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Abstract—Low back pain (LBP) is a leading cause of activity
limitation. Objective assessment of the spinal motion plays a key
role in diagnosis and treatment of LBP. We propose a method that
facilitates clinical assessment of lower back motions by means of
a wireless inertial sensor network. The sensor units are attached
to the right and left side of the lumbar region, the pelvis and
the thighs, respectively. Since magnetometers are known to be
unreliable in indoor environments, we use only 3D accelerometer
and 3D gyroscope readings. Compensation of integration drift
in the horizontal plane is achieved by estimating the gyroscope
biases from automatically detected initial rest phases. For the
estimation of sensor orientations, both a smoothing algorithm
and a filtering algorithm are presented. From these orientations,
we determine three-dimensional joint angles between the thighs
and the pelvis and between the pelvis and the lumbar region. We
compare the orientations and joint angles to measurements of an
optical motion tracking system that tracks each skin-mounted
sensor by means of reflective markers. Eight subjects perform
a neutral initial pose, then flexion/extension, lateral flexion, and
rotation of the trunk. The root mean square deviation between
inertial and optical angles is about one degree for angles in the
frontal and sagittal plane and about two degrees for angles in
the transverse plane (both values averaged over all trials). We
choose five features that characterize the initial pose and the three
motions. Interindividual differences of all features are found to be
clearly larger than the observed measurement deviations. These
results indicate that the proposed inertial sensor-based method
is a promising tool for lower back motion assessment.

Index Terms—Inertial measurement units, joint angle estima-
tion, human motion analysis, low back pain, back motion assess-
ment, avoid magnetometers, validation against optical motion
capture, drift correction.

I. INTRODUCTION

Low back pain (LBP) is the leading cause of activity limitation

and work absence throughout much of the world, and it

causes an enormous economic burden on individuals, families,

communities, industry and governments [1]. Proper diagnosis

and effective therapies are therefore of major importance.

Objective assessment of the movement impairments due to

LBP has the potential to aid clinical assessment and provide

important treatment targets [2]. Utilizing optical marker-based

systems for motion tracking is the current gold standard.

These systems possess a high accuracy but they are stationary,

their set-up is complex and the acquisition costs are high. In

contrast, wearable inertial measurement units (IMUs) facilitate

simple and ambulatory motion tracking at much lower costs.

They have successfully been used in a multitude of biomedical

applications ranging from gait analysis [3], [4] and assessment

of muscle spasticity [5] to biofeedback for balance improve-

ment [6] and realtime feedback control of neuroprostheses for

paretic limbs [7]. In the present work we address the problem

of using a wireless IMU network to estimate and assess motion

of the lower back, as illustrated in Figure 1.

IMUs typically measure acceleration, angular rate and the

magnetic field vector in their own three-dimensional intrinsic

coordinate system. The available 9D data can be processed by

a sensor fusion algorithm to calculate the sensor orientation

relative to a global fixed coordinate system. In a nutshell, the

sensor orientation is calculated by integrating the measured

angular rate and by using accelerometer and magnetometer

readings to correct the integration drift that results from non-

zero gyroscope bias and noise. Here, accelerometer readings

can correct for integration drift in the vertical plane (inclina-

tion), while magnetometer readings can correct for integration

drift in the horizontal plane (heading). Specifically the latter

is challenging in practice, since many indoor environments in-

clude ferromagnetic material and electromagnetic fields, which

distort the local magnetic field measurements [8]. Despite

recent advances, the effect of these disturbances can not be

eliminated completely [9]. Because of this, we propose a

method that uses only accelerometer and gyroscope readings.
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Fig. 1. Concept of IMU-based lower back motion assessment.
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In recent years, several other researchers have refrained

from using magnetometer readings in indoor applications.

They typically compensate integration drift by exploiting kine-

matic constraints. For instance, a recent optimization-based

method for inertial motion capture utilizes the constraints of

biomechanical joints, while the magnetometer data is only

used in the initialization process [10]. The method was suc-

cessfully applied to estimate the motion of different segments

of the human body. Another recent approach uses the joint

constraints of a robot arm and zero-velocity corrections and

yields a maximum heading error of about 8° over a time

period of 15 minutes [11]. For the human knee and elbow,

accuracies of about 3° have been obtained by exploiting the

respective kinematic constraints [12], [13]. With respect to

spine motion analysis, a constraint-based approach was used

to track the joint positions of the thoraric and lumbar vertebrae

with errors between one and seven centimeters [14]. All these

magnetometer-free approaches rely on biomechanical con-

straints, and either require parameters determined by manual

measurements, which depend on human accuracy, or require

sufficient excitation of the degrees of freedom of the joints.

Because we are interested in assessing back motion of a

large number of subjects with very individual body dimensions

and ranges of motions, manual measurements are not practical

and sufficient excitation can not be assumed. We therefore

propose a different approach for eliminating integration drift

in the horizontal plane: The user is asked to stand still at the

beginning of each trial. This initial rest phase can be used to

estimate the gyroscope bias and the initial sensor inclinations.

Since the subjects are not completely stationary during this

rest phase, we design an algorithm that carefully selects a

subset of the measured samples for gyroscope bias estimation.

We use this sample selection procedure in combination with

two different sensor fusion algorithms – a filtering and a

smoothing approach. The practical usefulness of the methods

is demonstrated in experiments with eight subjects performing

sequences of back motions that are typical in low back pain

assessment.

II. PROBLEM FORMULATION

When analyzing back motion to assess low back pain, physi-

cians are typically interested in the posture of the back when

the subject is asked to stand straight (neutral pose) and in the

motion, particularly the range of motion, of the lower back and

the pelvis during single-axis motions (flexion, lateral flexion,

and rotation) of the trunk [2]. In the present study, we want to

quantify these motions and the neutral pose objectively using

wireless IMUs, which are attached to the thighs, pelvis, and

lumbar region of the spine, as illustrated in Figure 2. The

subjects are asked to stand still in a neutral pose for at least

seven seconds (i.e. the aforementioned rest phase) and then to

perform either of the following three motion sequences:

1) A maximum flexion of the back followed by a maximum

extension of the back and a return to the neutral pose,

then a repetition of the flexion and the extension.

Fig. 2. Illustration of motion sequences, IMU attachment on subject and
central IMUs: (a) Flexion/extension (b) Lateral flexion (c) Rotation (d)
Attachment of the six IMUs on subject (e) Approximated central orientations,
illustrated by central IMUs.

2) A maximum lateral flexion of the back to the right, then

a maximum lateral flexion to the left, then return to

neutral pose, finally a repetition of the lateral flexion

to both sides.

3) An analogous sequence of back rotations around the

vertical axis, again to the right and left, and with a

repetition.

These three motion sequences are illustrated in Figure 2a–c,

respectively. To estimate the relevant angles, in Section III, we

propose methods to obtain accurate orientation estimates from

the inertial sensors. This provides information about the orien-

tation of each sensor at each time instance. In Section IV we

subsequently describe how these sensor orientations are used

to determine meaningful parameters describing the individual

subject’s initial pose and range of motion of the lower back.

III. METHODS

In this section, we propose two different methods to estimate

the orientation of six wireless IMUs (Musclelab, Ergostest

Innovation A.S., Norway) that are attached to the left (L) and

right (R) side of the lumbar region (L), the pelvis (P) and the

thighs (T) as illustrated in Figure 2d.

The subjects perform the three different motion sequences

described in Section II. Each of the six IMUs measures

accelerations a(t) ∈ R
3 and angular rates g(t) ∈ R

3 with
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Alg 1: Back Motion Assessment Algorithm

Input: Gyroscope and accelerometer measurements g(t)
and a(t) from the six sensors that are attached to the

lumbar region (L), the pelvis (P) and the thighs (T).

Output: Joint angle of the virtual central orientation of

the lumbar region and the pelvis LC/PC and five

characteristic features of motion.

1: Rest phase sample selection:
• Determine the rest phase using the gyroscope data

from the left lumbar sensor.

• For each of the six sensors, detect the small

motions during this rest phase and return the

samples of low activity and an adapted vector of

gyroscope measurements.

2: Orientation estimation: Compute the orientations for

each of the six sensors using either the filtering al-

gorithm described in Section III-B or the smoothing

algorithm presented in Section III-C.

3: Calculating meaningful motion parameters:
• Use the orientation estimates from the left and

the right sensors placed on the pelvis and lumbar

region to compute virtual central orientations LC

and PC.

• Use the virtual central orientation to compute the

joint angle LC/PC.

• Use the joint angle LC/PC to compute five char-

acteristic features of motion.

a frequency of 200Hz for t ∈ [ts, te], where ts ∈ R
+

and te ∈ R
+ are the initial and final times of the mea-

surement. Since the magnetic field vector is unreliable in

indoor environments, it is not utilized for the correction of the

heading. Instead, the gyroscopes bias is compensated by bias

estimation and correction based on data of the rest phase. The

rest phase detection algorithm is described in Section III-A.

Subsequently, we will explain how the result of the algorithm

is used to estimate the IMU orientations and then determine

features that characterize the motions performed by a subject.

An overview of the entire method is given in Algorithm 1.

A. Rest Phase Sample Selection

Each data set can be separated into an initial rest phase, during

which the subject is asked to stand still, and a subsequent

motion phase during which the described motion sequence

is performed. To determine the gyroscope bias as accurately

as possible from samples of low activity, we present a two-

step heuristic algorithm. In a first step, the transition between

rest phase and motion phase is detected. Subsequently, the rest

phase data is analyzed by a second algorithm, which finds and

eliminates time periods whithin the rest phase during which

the subject was not standing still enough.

The first algorithm, which detects the motion onset, utilizes

the left lumbar sensor LL as an indicator for rest versus

motion, since the lumbar region is expected to be relatively

steady during sitting and standing but moves notably during

each motion sequence. The Euclidean norm of the gyroscope

measurements g(t) of that sensor is denoted by g(t) and used

to distinguish the rest phase from the motion phase as follows:

1) First, the norm of the gyroscope measurements g(t)
is filtered by a zero-phase moving average filter with

window size of one second leading to gf1(t).
2) Define the first-four-second mean of gf1(t) as

λ0 := avgt∈[ts,ts+4 s] gf1(t), (1)

representing the approximate level of activity of the

initial rest phase. This level of activity is assumed to

be much smaller than the maximum activity during the

actual motion sequence. Define a high-activity threshold

λhigh at 20% between that maximum and λ0:

λhigh := 0.2

(
max

t∈[ts,te]
(gf1(t))− λ0

)
+ λ0 (2)

3) Determine the first time instant thigh ∈ [ts, te] at which

gf1(t) exceeds the threshold λhigh and find the largest

value tI < thigh for which

avgt∈[tI−2 s,tI]gf1(t) < 2λ0. (3)

This is to assure that the time interval [tI−2 s, tI] is the

last sufficiently long period of calm motion before the

onset of high activity.

4) Finally, return the time instant of the smallest gf1(t) in

that two-second interval as the time tmo of motion onset

tmo := argmint∈[tI−2 s,tI]gf1(t). (4)

These four steps are illustrated in the left subfigures of Figure 4

using an example data set. The top left plot shows g(t) as a

gray thin line in the background and gf1(t) as a blue thick line

in the foreground. The maximum activity maxt∈[ts,te] (gf1(t))
is indicated by a red dot. The high-activity threshold λhigh

is marked by a horizontal red line, and the horizontal black

line indicates 2λ0. The lower left plot shows a close-up of the

upper left plot. Therein, the time interval [tI−2 s, tI] is marked

by black brackets, and the red dot represents the moment of

smallest value in that time interval, i.e. the motion onset tmo.

If the subject would not be moving during the rest phase, the

samples from the rest phase could directly be used to calculate

the gyroscope bias of each of the sensors by computing the

mean of the angular rate vector over that interval. In practice,

however, the subjects do not stand perfectly still. They may

wobble, jerk or tremble slightly during the rest phase. Thus,

intervals of such small motions have to be determined and

handled for each of the sensors. To this end, the following

procedure is applied to the gyroscope measurements from the

rest phase interval t ∈ [ts, tmo] from each of the sensors:

1) A zero-phase moving average with window size of 0.25 s

is applied to the angular rates g(t), yielding gf2(t), and

to the norm g(t), yielding gf2(t).
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Fig. 4. Example data for motion onset detection and bias estimation.
Left: Lowpass-filtered angular rate norm and threshold for the entire motion
sequence and close-up on the motion onset. Right: Minor movements during
rest phase are detected and the angular rates are adjusted (raw data in gray).

2) Introduce the initial set of high-activity indices as H = ∅
and the mean of gf2(t) over [ts, tmo] as λrest.

3) To fill the set H with high-activity indices, the following

steps are applied in a loop

a) If maxt∈[ts,tmo] gf2(t) < 1.9λrest, i.e. if even the

largest small motion during rest phase is negligible,

then exit the loop.

b) Else, add the time instant of that maximum as well

as all preceding and following time indices for

which gf2(t) > λrest holds to the set H . Thereby,

H contains the entire time interval associated with

the small motion that occurred during rest phase.

c) Replace the values of gf2(t) at all aforementioned

indices with λrest and repeat from 3a) with the

modified signal gf2(t), t ∈ [ts, tmo] , until all re-

maining small motions are negligible.

4) The sample values gf2(t), t ∈ H, are replaced by the

mean vector of gf2(t), t ∈ [ts, tmo], yielding the modi-

fied gyroscope rest phase data gmod(t), t ∈ [ts, tmo].

Figure 4 illustrates the detection and elimination of small-
motion data using an example data set. The right upper plot

shows g(t) as a thin gray line in the background, gf2(t) as a

thick blue line in the foreground, and λrest as a thin black

horizontal line. Red dots indicate the maximum values of

gf2(t) for two subsequent loops of step 3a). Both are larger

than the threshold 1.9λrest that is marked by a red horizontal

line. Red brackets enclose the sampling indices that are added

to the set H as described in step 3b. The right lower subplot

shows the original angular rates gf2(t) in gray and the modified

signals gmod(t) as colored lines, in which the values at sample

indices belonging to H have been replaced by the average of

gf2(t) over the entire rest interval.

By means of the two algorithms described above, we obtain

a rest phase as well as modified gyroscope rest data that no

longer contains small-motion data. If the rest phase is long

enough we can obtain accurate estimates of the gyroscope

biases. In the present data the duration of each subject’s rest

phase is at least seven seconds. However, it is an important

research question whether shorter rest phases can be used.

To facilitate investigation of this question, we introduce the

parameter Δtrest ≤ 7 s, and we restrict our analysis to the

time interval t ∈ [tmo −Δtrest, te] in the following, i.e. all

data with t < tmo −Δtrest is disregarded.

B. Filtering Algorithm

We estimate the bias of each gyroscope by averaging the

modified gyroscope rest data gmod(t) over the time inter-

val [tmo −Δtrest, tmo]. This bias estimate is then subtracted

from the original gyroscope readings to obtain almost bias-

free angular rates. We employ a recently developed realtime

sensor fusion algorithm [9] that fuses these angular rates

with the accelerometer readings to determine the quaternions

qLL , qLR , qPL , qPR , qTL , qTR that represent the orientations of

all six IMUs with respect to a common inertial frame. The core

elements of that algorithm are a gyroscope-based prediction,

an accelerometer-based correction and a magnetometer-based

correction, which is omitted in the current application. The

gyroscope-based prediction is a pure strapdown integration of

the measured angular rates. The accelerometer-based correc-

tion is based on an analytical solution of the sensor fusion

problem, i.e. four-dimensional spherical linear interpolation

between the predicted quaternion and the geometrically nearest

quaternion that agrees with the current accelerometer reading.

The algorithm is parametrized in a way that allows the user

to choose the time constant and aggressiveness (overshoot)

with which the algorithm balances between integration drift

compensation and rejection of disturbances caused by velocity

changes. A more detailed description is given in [9].

Due to the absence of magnetic field measurements, the

initial heading of the sensors cannot be determined by the sen-

sor fusion algorithm. Instead, we exploit the known sensor-to-

segment orientation and initial pose. The IMUs at the lumbar

and pelvic region are attached such that, at the initial neutral

pose of the subject, the lower edge of the housing, i.e. the

x-axis of the intrinsic measurement frame, is aligned with the

mediolateral axis of the body. Likewise, the IMUs at the thighs

are attached such that the frontal housing surface, i.e. the x-y-

plane of the intrinsic measurement frame is orthogonal to the

mediolateral axis of the body. This immediately determines

the heading of all sensors at initial pose. From the moment

of motion onset tmo the heading is determined by the sensor

fusion algorithm, i.e. by strapdown integration of the almost

bias-free angular rates.

C. Smoothing Algorithm

Alternatively, the orientation of the different sensors can be

estimated using a smoothing algorithm. We use a slightly

different model from the one used in Section III-B and use

the samples of the rest phase determined from the procedure

described in Section III-A to indicate whether the angular

velocity at time t is equal to zero. Let S be the set of all

sampling indices in the time interval t ∈ [tmo −Δtrest, tmo],
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and recall that the subset H ⊂ S, contains all indices with

small motions.

We model the true angular rate gtrue(t) of each sensor to

be zero for t ∈ S \H and the gyroscope measurements g(t)
to be equal to

g(t) =

{
gtrue(t) + bg + eg(t), t /∈ S \H (5a)

bg + eg(t), t ∈ S \H (5b)

where bg denotes the gyroscope bias, which is assumed to be

constant for the timespan of each trial, and the gyroscope noise

eg(t) is modeled as white Gaussian noise eg(t) ∼ N (0, σ2
gI3).

Similar to the filtering approach, the accelerometer measure-

ments a(t) are assumed to measure the Earth’s gravity in their

local sensor frame and the initial heading at time tmo −Δtrest
is initialized using ground truth data.

Let t̂ = 1, . . . , N be the discrete time index of all sampling

instants t ∈ [tmo −Δtrest, te]. For each sensor, our smoothing

implementation computes a maximum a posteriori estimate
of the orientation at all these time instants by solving the

following optimization problem

argmin
x1:N ,bg

(
Initialization︷ ︸︸ ︷

− log p(x1)−

Dynamics︷ ︸︸ ︷
N∑
t̂=2

log p(xt̂ | xt̂−1,g(t̂))

−
N∑
t̂=1

log p(a(t̂) | xt̂)

︸ ︷︷ ︸
Accelerometer measurement model

)
. (6)

where the state vector x denotes a parametrization of the

orientation of the sensor, and its lower index has the fol-

lowing meaning: x1:N denotes the orientations at all t ∈
[tmo −Δtrest, te], x1 denotes the orientation at tmo −Δtrest,
xt̂ denotes the orientation at some sampling instant, and xt̂−1

denotes the value at the preceding sampling instant.

Assuming that the noise on the initialization is einit ∼
N (0,Σinit) and the accelerometer measurement noise is

ea(t) ∼ N (0,Σa), (6) reduces to a weighted least squares

problem

argmin
x1:N ,bg

‖einit‖2Σ−1
init

+
N∑
t̂=2

‖eg(t̂)‖2Σ−1
g

+
N∑
t̂=1

‖ea(t̂)‖2Σ−1
a
. (7)

For more details on the implementation of the algorithm

and the parametrization of the orientation, we refer the reader

to [15]. One of the main differences between filtering and

smoothing approaches is that filtering computes the estimates

given the measurements up to the current time step while

smoothing uses all available measurements. Another notable

difference between the two approaches in our case is that the

smoothing approach explicitly estimates the gyroscope bias

using not only the samples from the rest phase but also all

other samples. It is therefore able to adjust the estimates using

any further information that is present in the data.

IV. CALCULATING MEANINGFUL MOTION PARAMETERS

FROM SENSOR ORIENTATIONS

For the pelvis and the lumbar region, a virtual central ori-

entation is calculated from the orientations of the right and

the left sensor by quaternion interpolation. In Figure 2e these

orientations are illustrated with their shorthand notations LC

and PC. For each pair of orientations of neighboring body

segments, we calculate the relative orientation. For example,

with ⊗ denoting quaternion multiplication, the quaternion

qLL/PL
= (qPL)

−1 ⊗ qLL (8)

describes the orientation of the sensor placed on the right side

of the lumbar region (LL) relative to the sensor placed on

the left side of the pelvis (PL). To describe only the motion

with respect to the initial pose, we define the initial-reset

quaternions

qA/B,ir(t) = (qA/B(tmo −Δtrest))
−1 ⊗ qA/B(t), (9)

where A and B are any neighboring body segments. We

can use (9) to determine the joint angles between LL/PL,

LR/PR, PL/TL, and PR/TR and use these angles to analyze

the motion in detail. However, in the current contribution, our

focus is on LC/PC, i.e. on the relative motion of the virtual

central lumbar IMU with respect to the virtual central pelvis

IMU. The initial-reset quaternions are decomposed into three

Euler angles representing flexion/extension, lateral flexion and

rotation. For each motion sequence, one of these angles is

dominant: flexion/extension for the first motion sequence,

lateral flexion for the second and rotation for the third motion

sequence.

The described method yields measurement curves of a large

number of joint angles. For a practical assessment of the

subjects’ motions, we propose the following characteristic

features: The first two features are the inclination angles of

LC and PC at t = tmo−Δtrest. We determine these values for

the first two motion sequences (flexion/extension and lateral

flexion), and denote the mean inclination angles of LC and

PC by LIPI
C and PIPI

C , respectively. Figure 5 illustrates the

relevance of these parameters for pathological back postures.

Note that the third motion sequence is performed sitting and

therefore does not provide useful information about these

angles.

The third to fifth feature are the largest positive values of the

main angles of qLC/PC,ir reached during the second repetition

of each motion sequence. Note that the decision to consider

only the positive peak is for the sake of simplicity – in clinical

practice both peaks might be of interest. In other words, the

third to fifth feature are defined as

• the largest flexion/extension angle from the first motion

sequence denoted by “FE Peak”,

• the largest lateral flexion angle from the second motion

sequence denoted by “LF Peak”,

• the largest rotation angle from the third motion sequence

denoted by “RT Peak”.
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Fig. 5. Exemplary postures in grey with virtual central orientations symbol-
ized by red boxes. The definition of LIPI
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the ideal posture example.
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Fig. 6. Exemplary evaluation results for two subjects. (a) 2D illustration of
LC and PC initial-pose inclination (IPI). (b) Main joint angles of LC/PC for
Motion Sequence 1 and 3. Initial reset (9) is applied before calculating the
angles, i.e. only motion with respect to initial pose is presented.

In Figure 6 the utilization of the proposed features is illustrated

by comparing two subjects regarding the initial pose and the

main joint angle of reset LC/PC for the first third motion

sequences. The FE Peak values and RT Peak values are

indicated by stems.

V. VALIDATION OF MEASUREMENT ACCURACY

To validate the method, it is applied to 8 subjects with average

and standard deviation weight of 68 ± 13 kg, height 172

± 8 centimeters and age 30 ± 4. Ground-truth reference

orientations are obtained from a marker-based optical system

(Vicon Motion Systems Ltd., UK) that tracks the three-

dimensional marker positions at 500 Hz. For this purpose, a

very lightweight and rigid marker tripod is built and attached

to each IMU, as shown in Figure 7(a). The tripods are designed

and attached in a way that minimizes overlay between markers

of pelvis/lumbar IMUs. Since the axes of the marker tripods

do not coincide with the local IMU coordinate axes and

(a) (b)

Fig. 7. Hardware setup for validation: (a) IMU with rigid, lightweight optical-
marker tripod. (b) IMUs with marker tripods attached to subject.

Δ

Fig. 8. Influence of initial rest duration Δtrest on tracking error (RMSE±SD
of inclination and heading angle, averaged over all trials, subjects, sensors).

since the optical coordinate system does not coincide with

the global fixed coordinate system of the IMUs, we need to

account for these offsets before the measurements of both

systems can be compared. The offsets are removed using a

simple calibration sequence that is performed by each subject

prior to the actual trials [16]. Note that this procedure is

only required for validation against the optical system but

not for inertial back motion assessment itself. Once the local

and global axes of both systems agree, we can compare

the orientations qLL
, qLR

, qPL
, ... measured by the inertial

and the optical systems. To analyze how successful the rest

phase sample selection was, we transform the quaternions

into the global fixed frame and decompose them into an

inclination part and a heading part. Recall that the rest phase

interval is defined as t ∈ [tmo −Δtrest, tmo], where Δtrest
is some duration less than or equal to seven seconds. We

now investigate the influence of this rest phase duration on

the average inclination and heading errors (averaged over all

subjects, motion sequences and sensors). Figure 8 shows that

longer rest phase durations lead to smaller tracking errors. The

approximately optimal choice is Δtrest = 5.5 s, which is used

throughout the remainder of this paper. Figure 9 illustrates the

difference between optical and inertial measurements for the

first repetition of flexion/extension in the first motion sequence
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Fig. 9. Comparison of LL FE angle for first flexion/extension of Motion
Sequence 1 performed by Subject 1. (a) LL FE of both systems. (b) Corre-
sponding error angles of heading and inclination.

of Subject 1. The right subplot reveals that this motion was

captured slightly better by the smoothing algorithm than by the

filtering algorithm (two degrees maximum deviation instead of

three).

The summarized validation results, i.e. root-mean-square

deviations for each of the sensors averaged over all subjects

and motion sequences, are listed in Table I. The data reveals

that the inclination is measured more accurately than the head-

ing. However, both quantities remain close to the reference

measurements. For the smoothing method, the average RMSE

of the heading is below two degrees for all sensors (body

segments).

TABLE I
RMSE BETWEEN INERTIAL AND OPTICAL ORIENTATIONS – MEAN, STD.

DEVIATION AND MAXIMUM OVER ALL SUBJECTS AND TRIALS.

Sensor
RMSE of sensor inclination (°)

Filtering method Smoothing method
Mean ± SD Max Mean ± SD Max

LL 1.0 ± 0.6 1.9 0.8 ± 0.5 1.7
LR 0.8 ± 0.3 1.6 0.7 ± 0.3 1.3
PL 0.5 ± 0.2 0.9 0.5 ± 0.3 1.2
PR 0.6 ± 0.3 1.4 0.6 ± 0.3 1.4
TL 0.4 ± 0.2 0.8 0.4 ± 0.2 0.9
TR 0.5 ± 0.1 0.7 0.5 ± 0.1 0.7

Sensor
RMSE of sensor heading (°)

Filtering method Smoothing method
Mean ± SD Max Mean ± SD Max

LL 2.5 ± 1.8 6 1.7 ± 1.4 5.4
LR 2.1 ± 1.6 6.7 1.7 ± 1.2 4.9
PL 0.9 ± 0.7 3.4 1.0 ± 0.8 2.8
PR 0.9 ± 0.7 3.3 0.9 ± 0.6 2.6
TL 1.0 ± 1.3 6.3 0.8 ± 0.8 3.1
TR 1.4 ± 1.0 4.9 1.3 ± 0.9 4.9

The joint angles are validated by comparing the main

angles for each of the three motion sequences. The results are

summarized in Table II by the mean RMSE over all subjects.

The average RMSE is below one degree for most and below

two degrees for all joint angles and motion sequences.

TABLE II
DISAGREEMENT BETWEEN THE MAIN JOINT ANGLES FROM THE OPTICAL

METHOD AND THE INERTIAL SMOOTHING METHOD.

Orientation
RMSE of main angle (°)

MS1 (FE) MS2 (LF) MS3 (RT)
Mean ± SD Mean ± SD Mean ± SD

reset LL/PL 0.9 ± 0.2 0.7 ± 0.5 1.7 ± 2.1
reset LR/PR 0.7 ± 0.2 1.1 ± 0.9 0.7 ± 0.6
reset PL/TL 0.5 ± 0.2 1.0 ± 1.0 0.6 ± 0.3
reset PR/TR 0.6 ± 0.2 0.6 ± 0.3 2.0 ± 0.2

TABLE III
INITIAL POSE AND PEAK ANGLES FOR ALL SUBJECTS.

Subject
Initial pose angles (°) Peak angles (°)

LIPI
C PIPI

C FE Peak LF Peak RT Peak

1 99.4 65.1 46.3 9.1 17.1
2 95.6 64.9 35.8 11.1 8.6
3 94.3 62.0 39.3 16.1 16.3
4 105.6 55.5 62.6 11.6 16.3
5 87.3 68.9 40.2 16.0 16.2
6 91.8 65.2 53.1 13.1 15.3
7 86.1 62.1 33.4 16.2 8.2
8 94.9 59.7 47.0 11.7 11.9

Subject 1
Subject 4
Subject 7
Subject 8
LIPI

PIPI

FE Peak
LF Peak
RT Peak

C

C

Fig. 10. Radar chart of the initial pose and peak angles for four subjects.
Black bars represent the magnitude of the mean tracking error for each angle.
For each category, the interindividual differences are larger than these errors.

To quantify interindividual changes in the proposed initial

pose and peak angle features, we compare these quantities for

all subjects in Table III. Figure 10 shows the individual values

of four of the subjects as corners of a pentagon with black bars

representing the average measurement error of the angle that

the feature is based on, respectively.1

VI. DISCUSSION OF RESULTS

The proposed methods for bias compensation and sensor

orientation estimation achieve heading RMSE values that vary

between 0.9° and at most 2.5° for the filtering approach and

1Due to missing marker position data for sensor PL in MS2 of subject 5,
the results for PL heading and inclination error (Table I), reset PL/TL MS2
main angle RMSE and the mean error of LF Peak in Figure 10 are calculated
based on one less ground-truth data set than for the other listed errors.
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between 0.8° and at most 1.7° for the smoothing approach

(see Table I), which is approximately twice as large as the

inclination errors. One potential explanation is found in Fig-

ure 9(b). The heading error increases for about five seconds

and then decreases to negative values for about ten seconds,

which indicates that the bias is time-variant.

Table II shows that the different accuracy levels for inclina-

tion and heading lead to different accuracies in the main angles

of the motion sequences. The largest RMSE values of Motion

Sequence 3 (rotation) are approximately twice as large as those

of Motion Sequence 1 and 2 (flexion/extension and lateral

flexion), respectively. However, the mean is at most 2° for all

joint angles. More important than these numbers themselves

is the question whether they are small enough to objectively

quantify differences in motion performance between subjects.

Figure 10 illustrates that the differences in the proposed

characteristic feature values between all subjects are clearly

larger than the respective measurement error. Especially the

inclination angles and the peak values of Motion Sequence 1

and 2 show variations across the subjects that are several times

larger than the respective RMSE values.

VII. CONCLUSION

We proposed a method for objective ambulatory assessment of

back motions by 6D inertial measurement units. By only rely-

ing on angular rate and acceleration readings we assured that

the proposed method works in arbitrary indoor environments

regardless of the homogeneity of the local magnetic field. To

facilitate gyroscope bias estimation, the subject is required to

sit or stand calmly before performing the motion sequence

of interest. Small motions, which might occur during this

initial rest phase, are automatically detected and compensated.

Experimental validation revealed that the proposed methods

are precise enough to allow quantification of inter-individual

changes in the performance of back motions. If pathologies

affect the way that people perform back motions, then these

changes will most likely be observable by the proposed meth-

ods. Progress monitoring for assessment of treatment effects

as well as identification of high-risk individuals are only two

potential use cases.

In future work the measurement accuracy could further be

improved by taking time-variant bias models into account.

When employing the method in larger studies, interrater and

intrarater reliability will be examined, i.e. the reliability of the

method with respect to variations in repeated measurements

performed by one and the same examiner as well as with

respect to variations in measurements performed by different

examiners. Finally, it should be noted that the proposed

methods are not limited to back motion analysis but will be

used in the context of motion analysis for other body segments

and applications.
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