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Towards In-Field and Online Calibration of Inertial Navigation Systems
using Moving Horizon Estimation*

Fabian Girrbach1,2, Raymond Zandbergen1, Manon Kok3, Tijmen Hageman1, Giovanni Bellusci1, Moritz Diehl2

Abstract— Inertial sensors are used in an increasing number
of autonomous applications. Integrating such sensors into dy-
namic systems, the problem of their calibration arises naturally.
Existing methods often require the sensor to be accurately
placed in certain poses, which can be infeasible in practice.
In this paper, we present an optimization-based estimator for
in-field identification of inertial biases and scale factors. Instead
of predefined poses, we use measurements of an accurate global
navigation satellite system receiver in the calibration algorithm.
By adopting a moving horizon scheme, the resulting estimator
has the potential to run on embedded hardware allowing
for online calibration without sacrificing robustness. We also
present an approach for the simulation of realistic sensor data.
The resulting datasets are used to analyze the performance
of the optimization-based estimator. The evaluated statistics
clearly show that moving horizon estimation improves the
robustness and accuracy of the presented calibration approach
in the presence of uncertain initial conditions and outperforms
traditional recursive filters.

I. INTRODUCTION

Accurate ego-motion tracking is crucial in a number of
autonomous applications, e.g., service robotics, autonomous
driving or drones. The challenging task of navigating safely
through often dynamically changing environments has been
addressed in numerous approaches for mapping, localization,
simultaneous localization and mapping (SLAM), and motion
planning [1]. Most navigation systems rely on sensors which
allow the localization of the moving system. Typical sensor
systems include cameras, LIDAR systems, and global nav-
igation satellite system (GNSS) receivers and require some
kind of external feedback from the current environment.
To increase robustness of pose estimation approaches in
scenarios, in which these requirements are not fulfilled, the
sensors are combined with inertial sensors. Inertial measure-
ment units (IMUs) allow to measure angular velocity and
acceleration of the system without any dependency on the
current environment.

To estimate the pose using acceleration and angular ve-
locity measured by the IMU (see Fig. 1), the sampled mea-
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Fig. 1: Schematic drawing showing the measurements of an
IMU and RTK-GNSS receiver, respectively. The sensor errors
of the accelerometer are visualized by the different lengths
(dotted lines) of the measurement axes

S
f̂x,y,z which can be

caused by wrongly calibrated biases S
aδ and scale factors S

aψ.
The lever arm between GNSS antenna and IMU is represented
by the dashed line Sι.

surement data is integrated over time. Small measurement
errors and noise contribute to pose errors. To keep the impact
of these errors as small as possible the sensors need to be
calibrated. Many IMU producers rely on a factory calibration
procedure on a chip-level. During system integration, addi-
tional stresses or other mechanical influences can affect the
previously obtained calibration values making a system-level
calibration necessary.

Additional information is necessary to identify sensor
parameters such as misalignment, nonorthogonality, scale
factors, and biases. Common methods make use of prede-
fined poses in which the sensor must be placed with high
accuracy. The six-position method [2] requires the inertial
system to be mounted on a static and leveled surface with
each sensitive axis of every sensor pointing alternately up
and down. Alternative methods relax the requirement of
special aligned sensor mountings [3] or use a dynamic
procedure [4] using a combination of a single-axis rate-
table and an attitude change mount to overcome the limi-
tations of static calibration methods. Instead of predefining
certain poses, calibration can be also achieved by using
additional sensors. In particular the calibration of IMU and
camera is a well-studied problem [5]. These methods use
a calibration target as reference to track the motion with
high accuracy and try to determine calibration and system
parameters. Recent advances in GNSS technology allow to
obtain very accurate position measurements by compensating
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online for atmospheric errors. This feature is known as real
time kinematics (RTK) and opens up new possibilities for
GNSS-aided technologies such as calibration. The traditional
calibration approaches discussed so far are typically solved
in a post-processing or smoothing approach, meaning that
all the gathered measurement data is used for calibration in
a unified approach.

More recently, several filter solutions for online calibration
have been proposed which make use of the nonlinear Kalman
filter (KF) framework [6]–[9]. A drawback of filtering meth-
ods is that the estimator is sensitive to initialization and
linearization errors, and estimates can diverge if not properly
initialized due to the limited amount of information. By
using a sliding window of recent measurements, moving
horizon estimation (MHE) is considered a solution to manage
the balancing act between robustness and computation effi-
ciency [10]. In the context of inertial motion tracking, MHE-
based estimators [11]–[14] have proven to be an alternative
to the widely used extended Kalman filters (EKFs). By
considering the online identification of several calibration
parameters, we show in this contribution, that MHE is not
only a valid alternative, but opens up possibilities beyond
state of the art KF approaches.

In this work, we use the measurements of a RTK-GNSS
receiver to calibrate scale factors and biases of the IMU
sensors. In addition, we account for an unknown lever arm
between GNSS antenna and the IMU sensor, which is also
estimated. The considered system components are visualized
in Fig. 1. We use MHE [10] to estimate the pose and the
sensor parameters simultaneously. In contrast to existing
post-processing solutions, MHE allows the implementation on
embedded devices with limited computational resources, due
to its memory-efficient formulation. The presented approach
is therefore a step towards in-field and online calibration of
GNSS-aided inertial navigation systems. The accuracy with
which the parameters can be estimated, depends on the
excitation of the system. In order to obtain fairly general
results, we adopt a simulation approach to achieve realistic
IMU data.

This paper is structured as followed, after defining the
considered variables, we define the system dynamics and
sensor models in Section II. The optimization-based esti-
mator is formulated in Section III by defining the resulting
optimization problem. The established models are further
used in Section IV to formulate the optimization-based
simulation process of sensor data. The results of the MHE
estimator on a set of simulated datasets are discussed in
Section V, before we conclude the paper with Section VI.

II. MODELS

We present an approach to track the motion of a moving
system and identify important sensor and system parameters
simultaneously. A typical system configuration for inertial
navigation is used, consisting of an IMU and a RTK-GNSS
receiver. We define the state x, parameter p, and control u
vectors by concatenating of the variables of interest.

x =
[

Lp
>
, Lv
>
, LSq

>]>
, (1a)

p =
[

S
aψ
>
, Saδ
>
, Sgψ

>
, Sgδ
>
, Sι
>]>

, (1b)

u =
[

Sf
>
, S
LSω

>]>
, (1c)

where the position Lp ∈ R3 and velocity Lv ∈ R3 of
the sensor are expressed with respect to the local and non-
moving frame L. The orientation between the fixed L and
moving sensor frame S is described by the unit quaternion
LSq ∈ S3 ⊂ {R4 |

∥∥LSq
∥∥2

= 1} [15]. The sensor
and system parameters are collected in p. We assume a
linear map between the measured signal of the IMU and its
physical quantity, where offsets are compensated using the
bias terms S

aδ,
S
gδ ∈ R3. The scale factors for accelerometer

and gyroscope are defined by S
aψ,

S
gψ ∈ R3 respectively. As

an additional system parameter, we include the estimation
of the lever arm Sι ∈ R3 between the GNSS antenna and
sensor frame S. The control vector u contains the inertial
quantities, where Sf, S

LSω ∈ R3 define free acceleration
and angular velocity signal observed in the S-frame. Note,
that the control signal u is not equal to the measurements
obtained by the IMU. The lever arm Sι is assumed to be
constant when expressed with respect to the S frame. Notice
that all introduced variables are vector quantities. We use
bold symbols to denote concatenated vectors, such as x ∈
R10, p ∈ R15, and u ∈ R6.

A. Dynamic Model

The dynamics of the motion state x are encoded in an
ordinary differential equation (ODE) using a conventional
point-mass model resulting in expressions

Lṗ = Lv, (2a)
Lv̇ = RLSq

Sf, (2b)

LSq̇ =
1

2
LSq �

[
0
S

LSω

]
=

1

2

[
0 − S

LSω
>

S
LSω

S
LSω

×

]
LSq, (2c)

where (2a) defines the time derivative of the position Lṗ.
The free acceleration Sf is defined in the sensor frame S
and needs to be rotated to the L frame to express the time
derivative Lv̇. Notice, that LSq̇ depends on the orientation
state LSq and the angular velocity S

LSω, where the � operator
in (2c) denotes the quaternion multiplication operator which
can also be expressed using the skew symmetric matrix

S
LSω

× ∈ R3×3.

B. Sensor Models

The ODE (2) is driven by the control input u, which is
closely related to the IMU measurements. By defining sensor
models h(x,u,p), we calculate a predicted measurement
using the current information about estimated variables x,p
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and u:

hp(Lp, LSq, Sι) = Lp+RLSq
Sι, (3a)

hv(Lv, LSq, S
LSω,

Sι) = Lv +RLSq[ S
LSω × Sι], (3b)

hf (Sf, LSq, Saδ,
S
aψ) = diag(S

aψ)−1 Sf − S
aδ +RSLqg, (3c)

hω( S
LSω,

S
gδ,

S
gψ) = diag(S

gψ)−1 S
LSω −

S
gδ, (3d)

where time indices have been dropped for notational con-
venience. To predict a position measurement (3a) from the
state variable Lp, we add the lever arm Sι by rotating it to the
L-frame using RLSq ∈ R3×3. A similar relation holds for the
velocity measurement in (3b), where we notice a coupling
between the IMU and GNSS through the angular velocity

S
LSω. In (3c), we need to compensate for the measured
gravitational force g ∈ R3 before applying scale factors
S
aψ and biases S

aδ to the measured acceleration. The identity
R−1

LSq
= RLSq−1 = RSLq, is used, to express the rotation

from L to S-frame, where LSq−1 defines the inverse of the
quaternion. The linear relation between measured angular
velocity of the gyroscope and the control signal S

LSω is
defined in (3d). It is worth noticing, that the scale factors
S
aψ,

S
gψ can be further used to convert the sensor output to

physically relevant SI units.

III. ESTIMATOR

The optimization-based estimator uses the system dynam-
ics and the sensor models defined above over an estimation
horizon of N ∈ N+ measurements. Taking into account that
the measurements are acquired at discrete times tk ∈ R, we
define a discrete-time optimization problem (4) using direct
multiple shooting [16]. Eq. (4) states the optimization prob-
lem for a specific horizon length N . The horizon is shifted
with progressing time so that tN describes always the current
time with the latest available measurement information.

min
∆x0,...,∆xN
∆p0,...,∆pN

∆u0,...,∆uN−1

1

2

∥∥∥∥[∆x0

∆p0

]∥∥∥∥2

A
+

N−1∑
k=0

‖pk − pk+1‖2W

+

N−1∑
k=0

∥∥∥∥∥
[

S
f̂k − hf (xk,uk,pk)
Sω̂k − hω(uk,pk)

]∥∥∥∥∥
2

RIMU

+

N∑
k=0

∥∥∥∥[Lp̂k − hp(xk,pk)
Lv̂k − hv(xk,pk)

]∥∥∥∥2

RGNSS

(4a)

s.t. xk = x̂k � ∆xk, k = 0, . . . , N, (4b)
pk = p̂k � ∆pk, k = 0, . . . , N, (4c)
uk = ûk � ∆uk, k = 0, . . . , N − 1, (4d)
xk+1 = φ(xk,pk,uk), k = 0, . . . , N − 1, (4e)

where the cost function (4a) consists of four parts. The
first line in (4a) defines the arrival cost and the random
walk model of the estimated parameters. The arrival cost
penalizes the initial increments ∆x0 and ∆p0 according
to the arrival cost information matrix A to account for
prior or past information. The parameters are modeled
as random walk and their jumps between successive pk

and pk+1 are penalized according to their random walk
standard deviation W . The second and third line in (4a)
define the squared residuals between predicted and acquired
measurements for each sensor (IMU,GNSS) according to the
sensor models (3). Each residual is weighted according to
its information matrix RIMU,RGNSS ∈ R6×6 and summed
over the horizon N . The constraints (4b)-(4d) establish the
relation between increments and states using the � operator,
a generalization of the addition operator, which also holds
for quaternions. Notice, that the optimization variables ∆x,
∆p, and ∆u are increments with respect to initialization
values x̂, p̂, û of the variables defined in (1). The increments
can be also interpreted as error states between initialization
and optimal value. We optimize on a valid manifold in
SO(3) by using its Lie Algebra [17]. In order to obtain a
closed state trajectory according to the system dynamics, the
typical multiple shooting constraints are expressed in (4e)
using an integrator function φ, which makes use of the ODE
of the system (2). The resulting optimization problem for
each horizon is solved using a constrained Gauss-Newton
algorithm. Before shifting the measurement horizon to the
current time, the arrival cost needs to be computed. We adopt
a system reduction approach using a Schur complement
on the Karush-Kuhn-Tucker (KKT) system at the optimal
solution x∗,p∗,u∗. Notice, that for a horizon length of
N = 1 the resulting estimator is equal to the iterated
extended Kalman filter (IEKF) [18], which allows for straight
forward comparison of MHE and traditional filtering methods.

IV. SIMULATOR

The results of a calibration procedure which is based on
dynamic motion of the system will always depend on the
motion trajectory itself. In the trivial case of a static sensor,
it is easy to understand that observed measurement errors can
be either a result of wrongly calibrated scale factors or biases.
Therefore the parameters are not observable in this scenario.
To obtain fairly general results, we simulate datasets, which
contain randomly generated motion trajectories with various
degree of excitation in terms of acceleration and angular
velocity changes. Sensor errors can be added to the noise-
free data and the true values can be used to assess the
performance of the estimator. The simulator uses the same
framework for nonlinear optimization as the estimator and
employs the same models. We re-use the notation and defi-
nitions for state x, parameters p and controls u. Instead of
estimating states and parameters given the controls, we solve
an optimal reference tracking with the goal of identifying
the necessary controls to track a random trajectory. The
entire simulation process is visualized in Fig. 2 and can be
summarized by the following steps:

1) A seed value for the random generator is set to achieve
a repeatable process.

2) M ∈ N waypoints in position and orientation are
sampled on a coarse time-grid by drawing samples
from the corresponding Gaussian distribution x̆0:M ∼
N (0, σ), see Table I.
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Fig. 2: Flowchart of simulation process to obtain IMU and
RTK-GNSS sensor data for random motion trajectories.

3) To achieve a realistic and smooth trajectory, the way-
points are fitted to a polynomial of third order yielding
the time-continuous model function m(t, x̆0:M ).

4) The model equation represents a continuous-time ref-
erence trajectory and is used to formulate a discrete
optimal reference tracking problem (5) of length D ∈
N with sample time TS := tk+1−tk, k = 0, . . . , D−1.

5) After finding a set of feasible controls u∗0:D−1 satis-
fying the bounds on the controls (5c) and the initial
velocity constraints (5e), we simulate the system using
the same implicit integrator function φ(xk, p̆,uk) to
obtain a state trajectory for the time grid according to
the sampling rate of the IMU.

6) Randomly sampled parameter errors p̆ ∼ N (0,Σp)
are used to generate sensor measurements for IMU
and RTK-GNSS according to their sensor models de-
fined in (3) from the obtained state x∗ and control
u∗ trajectories. Furthermore, we add white noise to
S
f̂0:D,

Sω̂0:D,
Lp̂0:D,

Lv̂0:D.
The optimal control problem solved during simulation can

be summarized as follows:

min
x0,...,xD

u0,...,uD−1

D∑
k=0

‖xk −m(tk, x̆0:M )‖2S +

D−1∑
k=0

‖uk‖2 (5a)

s.t. xk+1 = φ(xk, p̆,uk), k = 0, . . . , D − 1 (5b)

|uk| ≤ u+−, k = 0, . . . , D − 1 (5c)∥∥ZLSqxD

∥∥2
= 1, (5d)∥∥ZLvx0

∥∥2
= 0, (5e)

x̆0:M ∼ N (0,Σx), M ∈ N (5f)

where we want to highlight that the parameters p are
no longer considered an optimization variable. Apart from
the shooting constraints (5b) and the integrator function
φ(xk, p̆,uk), we define box constraints on the controls (5c)
which take the limited measurement range of the sensors
into account. Notice, that we do not make use of increments
in this formulation. To ensure a valid manifold in SO(3),
we add an additional equality constraint (5d) which ensures

TABLE I: Simulation parameters in terms of mean µ and
standard deviation σ to sample waypoints and sensor errors.

Parameter µ σ Unit

Waypoints
Lp 0 [5, 5, 1]> m
LSq 0 60 deg

Accelerometer
S
aδ 0 0.125 m s−2

S
aψ 0 10 %

Gyroscope
S
gδ 0 0.2 deg s−1

S
gψ 0 10 %

GNSS

Sι 0 [5, 5, 2.5]> m
Lp̂ 0 0.05 m
Lv̂ 0 0.3 m s−1

TABLE II: Common initialization of navigation states and
calibration parameters for both initialization scenarios.

Parameter µ σ Unit

Navigation
Lp

[0]
0

Lp̂0 Rp
−1 m

Lv
[0]
0

Lv̂0 Rv
−1 ms−1

Acc
S
aδ

[0]
0 0 0.15 m s−2

S
aψ

[0]
0 1.0 0.25

Gyro
S
gδ

[0]
0 0 0.25 deg s−1

S
gψ

[0]
0 1.0 0.2

GNSS Sι
[0]
0 0 [10, 10, 3]> m

LSq to have unit-norm [19]. The matrices Z in (5d) and (5e)
select the corresponding entries in x for the indexed variable
to impose the unit-norm constraint on LSq and the zero initial
velocity constraint on Lv.

V. RESULTS

In this section, we use 20 simulated datasets generated
by following the simulation process described in Section IV.
The randomness in the simulated trajectories is introduced
by sampling waypoints and sensor calibration errors from
normal distributions according to Table I. The IMU mea-
surements are sampled at a frequency of 400 Hz and contain
additional white noise according to their noise densities aη =

77.8 µg
√

Hz
−1

and gη = 0.008 deg s−1
√

Hz
−1

. For com-
parison of the estimated results, we save the true simulated
values for each motion trajectory and compute the difference
between the estimated and ground truth values. To assess
the performance and accuracy we evaluate the differences in
terms of mean root mean square errors (RMSEs) over all
20 datasets for different horizon lengths N = 1, . . . , 15.
The initialization or equivalently, the formulation of the
prior, plays a crucial role in the context of state estimation.
Especially the initial guess of the orientation state LSq

[0]
0 is

a major cause of linearization errors in nonlinear estimation
approaches, which handle the nonlinearity by finding a linear
approximation of the nonlinear system of equations. The
prior of the estimator is formulated by defining its mean and
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Fig. 3: Comparison of the orientation error for different
horizon lengths N using a perfect and an uncertain initial
guess. The mean RMSE over all datasets is visualized using
the solid line and its standard error using the colored patch.

standard deviation and is summarized in Table II. Whereas
the navigation states Lp

[0]
0 and Lv

[0]
0 are initialized using

the GNSS measurements, the orientation state LSq
[0]
0 is not

directly measured. In practice, the sensor can be either placed
in a pose with known orientation or additional sensors such
as a magnetometer can be used to determine the initial
orientation. Notice that the accuracy of the latter method
depends on the calibration of the magnetometer itself, which
is a research field of its own [20].

We consider two scenarios: The orientation is either ini-
tialized at the true value or assumed to be unknown and
set to 0 deg with a large standard deviation of 60 deg.
The remaining states are initialized according to Table II
for both scenarios. Fig. 3 shows the consequences of the
two different initialization methods for different horizon
lengths N . If initialized at the true value, we observe a
nearly constant orientation error independent of the horizon
length N . This behavior can be confirmed by considering
the calibration errors in Table III for specific horizons N .
With exactly known initial conditions, the mean calibration
errors are of same magnitude and converge to similar values
after 60 s. In case of an unknown orientation, we observe
in Fig. 3, strongly decreasing orientation errors up to a
horizon length of N = 3 and a constant mean error for
horizons N > 3. Notice that the plotted mean error does not
recover instantly from the wrong initialization by increasing
the horizon length, which results in an offset between the two
initialization scenarios. When the transient orientation effects
are excluded from the evaluation by only considering the last
30 s of the datasets it can be verified that the offset of the
mean error is mainly explained by the wrong initialization
of orientation and calibration parameters. On the other hand,
we obtain higher errors for short horizons N < 3 even when
considering only the last 50% of the datasets. From this it
can be concluded that longer horizons are not only able to
handle initialization errors better, but improve estimation in
general.

This conclusion is supported by Fig. 4, which shows the
evolution of errors over time for accelerometer biases and
scale factors for horizons N = {1, 2, 3, 5}. We notice that
for both calibration parameters, a horizon length of N = 1
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Fig. 4: Evolution of error for estimating accelerometer bi-
ases (a) and scale factors (b) over time using an uncertain
initial orientation for different horizons lengths N . The mean
error over all datasets is visualized using the solid line and
the corresponding standard error using the colored patch.

results in errors over time which are multiple times larger
than the errors of the initial guess at t = 0 s. Apart from
the diverging estimates, we also notice that the errors do
not converge to a reasonably small values at the end of the
simulated calibration procedure at t = 60 s. By increasing
the horizon N > 1, the risk of divergence is clearly
decreased even though a desired convergence behavior is
only observed for horizons N ≥ 3, for which the errors
decrease continuously with time t. This behavior can be
verified by analyzing the mean, maximum, and minimum
calibration errors in Table III. The results confirm that
increasing the horizon length results in consistently lower
maximum errors over the whole 60 s of the datasets in the
presence of orientation initialization errors. An assessment
of the calibration accuracy at the end of the calibration
procedure shows that despite an uncertain and unknown
initial orientation, estimators with a horizon size N ≥ 3
reach a high calibration accuracy. The errors in Table III
converge after t = 60 s to values similar to those we obtain
for the scenario with with known initial orientation.

VI. CONCLUSION

A MHE-based calibration method for RTK-GNSS-aided
inertial navigation systems has been presented, capable of
determining biases and scale factors of the inertial sensors
and the lever arm between the IMU and the GNSS antenna.
The estimator does not require any additional information
beside the available measurements and a dynamic excitation
of the system itself. To obtain fairly general results from
the excitation depending calibration accuracy, a simulation
approach for realistic sensor data has been developed to
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TABLE III: Estimator Calibration Errors

N S
aδ [m s−2] S

gδ [deg s−1] S
aψ [10−2] S

gψ [10−2] Sι [m]

mean max min mean max min mean max min mean max min mean max min

Initial LSq0 known; 0 ≤ t ≤ 60

1 0.125 0.248 0.057 0.163 0.323 0.092 3.427 9.039 1.803 5.195 12.915 2.055 1.547 3.373 0.46
5 0.117 0.198 0.052 0.155 0.238 0.058 3.154 5.503 1.932 5.352 9.671 1.579 1.325 3.1 0.344

Initial LSq0 known; t = 60

1 0.024 0.072 0.005 0.033 0.085 0.007 0.281 0.906 0.048 0.31 0.897 0.056 0.098 0.321 0.021
5 0.022 0.056 0.006 0.033 0.086 0.007 0.218 0.731 0.023 0.246 0.735 0.058 0.07 0.313 0.011

Initial LSq0 unknown; 0 ≤ t ≤ 60

1 0.648 1.941 0.155 0.559 1.362 0.193 16.255 55.482 3.141 22.711 71.166 5.922 3.29 9.179 0.559
3 0.14 0.35 0.042 0.169 0.275 0.064 4.001 10.124 1.92 5.923 12.561 1.92 1.665 5.518 0.552
5 0.125 0.234 0.053 0.163 0.257 0.062 3.422 6.763 1.959 5.613 11.199 1.714 1.44 3.98 0.331

Initial LSq0 unknown; t = 60

1 0.184 0.781 0.01 0.085 0.416 0.022 2.222 13.071 0.199 2.515 6.663 0.091 1.282 7.637 0.111
3 0.031 0.208 0.004 0.035 0.087 0.005 0.345 2.373 0.034 0.358 2.437 0.062 0.221 2.596 0.02
5 0.025 0.085 0.005 0.034 0.089 0.009 0.269 1.027 0.026 0.285 0.749 0.057 0.129 1.308 0.013

generate a set of 20 random datasets. By setting the horizon
length of the estimator to N = 1, we obtain a recursive
estimator equal to an IEKF formulation. It has been shown
that such traditional filtering methods are prone to diverge
over time in the presence of an uncertain initial state. In
particular during the first 20 s, the calibration results show
large errors, which are drastically decreased by an increase
of the horizon length. The optimal estimation behavior and
accuracy is achieved for a horizon length of N ≥ 3,
for which the estimators showed high robustness against
divergence and recovered fully from the initialization errors.

For the purpose of online and in-field calibration, a
direction for future work is to increase the computational
efficiency of the developed algorithm by considering the
most recent advances in numerical methods which would
allow the use of this approach on embedded devices with
constrained computational resources.
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