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Abstract—Robust and accurate pose estimation of moving
systems is a challenging task that is often tackled by combining
information from different sensor subsystems in a multi-sensor
fusion setup. To obtain robust and accurate estimates, it is
crucial to respect the exact time of each measurement. Data
fusion is additionally challenged when the sensors are running
at different rates and the information is subject to processing- and
transmission delays. In this paper, we present an optimization-
based moving horizon estimator which allows to estimate and
compensate for time-varying measurement delays without the
need for any synchronization signals between the sensors. By
adopting a direct collocation approach, we find a continuous-time
solution for the navigation states which allows us to incorporate
the discrete-time sensor measurements in an optimal way despite
the presence of unknown time delays. The presented sensor fusion
algorithm is applied to the problem of pose estimation by fusing
data of a high-rate inertial measurement unit and a low-rate
centimeter-accurate global navigation satellite system receiver
using simulated and real-data experiments.

Index Terms—State estimation, sensor fusion, multi-sensor,
direct collocation, MHE, IMU, RTK, GNSS.

I. INTRODUCTION

In recent years, several key technologies in the field of
pose estimation and localization have matured and are now
available as independent subsystems [1]. Such systems are for
instance based on global navigation satellite system (GNSS)
receivers, cameras or range sensors to determine the pose
of the moving system. To achieve a high robustness or
simply to increase accuracy, these sensor technologies are
often combined with each other or with additional sensors,
e.g. inertial measurement units (IMUs) or internal encoders
in a multi-sensor fusion setup. The combination of several
sensors raises typically three issues which are also visualized
in Fig. 1. Firstly, the independent subsystems do not share
a common clock and a synchronization using trigger signals
is likely to result in a cumbersome electronic design and is

This work was started during the project AWESCO (H2020-ITN-642682)
funded by the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No. 642682.
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Fig. 1. Schematic drawing showing the arrival of data in a multi-rate
sensor fusion setup. The first axis represents a high-rate sensor with very
deterministic measurement behavior, which is typical for a low-level sensor
e.g. an IMU or an encoder. The second axis represents a low-rate sensor
of which measurements take longer to process and therefore suffer from an
unknown and varying delay. Such behavior could be expected from a visual
odometry sensor or other positioning sensors. The last axis shows the output
of the state estimator where its rate is often desired to coincide with the rate
of the control system.

sometimes simply not possible. Secondly, the integrated data
processing and transmission of the data itself causes additional
time delays until the required information arrives at a central
node on which all the measurements are fused in a sensor
fusion algorithm. Thirdly, different sensors typically sample at
different rates, resulting in a multi-rate sensor fusion problem.
The result is a very complex sensory- and perception system
of which its estimation performance is prone to degradation if
the mentioned issues are not properly handled.

A practical solution to cope with unknown time delays can
be noise boosting, which can reduce the unwanted impact
of the delay on the estimation results by sacrificing the
overall estimation accuracy. Several approaches have been
published which aim to improve the estimation performance
by considering presence of time delays in their estimation
algorithm. Uncertain measurement delays with low variance
can be incorporated into the well known extended Kalman
filter (EKF) framework [2] by adding a buffer to the recursive
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filter containing a history of states and measurements. The
buffered information is used to compute partial updates of the
state until the point that all information is available. To ensure
optimality the authors use an iterative strategy commonly
referred to as iterated EKF (IEKF). Unknown measurement
delays are compensated in [3] up to a delay of the fastest
sampled sensor in a linear filter, designed to estimate position
and velocity of an aerial vehicle. In [4] the discrete Kalman
filter (KF) compensates known time delays by extrapolating
the measurement information to the required time. Two main
different algorithmic approaches are identified in [5], where
the authors group EKF-based approaches based on the usage
of state augmentation or modified update equations which
process the delayed information as soon it becomes available.
Recently, a moving horizon estimation (MHE)-based estimator
was proposed in [6] which is limited to linear systems and
therefore not applicable to many problems in navigation and
robotics. A possible extension of this idea to nonlinear systems
by will degrade the estimation performance in the presence of
linearization errors.

In this paper, we present a multi-sensor fusion approach
which is able to compensate for measurement delays and relax
the requirement of a precise synchronization between subsys-
tems as illustrated in Fig. 1. This work is specifically suited for
loosely-coupled sensor fusion setups where the onboard data
processing on each subsystem significantly increases the delay.
The presented algorithm is based on finding an approximate
continuous-time solution to the naturally discrete-time estima-
tion problem by applying the concept of direct collocation to
the MHE framework. This allows us to identify the actual time
of the measurement and hence achieve accurate estimation
results, regardless of time delays or unknown timestamps by
minimizing over the continuous control and state space. In
Section II, we describe the estimation framework allowing for
adaptive delay compensation in a general way. The framework
is then used in Section III for the compensation of measure-
ment delays of a centimeter-accurate GNSS receiver using the
real time kinematics (RTK) technology and an IMU. Finally,
we evaluate the designed estimator in Sections IV and V using
simulated and real measurement data, respectively.

II. ADAPTIVE DELAY COMPENSATION USING MHE

In order to introduce our approach for adaptive delay
compensation using MHE, we first review the standard discrete-
time formulation of MHE and introduce the concept of direct
collocation before defining our novel MHE approach.

A. Discrete-time MHE

MHE is an approach for online nonlinear state estimation
which aims to yield accurate estimation solutions by formu-
lating a possibly constrained nonlinear optimization problem
using measurement data from the recent past [7]. The mea-
surements capture information at discrete times tk, which
makes the discretization of state and control spaces a natural
choice. The estimation horizon length N ∈ N is defined by
the number of discretized states which are considered in the

estimation window and is often directly related to the number
of measurements. We use the index K to indicate the start of
the estimation window at time tK = tk−N which is shifted
over time keeping the horizon length constant. For a simple
MHE estimator such an optimization problem can be defined
as:

min
xK:K+N

uK:K+N−1

‖xK − x̄K‖2AK
+

K+N∑
k=K+1

‖h(xk,uk−1)− zk‖2Rk
+

+
K+N−1∑
k=K

‖g(uk,xk)− ūk‖2Qk
(1a)

s.t. xk+1 = F (xk,uk), k = K, . . . ,K +N − 1, (1b)

where the objective function (1a) is defined by the weighted
quadratic residual between measurements z ∈ RNz of dimen-
sion Nz ∈ N and the possibly nonlinear measurement model
h(x,u). A further possibly nonlinear function g(u,x) is used
to model the relation between the controls u ∈ RNu and the
measured controls ū ∈ RNu . The described cost term models
the uncertainty of the control inputs which can be consid-
ered alternatively using additional process noise variables [8].
The residuals are weighted according to the inverse of the
measurement and control noise matrices R ∈ RNz×Nz and
Q ∈ RNu×Nu . Knowledge about the past enters the problem
by using a quadratic arrival cost term on xK and x̄K which
is weighted by the matrix AK ∈ RNx×Nx . Note that x̄K
is a constant and not an optimization variable. The dynamic
system model enters in this formulation by imposing multiple
shooting constraints (1b), where F (x,u) defines an integrator
function which depends on the state value x and control input
u and the ordinary differential equation (ODE) of the system.

B. Direct collocation

In order to account for delayed measurement information,
a discrete-time formulation of the estimation problem is not
suitable. We need a continuous-time representation of the state
x(t) allowing us to evaluate the measurement models at every
point in time t. In this work, we use a direct collocation
approach using Lagrange polynomials which encode the state
trajectory between tk and tk+1. By embedding a polynomial
interpolation method of the state trajectory inside the opti-
mization problem, we can propagate the state according to the
dynamics of the system and at the same time get a continuous
representation of the state. We use D ∈ N orthogonal polyno-
mials at Radau (aka Gauss-Radau or Legendre-Gauss-Radau)
collocation points c1:D ∈ [0, 1] [9]. Each polynomial of degree
D ∈ N is therefore defined by

Pk,d(τ ; c1:D) =
D∏

i=1,j 6=i

τ − ci
cj − ci

, 0 ≤ τ ≤ 1, (2)

where the subindex i, j refers to the respective collocation
point and τ is the evaluation point. Note that we use a ;
to separate the variable function arguments from constant
parameters. The continuous-time representation of controls
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and states is defined by the sum of the individual polynomials
yielding the following functions for the evaluation of both
trajectories. The control function

Φ(τ,uk,1:D; c1:D) =
D∑
i=1

uk,iPk,i(τ ; c1:D), 0 ≤ τ ≤ 1, (3)

uses D collocation variables denoted by uk,1:D to evaluate
the value of the controls at the normalized time τ which is
valid for the interval [tk, tk+1]. To integrate the ODE of the
system a further collocation point is added at the beginning of
the interval yielding xk,0:D collocation variables and a higher
polynomial degree D+ 1. We define the state function and its
first derivative w.r.t time as

Ψ(τ,xk,0:D; c0:D) =
D∑
i=0

xk,iPi(τ ; c0:D), 0 ≤ τ ≤ 1, (4a)

Ψ̇(τ,xk,0:D; c0:D) =
D∑
i=0

xk,iṖi(τ ; c0:D), 0 ≤ τ ≤ 1, (4b)

respectively. Since it might not be required to get continuous
trajectories for all the states contained in the vector x, we
redefine x ∈ RNxc to only contain the collocation and
therefore continuous states. The discrete states are contained
in s ∈ RNxs leading to Nx = Nxc

+Nxs
.

C. Delay estimation & compensation using MHE

Despite (1) being a simple MHE problem, the standard
discrete-time definition of MHE bases on the assumption that
all measurements entering the computation of the residuals
are sharing common sampling times tk. In a loosely-coupled
multi-sensor fusion setup such an assumption is very likely
to be violated due to unknown processing and communication
delays.

Adopting the presented collocation strategy to MHE, it is
possible to estimate the continuous time delay resulting in the
optimization problem (6), where we adapted the optimization
variables in comparison to (1) to include the collocation vari-
ables for the continuous states x and controls u. Furthermore,
we introduce the discrete states s and the variables for the
time of measurement τk as optimization variables. The role
of the arrival cost is unchanged besides splitting the state

vector into continuous and discrete states. The measurement
residual term makes use of the state and control functions, (4a)
and (3), respectively, for which we estimate the time of
measurement τk by minimizing the residual along the state and
control trajectories. The control residual term makes use of the
same functions but we added an additional sum to incorporate
M ∈ N high rate control inputs at known normalized sampling
times t0:M ∈ [0, 1]. Note that this term by itself represents
an independent weighted least squares (WLS) fit, if and only
if g(·) is independent of x and can be solved in such case
beforehand. The last term in the objective function models the
evolution over time of the discrete states s as e.g. a random
walk process. Radau points share the property of having a
node at the end of the interval which simplifies the shooting
constraints in (6b). The system dynamics enter the problem
over the collocation constraints (6c), where the derivative
of the state trajectory (4a) is set equal to the ODE of the
system f(·) at the collocation nodes. Finally, the inequality
constraint (6d) ensures that τk stays in a valid range.

III. INERTIAL MOTION TRACKING WITH DELAYED
POSITION UPDATES

We want to motivate the benefit of the presented approach
with a practical example from GNSS-aided inertial motion
tracking, where the low-rate position measurements of a GNSS
receiver are used to compensate the drift of the IMU, which
is caused by measurement noise and biases. The fusion of
IMU and GNSS is a well studied topic [10], but technological
advances which lead to more accurate measurement informa-
tion impose also new challenges. The typical measurement
accuracy of a single GNSS receiver is around 2 m which
masks the effects of modeling errors such as time delays. Time
delays contribute generally to a position error scaling linearly
with the velocity of the system. The increasing demand for
centimeter accurate positioning is addressed with the RTK-
GNSS technology which uses correction information from local
base stations to correct in real-time for atmospheric errors in
the GNSS signals. The additional correction messages increase
the computational burden for the GNSS receiver causing larger
processing delays, while the improved positioning accuracy is
more severely affected by modeling errors.

minimize
xK:K+N,0:D

uK:K+N−1,1:D
sK:K+N
τK:K+N−1

∥∥∥∥[xK,DsK

]
−
[
x̄K
s̄K

]∥∥∥∥2
AK

+
K+N∑
k=K+1

‖h(Ψ(τk,xk,0:D),Φ(τk,uk−1,1:D))− zk‖2Rk
+

+
K+N−1∑
k=K

M∑
m=0

‖g(Ψ(tm,xk,0:D),Φ(tm,uk,1:D))− ūk‖2Qm
+ ‖λ(sk)− sk+1‖2Sk (6a)

subject to xk+1,0 = xk,D, k = K, . . . ,K +N − 1, (6b)

Ψ̇(cd,xk,0:D) = f(xk,d,uk,d), d = 1, . . . , D, k = K, . . . ,K +N − 1, (6c)
0 ≤ τk ≤ 1, k = K, . . . ,K +N − 1. (6d)
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In the following, we will define the models according to the
definitions in Section II.

A. Models

To allow the estimation of position, velocity, and orientation
using position and inertial, i.e., angular rate and specific force,
measurements, we start by the definition of the controls,
continuous, and discrete states, u, x, and s, respectively

x =
[
Lp

T
, Lv

T
, LSq

T
]T
, (5a)

s =
[
S
aδ

T
, Sgδ

T
]T
, (5b)

u =
[
Sf

T
, S
LSω

T
]T
, (5c)

where the position Lp ∈ R3 and velocity Lv ∈ R3 of
the system are expressed with respect to the local and non-
moving frame L. The orientation between the fixed L and
moving sensor frame S is described by the unit quaternion
LSq ∈ {R4 |

∥∥LSq∥∥2 = 1} [11]. We further estimate as
discrete states the biases of the IMU sensors which are defined
by S

aδ ∈ R3 for accelerometer and S
gδ ∈ R3 for gyroscope

triads. The ODE of the state is driven by the control vector u
containing the angular velocity S

LSω ∈ R3 between the S-and
L-frame and the free acceleration Sf ∈ R3, both observed in
the S-frame leading to

f(x,u) :=
d

dt
x =

d

dt

 Lp
Lv

log LSq

 =

 Lv

RLSq
Sf

S
LSω

 (7)

where the free acceleration Sf is rotated to the L-frame
using the rotation matrix RLSq ∈ R3×3 to express the time
derivative of Lv. Notice the use of the logarithmic map to
express the time derivative of the orientation state LSq [12].
The biases S

aδ,
S
gδ are modeled as random walk processes and

therefore (6a) simplifies to λ(sk) = sk. The resulting residual
is weighted by S = diag [νTacc, ν

T
gyr]
−2 ∈ R6×6 containing the

corresponding random walk variances for accelerometer and
gyroscope. We define the measurement models h(·) to predict
measurements using the polynomial evaluation functions for
state (4a) and controls (3) to compute the arguments of

h(xk,uk) = h(Lp, LSq; Sι) = Lp+RLSq
Sι. (8)

The model accounts for the lever arm Sι ∈ R3 of the GNSS
antenna respective the IMU sensor. Notice, that Sι is defined in
the S-frame and therefore rotated to the L-frame using RLSq .
The measurement residual in (6) is weighted according to the
standard deviation of the GNSS receiver R = diag [σgnss]

−2 ∈
R3×3.

The control input model g(·) defines the relation between
IMU measurements and control signals u.

g(x,u) = g(Sf, S
LSω,

S
aδ,

S
gδ) =

[Sf +RSLq
Lg + S

aδ
S

LSω + S
gδ

]
, (9)

where we rotate the local gravity Lg ∈ R3 to the S-frame
and add the free acceleration signal Sf . The residual in (6)

is weighted according to the standard deviation calculated
from the noise density for accelerometer and gyroscope Q =
diag [σT

acc, σ
T
gyr]
−2 ∈ R6×6.

B. Implementation

In the described application, we estimate the orientation of
the sensor w.r.t to a fixed frame L. To represent the 3 degrees of
freedom of the orientation, we use unit quaternions LSq which
represent an over-parameterization to avoid singularities. For
valid orientation estimates it is crucial to optimize on a valid
orientation manifold of unit quaternions. In this work, we
follow the approach described in [12], by making extensive
use of the logarithmic and exponential map. While the sensor
and control models, (8) and (9) respectively, use the value
of the quaternion LSq, the shooting constraints (6b) and the
optimizer use the logarithmic map.

The approach is implemented in the Python computing
language and uses algorithmic differentiation to calculate
residuals and derivatives of cost functions and constraints.
This information is fed to the open-source interior point solver
IPOPT [13] using the Gauss-Newton approximation to ensure
a positive-definite Hessian [14].

IV. SIMULATION RESULTS

We randomly generate datasets containing ground-truth and
sensor data using the simulation approach described in [15].
The simulation framework uses random waypoints in orien-
tation and position together with interpolation techniques to
generate smooth motion trajectories reflecting realistic system
dynamics. The original approach was extended to allow the
insertion of artificial time delays of the sensor measurements.
Table I summarizes the simulation parameters and sensor
parameters such as sampling rates F , noise densities η, biases
δ, and the lever arm Sι of the GNSS antenna. Values which
are sampled from distributions are denoted by N and U ,
for normal and uniform distributions, respectively. The delay
of the GNSS measurements is uniformly sampled over the
interval [0, 0.25] s and considered constant. The selected noise
parameters of the IMU are typical for a low-grade consumer
device which can be found in smartphones or other consumer
electronics.

The 20 simulated datasets, each containing 30 s of sensor
data, are used to evaluate the performance of the described
approach. The estimator output rate Fest is set to 4 Hz
for this evaluation which is equal to the rate of the GNSS
sensor. Therefore, the time of the GNSS measurement always
lies inside the time interval which is represented by one
collocation interval. If the estimator rate is desired to be
higher, we propose to check for active inequality constraints
of τ (6d) after convergence and shift the measurement to the
previous collocation interval if the length of horizon allows
this operation.

The estimator is initialized by setting the estimates of
the IMU biases, the initial velocity, and the heading or yaw
angle to 0. Pitch and roll angles are initialized using the first
accelerometer measurement [16]. Under the assumption that
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TABLE I
SIMULATION PARAMETERS IN TERMS OF VALUE OR SAMPLING

DISTRIBUTION.

Parameter Value Unit

Waypoints
Lp N (0, [5, 5, 1]T) m
LSq N (0, [10, 10, 80]T) deg

Accelerometer
Facc 400 Hz

ηacc 180 µg
√
Hz

−1

S
aδ N (0, 0.125) m s−2

Gyroscope
Fgyr 400 Hz

ηgyr 0.007 deg s−1
√
Hz

−1

S
gδ N (0, 0.15) deg s−1

GNSS

Fgnss 4 Hz

σgnss N (0, [2, 2, 4]T) cm
Sι N (0, [1.5, 1.5, 1]T) m

τgnss U([0, 25]) s

TABLE II
STANDARD DEVIATIONS FOR THE INITIALIZATION OF THE ESTIMATOR.

State σ0 Unit

LSq0,0 [10, 10, 50] deg

Lp0,0 [1, 1, 1] m

Lv0,0 [0.1, 0.1, 0.1] m s−1

S
aδ0,0 [0.15, 0.15, 0.15] m s−2

S
gδ0,0 [0.15, 0.15, 0.15] deg s−1

the device is static at startup, the measured gravity vector
allows for a reasonable initialization of pitch and roll angles.
The initial state values are used to construct a prior using the
corresponding standard deviations which are summarized in
Table II.

Fig. 2 shows the root mean square error (RMSE) between
the estimated position and the simulated ground truth trajec-
tory. We evaluate each dataset for different horizons N =
{1, 2, 3, 4, 5, 10} yielding a maximum measurement history
of 2.5 s for the MHE estimator. Additionally, we run each
experiment with the delay compensation active and disabled,
which means for the latter that we use the time when the GNSS
data arrived and is therefore available in the data stream. By
observing the results without delay compensation in Fig. 2, we
notice how crucial it is to take the time delay into account.
The simulated delays cause position errors in range of 20 cm
despite using GNSS position measurements with an accuracy
in the order of centimeters. By increasing the horizon N , the
position errors slightly decrease but are still higher than ex-
pected from the simulated measurement accuracy. We observe
that z-position errors are lower for all evaluated horizons. This
behavior is explained by the simulated excitation which is
responsible for moving the system mainly in the xy-plane (see
Table I).

When enabling the delay compensation, the RMSE decreases

1 2 3 4 5 10
0

2.5
5

7.5
10

12.5
15

17.5
20

Horizon Length N

R
M

S
E

[c
m

]

x
y
z

Fig. 2. RMSE of position estimates for simulated datasets for different horizon
lengths with (solid-colored) and without (light-colored) the delay estimation
enabled.

significantly for all evaluated horizons. Furthermore, we ob-
serve that the position errors decrease with an increasing
estimation horizon yielding an accuracy of about 2 cm for
all axes with a horizon of N ≥ 3. Such an accuracy is desired
when fusing position measurements of a similar accuracy.

By fusing position measurements with inertial measure-
ments, the orientation can be observed. The RMSE of the
orientation error estimates are visualized in Fig. 3 using Euler
angles. In general, we observe that pitch and roll angles can
be estimated with a higher accuracy than the yaw angle.
This behavior is explained by measuring the gravity vector
with the accelerometer which allows to observe the roll and
pitch angle [16]. We can confirm this behavior by yielding
errors below 1.25 deg for all horizons with and without delay
estimation enabled. Regardless of this, we can show with
Fig. 3, that enabling the delay estimation reduces the RMSE
to up to 0.2 deg. Even more improvement, we see for the
yaw angle which is not observable from the IMU data itself.
By fusing the accurate position measurements at the correct
instance in time, we can decrease the RMSE by one order of
magnitude from around 10 deg to 1 deg. Notice that we are
not gaining estimation performance if the delay estimation is
disabled.

The detailed ground truth information allows us in Fig. 3
to evaluate the quality of the delay estimation itself for
the simulated motion trajectories. The presented approach
is capable to compensate varying measurement delays, yet
in many practical applications the delay is observed to be
nearly constant. Following this argumentation, we evaluate the
estimator using a constant delay for each motion trajectory.
The value of the measurement delay for each trial is uniformly
sampled from the interval given in Table I. The resulting mean
value of the simulated measurement delay over all datasets
is visualized in Fig. 4 using a line plot. The RMSE of the
estimated time delay is below σsim for all horizons and de-
creasing continuously for larger horizons. The RMSE converges
to a value of 5 ms for a horizon N ≥ 5. Furthermore, we
notice the converging standard deviations of the estimation
error for increasing horizons. Despite the higher accuracy of
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Fig. 3. RMSE of roll and pitch angle (top) and yaw angle (bottom) of
orientation estimates for simulated datasets for different horizon lengths
with (solid-colored) and without (light-colored) the delay estimation enabled.
The internally computed quaternion error is plotted in terms of Euler angles
for easier interpretation.

1 2 3 4 5 10
0

50

100

Horizon Length N

R
M

S
E

[m
s]

τest
τ̄sim

Fig. 4. RMSE of estimated time delay of the GNSS measurements w.r.t to
the simulated time delay. The standard deviation of the estimation errors is
visualized by the additional error bars. The simulated delay varies for each
dataset and its mean value over all datasets is visualized by the dotted line.

the estimated delay for larger horizons, we observe that the
RMSE of orientation and position estimates settle already for
horizons N ≥ 4.

V. EXPERIMENTAL RESULTS

The presented approach is evaluated using real measurement
data using the experimental setup shown in Fig. 5. The setup
consists of three Xsens MTi 610 IMUs [17] which receive mea-
surement data from a u-blox ZED-F9 RTK-GNSS receiver [18].
The corresponding datasheet parameters are shown in Ta-
ble III. An additional GNSS receiver of the same type is used

Fig. 5. Experimental setup using three IMUs and three GNSS-RTK receivers
with the corresponding antennas. The sensor parameters are shown in Ta-
ble III.

TABLE III
SENSOR PARAMETERS OF EXPERIMENTAL SETUP.

Parameter Value Unit

Accelerometer
Facc 400 Hz

ηacc 60 µg
√
Hz

−1

S
aδ 15 µg

Gyroscope
Fgyr 400 Hz

ηgyr 0.007 deg s−1
√
Hz

−1

S
gδ 8 deg h−1

GNSS

Fgnss 4 Hz

σgnss 1 cm
Sι [0.3, 0, 0]T m

τgnss 180 ms

as base station to provide correction messages to the moving
GNSS receivers. The IMU and GNSS share a synchronization
signal which allows us to obtain the time of the measurement
w.r.t. to the IMU clock despite processing and transmission
delays on the GNSS receiver. We used the experimental setup
to manually collect several short dynamic trials during which
we did random movements while holding the setup. Therefore,
we obtain a random trajectory with excitation of all axes.

0 2.5 5 7.5 10 12.5 15 17.5
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time [s]

τ g
n
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] τmeas

N = 1

N = 3

N = 5

Fig. 6. Comparison of the estimated relative time of measurement and the
recorded time of measurement of the GNSS measurements using the experi-
mental setup. The estimates are obtained for different horizon lengths N .
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Fig. 6 shows the relative time of measurement for an estimator
output rate of 4 Hz. The measured time of measurement
τmeas is visualized as a dotted line and was obtained by
registering the synchronization pulse of the GNSS receiver.
Please note, that τmeas does not represent the processing delay
of the receiver itself but instead represents the relative time of
measurement in a single collocation interval and expressed in
seconds. To relax the assumption of initial knowledge about
the time of measurement τgnss, we initialize τgnss with the
current estimator time. Fig. 6 shows the estimated τgnss for
the horizons N = {1, 3, 5}. For N = 1 a reliable estimation
of τgnss is not possible as τgnss is estimated with value 0 s.
By increasing the horizon, the estimate of τgnss converges
to the measured value τmeas. We obtain the most accurate
estimate for N = 5. The error at the end of the trial is
in the range of 50 ms which is by a magnitude higher
compared to the simulation results in Fig.4. The higher error
can be explained by parameter errors due to the mechanical
uncertainties of the experimental setup. Parameters such as
the lever arm Sι between IMU sensor and GNSS antenna are
important quantities for the identification of time delays but
are difficult to measure. Earlier work [15] shows, that such
uncertain parameters can be estimated online but this exceeds
the scope of the paper.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented a novel multi-sensor fusion
framework which is able to compensate for unknown time
delays of measurements. This is done by finding a continuous-
time solution for the estimates allowing us to fuse additional
measurement information in an optimal way. The framework
is based on a direct collocation approach which specifically
addresses sensor fusion problems that rely on nonlinear motion
or sensor models. By using a MHE formulation for the resulting
estimator, measurements of the past can be integrated up
to the length of the estimation horizon. After defining the
delay compensation approach in general, it was applied to the
problem of GNSS-aided inertial motion tracking estimating.

The estimator was evaluated using simulated motion tra-
jectories and measurement data showing the importance of
addressing measurement delays when fusing position measure-
ments with an accuracy of centimeters. Unknown time delays
up to 200 ms were compensated with the presented approach
reducing the position and orientation errors by one order of
magnitude. By using a MHE approach with a measurement
horizon N ≥ 4, we showed a further performance gain in
terms of estimation accuracy and stability. Furthermore, we
were able to identify the measurement horizon N = 4 as
a good trade-off between estimation accuracy and computa-
tional efficiency for GNSS-aided inertial motion tracking. The
practical relevance of the presented approach was shown by
estimating and compensating the delay of position measure-
ments in an experimental sensor fusion setup using an IMU
and a GNSS-RTK receiver.

In the future, we aim to use the universal multi-sensor
fusion framework, described in this paper, for larger multi-

sensor fusion setups. By including sensors which process
image or pointcloud data, the estimation of processing delays
will be particularly interesting. Additionally, we will focus
on the improvement of the computational efficiency because
the current implementation does not satisfy the real-time
constraints. We aim to improve the computational efficiency
by exploiting the structure of the MHE estimation problem and
finally, we plan to optimize the implementation.
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