanism design process
and the service packages of the whole of the ARF.

4�6�2 Introducing the concrete application context
The guiding assumption concerning the testing of the demonstrative implementation was
that a self-driving car (level 4) car sought and found a free parking space on the roadside
and the APAS was activated by the on-board computer for parking the car. The parking
scenario is shown in Figure 4.19. The APAS collected the necessary information from a set
of sensors, including (i) a 2D representation of the parking lot (its width and length), and
(ii) the distances between the car and the other objects (black cars) at a given moment in
time in the parking scene. The front-side ultrasonic sensor is used for the measurement of
the size of the longitudinal parking spaces. Basically, it scans the potential parking space
while passing it. The length of a parking space is computed using the following equation
[17].

 (4-62)

where: D is the length of the empty parking space, Ds is the distance between the front sensor
and the rear sensors, t0, t1 is the time that the front sensor detects the first and the second

221

significant distance changes, respectively, and t1 is the time that the rear sensor detects the
first significant distance change. Whilst the car is moving toward the empty parking space,
the situation reasoning mechanisms of the APAS evaluate the state of the parking scene
and selects the proper space. Then, the working principle session commences and uses the
developed ML-type algorithm to find the best match parking case and the actual parking
situation (ASRM algorithm A01).

The process of evaluation of the best parking cases includes multiple stages of reasoning,
which in turn requires multiple interrelated algorithms, for instance, (i) an algorithm for
extracting the morphological information structures from the candidate parking cases
(ASRM algorithm A02), (ii) an algorithm for comparing the topological sub-structures of
the motion paths of the past parking cases (ASRM algorithm A03), and (iii) an algorithm
for adapting the optimally-matching motion path (ASRM algorithm A08). Should the best
motion plan be selected, it will be converted into the action plan in the decision logical
generation session (which is not addressed in this dissertation).

4�6�3 Overview of the testing of the demonstrative
implementation in the concrete application context

In the simulation of parking scenarios, the evaluation of a parking situation differs from the
real-life situation. As shown in Figure 4.20, the spatial information of a car is determined
by a bounding box. The location of the car is identified in the Euclidean space by the x-y
axis coordinates of the vertices (corners) of the bounding box. It is symbolically expressed
as follows:

 car = [x1, x2, x3, x4, y1, y2, y3, y4] (4-63)

Figure 4.19: Spatial-temporal representation of a parking scenario (adapted from [17])

222

where: xi, yi is the x-y coordinates of the vertices (corners) of the bounding box.

Assumed is that the 2D model of the spatial situation was developed in the preceding design
session, which centered on ‘situation modelling’. The model was stored in the knowledge
repository. The situation model contains the spatial-temporal information of the parking
situation. A descriptor of a situation is used to characterize the situation, which captures a
set of parameters identifying the locations of cars included in the parking situation at time
t. Figure 4.21 shows the spatial information of the parking scenario presented in Figure
4.20. To categorize the similar situations, the similarity measures are calculated based on
these parameters.

The parking situation is evaluated by the dimensions of parking space and the distance
between car to be parked and the car following in the driving lane. Three possible parking
scenarios were determined: (i) parallel parking, (ii) perpendicular parking, and (iii) not
applicable for parking. After the evaluation of the parking scenarios, a dataset is generated
from the instances of the seven groups of attributive information, including the distances,
D1-D6, which correspond to the evaluated parking scenarios.

Figure 4.20: Simulation of a parking scenario

Figure 4.21: Spatial information representing a parking scenario at initial time t0

223

4�6�4 Development of machine learning algorithm for
predicting the most appropriate parking case

In practice, a complicated design task is decomposed into multiple design sub-tasks. A
design sub-task provides a set of design actions, which should be done in order to accomplish
the concerned element of design process. For the demonstration case, Figure 4.22 shows an
example of the design actions concerning the design task D1.0. The goal of the design task
is what parking position and direction the APAS will select to perform a proper parking
with the minimum number of maneuvers.

According to the design sub-tasks and the example of design entities as shown in Figure
4.22, the design activity flow can be created in multiple ways through the network of design
entities. The interrelationships of design actions associated with the computational methods
allows the designer to develop the ML-type algorithm A01. However, various constrains
concerning i.e., logical, theoretical, and practical aspects limit the design actions. These
conditions influence the construction of the reference process protocol.

Figure 4.22: Design sub-tasks for a development of machine learning-type algorithm A01

224

To train the program developed for selection of the most applicable motion path for the car
to be parked, the dataset consists of the records of 887 parking cases characterized by six
features, including the distances, D1-D6. But, in order to be able to test the recommendation
related to the feature selection task, we added one more feature which is not relevant to
the parking situation. Hence, the training data set contains seven features (F01-F07). The
instances of the features correspond to the response variable, which is identified by three
types of parking positions, where: (0) is not applicable for parking, (1) is parallel parking,
and (2) is perpendicular parking as shown in Figure 4.23.

4�6�5 Supporting the development of ML-type algorithm A01
by the demonstrative implementation of the active
recommender framework

4.6.5.1 Identification of knowledge content for the decision
support

In the process of the recommendation using the RPP, the investigation of obstacle and the
exploration of the proper design activity flow are done based on the probabilistic reasoning.
To select the proper usable method, the decision tree model is applied. Referring to the
work of Rathore and Kumar (2017), they identified ten characteristics of a faulty dataset,
which have the largest influence on the performance of the learning algorithm [18]. These
aspects can be applied to analyze the characteristic of the data set for training the decision
tree model in particular for the first design sub-tasks (i.e., the data preparation, the feature
selection, and the model training). Hence, we applied these aspects as the prediction
variables for the selection of the most appropriate method concerning an intended design
entity related to the first three design sub-tasks

They are: (i) noise (that reflects the lack of information or unreliable information), (ii) high
dimensionality of input data (that means having too many features in the training dataset),
(iii) heterogeneity of the data (that means having different natures of the features e.g.,
discrete, discrete ordered, or continues values in the training dataset), (iv) redundancy in

Figure 4.23: Dataset for training the ML-type algorithm A01

225

the data (that refers to the similar instances of features describe multiple types of the class
label), (v) outliers (that refers to the anomalies of data points that are out of the general
behavior of the training dataset), (vi) missing value (that means values that are left blank
in the dataset), (vii) amount of training data (that is the number of instances available to
train the learning algorithm), (viii) class imbalance (that is related to the number of class
labels which are not properly distributed), (ix) learning function (that indicates the types
of learning function that should be performed (i.e., linear or non-linear)), and (x) type
of dependent variable (that means the types of output value or response of the learning
algorithm (i.e., categorical or numerical value).

Considering the rest of the design-sub tasks (i.e., model selection, model scoring, and
model validation), they focused on the performances of the learning model. Should the
learning model be trained, the prediction variables concerning the performance metrics
are considered, including (i) the prediction speed, (ii) robustness of the model, (iii) the
flexibility of a computational method to perform the evaluation, (iv) the simplicity of the
computational method to perform the evaluation, and (v) the ease of interpretation of the
results. Table 4.10 shows the prediction variables, which are related to the design sub-tasks.
These variables are analyzed and specified with regard to the considered design entity. As
an example, Table 4.11 presents a sample ruleset that was extracted from the decision tree
model that was used as selecting the methods related to the design entity ‘fitting a model’.
It can be remarked that the dataset for training the decision tree was intuitively generated
for the demonstrative propose. The correctness of the extracted rules was not theoretically
tested.

4�6�5�2 Generation of recommendation according to reference
protocol-based procedural obstacle identification

For the demonstrative case, the graph representing the RPP includes 51 design entities
and 442 connections. We assumed that all relationships of the design entities are logically
valid for the recommendation generation. The expected output is the process-based
recommendation, which comprises three design entities and their contents. To develop an
efficient ML-type algorithm, the most crucial design sub-task was the model training. In
this context we had to assume that a non-usual event could be detected when the designer
was fitting the model without the consideration of dataset characteristics.

Figure 4.24: the content of the identified
current design entity

By the above-described process, in the
concrete practical application case,
the design entity ‘fitting a model (e25)’
was identified as the current design
action. The contents of this design
entity are shown in Figure 4.24. The
set of questions was related to some
prediction variables of the rule set
including: (i) amount of training
required, (ii) learning function, (iii)

226

dependent variable, (iv) prediction
speed, and (vi) robustness. It might
be the case that - due to lack of
background knowledge or relevant
information - the designer cannot
answer these questions. In this case,
the ARF will pose sub-questions to
guide the designer. The answers given
by the designer are used to identify the
conditions of the prediction variables
(for example, {large, linearity,
categorical value, yes, yes}).

Based on the combination of the
answers, it assumed that the exact
inference cannot find the best match
pattern for finding the solution. Then,
the investigation of the obstacle
using the RPP is executed. The
joint distribution probability was
calculated for selecting the preceding
design entity. As result, the design
entity, e14 – ‘select the attributes’, and
the method is ‘information gain’. It
shows two design entities connecting
with the red line in the RPP as
presented in Figure 4.25. The result
can be interpreted that two design
entities e14 and e25 executed by the
method ‘information gain’ and ‘KNN’

Table 4.10: Prediction variables influencing the
selection of usable method

prediction variables

design sub-tasks

da
ta

 p
re

pa
ra

tio
n

fe
at

ur
e

se
le

ct
io

n
m

od
el

 tr
ai

ni
ng

m
et

ric
 se

le
ct

io
n

m
od

el
 sc

or
in

g

m
od

el
 v

al
id

at
io

n

1 noise •
2 missing value •
3 dimensionality • •
4 heterogeneity • •
5 redundancy • •
6 outlies •
7 amount of training

required •

8 class imbalance • •
9 learning function • •
10 dependent variable • •
11 prediction speed • •
12 robustness • •
13 flexibility • • •
14 simplicity • • •
15 ease to interpretation

of the results • • •

are the most frequently used in the historical cases, but they are probably not suited for the
identified characteristics of dataset.

It might be the case that the designer dealt with this issue in the one of the historical cases.
The prediction process is continued. In another case, if the required data for executing the
prediction process are not available, then a dialogue is activated automatically to request
(collect) the missing information from the designer. The set of questions related to the
design entities e14 will be retrieved to organize the dialogue. The designer provides the
conditions of prediction variables and the ARF uses the decision tree to predict the best
method for the entity e14. In this case, it was found that ‘Chi-square test’ was selected and
was already defined as the method for the entity e15. It means that this method was used
in the historical cases, but it was not the most frequently used with the ‘KNN’ (see Figure
4.25, where their relationship is shown by the yellow line in the RPP.)

227

Here, the prediction variables related to the preceding design entity will be combined with
the prediction variables of the current design entities. The decision tree will select the
proper method for the current one. Based on the combination of these prediction variables,
the ‘decision tree classifier’ was selected. It was identified as the design entity e24 in the
RPP. Next step, the joint distribution probability will be determined to select the next
design entity. The popularity-based approach is considered as the basis to the case-related
recommendation generation. Three design entities are involved in the process.

The result showed that the design entity e48 – ‘evaluate the performance’ was selected
and the method for performing the entity was ‘analysis of the classification metrics’. The
proposed design activity flow is shown with the green line in the RPP represented in Figure

extracted rule set recommendation
1 if imbalanced data = no && learning function = linearity &&

prediction speed = no, then
perceptron based
neural network

2 if imbalanced data = no && learning function = linearity &&
prediction speed = yes, then

decision tree
classifier

3 if imbalanced data = no && learning function = non-linearity &&
amount of training data required = small, then

support vector
machine

4 if imbalanced data = no && learning function = non-linearity &&
amount of training data required = large, then

ensemble classifier

5 if imbalanced data = yes && redundancy = yes && learning
function = linearity && prediction speed = no, then

perceptron based
neural network

6 if imbalanced data = yes && redundancy = yes && learning
function = linearity && prediction speed = yes, then

Bayesian network

7 if imbalanced data = yes && redundancy = yes && learning
function = non-linearity && amount of training data required =
small, then

probabilistic based
neural network

8 if imbalanced data = yes && redundancy = yes && learning
function = non-linearity && amount of training data required =
large, then

Support vector
machine

9 if imbalanced data = yes && redundancy = no && robustness = no,
then

K-nearest
neighborhood

10 if imbalanced data = yes && redundancy = no && robustness = yes
&& learning function = linearity, then

probabilistic based
neural network

11 if imbalanced data == yes && redundancy == no && robustness ==
yes && learning function == non-linearity && prediction speed ==
no, then

K-nearest
neighborhood

12 if imbalanced data == yes && redundancy == no && robustness ==
yes && learning function == non-linearity && prediction speed ==
yes, then

Gaussian Naïve
Bayes

Table 4.11: A rule set extracted from the decision tree concerning the selection of the
usable method for ‘fitting the learning algorithm’

228

Figure 4.25: The proposed design activity flow (presented as sub-graph representing the
RPP)

Figure 4.26: The comprehensive recommendation presented to the designer

4.25. The advisory contents for these three elements were generated in the module 5.0 –
ACG. The complete recommendation is shown in Figure 4.26, including both the process-
based recommendation and the content-based recommendation. To proceed with the
proposed design activity flow, the designer can refer to web pages to get more information
about the recommended methods.

The ARF makes the recommendation for the designer concerning how to develop the
machine learning-type algorithm A01. The comprehensive recommendation presented to
the designer is shown in Figure 4.26. We used MATLAB to generate the process-based
recommendation provided by the ARF to the designer. The following design actions were
performed:

 • Design entity e15 – selecting the attributes by using the Chi-square test
 • Design entity e24 – fitting the model by using the decision tree classifier
 • Design entity e48 – evaluation of the model by the analysis of the classification metrics

229

For selecting the attributes, the dataset was analyzed by Chi-square test. The advisory
content explains the description of Chi-square test1. As shown in Figure 4.27, the Chi-
square scores of two features (F06 and F07) are relatively very low. Hence, they will
be removed for fitting the decision tree classifier. Five features are used for predicting a
parking case. To evaluate the performance of the model, the confusion matrix was analyzed
in terms of its: (i) accuracy, (ii) precision, (iii) recall, and (iv) F1-measure. The description
and the formulas of these metrics were given in Table 4.5 (in the sub-section 4.3.2.3).

The testing sample includes 900 instances for each feature. The trial was run for 500
samples. We also developed the KNN model without the removal of the irrelevant features.
The evaluation results are shown in Figure 4.28. The accuracy shows that how many of the
correct parking cases that the algorithm predicts. The precision determines how precise the
model predicts the predicted positives. It means how many of missing the opportunities
for parking. The recall measures how many of the actual positives are predicted as true
positive. It means how many of the predicted parking cases cannot be parked, but the model
predicts them differently. If the recall value is low, it is high possibility that the predicted
positive is not suitable for parking. The F1-measures balances the precision and recall. The
performances of the decision tree classifier are slightly better than the KNN model for all
metrics. For the demonstrative case, it shows that the recommendation is helpful not only
eliminating the obstacle in the design process, but also improving the performance of the
learning model.

4�6�5�3 Testing the functionality of the ML-type algorithm A01

To confirm that the ML-type algorithm A01 works properly, the selected motion path for
parking should be tested in the concrete parking case. The criterion is that the selected
motion path should fit the actual situation. It can be further analyzed in the sub-process of
generating the parking plan. It should show the reference motion path for parking which can
be further analyzed for generating the parking plan. Path planning generation determines a
suitable collision-free path from a given start to a required goal position within the parking
space.

To capture the motion path, the state of a vehicle is defined by four elements:

 carMdl = (x,y,θ,φ) (4-64)

where: x,y is the coordinates of the location of the vehicle, θ is the orientation angle, and φ
is the steering angle.

Since the algorithm is used to predict the parking position, it determines the most similar
parking situations and the parking cases based on their spatial information. The algorithms

1 “Chi-square test examines whether each predictor variable is independent of a response variable by
using individual Chi-square tests. A small p-value of the test statistic indicates that the corresponding
predictor variable is dependent on the response variable, and therefore is an important feature. A
large score value indicates that the corresponding predictor is important.”

230

have been tried out in two parking scenarios, which are discussed below.

Parallel parking scenario

The right-side Sub-figure of Figure 4.29 shows the most proper parking case for the actual
parking situation. The APAS was supposed to have been installed in the blue car. The
virtual motion path comprises four steps: (i) moving to the pre-parking location, (ii) moving
forward to reach a ready-to-park position, (iii) moving reverse following the motion path
to the parking space, and (iv) moving forward to the parking destination. The topological
sub-structure of the motion path can be modified to fit other parallel parking situations.

Perpendicular parking scenario

The actual parking situation is illustrated in the left-side Sub-figure of Figure 4.30. The
most similar parking case is selected as shown in the right-side Sub-figure. Typically,
perpendicular parking is not suited for the roadside parking problem, but the learning
algorithm has the potential to predict different types of parking positions. The motion path
is for reverse parking. Its topological structure comprises three steps: (i) moving forward
to reach a ready-to-park position, (ii) moving reverse following the motion path to the
parking space, and (iii) turning to the perpendicular position and moving backward to the
destination. Like in the case of parallel parking, the topological sub-structures of the motion
path can be modified to fit other perpendicular parking situations.

These parking scenarios showed that the algorithm A10 was able to select the proper parking
cases for different parking situations. The motion paths presented in these cases might
not be the optimal ones for the considered actual situations. Other potential parking cases
would be selected as the candidates. In the next step of the reasoning sub-process in the
WPE session, the morphological information of the candidate parking cases needs to be
extracted and analyzed to find the optimal motion path.

Figure 4.27: Results of the Chi-square test
for the feature selection

Figure 4.28: Performance evaluation of
the trained models

231

4�7 Observed limitations and other concluding remarks

4�7�1 Observed limitations of the demonstrative
implementation

 • Due to the lack of the knowledge contents for all design entities, the demonstrative
implementation cannot provide support for the entire process of completing design task
D1.0. In addition, the recommendation generation was also limited because of the scope
of the design scenario set up for the to-be-considered design actions.

 • We used string-based similarity to create relationships among the design entities for
the construction of the RPP. Some terms denoting the input and output variables were
mismatched because they were depicted by the same terms but, in fact, their parameters
and data constructs were used in different contexts.

 • The RPP was constructed based on the concept of a Bayesian network. It is represented
as an acyclic graph. Hence, using the RPP in the recommendation generation cannot
support iterative loops occurring in the design process. Further research is necessary to
resolve this logical issue.

 • In the course of functionality testing, the recommendations were generated based
on various assumptions concerning the theoretical concepts and the practical design
processes. However, the knowledge contents of the RPP and the decision variables of

Figure 4.29: The actual parking situation (left) and the retrieved parking case (right) for
the parallel parking

Figure 4.30: The actual parking situation (left) and the retrieved parking case (right) for
the perpendicular parking

232

the decision tree model were not theoretically tested. Hence, biases might influence the
findings concerning the recommendations, and the comparative performance of the ML
algorithms.

4�7�2 Improvement opportunities of the demonstrative
implementation

 • The algorithms implemented for a demonstrative purpose. We mainly concentrated on
the realization of the novel and critical functionalities. Although, the aspect of efficiency
of the algorithms was not considered yet, the organization of the computational
workflow provided opportunities to further investigate the potential optimization of
the developed algorithms.

 • To avoid fundamental mistakes concerning the contents of the generated
recommendations, the theoretical correctness of the reference protocol and its
knowledge contents should be validated.

 • It is possible to develop semantic inference for the recommendation generation based
on the relationships of the knowledge contents included in the RPP. For example, if
the designer can provide the preference conditions of the decision variables (which
are related to the multiple usable methods), the ARF will infer the flow of the design
actions based on the relationships of selected methods.

4�7�3 Concluding remarks
 • The implementation and functionality testing of the modules and algorithms of

the demonstrative part of the ARF confirmed their correctness from logical and
computational points of view.

 • Based on the doctrine of hybrid inference, the application of the RPP supports a (semi)
automated recommendation generation.

 • Using a traceable logical reasoning model, such as the decision tree model, is useful
for helping the designer to understand the logic of the decision-making concerning the
selection of usable methods.

 • Applying probabilistic reasoning makes it possible to generate case-related
recommendations based on the popularity of the methods in previous (historical) cases.

 • The testing of the demonstrative modules in the context of APAS confirmed the
usefulness of the proposed recommendation generation in terms of elimination of
an obstacle in the design process and of the possibility of continuation of the design
process.

References
[1] Horváth, I. (2008). Differences between ‘research in design context’ and ‘design

inclusive research’ in the domain of industrial design engineering. Journal of Design.
Research, 7(1), 61.

233

[2] Cass, S., “Top Programming Languages 2020,” IEEE Spertrum, 2020. Retrieve from
https://spectrum.ieee.org/top-programming-language-2020 (accessed Jul. 20, 2021).

[3] Jurafsky, D., & Martin, J. (2017). Dialog systems and chatbots. Speech Language
Process (pp. 418–440).

[4] Madotto, A., Lin, Z., Wu, C. S., Shin, J., & Fung, P. (2020). Attention over parameters
for dialogue systems. arXiv preprint arXiv:2001.01871.

[5] Gehlot, V., & Nigro, C. (2010). An introduction to systems modeling and simulation
with colored petri nets. In Proceedings of the Winter Simulation Conference (pp.
104-118). IEEE.

[6] Linda, S., & Bharadwaj, K. K. (2018). A decision tree dased context-aware
recommender system. In International Conference on Intelligent Human Computer
Interaction (pp. 293-305). Springer, Cham.

[7] Jena, M., & Dehuri, S. (2020). Decision tree for classification and regression: A
state-of-the art review. Informatics, 44(4), 405–420.

[8] Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we
don’t need to? a lesson from an explainable AI competition. Harvard Data Science.
Review, 1(2), 1–9.

[9] Hehn, T. M., Kooij, J. F. P., & Hamprecht, F. A., (2020). End-to-End learning of
decision trees and forests. International Journal of Computer Vision, 128(4), 997–
1011.

[10] Liu, S., Yang, Z., Li, Y., & Wang, S. (2020). Decision tree-based sensitive information
identification and encrypted transmission system. Entropy, 22(2), 192.

[11] Viaene, S., Derrig, R. A., Baesens, B., & Dedene, G. (2002). A comparison of state-
of-the art classification techniques for expert automobile insurance claim fraud
detection. Journal of Risk and Insurance, 69(3), 373-421.

[12] Çiǧşar, B., & Ünal, D. (2019). Comparison of Data Mining Classification Algorithms
Determining the Default Risk. Scientific Programming 2019.

[13] Cózar, J., Puerta, J. M., & Gámez, J.A. (2017). An application of dynamic Bayesian
networks to condition monitoring and fault prediction in a sensored system: A case
study. International Journal of Computational Intelligence Systems, 10(1), 176–195.

[14] Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward comprehensible software
fault prediction models using bayesian network classifiers. IEEE Transactions of
Software Engineering, 39(2), 237–257.

[15] Jimenez, S., Cucerzan, S. P., Gonzalez, F. A., Gelbukh, A., & Dueñas, G. (2018).
BM25-CTF: Improving TF and IDF factors in BM25 by using collection term
frequencies. Journal of Intelligent & Fuzzy Systems, 34(5), 2887-2899.

[16] Mohamed, K. (2021). “Ackermann steering(Car Auto parking),” MATLAB
Central File Exchange. Retrieve from https://www.mathworks.com/matlabcentral/
fileexchange /27299-ackermann -steering-car-auto-parking (accessed Oct. 05, 2021).

[17] Ma, Y., Liu, Y., Zhang, L., Cao, Y., Guo, S., & Li, H. (2021). Research review on
parking space detection method. Symmetry, 13(1), 128.

[18] Rathore, S. S., & Kumar, S. (2017). A decision tree logic based recommendation
system to select software fault prediction techniques. Computing, 99(3), 255–285.

235

5�1 Objectives and methodological framing of the fourth
research cycle

5�1�1 Research objectives
The computational implementation of the selected demonstrative modules was presented
in the previous chapter together with a forerunning analysis of the fulfillment of the
functions implied by the technical requirements. As shown by the completed functional
validation in the application context, the ML-type classifier was able to select the proper
parking case from the available parking scenarios. The functional validation also showed
that the implemented demonstrative modules of the ARF could support the designer with
conducting the design process in the application context. This chapter focuses on the quality
of the recommendations provided by the ARF. Usefulness was chosen as the measure of
the quality because it could be captured by indicators (and not only by quantitative and/or
qualitative variables).

Usefulness was viewed from the perspective of the designer, and is captured by the
observable procedural effects of providing situation and obstacle dependent information
in the semantic body of the recommendation generated by the concerned modules of the
ARF. In other words, it was examined how useful the provided recommendations are to
overcome possible procedural obstacles in the design process by the designer. Usefulness of
the recommendation was assessed in a retrospective way (i.e., after the emergence of some
procedural blockage), but not in a predictive (preventive) way. Due to the complexity and
sophistication of this matter, it was left for future research. Thus, the goal of the validation

Research cycle 4:
Validation of the usefulness of
the recommendation provided by
the implemented demostrative module

Chapter 5

236

study presented in the rest of the Chapter was to confirm that the recommendations
generated by the ARF were useful in various situations in the studied application context
according to the proposed measurable metrics.

The main issue for the validation of usefulness of the recommendations was the active
and insightful involvement of designers in the design process. It was seen as the most
influential factor for finding the appropriate method of validation. It was considered with
emphasis that the current developments in smart agent technologies make it possible
to replace human participants with smart validation entities in repetitive assessment
processes. Such programmable surrogates can mimic (i) creative activities; (ii) decision-
making actions; and (iii) the social behavior of human designers. Current research
knowledge allows for achieving high-fidelity multi-feature surrogates. Having considered
all these influential factors and the trends and affordances of technological development,
we preferred to conduct the validation study by using a synthetic validation agent (that is,
without participation of human designers). Therefore, an agent-oriented validation method
was devised and applied. In order to use this approach to usefulness validation, a synthetic
validation agent (SVA) had to be designed, implemented, and pre-tested carefully.

Concerning the focus of the abovementioned of usefulness validation, six concrete goals
were set: (i) to specify the target design process and actions in the context of the preferred
application; (ii) to determine a proper approach to usefulness validation in the context of
the conducted design process; (iii) to develop a synthetic validation agent that mimics the
decisions and the behavior of designers; (iv) to investigate the contribution of the parts
of the demonstrative modules to validation; (v) to assess the usefulness of the provided
recommendations in terms of an unbroken progression in the design process; and (vi) to
evaluate the findings and making enhancement proposals towards a better provisioning and
contents of recommendations.

5�1�2 Methodological framing of the fourth research cycle
As introduced above, the object of validation was the usefulness of the recommendations
received by the designer with respect to knowing how to progress in the design process
(i.e., which design action to prefer as the next one.). From a procedural viewpoint,
usefulness depends on the contents of the recommendations, which should be sensitive
(i) to the progress (state) of the design process, (ii) to the number of design actions may
be completed, and (iii) to the accomplishment pursued by the designer (contrary to the
possible procedural inconsistences).

The activities in the fourth research cycle were driven by the need for both (i) data
exploration and (ii) validation of the findings about usefulness as shown in Figure 5.1. Data
were supposed to express the effects of recommendations on progression of the designer in
the design process. They also had to help with hypothesizing an explanatory theory about
the conditions and measure of usefulness. These determined the major activities in the
exploratory part of the research cycle.

237

Structurally, the exploratory part
of the research cycle included (i) a
preparation stage (discussed in Sub-
chapter 5.3) and (ii) an execution of
validation stage (discussed in Sub-
chapter 5.4). The implemented SVA
was used in the exploratory part of
the research cycle, which allowed for
hypothesizing an explanatory theory
about the usefulness of the situation-
related recommendations at the end
of this sub-chapter. The exploratory
part and the confirmatory part of the
research cycle were connected through
this explanatory theory.

The confirmatory part of the research
cycle focused on the consolidation
of this explanation considering a
representative set of design actions
and progression situations. Statistical
analysis was used as a method of
testing in this part of the research
cycle. Beginning with the meaning
and implications of the theory, the
confirmatory part of the research cycle
included (i) an evaluation of the findings
stage (discussed in Sub-chapter 5.5) and
(ii) a discussion and interpretation of the
findings stage (discussed in Sub-chapter
5.6). Reflecting the ideas of practice-
based research (PBR), the goal of the
validation was to generate information
not only about the usefulness of the
recommendation, but also about
opportunities for improvement. Figure 5.1: Approach of RC4

5�2 Main issues of validation of the demonstrative
implementation part

In this sub-chapter, we discuss the issues that were associated with, and influenced the
validation of, the usefulness of the provided recommendations. The two main issues were:
(i) the criteria and measures for evaluation, and (ii) the method of evaluation.

238

5�2�1 Criteria and measures of usefulness validation of
procedural recommendations

We investigated the metrics that had been used to evaluate the performance of
recommendation systems. One of our observations was that measures of algorithm
performance were typically used as evaluation metrics in the case of recommender systems.
Among others, time-dependency, user behaviors, and computational costs were considered
as influencing factors and aspects of evaluation metrics [1]. In the numerical evaluation
either various statistical methods (e.g., root mean square error method, mean reciprocal
rank method, etc.), or machine learning metrics (e.g., accuracy-based metrics, F-measure,
etc.) were used.

Considering the objective of usefulness analysis, we had to conclude that the usual
performance evaluation metrics could not capture the very essence of usefulness. The
simple reason was that evaluation of the effects of the provided recommendations was not
a crucial issue in the case of the studied recommendation systems. This raised the need
for more relevant metrics for usefulness validation. Towards this end, new aspects had to
be considered such as (i) the perceived cognitive support (e.g., originality – which means
recommending something new the users did not know or had thought of before); (ii) the
perceived practical influence (e.g., time saving – which means that the recommendation
helps reduce search time); and (iii) the perceived quality of the presentation (e.g., sufficiency
of description – which means providing recommendation content adjusted to the designer)
[2].

In the literature, usefulness is usually interpreted as utilitarian goodness and not as
instrumental (usability), pragmatic (problem solving), technical (performance), hedonic
(pleasure), and/or transcendental (mystic) goodness [3]. Thus, utilitarian goodness has
been defined as the possible target and the strategic objective of validation. Our hypothesis
was that a useful recommendation delivers information content that (i) is relevant for the
continuation of the design process, (ii) the designer can recognize if it corrects or not, and
(iii) the designer can operationalize the best next design action based on it.

5.2.2 Consideration of a simplified decisional behavior of the
designers

The issue of having a proper evaluation method orientated our attention to the decisional
behavior of designers. The major question was how the designers arrive at decisions and
what they consider when making a decision about the design actions for the execution of
the design process. Related to the latter, a decisional option Si, is created for the designer
when - after finishing some related preceding design actions and having their output data –
she/he selects and operationalizes the next design action. A challenge may be caused by the
multiplicity of the possible design actions. It was considered that decisional situations were
determined by the interplay of three decision variables. They are shown and interpreted in
Figure 5.2.

239

The first decision variable was the semantic appropriateness of a recommendation, Ri.
Based on the actual inference of the concerned module of the ARF, a recommendation may
be appropriate or inappropriate from the aspect of supporting a decision related to choosing
the next correct design action to continue the design process with. The second decision
variable was the recognition of the properness of the recommendation by the designer in
the given procedural context Di. In spite of its trueness, a proper recommendation can be
rejected. On the other hand, the designer may consider an improper recommendation as true
and can accept it. In addition, a third decision variable Ai, was considered to express the
possible decision alternatives of the designer on the right design action. The underpinning
argumentation of this as an influential factor is that, based on the recommendation, the
designer may select a proper design action, but there is a chance of failure at selecting the
proper design action due to the abovementioned multiplicity or due to a personal mistake.
On the other hand, incidental proper selection may also occur.

Using these decision variables, the decisional options could be interpreted as a triplet of
relations. Symbolically:

 Si = (Ri, Di, Ai) (5-1)

These were supposed to occur in handling appropriate and inappropriate recommendations
by the designer. An exhaustive combination of the decisional options leads to a model of
the decisional behavior of the designer. Eventually, the model captures the eight decisional
options concerning the acceptance of a recommendation about taking the next design actions.
The possible combinations of the eight options were sorted into four classes, (i) justified
objective decision; (ii) unjustified objective decision; (iii) incorrect objective decision; and
(iv) negatively justified objective decision. The combinations of these options are shown in

Figure 5.2: Three aspects (or decision variables) of decisional behaviors

240

Table 5.1. The descriptions of the decisional options are given below:

 • A type I justified objective decision means that an appropriate recommendation is
received by the designer, who accepts it and selects a proper design action based on the
content of the recommendation.

 • A type I unjustified subjective decision means that an appropriate recommendation
is received by the designer, who rejects it but - contrary to this - finds a proper design
action independent of the content of the recommendation.

 • A type II unjustified subjective decision means that an inappropriate recommendation
is received by the designer, who accepts it but - for a certain reason - finds a proper
design action independent of the content of the recommendation.

 • A type III unjustified subjective decision means that an inappropriate recommendation
is received by the designer, who rejects it and - contrary to this - finds a proper design
action independent of the content of the recommendation.

 • A type I incorrect subjective decision means that an appropriate recommendation is
received by the designer, who accepts it but – for a certain reason - selects an improper
design action.

 • A type II incorrect subjective decision means that an appropriate recommendation is
received by the designer, who rejects it but – for a certain reason - selects an improper
design action.

 • A type III incorrect subjective decision means that an inappropriate recommendation
is received by the designer, who accepts it, but - contrary to this - selects an improper
design action.

 • A type II justified objective decision means that an inappropriate recommendation is
received by the designer, who rejects it, but cannot find a proper design action without
asking for other recommendation.

aspects of evaluation

recommendation provided by the ARF
appropriate recommendation inappropriate recommendation
acceptance by the designer acceptance by the designer
accepted rejected accepted rejected

de
ci

si
on

 o
n

de
si

gn

ac
tio

n

proper design
action selected

justified
objective
decision I

unjustified
subjective
decision I

unjustified
subjective
decision II

unjustified
subjective

decision III
(+, +, +) (+, -, +) (-, +, +) (-, -, +)

improper design
action selected

incorrect
subjective
decision I

incorrect
subjective
decision II

incorrect
subjective

decision III

justified
objective

decision II
(+, +, -) (+, -, -) (-, +, -) (-, -, -)

Table 5.1: Options of decision making by the designer

241

This set of options of decision-making lends itself to a formal logic that can be applied in
computation for the operation of the SVA, but it also needs to fulfil some other operational
requirements that are discussed below.

5�2�3 Reason and requirements for a synthetic validation
agent

We defined the term ‘usefulness’ with a specific meaning: a recommendation is useful if the
designer can unblock a procedural obstacle and continue the design process. We intended
to assess the usefulness of the recommendations by conducting real life experimentation.
Towards this goal, initially, we planned to conduct the usefulness validation study by the
involvement of a probabilistic sample of software algorithm designers and programmers.
According to the plans, the designers would have used the demonstrative part of the ARF
and could assess the usefulness of the provided recommendations. However, we faced
difficulty with the involvement of practicing designers. The difficulty was caused by the
coronavirus pandemic, which did not make it possible for us to invite designers to conduct
the planned on-site studies. This orientated our attention to other alternative methodologies
and computational solutions.

The search for a surrogate method for the validation of the usefulness of the recommendations
led us the concept of a synthetic validation agent (SVA). By creating an SVA we intend
to mimic the decisional behavior of the designer and to generate a quasi-experimental
dataset for the purpose of validation. The above-discussed three decision variables were
considered as the key elements of the formal reasoning procedure of the SVA. The SVA
has been conceptualized as a generic means of modeling multiple designers with different
behavioral patterns in terms of (i) recognizing the appropriateness of recommendations,
and (ii) executing the implied design action as a correct continuation of the design process.

From a computational point of view, the SVA generates datasets that mimic the (human)
designers’ decisional behavior as a follow-up on the proposed recommendations. The
principle of prognostic reasoning was used to predict the possibilities of decision options
based on the mimicked decisional behavior. As a result, a socially-based indicator could be
realized to express the usefulness of the obtained recommendations based on the justified
objective decisions of the designer. In simple terms, implemented in the form of agent-
based behavior simulator, the SVA was used to simulate if the designer could select the next
correct design action or not.

The SVA was expected to fulfill two types of requirements concerning: (i) simulation of
decisional behaviors, and (ii) generation of decision data and distributions. The concrete
requirements are listed in Table 5.2. The requirements concerning decisional behaviors
formulated the expectation for how a designer responds to the offered recommendations
(which include four options by the combination of acceptance and rejection of the
appropriate/impropriate recommendations). The requirements concerning decisional
data are about the criteria for generating representative probabilistic distribution of the

242

decisional results (i.e., the pattern of choosing proper design actions).

From a computational point of view, the SVA generates datasets that mimic the (human)
designers’ decisional behavior as a follow-up on the proposed recommendations. The
principle of prognostic reasoning was used to predict the possibilities of decision options
based on the mimicked decisional behavior. As a result, a socially-based indicator could be
realized to express the usefulness of the obtained recommendations based on the justified
objective decisions of the designer. In simple terms, implemented in the form of agent-
based behavior simulator, the SVA was used to simulate if the designer could select the next
correct design action or not.

The SVA was expected to fulfill two types of requirements concerning: (i) simulation of
decisional behaviors, and (ii) generation of decision data and distributions. The concrete
requirements are listed in Table 5.2. The requirements concerning decisional behaviors
formulated the expectation for how a designer responds to the offered recommendations
(which include four options by the combination of acceptance and rejection of the
appropriate/impropriate recommendations). The requirements concerning decisional
data are about the criteria for generating representative probabilistic distribution of the
decisional results (i.e., the pattern of choosing proper design actions).

5�2�4 The process of validation of the usefulness of
procedural recommendations

The validation process was decomposed into three stages, which were: (i) preparation, (ii)
execution, and (iii) evaluation. Each stage was then decomposed into multiple research
activities completed by using specific methods and instruments as shown in Table 5.3.

 • The preparation stage included four research activities: (i) specification of
design process and actions; (ii) identification of the demonstrative part involved in
recommendation generation; (iii) identification of the objective of evaluation; and (iv)
development of the synthetic validation agent.

 • The execution stage operationalized the computational mechanism of recommendation
generation as well as the validation agent in the application context. The research
activities consisted of: (i) identification of validation scenarios; (ii) activation of the
validation agent; (iii) detection of an unexpected event; and (iv) generation of a case-
based recommendation.

 • The evaluation stage focused on a statistical analysis of the simulation results.
There were three research activities included in this stage: (i) statistical analysis of
data; (ii) finding correlations between the considered variables and the indicator of
usefulness; and (iii) analysis of the findings concerning improvement opportunities of
the recommendation generation.

243

aspects of requirements requirements
simulation of elements of
decisional behaviors

acceptance of an appropriate recommendation by the designer
acceptance of an inappropriate recommendation by the designer
rejection of an appropriate recommendation by the designer
rejection of an inappropriate recommendation by the designer
aggregated probability of the acceptance/rejection (appropriate/
inappropriate)
the decisional tendency/probability of selecting a proper/improper
design action by the designer
combine the tendency statistics with the aggregated probability
offer a tested behavioral pattern

generation of decision
data and distributions

simulate the operation of recommendation process
generate appropriate recommendations in a statistically normally
distributed manner
generate inappropriate recommendations in a statistically normally
distributed manner
predict the probability of decisional options of the recommendation

Table 5.2: List of functional requirements for the synthetic validation agent

5�3 Preparation stage of the validation process

5.3.1 Specification of design activities in the application
context

In Chapter 4, we discussed how the functionality of the implemented demonstrative
modules was tested in the case of an automatic parking system (APAS), as application
context. In the center of this functionality testing was the ML-type algorithm (A01), which
had been constructed for searching for past parking cases and retrieving the best matching
ones from the repository of the APAS according to the actual parking situation.

The validation of the recommendations was also associated with this part of design process.
The following design activities were completed in the application context. The considered
part of the design process included six design sub-tasks ranging from the pre-processing
of the dataset to the evaluation of the trained machine learning model (see the detailed
descriptions of the design-sub tasks in Sub-section 4.6.4 in chapter 4). The input data was
a set of sensor data representing the parking situations.

The application designer had to execute one or more design actions to complete each
individual task. The potential design actions (see Table 5.6 in Chapter 4), which could be
selected by the designer, were all elements of the reference process protocol. The creative
aspect of the design process was designing information constructs for training, and its

244

stage methods Instruments
1.0 preparation stage
1.1 specification of the design process

and actions in application context
content analysis and
synthesis

1.2 using the demonstrative part for
recommendation generation

1.3 development of the synthetic
validation agent

analytic requirements
specification
creative system thinking programming in a

software toolcomputer coding
1.4 testing the synthetic validation agent pilot functional testing
1.5 deriving indicator of usefulness prognostic reasoning
2.0 execution stage
2.1 identification of validation scenarios scenario analysis programming in a

software tool2.2 operationalization of the synthesis
validation agent

operationalization of the
implemented mechanisms
of the ARF and the
synthetic validation agent
(SVA)

2.3 detection of an unexpected event
2.4 generation of a case-related

recommendation
3.0 evaluation stage
3.1 statistical analysis of the data statistical analysis statistical analysis

toolbox provided
by a software tool

3.2 correlation analysis of the considered
variables and the decisional options

correlation analysis and
synthesis

3.3 improvement opportunities for
the recommendation generation
mechanism

system thinking and
synthesis

Table 5.3: Process of validation of the usefulness of procedural recommendations

expected output was the classification model. This model was used for selection of the
parking case which matches the actual parking situation best.

5.3.2 Identification of the implemented modules taking part in
recommendation generation

Only certain components of the implemented demonstrative modules of the ARF contribute
to generation of recommendations. Their contributions vary. Some of them derive
information about the procedural situation, others consider reasons about the implications
of the situations, and yet others construct and communicate the recommendations. These
components of the ARF are associated with two mechanisms, namely: (i) the process
monitoring mechanism, which detects a non-usual event and a related procedural obstacle
in the design process; and (ii) the decision support mechanism, which provides the

245

recommendation to remove the detected obstacle and to continue the design process. The
functionality of the mechanisms is added up by the lowest level sub-functions, which are
implemented by the computational algorithms of the ARF. The implemented algorithms
were purposively integrated into the computational components.

Two alternative approaches were used to generate the recommendations - as shown in
Figure 5.3. The essence of the first approach was that the pattern of the designer’s responses
was matched to the decision table within the DOI module. In other words, an interrogative
interaction with the designer was organized and used as source of information. The essence
of the second approach was that the reference process protocol was operationalized within
the ROI module for the same purpose. From the viewpoint of recommendation generation,
this second approach has a higher significance. For this reason, only the components
concerned with this approach were involved in the validation study.

5�3�3 Development of the synthetic validation agent as
surrogate of the designer

 5�3�3�1 Fundamental concepts for deriving the decisional
model for the agent

First things first …

A synthetic validation agent (SVA) can be viewed as a system that is situated in some
environment and is capable of autonomous action in that environment in order to meet its
design objectives [4]. In our context, the SVA mimics the flow of procedural decisions of
the human designer as they are made after obtaining the recommendations. The expected
output of the behavioral simulation made by using the agent is a data set that includes the
patterns of the decisional behavior of the designer. We aimed at using this synthesized
dataset to validate the usefulness of the individual recommendations. Striving for this, the

Figure 5.3: Alternative approaches of recommendation generation

246

challenge was how to capture the features of the decisional behavior of the designer with a
view to the obtained recommendations.

It was clarified in the preceding chapters that the RPP is a knowledge-based representation
of the design process of ASRMs from the perspective of knowledge engineering. The
ARF uses the RPP to generate context sensitive recommendations, which carry specific
information for the designer in a particular (necessitating) situation. On the other hand,
the designer is supposed to have her/his own knowledge about the conducted design
process. Putting together these, the assumption can be posited that the designer shares some
common knowledge elements with the RPP. When it comes to accepting or rejecting the
recommendation in the case of hindrance, the designer decides on the next best probable
design action based on her/his familiarity with the solution generation process and the
informativeness (usefulness) of the obtained recommendation.

Assumptions concerning the decisional modes for the agent

The designer's 'decision mode' is interpreted as the knowledge possession-dependent
decisional potential of one individual designer without any further knowledge search,
sharing, or communicating with others. It was assumed that an actual decision mode of
the designer depends on the proportion of the common knowledge (ck) characterizing the
relationship of the designer’s knowledge to the knowledge formally captured in the RPP.
Thus, ck can be formally defined as the proportion of the knowledge the designer has related
to the design process, which she/he is actually working on, as compared to the knowledge
formally captured in the RPP. Formally:

 Ec = Er ∩ Ed (5-2)

 ck = n(Ec)/n (Er) (5-3)

where: ck is the proportion common knowledge, 0 < ck < 1, Er is a finite, non-empty set of
design entities included in the RPP, n(Ec) ∈ Z is the total number of design entities included
in the RPP, n(Er) > 0, Ed is a finite, non-empty set of design actions, which are supposed
to be known by the designer, and Ec is a finite set of common design entities cognitively
shared by the designer and the RPP.

It is very unlikely that there is a 100 percent coincidence with regards to the knowledge
of the designer and the knowledge contained in the RPP. It is also very unlikely that there
is a 0 percent coincidence between them in a given project because the designer does not
have competence enough to deal with the problem in that case. Therefore, we took into
consideration the statistical significance of coincidence and operationalized the statistical
significance parameter p, with regard to the coincidence. We hypothesized and defined
three (most likely) domains of the shared knowledge as follows: (i) (0.05 - 0.25) (assumed
in the case of a less competent designer), (ii) (0.25 - 0.75) (assumed in the case of an
intermediately competent designer), and (iii) (0.75 - 0.95) (assumed in the case of a highly
competent designer).

247

Based on this interpretation, we introduced the concept of decisional modes (Δi) as the
representatives of the proportion of the common knowledge indicated by ck. Formally:

 (5-4)

With regard to the practical design actions, the characteristic of three decisional modes can
be described as follows:

Δ1: The proportion of the common knowledge ck, is between 0.05-0.25. In this case, the
designer possesses insufficient knowledge to judge the appropriateness of the received
recommendation, and she/he has no other options to continue the design process. In this
decision mode, there is a high probability that the recommendation will be accepted.
The probability will be slightly decreasing when the ratio of the shared knowledge is
increasing.

Δ2: The proportion of the common knowledge ck, is between 0.25-0.75. In this case,
the designer may recognize that the recommendation is appropriate to eliminate the
obstacle in the design process, but she/he may also have other options originating in
her/his experiences with the design process to be completed. In this decision mode,
the designer may hesitate to accept a recommendation that she/he is not familiar with.
For the designer using the familiar design action and method may seem to be a better
choice. Therefore, the probability of accepting the received recommendation is getting
lower.

Δ3: The proportion of the common knowledge ck, is between 0.75-0.95. In this case, the
designer possesses the necessary and sufficient knowledge of the design process to
assess the appropriateness of the received recommendation. In this decision mode, the
designer also recognizes how to operationalize the recommendation. Consequently,
there is a high probability of accepting the recommendation.

The three decisional modes together form a so-called decisional model. This will be
clarified and further elaborated on below.

Formal representation of the fundamental concept

A decisional model is assumed to be a pattern of decisional behaviors concerning the
acceptance or rejection of a recommendation. We introduced three formulas to capture the
pattern, that is for: (i) the probability of the acceptance of a recommendation p(aR), (ii) the
probability of shared knowledge p(sk), and (iii) the probability of knowing the knowledge
elements included in the recommendation by the designer p(fk). These formulas are as
follows:

 p(aR) = f(sk, fk) (5-5)

 p(sk) = n(Ep ∩ Ec)/n(Ep ∪ Ec) (5-6)

248

 p(fk) = n(Ep ∩ Ec)/n(Ec) (5-7)

where: p(aRi) is the probability of the acceptance of a recommendation, Ep is a finite, non-
empty set of design entities included in the considered segment of the design process, and
Ec is as specified by Equation (5-2).

Graphical representation of the connectivity of the knowledge elements

The RPP can be visualized by a circular graph as shown in Figure 5.4.a. It captures both the
knowledge elements and their connectivity that serve as the basis of decision-making by
the synthetic validation agent (SVA).

The dots in Figure 5.4.a represent the design entities and the dashed lines represent the
relationships among the entities. The red dots represent the common knowledge elements
shared by the designer and the RPP. The yellow dots represent the concerned segment
of the process flow models. The green dots are the knowledge elements shared in the
recommendation by the designer.

As shown in Figure 5.4.b, the above-described sharing of knowledge can also be
represented by a Venn diagram. This is, however, only an abstract and simplified model
of the connectivity of the design entities. As an aggregate of knowledge elements, the set
Ec includes those common design entities which are shared by the designer and the RPP.
PFMs is the set of process flow models, and Ep is as specified above. The intersection
(common parts) of these sets represents the shared knowledge elements, a part of which is
actually carried by the recommendation, (REC).

Constructing the decision model for the agent

Based on the consideration of these possible decisional situations, a decision model was
constructed in the form of a function specified by Equation (5-8). This function captures
the deviation of the probability function of the shared knowledge p(sk), from the probability
function of the knowledge elements known by the designer p(fk).

 p(aR) = 1- α*(exp(β*p(sk))-exp(γ*p(fk)) (5-8)

where: α is the expected probability of accepting a recommendation and 0 ≤ α ≤ 1, β is a
factor (coefficient) determining the acceptance level, and γ is the expected acceptance level,
and γ < β < 0. A broad scrutiny (logical examination) was applied to test the rationality of
this decision model. Furthermore, to determine the values of the above defined coefficients
(factors) of the reference decision model, we set up design scenarios and numerically
analyzed the outcomes. Figure 5.5 shows the graphical representation of the relationships
of the decisional modes in the decision model, as implemented in the SVA.

249

(a) Graphical representation of the connectivity of the knowledge elements included in
the RPP

(b) The relations of the knowledge possession of the designer and the knowledge
elements related to the RPP

Figure 5.4: Visual representation of the fundamental concept for deriving the decision
model of the agent

250

5.3.3.2 Specification of the functionality of the synthetic
validation agent

As a generic (system-level) function, the SVA generates a validation dataset that mimics
the decision patterns of human designers. The requirements specified in Section 5.2.2 were
used to guide the process of decomposition. In order to facilitate the fulfilment of the posed
requirements, the mentioned generic function was decomposed into two main functions
which are: (i) to simulate decisional behaviors (F1.0); and (ii) to generate validation dataset
(F2.0). The computational sub-functions of the validation agent were derived by a second-
level decomposition of these main functions. The result of these decompositions is shown
in Figure 5.6. Below, we explain the sub-functions of the SVA in more detail.

The sub-function F1.1 simulates how much the designer intends to accept the offered
recommendation. This determines the acceptance probability of the recommendations based
on the reference decision model. Using this acceptance probability, the sub-function F1.2
predicts the probability of the behavioral features considering the decisional options. The
outcome mimics the behavior of the designer in terms of recognizing the appropriateness
of the recommendations. Considering the possible interplay of the pairs of positive
(approving) and negative (disproving) decision options, four behavioral options (features)

Figure 5.5: The relations of the decisional modes as elements of the decisional model
constructed for the SVA

251

were identified: (i) accepting an
appropriate recommendation;
(ii) rejecting an appropriate
recommendation, (iii) accepting
an inappropriate recommendation,
and (iv) rejecting an inappropriate
recommendation. The sub-function
F1.3 simulates the tendency of
this decisional behavior of the
designer. It checks the properness
of the recommendation by taking
into account the follow-up design
actions. Based on the computational
observation if the designer executes,
or not, a particular design action the
sub-function F1.3 identifies the related
design entity. This is possible owing
to the one-to-one (computational)
mapping between the design actions
and the design entities, Based

Figure 5.6: Decomposition of the main functions
of the SVA to sub-functions

on the result of this identification action, the sub-function F1.3 can conclude if a proper
recommendation was given. This conclusion is shared with the SVA.

The sub-function F2.1 generates the data model to represent a range of obstacles, which may
occur at performing certain design actions. In the practical design process, the possibility
of the occurrence of an obstacle varies according to several factors, for instance, (i) the
experiences of the designer, (ii) the characteristics of the dataset, and (iii) the complexity
of the algorithms. Due to the complicatedness of the task of analyzing all of these factors,
we left this issue for prospective future research. To by pass this issue, we assumed that
the designer has the chance to face an obstacle at any design actions equally well. This
assumption was taken into account at the simulation of the data model by the SVA.

The sub-function F2.2 enacts the decisional model to generate a recommendation. This sub-
function is related to the process-based recommendation mechanism of the ARF. It utilizes
the information included in the RPP to: (i) generate candidate process flow models, (ii) to
select of design action flow, and (iii) predict the next design actions. The sub-function F2.3
predicts the patterns of the decisional options. The logic of the procedure underlying the
operation of the F2.3 starts with a classification of the recommendations in terms of their
appropriateness. The classification combines the appropriateness and/or inappropriateness
of each recommendation with the decisional options. The sequence of the decisional options
indicates a noticeable decision tendency. The decisional tendency shows a probabilistic
nature (i.e., the probability of what the designer actually selects). The expected output of
the sub-function F2.3 is the probability of the decisional options, as discussed in Section
5.2.2.

252

5.3.3.3 Specification of the algorithms needed for the smart
validation agent

For the realization of the discussed functionality of the SVA, twelve algorithms were
needed. They are presented in Table 5.4. In the case of sub-function F1.1, in terms of
recognizing the meaning of a recommendation, we considered two decisional options. Four
algorithms were needed to perform this sub-function. The algorithm A1.01 generates the
data model that represents the variations of the common knowledge of the designer is
assumed to have. Each instance contains a set of knowledge elements, which characterize
an individual designer in the SVA. The input data is the contents of the RPP and the
proportion of the common knowledge. The algorithms A1.02 and A1.03 are to calculate
the components of the decisional model, including the probability of shared knowledge
and the probability of known knowledge elements of the mimicked designer, respectively.
The algorithm A1.04 uses the decision model to calculate the probability of the acceptance
of the recommendations. The algorithms A1.01 - A1.04 are executed n times in a loop to
generate the collective behaviors of all mimicked designers.

Belonging to the sub-function F1.2, the algorithm A1.05 determines the probability of the four
decisional options (features) according to the level of acceptance of the recommendations.
For the realization of the sub-function F1.3, two algorithms were specified. The algorithm
A1.06 identifies the follow-up design entities included in the extended design activity flow
graph. The algorithm A1.07 analyses the decisional tendency of the mimicked designer
with regard to the properness of the recommendations. The decision tendency is determined
based on the following conditions:

functions needed algorithms
F1.0: simulate decisional behaviors of the designer

F1.1 A1.01: generate data model to represent the common knowledge of the designer
A1.02: calculate the probability of shared knowledge elements
A1.03: calculate the probability of known knowledge elements
A1.04: calculate the probability of acceptance of the recommendations

F1.2 A1.05: predict the features of decision behaviors
F1.3 A1.06: identify the follow up design entities

A1.07: simulate decisional tendency concerning the design process
F2.0: generate a validation dataset

F2.1 A2.01: generate data model to represent variation of obstacles in the design process
A2.02: generate the recommendations

F2.2 A2.03: generate data model to represent the variation of the appropriateness of
recommendations

A2.04: simulate the patterns of decisional behaviors
A2.05: consolidate the data features

Table 5.4: Specification of the algorithms needed for the computational realization

253

 (5-9)

where: ci is the decision tendency of the designer, ci ←{0,1}, where (1) means a proper
recommendation, and (0) means an improper recommendation Ex is a finite, non-zero set of
design entities, which are included in the extended design activity flow, and Ec is a finite,
non-zero set of design actions related to the design process, which are supposed to be
known by the designer.

The algorithms related to the sub-function F2.1 are employed to enact the computational
action of recommendation generation. The algorithm A2.01 simulates the process of
identifying the obstacle in the design process. What simulation means here is that, based
on the data model, the algorithm selects an entity related to which an obstacle probably
occurred in the process, and generates a case-related recommendation. The constructed
data model represents the variation of the obstacles that probably occur in the design
process. The expected output is a set of possible design entities related to which obstacles
occur. The algorithm A2.02 is a combination of two ARF algorithms, namely, Algorithm
A4.03 (for selecting the candidate PFMs), and Algorithm A4.06 (for predicting the next
design action). The combination of these algorithms is dedicated to the identification of the
candidate PFMs and to the construction of the design activity flow.

To realize the sub-function F2.1, three interrelated algorithms were required. The algorithm
A2.03 constructs the data model to represent the variation of the appropriateness of the
recommendations. The probability of the decisional options is determined by the Algorithm
A2.04. The algorithm A2.05 consolidates all necessary data features. The expected output
is the validation dataset that includes the values of (i) all independent variables, (ii) the
variables related to the knowledge elements of the designer, (iii) the acceptance probability
of the recommendations, (iv) the probability of the decision tendency of the designer, and
(v) the probability of the decisional options.

5�3�4 Testing the synthetic validation agent
The objectives of the functionality testing of the SVA were to check if (i) the related
algorithms produce the outputs according to the expectations, and (ii) the specified functional
requirements are fulfilled. Four sub-functions were tested, as discussed individually below.

5�3�4�1 Testing of the sub-function F1�1

In line with the assumption concerning the construction of the decisional model, three
situations related to the knowledge possession of the mimicked designer were considered.
For the sub-function F1.1, the expectation was that the non-linear relationships of the
acceptance probability of the recommendations and the proportion of the common
knowledge should be reflected by the decision model. To check the fulfilment of this, three
scenarios were tested, in which different number of design entities, 50, 100, and 200, were
included in the RPP.

254

From ck = 0.05 to ck = 0.25, the probability of the acceptance decreased dramatically when
the proportion of common knowledge increased. This trend was noticeable in the decision
mode I. From ck = 0.25 to ck = 0.75, the probability of acceptance was slightly decreased
and reached the lowest value at ck = 0.5. After that, the trend of the probability of acceptance
changed to show a positive relationship with the proportion of common knowledge. This
pattern was noticeable in the decision mode II. From ck = 0.75 to ck = 0.95, the acceptance
probability steadily increased as the proportion of common knowledge of the designer
was supposed to increase. This pattern was noticeable in the decision mode III. As shown
in Figure 5.7, the results of this computational experiment indicated that the computed
patterns of the acceptance levels were consistent with the expectations in the case of each
scenario,

5�3�4�2 Testing of the sub-function F1�2

The basic requirement for the sub-function F1.2 was an aggregated probability of the
acceptance of the appropriate or the rejection of the inappropriate recommendations. Three
independent variables were used in the testing scenarios to determine the probability of
the features of the decision options: (i) the total number of entities included in the RPP, (ii)
the accuracy rate of the recommendation generation, and (iii) the proportion of common
knowledge. In the test, the first two variables were regarded as the constant parameters and,

Figure 5.7: The patterns of the acceptance probability of the recommendations according
to the probability of shared knowledge

255

as such, were set to 100 entities and 75 % of the accuracy rate, respectively. We assumed
that the accuracy rate represented the probability of the appropriate recommendations.
The third variable was for the set of discrete values of 0.05, 0.25, 0.5, 0.75 and 0.95,
respectively, representing the five levels of common knowledge.

The results shown in Figure 5.8 indicate that the different patterns (features) of the
decision options occurred according to their aggregated probabilities. In line with the
decision model I, the SVA (mimicking a particular type of designers) intended to accept all
recommendations. In the case of 75 % accuracy rate, the proportion of accepted-appropriate
and accepted-inappropriate decisions was 0.75: 0.25, respectively. In the domain from ck
= 0.25 to ck = 0.75, the acceptance probabilities of the recommendations were found to be
according to the decision mode II. At ck = 0.95, the acceptance probabilities were found to
be according to the decision mode III.

The numerical results showed the aggregated probability of the four features (accepted-
appropriateness, rejected-appropriateness, accepted-inappropriateness, and rejected-
inappropriateness) of the decision options. On the approval side of the recommendation
acceptance, the proportions of accepted-appropriate and accepted-inappropriate decisions

Figure 5.8: The patterns of the features of decisional options according to the levels of
the common knowledge

256

were 0.75: 0.25, respectively, for all scenarios. This was similar to the disproval side of the
recommendation acceptance, where the proportion of the aggregated probabilities of the
rejected-appropriate and the rejected-inappropriate decisions were 0.75 : 0.25, respectively,
for all scenarios. This allowed us to conclude that the requirement posed for F1.2 was
fulfilled.

5�3�4�3 Testing of the sub-function F1�3

The expected output of the sub-function F1.3 was the aggregated probability of selecting
the proper/improper recommendations by the SVA. To determine the probability of
the properness of the recommendations, three independent variables were taken into
a consideration. They were (i) the total number of entities included in the RPP, (ii) the
proportion of common knowledge, and (iii) the extended design activity flow. In the test,
the extended design activity flow was chosen based on the highest values of the joint
probability distribution of the process flow models, which included three entities of the
case-related recommendation and n number of succeeding design entities.

As in the previous test, the proportion of the assumed common knowledge was set to the
five levels (i.e., 0.05, 0.25, 0.5, 0.75, and 0.95) at the investigation of the correlations with
the aggregated probability of the proper recommendations: the knowledge elements of the
agents were generated randomly by varying the proportion of common knowledge. Three
scenarios were tested, in which different number of design entities were included in the RPP,
namely: 50, 100, and 200. The simulation was run for generating 100 recommendations for
each scenario.

The obtained results showed the aggregated probability of the combined decisional
tendency of the SVA for the different proportion levels of the common knowledge. They
are presented in Figure 5.9 for each of the three scenarios. We noticed that the proportion
of common knowledge and the probability of properness of the recommendations had a
strong positive relationship. This was ‘signposted’ by the linear trends for all scenarios.
We confirmed that the algorithms for the realization of F1.3 produced the output as per
expectation.

5�3�4�4 Testing of the sub-function F2�2

The sub-function F2.2 was about predicting the probability of the four decisional options
concerning the recommendations. To realize the sub-function F2.2, that is to determine the
pattern of decision options, the algorithms needed to combine all data that were required
for the characterization of the decisional behaviors. This included the data concerning (i)
the recognition of the appropriateness of recommendations, (ii) the features of the decision
options, and (iii) the properness of the recommendations). Like before, five scenarios were
defined according to the assumed proportions of the common knowledge (0.05, 0.25, 0.5,
0.75 and 0.95, respectively) in the computational testing.

In the case of ck = 0.05, the outcomes were according to the decision model I. All
recommendations were accepted, but the designer mimicked by the SVA has insufficient

257

knowledge to evaluate the appropriateness of the recommendations. Thus, the pattern of
the decisional options showed a high proportion of unjustified subjective decisions. In the
case of ck = 0.25 to ck = 0.75, the patterns of decisional options were generated according
to the decision mode II. In the case of ck = 0.95, the pattern followed the decision mode
III. Figure 5.10 shows the results obtained for the probabilities of the decision options for
each of the five proportion levels of the common knowledge. These results confirmed that
the requirement for the sub-function F2.2 was fulfilled.

5�3�5 Deriving indicator for usefulness
As explained at the beginning of this chapter, the objective of the validation study was to
provide (preferable quantifiable) metrics to evaluate the usefulness of the recommendations.
However, it could not be captured by an exact quantitative variable and function. Therefore,
we needed to compose a quantitative indicator. The decisional options were shown in Table
5.1. Their combinations define various decisional situations, which may vary in the design
process in terms of judging the appropriateness of the recommendations and choosing the
proper follow up design actions. This latter was interpreted as decisional patterns. The goal
of the computational simulation was to produce various decisional patterns according to the
assumed decisional behavior of the designer. The decisional pattern is the basis of deriving
indicator of usefulness of the recommendations.

Figure 5.9: The correlations of the aggregated probabilities of the combined tendency of
the SVA and the proportion of common knowledge

258

The method of prognostic reasoning was applied to construct a usefulness indicator
concerning the recommendation based on the decisional patterns. The term ‘prognosis’
means prediction of a final outcome based on preliminary data and calculations [5]. In
general, prognostic reasoning is a forward-looking process to predict a most likely situation
based on the current symptoms or indicators [6]. As a first attempt, we defined the usefulness
indicator as a function of the decisional mode:

 Ui = f(Δi) (5-10)

where: Ui is the evaluated indicator of usefulness, which involves two decisional options:
(i) type I justified objective decision (JOD_I), and (ii) unjustified subjective decision
(USD). These two decisional options logically imply that the designer can continue the
design process. According to the discussed four decisional options, the value of the totaled
probabilities is equal to 1. Hence, the range of variation of the probability value of the
indicator of usefulness is between 0 and 1. Symbolically:

 Ui = p(u1)+ p(u2) (5-11)

where: u1 is type I justified objective decision, and u2 is unjustified subjective decision.

Figure 5.10: The patterns of the decisional options according to the proportion of the
common knowledge.

259

5�4 Execution of the usefulness validation of procedural
recommendations

5.4.1 Identification of the validation scenarios
In order to evaluate the usefulness of the recommendations, we investigated the
correlations of the possessed knowledge of the SVA and its decisional behavior with a view
to the recommendations. To realize prognostic reasoning, the proportion of the common
knowledge possessed by the SVA is used to predict the usefulness of the recommendation.
The four parameters that established varying validation scenarios were: (i) the total number
of design entities (N), (ii) the relationships of the design entities (L), (iii) the performance
of the recommendation generation mechanism (ar), and (iv) the proportion of common
knowledge (ck). The values of the first two parameters were derived based on the RPP.
To represent the performance of the recommendation generation, the accuracy rate was
used for the third parameter. The appropriate recommendation was identified based on
the assumed normal distribution and the statistic measure related to the accuracy rate. The
fourth parameter represents the knowledge possession of the designer.

Two validation scenarios were set up with a constant number of 50 and 100 knowledge
elements, respectively, for carrying out validation data generation by the SVA. All of the
three decisional modes were tested based on these two scenarios. The total number of
entities included in the RPP varied in the particular decisional modes. For all scenarios, the
accuracy rate was regarded as the controlled variable. The expected accuracy rate was set
at 75% in the test. The parameter values for the validation scenarios are presented in Table
5.5.

5�4�2 Operationalization of the synthetic validation agent
Figure 5.11 shows the computational workflow of operationalization of the SVA. Within
the workflow, three procedural parts were specified. The procedure I was related to the
execution of the algorithms for the sub-functions F1.1 and F1.2. This procedure included

parameters scenario I scenario II
maximum number of knowledge elements known
by the designer (nmax)

50 100

the decisional mode Δ1 Δ2 Δ3 Δ1 Δ2 Δ3

the proportion of common knowledge (ck) 0.15 0.5 0.85 0.15 0.5 0.85
the total number of design entities as the elements
of the RPP (N) 333 100 59 667 200 118

the total number of connections of the entities in
the RPP (L)

13,489 1,246 413 55,209 4,938 1,822

Table 5.5: Validation scenarios

260

Figure 5.11: The operationalization of the SVA

261

eleven steps to determine the acceptance probability of the recommendations. The procedure
II was related to the execution of the algorithms for the sub-function F1.3. The expected
output of this procedure was the set of decision tendencies concerning the properness of the
recommendations. The procedure III was related to the aggregation of the two sets of data
related to the decisional behaviors of the SVA and to determining the patterns of decision
options. The expected output of the overall computational workflow was the (so called)
validation dataset.

Workflow procedure I:
Prediction of the probability of the features of the decisional options of the SVA

Input data: (i) the reference protocol (RPP), and (ii) the given proportion of common
knowledge

Output data: (i) data features containing the independent variables, and (ii) the probability
of the acceptance of the recommendations

Step 1: simulate using the data model to identify the obstacles in the design process

Step 2: identify the particular design entity related to which the obstacle probably
occurred

Step 3: construct the candidate process flow models that include the concerned design
entity

Step 4: construct a design activity flow as the representative of the most informative
PFM

Step 5: simulate the knowledge elements of the designer mimicked by the SVA

Step 6: identify the design entities which represent the knowledge elements of the
designer

Step 7: calculate the probability of the shared knowledge

Step 8: calculate the probability of the known knowledge elements of the designer
mimicked by the SVA

Step 9: calculate the probability of acceptance of the recommendations

Step 10: consolidate the data features that includes n number of instances

Step 11: calculate the probability of the features of decision options

Workflow procedure II:
Simulation of the decision tendency of the SVA

Input data: (i) the process-based recommendations, and (ii) the elements of the common
knowledge possessed by the designer who is mimicked by the SVA

Output data: (i) data features containing the independent variables, and (ii) the set of
decision tendencies of the designer mimicked by the SVA

Step 1: construct n number of the extended design activity flow

262

Step 2: identify the follow-up design entities

Step 3: simulate the decision tendency of the designer according to the knowledge
elements of the designer and the follow-up design entities

Step 4: consolidate the data features that includes n number of decisions

Workflow procedure III:
Prediction of the patterns of the decisional options of the SVA

Input data: (i) the process-based recommendations, (ii) a given accuracy rate of the process
of recommendation generation, (iii) the data features from the workflow
procedure I, and (iv) the data features from the workflow procedure II

Output data: a validation dataset

Step 1: simulate the data model to identify the appropriateness of the recommendations

Step 2: evaluate the appropriateness of the recommendation

Step 3: simulate the patterns of the decisional options

Step 4: consolidate the data features for constructing the validation dataset

5.4.3 Identification of the obstacle in the design process
In the practical design process, a non-usual event (NUE) occurs, when the ARF detects the
irregular pattern of designer’s behavior following his/her procedural decision (concerning
the next design action and the related design method). This situation is assumed as the first
step of the simulation of the recommendation generation. It starts with the identification
of the obstacle which possibly appeared in the design process. This section describes the
behavior of the designer when he/she experiences an obstacle. Table 5.6 shows the list of
possible reactions that a designer will behave to response the obstacle at any design actions.

The lack of information (information deficiency or incompleteness) or a wrong assumption
may lead to wrong decision of the designer, which may in turn create an NUE. This latter
appears as an obstacle in the design process. Two accompanying questions arose: (i) what
may cause information deficiency or incompleteness with regard to a design action, and
(ii) what may lead to the formulation of a wrong assumption concerning a design action?
These are fundamental questions since useful recommendations should eliminate the lack
of information and should prevent a wrong assumption.

5�4�4 Generation of case-related recommendations
Having identified an obstacle, the concerned module of the ARF generated a procedural
recommendation and suggested a proper method by considering (processing) the relevant
segment of the process flow model. The generated recommendation was intended to
guide the selection of the next design action that would probably lead to a sufficing result.
Computationally, the formulation of the recommendation relied on the related segment of
the process flow model, which was captured in the reference protocol Pctx := {epre,ectx,epost}

263

sub-
tasks

potential design
actions

information deficiency or
incompleteness

formulation of wrong
assumption

1.0 cleansing
dimensionality
reduction
blending
split data

Unable to find incompleteness
in the dataset
Unable to recognize irrelevant
data instances
Unable to understand the
characteristics of the required
dataset

Removing important
features from the dataset
Selecting mismatching
method to pre-process the
dataset

2.0 extract features
analyze the dataset
components
select attributes
select a response

Unable to recognize irrelevant
features in a dataset
Unable to determine the
correlation of the features

Selecting incorrect features
for training a model
Identifying incorrect type
of predictions

3.0 identify an objective
of a model
selecting a training
algorithm
fitting a model
modify the training set
select the model
export the model

Unable to recognize
deficiency or incompleteness
of the training set
Unable to recognize types
of predictive features and
response
Unable to define the objective
of the trained model

Defining irrelevant
objective to train the model
Selecting mismatching
algorithm to train the model
Over fitting the model
Under-fitting the model

4.0 identify the criteria to
select the evaluation
metrics
select the metrics
scoring a model
modify the metrics
optimize the
parameters

Misunderstanding the goal of
the trained model
Lack of knowledge about the
metrics
Unable to define the goodness
of the model

Selecting mismatching
metrics for the considered
training algorithm
Selecting irrelevant metrics
to evaluate the model
Applying improper metrics
to evaluate the model

5.0 analyze the metric
modify the metrics
optimize the
parameters

Unable to recognize the
deficiency and incomplete-
ness of the sample set
Unable to analyze the results
Unable to semantically
interpret the results

Select multiple methods
for scoring the predictive
model
Apply the improper method
for scoring the model

6.0 evaluate performances Unable to identify the
numerical value to justify the
goodness of the predictive
model
Unable to decide the goodness
of the model

Misinterpreting the
evaluation metrics
Selecting inefficient model
due to misinterpretation of
evaluation metrics

Table 5.6: Reactions of a designer leading to an expected event

264

and the set of best methods that could be used to execute the concerned design action, m̂pre,
m̂ctx,m̂post ∈ M̂.

In the validation test, the generation of recommendation was simulated by means of the
Bayesian network embedded in the RPP. The highest value of the joint probability distribution
(JPD) of the candidate process flow models was selected as a case-related recommendation.
What the term ‘case-related’ means in this context is that the recommendation was generated
based on historically-used cases of the concerned design process. The selection of the best
method was assumed to be done without getting any further information from the SVA.
Figure 5.12 shows the simulation results of the case-related recommendation generation.
According to the fundamental concept of deriving the decisional model for the SVA, the
circular graph representing the RPP. In the figure, the dots represent the design entities and
the dashed lines represent the relationships among the entities.

In the simulation, the total number of the entities was set to 50 elements. Altogether, a total
number of 308 links were included in the RPP. In the simulation the design entity e13 was
identified as the action where the obstacle was appeared. It is shown by the blue dot in
Figure 5.12. The simulated recommendation involved three entities, e31, e33, and e38. They

Figure 5.12: Graphical representation of the case-related recommendation generation
using the RPP

265

are connected by the solid red line in Figure 5.12. The yellow dots represent the concerned
segment of the process flow models (Ep), and the red dots represent the common knowledge
elements (Ec) shared by the designer and the RPP.

We set the proportion of common knowledge to 0.5. Thus, there were 25 common knowledge
elements. The green dots represent the knowledge elements shared in the recommendation
by the designer. The extended design activity flow included two design entities e44, e45 ∈ Ex
which are connected by the green solid line. The entities that connected by the dash blue
lines are the alternative design activity flows. Based on the numerical value concerning
the above explanation, the probability of the decision options was determined. These are
shown in Table 5.7.

aspects of evaluation

recommendation provided by the ARF
appropriate recommendation

(0.75)
inappropriate recommendation

(0.25)
acceptance by the designer acceptance by the designer
accepted
0.7977

rejected
0.2033

accepted
0.7977

rejected
0.2033

de
ci

si
on

 o
n

de
si

gn

ac
tio

n

proper design
action selected
= 2/19

justified
objective
decision I

0.1597

unjustified subjective decision
0.3861

improper design
action selected
= 4/19

incorrect subjective decision I
0.4273

justified
objective

decision II
0.027

Table 5.7: Determination of the probability of the decision options according to the
simulated case-related recommendation

5�5 Evaluation of the usefulness of recommendations

5�5�1 Descriptive statistical analysis of the data for validation
The validation datasets were generated by using the SVA for simulation. Two scenarios
were considered based on a constant number (50 and 100 elements, respectively) of the
knowledge elements of the SVA. We aimed at analyzing the decisional behaviors of the
simulated agents from two viewpoints: (i) comparing the particular decisional mode in
the different scenarios, and (ii) comparing the different decisional mode in a particular
scenario. Two dependent variables were considered: (i) the total number of instances of
decision options – which represented the properness of recommendations, and (ii) the
acceptance probability of the recommendations p(aR).

266

Table 5.8 shows the descriptive statistics of the dataset according to the validation scenario
I. The instances of the type I justified objective decision (JOD_I) and the unjustified
subjective decision (USD) represented the total number of proper recommendations.
Meanwhile, the instances of the incorrect subjective decision (ISD) and the type II justified
objective decision (JOD_II) represented the total number of improper recommendations.
In view to Δ1, the total number of improper recommendations was bigger than the total
number of proper recommendations.

decisional mode I decisional mode II decisional mode III
n(RPP) = 333& ck = 0.15 n (RPP) = 100& ck = 0.5 n (RPP) = 59& ck = 0.85

in
st

an
ce

s

p(aR)
in

st
an

ce
s

p(aR)

in
st

an
ce

s

p(aR)

mean std mean std mean std
JOD_I 11 0.079 0.133 42 0.266 0.053 66 0.483 0.066
USD 13 0.468 0.127 66 0.516 0.06 106 0.457 0.08
ISD 145 0.544 0.175 79 0.494 0.072 23 0.501 0.08
JOD_II 21 0.363 0.108 13 0.28 0.042 5 0.039 0.099

Table 5.8: Descriptive statistical data of the validation scenario I – ‘nmax = 50’

In contrast with the decision mode III, the total number of proper recommendations was
much larger than the total number of improper recommendations.While the proportion
of the total number of proper recommendations and the improper recommendations was
also the same. This pattern was similar to the data of the validation scenario II, as shown
in Table 5.9. Thus, we concluded that, in comparison, a decision mode which had the
bigger proportion of common knowledge elements yielded in the higher number of proper
recommendations.

decisional mode I decisional mode II decisional mode III
n(RPP) = 333& ck = 0.15 n (RPP) = 100& ck = 0.5 n (RPP) = 59& ck = 0.85

in
st

an
ce

s

p(aR)

in
st

an
ce

s

p(aR)

in
st

an
ce

s

p(aR)

mean std mean std mean std
JOD_I 15 0.092 0.085 35 0.168 0.035 63 0.353 0.507
USD 21 0.529 0.089 59 0.583 0.116 105 0.548 0.088
ISD 129 0.566 0.202 93 0.482 0.141 28 0.489 0.104
JOD_II 19 0.359 0.11 13 0.326 0.05 4 0.093 0.064

Table 5.9: Descriptive statistical data of the validation scenario I – ‘nmax = 100’

267

Before normalization, we analyzed the probability of the recommendation acceptance
by considering the simulated data of the average value of acceptance probability for all
decisional options. Therefore, the total sum of the probabilities within the same decisional
mode was greater than one. Different decisional modes showed different patterns of decision
options. In the case of Δ1, the acceptance probability of JOD_I was very small compared
to the other options. In the case of Δ2, the smallest value of the acceptance probability of
JOD_II was found in comparison with the other decisional options.

For all decision modes, the acceptance probability of the USD and the ISD were derived
for the same proportions (by p(aRi) = 0.5, approximately). This pattern seemed to be
similar to the statistical data obtained in the case of the scenario II. It confirmed that the
designers simulated by the SVA tended to accept the appropriate recommendations if the
proportion of common knowledge elements was comparatively bigger. The total number
of knowledge elements in the RPP seemed to have not influence on the acceptance of the
recommendations with regard to the same decisional mode.

5�5�2 Investigation of correlations between the considered
variables and the decision options

The aim of the work described in this section was to investigate the correlations between
the considered variables (i.e., the decision modes, Δi and the total number of design entities
included in the RPP) and the decision options, in particular the JOD_I and the USD. The
indicator of usefulness relies on these two interrelated features. In our investigation, the
indicators of usefulness were considered in two validation scenarios. The results are shown
in Figure 5.13. In this figure, the black dashed line represents the indicator of usefulness
of the recommendation in the case of the validation scenario I, and the blue solid line
represents the indicator of usefulness in the case of the validation scenario II. The major
findings are as follows:

Findings concerning the comparison of the particular decisional modes between
different scenarios

 • By comparing the results yielded by the particular decisional modes in the two
validation scenarios, we found that, in the case of Δ2 and Δ3, the usefulness of the
recommendations was higher when they were generated by a lower number of design
entities in the RPP. At the same time, in the case of Δ1, the indicators were found to be
not significantly different in the two scenarios.

 • A lower number of knowledge elements gave a higher probability value of usefulness
in the case of Δ2 and Δ3. However, in the case of Δ1, it seemed to be not significantly
different in the two scenarios (n(RPP) = 333, and n(RPP) = 667). We also found that
when the RPP contained a large number of design entities and the number of knowledge
elements captured by the SVA increased, the usefulness of the recommendation was
increased only with a small probability value.

268

Findings concerning the comparison of the different decisional modes in the same
scenario

 • By comparing the results concerning the different decisional modes in the same
scenario, we found that Δ1 and Δ3 yielded in a higher probability of usefulness than
Δ2. The patterns of the decision options followed what was assumed for the decisional
model in the case of both tested scenarios.

 • Having a constant number of knowledge elements in the SVA, whilst the proportion
of common knowledge elements decreased due to the increased number of the design
entities in the RPP, the usefulness slightly decreased in the transition from Δ3 to the
Δ2 and then it increased in the transition from Δ2 to Δ1. This pattern confirmed that the
dataset generated by the SVA was valid and sufficient for the validation study.

 • Concerning the features of the usefulness indicator, the following can be stated. The
probability value of the JOD_I was in a negative correlation with the total number
of design entities included in the RPP. If the common knowledge elements presented
by the SVA were fixed to be a given constant number and the total number of design
entities included in the RPP increased, the probability of the JOD_I decreased. At the
same time, the proportion of the USD increased as the total number of design entities
included in the RPP increased.

Figure 5.13: The correlations of the common knowledge elements and the probability of
the usefulness indicator of recommendations

269

 • Furthermore, no matter if the offered recommendation was useful or not, there was
a high probability that the SVA either accepted an inappropriate recommendation or
rejected an appropriate recommendation. The explanation is that it did the acceptance
or rejection without being aware of the appropriateness of the recommendation.

5�5�3 Opportunities for improving the recommendation
generation process

Finding opportunities for improving the recommendation generation process is a vital issue
for the ARF as a whole. From a knowledge engineering point of view, the improvement
of the recommendation generation can be seen as a knowledge management issue. More
concretely, the pursued increase in the usefulness of recommendations can be achieved by
improving the knowledge management related to the RPP. This has legacy since the RPP is
a computational process model, which contains knowledge about design entities and their
relationships. As was argued earlier, the proposed RPP is flexible enough to represent even
complicated (multi-trajectory) design processes. Based on the variable relationships of the
incorporated design entities, multiple design activity flows can be captured in the RPP.
This affordance was used as the basis of the recommendation generation in this promotion
research. When it comes to the evaluation of the usefulness of the recommendations, this
affordance can also be utilized. When improvement opportunities for the recommendation
generation are sought for, two variables (i) the decisional modes, and (ii) the indicators of
the usefulness can be taken into consideration. The former variable has direct influence
on the actual decision of the SVA, and the latter can be used for the evaluation of the
recommendation generated using the RPP. These will be discussed below in detail.

5�5�3�1 Improvement opportunities concerning the decisional
modes

The concept of decisional modes was introduced to describe the proportion of common
knowledge possession of the designer in the case of a particular design process. Three
types of the designers were taken into account based on how competent they are to execute
the design process. The ARF is able to diagnose computationally what the designer knows
about a particular design action when an NUE has been detected. However, it cannot
evaluate how much knowledge an individual designer possesses. The fact of the matter
is that the knowledge possession of a designer is an uncontrollable variable. On the other
hand, it strongly influences the acceptance of recommendations. Hence, when looking for
improvement opportunities, a key issue is how to determine the optimal proportion of the
common knowledge that is shared by the mimicked designer and the RPP. We argued that
this information can be used to enhance the usefulness of recommendations.

Regarding the decisional model of the SVA, the decisional modes have direct relations with
the acceptance probability of the recommendation. A higher probability of acceptance offers
a higher possibility of having a useful recommendation. Taking this into consideration, the
following opportunities seem to be possible for improving the quality of recommendation
generation:

270

 • In the case of Δ1, although it yielded the highest value for the probability of the
usefulness indicator, the probability of JOD_I was quite low (less than 0.1 as shown
for both scenarios by the columns of decisional mode Δ1 in Figure 5.13). The SVA was
equipped with constant number of knowledge elements of (nd = 50 and 100), while
the RPP contained a large number of design entities and their relationships. These
conditions implied that the RPP could represent a rather complicated design process.
However, to enhance the probability of acceptance, it should also offer a practical and
executable procedure as part of the recommendation.

 • In the case of Δ2, the lowest probability of the usefulness indicator was obtained in
comparison with the other decisional modes (as shown for scenario II - nd = 100 - in
the column of Δ2 in Figure 5.13). An increase in the number of design entities included
in the RPP decreases the proportion of common knowledge possessed by the SVA.
This adjustment implies a replacement of the SVA from the Δ2 to Δ1 decisional mode.
As a result, the acceptance probability of recommendation is increased. However,
the transition from the Δ2 to Δ1 decisional mode also increases the computational
complexity of the RPP.

 • In the case of Δ2, the highest probability value of the JOD_I was obtained (as shown
for scenario I - nd = 50 - in the column of decisional mode Δ3 in Figure 5.13). The
reason was that the RPP was constructed for a less complicated design process and
that the decisional mode Δ3 represented a high proportion of common knowledge of
the SVA (ck = 0.85). As a consequence, the SVA was able to recognize the appropriate
recommendations with a higher chance. Therefore, it became evidenced that the
probability of recognition of the recommendations is a key factor of enhancing the
acceptance probability of the recommendation.

Considering all different decisional modes together, we could conclude that there were three
possible ways of enhancing the acceptance probability: (i) offering practical and executable
recommendations, (ii) offering more recommendations options, and (iii) increasing the
awareness of the appropriateness of the recommendations.

5�5�3�2 Improvement opportunities concerning the usefulness
indicator

Concerning the usefulness indicator, it should be expected that the higher probability of
the indicator is better. It indicates the higher possibility that the designer can continue the
design process. However, if we consider two features of the indicator, it should be expected
that the higher probability of JOD_I is better. On the other hand, the lower probability of
USD should be better. These conditions ensure that the designer is able to recognize the
appropriateness of the offered recommendation. If considering all expectations concerning
the usefulness indicator, the preference conditions for the usefulness of the recommendation
should be (i) the highest value of the probability of the indicator, (ii) the highest value of the
probability of the JOD_I, and (iii) the lowest value of the probability of the USD.

Simulations were conducted to quantify the indicators of recommendation usefulness.
The simulated results are shown in Table 5.10. It was found that no indicator satisfied the

271

expectations in all decisional modes. On the other hand, there were conflicts found between
the expected values of the indicator and its features (see the underlined numbers in Table
5.10). Taking these constraints into consideration, there were three possible options for
improving the quality of the recommendation generation.

(i) If the JOD_I is regarded as the major indicator of recommendation usefulness, then
the expected probability value of the indicator should be approximately equal to, or
greater than 0.24. The prognostic reasoning casted light on the fact that the RPP should
be constructed so as to serve the incompetent designers in decisional mode Δ3.

(ii) If the USD is regarded as the major indicator of recommendation usefulness, then the
expected probability value of the USD should be approximately equal to, or less than
0.25, The conclusion is that the RPP should be constructed so as to serve the competent
designers in decisional mode Δ3.

(iii) If the overall usefulness indicator is regarded as the primary indicator of recommendation
usefulness, then the expected value of its probability should be greater than 0.5. This
implies that the RPP should be constructed so as to serve the incompetent designers in
decisional mode Δ1.

nd
Δ_1 (ck = 0.15) Δ_2 (ck = 0.5) Δ_3 (ck = 0.85)

JOD_I USD IND JOD_I USD IND JOD_I USD IND
50 0.052 0.525 0.577 0.102 0.36 0.462 0.24 0.316 0.556
100 0.038 0.554 0.592 0.094 0.269 0.363 0.181 0.241 0.422

Table 5.10: The simulated results concerning the usefulness indicators

5.6 Discussion and interpretation of the findings

5�6�1 Assessment of the validation methodology
The methodology validation was a rather complicated design since several aspects had to
be considered including (i) the underpinning theory, (ii) the procedure of validation, (iii)
the use of methods and techniques, (iv) the use of instrumentation, and (v) the criteria for
goodness (e.g., logical correctness of the validation, the reliability of validation process,
and the consistency of findings). The underpinning theory of the validation study was
actually not a formal theory (though several elements were captured in abstract models).
The principles and the activities of the validation study were based on a set of interrelated
assumptions. They were treated in the promotion research as (axiomatic, intuitively
accepted) working hypotheses concerning (i) the decision behavior of the designer, (ii) the
selection of the decision variables, and (iii) the specification of the decisional modes and
the decisional model. In overall, we hypothesized that these were necessary, and that the
designer decisional behavior could be described satisfactorily by these, and the decisional
options could be properly captured. We did not find any evidence about the incorrectness
of these assumptions neither at completing the research work, not at assessing the logical

272

and computational results.

The validation process was divided into three stages, (i) the preparation stage, (ii) the
execution stage, and (iii) the evaluation stage. This was a necessary and useful action to
reduce the innate complexity and make the flow of the specific actions transparent and
supervisable. Since participation of human designers in the validation process could not be
considered for technical reasons, a synthetic validation agent (SVA) was conceptualized as
a means for generation a synthetic validation dataset. Thus, the SVA is the kernel instrument
in the validation study. The construction of the SVA happened in the same programming
environments as was used for programming of the demonstrative part of the ARF. The
typical methods of using the SVA were (i) computational simulation of the SVA, and (ii)
the analysis of multiple scenarios. The SVA was used both as a research instrument and as
a flexible software tool in the simulative part of the validation study. Below, we revisit two
aspects of the validation methodology: (i) the procedure of validation, and (ii) the use of
the methods for the validation.

As briefly mentioned above, the decomposition of validation process into the sub-stages
was advantages since it helped the clarification of the contents and the planning of the
activities for validation. In each stage, a specific objective and a set of concrete activities
were specific. It provided a kind of check list of what to do for the validation. The
decomposition was challenging since it needed a strong mental model and a clear view
on the logical sequencing of the planned activities and the information sharing between
them. This challenge was present mainly in the preparation stage, since the functions of
the SVA needed to fulfill the functional requirements were not well-identified. On the other
hand, the programming of the SVA was tested and, technically, it worked properly. We
were able to generate the validation dataset in the execution stage by using the SVA for
simulation, but the dataset proved to be insufficient for the evaluation of the usefulness of the
recommendation in the evaluation stage. Therefore, the simulation had to be repeated on a
broader base. Another procedural inconsistency was observed concerning the specification
of the validation scenarios and development of the SVA.

As a time-consuming task, the conceptual development of SVA happened in the preparation
stage. However, the specification of the validation scenarios happened in the execution stage,
based on the logical sequence of the planned activities. It was not clear in the preparation
stage what validation scenarios would the SVA be used. Hence, the issue was that the
simulation with the help of the SVA in the execution stage might not produce the expected
data and the testing scenarios ought to have been revised. Consequently, modification in
the programing of the SVA was needed. Together with the detailed functional testing of the
SVA in the development phase, it resulted in some repetitive and unnecessary extra work.

As mentioned above, SVA-based simulation was used as the method of generating the
validation dataset. Concerning the latter, two testing scenarios were identified. The
expected results were the correlations of the considered variables (e.g., decisional modes,
probability of acceptance of the recommendation, the probability of the decision options,

273

and the usefulness indicator). The results produced by the repeated simulation showed
that the SVA-based simulation was an appropriate method when participation of human
designers in the validation process could not be realized. Notwithstanding, we had to face
some limitations in terms of this approach, namely: (i) the decisional behaviors mimicked
by the SVA were limited by the underpinning assumptions, and (ii) a comparative empirical
evaluation of the obtained simulation results was not possible in the lack of ‘in vivo’
experimentation and testing of multiple samples.

Considering the need for scientific rigor, it means that evaluation of the usefulness was
correct and acceptable only in the context of using the SVA. The results cannot be applied or
scrutinized in other contexts without the modification of the assumptions and fundamentally
changing the research design. Moreover, it must be mentioned, that the validation dataset
was generated based on the sample data compiled for the particular validation scenarios.
Since not actual empirical data were available to evaluate the correctness of the simulated
results, only logical validation could be applied.

5�6�2 Evaluation of the usefulness of recommendation in
action

The evaluation of the usefulness of the recommendation happened based on the simulation
dataset generated by the SVA. The data generation was combined with the simulation of
the case-related recommendation generation. The validation dataset allowed us to explore
the relationships of the considered variables, in particular the relationship of the decisional
modes and the patterns of the decisional options. This analysis provided an informational
basis for the evaluation of the usefulness of the recommendations (including the derivation
of the usefulness indicator and its features). However, the evaluation of usefulness was
limited only to the quantitative aspect of the recommendations since it was done based on
the comparison of the proportions of common knowledge shared by the SVA with regard
to that of the RPP. As a variable, these proportions were supposed not only to measure how
many knowledge elements of the SVA possessed related to the design process, but it also
referred to the (cognitive and rational) competency of the SVA. It implied that the SVA was
able to infer about the contents of the recommendation before making decision to accept
or reject the recommendation. However, this feature was not yet included in the decisional
model of the SVA since it needs further insightful studies and a more comprehensive model.

Considering the evaluation of usefulness in actual design processes, the qualitative aspect
of the recommendation may be more important than the quantitative aspect. However,
this is a complex research issue on its own. It concerns the meaning, interpretation and
comprehension of the recommendation, as well as semantic, pragmatic, and apobetic
computing. Due to the above characteristics, it is not possible to directly measure how
much knowledge is possessed by an individual human designer, as it was done in the case
of the SVA. The pragmatism and contextual dependence of content-wise recommendation
should be taken into consideration in specific (real-life) design processes, as well as the
communication and collaboration of multiple designers in a team. Task complexity is

274

also an aspect to consider in future studies. However, we believe that the concept of the
decision options and the usefulness indicator can be applied to evaluate the usefulness of
recommendation in real-life. It remains a challenge to learn what and how to capture the
qualitative aspects of the recommendations and to determine the acceptance probability
and usefulness with the consideration of this.

5�6�3 Some improvement opportunities for the validation
Concerning the validation process:

 • Creating an activity-flow visualization for the whole validation process to show the
planned sequence and interrelatedness of the activities.

 • Specification of the information for the required planned activities and creating an
information flow visualization to ensure that the required information is available when
it is needed.

 • Identifying the critical activities, which has the largest influence on the development of
SVA and the evaluation of usefulness of the recommendation.

 • Considering of external and internal communication and search opportunities to create
a robust informational basis.

Concerning the fidelity of SVA

 • Developing a more comprehensive (and more articulated) computational model that is
based on behavior mapping of real-life human designers.

 • Representing the qualitative aspects of the decisional behavior in the SVA (i.e.,
modifying the decisional model of the SVA by adding new factors and parameters and
conducting experiments to see how much the SVA is able to recognize the usefulness
of the recommendation contents with the enhancement).

 • Creating semantic relationships between the contents of the recommendation and the
decisional model of the SVA in order to enhance the likelihood of the decision behavior
of the designer.

5�6�4 Some recognized limitations
In the previous section, we highlighted those actions which would improve the use process
and the fidelity, respectively, of the SVA. Though these enhancements are unquestionably
useful, they do not resolve some issues that originate in the fundamental concepts and
assumptions related to the implementation of the SVA implied validation methodology and
the SVA as a smart validation agent itself. According to our view, these need additional
research and development and therefore were decided as outstanding from the focus of this
thesis. Nevertheless, we identified the following limitations the elimination of which could
improve both the quality and the efficiency of the validation. These are as follows:

 • The lack of published literature on the decisional behavior of designers, in particular in
context of designing reasoning mechanisms, restricted and made it difficult to enrich

275

the decisional models of the SVA with available research data.

 • The current decisional behavior of the SVA has been generated based on pragmatic
assumptions, rather than a comprehensive and tested underpinning theory. This
influences the reliability of both the SVA as a computational agent and it application
methodology (which is now simulation focused rather than reasoning focused).

 • There were no empirical data available for a comparative evaluation of the dataset
generated by the SVA. The evaluation of the usefulness based on a full-scale and fully-
fledged dataset in demanded and feasible if further research is done.

 • At using the SVA, the lack of the consideration of the qualitative aspects of the
evaluation of usefulness of recommendations is still a limitation. However, it leads to a
completely different (intellect- rather than data-based) reasoning model.

 • Although there was an effort to consider the recommendations content-wise, the
application context was however not considered in the used validation process.

 • The validation was done only using one methodology, but using multiple approaches in
concert would result in a more robust and reliable methodology, though the overheads
would also be increased.

References
[1] Mendoza, M., & Torres, N. (2020). Evaluating content novelty in recommender

systems. Journal of Intelligent Information Systems, 54(2), 297–316.
[2] Kang, L. T., & Wang, Y. (2014). Seven factors in evaluating recommender system. In

Applied Mechanics and Materials (Vol. 472, pp. 443–449. Trans Tech Publications
Ltd.

[3] Jain, S., & Patel, A. (2021) Semantic Contextual Reasoning to Provide Human
Behavior. Retrieve from http://arxiv.org/abs/2103.10694.

[4] Holmgren, J., Davidsson, P., Persson, J.A., & Ramstedt, L. (2012). TAPAS: A multi-
agent-based model for simulation of transport chains. Simulation Modelling Practice
and Theory, 23,(2012), 1–18.

[5] Rizzi, D.A. (1993). Medical prognosis - Some fundamentals. Theoretical Medicine,
14(4), 365–375.

[6] Oh, J., Meneguzzi, F., Sycara, K., & Norman, T.J. (2013). Prognostic normative
reasoning. Engineering Applied Artificial Intelligence, 26(2), 863–872.

277

6.1 Reflections on the scientific and professional
contributions of the research

The general objective of this Ph.D. research was to provide evidence that the Ph.D. student
can do self-governed research and can contribute to the disciplinary development with
novel tested knowledge. The specific objectives were to aggregate knowledge for, and to
develop some demonstrative implementation of, an active recommendation framework
(ARF) as a design enabling tool. The purpose of development was to support the design
of application specific reasoning mechanisms (integral sets of computational algorithms)
for S-CPSs. Driven by these objectives, four research cycles were planned and completed.

The four cycles addressed different aspects of the ARF development in the application
context of an automated parking assist system as the target ASRM. The activities included:
(i) knowledge aggregation, demarcation of the domain of interest, and specification
of requirements; (ii) functional and architectural conceptualization of the active
recommendation framework; (iii) computational implementation and operationalization of
the demonstrative modules; and (iv) validation of the usefulness of the recommendations
generated by the implemented demonstrative modules of the ARF. The following sub-
sections present my personal reflections on the work and its findings, as well as a self-
evaluation of the results of the completed research. They discuss the contributions made to:
(i) the academic and practical knowledge; (ii) the development of active recommendation
frameworks; (iii) the conceptualization of ASRMs; and (iv) the development of mechanisms
for real-life automatic parking systems.

Reflections, conclusions, propositions, and
recommendations

Chapter 6

278

6�1�1 Contribution to the academic and practical knowledge
The contribution of the completed research to the academic and practical knowledge
concerned two scientific areas: (i) the field of intellectualized design support tools; and (ii)
the field of cognitive engineering of reasoning mechanisms for practical applications.

Contribution to the field of intellectualized design support tools

The promotion research contributed to the field of intellectualized design support tools
from three aspects. First, we proposed a theory to underpin the conceptualization of the
ARF through the integration of two fundamental concepts, namely: (i) the concept of
active frameworks; and (ii) the concept of recommender systems. The concept of active
frameworks assumes that a computational system is able to actively monitor behavioral
changes of the designer in the design process at runtime. The concept of recommender
systems assumes that context-sensitive recommendations can be generated to support
design problem solving, for example, in the development process of ASRMs.

Second, we applied an application-oriented approach to demonstrate the crucial elements of
the conceptualized ARF. At the demonstrative implementation of the ARF, the functionality
needed for an automatic parking system was considered and tested. Using the domain
knowledge related to the WPE design session, the implemented modules of the ARF
support the design of an ML-based complex selection algorithm. This algorithm is able
to search for proper parking plans based on a set of stored parking scenarios. All of these
are in line with our working hypothesis stating that an ARF cannot investigate the state of
design actions without domain specific knowledge and contextual information about the
design process.

Third, a synthetic validation agent (SVA) was conceptualized to simulate the decision-
making behavior of (human) designers as a computational validation means and approach.
The validation study focused on the quality of the recommendations in term of their
usefulness. This characteristic can be interpreted in a broader and a narrower meaning. We
used the term in the narrower meaning that considers an offered recommendation useful
if a designer facing a procedural obstacle can resolve the problem and can continue the
design process based on the recommendation. The SVA generated the dataset to mimic the
(human) designers’ decisional behavior as a follow-up on the proposed recommendations.
The principle of prognostic reasoning was used to predict the possibilities of decision
options based on the mimicked decisional behavior. As a result, a socially-based indicator
could be realized to express the usefulness of the obtained recommendations based on the
justified objective decisions of the designer.

Contribution to the field of cognitive engineering of reasoning mechanisms for
practical applications

On the one hand, cognitive engineering (CE) means equipping systems with system-level
decisional intellect. On the other hand, CE means adapting the intellectualized systems to
the physical and cognitive behavioral processes of the stakeholders. These two dimensions
of CE are present concurrently at the development of the ARF that offers design support

279

means and tools for the development of smart reasoning mechanisms for S-CPSs. From an
information engineering point of view, the knowledge about the design actions and the part
of the design process in the WPE session was captured and processed into system knowledge
in the form of a reference process protocol (RPP). In the particular application context of
an APAS, the use of the RPP involves causal probabilistic reasoning in combination with
ML-based reasoning. Concerning the knowledge and inference methods, CE equips the
ARF with the capability of supporting design decisions.

6�1�2 Contribution to the development of active recommender
frameworks

The concept of an active recommendation framework is novel and initially proposed by
researchers at the hosting Section. The term “framework” means a purposeful enabler that
arranges and rationalizes design activities, information processing, and designer-system
interaction. The term “recommender” expresses that, as a complex system, the ARF derives
context-dependent advices for the designer based on a comprehensive system model of
the concerned (specific) design process. The term “active” refers to the fact that the ARF
continuously monitors the design process and spontaneously interacts with the designer
wherever it is needed in the design process.

From the viewpoint of a computational system, the ARF was proposed as a design-action
driven context-sensitive recommender system. The ARF is capable of (i) monitoring
what is happening in the design process, (ii) identifying where a procedural obstacle is,
and (iii) offering personalized recommendations to the designer to help proceed in the
design process. This assumes not only monitoring of the process, but also dealing with the
information contents of the design activities. From a computational point of view, it has an
innate complexity. Consequently, it could not be implemented in full scale. A demonstrative
part was realized that is able to present the novel functional abilities of a fully-fledged
implementation. This demonstrative part operationalizes two interoperating mechanisms,
namely the process monitoring and the decision support mechanisms.

Considering the development process of the ARF, four aspects of its methodological
contribution are as follows.

Contribution concerning the development methodology

There was no standard approach to the development of application-orientated engineering
recommender systems with specialized processing monitoring capability. We proposed and
used a multi-layer methodological approach for conceptualization and implementation of the
ARF. It is a top-down approach, which relies on systematic decomposition of the constituents
of the ARF system according to four perspectives: (i) functionality; (ii) architecture; (iii)
computational algorithms and data constructs; and (iv) computational workflow. In addition,
through the applied multi-layer abstraction of the ARF, it provides a logical scenario of
the activities. We posit that, in comparison with the traditional methodologies used at the
development of similar frameworks documented in the literature, this approach effectively
handles the intrinsic complexity of recommender system development.

280

Contribution concerning the conceptualization of the novel system functionality

Another novel methodological contribution of this work is the conceptualization of the
functionality for recommendation generation using the reference process protocol. To
facilitate a proper continuation of the design process, recommendations are created by the
cooperative use of two inference methods: (i) probabilistic reasoning by means of joint
probability distribution (JPD); and (ii) model-based reasoning using a decision tree model.
The RPP represents the procedural network of design actions making up the considered
design process. The ARF generates the process-based recommendation by considering a
segment of the flow of the design consisting of three design actions: (i) the preceding
design action, (ii) the current design action, and (iii) succeeding design action. The RPP is
implemented in the form of a Bayesian network.

Based on the probabilistic relationships captured in the Bayesian network, the ARF can find
the proper preceding design action by investigating the RPP retrospectively. To modify the
current design action, the ARF uses the decision tree model to select the most appropriate
method. Relying on preceding design actions and the (modified) design action at hand,
the ARF determines the joint probability distribution and finds the next design action in
the RPP toward the completion of design process. The cooperative use of a probabilistic
graphical model and ML-based reasoning with regard to the conceptualization of the
inference engine is a novel functionality of the ARF system.

Contribution concerning computational implementation

The MATLAB package was used for the computational implementation of the
demonstrative modules of the conceptualized ARF. This developer package provided many
reusable resources for programing. The reuse of pre-programmed algorithms was useful
to reduce the workload and allowed us to concentrate on the development of brand-new
algorithms from scratch. Some noteworthy elements of computational implementation can
be summarized as follows:

 • The functional specification was done with a view to the interrelated computational
components. In line with the stated requirements, the computational component
was designed and implemented to realize one primary function – preferably, by one
comprehensive algorithm. The functionally critical algorithms were identified based on
three criteria: (i) functional complexity, (ii) data sensitivity, and (iii) intensity of human
interaction. This resulted in simplicity and transparency. In addition, this approach
ensures that modification of an individual algorithm has the lowest possible impact to
the system-level functionality.

 • From a structuring point of view, the architecture of the whole ARF reflects a
hierarchical structure. The highest-level architectural element is the whole ARF itself,
dedicated to the system-level functionality. The lower-level components manifest on
(i) mechanism level; (ii) module level; (iii) sub-module-level; and (iv) computational
component (interrelated algorithms) level. Encapsulated in computational components,
the algorithms are the lowest-level architectural elements.

281

 • In order to fulfil the structural requirements, a hierarchical composition approach was
employed that supports the handling of the implementation complexity. Accordingly,
the lowest possible number of components and their relationships were strived for
at each level of architecting. By doing so, the lowest possible dependencies among
the elements were achieved. In turn, it ensures that the efforts needed for structural
adaptation at the framework level will remain low (if modification of the algorithms is
needed).

 • The reference process protocol was proposed as an essential means for the implementation
of the process-based recommendation generation. It is system of knowledge, which is
supposed to known by the ARF. The RPP lends itself to a systematic exploration of the
potential design flows as well as to the investigation of design process and its action
elements. The hybrid inference utilizes the RPP to infer the most proper design activity
flow and propose it to the designer.

 • As a ‘domain of interest’, the WPE selection session of the design process of the APAS
was considered. Within this, special attention was paid to the critical design task, D1.0,
and it was used in the functional testing of the implemented demonstrative components.
The contribution to the WPE selection session was an ML-based algorithm, which is
able to predict the most appropriate parking case to start with. The ML-algorithm is
also able to select the applicable motion path for real-life parking scenarios.

 • validation of the system-level functionality of the ARF. Based on the simulations, it
was confirmed that the selected parking trajectories were appropriate and doable in
the various parking cases studied. Based on these, it is fair to claim that the support
services provided by the ARF were efficient for this design task.

Contribution concerning the validation of the implemented demonstrative part of the
active recommender framework

The goal of validation of the results of ARF development was to check if the proposed
solution does, or not, what it was supposed to do. Concerning the method of validation, it
is important to mention some pieces of background information here. It is traceable in the
literature that using ‘artificial humans’ in repetitive validation tasks has become a trend in
the literature in the last few years. This approach offers not only new opportunities, but
also many benefits. Though remote on-line testing of networked systems has also become a
daily practice, the experiences showed that this cannot be so well controlled as the on-site
(participatory) experimentation. In the context of validation of the implemented parts of the
ARF, the following novel methodological elements were considered:

 • A logical and computational model of a synthetic validation agent (SVA) was
elaborated as a means for simulation of human decisional behavior. The SVA
generates a validation dataset that mimics the decision patterns of human designers.
Three influential factors of the decisional behavior of human designers (as problem
solving agents) were considered: (i) the appropriateness of a recommendation, (ii) the
recognition of its properness by the designer, and (iii) the possibility of selecting the
proper recommendation. These not only have an influence on the decision-making

282

behavior, but they are also correlated with the usefulness of the recommendation. Based
on these factors, the decisional behavior of the designer was modelled and represented
by eight decisional options. These decisional options were classified into three groups:
(i) justified objective decision, (ii) unjustified subjective decision, and (iii) incorrect
subjective decision.

 • Having the dedicated SVA, the usefulness of recommendations could be tested
without direct participation of human designers. The analysis of usefulness usually
required semantic interpretation from the designers’ points of view. The assumption
was that, depending on their decisional behavior, the designers would take different
decisional options given the same recommendation. The sequence of their decisions
forms a decisional path including a combination of negative and positive decisions
on the recommendations. Thus, usefulness was defined more narrowly. A received
recommendation is useful if the designer can continue the design process with the
proposed design flow and action. With this interpretation, the operation of the SVA
generated the dataset upon which the assessment of the usefulness of the recommendation
was possible.

 • To assess the usefulness of the individual recommendations, indicators were generated
based on the principle of prognostic reasoning. These indicators were derived from the
correlations of common knowledge elements and the collective decisional behaviors of
the designers. The aggregated probabilistic of the justified objective decision and the
unjustified subjective decision can be defined as the metric to evaluate the usefulness
of the recommendation.

6�1�3 Contribution to the design methodology of application-
specific reasoning mechanisms

Oftentimes, application-specific reasoning mechanisms are more complex structures than
generic inferring and reasoning mechanisms. This complexity is typically originated in
the complicatedness of real-life problems as well as in the concomitant data, information
and knowledge acquisition, pre-processing, and verification/validation tasks. Thus, the
design methodology of ASRMs should focus on the complete set of (possible or optimized)
problem solving procedures that are relevant for the application problem at hand. This is in
contrast to the conceptualization methodology, where the generic reasoning mechanisms
are developed based on logical inferring schemes or analogical search processes. The
traditional design methodology of ASRMs starts out from a logical and/or a procedural
model of operation without the consideration of the dynamic application context. A typical
example is a cruise control.

In our conceptualization, the design methodology of ASRMs covers the whole process of
application problem solving, and the varying application context. The contribution of the
promotion research to the design methodology of application-specific reasoning mechanisms
manifests in the systematic approach to service-oriented problem interpretation and in the
high-level decomposition of the design process into purposeful sessions. The proposed
approach to APAS conceptualization includes the following sessions: (i) computational

283

formulation of the problem, (ii) situation modelling and analysis, (iii) working principle
exploration, and (iv) decision logic modelling. It is complemented by (v) component-level
computational detailing, (vi) design and interfacing of the algorithms, and (vii) system-
level prototype integration. Focusing on the particular WPE session, we demonstrated the
working principle exploration, activities in the context of APAS development.

6�1�4 Contribution to solution generation for a real-life
automatic parking problem

Known to be time-consuming and frustrating, the search for a parking space in urban areas
needs long-range search and navigation activities, as well as short-range maneuvering
activities. Long-range search is connected to car park guidance systems (CPGSs) that
provide information about location and vacancy by digital communication. Thus, CPGSs
support drivers in their search for and navigation to an available parking space. Short-
range search can also be based on local CPGSs or, alternatively, on monitoring by self-
observation. The real-life need for automatic parking may appear in the special contexts of
(i) street (roadside) parking, and (ii) zone (multi-lot) parking.

Automated parking may be combined with both human driving and automated driving. In
the former case, the assumption is that the driver presses the park key after entering the
parking zone, and the car will store itself either on the roadside or in a parking area. In
the latter case, the passenger informs the car about her/his intention to stop and park, and
all follow-up actions, including payment, are done by the self-driving car. The execution
of parking needs computations concerning (i) parking vacancy detection and evaluation,
(ii) reasoning about the best parking lot, (iii) parking the car in the selected lot, and (iv)
completing the follow up activities that are needed. For input data generation, video and
sensor technologies are used individually or jointly.

The above description shows that vehicle/car parking is a complex task and its automated
execution requires multiple smart and collaborative computational reasoning mechanisms.
These computational mechanisms are functionally connected not only to regional CPGSs,
but also to (i) input sensing (e.g., using magnetometer and radar for a dual detection and
monitoring the occupancy of a parking space) and (ii) steering of the car (e.g., fine control
of the motor, steering mechanism, and applying/releasing the breaks). As it can be seen in
the literature, current development efforts mainly focus on the physical part or the software
development part of the parking process, and not on the situated reasoning part.

However, deep learning has recently been used in building practical applications, but this
can only support the related lot recognition and classification problem. The other activities,
like car control generation, are yet not sufficiently covered by computational problem
solving. On the other hand, the proposed ARF has been conceptually equipped with the
abilities that are needed to support the design of these dedicated reasoning mechanisms.
It has been developed based on typifying the design activities concerning the various
reasoning mechanisms, and representing the design activity flow in a reference process

284

protocol. This is a kind of forward-looking conceptualization that considers the end goal
and identifies the phases (steps) of the process that are needed to achieve the target.

6�2 Main conclusions

6�2�1 Conclusions concerning research cycle 1
Reflections on the methodological approach

The main objectives of the first research cycle were to systematically review and to
criticality investigate the state of the art of system engineering frameworks (SEFs)
related to the computational implementation of system-level reasoning. A comprehensive
literature study was done by applying both quantitative and qualitative methods. The
quantitative study aimed at exploring the landscape of publications related to the research
phenomenon. The bibliometric map was constructed based on the wide range of key terms,
using the VOSviewer software. The primary domain of discourse of the literature study
was associated with the notion of “framework”. In addition, the interrelatedness of the key
terms was analyzed.

The strength of the relationships was exposed and displayed in the form of a power map.
A formal reasoning model was derived from the power map for the qualitative study,
which included content analysis and interpretation of findings. The requirements for the
ARF were derived by considering the implications of the findings. The requirements were
formulated in the regular textual form and their relationships were explored and represented
as semantic maps. The major reflections on the methodological approach are as follows:

 • This research cycle took advantage of data analytic techniques and software tools
which could be used for visualization of data and their relationships. This helped create
a visio-graphical overview of a huge number of publications and the quantification of
the interrelationships of the key terms. However, the map did not convey the semantic
meaning of their relationships directly. The interpretation of the map required the
background knowledge of the researchers. Our intention was to exclude or at least to
reduce any bias that might have happened during the process of filtering, combining,
and merging of key terms. However, the subjective interpretations could not be fully
scrutinized.

 • In the phase of requirement engineering for the different levels of the ARF, the sematic
map helped us identify the key requirements. A major concern was their feasibility (i.e.,
the possibility of fulfilling their expectations at specification of the functionality of the
ARF. The investigation of the sematic relationships among the requirements cast light
on possible inconsistencies among them. We found that the semantic mapping was an
effective means for the feasibility assessment of the various requirements.

Reflections on the results

The knowledge exploration and aggregation process was supported by a transparent mental
model. This reasoning model focused on system-level reasoning about frameworks and

285

introduced six domains of interests as contents. The five included system-level knowledge
domains are: (i) synthetic knowledge, (ii) system awareness; (iii) reasoning mechanisms;
(iv) decision-making; and (v) system adaptation. These were regarded as enablers for
system-level reasoning operation. The sixth domain, recommendation generation, was
considered as a manifestation of system-level service. As mentioned above, in the process
of content analysis, the implications of the findings were analyzed with the intention to
identify the requirements for the conceptualization of an ARF. The main reflections on the
knowledge aggregation phase are as follows:

 • We used the term ‘framework’ as the main key term to perform the search for relevant
publications and to get to a bibliometric map. Based on the follow up data analysis, a
network of the related key terms was created and graphically presented. The related
key terms were extracted from 2,096 publications. The term ‘framework’ appeared as
the intermediary link between the other key terms in the network. This was a kind of
confirmation that the collected publications were relevant to the interest in frameworks.
However, it could not be guaranteed that all publications on frameworks were indeed
taken into account in the literature study.

 • In the later stage of the promotion research, we focused on the design support for the
development of smart reasoning mechanism. The necessity of monitoring the design
process was not a part of our mental model yet. After conducting the literature study,
it became clear that providing support service only to solving the application-specific
design problem was not sufficient. Most of the traditional SEFs operated in a static
manner. This means that they were not developed to be sensitive to the changes that
may occur in the context of operation and the behavior of the system at runtime. If these
traditional principles would have been applied, then a design support framework could
not recognize what is happening during runtime operation. To avoid this situation, it is
necessary to equip an ARF with real-time process monitoring capability. Considering
this fact, we concluded that process monitoring and design decision support had to
be seen not only as essential, but also interrelated functionalities with regard to the
operation and computational implementation of the targeted ARF. Their interoperation
makes it possible to generate context-sensitive recommendations adapted to the runtime
events and situations in real time.

 • The finding related to the reasoning mechanism development made it clear for us that
widely-based additional research would have been needed to: (i) explore semantic
relationships of data and information elements of emerging situations and unknown
operation based on analogies or ontologies, (ii) create belief networks for representing
potential associations of knowledge elements in order to fill in incomplete knowledge
and information over processes, and (iii) adapt reasoning strategies to ill-defined
problems and heterogeneous knowledge and information representations. However,
due to the time and capacity constraints, these could not be considered during our
research.

286

6�2�2 Conclusions concerning research cycle 2
Reflections on the methodological approach

The objective of the second research cycle was to conceptualize the whole, and in particular
a testable demonstrative part, of an ARF to support the development of ASRMs. The main
research question of this research cycle was associated with the conceptualization of a
feasible and efficient ARF. The conceptualization of the whole and the constituents of
the ARF happened in terms of functionality, architecture, computational algorithms, and
computational workflow. To cope with the complexity of the whole system, a top-down
decomposition approach was used. As discussed above, the functionality specification and
testing of the proposed concepts were done by concentrating on the WPE session of the
design process of an APAS.

The methodological approach of conceptualization relied on a four-layer decomposition
of the ARF development process, this included (i) specification of functionality, (ii)
allocation of the functionality into system architecture, (iii) specification of computational
algorithms and data structure, and (iv) organization of the operation workflow, including
communication with the designer. The reflections on the methodological approach are as
follows:

 • The complexity of the mechanisms of the ARF was challenging from a realization
point of view. By using the multi-perspective conceptualization approach in the ARF
development, we could effectively handle the challenge.

 • The advantage of the multi-perspective conceptualization approach was that it allowed
us to consider that the constituents of the ARF were interrelated both on the same
layer and across layers. It also facilitated a kind of pathfinding to the most appropriate
conceptual elements of the ARF.

 • The dependencies introduced by the four-layer logical decomposition structure created
a non-linear design process, as opposed to the traditional water fall models. Execution
of a non-linear design process is a time-consuming task. Rectifying the concept on one
layer will most probably require the correction of the other layer too.

Reflections on the results

The main findings of the conceptualization of the ARF can be summarized as follows: (i)
type B observation of non-usual events was chosen as the basis of the conceptualization of
the ARF, (ii) two main functionalities (i.e., process-monitoring and decision-support) were
needed and allocated to two mechanisms in a one-to-one manner, (iii) the mechanisms
were composed of the lowest possible number of modules and their interactions, (iv) the
lower-level architecting elements were constructed following the same expectations, (v)
the architecture of whole ARF was constructed by two mechanisms, six main modules,
twenty sub-modules, and sixty-three enabling algorithms, (vi) the reference process
protocol (RPP) was introduced as an essential component of the ARF, (vii) the RPP was
both a conceptual means of capturing system knowledge and a computational means
for the generation of process-based recommendations, (viii) two inference approaches

287

(i.e., exact inference and hybrid inference) were employed to generate context-sensitive
recommendations, and (ix) concentrating on the WPE session only, the ASRM of an APAS
was used as contextualization of the RPP.

The reflections on the results obtained in the second research cycle are as follows:

 • Compared with similar SEFs, the proposed concept is novel in the field of software
system design and engineering for three reasons: (i) handling the interdependence by a
multi-layer design methodological approach; (ii) offering a context-sensitive decision
support mechanism for the development of ASRMs; and (iii) providing recommendation
services using a runtime process monitoring mechanism.

 • Even in the conceptualization phase of the ARF, we had to realize a large complexity
challenge. This became obvious in the implementation phase. Therefore, we tried
to keep the number of elements and their relationships to the lowest possible level.
Nevertheless, on the level of computational algorithms, sixty-three algorithms were
required to realize the system-level functionality of the demonstrative part of ARF. Due
to resource limitations and time constrains, it was not possible to implement the whole
ARF and to test it in a real-life environment.

 • Due to the technical issues experienced in terms of accessibility and monitoring of the
software execution data of the used design tool, we decided to use a designer activity-
based monitoring approach. This type of monitoring allowed not only to observe
the executed design actions, but also to observe the designer’s facial expressions.
Interestingly, we found that the latter enabled capturing the cognitive thinking of the
designer with regard to the design activities as well as the events in the design process.
It offers an opportunity to generate recommendations based on the pattern of design
activities. However, this remained an open issue for future works.

 • In the conceptualization phase, we considered two separate inference approaches for
generation of recommendations. The exact inference approach infers a solution based
on the information obtained from a dialogue with the designer. If a solution cannot be
found this way, then hybrid inference is necessary. Hybrid inference generates context
sensitive recommendations in an automated operation based on the RPP. It must
be mentioned that, in a retrospective investigation of the RPP, it might happen that
information about the state of preceding design entity is not available. Updating the
current state of design process needs acquiring state and/or context information from
the designer. This is a computational gap of the automated recommendation generation
(and of context-sensitive recommendation generation).

6�2�3 Conclusions concerning research cycle 3
Reflections on the methodological approach

In short, the third research cycle intended to (i) implement the demonstrative modules of the
ARF, and (ii) test the system-level functionality of the ARF in the application context. To
avoid an uncontrollable complexity of the implementation, the divide-and-conquer strategy

288

was applied. It involved using (i) a multi-layer structure, (ii) modular design technique,
and (iii) object-oriented programming. For the purpose of demonstrative implementation,
MATLAB package was used. The reflections on the methodological approach are as
follows:

 • In order to handle computational complexity successfully and to realize the
implementation in a constrained timeframe and with the available resources, we had to
apply a strict scoping on the implementation. We could consider only a demonstrative
part of the ARF, in particular, with regard to context-sensitive recommendation
generation using the RPP. Nevertheless, some other related modules were also needed
to complete the operation workflow.

 • The functional validation of the demonstrative part was completed with a focus
only on the design process elements in the WPE design session. This aimed at the
development of search algorithms for selecting the proper motion path for the actual
parking problem. Thus, the testing of the functionality was done based on a scenario
of the relevant design actions, and not throughout the entire process of designing all
algorithms required for the operation of the ARF. Therefore, the usability of the ARF
in the application context and the end result of the programmed search algorithm could
not be tested without considering the complete design process.

 • We applied the reasoning with consequences principle to test the system-level
functionality of the ARF. This approach is based on a combined logical and analogical
validation. If the ultimate output is correct, then the hypothesis will be valid.
Notwithstanding the abovementioned limitations, we found that this logical validation
approach was beneficial in our case.

Reflections on the results

Four demonstrative modules (i.e., the DOI, ROI, RPC, and ACG modules) were implemented.
They collectively included thirteen sub-modules and thirty-two computational components.
Thirteen algorithms have been discussed in detail. The algorithm A4.04 (selecting the best
usable method) was considered as the critical algorithm, based on its foreseen overall
impacts. It plays a role in the hybrid inference, which is executed based on the interoperation
of three other algorithms (including the algorithm A4.01, A4.03 and A4.06). The following
reflections can be made concerning the results of the third research cycle.

 • The specification of functionality revealed the opportunity of using existing algorithms
and increasing the utilization of standard algorithms. The organization of the workflow
and the interaction processes provided opportunity for the development of optimized
algorithms.

 • With a view toward a future intelligent (automated) ARF, we decided to operationalize
the ARF with a limited amount of interaction with the designer. This explains the
relatively low number of algorithms for human interaction.

 • To be able to sufficiently support application-specific design tasks, the construction
of a reference process protocol required domain-specific knowledge. In the functional

289

testing, we assumed that all relationships of the design entities in the RPP, as well as
the decision variables for selecting the usable method, were theoretically correct. The
recommendations were generated based on this assumption. However, the correctness
of the theoretical basis of the recommendations was not experimentally tested. This
must be noted because the quality of the recommendations might not satisfy the
requirements completely, but it was sufficient for the demonstrative purpose.

6�2�4 Conclusions concerning research cycle 4
The objective of the fourth research cycle was to validate the usefulness of the
recommendation provided by the ARF. We defined the term ‘usefulness’ to specifically mean
that the recommendation is useful if the designer can unblock the obstacle and continue the
design process. Concerning the validation, we faced difficulty with an assessment with the
involvement of practicing designers. One of the difficulties was caused by the coronavirus
pandemic, which did not make possible to invite designers to conduct on site studies. This
orientated our attention to other methodologies and computational solutions. This is the
main reason why we discovered and introduced the concept of a synthetic validation agent
as the surrogate of the designer to handle the situation. The synthetic validation agent aims
at mimicking the decision behavior of the designer and generating a quasi-experimental
dataset for the purpose of validation. To capture the possible decisional options of the
designers, three decision variables were identified. The interplay of the decision variables
offered eight options, which were sorted into four classes, (i) justified objective decision; (ii)
unjustified subjective decision; (iii) incorrectness subjective decision; and (iv) negatively
justified objective decision.

The agent-designer made the decision based on the assumptions of the possession of
common knowledge elements shared by the SVA and the RPP. The decision model was
derived from the relationships of the probability of shared knowledge and the probability
of knowing the knowledge elements included in the recommendation by the SVA. Three
decisional modes were the components of the decisional model. The prognostic reasoning
was applied when deriving the indicator of the usefulness. The decisional options were
analyzed and based on the interpretation of usefulness. The first two decisional options
were selected as indicators of the usefulness.

Reflections on the methodological approach

 • A synthesis validation agent (SVA) is an effective means for the generation of the
synthesis dataset. In our work, it provided the meaningful dataset which can be used for
the analysis of the correlations of variables for different points of view. The challenges
for the development of the SVA are how to capture the decision behaviors of the human
and how to validate the decisional model which operationalizes the decision-making of
the SVA. The latter is even more challenge from our point of view.

 • Three decision variables were sufficient for capturing the designer decision options.
Their interplay simplified the human decisional behaviors and limited the total number
of the decisional options. This handled the challenge of how to capture the collective

290

behaviors of the designers without the participation of the human designers.

 • The quantitative analysis is typically used when deriving the decisional model of
the SVA. We introduced new variables which were related to the relationship of the
knowledge possession of the SVA and the knowledge elements included in the RPP.
Three decisional modes were described and quantified as components of the decisional
model. However, in many problems, it is difficult to collect the data for evaluating
the model. The logical validation was applied in this situation. It is assumed that the
decisional model is valid if it gives the reasonable results.

 • In our study, the SVA-based simulation was used as the method of generating the
validation dataset. The expected results were the correlations of the considered
variables (e.g., decisional modes, probability of acceptance of the recommendation, the
probability of the decision options, and the usefulness indicator). The results produced
by the repeated simulation showed that the SVA-based simulation was an appropriate
method when participation of human designers in the validation process could not be
realized.

 • Notwithstanding, we had to face some limitations in terms of this approach, namely:
(i) the decisional behaviors mimicked by the SVA were limited by the underpinning
assumptions, and (ii) a comparative empirical evaluation of the obtained simulation
results was not possible in the lack of ‘in vivo’ experimentation and testing of multiple
samples.

Reflections on the results

 • The findings seem to contradict the trend of developing the recommender systems, which
should contain a huge number of recommendation items. In our work, we concluded that
the recognition of the appropriate recommendation by the designer is more important
than its quantitative matter. According to the proportion of common knowledge shared
by the SVA and the RPP, if it was very low, there was a high probability that the
SVA could not recognize the appropriateness of the recommendation. This condition
implied that if the RPP could represent a rather complicated design process, there was
a high possibility that an unfamiliar recommendation was generated with regard to
the specific context information. This made the designer uncertain about the offered
recommendation. Therefore, for the development of the specialized recommender
system, it should consider a sensible number of recommendation items to be able to
yield the optimal proportion of common knowledge of the SVA. As a consequence,
the SVA was able to recognize the appropriate recommendations with a higher chance.

 • Although new aspects of the evaluation metrics concerning the novelty of the
recommendation items have been introduced in the recent academic publications, this
aspect might not be suited to the development of the specialized recommender system
(the ARF for instance). Based on the prognosis of the proportion of common knowledge
of the agent designer and the usefulness indicator, the recommendations should be
well-known by the designers. In practical terms, it is impossible to evaluate how much
possessed knowledge an individual designer. Hence, the offered recommendation

291

should be practical and executable rather than novel or sophisticated in order to enhance
the probability of acceptance of the recommendation.

6�3 Propositions

6.3.1 Scientific propositions
Proposition 1: The growing complexity of application-specific reasoning mechanisms of

smart cyber-physical systems implies the need for active support of software
designers.* (RC1)

The growing complexity of real-life application problems raises the need for sophisticated
reasoning mechanisms for S-CPSs. Application-specific reasoning mechanisms
(ASRMs) are often characterized by functional complexity, architectural complexity,
and computational complexities. In fact, procedural reasoning processes go through
multiple stages of information processing (e.g., building awareness, situated reasoning
with incomplete context information, informed decision-making, and runtime adaptation).
Therefore, their design process usually includes a more complicated set of activities than
that of the generic reasoning mechanisms. On the other hand, minor errors and mistakes
occurring in the conceptualization stage may lead to unexpected faults in the operation of
the designed software mechanisms. As indicated by the increased number of publications
in the field of system engineering and CPS development, researchers and system designers
are looking for efficient approaches for designing S-CPSs. Many support tools have been
developed based on the paradigm of CAD/E systems. The number of publications that
propose novel design-support tools for designing smart systems is also growing. Not only
multi-disciplinary collaboration and complexity management are addressed, but also setting
up application-orientated design scenarios and operationalization of artificial intelligence
methods. Providing runtime support for reasoning mechanism design is a new challenge
that implies the need for consideration of process-related recommender systems. These
developments led to the idea and conceptualization of our active recommender framework
for providing active support.

Proposition 2: Recommendation services must be integrated into the decision support
mechanism to guide designers in the development of application specific
reasoning mechanisms.* (RC1)

As members of the family of decision-support systems, the emerging engineering
recommender systems are supposed to provide recommendation services according to the
state of the process and the solution contents. The provided personalized recommendation
service depends on the context information, which is either directly provided by the designer
or captured by the system based the decisions made by designers. This trend provided the
conceptual idea for the development of an ARF that integrates the add-on recommendation
services with the decision support mechanisms.

292

Proposition 3: Because of multiple limitations, a fully intelligent (automated) active
recommender framework is currently not feasible. * (RC2)

The state-of-the-art efforts in cognitive engineering are aimed at the development of
human-like intelligent systems. System intelligence is the ability of systems to derive
possible solutions and to make appropriate decisions even in uncertain situations. What it
means in our context is that a fully intelligent (automated) ARF would take over problem-
solving when the designer fails and would explore the space of possible solutions. A fully
intelligent and automated system is currently not feasible due to lack of knowledge, for
instance the limitations of technologies, the task complexity, and the trade-off (balance
between developmental investment and achieved practical support/gain) issues. It might
be interesting from a scientific point of view, but cannot be operationalized in the case
of complex application problems due to computational limitations. Therefore, the most
appropriate strategy is to look for pragmatic, but effective solutions based on partial
intelligence. In our view, partial intelligence can provide procedural recommendations
when the designer is hindered. The level of involvement of the ARF and the goal and
form of the contribution of the ARF to the designer’s activities is still in an early stage
of understanding. Expert designers can cope with the challenges of the design process,
but may use multiple, time-consuming iterations, and may ignore mishaps and potential
threads. The latter can be the entry points for an ARF to provide support services. This
requires processing context information about the problem at hand, the reasoning of the
designer, and the actual state of the design process.

Proposition 4: An active recommender framework needs knowledge about the application
domain and the design context to provide proper recommendation services.
* (RC2)

In a typical recommendation system, the so called ‘cold start problem’ occurs if information
about the profile and preferences of the user, and her/his ratings of recommendation items
are not (sufficiently) known. These pieces of information are part of the explicit knowledge
possessed by the system. Without this knowledge, recommendation systems cannot produce
reliable recommendations. To eliminate this problem, context aware recommender systems
(CRSs) tend to utilize knowledge about the preferences of the users as well as context
information to produce personalized recommendations. In other words, knowledge is an
essential element of CRSs that supports situated reasoning and recommendation generation
based on the context information. The contents of recommendations depend on the
knowledge acquired by the system. In the development process of ASRMs, the application
domain and the design context should be converted into system knowledge for the ARF.
In our specific case, a reference process protocol (RPP) was the means of capturing and
representing formal knowledge about the design process of ASRMs. Recommendations are
generated in the actual context of design flow, which is derived from the RPP. It also has
to be mentioned that the ARF cannot contextualize the design actions and infer about the
progress in the design process without sufficient domain knowledge. Otherwise, there is a
high possibility that the delivered recommendations are not proper.

293

Proposition 5: The active recommender framework can provide the requested support
services by concurrently using runtime process monitoring and context-
sensitive decision support. * (RC2)

To be alert and ready to advise, the ARF must be at least active (in an ultimate case,
even proactive), rather than only reactive. The ARF should be aware of both regular and
irregular conduct of the design process and the behavior of the designer. According to our
proposal, the process monitoring mechanism detects an unusual event during the execution
of the design process, and offers the requested support services in (quasi)real time. The
support service (recommendation) is generated according to the actual situation and to
what is needed to resolve a procedural or cognitive blockage. Therefore, the ARF has been
developed to concurrently use the runtime process monitoring and the context-sensitive
decision support mechanisms. Both the process monitoring and the decision support
mechanisms use the RPP for a context-sensitive generation of recommendations. The
proper connection between these mechanisms should be guaranteed by the computational
implementation.

Proposition 6: Either consistency of the information flow or change of the designer’s
behavior provides sufficient clues for detecting non-usual events.* (RC2)

An event is indicated by the changes in the state of the system and/or the behavior of
the designer observable at a moment in time. Events allow inferences about something
that might go or have gone wrong in the design process. A non-usual event (NUE) is a
sub-class of these events. Conceptually, inferring an obstacle in the design process can be
based on detecting a non-usual event. Two approaches could be used to detect an event.
One is process-based monitoring and another is activity-based monitoring. The former one
observes changes in the information flow of the system. Our experiments showed that,
concerning the data needed for the observation of an event and the accessibility of data
sources for this purpose, accessing the software execution data in a set of design tools was
more complicated than obtaining the data concerning the designer’s facial expressions.
The latter one observes changes in the behavior of the designer. More specifically, the
activity-based monitoring observes the designer’s facial expressions. The pattern of
changes in the facial expression can be associated with the various types of events in the
design process. The state of the art of ML-based recognition of facial expressions offers the
opportunity to continuously monitor the designer’s behavior. The ML-based recognition
approaches can provide sufficient clues to recognize a NUE. To handle the complexity of
the computational implementation, the activity-based monitoring was chosen in the process
of conceptualization of the ARF.

Proposition 7: Rule-based reasoning or pattern-based reasoning does not result in
significantly different outcomes in the case of non-probabilistic inference.*
(RC3)

Rule-based reasoning infers a solution based on a rule set and the decision conditions
specified in the form of Boolean parameters. Pattern-based reasoning infers a solution by
finding the best match in the patterns of decision variables stored in the decision table and

294

considering the valuation of the variables provided by the designer. For the implementation
of the dialogue-based obstacle identification (DOI) module, the principle of exact inference
was applied to infer a solution based on a set of answers provided by the designer. An
exact inference is considered as a sub-class of non-probabilistic inferences. Fundamentally,
if a set of conditions in the rule set and the pattern of decision variables are identical,
both approaches provide a similar result. This means that both rule-based reasoning and
pattern-based reasoning can be applied alternatively for the execution of exact inference.
Considering the requirements and constraints (i.e., computational complexity and resource
usability), the pattern-based reasoning was preferred for the demonstrative implementation
of the ARF.

Proposition 8: A reference process protocol is the right means for the ARF to provide
context-sensitive recommendations for the development of ASRMs.* (RC3)

The reference process protocol (RPP) was introduced as a crucial constituent of the ARF
for generation of process-based recommendations. The RPP models and contextualizes
the design process of ASRMs and, as such, represents the system-level knowledge of the
ARF. By definition, RPP is a prescriptive instrumental model of the design process or a
specific part of the process. In the case of hybrid inference, the RPP is used to generate
context-sensitive recommendations. The probabilistic reasoning offers multiple choices
for creating design activity flows. At a decision point in the RPP, the decision tree model
supports the selection of the most appropriate (usable) method for a particular design entity.
The crucial constituent nature of the RPP originates in the fact that hybrid inference cannot
be executed in the lack of system knowledge in the application context.

Proposition 9: The probabilistic relationships need to be included in the reference process
protocol to make the active recommender framework capable of offering
case-related recommendations.* (RC3)

The relationships of design entities can be captured in and modelled by the RPP. They make
the ARF capable of exploring the possible design flows to complete the design process
for a development of ASRMs. Technically, the ARF finds the design activity flow that
includes the current design entity by considering the target design entity, if they are in one
way or other connected in the RPP. It is also possible that multiple design flows exist that
include connection of two considered design entities. Therefore, probabilistic relationships
should be included in the RPP to be able to determine the best matching design activity
flow. In the computational implementation of the RPP, the relationships of design entities
were quantified by the frequency of co- pairwise occurrences of the entities, which were
supposed to be used in historical cases. The best design activity flow includes the most
popular design entities according to the highest value of their joint distribution probability.
Based on this interpretation, the ARF offers case-related recommendations considering the
most popular design activity flow.

295

Proposition 10: Traceable logical reasoning model is needed for hybrid inferencing.*
(RC3)

Hybrid logical inference was used to infer the most informative segment of the PFM and
to rectify the current design action. Furthermore, decision tree classifiers were applied
as decision support models for this purpose. The decision tree classifier used selects the
most appropriate methods for the intended design actions at any decision points in the
reference process protocol. The selection of the usable methods is based on the conditions
of the decision criteria that are captured through the dialogue from the designer’s answers.
However, it was also possible to implement other machine learning-type algorithms (e.g.,
ANN, KNN, or SVM) for the hybrid inference component, which would probably make
the performance of the hybrid logical inference more efficient than the decision tree model.
However, the ML-type algorithms are constructed as black box models – that is, their
decision process is not logically traceable and explainable. Meanwhile, the decision tree
is a traceable logical reasoning model, which, on the one hand, provides a technically
equivalent model to black box models, and on the other hand, they offer a monitoring and
a better understanding opportunity of how decision is made. It is of a high probability that
the designer would like to know and requests the ARF to learn/present how the decision
was made. In addition, we argue that it increases the possibility that the recommendation
proposed by the ARF is accepted by the designer, if she/he understands the logic of the
decision-making process. This way, the quality of the recommendations is increased in
term of their usefulness. Thus, it is important that the knowledge acquired by the ARF
should be presented in the traceable logical reasoning model.

Proposition 11: A synthetic validation agent needs to properly model and simulate the
decisional behavior of sample designers.* (RC4)

Current cognitive and computing technologies allow using synthetic software agents for
various purposes. In the promotion research, a synthetic software agent has been created
to model the decisional behavior of non-accessible designers in the validation study. The
programmed agent modelled multiple designers, who variously responded to the offered
recommendations. The synthetic software agent was supposed to act like the human designer
in the decision-making process. The agent was designed to recognize the appropriateness
of recommendations and to model the execution of the proposed design activity flow.
Without the on-site participation of a human designer in the validation process, we could
acquire synthetic data that reflected the collective decisional behaviors of designers. From
the viewpoint of validation, if the agent was not able to properly simulate the decisional
behavior of the designers, then a meaningful dataset could not be generated. In order to
ensure a proper operation of the agent, we deployed both quantitative analysis (to derive
the decision model of the agent) and qualitative analysis (to validate the properness of
the model logically). As a result, the agent generated meaningful data, which could be
effectively used for the validation of the usefulness of the recommendations.

296

Proposition 12: Prognostic reasoning that considers the probabilities of decision
options is an effective means for evaluating usefulness of case-related
recommendations.* (RC4)

Prognostic reasoning is an effective means for forecasting probabilities. In our validation
study, we applied it in combination with generating case-related recommendations. By
definition, the term ‘case-related’ means the recommendation was generated based on
historically-used cases of the concerned design process. Prognostic reasoning was applied
to derive indicators of usefulness. The indicator was used not only for the target design
sub-task, but it was also applied to similar tasks. The usefulness of the case-related
recommendation could be indicated by prognostic reasoning that could consider the
probabilities of the decision options. We found that the proposed indicator can be applied
effectively, if the forecasting of the probability of the acceptance of the recommendation
hint at a likely outcome.

6�3�2 Socially-contextualized propositions
Based on the research work and the implication of the results, the following socially-
contextualized propositions have been formulated:

Proposition A: Design is gradually transferred to systems.*

Proposition B: Due to the accelerated achievements of the research communities and to
the diversification of science, no one knows what the state-of-the-art is.*

Proposition C: Intelligent systems need to detect logical fallacy by their own intelligence
in order to reach the level of human intelligence.*

Proposition D: Without the support of a predictive conceptual framework, a system
designer gets anchored to the first feasible solution, instead of exploring
and constructing the most beneficial ones.*

Proposition E: Developing a proper model for a computational agent mimicking the
collective decisional behavior of people is a complicated task, but
validation of the decision-making model of one single human agent is even
more complicated.*

6.3.3 Self-reflective propositions
As basic thoughts emerged while conducting the promotion research, the following self-
reflective propositions have been formulated:

Proposition X: The democratic value is the most important issue in non-democratic
societies.*

Proposition Y: The process of doing a Ph.D. study is like walking three-steps forward and
two and a half steps backward.*

Proposition Z: No one knows that authentic Dutch food is one of the most delicious meals
in the culinary world.*

297

6�4 Recommendations and future works

6�4�1 Possible short-term research
The research project was conducted for five years of the Ph.D. study. We found new and
interesting scientific findings when we changed the points of view with regard to the research
problems. Because of the limitations of the available resources and the time constraints, the
research topic can be improved upon and short-term follow-up research can be proposed.
The possible topics may be as follows:

 • A short-term future research can focus on an all-embracing implementation and
testing of the complete ARF with the improvement opportunities in recommendation
generation, the utilization of reference process protocol, and algorithm modifications.

 • The implemented functions can be improved, considering the limitations. More
sophisticated algorithms can be considered to make these functions more intelligent
and autonomous.

 • More aspects of validation may be considered in testing the usability of the ARF with
the participation of designers and testing the applicability in other sessions of the
design process of ASRMs.

 • The theoretical correctness of the RPP could be checked before testing the usability of
the ARF. This may extend to (i) the contents of design entities, (ii) the relationships of
design entities, and (iii) the prediction variables for training the decision tree model for
a particular design entity.

 • Instead of using Bayesian networks and probability-based reasoning, an ontology-
based approach may also be used for capturing the relationships of the design entities
in the RPP. Ontological reasoning can facilitate semantic inferencing when using the
RPP. The probabilistic and ontological approaches may be combined with the objective
of achieving improvement in the reasoning performance of the ARF.

 • Due to the lack of data concerning the designers’ decisions, a quantitative validation of
the synthetic validation agent (SVA) is a challenge. Research may explore if a surrogate
method could be developed.

6�4�2 Possible long-term research
As a prototype of a specialized engineering recommender system, the ARF could be studied
from many dimensions in the future. For instance, its implementation as an intelligent
and autonomous system is on top of the list of possible long-term research activities. In
addition, extending it to support the design process of different ARSMs is also a direction
with high potential, which may also include the exploitation of novel affordances. Other
concrete proposals are as follows:

 • Investigation of computational thinking concerning activity-based monitoring
considering the principles of smart self-adaptive cyber-physical systems.

298

 • An analysis of a broader range of factors influencing the decision-making behavior
of the designer seems to be a sensible research effort. This could contribute to
increasing the usefulness of the recommendations and to improving the quality of the
recommendations provided by the ARF.

 • Instead of reasoning with the designer’s behavior exclusively, augmenting the ARF by
CASE tools and monitoring the information flow between the designer and the tools is
also a possibility. Eventually, these two event-monitoring approaches can be combined
in order to offer the recommendation services in a more effective way.

 • Investigation and application of other, not ML-type algorithms, for the runtime
development of the RPP.

 • Using 5GLs for a fully-fledged implementation of the ARF and combining it with next
generation CASE tools.

299

301

List of figures

Figure 1.1 Generations of CPSs
Figure 1.2 Generic functionality of S-CPSs
Figure 1.3 A meta-framework for procedural abduction as a reasoning

mechanism for S-CPSs
Figure 1.4 Workflow of the reasoning mechanism of the CAD system

supported by rule-based and case-based reasoning
Figure 1.5 Interrelationships of the architectural components of an ARSM for

an intelligent robot
Figure 1.6 The methodological framing of the promotional research

Figure 2.1 Approach in RC1
Figure 2.2 Number of publications included in the literature study over the

period from 2008 until mid-2021
Figure 2.3 Original bibliometric map of the specified search phrases and the

found key terms
Figure 2.4 The updated bibliometric map
Figure 2.5 Power map of the network of keywords embedded in the updated

bibliometric map
Figure 2.6 Derived reasoning model for the literature study
Figure 2.7 OpenMETA – model integration framework
Figure 2.8 Architecture of KnowRob – a knowledge processing infrastructure

for cognition-enabled robots
Figure 2.9 Life cycle of context awareness
Figure 2.10 Feedback structure of the Observe-Orient-Decide-Act loop
Figure 2.11 The environment-in-the-loop self-adaptation process of CPSs
Figure 2.12 User trust network involved in social recommendation generation
Figure 2.13 Categories of input and output modalities
Figure 2.14 Semantic relationships of the system-level requirements

302

Figure 2.15 Trade-off issue in the case of inconsistent system-level
requirements

Figure 2.16 Simplified relationships of system-level requirements
Figure 2.17 Semantic relationships of the mechanism-level requirements
Figure 2.18 Trade-off issue in the case of inconsistent mechanism-level

requirements
Figure 2.19 Simplified relationships of mechanism-level requirements

Figure 3.1 Methodological approach to conceptualization and implementation
of the ARF

Figure 3.2 The schematized process of designing ASRMs
Figure 3.3 Relationships among the stages of the ASRM design process and

the provided service packages and component services provided by
the ARF

Figure 3.4 Components of an automated parking assist system
Figure 3.5 Reasoning process concerning WPE session of the APAS
Figure 3.6 Workflow diagram identifying the design tasks needed to

accomplish the exploration of a proper working principle for a
parking problem

Figure 3.7 Duality of the ARF development
Figure 3.8 Simplified schematic diagram representing the event-based

monitoring throughout the interaction of designer’s activities and
system execution

Figure 3.9 Contribution of the ARF and a designer in an execution of design
process of RMD

Figure 3.10 Facial expression recognition process
Figure 3.11 Conceptualization of a reference process protocol
Figure 3.12 Generic workflow of the recommendation generation in the case of

NUE type B
Figure 3.13 Functional decomposition of the ARF
Figure 3.14 System-level architecting of the ARF for handling NUE type B
Figure 3.15 Architecture of process monitoring mechanism
Figure 3.16 Architecture of decision support mechanism
Figure 3.17 (a) Parking situation at the time t, (b) Parking situation at t+dt ,(c)

Parking situation at t+(l-n)dt
Figure 3.18 The theoretical model of the CIR cube for storing and inferring

Figure 3.19 Sequence diagram representing the computational workflow of the
conceptualized part of ARF

303

Figure 3.20 Graph representing the real-time monitoring of the patterns of
facial expressions

Figure 3.21 Structure of content-based recommendation
Figure 3.22 Computational workflow of recommendation generation through a

dialogue
Figure 3.23 Computational workflow of construction of graph representing RPP
Figure 3.24 Graph representing the RPP for the demonstrative case
Figure 3.25 Computational workflow of recommendation generation using a

hybrid inference
Figure 3.26 The comprehensive recommendations provided by the ARF

Figure 4.1 The general workflow of the recommendation generation according
to the demonstrative implementation

Figure 4.2 The classification of the required algorithms according to criteria
Figure 4.3 Top ten programming languages as used and referenced in the

academic publications
Figure 4.4 Different types of net configuration
Figure 4.5 Fluent configuration of a state machine
Figure 4.6 Confluent configuration of n-to-1 synchronization
Figure 4.7 Configuration of 1-to-n distribution
Figure 4.8 Configuration of PFM included an assembly of consecutive process

flow elements with a connector
Figure 4.9 Simplified structure of decision tree
Figure 4.10 Backward reasoning for the investigation of the actual design

activity flow (ectx = e31, n = 3)
Figure 4.11 The interrelationships of the computational components of the DOI

module
Figure 4.12 Interrelation of computational components of RPC module
Figure 4.13 Information representing a configuration of process flow model –

‘2-to-1 synchronization’
Figure 4.14 Matrix representing a Timed Action Model (n = 48)
Figure 4.15 An example of the simplified decision tree model and the decision

rules
Figure 4.16 Visualization of graph representing a reference process protocol

(number of nodes = 16, number of edges = 59)
Figure 4.17 Interrelation of computational components of ROI module
Figure 4.18 Interrelation of the computational components of the ACG module
Figure 4.19 Spatial-temporal representation of a parking scenario

304

Figure 4.20 Simulation of a parking scenario
Figure 4.21 Spatial information representing a parking scenario at initial time t0

Figure 4.22 Design sub-tasks for a development of machine learning-type
algorithm A01

Figure 4.23 Dataset for training the ML-type algorithm A01

Figure 4.24 the content of the identified current design entity
Figure 4.25 The proposed design activity flow (presented as sub-graph

representing the RPP)
Figure 4.26 The comprehensive recommendation presented to the designer
Figure 4.27 Results of the Chi-square test for the feature selection
Figure 4.28 Performance evaluation of the trained models
Figure 4.29 The actual parking situation (left) and the retrieved parking case

(right) for the parallel parking
Figure 4.30 The actual parking situation (left) and the retrieved parking case

(right) for the perpendicular parking

Figure 5.1 Approach of RC4
Figure 5.2 Three aspects (or decision variables) of decisional behaviors
Figure 5.3 Alternative approaches of recommendation generation
Figure 5.4 Visual representation of the fundamental concept for deriving the

decision model of the agent
Figure 5.5 The relations of the decisional modes as elements of the decisional

model constructed for the SVA
Figure 5.6 Decomposition of the main functions of the SVA to sub-functions
Figure 5.7 The patterns of the acceptance probability of the recommendations

according to the probability of shared knowledge
Figure 5.8 The patterns of the features of decisional options according to the

levels of the common knowledge
Figure 5.9 The correlations of the aggregated probabilities of the combined

tendency of the SVA and the proportion of common knowledge
Figure 5.10 The patterns of the decisional options according to the proportion

of the common knowledge
Figure 5.11 The operationalization of the SVA
Figure 5.12 Graphical representation of the case-related recommendation

generation using the RPP
Figure 5.13 The correlations of the common knowledge elements and the

probability of the usefulness indicator of recommendations

305

307

List of tables

Table 1.1 Comparison of application independent reasoning mechanisms and
application specific reasoning mechanisms

Table 2.1 Analysis of system-level functionalities of frameworks
Table 2.2 Types of recommendation generation (RG) and the responses to the

recommendation

Table 3.1 Simplified structure of a decision table
Table 3.2 Allocation of algorithms to the NUE-D module
Table 3.3 Allocation of algorithms to the DOI module
Table 3.4 Allocation of algorithms to the RPC module
Table 3.5 Allocation of algorithms to the ROI module
Table 3.6 Allocation of algorithms to the ACG module
Table 3.7 Allocation of algorithms to the QE module
Table 3.8 Example for design actions of the development of ML-based

algorithm
Table 3.9 Lookup table containing the decision conditions associated with the

useable method for the design action, ‘selecting the attribute’

Table 3.10 Calculation of JDP for candidate PFMs
Table 3.11 Sample of prediction variables used for selecting the proper method

for (e12)

Table 4.1 Technical specification of the modules of the demonstrative
implementation

Table 4.2 Classification of the required algorithms according to their
reusability for the demonstrative implementation

Table 4.3 Comparison of the working environments from the perspective of
the demonstrative implementation

308

Table 4.4 Comparison of usable resources for implementing the required
algorithms

Table 4.5 Metrics for evaluation of the classification performances
Table 4.6 List of variables used in the computational components included in

the DOI module
Table 4.7 List of variables used in the computational components of the RPC

module
Table 4.8 List of variables used in the computational components of the ROI

module
Table 4.9 List of variables used in the computational components of the ACG

module
Table 4.10 Prediction variables influencing the selection of usable method
Table 4.11 A rule set extracted from the decision tree concerning the selection

of the usable method for ‘fitting the learning algorithm’

Table 5.1 Options of decision making by the designer
Table 5.2 List of functional requirements for the synthetic validation agent
Table 5.3 Process of validation of the usefulness of procedural

recommendations
Table 5.4 Specification of the algorithms needed for the computational

realization
Table 5.5 Validation scenarios
Table 5.6 Reactions of a designer leading to an expected event
Table 5.7 Determination of the probability of the decision options according

to the simulated case-related recommendation
Table 5.8 Descriptive statistical data of the validation scenario I – ‘nmax = 50’
Table 5.9 Descriptive statistical data of the validation scenario II – ‘nmax =

100’
Table 5.10 The simulated results concerning the usefulness indicators

309

311

List of acronyms

0G-CPSs zeroth generation cyber-physical systems
1G-CPSs first generation cyber-physical systems
2G-CPSs second generation cyber-physical systems
3G-CPSs third generation cyber-physical systems
4G-CPSs fourth generation cyber-physical systems
ACG Advisory Content Generation
AI Artificial Intelligence
AIRM Application-Independent Reasoning Mechanisms
APAS Automated Parking Assist System
ARF Active Recommender Framework
ASRM Application-Specific Reasoning Mechanism
BDI Belief-Desire-Intention
BM25 Best Matching 25 Algorithm
BNs Bayesian Networks
CAD&D Computer Aided Detection and Diagnosis
CAD/E Computer Aided Design and Engineering
CARE Classify-Asses-Resolve-Enact
CASE Computer Aided Software Engineering
CIR Context Information Reference
CMs Cognitive Maps
CNN Convolutional Neural Network
CPSs Cyber-Physical Systems
DA Design Action
DeM Decision Modelling
DIR Design Inclusive Research
DOI Dialogue-based Obstacle Identifier
DTM Decision Tree Model
ECA Event-Condition-Action

312

EMR Electronic Medical Record
FCMs Fuzzy Cognitive Maps
FER Facial Expression Recognition
FuNN Fuzzy unsupervised Neural Network
HMM Hidden Markov Models
ID3 Iterative Dichotomiser 3 algorithm
ISC Integral System Concept
ISD Incorrect Subjective Decision
JOD_I Type I Justified Objective Decision
JOD_II Type II Justified Objective Decision
JPD Joint Probability Distribution
KIDS Knowledge Intensive Data System
KG Knowledge graph
k-NN k-Nearest Neighbours Algorithm
LUT Look-Up Table
MAPE-K Monitoring-Analysing-Planning-Executing with knowledge
MAC Memory-Attention-Composition
MES Manufacturing Execution System
ML Machine Learning
MM Meta-Model
NUE Non-Usual Event
NUE-D Non-Usual Event Detector
OODA Observe-Orient-Decide-Act
OWL Web Ontology Language
PAR Procedural Abductive Reasoning
PBR Practice Based Research
PF Problem Formulation
PFM Process Flow Model
PRS Procedural Reasoning System
QE Quality Examiner
RPC Reference Protocol Creator
RiDC Research in Design Context
RG Recommendation Generation
RPP Reference Process Protocol
RMD Reasoning Mechanism Development
ROI Reference protocol-based Obstacle Identifier
RSs Recommender Systems

313

RsP Reasoning sub-process
S-CPSs Smart Cyber-Physical Systems
S-CPSoSs Smart Cyber-Physical Systems of Systems
SDPs System Development Principles
SEFs System Engineering Frameworks
SELF DAS Synthetic, Evolving, Life Form – Dialectic Argument Search
SFM Spatial Reference Feature
SitM Situation Modelling
SLR System-Level Reasoning
SoSs System of Systems
SVA Synthetic Validation Agent
SVM Support Vector Machines
TAM Timed (design) Action Model
TF/IDF Term Frequency/Inverse Document Frequency
UML Unified Modelling Language
USD Unjustified Subjective Decision
WPE Working Principle Exploration

315

Acknowledgements

Without the supports of the supervision team, my research fellows, friends, and family, it is
impossible to complete my Ph.D. research by solely myself.

First of all, I would like to express my gratitude to my Promotor, Professor Imre Horváth
for giving me an opportunity to work on the specular research topic. Without your advice,
encouragement, and exhortation, I could not handle the complicated contents of the thesis
and complete this project by myself. Your intensive consultations pushed me to complete
this thesis successfully. I learned a lot from the criticized discussions with you. These
are the invaluable experiences which I can get from no one else. You are master Yoda for
me. It is my honor to be your student. My sincere acknowledgments also go to my daily
supervisor, Zoltán for your kindly support. Your guidance and consultations helped me a lot
when I got stuck. Thank you for your calm supervision. I will miss the time when we were
at Locus pub for drinking beer and having enjoyable talks.

A special gratitude to the committee members, thanks for dedicating the time to read
through the thesis and providing me with the positive responses.

Special thanks to our friends at the CPSs group, Gareth, Tima, Yongzhe, Peng and everyone
for the good times we shared. Although when we were working, we did not talk much to
each other, but when you were not there. I was feeling blues.

Many thanks to my lovely friends, Erk, Tal, Prang, Pump, Baikhoa, Nut, Mel, Milk&Alex,
Anouk&Yi Chien, N, Paan, Ratio, Jay, Pond, Fon, Tuptip, Taw, Janet and everyone who
shared the enjoyable moments during my five years in Delft. Thanks to P’Top and Naim
for our challenging works under the Urban Chitchat project. Thank you everyone I cannot
mention all here. I remember all of you when we shared the wonderful moments in the
Netherlands. Thank you for hanging out at my house, Ternatestraat 173. When you were
here, I was never feeling lonely.

For my family, I would like to dedicate my PhD. title to my dad who did not have a PhD.
degree, but everyone usually called him ‘Dr. Jin’. You gave me an inspiration to think
differently from the traditional social norms. Although you are not here, but I know you are
always with me. There is no word to express my gratitude to my mom. Love is not enough
for everything you do for me. No matter how crazy I am, you always support me. Million

316

thanks to my lovely sisters, P’Aon, and Aom, for your safeguard especially the financial
support. Special thanks to Brent for your help, for proofreading my thesis, and for your
supports. You made a wonderful job. Please take my respect.

Lastly, to P’Amp for everything you do for me. No one can understand me but you. When
I was young, beside getting PhD., being homeless is one of my dreams, but you destroy it
completely. You are now my home.

317

several research projects funded by Thai government agencies. He had gained his research
experiences in public policy-making, logistics infrastructure planning, and urban planning.
In 2012, he went to the UK for studying the second master’s degree in Logistics and Supply
chain management at University of Portsmouth. After graduation, he went back to Thailand
and started his academic career in the Faculty of Engineering and Technology at KMUTNB
(Rayong campus). In 2015, he got a scholarship for a Ph.D. study funded by the Thai
government. A year later, his Ph.D. journey had been begun at the Faculty of Industrial
Design Engineering, Delft University of Technology, the Netherlands. His current research
interests are in various topics of system design engineering including design methodologies,
knowledge engineering, smart systems, and decision-support system.

 Delft, 2022

about the author

Sirasak Tepjit was born in Yala, a province
located in the deep-south of Thailand. In
1994, he moved to Bangkok to study in a Pre-
Engineering Technical school. He started his
undergraduate study in Production Engineering
at King Mongkut’s Institute of Technology North
Bangkok (KMUTNB) in 1997. Taking five and a
half year for the bachelor's degree, he continuted
a master's study in Industrial Engineering at the
same university. At that time, he was interested
in system dynamics modeling, systems thinking,
system engineering and management, and
complext adaptive systems.

Since obtaining a master’s degree in 2006, he
spent years as a researcher and participated in

