

Delft University of Technology

On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis

Wu, Lichao; Perin, Guilherme

DOI
10.1007/978-3-030-81645-2_8
Publication date
2021
Document Version
Final published version
Published in
Applied Cryptography and Network Security Workshops - ACNS 2021 Satellite Workshops, AIBlock,
AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, and SiMLA, 2021, Proceedings

Citation (APA)
Wu, L., & Perin, G. (2021). On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis.
In J. Zhou, C. M. Ahmed, L. Batina, S. Chattopadhyay, O. Gadyatskaya, C. Jin, J. Lin, E. Losiouk, B. Luo, S.
Majumdar, M. Maniatakos, D. Mashima, W. Meng, S. Picek, M. Shimaoka, C. Su, & C. Wang (Eds.),
Applied Cryptography and Network Security Workshops - ACNS 2021 Satellite Workshops, AIBlock,
AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, and SiMLA, 2021, Proceedings (pp. 114-132).
(Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Vol. 12809 LNCS). Springer. https://doi.org/10.1007/978-3-030-81645-2_8
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-81645-2_8
https://doi.org/10.1007/978-3-030-81645-2_8

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

On the Importance of Pooling Layer
Tuning for Profiling Side-Channel

Analysis

Lichao Wu(B) and Guilherme Perin

Delft University of Technology, Delft, The Netherlands

Abstract. In recent years, the advent of deep neural networks opened
new perspectives for security evaluations with side-channel analysis. Pro-
filing attacks now benefit from capabilities offered by convolutional neu-
ral networks, such as dimensionality reduction and the inherent ability
to reduce the trace desynchronization effects. These neural networks con-
tain at least three types of layers: convolutional, pooling, and dense lay-
ers. Although the definition of pooling layers causes a large impact on
neural network performance, a study on pooling hyperparameters effect
on side-channel analysis is still not provided in the academic commu-
nity. This paper provides extensive experimental results to demonstrate
how pooling layer types and pooling stride and size affect the profiling
attack performance with convolutional neural networks. Additionally,
we demonstrate that pooling hyperparameters can be larger than usu-
ally used in related works and still keep good performance for profiling
attacks on specific datasets.

Keywords: Side-channel analysis · Deep learning · Convolutional
neural networks · Pooling

1 Introduction

The processing of confidential and secret information in embedded or electronic
devices, in general, requires protection against different types of physical attacks.
Encryption methods implement various algorithms to provide data protection for
sensitive information, including cryptographic keys. An algorithm that proved to
be mathematically secure is not necessarily implementation-secure. Side-channel
analysis (SCA) is a class of non-invasive attacks where an adversary can record
the unintended leakages, such as electromagnetic (EM) radiation [20] or power
dissipation [9], and use those leakages to obtain secret information [14].

SCA can be divided into two categories based on the attack setting or security
evaluation purpose (e.g., chip certification or security assessment). When an
attacker can only access physical leakages captured on the target device, a non-
profiled SCA, such as differential power analysis (DPA) [9], correlation power
analysis (CPA) [2], and mutual information analysis (MIA) [5], could be used
to retrieve the secret information. On the other hand, profiling SCA assumes an
c© Springer Nature Switzerland AG 2021
J. Zhou et al. (Eds.): ACNS 2021 Workshops, LNCS 12809, pp. 114–132, 2021.
https://doi.org/10.1007/978-3-030-81645-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81645-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-81645-2_8

Pooling Layer in Profiling SCA 115

adversary with full control of a clone device (i.e., by changing the key or installing
malicious software) that is identical to the target device. On that device, the
attacker can profile the side-channel leakages. This allows the adversary to learn
statistics from leakages and build profiling models. The commonly used methods
include template attack [4] and supervised machine learning-based attacks [3,8,
13,19].

Supervised machine learning-based attacks have drawn great attention within
the SCA community in recent years due to their effectiveness in breaking tar-
gets and high applicability to different attack scenarios. Among different types
of neural networks, convolutional neural networks (CNNs) are the most adopted
method in coping with countermeasures due to their spatial invariance prop-
erty [3,8], making these models appropriate to bypass countermeasures such as
noise and side-channel trace desynchronization. While profiling models based on
deep neural networks actively threaten the security of cryptographic devices in
profiled settings, there are still severe limitations and unknowns.

Neural network hyperparameter selection is one of the biggest obstacles. Tak-
ing CNNs as an example, they usually consist of three types of layers (con-
volution layer, pooling layer, and dense layer), where each layer has at least
two configurable hyperparameters. When an attacker tries to enhance the net-
work capability by applying more layers, the hyperparameters’ combinations
increase exponentially. Although some researchers are trying to set general design
rules [25,27] or applying neural architecture search to find the best-performing
network automatically [21,26], the results are far from definitive. Indeed, the
generality of such hyperparameter tuning methods is usually dataset-specific,
but they demonstrate that deep neural networks are powerful methods that can
be tailored to different datasets.

This paper focuses on the pooling layer of CNNs, which is, to the best of our
knowledge, an analysis not done before. We experimentally investigate the influ-
ence of a pooling layer’s hyperparameters variation on the attack performance.
To achieve this, we use two models, one with a single pooling layer and the other
with multiple pooling layers. The former is used to target an unprotected dataset;
the latter is optimized for two datasets containing different AES implementa-
tions protected with masking countermeasure. Our results clearly show that the
type of pooling layer should be selected based on the neural network depth and
the number of input features. We also give guidelines on how to choose the
hyperparameters in different cases. Finally, our results show that pooling hyper-
parameter tuning is important and can result in significantly different attack
performance even when not considering other layers or hyperparameters.

2 Preliminaries

2.1 Notation

We use calligraphic letters X to represent sets. The upper-case letters (X) rep-
resent random variables and random vectors X over X . The realizations of X
and X are represented by lower-case letters x and x, respectively.

116 L. Wu and G. Perin

A dataset T constitutes a collection of side-channel traces (measurements) ti
associated with an input value (plaintext or ciphertext) di and a key candidate
ki (k ∈ K where k∗ is the correct key). As common in deep learning-based SCA,
we divide the dataset into three parts: a profiling set of N traces, a validation
set of V traces, and an attack set of Q traces. In terms of a deep learning-based
profiling model, we denote the vector of learnable parameters with θ and the set
of hyperparameters defining the profiling model f with H.

2.2 Deep-Learning Based Profiling Side-Channel Analysis

The goal of supervised machine learning is to learn a function f mapping an input
to the output (f : X → Y)). To accomplish this, the function f uses examples of
input-output pairs. In supervised learning for profiling SCA, the input-output
pairs are represented by leakage traces and the corresponding intermediate data.
The profiling stage is equivalent to the training phase in supervised learning,
while the attack phase is equivalent to testing in supervised learning. Formally,
the profiling SCA is executed in the following stages:

– Profiling stage: learn θ′ that minimizes the empirical risk represented by a
loss function L on a profiling set of size N .

– Attack stage: predict the classes y(x1, k
∗), . . . , y(xQ, k

∗), where k∗ represents
the secret (unknown) key on the device under the attack.

By applying attack traces to the profiling models, probabilistic deep learning
algorithms output a matrix of probabilities P of size Q× c (where c denotes the
number of output classes). Each probability value denotes how likely a certain
measurement should be classified into a specific class v (thus, pi,v represents
the probability that the class v is predicted). The class v is obtained from the
key and input through a cryptographic function and a leakage model l. Every
row of the matrix P is a vector of all class probabilities for a specific trace
xi (

∑c
v pi,v = 1,∀i). The probability S(k) for any key byte candidate k is the

maximum log-likelihood distinguisher:

S(k) =
Q∑

i=1

log(pi,v). (1)

As common in SCA, an adversary aims to obtain the secret key k∗ with the
minimum attack effort. To evaluate this effort, it is common to use a metric
like guessing entropy (GE) [23] that represents the average position of k∗ in a
key guessing vector g = [g1, g2, . . . , g|K|]. Here, g1 represents the most likely key
candidate, while g|K| represents the least likely key candidate. Note that this
represents a significant difference from the machine learning settings where one
would commonly consider validation accuracy as a metric of success.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are widely used neural networks in many
domains, including SCA. They commonly consist of three types of layers:

Pooling Layer in Profiling SCA 117

– Convolutional layer: this layer computes neurons’ output connected to local
regions in the input, each computing a dot product between their weights and
a small region they are connected to in the input volume.

– Pooling layer: this layer aims at decreasing the number of extracted features
by performing a down-sampling operation along the spatial dimensions. It
is common to consider convolution and pooling layers to form a convolution
block. Two main types of pooling layers are considered in this paper: average-
pooling and max-pooling. Average-pooling layers perform the average of a
pooling block concerning the pooling size (i.e., the number of elements covered
with a single pooling operation). Max-pooling layers return the maximum
element from a block concerning pooling size. Figure 1 illustrates the different
types of pooling operations over a feature map (output of a convolution layer).
As we see in this example, the selection of the pooling type can be crucial
for the model performance, as each type of pooling returns different results.
Pooling stride refers to the pooling step over the feature map.

– Fully-connected layer: the dense layers are normally applied after convo-
lution layers and pooling layers. The goal of this layer is to compute either
the hidden activations or the class scores.

(a) Max-pooling operation with
pooling size of 1x2 and pooling stride

of 2.

(b) Average-pooling operation with
pooling size of 1x2 and pooling stride

of 2.

Fig. 1. A demonstration of max-pooling and average-pooling operations. The feature
map is reduced from 4 × 6 to 4 × 3 after pooling.

2.4 Datasets

ChipWhisperer Dataset. The Chipwhisperer dataset is designed to evaluate
various algorithms by providing a standard comparison base [15]. The dataset we
consider contains 10 000 side-channel power traces measured by the ChipWhis-
perer CW308 target running an unprotected AES-128 implementation. Each
trace contains 5 000 sample points (features). In our experiment, we use 7 500
traces for profiling and 2 000 traces for the validation. We use key byte two as
the target secret data.

118 L. Wu and G. Perin

ASCAD Datasets. ASCAD datasets represent a common target for profiling
SCA as they contain measurements protected with masking and settings with
fixed or random keys [1]. The ASCAD dataset is the measurements from an 8-
bit AVR microcontroller running a masked AES-128 implementation. Currently,
there are two versions of this database: one that uses a fixed key for both profiling
and attack dataset, and the other one with random keys in the profiling set. The
datasets are available at https://github.com/ANSSI-FR/ASCAD.

The first dataset version has a fixed key, and it consists of 50 000 traces
for profiling and 10 000 for the attack. From 50 000 traces in the profiling set,
we use 45 000 traces for profiling and 5 000 for validation. Each trace has 700
features (preselected window corresponding to the processing of key byte 3, the
first masked key byte). We denote this dataset as ASCAD f.

The second version has random keys, with 200 000 traces for profiling and
100 000 for the attack. We use 45 000 traces for profiling and 5 000 traces from
the attack set for validation (note that the attack set has a fixed but a different
key from the profiling set). Each trace has 1 400 features (preselected window
corresponding to the processing of key byte 3, the first masked key byte). We
denote this dataset as ASCAD r.

3 Related Works

The profiling SCA can be considered as a classification task on one-dimensional
data. In general, the attacker’s goals are:

– to classify the traces containing unknown but fixed information (i.e., encryp-
tion subkeys),

– by using the classification results and knowledge about the plaintexts/cipher-
texts, retrieve the secret information.

From the information-theoretic point of view, template attack (TA) [4] rep-
resents the most powerful profiling SCA if the theoretical model and reality fully
match. There, one uses the probability density function (PDF) as templates to
perform the attack. In an ideal (but unrealistic) case where the attacker has an
unlimited number of traces and the noise follows the Gaussian distribution, TA
can reach its full attack capability [11].

In terms of machine learning-based profiling SCA, various approaches, such as
random forest [10] and support vector machines [7] have been adopted first. More
recently, multilayer perceptron (MLP) [6,18] and convolutional neural networks
(CNN) [3,8,13] emerged as more powerful approaches.

Specifically, CNNs demonstrated to be capable of coping with various coun-
termeasures due to their spatial invariance property [3,8]. Thus, they became
one of the most powerful approaches for deep learning-based SCAs. However, a
CNN optimized for one dataset is not necessarily applicable to other datasets,
thus raising difficulties in implementing such attacks. To allow customization
and optimization of CNN designs, Zaid et al. proposed a methodology to select
hyperparameters related to the size of layers in CNNs [27]. This work is further

https://github.com/ANSSI-FR/ASCAD

Pooling Layer in Profiling SCA 119

improved by Wouters et al. [25] with the help of data standardization. In terms of
neural architecture search, Bayesian optimization is adopted by Wu et al. to find
optimal hyperparameters for MLP and CNNs [26]. Rijsdijk et al. used reinforce-
ment learning to design CNNs that show strong attack performance with a small
number of trainable parameters [22]. Several works consider tuning of specific
CNN hyperparameters: Li et al. investigated the influence of weight initialization
techniques [12] while Perin and Picek considered different optimizers [16].

4 Experimental Setup

In this section, we present our strategy to evaluate the performance of two types
of commonly-used pooling layers: average-pooling and max-pooling. The analy-
sis is conducted on three publicly available datasets described in Sect. 2.4. The
default CNN models used to test the pooling layer are described in Table 1.
Specifically, CNNchipwhisperer is used to attack the Chipwhisperer dataset. The
ASCAD fixed key (ASCAD f) and ASCAD random keys datasets (ASCAD r)
are profiled with CNNascad [1]. We consider only the HW leakage model as the
conclusions drawn from the pooling layer with one leakage model can be eas-
ily extended to other leakage models. Also, considering the related work, the
HW leakage model performs well for the considered datasets [22,26]. In terms
of hyperparameters, we show the number of filters in the table for convolution
layers. The convolution stride is set to 11 for both models following the network
design from [1]. Pooling layers follow each convolution layer, and the pooling
size and stride are set to two by default. For both models, ReLU is used as the
activation function. The optimizer is RMSProb with a learning rate of 1e-5.

Table 1. CNN architectures used in the experiments.

Test models Convolution layer Pooling layer Dense layer

CNNchipwhisper Conv(8) avg(2, 2) 128 * 2

CNNascad Conv(64, 128, 256, 512, 512) avg(2, 2)*5 4 096 * 2

To evaluate the profiling attack performance, we consider three evaluation
metrics:

– Guessing Entropy (GE): the averaged correct key rank after applying the
maximum number of attack traces.

– TGE0: the number of traces required to reach GE equal to zero.
– ACC: the classification accuracy on the validation traces.

GE aims at evaluating the key recovery capacity of trained neural networks
by setting a limited number of attack traces. The second metric TGE0 is designed
for cases that the models require few traces to retrieve the secret key. In this
case, even if GE equals zero for different settings, we can better estimate the

120 L. Wu and G. Perin

attack performance by evaluating the number of attack traces to reach it. For
the ACC metric, although related works indicate a low correlation between
validation accuracy and success of an attack [17], a higher validation accuracy
could still mean a lower GE [21,26]. Therefore, the validation accuracy is also
taken into consideration.

In the experimental results, we first investigate the influence of data stan-
dardization (by zeroing the mean and scaling to unit variance) on the attack per-
formance for the ChipWhisperer dataset. Then, we perform extensive analysis
towards the impact of two main configurable hyperparameters: pooling size and
pooling stride, within a pooling layer with different evaluation metrics. Finally,
we vary the pooling settings in different layers to understand the correlation
between the pooling hyperparameter variation and layer depth.

5 Experimental Results

The experiments start with ChipWhisperer as this dataset is easily breakable
even with a small CNN architecture. The required time to train a CNN model
for this dataset is relatively low, and, therefore, we can tune the model’s hyper-
parameter with smaller steps and a larger range. In terms of the evaluation
aspects, with the CNNchipwhisperer specified in Table 1, we focus on tuning the
pooling size and stride of the only available pooling layer. With such an analy-
sis, we aim to understand the pooling hyperparameters’ influence on the general
performance of the model. Here, we experiment with both average-pooling and
max-pooling methods by setting the range for pooling size and stride from 1 to
100 with a step of 1 and test all combinations (10 000 combinations in total).
Besides, we investigate the link between the data standardization and the pooling
layer’s hyperparameters selection. As such, the experiments are performed with
two versions of a dataset: original (no preprocessing) and standardized (forcing
the amplitude ranges from −1 to 1).

CNNascad is used as the profiling model for standardized ASCAD f
and ASCAD r. Compared with CNNchipwhisperer, this model’s complexity is
increased to overcome the masking countermeasure. Note there are five pooling
layers in the CNNascad model. When perturbing all pooling layers simultane-
ously, the variation range of the pooling layer is limited. Therefore, we only focus
on varying the hyperparameters of the first and the last pooling layers. Due to
the traces length differences, for ASCAD f, we tune the pooling hyperparameters
ranging from 1 to 20, while for ASCAD r, we double this range (1 to 40). The
step equals one for both datasets.

5.1 Case Study: The ChipWhisperer Dataset

The results for GE are shown in Fig. 2. Since GE remain zero for all pool-
ing layer’s hyperparameter combinations (pooling stride and pooling size) when
attacking the standardized dataset, we only present the GE value for the original

Pooling Layer in Profiling SCA 121

dataset. As mentioned, 2 000 traces are used for the validation. First, we can con-
clude that the data standardization increases the model’s resilience towards the
pooling layers’ hyperparameter variation. As shown in Fig. 2, for both average-
and max-pooling, the attack model is more sensitive to the pooling stride vari-
ation. Indeed, a larger pooling stride misses some critical features outputted by
the previous convolution layer, finally causing degradation of the attack perfor-
mance. However, we notice that there are several cases where a large pooling
stride can achieve outstanding attack performance. Meanwhile, a large pool-
ing stride can effectively reduce the number of outputted features, leading to
a smaller model. This observation indicates the possibility of reducing the net-
work size by using a large pooling stride and having a good understanding of
the leakage measurements.

(a) GE: original dataset with
average-pooling

(min: 0; max: 150)

(b) GE: original dataset with
max-pooling

(min: 0; max: 151)

Fig. 2. GE for the original/standardized dataset with average-/max-pooling layer for
the HW leakage model on ChipWhisperer.

Interestingly, when attacking the original dataset, the model equipped with
the max-pooling layer performs better than the one with the average-pooling
layer in general. Specifically, 97% of the average-pooling setting combinations
lead to GE value larger than 50, while this value decreases to 85% when apply-
ing max-pooling. Additionally, when applying larger pooling size and pooling
stride, max-pooling seems a better choice for a successful attack (GE converges
or even decreases to zero). Simultaneously, we observe V-shaped patterns (e.g., at
max-pooling stride: 57, 80) that occur periodically. The corresponding patterns
are also marked by a red dashed line in Fig. 2b. A possible explanation could
be that these (large) pooling hyperparameters accidentally cover the leakages
appearing in specific locations. However, these critical features are most likely
to be skipped, considering many unsuccessful setting combinations. This obser-
vation points out the importance of the leakage characterization: if an evaluator
understands leakage positions (points of interest), he can confidently decrease
the complexity of the attack model by increasing the stride of the pooling layer
to a proper value. Similar conclusion is also drawn in [24].

122 L. Wu and G. Perin

Figure 3 provides results when evaluating the number of traces required to
reach GE equal to zero (TGE0). Since GE converges to zero with only a single
trace with the standardized dataset, we only show the results attacking the
original dataset in Fig. 3. Similar to the observation with the GE metric, the
max-pooling layer seems more robust to the pooling size variation when the
pooling stride is small.

(a) TGE0: original dataset with
average-pooling

(min: 31; max: >2 000)

(b) TGE0: original dataset with
max-pooling

(min: 15; max: >2 000)

Fig. 3. TGE0 for the original/standardized dataset with average-/max-pooling layer for
the HW leakage model on ChipWhisperer.

Finally, we analyze the attack performance with each hyperparameter com-
bination with ACC. As shown in Fig. 4, aligned with the previous observation,
attacks on the original dataset lead to low ACC, while for the standardized
dataset, the accuracy is higher. When comparing the max-pooling and average-
pooling layers, the former performs better, as it could lead to high ACC with
more pooling setting combinations. Note that most of the ACC values in Figs. 4a
and 4b are 0.263, which equals the number of traces labeled as the Hamming
weight four (526) divided by the total number of validation traces (2 000). Thus,
we conclude that the model is strongly influenced by the class imbalance prob-
lem [17] with the original dataset. Data standardization reduces the dominance
of the feature in the biggest cluster and decrease the occurrence of overfitting.

Utilizing the observations for the Chipwhisperer dataset, we postulate that
the dataset standardization increases the attack efficiency. Simultaneously, it
dramatically increases the model’s resilience towards the variation of the pooling
layer’s hyperparameters. Therefore, for the ASCAD datasets, we only attack the
standardized versions of the datasets.

Pooling Layer in Profiling SCA 123

(a) ACC: original dataset with
average-pooling

(min: 0.263; max: 0.373)

(b) ACC: original dataset with
max-pooling

(min: 0.228; max: 0.358)

(c) ACC: standardized dataset with
average-pooling

(min: 0.339; max: 0.945)

(d) ACC: standardized dataset with
max-pooling

(min: 0.322; max: 0.942)

Fig. 4. Accuracy for the original/standardized dataset with average-/max-pooling layer
for the HW leakage model on ChipWhisperer.

5.2 ASCAD with a Fixed Key (ASCAD f)

First, we evaluate the attack performance of each setting in combination with
the GE metric. The results are shown in Fig. 5. Here, we omit the tuning results
for the first pooling layer because of the constant GE value (zero) for all set-
ting combinations. On the other hand, when tuning the last pooling layer, the
average-pooling method provides inferior performance with a large pooling size.
When going to a larger pooling stride, although not so obvious, the models
applying both the average- and max-pooling layers method on the last layer have
reduced attack performance. For the average-pooling method, a larger pooling
size could lead to these critical features being ‘averaged’ by other less relevant
features, thus degrading the attack performance. For the max-pooling method,
the unique features can be picked up even with a larger pooling size. Interestingly,
we see a ‘slash line’ on the right part of the figure for both pooling methods. One
possible reason could be that with these pooling settings, the critical features
are completely missed.

124 L. Wu and G. Perin

(a) GE: tuning the last
average-pooling layer
(min: 0; max: 248)

(b) GE: tuning the last max-pooling
layer

(min: 0; max: 248)

Fig. 5. GE for the standardized dataset with average-/max -pooling layer for the HW
leakage model on ASCAD f.

When analyzing the results with TGE0 (Fig. 6), some unique patterns can
be observed even when tuning the first pooling layer. From Figs. 6a and 6b, we
confirm that changing the pooling stride causes greater variation of TGE0 than
the pooling size for both average-pooling and max-pooling methods. A possible
reason could be that the features are still location-dependent after sampling
by the first convolution layer. A smaller pooling stride could support capturing
these important features. Meanwhile, comparing the results for average- and
max-pooling, the latter method seems to enable more pooling settings with low-
value TGE0, which is aligned with the conclusion made in Fig. 5. Indeed, when
counting the number of setting combinations that lead to TGE0 greater than
5 000, the values are 118 and 70 for the averaging-pooling and max-pooling
method, respectively. Besides, when comparing Figs. 6a and 6c or Figs. 6b and 6d,
the corresponding patterns seems to be rotated for 90 degrees. One explanation
could be that the leakages in the deeper layers tend to distribute uniformly across
the features. Thus, the selection of the pooling stride becomes less important
than the pooling size.

Finally, we consider the ACC metric (Fig. 7). Interestingly, the ACC metric
presents similar patterns as the other metrics but reversely. More specifically,
the settings that reach better GE/TGE0 values are worse with ACC and vice
versa. With this observation, we can conclude that overfitting is the cause of
the degraded performance. Indeed, the HW leakage model forces the dataset to
follow a binomial distribution. Thus, the overfitted model tends to output high
probabilities for the middle classes (i.e., the HW class 4 and then HW classes 3
and 5) regardless of the input. On the other hand, the overfitting may also be
triggered by the dataset property as the same key is used for both training and
attack. Indeed, the model can easily “learn” the correct key instead of success-
fully exploiting leakages with this setting. Following this, although the model
may have higher validation accuracy and lower loss, the model’s classification

Pooling Layer in Profiling SCA 125

(a) TGE0: tuning the first
average-pooling layer
(min: 321; max: 2 569)

(b) TGE0: tuning the first max-pooling
layer

(min: 527; max: 4 616)

(c) TGE0: tuning the last
average-pooling layer

(min:500; max: >5 000)

(d) TGE0: tuning the last max-pooling
layer

(min: 638; max: >5 000)

Fig. 6. TGE0 for the standardized dataset with average-/max-pooling layer for the HW
leakage model on ASCAD f.

capability is degraded. Moreover, as can be seen from Figs. 7a, 7b, and 7c, over-
fitting is more easily triggered with larger pooling settings, which is equivalent
to smaller network sizes. For the max-pooling in the last layer (Fig. 7d), a more
uniform distribution of the ACC value can be seen, indicating its potential of
reducing the network size while keeping good attack performance.

5.3 ASCAD with Random Keys (ASCAD r)

Compared with the ASCAD f dataset, the length of a trace in the ASCAD r
dataset is doubled (1 400 features). Since the same CNN model (CNNASCAD)
is used as the profiling model, the number of features available at the output
of the last convolution layer (input of the last pooling layer) is also doubled,
providing additional range to tune the hyperparameter of the pooling layer.
Aligned with the experiments for the ASCAD f dataset, we tune both average-
and max-pooling layer and analyze the results with different metrics.

126 L. Wu and G. Perin

(a) ACC: tuning the first
average-pooling layer

(min: 0.192; max: 0.280)

(b) ACC: tuning the first max-pooling
layer

(min: 0.176; max: 0.274)

(c) ACC: tuning the last
average-pooling layer

(min: 0.177; max: 0.277)

(d) ACC: tuning the last max-pooling
layer

(min: 0.149; max: 0.270)

Fig. 7. ACC for the standardized dataset with average-/max-pooling layer for the HW
leakage model on ASCAD f.

First, we apply the GE metric and give results in Fig. 8. Interestingly, we
again confirm the conclusion made for the ASCAD f dataset: for the pooling
layer in the shallower layers, pooling stride is essential in extracting and down-
sampling the features, while the pooling size should be more carefully tuned in
the deeper layers. Meanwhile, average-pooling performs better than max-pooling
for most of the setting combinations. This tendency becomes more significant
when investigating the first layer: for the max-pooling layer, 29% of the pooling
setting combinations lead to GE value below 50 with 5 000 attack traces. When
using the average-pooling layer, this value increases to 72%. Recall the observa-
tions for the ChipWhisperer dataset: an average-pooling layer is more suitable
for the standardized dataset, while the max-pooling layer works better for the
original (non-standardized dataset). Here, we reach the same conclusion from
the results when attacking the ASCAD r dataset.

Compared with the conclusions for ASCAD f, it seems that more input fea-
tures lead to a better performance of the average-pooling layer than max-pooling.

Pooling Layer in Profiling SCA 127

However, considering the different characteristics of the data, no definitive con-
clusions can be drawn.

(a) GE: tuning the first
average-pooling layer
(min: 0; max: 255)

(b) GE: tuning the first max-pooling
layer

(min: 0; max: 255)

(c) GE: tuning the last
average-pooling layer
(min: 0; max: 96)

(d) GE: tuning the last max-pooling
layer

(min: 0; max: 252)

Fig. 8. GE for standardized dataset with average-/max-pooling layer for the HW leak-
age model on ASCAD r.

The performance deviations of average- and max-pooling become more pro-
nounced when considering TGE0 as depicted in Fig. 9. Specifically, from Fig. 9b,
only 66 setting combinations (out of 1 600) required less than 2 000 attack traces
to retrieve the correct key. When using the average-pooling as the first pool-
ing layer, this value increases to 997. For the last pooling layer, the differences
between the two pooling methods are reduced. Still, average-pooling has more
tolerance (889 good settings) to the hyperparameter variation than max-pooling
(414 good settings).

Finally, we analyze the attack results with the ACC metric (Fig. 10), which
are similar to the one for ASCAD f (see Fig. 10c). The model starts overfitting
with a larger pooling stride and pooling size. Interestingly, this observation is
more distinguishable for the average-pooling method. For the max-pooling layer

128 L. Wu and G. Perin

(a) TGE0: tuning the first
average-pooling layer

(min: 789; max: >5 000)

(b) TGE0: tuning the first max-pooling
layer

(min: 1 440; max: >5 000)

(c) TGE0: tuning the last
average-pooling layer

(min:668; max: >5 000)

(d) TGE0: tuning the last max-pooling
layer

(min: 771; max: >5 000)

Fig. 9. TGE0 for standardized dataset with average-/max-pooling layer for the HW
leakage model on ASCAD r.

(Figs. 10b and 10d), the ACC values distribute more uniformly, indicating the
possibility of the trained model to be underfitting. Together with the observa-
tions from ASCAD f with ACC metric: a model equipped with max-pooling
layers may require more training effort, and additional training epochs may help
enhance the attack performance.

5.4 General Observations and Suggestions

Based on experiments from previous sections, testing on three different datasets,
we provide the following observations:

– Data standardization can be an effective tool to avoid the overfitting and
improve the attack performance.

– When the input data has limited features, a pooling layer in the shallow
part of the network is more sensitive to pooling stride variation. While in the
deeper layer, the influence of pooling size becomes more significant.

Pooling Layer in Profiling SCA 129

(a) ACC: tuning the first
average-pooling layer

(min: 0.137; max: 0.289)

(b) ACC: tuning the first max-pooling
layer

(min: 0.161; max: 0.270)

(c) ACC: tuning the last
average-pooling layer

(min: 0.155; max: 0.288)

(d) ACC: tuning the last max-pooling
layer

(min: 0.159; max: 0.262)

Fig. 10. ACC for standardized dataset with average-/max-pooling layer for the HW
leakage model on ASCAD r.

Following these observations, we give the following suggestions regarding the
pooling layer’s hyperparameter selection:

– Applying data standardization can significantly increase the robustness of the
model in terms of pooling layer’s hyperparameter variation.

– Although in some cases the max-pooling layer slightly outperforms its coun-
terpart, an average-pooling layer is more preferable as it can consistently give
good attack performance.

– For the shallower pooling layers, smaller pooling strides are required to avoid
omitting the important features. At the same time, the smaller pooling sizes
are preferable for intermediate/deeper pooling layers.

– For the network size reduction, larger pooling sizes could be applied for the
shallower pooling layers. The deeper pooling layers could be used with larger
pooling strides.

130 L. Wu and G. Perin

6 Conclusions and Future Work

In this paper, we considered the effect of a pooling layer towards CNN-
based SCA. We investigated one unprotected dataset (ChipWhisperer) and two
datasets protected with masking countermeasures (ASCAD f and ASCAD r).
Two commonly used pooling methods, average-pooling, and max-pooling are
tested with different hyperparameter settings. The results are evaluated through
three metrics. Our results clearly show that the pooling method and the corre-
sponding hyperparameters should be determined based on both the depth of the
(pooling) layer and the size of input features.

In future work, we plan to explore the influence of the pooling layer’s hyper-
parameter choice for various input sizes and profiling models. Next, we aim to
explore the role of the countermeasures when selecting and tuning the pooling
layers. Finally, in this work, we concentrated on the HW leakage model only. It
would be interesting to expand this to other leakage models.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptograph. Eng.
10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)

7. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptograph. Hardware Embedded Syst., 148–179 (2019)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/3-540-48405-1_25

Pooling Layer in Profiling SCA 131

10. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning
approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS
2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08302-5 5

11. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

12. Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-
based side-channel analysis. In: Zhou, J., et al. (eds.) ACNS 2020. LNCS, vol.
12418, pp. 126–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61638-0 8

13. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-38162-6

15. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

16. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. IACR Cryptology ePrint Archive 2020, 977 (2020). https://
eprint.iacr.org/2020/977

17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel eval-
uations. IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 209–
237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237. https://tches.iacr.
org/index.php/TCHES/article/view/7339

18. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 1–29 (2019)

19. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

20. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

21. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. Technical report, Cryp-
tology ePrint Archive, Report 2021/071 (2021). https://eprint.iacr.org

22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparame-
ter tuning in deep learning-based side-channel analysis. Cryptology ePrint Archive,
Report 2021/071 (2021). https://eprint.iacr.org/2021/071

https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-030-61638-0_8
https://doi.org/10.1007/978-3-030-61638-0_8
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://eprint.iacr.org/2020/977
https://eprint.iacr.org/2020/977
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://eprint.iacr.org
https://eprint.iacr.org/2021/071

132 L. Wu and G. Perin

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

24. Tran, N.Q., Nguyen, H.Q.: Efficient CNN-based profiled side channel attacks. J.
Comput. Sci. Cybern. 37(1), 1–22 (2021)

25. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptograph. Hard-
ware Embedded Syst. 2020(3), 147–168 (2020). https://doi.org/10.13154/tches.
v2020.i3.147-168. https://tches.iacr.org/index.php/TCHES/article/view/8586

26. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning
for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report
2020/1293 (2020). https://eprint.iacr.org/2020/1293

27. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptograph. Hardware Embedded
Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36. https://
tches.iacr.org/index.php/TCHES/article/view/8391

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://eprint.iacr.org/2020/1293
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Deep-Learning Based Profiling Side-Channel Analysis
	2.3 Convolutional Neural Networks
	2.4 Datasets

	3 Related Works
	4 Experimental Setup
	5 Experimental Results
	5.1 Case Study: The ChipWhisperer Dataset
	5.2 ASCAD with a Fixed Key (ASCAD_f)
	5.3 ASCAD with Random Keys (ASCAD_r)
	5.4 General Observations and Suggestions

	6 Conclusions and Future Work
	References

