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SUMMARY

This thesis is comprised of two main parts. In the first part of the thesis, we study the
nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) ap-
proximation of the bounded confidence opinion dynamics, where opinions are influ-
enced by environmental noises and opinions of radicals (stubborn individuals). The
distribution of radical opinions serves as an infinite-dimensional exogenous input to the
FP equation, visibly influencing the steady opinion profile. We first establish the math-
ematical properties of the FP equation. In particular, we (i) show the well-posedness of
the dynamic equation, (ii) provide existence result accompanied by a quantitative global
estimate for the corresponding stationary solution, and, (iii) establish an explicit lower
bound on the noise level that guarantees exponential convergence of the dynamics to
stationary state. Combining the results in (ii) and (iii) readily yields the input-output
stability of the system for sufficiently large noises. Next, using Fourier analysis, the struc-
ture of opinion clusters under the uniform initial distribution is examined. Specifically,
two numerical schemes for (i) identification of order-disorder transition and (ii) char-
acterization of initial clustering behavior are provided. The results of the analysis are
validated through several numerical simulations of the continuum-agent model (partial
differential equation) and the corresponding discrete-agent model (interacting stochas-
tic differential equations) for a particular distribution of radicals.

In the second part of the thesis, we focus on the value iteration algorithm for solving
optimal control problems. We propose two novel numerical schemes for approximate
implementation of the dynamic programming (DP) operation concerned with finite-
horizon, optimal control of deterministic, discrete-time systems with input-affine dy-
namics. The proposed algorithms involve discretization of the state and input spaces
and are based on an alternative path that solves the dual problem corresponding to the
DP operation. We provide error bounds for the proposed algorithms, along with detailed
analyses of their computational complexity. In particular, for a specific class of problems
with separable data in the state and input variables, the proposed approach can reduce
the typical time complexity of the DP operation from O (XU ) to O (X +U ), where X and
U denote the size of the discrete state and input spaces, respectively. We next discuss the
extensions of the proposed conjugate value iteration algorithm for problems with sep-
arable data. The extensions are three-fold: We consider (i) infinite-horizon, discounted
cost problems with (ii) stochastic dynamics, while (iii) computing the conjugate of in-
put cost numerically. In particular, we analyze the convergence, complexity, and error
of the proposed algorithm under these extensions. The theoretical results are validated
through multiple numerical examples.

xi





SAMENVATTING

Dit proefschrift bestaat uit twee hoofddelen. In het eerste deel van het proefschrift be-
studeren wij de niet-lineaire Fokker-Planck (FP) vergelijking die ontstaat als macrosco-
pische benadering van de begrensde vertrouwen opinie dynamiek, waarbij opinies wor-
den beïnvloed door omgevingsruis en opinies van radicalen (koppige individuen). De
verdeling van radicale opinies dient als een oneindigdimensionale exogene invoer voor
de FP vergelijking, en heeft een zichtbare invloed op het stabiele opinieprofiel. Wij stel-
len eerst de wiskundige eigenschappen van de FP vergelijking. In het bijzonder, (i) tonen
wij de goed-gestelde van de dynamische vergelijking; (ii) bieden wij het bestaansresul-
taat vergezeld van een kwantitatieve globale schatting voor de overeenkomstige statio-
naire oplossing; en, (iii) stellen wij een expliciete ondergrens voor het ruisniveau vast dat
exponentiële convergentie van de dynamiek naar stationaire toestand garandeert. Het
combineren van de resultaten in (ii) en (iii) levert de invoer-uitvoer stabiliteit van het
systeem op voor voldoende grote ruis. Vervolgens wordt met behulp van Fourier-analyse
de structuur van opinieclusters onder de uniforme initiële verdeling onderzocht. Meer
bepaald worden twee numerieke schema’s verstrekt voor (i) identificatie van de orde-
wanorde overgang en (ii) karakterisering van het initiële clustergedrag. De resultaten van
de analyse worden gevalideerd door middel van verschillende numerieke simulaties van
het continuüm-agent model (partiële differentiaalvergelijking) en het overeenkomstige
discrete-agent model (interacterende stochastische differentiaalvergelijkingen) voor een
bepaalde verdeling van radicalen.

In het tweede deel van het proefschrift richten wij ons op het waarde iteratie algo-
ritme voor het oplossen van optimale controle problemen. Wij stellen twee nieuwe nu-
merieke schema’s voor een benaderende implementatie van de dynamische program-
mering (DP) operatie met betrekking tot de eindige-horizon, optimale controle van de-
terministische en discrete-tijd systemen met invoer-affiene dynamiek. De voorgestelde
algoritmen omvatten discretisatie van de toestands- en invoerruimte en zijn gebaseerd
op een alternatief pad dat het duale probleem oplost dat overeenkomt met de DP ope-
ratie. Wij geven foutgrenzen voor de voorgestelde algoritmen, samen met een gedetail-
leerde analyse van hun computationele complexiteit. In het bijzonder, voor een speci-
fieke klasse van problemen met scheidbare gegevens in de toestands- en invoervaria-
bele, kan de voorgestelde aanpak de typische tijdscomplexiteit van de DP operatie ver-
minderen van O (XU ) tot O (X +U ), waarbij X en U respectievelijk de grootte van de dis-
crete toestand- en invoerruimte aanduiden. Wij bespreken vervolgens de uitbreidingen
van het voorgestelde algoritme voor problemen met scheidbare gegevens. De uitbrei-
dingen zijn drieledig: Wij beschouwen (i) oneindige-horizon, verdisconteerde-kosten
problemen met (ii) stochastische dynamiek, terwijl (iii) de geconjugeerde invoer kosten
numeriek worden berekend. In het bijzonder analyseren wij de convergentie, complexi-
teit en fout van het voorgestelde algoritme onder deze uitbreidingen. De theoretische
resultaten worden gevalideerd aan de hand van meerdere numerieke voorbeelden.
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2 1. INTRODUCTION

Finite-dimensional approximation of infinite-dimensional objects is an indispens-
able part of modern practice in science and technology. Indeed, any physical implemen-
tation of a numerical algorithm requires such an approximation due to finite machine
precision, i.e., finite number of bits (dimensions) available for representing a possibly ir-
rational (infinite-dimensional) real number. To make the matters worse, it is quite com-
mon that the object of interest is itself a function living in an infinite-dimensional space
(requiring infinite, possibly uncountable, number of real numbers for full representa-
tion). Take, for example, the solution to an ordinary differential equation (ODE)

dx

dt
= f (x),

where f : R→ R is a given Lipschitz-continuous function. Any numerical algorithm for
solving this ODE for, say, t ∈ [0,T ] and initial condition x(0) = x0, works with a finite dis-
cretization of the independent variable t , i.e., a finite-dimensional approximation of the
infinite-dimensional object x : [0,T ] →R. Naturally, similar issues arise in numerical al-
gorithms for solving partial differential equations (PDEs). As a second example, consider
the partial optimization problem

f ⋆(x) = min
y

f (x, y),

where f : R×R→ R is a given function. Once again, the optimal value f ⋆ is an infinite-
dimensional object. Therefore, unless the minimization problem has an analytic solu-
tion, one has no choice but to settle for a finite-dimensional approximation of this prob-
lem by, e.g., solving the problem for a finite number of the independent variable x.

Arguably, the most essential aspect of any function approximation technique is the
proper choice of the parameterization scheme leading to a compact representation of
the true function. For ODEs and PDEs, a particularly well-established class of approx-
imation schemes is the so-called spectral method, where the true function is approxi-
mated as a linear combination of a finite set of global basis functions. Here, the underly-
ing assumption is that the true function belongs to a certain function space with a known
(countable) basis. For example, for problems with periodic geometry, the Fourier series
is the proper choice. The numerical algorithm then involves finding the correspond-
ing coefficients for a truncated (finite) Fourier expansion of the solution that satisfies a
(weak) reformulation of the original differential equation. The fundamental idea here is
to exploit the geometry of the problem, and use a more efficient representation of the
solution in the frequency (“dual”) domain.

When it comes to optimization problems, convex geometry is undoubtedly the most
important type of geometry out there. Utilizing again the spectral method, for infinite-
dimensional minimization problems with convex geometry, one can approximate the
solution as a linear combination of a finite number of basis functions. However, the
proper function space, in this case, is a max-plus space. Precisely, the compact repre-
sentation of the true function is constructed in the slope (“dual”) domain, as a max-plus
linear combination of the basis functions. Furthermore, this dual representation poten-
tially allows us to exploit the operational duality of infimal convolution and addition with
respect to the conjugate transform: For two functions f1, f2 :Rn → [−∞,∞], we have

( f1□ f2)∗ = f ∗
1 + f ∗

2 ,
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where
f1□ f2(x) := inf{ f1(x1)+ f2(x2) : x1 +x2 = x},

is the infimal convolution of f1 and f2, and

f ∗
1 (y) := max

x
y⊤x − f1(x), y ∈Rn ,

is the convex conjugate (also known as Legendre-Fenchel transform) of f1. This is anal-
ogous to the well-known operational duality of convolution and multiplication with re-
spect to the Fourier transform. Actually, the Legendre-Fenchel transform plays a similar
role as Fourier transform when the underlying algebra is the max-plus algebra, as op-
posed to the conventional plus-times algebra.

In this thesis, we aim to use this concept of finite-dimensional approximation in the
dual domain in the context of two problems:

• for analysis and numerical simulation of a highly nonlinear PDE arising as the
macroscopic model of opinion dynamics, and,

• for developing fast numerical algorithms for solving infinite-dimensional mini-
mization problems arising in optimal control of discrete-time systems.

In what follows, we provide a summary of these two main parts along with an overview
of the main results presented in the corresponding chapters.

PART ONE (CHAPTERS 2 AND 3)
In the first part of the thesis, we advance the theory of macroscopic modeling of bounded
confidence opinion dynamics. Bounded confidence models stipulate that a social actor
is insensitive to opinions beyond its bounded confidence set (usually, this set is an open
or closed ball, centered at the actor’s own opinion), which makes the graph of interac-
tions among the agents distance-dependent. These models exhibit convergence of the
opinions to some steady values, which can reach consensus or split into several disjoint
clusters. Opinions in real social groups, however, usually do not terminate at steady val-
ues yet oscillate, which is usually explained by two factors. The first reason explaining
opinion fluctuation is exogenous influence, which can be interpreted as some “truth”
available to some individuals or a position shared by a group of close-minded opinion
leaders (“radicals”). The second culprit of this fluctuation is uncertainty in the opinion
dynamics, usually modeled as a random drift of each opinion. Whereas these models
are still waiting for clear sociopsychological interpretation, they are broadly adopted in
statistical physics to study phase transitions in systems of interacting particles.

Despite some progress in the analysis of noisy bounded confidence models, in par-
ticular, the interplay of confidence ranges and noise levels, all consequences of noise and
exogenous influence in nonlinearly coupled networks are far from being understood.
Even for the classical models, disclosing the relationship between the initial and the ter-
minal opinion profiles remains a challenging problem. This motivates the examination
of the corresponding mean-field models with an infinite number of actors. The arising
macroscopic approximations of microscopic models describe the evolution of the dis-
tribution (a probability measure or a density) of opinion over some domain.
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𝒙 = 𝟎 𝒙 = 𝟏

𝝆(𝒙, 𝒕)

𝒙

𝑹

𝒙𝟏 𝒙𝟎

Figure 1.1: The even 2-periodic extension of the system. The opinion value is assumed to
belong to the set X = [0,1] without loss of generality. This basic opinion domain is first ex-
tended evenly to X̃ = [−1,1] and then periodically to R. As can be seen, this particular ex-
tension leads to an almost reflective boundary condition. The opinion value x0 ∈ [R,1−R]
effectively experiences a reflective boundary condition, while for the opinion value x1 ∈ [0,R]
there is also a boundary effect due to the even extension. In particular, the influence of more
extreme neighbors of x1 is reinforced by introducing artificial ones (the shaded area in blue).
The same boundary effect exists for opinion values in [1−R,1].

The continuous-time model for opinion dynamics considered in this thesis is the
following (even) 2-periodic nonlinear Fokker-Planck (FP) equation (the subscripts x, xx,
and t denote the corresponding partial derivatives) ρt = (ρ Gρ)x + σ2

2 ρxx in X̃ × (0,T )
ρ(·+2, t ) = ρ(·, t ) on ∂X̃ × (0,T )

ρ(x, ·) = ρ0(x) on X̃ × {t = 0},
(1.1)

where
Gρ(x, t ) := w(x)⋆

(
ρ(x, t )+Mρr (x)

)
. (1.2)

Above, ρ(x, t ) denotes the even extension of the density of the opinions from X = [0,1] to
X̃ = [−1,1], while ρ0(x) is the corresponding extension of the initial opinion profile; see
Figure 1.1 for a visualization of the even 2-periodic extension of the system. The function

w(x) =
{

x, |x| ≤ R,
0, o.w.,

is the interaction kernel corresponding to the confidence bound of radius R < 1. In par-
ticular, note that the opinions are influenced by environmental noises (modeled by the
diffusion term withσ> 0 being the noise level) and opinions of a group of radicals (mod-
eled by adding the even extension of the radical opinion density ρr and its relative mass
M ≤ 1 in the drift term). The distribution of radical opinions indeed serves as an infinite-
dimensional exogenous input to the FP equation and is shown to visibly influence the
steady state opinion profile. This macroscopic model is validated by comparing the nu-
merical solution of PDE (1.1) with the numerical solution of the corresponding micro-
scopic model described by a coupled system of stochastic differential equations.
Chapter 2: We first establish the mathematical properties of the FP equation (1.1). In
particular, we show the well-posedness of PDE (1.1), i.e., the existence and uniqueness
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of a classical solution ρ ∈ C 1(0,∞;C 2(X̃ )) for sufficiently smooth initial density ρ0 and
radical density ρr . Moreover, we establish an explicit lower bound on the noise level that
guarantees exponential convergence of the dynamics to stationary state. To be precise,
we show that ρ(·, t ) converges to a stationary state ρs ∈C 2(X̃ ) exponentially in L2 as t →
∞ if σ>σs , where σs > 0 uniquely solves

σ2
s =

4R(3+M)

π
+ 4R2

π
p

3
exp

(
8R(1+M)

σ2
s

)
.

We then focus on the stationary state of the system, i.e., the solution to

σ2

2
ρxx + (ρ Gρ)x = 0.

In particular, the existence of a classical stationary solution ρs ∈C 2(X̃ ) is shown for a suf-
ficiently smooth radical density ρr . Moreover, a global estimate is provided that bounds
the deviation of the stationary state from the uniform distribution. Precisely, we show
that for any η> 0, if σ2 >σ2

b +ηcb , then ∥ρs −1∥L2 ≤ 1
η∥ρr ∥L2 , where

σ2
b := 4R

π

(
M + Rp

3
+2

)
and cb := 4R2M

π
p

3
.

As we will see, combining the preceding result with the exponential stability of the dy-
namics yields the input-output stability of the system for sufficiently large noises.
Chapter 3: Next, we exploit the periodicity and evenness of the model (in space X̃ ) and
use Fourier analysis to examine the structure of the opinion clusters under the uniform
initial distribution ρ0 = 1. This is where we work with a finite-dimensional approxima-
tion of PDE (1.1) in the dual (Fourier) domain. To be precise, we consider the finite
Fourier expansions of ρ and ρr and obtain a system of quadratic ODEs

ṗn = cn +bT
n p +pT Qn p, n = 1, . . . , N f , (1.3)

which describe the time evolution of the Fourier coefficients pn(t ) of

ρ(x, t ) = 1+
N f∑

n=1
pn(t ) ·cos(πnx) .

Then, we carry out a linear stability analysis on this finite-dimensional system of ODEs
for identification of the so-called order-disorder transition in the system. (In the study of
systems of noisy interacting particles, “order” refers to clustering behaviors and “disor-
der” refers to uniform behaviors). This is done by approximating the critical noise level
at which this transition occurs. To be precise, we linearize the system at t = 0 to obtain
the linear ODEs

ṗ = c +B p, (1.4)

with p = (p1, . . . , pN f )⊤. We then numerically compute the critical noise level above
which this linear system is stable and converges to a stationary state close to uniform
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distribution. We also provide another approximation scheme for characterizing the ini-
tial clustering behavior of the system including the number and the timing of possible
clusters. This is done by further simplifying the linearized model. Precisely, we ignore
the interactions between different frequencies in (1.4), and consider the equations

ṗn = cn +γn pn , n = 1, . . . , N f ,

for the initial evolution of each Fourier coefficient pn . As we will see, these simple nu-
merical schemes, lead to a reasonably accurate prediction of the behavior of the system
without the need to solve the equations describing the dynamics of the system.

PART TWO (CHAPTERS 4 AND 5)
The second part of the thesis revolves around the value iteration (VI) algorithm for solv-
ing optimal control problems of discrete-time systems with continuous state and input
spaces. The VI algorithm simply involves the consecutive applications of the dynamic
programming (DP) operator

T J (x) = min
u

{
C (x,u)+γE[J (x+)]

}
, (1.5)

where C (x,u) is the cost of taking the control action u ∈ Rm at the state x ∈ Rn , and
γ ∈ (0,1) is the discount factor (in discounted cost problems). Arguably, the most im-
portant drawback of VI algorithm is its high computational cost for large-scale finite
state spaces. For problems with a continuous state space, the DP operation becomes
an infinite-dimensional optimization problem, rendering the exact implementation of
VI impossible in most cases. A common approach is to incorporate function approxi-
mation techniques and compute the output of the DP operator for a finite sample (i.e.,
a discretization) of the underlying continuous state space. This approximation again
suffers from a high computational cost for fine discretizations of the state space, partic-
ularly, in high-dimensional problems.

For some DP problems, however, it is possible to reduce this complexity by using
duality, i.e., approaching the minimization problem (1.5) in the conjugate domain. E.g.,
for the deterministic linear dynamics x+ = Ax +Bu with the separable cost C (x,u) =
Cs(x)+Ci(u), we have

T J (x) ≥Cs(x)+ [
C∗

i (−B⊤·)+ (γJ )∗
]∗

(Ax),

where the operator [·]∗ is the (convex) conjugate transform. In particular, notice how the
minimization in the primal domain in the DP operation can be transformed to a simple
addition in the dual (conjugate) domain, at the expense of three conjugate transforms.
Fundamentally, we will be exploiting the operational duality of infimal convolution and
addition with respect to the conjugate transform.

In this part, we use duality and propose multiple conjugate VI (ConjVI) algorithms
that involve a sample-based approximation using a finite subset Xg (the superscript
g denotes grid-like finite sets) of the underlying continuous state space. These algo-
rithms are based on an alternative path that solves the dual problem corresponding to
the DP operation, by utilizing the linear-time Legendre transform (LLT) algorithm for
discrete conjugation. In particular, the proposed approaches involve incorporating a
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J (x+) T [J ](x)

J∗(y) φx (y)

φ∗
x

(
fs(x)

)
T̂ [J ](x)

Dual domain

Primal domain

=

min
u

{
C (x,u)+ J (x+)

}

[·]∗

+C∗
x (− fi(x)⊤y)

[·]∗

(a) First setting with dynamics x+ = fs(x)+ fi(x) ·u and cost C (x,u).

J (x+) T [J ](x)

J∗(y) φ(y)

φ∗(
fs(x)

)
T̂ [J ](x)

Dual domain

Primal domain
min

u

{
C (x,u)+ J (x+)

}

[·]∗

+C∗
i (−B⊤y)

[·]∗

+Cs(x)

(b) Second setting with dynamics x+ = fs(x)+B ·u and cost C (x,u) =Cs(x)+Ci(u).

Figure 1.2: Sketch of the proposed ConjVI algorithms for deterministic dynamics – the stan-
dard DP operation in the primal domain (upper red paths) and the conjugate DP (CDP) op-
eration through the dual domain (bottom blue paths).

finite-dimensional approximation of the value function in the dual domain, which leads
to a convex, max-plus linear approximation (namely, the maximum of affine functions).
Figure 1.2 shows the sketch of the proposed algorithms for the deterministic dynamics.
Chapter 4: We begin with the presentation and analysis of the basic algorithms for finite-
horizon optimal control of deterministic systems. In particular, we introduce the dis-
crete conjugate DP (d-CDP) operator for problems with input-affine dynamics

x+ = fs(x)+ fi(x) ·u.

See Figure 1.2a for the sketch of this operator. Precisely, the d-CDP operator T̂ d reads as
(the superscript d denotes finite (discrete) sets and functions)

J d∗d(y) = maxx∈Xg
{〈

y, x
〉− J d(x)

}
, y ∈Yg,

ϕd
x (y) =C∗

x (− fi(x)⊤y)+ J d∗d(y), y ∈Yg,
T̂ d J d(x) =ϕd∗

x

(
fs(x)

)
, x ∈Xg,
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where C∗
x (v) := maxu

{〈v,u〉−C (x,u)
}

is the conjugate of the cost with respect to the in-
put variable and assumed to be analytically available. Note that d-CDP operator takes
the discrete function J d : Xg → R as the input, and outputs another discrete function
T̂ d J d : Xg → R. We also note that the operation [·]d∗d is the discrete conjugate oper-
ation that can be efficiently handled via the LLT algorithm for gridded dual domains.
Here, we are particularly using the linearity of the dynamics in the input to effectively
incorporate the operational duality of addition and infimal convolution, and transform
the minimization of the DP operation into a simple addition at the expense of two dis-
crete conjugate transforms. This, in turn, leads to a computational cost of O (X Y ) for the
d-CDP operation, where X and Y denote the size of the discrete primal state space Xg

and discrete dual state space Yg, respectively. We then modify the proposed d-CDP op-
erator and reduce its time complexity for a subclass of problems with “separable” data
in the state and input variables; see Figure 1.2b for the sketch of the modified opera-
tor. This subclass is most importantly identified by a state-independent input dynamics
fi(·) = B ∈ Rn×n and separable cost C (x,u) = Cs(x)+Ci(u). The modified d-CDP opera-
tor T̂ d

m reads as 
J d∗d(y) = maxx∈Xg

{〈
y, x

〉− J d(x)
}

, y ∈Yg,
ϕd(y) :=C∗

i (−B⊤y)+ J d∗d(y), y ∈Yg.
ϕd∗d(z) = maxy∈Yg

{〈
z, y

〉−ϕ(y)
}

, z ∈Zg,

T̂ d
m J d(x) =Cs(x)+ϕd∗d

(
fs(x)

)
, x ∈Xg,

where [·] denotes the multi-linear interpolation operator. (Here, again, we are assuming
the conjugate of input cost, C∗

i (v) := maxu
{〈v,u〉−Ci(u)

}
, is analytically available). In

particular, for this subclass, the time complexity of the DP operation reduces to Õ (X +
Y + Z ), where Z is the size of the grid Zg. (The notation Õ hides the logarithmic terms).
This, in turn, points to the possibility of a huge reduction in the computational cost for
gridsYg and Zg of proper size. One of the most important aspects of our development is
the error analysis of the proposed d-CDP operator and its modification. In particular, we
use the results of our error analysis to provide concrete guidelines for the construction
of the grids Yg and Zg.
Chapter 5: We next discuss three extensions of the proposed (modified) d-CDP operator
for the subclass of problems with separable data. First, we consider stochastic dynamics

x+ = fs(x)+Bu +w,

where w ∈ Rn is an additive disturbance with a finite support Wd of size W and a given
probability mass function p : Wd → [0,1]. Second, we propose a numerical scheme for
computing the conjugate of the input cost Ci, using the discretization C d

i :Ug →R of this
function over a grid-like discretizationUg of the input space. (Recall that in Chapter 4, we
assume C∗

i is analytically available). In particular, we consider the implications of these
extensions on the complexity and the error of the d-CDP operation. Finally, we consider
solving the infinite-horizon, discounted cost optimal control problem, which involves
finding the fixed-point of the DP operator. This, in turn, requires us to provide a set of
sufficient conditions for the convergence of the corresponding ConjVI algorithm, and
to further extend our error analysis by considering the difference between the output of
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this algorithm (after a finite number of iterations) with the true optimal value function.
The extended (modified) d-CDP operator T̂ d

e precisely reads as

εd(x) = γ ·∑w∈Wd p(w) · J̃ d(x +w), x ∈Xg,
εd∗d(y) = maxx∈Xg

{〈
x, y

〉−εd(x)
}

, y ∈Yg,
C d∗d

i (v) = maxu∈Ug
{〈u, v〉−C d

i (u)
}

, v ∈Vg,

ϕd(y) =C d∗d
i (−B⊤y)+εd∗d(y), y ∈Yg,

ϕd∗d(z) = maxy∈Yg
{〈

y, z
〉−ϕd(y)

}
, z ∈Zg,

T̂ d
e J d(x) =Cs(x)+ϕd∗d

(
fs(x)

)
, x ∈Xg,

where [̃·] is a generic extension of a discrete function. We show that, under some con-
ditions on the sizes of the grids Yg, Vg, and Zg, the ConjVI algorithm that utilizes the
extended d-CDP operator, has a one-time compilation complexity of O (X +U ) and a
per-iteration complexity of Õ (X W E), where E denotes the cost of each evaluation of the
extension operator [̃·]. Moreover, we again use the results of the error analysis to provide
concrete guidelines for the construction of the grids Yg, Vg, and Zg.

Chapter 6 concludes the thesis by providing some remarks on the limitations of the
proposed models/approaches. In this final chapter, we also discuss some interesting
future research directions.
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In this chapter, we introduce and study the nonlinear Fokker-Planck (FP) equation
that arises as a mean-field (macroscopic) approximation of the bounded confidence
opinion dynamics, where opinions are influenced by environmental noises and radi-
cal (stubborn) individuals. In particular, we focus on mathematical properties of the
FP equation such as well-posedness and stability. The chapter is organized as follows. A
review of the related literature along with the motivation is provided in Section 2.1. We
then present our general notational conventions and some preliminaries on function
spaces in Section 2.2. The macroscopic opinion dynamics model in question is then
introduced in Section 2.3. We next present our main theoretical results regarding the
well-posedness and stability of the model in Section 2.4. The final section of this chapter
concerns the technical proofs of these results.

2.1. MOTIVATION AND LITERATURE REVIEW
Recent decades have witnessed enormous progress in the study of complex systems and
their system-theoretic properties [2, 3]. The main effort has been invested in the study
of “self-organization” and “spontaneous order” phenomena [4] that have inspired the
development of synchronization and consensus theory [5, 6]. Paradoxically, these reg-
ular behaviors arising from local interactions between subsystems (agents, nodes) of a
complex system are studied much better than various “irregular” dynamic effects such
as persistent disagreement and clustering, exhibited by many real-world systems. Al-
though some culprits of this asynchrony and dissent (e.g. symmetries and other special
structures in the coupling mechanisms, exogenous forces acting on some nodes, het-
erogeneous dynamics of nodes, etc.) have been revealed in the literature [7–11], only
a few mathematical models have been proposed that are sufficiently “rich” to capture
the diversity of clustering behaviors in real-world networks and, at the same time, admit
rigorous analysis. Long before the recent “boom” in complex systems, the lack of such
models was realized in mathematical sociology. The problem of disclosing mechanisms
preventing consensus and maintaining enduring disagreement between individuals [12]
is nowadays referred to as the community cleavage problem or Abelson’s diversity puz-
zle [13, 14]. The interdisciplinary area of sociodynamical modeling [14–21] has attracted
enormous attention of the research community and is primarily concerned with mech-
anisms of opinion formation under social influence.

Only a few models, proposed in the literature to describe opinion formation pro-
cesses, have been secured by experimental evidence. Such models, however, play an
important role and contribute, in various aspects, in comprehending complex systems’
behaviors such as birth, death, and evolution of clusters in systems of interacting par-
ticles, and in developing algorithms for control of these behaviors. This explains the
explosion of interest in models of opinion formation in systems and control literature.
From the control-theoretic prospect, most of these models are simply networks of inter-
acting agents, obeying the first-order integrator model. However, the term “opinion” is
now widespread and used to denote the scalar or multi-dimensional state of an agent,
even if this state does not have a clear sociological interpretation1 (belonging, e.g., to an

1From the sociological viewpoint, opinions are cognitive orientations of individuals towards some objects or
topics [14].
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abstract manifold [22]). The opinion is thus some value of interest, held by an agent and
updated, based on displayed opinions of the other agents.

Linear models of opinion dynamics, extending the classical French-DeGroot system
in various directions (allowing, e.g., stubborn agents, asynchronous interactions, and re-
pulsion of opinions [14, 18, 23, 24]) have been thoroughly studied. These models are suf-
ficient to explain consensus and disagreement in social groups, as well as the formation
of special opinion profiles (e.g., bimodal distributions, standing for opinion polariza-
tion), however, general mechanisms leading to emergence and destruction of unequal
clusters are still far from being well understood. To explain them, more complicated
nonlinear models have been proposed, mimicking some important features of social in-
fluence. One feature observed in social and biological systems is the homophily [25],
or the tendency of individuals to bond with similar ones. Homophily is related to bi-
ased assimilation [26] effects: individuals readily accept opinions consistent with their
views and tend to dismiss and discount opinions contradicting their own views. Math-
ematically, coupling between close opinions is stronger than that of distant opinions,
which is modeled by introducing opinion-dependent influence weights. Although the
possibility of such nonlinearities in opinion dynamics models was mentioned in the
pioneering work [12], substantial progress has been primarily achieved in the analy-
sis of bounded confidence models proposed several decades later as extensions of the
deterministic [27] and randomized gossip-based [28] consensus algorithms for multi-
agent networks. Bounded confidence models stipulate that a social actor is insensitive
to opinions beyond its bounded confidence set (usually, this set is an open or closed
ball, centered at the actor’s own opinion), which makes the graph of interactions among
the agents distance-dependent. A detailed survey of bounded confidence models and
relevant mathematical results can be found in [19]. Bounded confidence models ex-
hibit convergence of the opinions to some steady values, which can reach consensus or
split into several disjoint clusters. If the state-dependent interaction graph of the sys-
tem is symmetric, this follows from general properties of iterative averaging procedures,
and can alternatively be proved by exploring a special Lyapunov function (“kinetic en-
ergy”) [19, 29, 30]. In the general case of asymmetric interaction graphs, such a con-
vergence has been proved only in special situations [30, 31], but seems to be a generic
behavior [31–33].

Opinions in real social groups, however, usually do not terminate at steady values
yet oscillate, which is usually explained by two factors. The first reason explaining opin-
ion fluctuation is exogenous influence, which can be interpreted as some “truth” avail-
able to some individuals [34] or a position shared by a group of close-minded opinion
leaders or stubborn individuals (“radicals”) [35–37]. Important results on the stability of
the Hegselmann-Krause (HK) model with radicals and more general “inertial” bounded
confidence models were obtained in [31]. Typically, the exogenous signal is supposed
to change slowly compared to the opinion evolution and is thus replaced by a constant;
the main concern is the dependence between the constant input and the resulting opin-
ion profile. Numerical results, reported in [35, 36] demonstrate high sensitivity of the
opinion clusters to the radical’s opinion and reveal some counter-intuitive effects, e.g.,
an increase in the number of radicals sometimes decreases the number of their follow-
ers. The second culprit of persistent opinion fluctuation is uncertainty in the opinion
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dynamics, usually modeled as a random drift of each opinion. The presence of a ran-
dom excitation can be interpreted as “free will” and unpredictability of a human’s de-
cision [38]; besides this, randomized opinion dynamics models are broadly adopted in
statistical physics [39–42] to study phase transitions in systems of interacting particles.

Even for the classical models from [27, 28], disclosing the relationship between the
initial and the terminal opinion profiles remains a challenging problem (including, e.g.,
the 2R-conjecture [43, 44]). In presence of noise, the analysis becomes even more dif-
ficult; some progress in the study of the interplay between confidence range and noise
level have been achieved in recent works [45, 46]. One of the important directions in
the analysis of bounded confidence models is the examination of their asymptotic prop-
erties as the number of social actors becomes very large (N → ∞) and their individual
opinions are replaced by infinitesimal “elements”. The arising macroscopic approxima-
tions of agent-based models describe the evolution of the distribution of opinion (usu-
ally supposed to have a density) and are referred to as density-based [47], continuum-
agent [48, 49], Eulerian [50, 51], kinetic [52], hydrodynamical [29] or mean-field [44, 53]
models of opinion formation. In the continuous-time situation, the density obeys a
nonlinear FP equation. To study the clustering behavior of the macroscopic bounded
confidence models, efficient numerical methods have been proposed that are based on
Fourier analysis [41, 44, 54].

From a practical viewpoint, it is convenient to consider opinions staying in a pre-
defined interval, e.g., [0,1]. The HK and Deffuant-Weisbuch (DW) models, as well as
their continuous-time counterparts [19], imply that starting within the interval, opin-
ions never escape from it. This property, however, is destroyed by arbitrarily small noises.
To keep the opinions bounded, some boundary conditions are usually introduced. The
absorbing boundary condition assumes that the opinions are saturated at the extreme
values 0 and 1 [41, 46]; an important result from [46] demonstrates that arbitrarily small
noises in this situation destroy clusters and lead to approximate consensus (the maximal
deviation of opinions is proportional to the noise level). More interesting are opinion dy-
namics with the periodic boundary condition, wrapping the interval [0,1] into a circle.
The opinion density on the circle corresponds to a 1-periodic solution of the FP equation
on the real line [44, 54, 55]. A disadvantage of the simple periodic boundary condition
is the merging of two extreme opinion values 0 and 1. To distinguish between these
extreme opinions, we incorporate an “almost” reflective (precisely, an even 2-periodic)
boundary condition. Dealing with the macroscopic FP equation, the opinion density is
then conveniently represented by an even 2-periodic solution on the real line. We are
primarily concerned with the mathematical properties of such solutions.

In the first part of the thesis (Chapters 2 and 3), we advance the theory of macro-
scopic modeling of bounded confidence dynamics. We consider a bounded confidence
model with environmental noise which also includes radical opinions, which are not
concentrated at a single point (as in [34, 35, 50]) but rather distributed. The FP equa-
tion acquires an (infinite-dimensional) exogenous input, describing the density and to-
tal mass of the radical opinions. This setup allows us to consider the interplay between
the noise and the distributed radicals concerning the behavior of the system.
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2.2. NOTATIONS AND PRELIMINARIES

2.2.1. GENERAL NOTATIONS
The convolution of two functions f and g is denoted by f ⋆ g = ∫

f (x) g (y − x) dy . We
note that in our case one of the functions has a compact support, so the integral always
exists. For a function f (t , x) we use fx (respectively, ft ) to denote the derivatives with
respect to x (respectively, t ), so that fxx is the second partial derivative with respect to x.
We also use the notation ∂i

x f for the i -th order derivative with respect to x.
Let X = [0,1] and X̃ = [−1,1]. We use P (X ) to denote the the space of probability

densities on X . That is, ρ ∈ P (X ) if
∫

X ρ(x) dx = 1 and ρ(x) ≥ 0 for all x ∈ X . We also
use Pe (X̃ ) to denote the space of probability densities on X , extended evenly to X̃ . That
is, Pe (X̃ ) is the space of all functions ρ : X̃ → [0,∞) such that

∫
X ρ(x) dx = 1 and ρ(x) =

ρ(−x) ≥ 0 for all x ∈ X̃ .

2.2.2. REVIEW OF FUNCTION SPACES
The definitions provided here are mostly borrowed from [56]. Let { fk }∞k=1 be a sequence
in a Banach space B with norm ∥ · ∥B . The strong convergence fk → f implies ∥ fk −
f ∥B → 0, while the weak convergence fk * f implies g ( fk ) → g ( f ) for all bounded linear
functionals g : B →R.

Let f : X̃ →R be a measurable function on X̃ = (−1,1). The Lp -norm of f is

∥ f ∥Lp (X̃ ) =
{ (∫

X̃ | f (x)|p) 1
p , 1 ≤ p <∞

ess supX̃ | f (x)|, p =∞.

Then, Lp (X̃ ) denotes the Banach space of all measurable functions f : X̃ → R for which
∥ f ∥Lp (X̃ ) <∞. Let f , g ∈ L1

loc (X̃ ) be locally summable functions (i.e., f , g have a finite in-
tegral over every compact subset of X̃ ). We say that g is the k-th weak (partial) derivative
of f , if ∫

X̃
f ∂k

xφ dx = (−1)k
∫

X̃
g φ dx,

for all test functions φ ∈ C∞
c (X̃ ) (infinitely differentiable functions φ : X̃ → R with com-

pact support in X̃ ). H k (X̃ ) for k ∈ N is used to denote the Sobolev space W k,2(X̃ ) con-
sisting of functions f ∈ L2(X̃ ) whose weak derivatives up to order k exist and belong to
L2(X̃ ). Note that H k (X̃ ) is a Hilbert space. We use the subscript per to denote the closed
subspace of periodic functions in the corresponding function space, e.g.,

Lp
per (X̃ ) = { f ∈ Lp (X̃ ) : f (−1) = f (1)},

H k
per (X̃ ) = { f ∈ H k (X̃ ) : f (−1) = f (1)}.

Similarly, we use the subscript ep to denote the closed subspace of even periodic func-
tions in the corresponding function space, e.g.,

Lp
ep (X̃ ) = { f ∈ Lp

per (X̃ ) : f (−x) = f (x), ∀x ∈ X̃ },

H k
ep (X̃ ) = { f ∈ H k

per (X̃ ) : f (−x) = f (x), ∀x ∈ X̃ }.
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We denote the dual space of H 1
per (X̃ ) by H−1

per (X̃ ), that is, the space of bounded linear

functionals on H 1
per (X̃ ). Moreover, we use 〈·, ·〉 to denote the corresponding paring of

H 1
per (X̃ ) and H−1

per (X̃ ). That is, for f ∈ H 1
per (X̃ ) and g ∈ H−1

per (X̃ ), we use 〈g , f 〉 to denote
the real number g ( f ). Since periodic boundary condition allows for integration by parts
without extra terms, H−1

per (X̃ ) has most of the properties of the space H−1(X̃ ), the dual

space of H−1
0 (X̃ ); see [56, Sec. 5.9.1] for a detailed description of the space H−1(X̃ ). In

particular, one can extend the result in [56, Sec. 5.9, Thm. 3] to derive [55, Thm. 3.8]. For
the reader’s convenience, the corresponding theorem is presented below.

Theorem. [55, Thm. 3.8] Let the function f : X̃ × [0,T ] →R be such that

f ∈ L2(0,T ; H 1
per (X̃ )) and ft ∈ L2(0,T ; H−1

per (X̃ )).

Then, f ∈ C (0,T ;L2
per (X̃ )) after possibly being redefined on a set of measure zero. More-

over, the mapping t 7→ ∥ f (t )∥2
L2(X̃ )

is absolutely continuous, with

d

dt
∥ f (t )∥2

L2(X̃ )
= 2〈 ft , f 〉,

for almost every t ∈ [0,T ].

2.3. MACROSCOPIC MODEL OF OPINION FORMATION
The conventional bounded confidence model describes opinion formation process in
a network of N > 1 agents. All agents have the same confidence range R > 0. Agent i ’s
opinion at time t ≥ 0, denoted by xi (t ) ∈ R, is (directly) influenced only by the opinions
of agents j , such that |x j (t )− x j (t )| ≤ R. One of the simplest continuous-time bounded
confidence models is [29]

ẋi (t ) = 1

N

N∑
j=1

w
(
x j (t )−xi (t )

)
, w(ξ) =

{
ξ, |ξ| ≤ R

0, |ξ| > R.
(2.1)

It can be shown [19] that the opinions obeying the model (2.1) always converge: xi (t ) →
xs

i as t →∞, with w(xs
i − xs

j ) = 0 for all i , j . This corresponds to either consensus (xs
i =

xs
j for all i , j ) of the terminal opinions or their splitting into clusters, comprising one

or several coincident opinions. In the latter situation, the distance between every two
clusters is greater than R.

Dynamics of real opinions (and other physical processes, portrayed by “opinion dy-
namics” models) often do not exhibit convergence to steady values, and the fluctuation
of opinions persists. In order to capture this effect, random uncertainties can be intro-
duced into the model mimicking “free will” and the unpredictability of a human’s deci-
sion [38]. The simplest of these uncertainties is an additive random noise. The model
(2.1) is then replaced by the system of nonlinear stochastic differential equations (SDEs)

dxi (t ) = 1

N

N∑
j=1

w
(
x j (t )−xi (t )

)
dt +σdWi (t ), (2.2)
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where Wi are independent standard Wiener processes and σ> 0 is the noise level.
Since the dynamics of the stochastic system (2.2) becomes quite complicated as the

number of agents grows, the standard approach to examine it is the mean-field (or macro-
scopic) approximation, considering the opinion profile (xi (t ))N

i=1 as a random sampling
drawn from some (time-varying) probability distribution of the opinion. Precisely, it
can be shown [57–59] that empirical distributions N−1 ∑N

i=1δxi (t ) converge (in the weak
sense) as N →∞ to a distribution, whose density ρ(t , x) obeys the FP equation

ρt =
[
ρ (w ⋆ρ)

]
x + σ2

2 ρxx , t ≥ 0, x ∈R. (2.3)

An extension of the bounded confidence dynamics allows the presence of Nr ≥ 1
“radicals” (stubborn agents, zealots) that do not assimilate others’ opinions, however,
influence them directly or indirectly. Typically, the radicals’ opinions are supposed to
be constant (or changing very slowly compared to the opinion formation of “normal”
agents). Indexing the normal individuals 1 through N and the radicals (N +1) through
(N +Nr ), the opinion dynamics becomes

dxi (t ) = 1

N

N+Nr∑
j=1

w
(
x j (t )−xi (t )

)
dt +σdWi (t ), i = 1, . . . , N

ẋi (t ) = 0, i = N +1, . . . , N +Nr .

(2.4)

Often it is supposed that the radicals share a common opinion xi ≡ T for i = N+1, . . . , N+
Nr , which may also be considered as some “truth” perceived by some individuals [34] or,
more generally, an exogenous signal [35]. The ratio M = Nr /N can be treated as the
relative “weight” or “strength” of this external opinion. More generally, one can assume
that the radicals’ opinions are spread over R. Supposing that N , Nr → ∞, the relative
mass of the radicals M remains constant, and their empirical distribution N−1

r
∑Nr

i=1δxN+i

converges (in the weak sense) to a distribution with sufficiently smooth density ρr , the
density of the normal opinions obeys the modified FP equation

ρt =
[
ρ (w ⋆ (ρ+Mρr ))

]
x + σ2

2 ρxx , t ≥ 0, x ∈R. (2.5)

Note that the classical bounded confidence dynamics (2.1), being a special case of
continuous-time consensus protocol, has an important property: the minimal opin-
ion mini xi (t ) and the maximal opinion maxi xi (t ) are, respectively, non-decreasing and
non-increasing. In particular, if the initial opinions are confined to some predefined
interval, e.g., xi (0) ∈ [0,1], then one has xi (t ) ∈ [0,1] for all t ≥ 0. The additive noise
leads to random drift of the opinion profile, thus destroying the latter important prop-
erty. Since in practice bounded ranges of opinions are usually considered, the dynam-
ics (2.2) and (2.4) are usually complemented by boundary conditions [41], preventing
the opinions from escaping from the predefined range.

A typical boundary condition is the periodic condition, where the opinion domain
[0,1] is wrapped on a circle of circumference 1 (formally, replacing a real opinion value
x ∈ R by its fractional part {x} = x − ⌊x⌋ = x mod 1). A disadvantage of the periodic
boundary condition is that there is no distinction between the extreme opinions 0 and
1. We address this issue by considering another type of boundary condition, which we
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𝒙 = 𝟎 𝒙 = 𝟏

𝝆(𝒙, 𝒕)

𝒙

𝑹

𝒙𝟏 𝒙𝟎

Figure 2.1: The even 2-periodic extension of the system. The opinion value x0 ∈ [R,1−R]
effectively experiences a reflective boundary condition, while for the opinion value x1 ∈ [0,R]
there is also a boundary effect due to the even extension. In particular, the influence of more
extreme neighbors of x1 is reinforced by introducing artificial ones (the shaded area in blue).
The same boundary effect exists for opinion values in [1−R,1].

call even 2-periodic. Precisely, a real opinion x ∈R is replaced by f (x), where f is an even
2-periodic function, such that f (x) = x on [0,1] (and hence f (x) = −x for x ∈ [−1,0],
f (x) = 2− x for x ∈ [1,2] and so on). In other words, we first evenly extend the opin-
ion domain [0,1] into the interval [−1,1] and then wrap it on a circle of circumference
2 so that the extreme opinions 0 and 1 correspond to the antipodes of this circle. We
note that with this even 2-periodic extension, the “effective” boundary condition expe-
rienced by the agents is an “almost” reflective one, that is, when an agent leaves the
opinion domain from one end, it is reflected back into the domain from the same end.
This is different from the behavior under simple periodic boundary condition where the
agents leaving the domain from one end, enter the domain from the other end. However,
the introduced boundary condition is almost reflective since the even extension causes
some boundary effects: the influence of more extreme neighbors of opinion values in
the R-neighborhood of extreme opinions 0 and 1 is reinforced. This is due to the even
extension which introduces more extreme “artificial” neighbors; see Fig. 2.1.

As discussed in [44, 54, 55], the FP equation (2.3) under the periodic conditions re-
tains its validity, however, ρ(t , x) is not a probability density on R but a 1-periodic func-
tion ρ(t , x +1) = ρ(t , x) ≥ 0, such that

∫ 1
0 ρ(t , x)dx = 1 (that is, ρ(t , ·) serves as a density

on the interval [0,1]). Similarly, for the even 2-periodic boundary condition, the equa-
tion (2.3) retains its validity when we replace the probability density ρ(t , x) with an even
2-periodic function, that is, ρ(t ,−x) = ρ(t , x) and ρ(t , x + 2) = ρ(t , x). On the interval
[0,1], the function ρ(t , ·) again serves as a probability density:

∫ 1
0 ρ(t , x)dx = 1. We also

assume that the initial density ρ0(x) = ρ(0, x) and the density of radical opinions ρr (x),
defined on [0,1], are extended (in the unique possible way) to even 2-periodic functions.

Without loss of generality, we take X = [0,1] and X̃ = [−1,1] to be the bounded opin-
ion domain and its even extension, respectively. To summarize the discussion above,
the macroscopic model for opinion dynamics is fully described by the following partial
differential equation (PDE) ρt = (ρ Gρ)x + σ2

2 ρxx in X̃ × (0,T )
ρ(·+2, t ) = ρ(·, t ) on ∂X̃ × (0,T )

ρ(x, ·) = ρ0(x) on X̃ × {t = 0},
(2.6)
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where
Gρ(x, t ) := w(x)⋆

(
ρ(x, t )+Mρr (x)

)
. (2.7)

Note that in (2.6), we are considering the dynamics over a finite time horizon T for the
sake of analysis, however, T can be chosen arbitrarily large. We again emphasize that the
initial density ρ0 and the radical density ρr are the unique even 2-periodic extensions of
the corresponding densities from X to X̃ . In essence, we are considering the same dy-
namics as in [55] with the extra requirement for ρ0 (and the newly introduced density ρr )
to be even. Finally, we note that [60] also provides a detailed treatment of these dynamics
(without radicals) for a class of interaction potentials on a torus in higher dimensions.

2.4. MAIN THEORETICAL RESULTS
To recapitulate, we are interested in even 2-periodic solutions of PDE (2.6), where ρ0 and
ρr are even 2-periodic. A natural question arises whether the model is well-posed in the
sense that every (sufficiently smooth) initial condition ρ0 and input ρr correspond to a
unique solution. The affirmative answer is given in the following theorem.

Theorem 2.4.1 (Well-posedness of dynamics). Let the initial density of normal opinions
and the radical opinions density satisfy ρ0 ∈ H 3

ep (X̃ )∩Pe (X̃ ) and ρr ∈ H 2
ep (X̃ )∩Pe (X̃ ),

respectively. Then, PDE (2.6) has a unique, even, strictly positive, classical solution ρ ∈
C 1(0,∞;C 2

ep (X̃ )) such that ρ(t ) ∈Pe (X̃ ) for all t > 0.

This result implies that ρ(t ) := ρ(·, t ) is a (strictly positive) probability density on X =
[0,1] for all t > 0, as required. For the autonomous systems (without radicals), [55, 60]
provide a sufficient condition for exponential convergence of the dynamics towards uni-
form distribution ρ = 1 as an equilibrium of the system. Unlike those studies, the uni-
form distribution is not an equilibrium of the model that we consider. However, it is
possible to extend this stability result to our model including the exogenous input, i.e.,
the radicals. To this end, we first consider the stationary equation corresponding to
PDE (2.6) given by

σ2

2
ρxx + (ρ Gρ)x = 0. (2.8)

We are particularly interested in even stationary solutions ρs ∈ Pe (X̃ ) of (2.8). Our next
result characterizes the stationary state of the system.

Theorem 2.4.2 (Stationary behavior). Let ρr ∈ H 1
ep (X̃ )∩Pe (X̃ ) be the radical density.

• Existence. The stationary equation (2.8) has an even, strictly positive, classical so-
lution ρs ∈C 2

ep (X̃ )∩Pe (X̃ ).

• Estimate. For any η> 0, if σ2 >σ2
b +ηcb , then ∥ρs −1∥L2 ≤ 1

η∥ρr ∥L2 , where

σ2
b := 4R

π

(
M + Rp

3
+2

)
and cb := 4R2M

π
p

3
. (2.9)

Notice how the global estimate in the preceding theorem bounds the difference be-
tween the stationary solution and the uniform distribution. This result shows that, even
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in presence of radical opinions, the stationary solution can be made arbitrarily close to
the uniform distribution by increasing the noise level beyond a minimum level σb . We
note that the minimum noise level σb is directly related to the confidence range R and
the relative mass M of radicals. Also, as the “energy” M∥ρr ∥L2 of the radicals increases,
in order to counteract their effect and keep the stationary profile in a (close to) uniform
state, one must increase the noise level further beyond σb .

With this result in hand, we can now consider the asymptotic stability of stationary
state. The next result provides a sufficient condition for exponential convergence of the
dynamics to stationary state for arbitrary (and sufficiently smooth) initial density ρ0 and
radical density ρr .

Theorem 2.4.3 (Stability). Let ρ0 ∈ H 3
ep (X̃ )∩Pe (X̃ ) be the initial density of normal opin-

ions andρr ∈ H 2
ep (X̃ )∩Pe (X̃ ) be the radical opinions density. Also, letρ ∈C 1(0,∞;C 2

ep (X̃ ))

with ρ(t ) ∈Pe (X̃ ) be the solution to the dynamic equation (2.6). Then, ρ(t ) converges to a
stationary state ρs ∈C 2

ep (X̃ )∩Pe (X̃ ) exponentially in L2 as t →∞ if σ>σs , where σs > 0
uniquely solves

σ2
s =

4R(3+M)

π
+ 4R2

π
p

3
exp

(
8R(1+M)

σ2
s

)
. (2.10)

An immediate result of Theorems 2.4.2 and 2.4.3 is that for sufficiently large noises,
the dynamics will converge to a stationary state that can be made arbitrarily close to
uniform distribution by increasing the noise level.

Corollary 2.4.4 (Input-output stability). For any η > 0, if σ2 > max{σ2
b +ηcb ,σ2

s }, where
σb and cb are defined in (2.9) and σs > 0 uniquely solves (2.10), then it holds that

∥ρ(t )−1∥L2 ≤βe−λt + 1

η
∥ρr ∥L2 , (2.11)

where the constant β > 0 depends on ρ0 and ρr and the convergence rate λ > 0 depends
on σ, R, and M.

Remark 2.4.5 (Connection to existing works). The stability result of Corollary 2.4.4 cor-
responds to the result reported in [55, Thm. 2.3] on the global stability of uniform distri-
bution ρ = 1 for sufficiently large noises in the autonomous system without radicals. In
particular, by setting M = 0 in the estimate given in Theorem 2.4.2, one has cb = 0, hence
ρs = 1 is the unique stationary state of the system for σ2 > σ2

b = 4R
π

(
2+R/

p
3
)
. We note

that σb is the same minimum noise level given in [55, Thm. 2.3], taking into account a
multiplicative factor of two due to the even extension in our model. However, direct ap-
plication of Theorem 2.4.3 for stability of ρs = 1 leads to a sufficient minimum noise level
σs > σb . This is because this result is based on conservative estimates for ρs . Indeed, if
one incorporates the fact that ρs = 1 and modifies some of the arguments provided in the
proof of Theorem 2.4.3 in Section 2.5.3, then one can show that, in the absence of radical
agents, the uniform distribution ρs = 1 is also globally exponentially stable for σ > σb ,
reproducing the result of [55, Thm. 2.3].

Finally, we note that, based on the results provided in [60], the input-output stability
result of Corollary 2.4.4 can be generalized to multi-dimensional first-order stochastic
interacting particle systems for a particular class of interaction potentials.
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In the remainder of this chapter, we provide the technical proofs of the theoretical
results listed above.

2.5. TECHNICAL PROOFS

2.5.1. WELL-POSEDNESS OF DYNAMICS
This section is devoted to the proof of Theorem 2.4.1 concerning the well-posedness of
the dynamics (2.6). Throughout this section, all the norms are with respect to X̃ = [−1,1]
(as opposed to X = [0,1]), unless indicated otherwise. We use C ,C0,C1, . . . to represent a
generic constant (depending on the model parameters) whose actual values may change
from line to line. In the case these constants depend on a particular object of interest,
say θ, this dependence is explicitly indicated by C [θ].

Let us first note that because of periodicity, the mass is preserved in (2.6), that is,∫
X̃
ρ(x, t ) dx =

∫
X̃
ρ0(x) dx = 2,

for all t ≥ 0. In particular, we have

∥ρ(t )∥L1 ≥
∫

X̃
ρ(x, t ) dx = 2 > 0.

We will be using this property in the sequel.
We start by presenting some useful estimates for the object Gρ defined in (2.7) that

make it possible to extend the results provided by [55] to our model.

Lemma 2.5.1 (Estimates for Gρ). Let Gρ be the function defined in (2.7) with ρr ∈Pe (X̃ ).
If ρ(t ) ∈ L1

per (X̃ ), then

∥Gρ∥L∞ ≤ R
(∥ρ(t )∥L1 +2M

)
. (2.12)

If, moreover, ∥ρ(t )∥L1 > 0 , then

∥Gρ∥L∞ ≤C ∥ρ(t )∥L1 ≤C ∥ρ(t )∥L2 . (2.13)

Proof. Notice

|Gρ(x, t )| =
∣∣∣∣∫ (x − y) 1|x−y |≤R

(
ρ(y, t )+Mρr (y)

)
dy

∣∣∣∣
≤

∫
|x − y | 1|x−y |≤R

∣∣ρ(y, t )+Mρr (y)
∣∣ dy

≤ R
∫

X̃

∣∣ρ(y, t )+Mρr (y)
∣∣ dy

≤ R

(∫
X̃
|ρ(y, t )| dy +2M

)
,

from which we can conclude the inequality (2.12). The first inequality in (2.13) then im-
mediately follows from (2.12) and the assumption ∥ρ(t )∥L1 > 0. For the second inequality
in (2.13) notice that since X̃ is of finite measure µ(X̃ ) =µ([−1,1]) = 2, for any measurable
function v we have

∥v∥Lp (X̃ ) ≤µ(X̃ )
1
p − 1

q ∥v∥Lq (X̃ ), (2.14)

where 1 ≤ p ≤ q ≤∞.
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Using estimate (2.13) in Lemma 2.5.1, one can follow similar arguments as in [55,
Lem. 2.1] to show ∥ρ(t )∥L1 = 2 and ρ(t ) ≥ 0 for all t ≥ 0; see also [55, Cor. 2.2]. Specif-
ically, assuming PDE (2.6) has a solution ρ ∈ C 1(0,T ;C 2

per (X̃ )), one can derive a priori
estimate which in turn implies that the solution is non-negative so that ρ(t ) is a proba-
bility distribution on X = [0,1] for all t ≥ 0.

Lemma 2.5.2 (Estimates for ∂k
xGρ). Consider Gρ in (2.7) with ρr ∈Pe (X̃ ).

• For 1 ≤ p ≤∞, if ρ(t ),ρr ∈ Lp
per (X̃ ) with ∥ρ(t )∥L1 > 0, then

∥(Gρ)x∥Lp ≤C1 ∥ρ(t )∥Lp +C2 ∥ρr ∥Lp ≤C [∥ρr ∥Lp ] ∥ρ(t )∥Lp . (2.15)

• For k ≥ 2, if ρ(t ),ρr ∈ H k−1
per (X̃ ) with ∥ρ(t )∥L1 > 0, then

∥∂k
xGρ∥L2 ≤C [∥ρr ∥H k−1 ] ∥ρ(t )∥H k−1 . (2.16)

Proof. We have

(
Gρ(x, t )

)
x =∂x

(∫
(x − y) 1|x−y |≤R

(
ρ(y, t )+Mρr (y)

)
dy

)
=∂x

(∫ x+R

x−R
(x − y)

(
ρ(y, t )+Mρr (y)

)
dy

)
=−R

(
ρ(x +R, t )+ρ(x −R, t )+Mρr (x +R)+Mρr (x −R)

)
+

∫ x+R

x−R

(
ρ(y, t )+Mρr (y, t )

)
dy, (2.17)

which leads to the first inequality in (2.15). Using the fact that ∥ρ(t )∥L2 ≥C ∥ρ(t )∥L1 > 0
(see (2.14)), we have the second inequality in (2.15). Computing the higher-order deriva-
tives with respect to x, we obtain for k ≥ 2

∂k
xGρ =−R

(
∂k−1

x ρ(x +R, t )+∂k−1
x ρ(x −R, t )+M∂k−1

x ρr (x +R, t )+M∂k−1
x ρr (x −R, t )

)
+∂k−2

x ρ(x +R, t )−∂k−2
x ρ(x −R, t )+M∂k−2

x ρr (x +R, t )−M∂k−2
x ρr (x −R, t ).

Hence,

∥∂k
xGρ∥L2 ≤C

(
∥∂k−1

x ρ(t )∥L2 +∥∂k−2
x ρ(t )∥L2 +∥∂k−1

x ρr ∥L2 +∥∂k−2
x ρr ∥L2

)
≤C

(∥ρ(t )∥H k−1 +∥ρr ∥H k−1

)
≤C [∥ρr ∥H k−1 ] ∥ρ(t )∥H k−1 ,

where for the last inequality we used the fact that

∥ρ(t )∥H k−1 ≥ ∥ρ(t )∥L2 ≥C ∥ρ(t )∥L1 > 0.
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Lemma 2.5.3 (More estimates for Gρ). Let ν ∈ H k
per (X̃ ), ρr ∈ H k−1

per (X̃ )∩Pe (X ), and ρ(t ) ∈
H k−1

per (X̃ ) with ∥ρ(t )∥L1 > 0. Then for k ≥ 2

∥νGρ∥H k ≤C [∥ρr ∥H k−1 ] ∥ν∥H k ∥ρ(t )∥H k−1 . (2.18)

Proof. Notice

∥νGρ∥H k ≤C
(
∥νGρ∥L2 +∥∂k

x (νGρ)∥L2

)
. (2.19)

For the first term on the right-hand side of (2.19), we have

∥νGρ∥L2 ≤ ∥ν∥L2 ∥Gρ∥L∞ ≤C ∥ν∥L2 ∥ρ(t )∥L2 ≤C ∥ν∥H k ∥ρ(t )∥H k−1 ,

where for the second inequality we used (2.13). Also, using Leibniz rule, for the second
term on the right-hand side of (2.19), we can write

∥∂k
x (νGρ)∥2

L2 =
∥∥∥∥∥ k∑

i=0
Ci ∂

k−i
x ν ∂i

xGρ

∥∥∥∥∥
2

L2

≤C0 ∥∂k
xν∥2

L2 ∥Gρ∥2
L∞ +

k∑
i=1

Ci ∥∂k−i
x ν∥2

L∞ ∥∂i
xGρ∥2

L2

≤C0 ∥ν∥2
H k ∥ρ∥2

L2 +
k∑

i=1
Ci ∥∂k−i

x ν∥2
H 1 ∥∂i

xGρ∥2
L2 ,

where for the last inequality we used Morrey’s inequality which implies

∥∂k−i
x ν∥L∞ ≤C ∥∂k−i

x ν∥H 1 .

Now, from (2.15) we have for i = 1

∥∂i
xGρ∥2

L2 ≤C [∥ρr ∥L2 ] ∥ρ(t )∥2
L2 ,

and from (2.16) we have for i ≥ 2

∥∂i
xGρ∥2

L2 ≤C [∥ρr ∥H i−1 ] ∥ρ(t )∥2
H i−1 .

Combining these estimates while keeping only the highest Sobolev norms, we have

∥νGρ∥H k ≤C1 ∥ν∥H k ∥ρ(t )∥H k−1 +C2 ∥ν∥H k ∥ρ(t )∥L2 +C3[∥ρr ∥H k−1 ] ∥ν∥H 1 ∥ρ(t )∥H k−1

≤C [∥ρr ∥H k−1 ] ∥ν∥H k ∥ρ(t )∥H k−1 .

Remark 2.5.4 (Connection to existing works). The result of Lemma 2.5.3 is an extension
of [55, Prop. 4.1].

With these estimates in hand, we can follow the same arguments as in [55] to show
the well-posedness of the dynamics described by PDE (2.6).
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Sketch of proof of Theorem 2.4.1. Consider the following sequence of PDEs ∂tρn = ∂x (ρn Gρn−1 )+ σ2

2 ∂xxρn in X̃ × (0,T )
ρn(·+2, t ) = ρn(·, t ) on ∂X̃ × (0,T )

ρn(x, ·) = ρ0(x) on X̃ × {t = 0},
(2.20)

with smooth initial and radical distributions ρ0,ρr ∈ C∞
per (X̃ )∩Pe (X̃ ) for now. By stan-

dard results on linear parabolic PDEs [56, Ch. 7], there exists a sequence {ρn : n ≥ 0} in
C∞(0,T ;C∞

per (X̃ )) that satisfies (2.20). Furthermore, using estimate (2.13), one can follow
the same procedure provided in [55, Prop. 3.1] to show that ∥ρn(t )∥L1 = ∥ρn(0)∥L1 = 2,
and hence, ρn(t ) ≥ 0 for all n ≥ 1 and t ≥ 0; see also [55, Cor. 3.2].

Remark 2.5.5 (Evenness of ρn). One can use the evenness of ρ0 and ρr to show that the
unique solutions ρn to PDEs (2.20) are also even in x for all t ≥ 0. However, since this
property will not be used for the existence, uniqueness, and regularity results provided
below, we will postpone this argument to later when we deal with the evenness of the
unique solution to PDE (2.6).

Existence with smooth data. Using Lemmas 2.5.1 and 2.5.2 and following a similar
idea as in [55, Lemm. 3.5 and 3.7], we can obtain the following convergence results

ρn → ρ̄ in L1(0,T ;L1
per (X̃ )), (2.21a)

ρnk * ρ̄ in L2(0,T ; H 1
per (X̃ )), (2.21b)

∂tρnk * ρ̄t in L2(0,T ; H−1
per (X̃ )), (2.21c)

for a limiting object ρ̄, where nk denotes a subsequence. Moreover, we have the follow-
ing estimate for {ρn : n ≥ 1} and ρ̄

∥ρ∥L∞(0,T ;L2) +∥ρ∥L2(0,T ;H 1) +∥ρt∥L2(0,T ;H−1) ≤C [T ] ∥ρ0∥L2 . (2.22)

We claim that ρ̄ is the unique weak solution to (2.6). That is, ρ̄ solves the weak formula-
tion of (2.6) defined as∫ T

0
〈η,ρt 〉 dt +

∫ T

0

∫
X̃

(
σ2

2
ρx +ρ Gρ

)
ηx dxdt = 0, (2.23)

for any η ∈ L2(0,T ; H 1
per (X̃ )). To show this, we multiply (2.20) by η with n = nk and inte-

grate to obtain∫ T

0
〈η,∂tρnk 〉 dt + σ2

2

∫ T

0

∫
X̃
∂xρnk ηx dxdt +

∫ T

0

∫
X̃
ρnk Gρnk−1 ηx dxdt = 0. (2.24)

For the first two terms in (2.24), using convergence results (2.21c) and (2.21b), we have∫ T

0
〈η,∂tρnk 〉 dt →

∫ T

0
〈η, ρ̄t 〉 dt ,

and ∫ T

0

∫
X̃
∂xρnk ηx dxdt →

∫ T

0

∫
X̃
ρ̄xηx dxdt ,
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as k →∞. Also, the last term in (2.24) can be written as∫ T

0

∫
X̃

(ρnk − ρ̄) Gρnk−1 ηx dxdt (2.25a)

+
∫ T

0

∫
X̃
ρ̄ (w ⋆ (ρnk−1 − ρ̄)) ηx dxdt (2.25b)

+
∫ T

0

∫
X̃
ρ̄ Gρ̄ ηx dxdt ,

where the limits of (2.25a) and (2.25b) are zero as k → ∞. Indeed, in (2.25a), Gρnk−1 is

bounded by the inequality (2.12) in Lemma 2.5.1, hence, ηxGρnk−1 ∈ L2(0,T ;L2
per (X̃ )),

while (2.21b) implies ρnk * ρ̄ in L2(0,T ;L2
per (X̃ )). Moreover, for (2.25a), we have

∫ T

0

∫
X̃
ρ̄ (w ⋆ (ρnk−1 − ρ̄)) ηx dxdt

≤ ∥ρ̄∥L∞(0,T ;L2) ∥ηx∥L2(0,T ;L2) ∥w ⋆ (ρnk−1 − ρ̄)∥L2(0,T ;L2)

≤C [T ] ∥ρ0∥L2 ∥η∥L2(0,T ;H 1)

(∫ T

0
∥ρnk−1 − ρ̄∥2

L1 dt

) 1
2

,

where for the second inequality we used (2.22) and the fact that

|w ⋆ (ρnk−1 − ρ̄)| ≤C ∥ρnk−1 − ρ̄∥L1 ,

by Lemma 2.7 (set M = 0 in (2.12)). Now, notice

∥ρnk−1 − ρ̄∥L1(X̃ ) ≤ ∥ρnk−1∥L1(X̃ ) +∥ρ̄∥L1(X̃ ) ≤ 4.

Hence,∫ T

0
∥ρnk−1 − ρ̄∥2

L1 dt ≤ 4
∫ T

0
∥ρnk−1 − ρ̄∥L1 dt = 4 ∥ρnk−1 − ρ̄∥L1(0,T ;L1) → 0,

as k → ∞ by the strong convergence (2.21a). Putting all these results together, we see
that ρ̄ indeed satisfies the weak formulation (2.23).

To complete the existence result, we have to show ρ̄(x,0) = ρ0(x). This condition
makes sense since ρ̄ ∈ C (0,T ;L2

per (X̃ )) by [55, Thm. 3.8] and the convergence results

(2.21b) and (2.21c). Pick some η ∈ C 1(0,T ; H 1
per (X̃ )) with η(T ) = 0 and rewrite the weak

formulation (2.23) as

−
∫ T

0
〈ρ̄,ηt 〉 dt +

∫ T

0

∫
X̃

(
σ2

2
ρ̄x + ρ̄ Gρ̄

)
ηx dxdt =

∫
X̃
ρ̄(x,0) η(x,0) dx. (2.26)

Similarly, since ρnk (x,0) = ρ0(x), we have

−
∫ T

0
〈ρnk ,ηt 〉 dt +

∫ T

0

∫
X̃

(
σ2

2
∂xρnk +ρnk Gρnk

)
ηx dxdt =

∫
X̃
ρ0(x) η(x,0) dx. (2.27)
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Let k →∞ in (2.27), so for arbitrary η(x,0) we obtain from (2.27) and (2.26) that∫
X̃
ρ̄(x,0) η(x,0) dx =

∫
X̃
ρ0(x) η(x,0) dx,

which implies ρ̄(x,0) = ρ0(x).
Relaxed regularity on data. In order to relax regularity assumption on data to ρ0,ρr ∈

L2
per (X̃ )∩Pe (X̃ ), we can use the mollified version of the distributions, i.e., ρϵ0 = φϵ⋆ρ0

and ρϵr =φϵ⋆ρr with the standard positive mollifier φϵ, follow the same procedure and
take the limit ϵ→ 0 at the end. See also [55, Thm. 3.12] for the details of this process.

Uniquness. Let ξ = ρ̄1 − ρ̄2 where ρ̄1 and ρ̄2 are two weak solutions to (2.6) with
ρ0,ρr ∈ L2

per (X̃ )∩Pe (X̃ ). Then, for every η ∈ L2(0,T ; H 1
per (X̃ )) we have∫ T

0
〈η,ξt 〉 dt + σ2

2

∫ T

0

∫
X̃
ξx ηx dxdt +

∫ T

0

∫
X̃

(ρ̄1 Gρ̄1 − ρ̄2 Gρ̄2 ) ηx dxdt = 0.

We can rewrite the last integrand as

ρ̄1 Gρ̄1 − ρ̄2 Gρ̄2 = ρ̄1(w ⋆ (ρ̄1 +Mρr ))− ρ̄2(w ⋆ (ρ̄2 +Mρr ))

= (ρ̄1 − ρ̄2)(w ⋆ (ρ̄1 +Mρr ))+ ρ̄2(w ⋆ (ρ̄1 − ρ̄2))

= ξGρ̄1 + ρ̄2 (w ⋆ξ),

to obtain∫ T

0
〈η,ξt 〉 dt + σ2

2

∫ T

0

∫
X̃
ξx ηx dxdt =

−
∫ T

0

∫
X̃
ξGρ̄1 ηx dxdt −

∫ T

0

∫
X̃
ρ̄2 (w ⋆ξ) ηx dxdt . (2.28)

Now, for the first integral on the right-hand side of (2.28), we have∣∣∣∣∫ T

0

∫
X̃
ξGρ̄1 ηx dxdt

∣∣∣∣≤ 2R(1+M) ∥ξ∥L2(0,T ;L2) ∥ηx∥L2(0,T ;L2)

≤ σ2

4
∥ηx∥2

L2(0,T ;L2) +C1 ∥ξ∥2
L2(0,T ;L2), (2.29)

where for the first inequality we used (2.12) in Lemma 2.5.1 and Cauchy-Schwarz in-
equality, and for the second inequality we used Young’s inequality. Similarly, for the sec-
ond integral on the right-hand side of (2.28), we have∣∣∣∣∫ T

0

∫
X̃
ρ̄2 (w ⋆ξ) ηx dxdt

∣∣∣∣≤ ∥ρ̄2∥L∞(0,T ;L2) ∥ηx∥L2(0,T ;L2) ∥w ⋆ξ∥L2(0,T ;L2)

≤C2[T ] ∥ρ0∥L2 ∥ηx∥L2(0,T ;L2) ∥ξ∥L2(0,T ;L2)

≤ σ2

4
∥ηx∥2

L2(0,T ;L2) +C2[T ] ∥ρ0∥2
L2 ∥ξ∥2

L2(0,T ;L2), (2.30)

where for the second inequality we used (2.22) and Lemma 2.5.1 (see (2.13) and (2.14)).
Using (2.29) and (2.30) for (2.28) and setting η= ξ, we obtain∫ T

0
〈ξ,ξt 〉 dt ≤ (

C1 +C2[T ] ∥ρ0∥2
L2

) ∥ξ∥2
L2(0,T ;L2).
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By [55, Thm. 3.8], we know

〈ξ,ξt 〉 = 1

2

d

dt
∥ξ(t )∥2

L2 .

Thus, for all T , we have

1

2

∫ T

0

d

dt
∥ξ(t )∥2

L2 dt ≤ (
C1 +C2[T ] ∥ρ0∥2

L2

) ∫ T

0
∥ξ(t )∥2

L2 dt .

This implies, for a.e. t ∈ [0,T ]

d

dt
∥ξ(t )∥2

L2 ≤C [T,ρ0] ∥ξ(t )∥2
L2 .

Hence, by Grönwall’s inequality,

∥ξ(t )∥2
L2 ≤C [T,ρ0] ∥ξ(0)∥2

L2 .

This implies ∥ξ(t )∥L2 = ∥ρ̄1(t )− ρ̄2(t )∥L2 = 0 since ξ(0) = ρ0−ρ0 = 0. Then, from continu-
ity of ρ̄1 and ρ̄2 in time (by [55, Thm. 3.8]), we obtain uniqueness. That is, ρ̄1 = ρ̄2 for all
t ∈ [0,T ].

Regularity. Here, we first mollify the problem data ρ0 and ρr with the standard posi-
tive mollifier φϵ so that the solutions {ρn : n ≥ 0} to (2.20) are all smooth. This allows us
to take derivatives of (2.20) to any order. We then take the limit ϵ→∞ at the end. For
simplicity, we omit the arguments for this last step and drop the subscript ϵ.

Employing Lemma 2.5.3, we can extend the improved regularity results in space in [55,
Thm. 4.2]. That is, for ρ0 ∈ H k

per (X̃ )∩Pe (X̃ ) and ρr ∈ H k−1
per (X̃ )∩Pe (X̃ ), we have

ρ̄ ∈ L2(0,T ; H k+1
per (X̃ ))∩L∞(0,T ; H k

per (X̃ )). (2.31)

Moreover, since ρr is constant in time, we can also employ the results on improved reg-
ularity in time provided by [55, Thm. 4.3] for our model. This means, for ρ0 ∈ H 2k

per (X̃ )∩
Pe (X̃ ) and ρr ∈ L2

per (X̃ )∩Pe (X̃ ), we have for i ≤ k

∂i
t ρ̄ ∈ L2(0,T ; H 2k−2i+1

per (X̃ ))∩L∞(0,T ; H 2k−2i
per (X̃ )), (2.32)

and
∂k+1

t ρ̄ ∈ L2(0,T ; H−1
per (X̃ )). (2.33)

With these regularity results in space and time, we can derive the required regularity
on the solution as stated in Theorem 2.4.1. Let ρ0 ∈ H 3

per (X̃ )∩Pe (X̃ ) and also let ρr ∈
H 2

per (X̃ )∩Pe (X̃ ) and ρ̄ be the unique weak solution to PDE (2.6). Then, by (2.31), we

have ρ̄ ∈ L∞(0,T ; H 3
per (X̃ )). Hence, by Sobolev embedding theorem [61, Sec. 4.12], we

have ρ̄(t ) ∈C 2
per (X̃ ) (after possibly being redefined on a set of measure zero). This gives

the required regularity in space. Also, (2.32) and (2.33) imply that ρ̄t ∈ L2(0,T ; H 1
per (X̃ ))

and ρ̄t t ∈ L2(0,T ; H−1
per (X̃ )). Hence, by [55, Thm. 3.8], we have ρ̄t ∈C (0,T ;L2

per (X̃ )) (after
possibly being redefined on a set of measure zero). This gives the required regularity in
time. Putting these results together, we have ρ̄ ∈C 1(0,T ;C 2

per (X̃ )).
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Evenness. The evenness imposed on ρ0 and ρr implies that if ρ(x, t ) is a solution
of (2.6), then ρ(−x, t ) is also a solution. Indeed, from (2.6) we obtain

∂tρ(−x, t )− σ2

2
∂2

xρ(−x, t ) = ∂x

(
ρ(−x, t )

∫
w(−x − y) (ρ(y, t )+Mρr (y)) dy

)
= ∂x

(
ρ(−x, t )

∫
w(−x + y) (ρ(−y, t )+Mρr (−y)) (−dy)

)
= ∂x

(
ρ(−x, t )

∫
−w(−x + y) (ρ(−y, t )+Mρr (y)) dy

)
= ∂x

(
ρ(−x, t )

∫
w(x − y) (ρ(−y, t )+Mρr (y)) dy

)
,

where for that last equality we used the fact that w is an odd function. Then, assum-
ing ρ0 ∈ H 3

ep (X̃ )∩Pe (X̃ ) and ρr ∈ H 2
ep (X̃ )∩Pe (X̃ ) (notice that H k

ep (X̃ ) ⊂ H k
per (X̃ )), the

uniqueness of the solution ρ̄ ∈ C 1(0,T ;C 2
per (X̃ )) to PDE (2.6) implies that the solution is

even, that is, ρ̄ ∈C 1(0,T ;C 2
ep (X̃ )).

Positivity. Using the same approach as in [60], we consider the following version
of (2.6) in the unknown function ρ, with ρ̄ being the non-negative weak solution

ρt = (ρ Gρ̄)x + σ2

2
ρxx .

This is a linear parabolic PDE with smooth and bounded coefficients (by Lemmas 2.5.1
and 2.5.2) for which ρ̄ is a classic non-negative solution. Thus, by the parabolic Harnack
inequality [56, Sec. 7.1.4, Thm. 10], we have

sup
x∈X̃

ρ̄(x, t1) ≤ c inf
x∈X̃

ρ̄(x, t2),

for 0 < t1 < t2 <∞ and some positive constant c. Non-negativity of ρ̄(x, t ) implies that
infx∈X̃ ρ̄(x, t ) and hence ρ̄(x, t ) is strictly positive for all t > 0.

2.5.2. STATIONARY SOLUTION

EXISTENCE OF STATIONARY SOLUTION

This section mainly concerns the proof of existence result in Theorem 2.4.2 for station-
ary equation (2.8). All the norms in this section are with respect to X = [0,1] (as opposed
to X̃ = [−1,1]), unless indicated otherwise. We note that norms on the even 2-periodic
spaces computed with respect to to X and X̃ differ by a multiplicative constant, e.g.,

∥u∥Lp (X̃ ) = 2
1
p ∥u∥Lp (X ). We again use C ,C0,C1, . . . to represent a generic constant (de-

pending on the model parameters) whose actual values may change from line to line. In
the case these constants depend on a particular object of interest, say θ, this dependence
is explicitly indicated by C [θ].

Let us begin with providing a fixed point characterization of the solution to stationary
equation (2.8). We note that, corresponding to the solution to dynamic equation (2.6),
we are particularly interested in even solutions ρs ∈Pe (X̃ ) of stationary equation (2.8).
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Lemma 2.5.6 (Fixed point characterization). ρs ∈ C 2
ep (X̃ )∩Pe (X̃ ) is a solution of sta-

tionary equation (2.8) if and only if ρs is a fixed point of the operator T : Pe (X̃ ) →Pe (X̃ )
defined by

T ρ := 1

K
exp

(
− 2

σ2

∫ x

0
Gρ(z) dz

)
, (2.34)

where the constant K is determined by the normalizing condition

K =
∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ(z) dz

)
dx.

Proof. The “if” part is clear since any fixed point ρs ∈C 2
ep (X̃ ) of T satisfies the stationary

equation (2.8). For the “only if” part, note that integrating (2.8) once, we have

σ2

2
ρx +ρ Gρ =C . (2.35)

Now notice that we can set C = 0 since we are interested in even solutions to (2.35). In-
deed, from (2.35) we have

σ2

2
ρx (−x)+ρ(−x)[w(−x)⋆ (ρ(−x)+Mρr (−x))] =C .

Hence, for an even solution, we obtain

−σ
2

2
ρx (x)−ρ(x)[w(x)⋆ (ρ(x)+Mρr (x))] =C ,

where we used the fact that w is an odd function. This implies C = 0. Rearranging and
integrating (2.35) once again, we have

ρ(x) = 1

K
exp

(
− 2

σ2

∫ x

0
Gρ(z) dz

)
, (2.36)

where the normalizing condition gives the constant K as

K =
∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ(z) dz

)
dx.

This completes the proof.

This characterization allows us to use tools from operator theory. To be precise, we
will use Schauder fixed point theorem to derive the existence result for the stationary
solution. Before that, we present some preliminary results for the operator T .

Lemma 2.5.7 (Estimates for T ). Let T be the operator on Pe (X̃ ) defined by (2.34).

• If ρ,ρr ∈Pe (X̃ ), then

∥T ρ∥L∞ ≤ exp

(
8R(1+M)

σ2

)
, (2.37)

and

∥∂xT ρ∥L∞ ≤ 4R(1+M)

σ2 exp

(
8R(1+M)

σ2

)
. (2.38)
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• If ρ,ρr ∈ L2
ep (X̃ )∩Pe (X̃ ), then

∥T ρ∥H 2 ≤C [∥ρr ∥L2 ] ∥ρ∥L2 . (2.39)

• If ρ,ρr ∈ H k−2
ep (X̃ )∩Pe (X̃ ), then for k ≥ 3

∥T ρ∥H k ≤
k−1∑
i=1

Ci [∥ρr ∥H k−2 ] ∥ρ∥i
H k−2 . (2.40)

Proof. From the definition (2.34) and the inequality (2.12) in Lemma 2.5.1 we obtain

|T ρ| =
exp

{
− 2
σ2

∫ x
0 Gρ(z) dz

}
∫ 1

0 exp
{
− 2
σ2

∫ x
0 Gρ(z) dz

}
dx

≤
exp

{
4R(1+M)

σ2

}
exp

{
− 4R(1+M)

σ2

} = exp

{
8R(1+M)

σ2

}
,

which gives estimate (2.37).
Now, observe

∥∂xT ρ∥L∞ =
∥∥∥∥− 2

σ2 Gρ T ρ

∥∥∥∥
L∞

≤ 2

σ2 ∥Gρ∥L∞ ∥T ρ∥L∞ .

Using (2.12) in Lemma 2.5.1 and (2.37), we obtain the inequality (2.38).
For the inequality (2.39), first, notice

∥T ρ∥H 2 ≤C
(∥T ρ∥L2 +∥∂2

xT ρ∥L2

)≤C1 +C2 ∥∂2
xT ρ∥L2 , (2.41)

where for the second inequality we used the fact that ∥T ρ∥L2 ≤ C ∥T ρ∥L∞ is bounded
by (2.37). Also, we have

∥∂2
xT ρ∥L2 =

∥∥∥− 2

σ2

(
T ρ ∂xGρ +Gρ ∂xT ρ

)∥∥∥
L2

≤C
(∥T ρ∥L∞ ∥∂xGρ∥L2 +∥Gρ∥L∞ ∥∂xT ρ∥L2

)
≤C [∥ρr ∥L2 ] ∥ρ∥L2 +C2

≤C [∥ρr ∥L2 ] ∥ρ∥L2 ,

where for the second inequality we used (2.15) in Lemma 2.5.2 and the last inequality
follows from the fact that ∥ρ∥L2 ≥ ∥ρ∥L1 > 0 (see (2.14)). Inserting this result in (2.41), we
obtain the inequality (2.39).

Similarly, for k ≥ 3, we have (see (2.41))

∥T ρ∥H k ≤C1 +C2 ∥∂k
xT ρ∥L2 . (2.42)

Now, notice

∥∂k
xT ρ∥L2 = ∥∂k−1

x ∂xT ρ∥L2 =
∥∥∥∂k−1

x

(
− 2

σ2 Gρ T ρ

)∥∥∥
L2

= 2

σ2 ∥∂k−1
x

(
T ρ Gρ

)∥L2

≤C ∥T ρ Gρ∥H k−1 ≤C [∥ρr ∥H k−2 ] ∥ρ∥H k−2 ∥T ρ∥H k−1 ,
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where for the last inequality we used Lemma 2.5.3. Combining this result with (2.42), we
derive a recursive inequality. Performing the recursive computations while keeping the
highest Sobolev norms, we obtain

∥T ρ∥H k ≤C0 +
k−1∑
i=1

Ci [∥ρr ∥H k−2 ] ∥ρ∥i
H k−2 .

Then, since ∥ρ∥i
H k−2 ≥ ∥ρ∥L2 ≥C ∥ρ∥L1 > 0, we can remove the constant C0 and consider

its effect in constants Ci . This gives the desired inequality (2.40).

Proposition 2.5.8 (Lipschitz continuity of T ). Let T be the operator on Pe (X̃ ) defined
by (2.34) with ρr ∈ Pe (X̃ ). Then, T is Lipschitz continuous in Lp for 1 ≤ p < ∞ with
Lipschitz constant

LT = 1

2
exp

{(
8R(1+M)

σ2

)(
1− 1

p

)} (
exp

{
16R

σ2

}
−1

)
. (2.43)

Proof. We use a similar argument to the one provided by [53]. Let ρ1,ρ2 ∈Pe (X̃ ). Using
estimate (2.37) in Lemma 2.5.7, we have for 1 ≤ p <∞

∥T ρ2 −T ρ1∥Lp =
∥∥∥T ρ1

(
T ρ2

T ρ1
−1

)∥∥∥
Lp

≤ ∥T ρ1∥Lp

∥∥∥T ρ2

T ρ1
−1

∥∥∥
L∞

≤ ∥T ρ1∥
1− 1

p

L∞
∥∥∥K1

K2
exp

{
− 2

σ2

∫ x

0
w ⋆ (ρ2 −ρ1) dz

}
−1

∥∥∥
L∞ , (2.44)

where for the last inequality we used ∥T ρ∥L1(X ) = 1. Now, define

Γ(ρ1 −ρ2) := 2

σ2

∫ x

0
w ⋆ (ρ1 −ρ2) dz,

and observe ∣∣Γ(ρ2 −ρ1)
∣∣= 2

σ2

∣∣∣∣∫ x

0

∫
(z − y) 1|z−y |≤R (ρ2(y)−ρ1(y)) dydz

∣∣∣∣
≤ 2

σ2

∫ x

0

∫
|(z − y)| 1|z−y |≤R |ρ2(y)−ρ1(y)| dydz

≤ 2R

σ2

∫ x

0

∫
X̃
|ρ2(y)−ρ1(y)| dydz ≤ 4R

σ2 ∥ρ2 −ρ1∥L1 . (2.45)

Similarly, we can write the normalizing constant K1 as

K1 =
∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ1 dz

)
dx =

∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ2 dz

)
exp

{−Γ(ρ1 −ρ2)
}

dx.

From (2.45), it follows

K1 ≤
∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ2 dz

)
exp

(
4R

σ2 ∥ρ2 −ρ1∥L1

)
dx = K2 exp

(
4R

σ2 ∥ρ2 −ρ1∥L1

)
,
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and

K1 ≥
∫ 1

0
exp

(
− 2

σ2

∫ x

0
Gρ2 dz

)
exp

(
−4R

σ2 ∥ρ2 −ρ1∥L1

)
dx = K2 exp

(
−4R

σ2 ∥ρ2 −ρ1∥L1

)
.

Hence,

exp

(
−4R

σ2 ∥ρ2 −ρ1∥L1

)
≤ K1

K2
≤ exp

(
4R

σ2 ∥ρ2 −ρ1∥L1

)
. (2.46)

Using (2.45) and (2.46), we can rewrite (2.44) as

∥T ρ2 −T ρ1∥Lp ≤

∥T ρ1∥
1− 1

p

L∞ max

{
exp

(
8R

σ2 ∥ρ2 −ρ1∥L1

)
−1, 1−exp

(
−8R

σ2 ∥ρ2 −ρ1∥L1

)}
.

Hence,

∥T ρ2 −T ρ1∥Lp ≤ ∥T ρ1∥
1− 1

p

L∞

(
exp

(
8R

σ2 ∥ρ2 −ρ1∥L1

)
−1

)
. (2.47)

Now, notice that
∥ρ2 −ρ1∥L1 ≤ ∥ρ2∥L1 +∥ρ1∥L1 = 2,

(recall that norms are defined over X ) and for a > 0

eax −1 ≤ 1

2
(e2a −1)x, ∀x ∈ [0,2].

Thus, we have

exp

(
8R

σ2 ∥ρ2 −ρ1∥L1

)
−1 ≤ 1

2

(
e

16R
σ2 −1

)
∥ρ2 −ρ1∥L1 . (2.48)

Combining (2.47) and (2.48), we obtain

∥T ρ2 −T ρ1∥Lp ≤ 1

2
∥T ρ1∥

1− 1
p

L∞
(
e

16R
σ2 −1

)
∥ρ2 −ρ1∥L1 .

Finally, using (2.37) in Lemma 2.5.7 and the inequality (2.14) which relates norms over
domains of finite measure, we have

∥T ρ2 −T ρ1∥Lp ≤ LT ∥ρ2 −ρ1∥Lp ,

where the constant LT is given by (2.43).

With these preliminary results in hand, we next move on to the proof of existence
result in Theorem 2.4.2.

Proof of Theorem 2.4.2 (Existence). Following a similar argument as in [60, Thm. 2.3] and
using Lemma 2.5.6, we can present the existence result for the stationary solution as the
fixed point of the operator T . First note that using estimate (2.37) in Lemma 2.5.7, we
have ∥T ρ∥L2 ≤ C ∥T ρ∥L∞ ≤ c for some positive constant c. Thus, for the purpose of
finding the fixed points of T , we can restrict T to act on the closed and convex set E :=
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{
ρ ∈ L2

ep (X̃ )∩Pe (X̃ ) : ∥ρ∥L2 ≤ c
}

. Now, notice that using inequalities (2.37) and (2.38) in

Lemma 2.5.7, we have for any ρ ∈ E

∥T ρ∥2
H 1 ≤ ∥T ρ∥2

L2 +∥∂xT ρ∥2
L2 ≤C1∥T ρ∥2

L∞ +C2∥∂xT ρ∥2
L∞ ≤ c ′, (2.49)

for some constant c ′ > 0. That is, T (E) ⊂ E is uniformly bounded in H 1
ep (X̃ ). Thus, by the

Rellich-Kondrachov compactness theorem [56, Sec. 5.7, Thm. 1], T (E) is precompact in
L2

ep (X̃ ). Since E ⊂ L2
ep (X̃ ) is closed, this implies T (E) is also precompact in E . Also, T is

Lipschitz continuous by Proposition 2.5.8. Hence, by Schauder fixed point theorem [56,
Sec. 9.2.2, Thm. 3], it has a fixed point ρs ∈ E which belongs to H 1

ep (X̃ ) by (2.49).

Regularity. Estimate (2.40) in Lemma (2.5.7) implies that if ρr ∈ H k−2
ep (X̃ ), then the

fixed point ρs = T ρs ∈ H k
ep (X̃ ). In particular, if ρr ∈ H 1

ep (X̃ ), then ρs ∈ H 3
ep (X̃ ). Hence,

by Sobolev embedding theorem [61, Sec. 4.12], ρ ∈C 2
ep (X̃ ) (after possibly being redefined

on a set of measure zero).
Positivity. The positivity of the fixed point follows from the representation (2.34).

Remark 2.5.9 (Uniqueness). By Proposition 2.5.8, T is Lipschitz continuous in Lp with
Lipschitz constant LT given by (2.43), and thus, is a contraction for LT < 1. Hence, by Ba-
nach fixed-point theorem [56, Sec. 9.2.1, Thm. 1], T has a unique fixed point for LT < 1.
Setting p = 1 in (2.43) gives the sufficient condition σ2 > 16R

ln3 for uniqueness of stationary
solution. This result corresponds to the sufficient condition provided in [53, Thm. 2].

We finish this section with a remark on the shape of the stationary opinion clus-
ters for a highly concentrated radical opinion distribution, by providing an approximate
solution to the stationary equation (2.8). To this end, we assume radicals are highly
concentrated around a particular opinion value x = A. To be precise, we assume that
the average opinion of radicals is A = ∫

X x ρr (x) dx and the variance of radicals σ2
r =∫

X (x − A)2 ρr (x) dx is much smaller than the confidence range R. It helps to think of the
limit being a point mass of radicals located at opinion value x = A. We further assume
that the noise level σ is also much smaller than R so that the inter-cluster influences
(from other possible clusters) can be ignored. Using these assumptions, we can expect
this particular cluster of normal agents to be concentrated around A. This implies that
to evaluate the integral in (2.36), we only need to consider values of y near A. Under
these assumptions, for R < A < L−R, we can write∫ x

0
w ⋆ (ρ+Mρr ) dz =

∫ x

0

∫
(z − y) 1|y−z|≤R (ρ(y)+Mρr (y)) dydz

≈
∫ x

0

∫ A+R

A−R
(z − A) 1|z−A|≤R (ρ(y)+Mρr (y)) dydz.

We can now handle the two integrations separately and obtain∫ x

0
w ⋆ (ρ+Mρr ) dz =

∫ x

0
(z − A)1|z−A|≤R dz

∫ A+R

A−R
(ρ(y)+Mρr (y)) dy

= 1

2

(
(x − A)2 −R2)1|x−A|≤R

∫ A+R

A−R
(ρ(y)+Mρr (y)) dy

≈ M +1

2

(
(x − A)2 −R2) 1|x−A|≤R .
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Inserting this result in (2.36), we have

ρs (x) = 1

K
exp

{
−M +1

σ2

(
(x − A)2 −R2) 1|x−A|≤R

}
,

which can also be expressed as (by modifying the normalizing constant K )

ρs (x) = 1

K
exp

{
−M +1

σ2 min
{
(x − A)2, R2}} . (2.50)

This result is an extension of the approximate solution provided by [44, Sec. 5.2]. In par-
ticular, one can reproduce the same result by setting M = 0 and A = 0. Equation (2.50)
shows that for highly concentrated radicals the possible accumulation of normals around
the average radical opinion A in the stationary state is semi-Gaussian with variance

σ2

2(M+1) . Note that, as argued in [44], other clusters centered at opinion values other than
x = A may also exist. As long as these clusters are well-separated so that inter-cluster in-
fluences can be ignored, one can use the same approximation to derive a semi-Gaussian
profile for the shape of these clusters (set M = 0 and A = x0 in (2.50) where x0 denotes the
center of the corresponding cluster). This analysis shows that M affects the shape of the
possible cluster formed at the average radical opinion A in the stationary state. We will
examine the provided approximate solution in our numerical simulations in Chapter 3.

GLOBAL ESTIMATE FOR STATIONARY SOLUTION

This section is devoted to the proof of the estimate given in Theorem 2.4.2. In this sec-
tion, all the norms are with respect to the domain X̃ = [−1,1], unless indicated otherwise.

Proof of Theorem 2.4.2 (Estimate). Let ψ = ρs − 1 so that
∫

X ψ(x) dx = 0. From the sta-
tionary equation (2.8) we obtain

−σ
2

2
ψxx = [

(ψ+1) Gψ+1
]

x = [
(ψ+1) (w ⋆1+Gψ)

]
x = [

(ψ+1) Gψ

]
x = [

ψGψ

]
x + [Gψ]x ,

where we used the fact that w ⋆ 1 = 0. Next, we multiply this last equation by ψ and
integrate by part over X̃ to derive

σ2

2
∥ψx∥2

L2 =−
∫

X̃
ψx ψGψ dx −

∫
X̃
ψx Gψ dx.

The extra terms are zero due to periodicity. Thus,

σ2

2
∥ψx∥2

L2 ≤
∣∣∣∣∫

X̃
ψx ψGψ dx

∣∣∣∣+ ∣∣∣∣∫
X̃
ψx Gψ dx

∣∣∣∣
≤ ∥Gψ∥L∞ ∥ψx∥L2 ∥ψ∥L2 +∥ψx∥L2 ∥Gψ∥L2 . (2.51)

Now, using the inequality (2.12) in Lemma 2.5.1, we obtain

∥Gψ∥L∞ ≤ 2R
(∥ψ∥L1(X ) +M

)= 2R
(∥ρ−1∥L1(X ) +M

)
≤ 2R

(∥ρ∥L1(X ) +1+M
)≤ 2R(M +2). (2.52)
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Also, we have

|Gψ(x)|2 =
(∫

w(x − y) (ψ(y)+Mρr (y)) dy

)2

=
(∫ x+R

x−R
(x − y) (ψ(y)+Mρr (y)) dy

)2

≤
∫ x+R

x−R
(x − y)2 dy

∫ x+R

x−R
(ψ(y)+Mρr (y))2 dy

≤ 2

3
R3

∫ x+R

x−R
(ψ(y)+Mρr (y))2 dy. (2.53)

Hence,

∥Gψ∥2
L2 ≤

2

3
R3

∫
X̃

∫ x+R

x−R
(ψ(y)+Mρr (y))2 dydx

= 2

3
R3

∫
X̃

∫ R

−R
(ψ(x + y)+Mρr (x + y))2 dydx

= 2

3
R3

∫ R

−R

∫
X̃

(ψ(x + y)+Mρr (x + y))2 dxdy

= 4

3
R4∥ψ+Mρr ∥2

L2 . (2.54)

Using estimates (2.52) and (2.54), we can obtain form (2.51) (recall that uniform distri-
bution is not an equilibrium of the system and hence ∥ψx∥L2 ̸= 0)

σ2

2
∥ψx∥L2 ≤ 2R(M +2)∥ψ∥L2 + 2R2

p
3

∥ψ+Mρr ∥L2

≤ 2R(M +2)∥ψ∥L2 + 2R2

p
3

(∥ψ∥L2 +M∥ρr ∥L2

)
= 2R

(
M + Rp

3
+2

)
∥ψ∥L2 + 2R2Mp

3
∥ρr ∥L2 . (2.55)

Now, since
∫

X ψ(x) dx = 0, we can employ the Poincaré inequality [56, Sec. 5.8.1, Thm. 1]
to obtain ∥ψ∥L2 ≤C ∥ψx∥L2 . The optimal value for the Poincaré constant for X̃ = [−1,1]
is C = 1

π . Combining this result with the inequality (2.55), we have(
σ2 − 4R

π

(
M + Rp

3
+2

))
∥ψ∥L2 ≤ 4R2M

π
p

3
∥ρr ∥L2 . (2.56)

Defining σb and cb as in (2.9) gives the inequality ∥ψ∥L2 ≤ 1
η∥ρr ∥L2 , where η= σ2−σ2

b
cb

.

2.5.3. STABILITY OF STATIONARY STATE
This section is devoted to the proof of Theorem 2.4.3 concerning the stability of station-
ary state. All the norms in this subsection are with respect to the domain X̃ = [−1,1] (as
opposed to X = [0,1]), unless indicated otherwise.
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Proof of Theorem 2.4.3. We follow similar arguments as the ones in [55], except we con-
sider a general stationary stateρs (instead of the uniform distribution considered in [55]).
Let ψ= ρ−ρs so that

∫
X ψ(x) dx = 0. From the dynamic equation (2.6), we obtain

ψt =
[
(ψ+ρs ) Gψ+ρs

]
x +

σ2

2
[ψ+ρs ]xx

= [
(ψ+ρs ) (w ⋆ψ+Gρs )

]
x +

σ2

2
[ψ+ρs ]xx

= [
ψ (w ⋆ψ+Gρs )

]
x +

[
ρs (w ⋆ψ)

]
x +

[
ρs Gρs

]
x +

σ2

2
ψxx + σ2

2
ρsxx

= [
ψ (w ⋆ψ+Gρs )

]
x +

[
ρs (w ⋆ψ)

]
x +

σ2

2
ψxx , (2.57)

where for the last equality we used the fact that ρs is a solution to the stationary equa-
tion (2.8), that is, [

ρs Gρs
]

x +
σ2

2
ρs

xx = 0.

Multiplying (2.57) byψ and integrating by part over X̃ we obtain (the extra terms are zero
due to periodicity)

1

2

d

dt
∥ψ∥2

L2 +
σ2

2
∥ψx∥2

L2

≤
∣∣∣∣∫

X̃
ψx ψ (w ⋆ψ+Gρs ) dx

∣∣∣∣+ ∣∣∣∣∫
X̃
ψx ρ

s (w ⋆ψ) dx

∣∣∣∣
≤ (∥w ⋆ψ∥L∞ +∥Gρs∥L∞

) ∥ψx∥L2 ∥ψ∥L2 +∥ρs∥L∞ ∥ψx∥L2 ∥w ⋆ψ∥L2 , (2.58)

Now, from the inequality (2.12) in Lemma 2.5.1, we have

∥w ⋆ψ∥L∞ ≤ 2R ∥ψ∥L1(X ) = 2R ∥ρ−ρs∥L1(X ) ≤ 2R
(∥ρ∥L1(X ) +∥ρs∥L1(X )

)= 4R,

and

∥Gρs∥L∞ ≤ 2R
(∥ρs∥L1(X ) +M

)= 2R(1+M).

Also, following a similar procedure as in (2.53) and (2.54) with M = 0, we obtain

∥w ⋆ψ∥L2 ≤ 2p
3

R2∥ψ∥L2 .

Finally, from (2.37) in Lemma 2.5.7, we have ∥ρs∥L∞ ≤ exp
(
8R(1+M)/σ2

)
. Using these

estimates and the Young’s inequality, we can rewrite (2.58) as

1

2

d

dt
∥ψ∥2

L2 +
σ2

2
∥ψx∥2

L2 ≤
(
2R(3+M)+ 2R2

p
3

exp

(
8R(1+M)

σ2

))
∥ψx∥L2 ∥ψ∥L2

≤ 1

σ2

(
2R(3+M)+ 2R2

p
3

exp

(
8R(1+M)

σ2

))2

∥ψ∥2
L2 +

σ2

4
∥ψx∥2

L2 .
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Hence,

1

2

d

dt
∥ψ∥2

L2 ≤
1

σ2

(
2R(3+M)+ 2R2

p
3

exp

(
8R(1+M)

σ2

))2

∥ψ∥2
L2 −

σ2

4
∥ψx∥2

L2 .

Once again, since
∫

X ψ(x) dx = 0, we can employ the Poincaré inequality [56, Sec. 5.8.1,
Thm. 1] ∥ψ∥L2 ≤C ∥ψx∥L2 with the optimal Poincaré constant C = 1

π to obtain

d

dt
∥ψ∥2

L2 ≤
{

2

σ2

(
2R(3+M)+ 2R2

p
3

exp

(
8R(1+M)

σ2

))2

− π2σ2

2

}
∥ψ∥2

L2 .

Then, by Grönwall’s inequality, we have

∥ψ(t )∥2
L2 ≤ ∥ψ(0)∥2

L2 exp

[{
2

σ2

(
2R(3+M)+ 2R2

p
3

exp

(
8R(1+M)

σ2

))2

− π2σ2

2

}
t

]
.

Now, notice that ∥ψ(0)∥L2 ≤ ∥ρ0∥L2 +∥ρs∥L2 is finite. Thus, if the constant factor in the
exponential is negative, then ∥ψ(t )∥2

L2 → 0 exponentially fast as t →∞. Negativity of the
this constant factor corresponds to the condition σ>σs , where σs solves (2.10).
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In this chapter, we continue the study of the macroscopic model developed in Chap-
ter 2. In particular, developing ideas from [41, 44, 54], we use Fourier analysis to charac-
terize the clustering behavior of the model under the uniform initial distribution. This
chapter is organized as follows. In Section 3.1, two numerical schemes are presented to
analyze the so-called order-disorder transition in the system and also the initial cluster-
ing behavior of the system. These general schemes are then employed in Section 3.2 for
a particular distribution of the radical opinions and verified via numerical simulations
of both the agent-based and the macroscopic models.

3.1. CHARACTERIZATION OF SOLUTION: FOURIER ANALYSIS
In this section, we exploit the periodic nature of the system and use Fourier analysis to
study the behavior of the solution to ρt = (ρ G)x + σ2

2 ρxx in X̃ × (0,T )
ρ(·+2, t ) = ρ(·, t ) on ∂X̃ × (0,T )

ρ(x, ·) = ρ0(x) on X̃ × {t = 0},
(3.1)

where
G(x, t ) := w(x)⋆

(
ρ(x, t )+Mρr (x)

)
, (3.2)

with uniform initial condition, i.e., ρ0 = 1. To this end, we derive a system of ordinary
differential equations (ODEs) describing the evolution of Fourier coefficients of the nor-
mal opinion density ρ. Then, these ODEs are used for the identification of the order-
disorder transition. Precisely, a numerical scheme is presented for approximating the
critical noise level at which this transition occurs. Moreover, we use these ODEs to pro-
vide another approximation scheme for characterizing the initial clustering behavior of
the system including the number and the timing of possible clusters. These numeri-
cal schemes are in essence similar to the linear stability analysis previously employed
by [38, 41, 44, 54, 63] for analysis of noisy bounded confidence models without radicals.

3.1.1. FOURIER ODES FOR MACROSCOPIC MODEL

Notice that the set {cos(πnx)}∞n=0 is an orthogonal basis for the space L2
ep (X̃ ) containing

even 2-periodic functions on X̃ = [−1,1]. Then, the even 2-periodic extension in the
model allows us to consider the Fourier expansions of ρ and ρr in the form of

ρ(x, t ) =
∞∑

n=0
pn(t ) cos(πnx) and ρr (x) =

∞∑
n=0

qn cos(πnx) . (3.3)

By inserting the expansions (3.3) into (3.1) and setting the inner product of the resid-
ual with elements of the basis to zero (i.e., taking inverse Fourier transform), we can
obtain a system of quadratic ODEs describing the evolution of Fourier coefficients. Con-
sidering the first N f frequency components, these ODEs are

ṗn = cn +bT
n p +pT Qn p, n = 1, . . . , N f , (3.4)

where p = (p1, p2, . . . , pN f )T ∈ RN f . Note that for n = 0, i.e., the constant term in the
Fourier expansion, we obtain ṗ0 = 0. This is due to the periodic nature of the system that
preserves the zeroth moment. The coefficients in (3.4) are given by (n,k, l = 1, . . . , N f )
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cn = 2MR fn qn ,

(bn)k =
{

2R fn + MR
2 f2n q2n − π2σ2n2

2 , k = n

nMR
{

qn+k fn+k
n+k + q|n−k| fn−k

n−k

}
, k ̸= n,

(Qn)k,l =


nR fk

k , l = n −k > 1

nR
{

fk
k + fn−k

n−k

}
, l = k −n > 1

0, otherwise,

(3.5)

where

fn :=−cos(πnR)+ sinc(πnR) , (3.6)

with sinc x = sin x
x . Recall that qn , n ∈N, are the Fourier coefficients of ρr .

Interestingly, one notices that the interaction between different frequency compo-
nents in the quadratic terms is limited to those that are in a sense complements of each
other. That is, each frequency n of ρ is affected by the frequency pairs (n1,n2) such that
either n1 +n2 = n or |n1 −n2| = n. This, in turn, leads to a particular structure for the
matrix Qn in the quadratic terms. As expected, a similar behavior is seen in the linear
terms: the effect of each frequency k of ρ on a given frequency n of ρ is modulated by
the frequency components n +k and |n −k| of ρr .

3.1.2. ORDER-DISORDER TRANSITION
A common behavior in noisy interactive particle systems is the order-disorder transi-
tion. Here, “order” refers to a clustered behavior, while “disorder” refers to a uniform (or
close to uniform) opinion profile. For large values ofσ, the effect of the diffusion process
can overcome the attracting forces among agents preventing the system from forming
any cluster. This behavior has been analyzed and observed in several noisy bounded
confidence models for opinion dynamics. Pineda et. al. used linear stability analysis
in [38, 63] to compute the critical noise level above which the clustering behavior dis-
appears for a modified version of Defuant model [28]. This technique was also used
in [44, 54] to compute the critical noise level for a noisy HK system similar to our model,
except without radicals.

Here, we provide a method for approximating the critical noise level σc at which the
transition occurs. To this end, we linearize the systems at t = 0 to obtain a system of
linear ODEs expressed as

ṗ = c +B p. (3.7)

The vector c ∈ RN f and the matrix B ∈ RN f ×N f are defined accordingly using the objects
cn and bn in (3.5). We emphasize that the linearization (3.7) is for a uniform initial con-
dition, i.e., pn(0) = 0 for n = 1, . . . , N f .

Looking at coefficients cn and bn in (3.5), we notice that the noise level σ only ap-
pears in the diagonal entries of B such that by increasing σ, these diagonal entries de-
crease and eventually become negative. That is, for a large enough σ, the matrix B is
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Hurwitz (all its eigenvalues have negative real parts) and the linearized system (3.7) is
stable. This will be our first criterion for determining the critical noise levelσc : the noise
level above which B is Hurwitz. In order to consider the effect of the constant linear
growth rates c in (3.7), we further require the stationary values p̄n ,n = 1, . . . , N f , of the
linearized system (3.7) (i.e., the solution to the equation c+B p̄ = 0) to be relatively small.

In other words, taking the equilibrium of the linearized system, 1+∑N f

n=0 p̄n cos(πnx), as
an approximation of the stationary state ρs , we require ρs to be close to uniform distri-
bution ρ = 1, representing disorder. Similar to the theoretical estimate of Theorem 2.4.2,
we quantify this criterion by using Parseval’s identity and setting

∥ρs −1∥2
L2 ≈ ∥p̄∥2

2 < γ, (3.8)

where the constant γ> 0 determines the level of similarity between ρs and uniform dis-
tribution. To sum up, for a given γ > 0, we solve numerically for the minimum level of
noise for which B is Hurwitz and the inequality (3.8) holds.

3.1.3. INITIAL CLUSTERING BEHAVIOR
For noises smaller than the critical noise level σc , we expect to see a clustering behav-
ior. In order to characterize the initial clustering behavior, we make use of the expo-
nential growth rate γn := (bn)n and linear growth rate cn given in (3.5). The proposed
numerical method is as follows. We ignore the interactions between different frequen-
cies in (3.4), that is, for each frequency n = 1, . . . , N f , we consider the equation ṗn =
cn +γn pn with pn(0) = 0 (corresponding to uniform initial distribution) for initial evo-
lution of the Fourier coefficient pn . Then, for a given set of model parameters (σ,R, M)
and radical opinions density ρr , we numerically compute the dominant wave-number
n∗ := argmaxn γn with γn∗ > 0, that is, the unstable mode with the largest exponential
growth rate. We speculate that the corresponding trigonometric term pn∗ cos(πn∗x) is
the dominant component of the initial clustering behavior. The sign of pn∗ depends on
the linear growth rate cn∗ : we have pn∗ > 0 if cn∗ > 0, and pn∗ < 0 otherwise.

Considering the even 2-periodic extension of the model, the dominant waveform
must be interpreted on the interval X̃ = [−1,1]. Then, the number of initial clusters nclu

in the interval X = [0,1] resulting from the waveform 1+pn∗ cos(πn∗x) is given by

nclu :=
{

⌊n∗
2 ⌋+1, cn∗ > 0

⌈n∗
2 ⌉, cn∗ < 0,

(3.9)

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. The timing of this initial
clustering behavior is also expected to be inversely related to γn∗ . Indeed, by solving for
the time for which the solution to the equation ṗn = cn +γn pn is equal to ±1, we can
approximate the time to initial clustering by

tclu := 1

γn∗
ln

(
1+ γn∗

|cn∗ |
)

. (3.10)

A similar approximation has been used in [54] to derive the time to the initial clustering
using fluctuation theory.
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3.2. NUMERICAL STUDY
In this section, we provide a numerical study of the model at hand for a particular dis-
tribution of radical agents/opinions through simulations of the corresponding discrete-
and continuum-agent models. Furthermore, we validate the result of our Fourier anal-
ysis for identification of order-disorder transition (Section 3.1.2) and characterization of
initial clustering behavior (Section 3.1.3).

The particular radical distribution considered in this section is a triangular distribu-
tion with average A and width 2S, i.e.,

ρr (x) =
{ 1

S2 (S −|x − A|), |x − A| ≤ S
0, otherwise.

(3.11)

Although this choice may seem specific, it is rich enough for our purposes. In particular,
with this choice, the zeroth, first and second moments of the radical opinions density are
simply captured by the parameters M , A, and S, respectively. Moreover, we assume that
the radicals are concentrated around their average opinion, that is, we consider small
values of S (with respect to the confidence range R).

In the sequel, we make use of the order parameter

Qd (t ) = 1

N 2

N∑
i , j=1

1|xi (t )−x j (t )|≤R ,

introduced by [44] and its continuum counterpart

Qc (t ) =
∫

X 2
ρ(x, t ) ρ(y, t ) 1|x−y |≤R dxdy,

to quantify orderedness in the clustering behavior of the model. In words, the order pa-
rameter Q is the (normalized) number/mass of agents that are in the R-neighborhood of
each other and hence interacting. In particular, in the continuum case, we have Qc = 2R
for a uniform distribution of opinions (complete disorder) while Qc = 1 for a single-
cluster distribution with all agents residing in an interval of width R or less (complete
order). In the case of a clustered behavior, roughly speaking, the inverse of the order pa-
rameter is equal to the number of clusters. We also use the evolution of order parameter
to characterize the timing of the clustering behavior.

In all the simulation results reported in this section the width of radicals distribution
and the confidence range are fixed at S = 0.1 and R = 0.1, respectively.

3.2.1. SIMULATION OF MODELS
Discrete-agent model: For the discrete-agent model, the SDEs (2.4) are solved numer-
ically using the Euler-Maruyama method for N = 500 normal agents, with time step
∆t = 0.01. To be precise, we solve the following SDEs{

dxi =− 1
N

(∑
j∈Ni

(xi −xext
j )+∑

j∈Ni
(xi −xext

r j
)
)

dt +σ dW i
t ,

xi (0) = xi0 .
(3.12)

where xext
i , i = 1, . . . N , are the opinions of normal agents and xext

ri
, i = 1, . . . Nr , are the

opinions of radical agents with Nr = M N . The superscript “ext” corresponds to the
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Algorithm 1 Euler-Maruyama method for even 2-periodic extension of SDE (3.12)

Step 0. xr = (xr1 , xr2 , · · · , xrNr
)T ∼ ρr (x);

xext
r = [xr ; −xr ; 2−xr ];

for t = 0 to t = T
∆t −1: do

Step 1. xext(t ) = [x(t ); −x(t ); 2−x(t )], where x(t ) = (x1(t ), x2(t ), · · · , xN (t ))T ;

Step 2. ẋi (t ) =− 1
N

(∑
j∈Ni

(xi −xext
j )+∑

j∈Ni
(xi −xext

r j
)
)
;

Step 3. dW i
t = zi

p
∆t , where zi ∼ N(0,1);

Step 4. xi (t +1) = xi (t )+ ẋi (t ) ·∆t +σ dW i
t ;

Step 5. xi (t +1) = xi (t +1) mod (2L);
if xi (t +1) > L, then xi (t +1) = 2−xi (t +1).

end for

even 2-periodic extension as we explain shortly. Algorithm 1 summarizes the numeri-
cal scheme for solving (3.12). As described above, we assume that the radicals have a
triangular distribution centered at A with width 2S. That is, we produce a random sam-
ple of radicals with size Nr from the triangular distribution (3.11) (Step 0). In particular,
for complete correspondence between the discrete- and continuum- agent models, we
also consider the effect of even 2-periodic extension in our simulations. To this end, we
use even 2-periodic extensions of x and xr for calculating the sum on the right-hand side
of (3.12) (vectors denoted by xext and xext

r in Steps 0, 1 and 2). Also, because of periodic-
ity, in each iteration, the opinion values outside the support X = [0,1] are reflected back
to X (Step 5).
Continumm-agent model: To solve the continuum-agent model described by PDF (3.1)
numerically, we use the Fourier ODEs (3.4) to compute the coefficients of Fourier ex-
pansion of normal opinion density ρ using the first N f terms of the expansion. How-
ever, regarding the radical opinion density, one notices that the considered triangular
distribution does not satisfy the conditions of Theorem 2.4.1 for well-posedness of the
dynamics, that is, ρr ∉ H 2

ep (X̃ ). This will not be an issue since we will be working with

the projection of the proposed ρr in the Hilbert space L2
ep (X̃ ). That is, we use the Fourier

coefficients of ρr in (3.4) which for the triangular distribution (3.11) are given by

qn = 2cos(nπA)sinc2(nπS/2). (3.13)

To be precise, we need the Fourier coefficients qn of ρr for 1 ≤ n ≤ 2N f , that is, twice the
length of Fourier expansion of ρ; see the linear terms of (3.4). For the initial condition, we
again consider uniform distribution ρ0 = 1, which corresponds to p0 = 1 and pn(0) = 0
for the Fourier coefficients.

Alternatively, we can employ a semi-explicit pseudo-spectral method, similar to the
one provided by [44], for numerically solving (3.1). To be precise, using the first N f terms
of Fourier expansions of ρ and ρr , we can write

ρ(x, t )+Mρr (x) =
N f∑

k=−N f

(
ρ̂k (t )+M ρ̂rk

)
e iπkx .
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Algorithm 2 Pseudo-spectral method for PDE (3.1)

Step 0. for x ∈ [−1,0] set ρr (x) = ρr (−x);
ρ̂rk = FFT

[
ρr (x)

]
;

for t = 0 to t = T
∆t −1: do

Step 1. for x ∈ [−1,0] set ρ(x, t ) = ρ(−x, t );
Step 2. ρ̂k (t ) = FFT

[
ρ(x, t )

]
;

Step 3. Ĝk (t ) =− 2i R
πk fk (ρ̂k (t )+M ρ̂rk ), Ĝ0(t ) = 0;

G(x, t ) = iFFT
[
Ĝk (t )

]
;

Step 4. h(x, t ) = ρ(x, t ) G(x, t );
ĥk (t ) = FFT[h(x, t )];

Step 5. ρ̂k (t +1) =
(
iπkĥk (t )− π2σ2k2

2 ρ̂k (t +1)
)
·∆t + ρ̂k (t );

ρ̂0(t +1) = ρ̂0(t );
ρ(x, t ) = iFFT

[
ρ̂k (t )

]
;

end for

Inserting this into (3.2), we obtain (we are dropping the subscript ρ for convenience)

G(x, t ) = ∑
−N f ≤k≤N f ,k ̸=0

−2i R

πk
fk

(
ρ̂k (t )+M ρ̂rk

)
e iπkx ,

where fk is given by (3.6). Hence,

Ĝk (t ) =
{ − 2i R

πk fk
(
ρ̂k (t )+M ρ̂rk

)
, k ̸= 0

0, k = 0.

With Fourier coefficients of G in terms of Fourier coefficients of ρ in hand, we can ap-
ply the pseudo-spectral method for solving (3.1) as described in Algorithm 2. As shown,
the multiplication h = ρ G on the right-hand side of the first equation in (3.1) is per-
formed in the time domain (Step 4), while the differentiations with respect to x are per-
formed in the frequency domain (Step 5). Note that the symmetric nature of the solution
is preserved in the algorithm (Step 1). Also, preservation of mass is satisfied by setting
ρ̂0(t +1) = ρ̂0(t ) (Step 5). Finally, we note that the algorithm is semi-explicit (see the first
equation in Step 5).

The main difference between the two methods is that the pseudo-spectral method
solves the PDE for a set of discrete points in the opinion space (x ∈ X ) while solving the
Fourier ODEs gives an approximation of the solution in terms of a finite basis for the
corresponding Hilbert space. These two methods (if both converge) result in the same
solution. Fig. 3.1 compares the result of numerical simulations of the model using these
two methods for a particular combination of system data. Note that, in these simula-
tions, the number of points for the spatial discretization in the pseudo-spectral method
is twice the the number N f of frequencies in the Fourier ODEs so that the methods are
compatible, i.e., both include the same set of frequency components. The left panel of
Fig. 3.1 shows a similar result using these two methods for N f = 32 frequencies. How-
ever, as the number of frequencies considered in the simulations is decreased, we see
that the pseudo-spectral method starts to diverge while the Fourier ODEs are still stable.
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Figure 3.1: Comparison of the pseudo-spectral method (PS) with ∆t = 0.01 and the Fourier
ODEs (ODE) for numerical simulation of the continuum-agent model (3.1). The results are
for t = 400 with system data (σ, M , A) = (0.03,0.1,0.7). In the right panel, some of the points
in the solution of the pseudo-spectral method are outside the limits of the vertical axis.

In the remainder of this section, we use the Fourier ODEs (3.4) with N f = 128 for
numerical simulation of the continuum-agent model.

3.2.2. ORDER-DISORDER TRANSITION

In this section, we numerically study the order-disorder transition in the model. In par-
ticular, we consider the effect of the relative mass M of radicals on the critical noise level
σc at which this transition occurs. Furthermore, we use our simulation results to exam-
ine the approximation scheme presented in Section 3.1.2. In this regard, we note that
the interplay between the confidence range R and the critical noise level σc have been
studied in [44]. There, the authors showed that as R increases, the critical noise level σc

also increases in such a way that for small values of R, we observe a first-order transition.

ILLUSTRATIVE EXAMPLE

Our model exhibits the same order-disorder transition previously reported for similar
noisy HK systems [41, 44, 54]. Fig. 3.2 shows this effect for a particular combination of
system data in the discrete- and continuum-agent models. Notice that forσ larger than a
critical level the clustering behavior almost disappears (see the lower panel correspond-
ing to σ = 0.05 in Fig. 3.2a). To be more precise, a higher level of noise decreases the
lifetime of clustering behaviors with a larger number of clusters. This effect can be par-
ticularly seen in the evolution of the order parameter in Fig. 3.2b. In this regard, notice
that for noises smaller than the critical noise level (here σ < 0.05) the horizontal parts
in the order parameter in Fig. 3.2b correspond to a clustered behavior, where the num-
ber of clusters is equal to the inverse of the order parameter. To illustrate, observe that
for σ= 0.03 and σ= 0.04, the system reaches a single-cluster profile around the average
radical opinion A = 0.7. Notice, however, for σ = 0.03 the system first goes through a
2-cluster profile corresponding to the horizontal part in the blue solid line at height 0.5
in Fig. 3.2b. On the other hand, for σ = 0.02, we observe a 2-cluster profile at t = 104 in
Fig. 3.2a. Notice, however, how the system goes through 4-cluster and 3-cluster profiles
as depicted in Fig. 3.2b (the horizontal parts in the order parameter). Finally, forσ= 0.01,
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we observe a very fast emergence of a 4-cluster profile (Fig. 3.2b) that has survived un-
til t = 104 as shown in Fig. 3.2a. Here, we also notice that the exact position of clusters
in the discrete- and continuum-agent models differ. This particular difference between
mean-field and agent-based models has been also mentioned in [38, 63]. Indeed, our
numerical simulations show that even the number of clusters resulting from mean-field
and agent-based models may differ; this also has been reported and explained previ-
ously in [44]. Finally, we note that for M = 0.1, the approximation scheme explained
in Section 3.1.2 results in σc = 0.043 for γ = 1 and σc = 0.051 for γ = 0.1 (see (3.8) for
influence of γ).

EFFECT OF M ON σc

Fig. 3.3 shows the order parameter derived numerically by simulating the continuum-
and discrete-agent models. Notice how for each M , as noise increases, the system expe-
riences a transition from order (with Q ≈ 1 in the yellow stripe) to disorder (with Q ≈ 0.2
in the dark blue area in the upper part of the plots). Also, we note that the blue stripe in
the lower part of plots in Fig. 3.3 represents clustering behaviors with a larger number of
clusters (similar to the behavior seen for σ= 0.01 in Fig. 3.2).

This result shows that as the relative mass of radicals M increases, the corresponding
critical noise levelσc , above which the system is in a disordered state, also increases. The
dependence of σc on M is in the form of a concave function. Furthermore, for small val-
ues of M , the transition seems to be discrete, signaling a first-order transition. However,
for large values of M the transition becomes blurry. This phenomenon was also reported
in [44] for the dependence of the critical noise level on the confidence range R. In this
regard, note that as M increases, the required noise level for disordered behavior also
increases, which leads to wider clusters. This, in turn, makes it difficult to differentiate
order from disorder; see, e.g., the panels corresponding to σ= 0.04,0.05 in Fig. 3.2.

Also shown in Fig. 3.3 (red lines) is the result of the scheme provided in Section 3.1.2
for approximating the critical noise level. As can be seen, the scheme indeed provides
a good approximation of the critical noise level. In particular, the dashed red line (for
γ= 1) almost perfectly separates the two phases of order and disorder.

3.2.3. INITIAL CLUSTERING BEHAVIOR

For noises smaller than the critical noise level, agents start to form clusters; see Fig. 3.2.
In particular, we observe a cluster of normal agents around the average A of the radical
opinion due to the force field generated by the radicals. Generally, three types of clusters
may form: (1) the cluster at the average radical opinion A, (2) the cluster(s) at the extreme
opinions x = 0 and/or x = 1, and (3) the cluster(s) around opinion values other than x =
0,1, A. The third type of cluster is expected to perform a random walk with their center of
mass moving like a Brownian motion (assuming clusters do not interact). The effective
diffusivity of these Brownian motions is inversely related to the size of the cluster, i.e.,
the number of agents in the cluster. This will result in a process of consecutive merging
between these clusters until the complete disappearance of them. Detailed descriptions
of this process are provided in [44, 54]. Notice however that this description does not
apply to cluster(s) formed at x = A and x = 0,1. These clusters are affected by forces other
than the normal attractions among the agents within the cluster. The cluster formed at
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(a) Distribution of opinions/agents at t = 104
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Figure 3.2: Numerical simulation of the discrete-agent model (Disc.) and continuum-agent
model (Cont.) for different values of noise σ with system data (M , A) = (0.1,0.7). As noise
increases the number of clusters decreases so that for a large enough noise the clustering be-
havior disappears (see Section 3.2.2). The black dashed lines in left panels for σ = 0.03,0.04
are the approximate stationary solutions (2.50). This result shows that the approximate solu-
tion is indeed a good approximation as it almost perfectly matches the numerical solution of
the continuum-agent model.
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Figure 3.3: The order parameter at t = 103 from numerical simulation of the continuum-
and discrete-agent models starting form uniform initial distribution. For the discrete-agent
model, the average of order parameter over the time window [900,1000] is reported. The plot
covers the regionσ×M ∈ [0.01,0.15]×[0.01,1] with step sizes∆σ= 0.005 and∆M = 0.02. The
red lines show the result of the numerical scheme described in Section 3.1.2 for approximat-
ing the critical noise level for different values of γ with respect to the second criterion (3.8).
See Section 3.2.2 for details.
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x = A is under influence of radicals, and the possible clusters at the extreme opinions
x = 0,1 are reinforced due to the even 2-periodic extension considered in our model. The
behavior of these clusters (survival or dissolution) depends on their size, the exogenous
force acting on them, and the effect of other clusters in their neighborhood.

In this section, we use the analysis scheme provided in Section 3.1.3 to investigate
the effect of the zeroth and first moment of radicals (M and A, respectively) on the initial
clustering behavior of the model for noises smaller than the critical level. In particular,
we investigate the effect of M and A on the number, position, and timing of initial clus-
ters for different values ofσ. We again emphasize that we are considering a concentrated
triangular distribution for radical agents and a uniform initial distribution for normal
agents. Let us begin with illustrating how the objects introduced in Section 3.1.3, namely,
exponential and linear growth rates and the dominant wavenumber, can be used to char-
acterize the initial clustering behavior.

ILLUSTRATIVE EXAMPLE

Consider the system data (σ, M , A) = (0.01,0.1,0.7). Fig. 3.4 depicts the values of the
exponential growth rate γn and the linear growth rate cn for different frequencies. In
Fig. 3.4a, we observe that the unstable mode with the maximum exponential growth rate
is n∗ = 8 with γn∗ = 0.177. Fig. 3.4b shows that the linear coefficient corresponding to
this frequency is cn∗ = 0.007 > 0. Then, (3.9) implies that the initial clustering behavior
is expected to have nclu = 5 clusters. Also, using (3.10), we obtain tclu = 18.16 for the time
to initial clustering.

Fig. 3.5 shows the time evolution of the distribution of normal opinions/agents for
the system data corresponding to Fig. 3.4. For the continuum-agent model, we can see
a 5-cluster profile corresponding to the speculated waveform as depicted in Fig. 3.5a.
A similar clustering behavior is observed in the Monte Carlo simulation of the discrete-
agent model in Fig. 3.5b. Here, we observe three clear clusters: the cluster at average
radical opinion A = 0.7 and the two clusters at extreme opinions x = 0,1. However, we
observe an almost uniform distribution of normal agents in the opinion range [0.1,0.5].
This is because the exact position of the corresponding clusters formed in the discrete-
agent model varies within this range. Individual realizations of the discrete model show
one, two, or three clusters in this range with two clusters being the most frequent behav-
ior as expected. This effect has been also reported by [38] in Monte Carlo simulations
of a noisy Defuant model. Furthermore, we notice that the timing object t∗ = 18.16 also
gives a good approximation for the onset of the corresponding clustering behavior for
both continuum- and discrete-agent systems.

EFFECT OF M AND A ON INITIAL CLUSTERING

Performing a similar analysis to the one provided in the example above, we can compute
the dominant wave-number (n∗), the number of initial clusters (nclu) and time to initial
clustering (tclu) for a general combination of system data. Fig. 3.6 shows the result of this
analysis for different values of M and A at three different noise levels σ. Here, we only
considered the values A < 1−R = 0.9 since for 1−R < A < 1 the boundary effect due to
even 2-periodic extension comes into play.

Comparing the left, middle, and right panels of Fig. 3.6 corresponding to different
levels of noise, we observe that as the level of noise increases, the number of clusters in
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Figure 3.4: Exponential and linear growth rates for system data (σ, M , A) = (0.01,0.1,0.7)
for different frequencies. On the left panel we see the maximum exponential growth cor-
responds to n∗ = 8 with γn∗ = 0.177. On the right panel we see cn∗ = 0.007 > 0. This implies
that the waveform p8 cos(8πx) with p8 > 0 is the dominant component of the initial cluster-
ing behavior.
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(a) Continuum-agent model
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(b) Discrete-agent model

Figure 3.5: Evolution of distribution of normal opinions/agents during the initial clustering
behavior for system data (σ, M , A) = (0.01,0.1,0.7) corresponding to Fig. 3.4. The distribu-
tions shown for the discrete-agent model are the average profiles of 300 realizations. The
onset of a 5-cluster behavior is observed from approximately t = 20 corresponding to the
waveform 1+cos(8πx) speculated for the initial clustering behavior with tclu = 18.16.
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(a) Dominant wave-number: n∗
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(c) Time to initial clustering: ln(tclu)

Figure 3.6: Characterization of the initial clustering behavior based on the dominant wave-
number in the Fourier expansion of the continuum-agent model for different values of M
and A, with noise levels σ= 0.01 (left), σ= 0.02 (middle), and σ= 0.03 (right).
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the possible clustering behavior of the system decreases (see Fig. 3.6b), while the tim-
ing experiences a general increase (see Fig. 3.6c). This effect has been already shown
in Fig. 3.2. In particular, concerning the timing, we notice that as the level of noise de-
creases, the initial clustered profile emerges faster; see Fig. 3.2b.

For low levels of noise, e.g., σ = 0.01 (see the left panels in Fig. 3.6), the dominant
wave-number does not depend on the M or A. In this case, the most important effect
of the first moment A of radical opinions density is on the position of clusters. That is,
the clustered profile emerges in a way that we observe a particular cluster formed at the
average radical opinion A. The parameter A also affects the timing of the clustering be-
havior in a periodic fashion. On the other hand, the zeroth moment of radical opinions
density M only affects the timing of the clustering behavior: as M increases, tclu de-
creases. Fig. 3.7 shows the simulation results for σ= 0.01 and compares the evolution of
opinions for different values of M and A. For the continuum model in the top panels of
Fig. 3.7 we observe that indeed a 4-cluster profile has emerged in all systems. Comparing
Figs. 3.7a and 3.7b shows that M only affects the timing of clustering behavior. This ef-
fect is better seen in Fig. 3.7g where we observe a faster convergence of order parameter
for S2 with larger M . On the other hand, comparing Figs. 3.7b and 3.7c correspond-
ing to A = 0.85 and A = 0.7, respectively, we observe a change in the positioning of the
clusters. Monte Carlo simulations of the discrete-agent model reveal that the same gen-
eral description also holds for this system. This is particularly seen in the time evolution
of the order parameter in the discrete-agent model as depicted in Fig. 3.7h. However,
we once again note that there are differences between the behavior of the continuum-
and discrete-agent models. In particular, the evolution of order parameter in Fig. 3.7g
shows that the continuum-agent model has seemingly converged to steady-state with
four clusters, while this is not the case for the discrete-agent model as can be seen in
Fig. 3.7h. Indeed, in the discrete-agent model, as described at the beginning of this sec-
tion, all the possible clusters formed around opinion values other than x = 0,1, A will
necessarily disappear in the steady state profile, where the time required for their disap-
pearance depends on the noise level and particularly the size of these clusters. Hence,
unlike the discrete-agent model, for the continuum-agent model (in the limit N →∞),
the system may require infinite time for this merging of the clusters to occur. This, in
turn, can lead to different behaviors in the discrete- and continuum-agent models over
exponentially large times [44]; see also the evolution of order parameter in Fig. 3.2b.

As shown in Fig. 3.6, for higher levels of noise, e.g., σ = 0.03, we observe nonlinear
effects: M and A start to affect the dominant wave-number (see the middle and right
panels of Fig. 3.6a). Nevertheless, these effects are limited as the number of clusters is
still 3 or 4 for σ = 0.02, and 2 or 3 for σ = 0.03. Besides, we still observe a general in-
crease in the timing of the clustering behavior as M decreases. Fig. 3.8 shows the evolu-
tion of normal opinions/agents distribution and the corresponding order parameter for
three different combinations of M and A at the noise level σ = 0.03. Once again, in the
continuum-agent model, we observe a 2-cluster profile for all combinations as shown in
the top panels of Fig. 3.8. For the discrete-agent model, we observe a 3-cluster behav-
ior in which the cluster formed between the two clusters at x = 0 and x = A has already
disappeared for S3 in Fig. 3.8f at t = 400. Indeed, our simulations for σ = 0.03 reveal a
single cluster around the average radical opinion after a large enough time; see Fig. 3.2.
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Figure 3.7: Numerical simulation of the model with σ = 0.01 for different values of (M , A),
namely, S1 : (0.05,0.85), S2 : (0.15,0.85), and S3 : (0.15,0.7). The upper panels (a, b, and c)
show the opinion distribution for continuum-agent model. The middle panels (d, e, and f)
show the the result of Monte Carlo simulation (average of 300 realizations) of discrete-agent
model. The lower panels (g and h) show the evolution of order parameter for these systems.
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Figure 3.8: Numerical simulation of the model with σ = 0.03 for different values of (M , A),
namely, S1 : (0.05,0.85), S2 : (0.15,0.85), and S3 : (0.15,0.7). The upper panels (a, b, and c)
show the opinion distribution for continuum-agent model. The middle panels (d, e, and f)
show the the result of Monte Carlo simulation (average of 300 realizations) of discrete-agent
model. The lower panels (g and h) show the evolution of order parameter for these systems.
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With this chapter, we start the second part of this thesis, focusing on the value itera-
tion (VI) algorithm for solving optimal control problems. In particular, in this chapter, we
propose two novel numerical schemes for approximate implementation of the dynamic
programming (DP) operation concerned with finite-horizon, optimal control of deter-
ministic, discrete-time systems with input-affine dynamics. The chapter is organized as
follows. We begin with the literature review in Section 4.1. After presenting some pre-
liminaries in Section 4.2, we provide the problem statement and its standard solution
via VI algorithm (in the primal domain) in Section 4.3. Sections 4.4 and 4.5 contain our
main results on the proposed alternative approach for solving the DP problem in the
conjugate domain. In particular, we provide error bounds for the proposed algorithms,
along with a detailed analysis of their computational complexity. In Section 4.6, we val-
idate our theoretical results and compare the performance of the proposed algorithms
with the benchmark VI algorithm through a synthetic numerical example. The chapter
concludes with Section 4.7 including all the technical proofs. To facilitate the applica-
tion of the proposed algorithms, we provide a MATLAB package [64]. We note that the
numerical example of Section 4.6 is also included in the package and reproducible.

4.1. MOTIVATION AND LITERATURE REVIEW
Value iteration (VI) is one of the most basic and widespread algorithms employed for
tackling problems in reinforcement learning (RL) and optimal control [65, 66], formu-
lated as Markov decision processes (MDPs). The VI algorithm simply involves the con-
secutive applications of the DP operator

Jt (xt ) = min
ut

{
C (xt ,ut )+ Jt+1(xt+1)

}
, (4.1)

backward in time t , for the costs-to-go Jt , where C (xt ,ut ) is the cost of taking the control
action ut at the state xt . Arguably, the most important drawback of VI is in its high com-
putational cost in solving problems with a large scale finite state space. Indeed, in [67],
the authors show that for a finite-horizon MDP, the problem of determining whether a
control action u0 is an optimal action at a given initial state x0 using value iteration is
EXPTIME-complete. For problems with a continuous state space, which is commonly
the case in engineering applications, solving the DP operation requires solving an infi-
nite number of optimization problems. This usually renders the exact implementation of
the DP operation impossible, except for a few cases with an available closed-form solu-
tion, e.g., linear quadratic regulator [68, Sec. 4.1]. To address this issue, various schemes
have been introduced, commonly known as approximate dynamic programming; see,
e.g., [65, 69]. A common scheme is to use a sample-based approach accompanied by
some form of function approximation. This usually amounts to deploying a brute force
search over the discretizations/abstractions of the state and input spaces, leading to a
time complexity of at least O (XU ), where X and U are the cardinalities of the discrete
state and input spaces, respectively.

For some DP problems, it is possible to reduce this complexity by using duality, i.e.,
approaching the minimization problem in (4.1) in the conjugate domain. For instance,
for the dynamics xt+1 = Axt +But and cost C (xt ,ut ) =Cs(xt )+Ci(ut ), we have

Jt (xt ) ≥Cs(xt )+ [
C∗

i (−B⊤·)+ J∗t+1

]∗
(Axt ), (4.2)
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where the operator [·]∗ denotes the Legendre-Fenchel transform, also known as (con-
vex) conjugate transform. Under some technical assumptions (including, among oth-
ers, convexity of the functions Ci and Jt+1), we have equality in (4.2); see [70, Prop. 5.3.1].
Notice how the minimization operator of (4.1) in the primal domain transforms into a
simple addition in (4.2) in the conjugate (“dual”) domain. This observation signals the
possibility of a significant reduction in the time complexity of solving the DP operation,
at least for particular classes of problems.

Approaching the DP problem via conjugate duality goes back to Bellman [71]. Fur-
ther applications of this idea for reducing the computational complexity were later ex-
plored in [72] and [73]. Fundamentally, these approaches exploit the operational duality
of infimal convolution and addition with respect to the conjugate transform [74]: For
two functions f1, f2 :Rn → [−∞,+∞], we have ( f1□ f2)∗ = f ∗

1 + f ∗
2 , where

f1□ f2(w) := inf
w1,w2

{ f1(w1)+ f2(w2) : w1 +w2 = w}, (4.3)

is the infimal convolution of f1 and f2. This is analogous to the well-known operational
duality of convolution and multiplication with respect to the Fourier transform. Actually,
the Legendre-Fenchel transform plays a similar role as the Fourier transform when the
underlying algebra is the max-plus algebra, as opposed to the conventional plus-times
algebra. Much like the extensive application of the latter operational duality upon the in-
troduction of the fast Fourier transform, “fast” numerical algorithms for conjugate trans-
form can facilitate efficient applications of the former one. Interestingly, the first fast
algorithm for computing (discrete) conjugate functions, known as fast Legendre trans-
form, was inspired by fast Fourier transform, and enjoys the same log-linear complexity
in the number of data points; see [75, 76] and the references therein. Later, this complex-
ity was reduced by introducing a linear-time algorithm known as linear-time Legendre
transform (LLT) [77]. We refer the interested reader to [78] for an extensive review of
these algorithms (and other similar algorithms) and their applications. In this regard,
we also note that recently, in [79], the authors introduced a quantum algorithm for com-
puting the (discrete) conjugate of convex functions, which achieves a poly-logarithmic
time complexity in the number of data points.

One of the first and most widespread applications of these fast algorithms has been
in solving the Hamilton-Jacobi equation [75, 80, 81]. Another interesting area of appli-
cation is image processing, where the Legendre-Fenchel transform is commonly known
as “distance transform” [82, 83]. Recently, in [84], the authors used these algorithms
to tackle the optimal transport problem with strictly convex costs, with applications in
image processing and in numerical methods for solving partial differential equations.
However, surprisingly, the application of these fast algorithms in solving discrete-time
optimal control problems seems to remain largely unexplored. An exception is [85],
where the authors use LLT to propose the “fast value iteration” algorithm for comput-
ing the fixed-point of the DP operator arising from a specific class of infinite-horizon,
discrete-time problems. Indeed, the setup in [85] corresponds to a subclass of problems
that we consider that allows for a “perfect” transformation of the minimization in the DP
operation in the primal domain to an addition in the dual domain; this connection will
be discussed in detail in Section 4.5.4. Let us also note that the algorithms developed
in [82, 83] for distance transform can also potentially tackle the (discretized) optimal
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control problems similar to the ones considered in this chapter. In particular, these al-
gorithms require the stage cost to be reformulated as a convex distance function of the
current and next states. While the this property might arise naturally, it can generally be
restrictive as it is in our case.

Another line of work, closely related to ours, involves algorithms that utilize max-
plus algebra in solving, continuous-time, continuous-space, deterministic optimal con-
trol problems; see, e.g., [86–88]. These works exploit the compatibility of the DP opera-
tion with max-plus operations and approximate the value function as a max-plus linear
combination. In particular, recently in [89, 90], the authors used this idea to propose
an approximate value iteration algorithm for deterministic MDPs with continuous state
space. In this regard, we note that the proposed algorithms in this chapter also implic-
itly involve representing cost functions as max-plus linear combinations, yielding piece-
wise affine approximations. The key difference of the proposed algorithms is however
to choose a grid-like (factorized) set of slopes in the dual space in order to reduce the
computational cost; we will discuss this point in more detail in Section 4.4.2.

In this part of the thesis (Chapters 4 and 5), we use duality and propose multiple
alternative VI algorithms that involve a sample-based approximation using a finite sub-
set of the underlying continuous state space. These algorithms are based on a path that
solves the dual problem corresponding to the DP operation, by utilizing the LLT algo-
rithm for discrete conjugation. In particular, the proposed approaches involve incor-
porating a finite-dimensional approximation of the value function in the dual domain.
Figure 4.1 shows the sketch of the proposed algorithms in this chapter.

4.2. NOTATIONS AND PRELIMINARIES

4.2.1. GENERAL NOTATIONS

We use R to denote the real line and R=R∪ {+∞}, R=R∪ {±∞} to denote its extensions.
The standard inner product inRn and the corresponding induced 2-norm are denoted by
〈·, ·〉 and ∥·∥2, respectively, and the infinity-norm is denoted by ∥·∥∞. We also use ∥·∥2 to
denote the operator norm (with respect to the 2-norm) of a matrix; i.e., for A ∈Rm×n , we
denote ∥A∥2 = sup{∥Ax∥2 : ∥x∥2 = 1}. We use the common convention in optimization
whereby the optimal value of an infeasible minimization (respectively, maximization)
problem is set to +∞ (respectively, −∞).

Continuous (infinite, uncountable) sets are denoted as X,Y, . . .. We use the super-
script d as in Xd to denote the finite discretization of a continuous set X. Moreover, we
use the superscript g to differentiate grid-like (factorized) discretizations. Precisely, a
grid Xg ⊂ Rn is the Cartesian product Xg = Πn

i=1X
g
i = Xg

1 × . . .×Xg
n , where Xg

i is a finite

set of real numbers x1
i < x2

i < . . . < x Xi
i . Assuming Xi ≥ 3 for all i = 1, . . . ,n, we define

X
g
sub

:= Πn
i=1X

g
subi

, where Xg
subi

= Xg
i \ {x1

i , x Xi
i }; that is, Xg

sub is the sub-grid derived by
omitting the smallest and largest elements of Xg in each dimension. The cardinality of a
finite setXd (orXg) is denoted by X . LetX,Y be two arbitrary sets in Rn . The convex hull
ofX is denoted by co(X). The diameter ofX is defined as∆X := supx,y∈X

∥∥x − y
∥∥

2. We use

d(X,Y) := infx∈X,y∈Y
∥∥x − y

∥∥
2 to denote the distance between X and Y. The one-sided

Hausdorff distance from X to Y is defined as dH(X,Y) := supx∈X infy∈Y
∥∥x − y

∥∥
2.

For an extended real-valued function h :Rn →R, the effective domain of h is defined
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J (x+) T [J ](x)

J∗(y) φx (y)

φ∗
x

(
fs(x)

)
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Dual domain

Primal domain

=

min
u

{
C (x,u)+ J (x+)

}

[·]∗

+C∗
x (− fi(x)⊤y)

[·]∗

(a) Setting 4.4.1: dynamics x+ = fs(x)+ fi(x) ·u and cost C (x,u).

J (x+) T [J ](x)

J∗(y) φ(y)

φ∗(
fs(x)

)
T̂ [J ](x)

Dual domain

Primal domain
min

u

{
C (x,u)+ J (x+)

}

[·]∗

+C∗
i (−B⊤y)

[·]∗

+Cs(x)

(b) Setting 4.5.1: dynamics x+ = fs(x)+B ·u and cost C (x,u) =Cs(x)+Ci(u).

Figure 4.1: Sketch of the proposed conjugate VI (ConjVI) algorithms for deterministic dynam-
ics – the standard DP operation in the primal domain (upper red paths) and the conjugate DP
(CDP) operation through the dual domain (bottom blue paths).

by dom(h) := {x ∈Rn : h(x) <+∞}, and the range of h is defined as

rng(h) = max
x∈dom(h)

h(x)− min
x∈dom(h)

h(x).

The Lipschtiz constant of h over a set X⊂ dom(h) is denoted by

L(h;X) := sup
x,y∈X

|h(x)−h(y)∥∥x − y
∥∥

2

.

We also denote L(h) := L
(
h;dom(h)

)
and L(h) := Πn

i=1

[
L−

i (h),L+
i (h)

]
, where L+

i (h) (re-
spectively, L−

i (h)) is the maximum (respectively, minimum) slope of the function h along
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the i -th dimension, i.e.,

L+
i (h) := sup

{
h(x)−h(y)

xi − yi
: x, y ∈ dom(h), xi > yi , x j = y j ( j ̸= i )

}
,

L−
i (h) := inf

{
h(x)−h(y)

xi − yi
: x, y ∈ dom(h), xi > yi , x j = y j ( j ̸= i )

}
.

The subdifferential of h at a point x ∈Rn is defined as

∂h(x) := {
y ∈Rn : h(x̃) ≥ h(x)+〈

y, x̃ −x
〉

,∀x̃ ∈ dom(h)
}
.

Note that ∂h(x) ⊆ L(h) for all x ∈X; in particular, L(h) =∪x∈X∂h(x) if h is convex.
We report the complexities using the standard big O notations O and Õ , where the

latter hides the logarithmic factors. We are mainly concerned with the dependence of
the computational complexities on the size of the finite sets involved (discretization of
the primal and dual domains). In particular, we ignore the possible dependence of the
computational complexities on the dimension of the variables, unless they appear in the
power of the size of those discrete sets; e.g., the complexity of a single evaluation of an
analytically available function is taken to be of O (1), regardless of the dimension of its
input and output arguments. For the reader’s convenience, we also provide the list of the
most important objects used in this chapter in Table 4.1.

Table 4.1: List of the most important notational conventions.

Notation Description Definition

hd Discretization of the function h –

h̃d Extension of the discrete function hd –

hd LERP extension of the discrete function hd (with grid-like domain) –
h∗ Conjugate of h (4.4)

hd∗ Discrete conjugate of h (conjugate of hd) (4.5)
h∗∗ Biconjugate of h (4.6)

hd∗d∗ Discrete biconjugate of h (4.7)
T Dynamic Programming (DP) operator (4.17) & (4.27)

T d Discrete DP (d-DP) operator (4.18)
T̂ Conjugate DP (CDP) operator (4.21)

T̂ d Discrete CDP (d-CDP) operator (4.22) & (4.28)
T̂ d

m Modified d-CDP operator [for Setting 4.5.1] (4.29)

4.2.2. EXTENSION OF DISCRETE FUNCTIONS

Consider an extended real-valued function h :Rn →R, and its discretization hd :Xd →R,
where Xd is a finite subset of Rn . We use the superscript d, as in hd, to denote the dis-
cretization of h. We particularly use this notation in combination with a second oper-
ation to emphasize that the second operation is applied on the discretized version of
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the operand. In particular, we use h̃d : Rn → R to denote the extension of the discrete
function hd :Xd → R. The extension can be considered as a generic parametric approx-

imation h̃d[θ] : Rn → R, where the parameters θ are computed using regression, i.e., by

fitting h̃d[θ] to the data points hd :Xd →R.

Remark 4.2.1 (Complexity of extension operation). We use E to denote the complexity
of a generic extension operator. That is, for each x ∈ Rn , the time complexity of the single

evaluation h̃d(x) is assumed to be of O (E), with E (possibly) being a function of X .

For example, for the linear approximation h̃d(x) =∑B
i=1θi ·bi (x), we have E = B (the

size of the basis), while for the kernel-based approximation h̃d(x) =∑
x̄∈Xd θx̄ ·r (x, x̄), we

generally have E ≤ X . A kernel-based approximator of interest in the following sections
is the multilinear interpolation & extrapolation (LERP) of a discrete function with a grid-

like domain. Hence, we denote this operation with the different notation hd : Rn → R

for the discrete function hd :Xg →R. Notice that the LERP extension preserves the value

of the function at the discrete points, i.e, hd(x) = hd(x) for all x ∈ Xg. To facilitate our
complexity analysis in subsequent sections, we discuss the computational complexity of
LERP in the following remark.

Remark 4.2.2 (Complexity of LERP). Given a discrete function hd : Xg → R with a grid-

like domain Xg ⊂Rn , the time complexity of a single evaluation of the LERP extension hd

at a point x ∈Rn is of O (2n + log X ) = Õ (1) if Xg is non-uniform, and of O (2n) =O (1) if Xg

is uniform. To see this, note that, in the case Xg is non-uniform, LERP requires O (log X )
operations to find the position of x with respect to the grid points, using binary search. If
Xg is a uniform grid, this can be done in O (n) time. Upon finding the position of x, LERP
then involves a series of one-dimensional linear interpolations or extrapolations along
each dimension, which takes O (2n) operations.

For a convex function h : Rn → R, we have ∂h(x) ̸= ; for all x in the relative interior
of dom(h) [70, Prop. 5.4.1]. This characterization of convexity can be extended to discrete
functions. A discrete function hd : Xd → R is called convex-extensible if ∂hd(x) ̸= ; for
all x ∈ dom(h) = Xd. Equivalently, hd is convex-extensible, if it can be extended to a

convex function h̃d :Rn →R such that h̃d(x) = hd(x) for all x ∈Xd; we refer the reader to,
e.g., [91] for different extensions of the notion of convexity to discrete functions.

4.2.3. LEGENDRE-FENCHEL TRANSFORM

Consider an extended-real-valued function h : Rn → R, with a nonempty effective do-
main dom(h) = X. The Legendre-Fenchel transform (convex conjugate transform) of h
is the function

h∗ :Rn →R : y 7→ sup
x∈X

{〈
y, x

〉−h(x)
}

. (4.4)

Note that the conjugate function h∗ is convex by construction. We particularly consider
discrete conjugation, which involves computing the conjugate function using the dis-
cretized version hd : Xd → R of the function h, where Xd ∩X ̸= ;. We use the notation
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[·]d∗, as opposed the standard notation [·]∗, for discrete conjugation; that is,

hd∗ = [hd]∗ :Rn →R : y 7→ max
x∈Xd

{〈
y, x

〉−hd(x)
}

. (4.5)

The biconjugate of h is the function

h∗∗ = [h∗]∗ :Rn →R : x 7→ sup
y∈Rn

{〈
x, y

〉−h∗(y)
}= sup

y∈Rn
inf
z∈X

{〈
x − z, y

〉+h(z)
}

. (4.6)

Using the notion of discrete conjugation [·]d∗, we also define the discrete biconjugate

hd∗d∗ = [hd∗]d∗ :Rn →R : x 7→ max
y∈Yd

{〈
x, y

〉−hd∗d(y)
}
= max

y∈Yd
min
z∈Xd

{〈
x − z, y

〉+hd(z)
}

,

(4.7)
where Xd and Yd are finite subsets of Rn such that Xd ∩X ̸= ;.

The Linear-time Legendre Transform (LLT) is an efficient algorithm for computing
the discrete conjugate over a finite grid-like dual domain. Precisely, to compute the con-
jugate of the function h : X→ R, LLT takes its discretization hd : Xd → R as an input,
and outputs hd∗d : Yg → R, for the grid-like dual domain Yg. That is, LLT is equivalent
to the operation [·]d∗d. We refer the interested reader to [77] for a detailed description
of the LLT algorithm. We will use the following result for analyzing the computational
complexity of the proposed algorithms.

Remark 4.2.3 (Complexity of LLT). Consider a function h : Rn → R and its discretiza-
tion over the grid Xg ⊂ Rn such that Xg ∩dom(h) ̸= ;. LLT computes the discrete conju-
gate function hd∗d : Yg → R using the data points hd : Xg → R, with a time complexity of
O

(
Πn

i=1(Xi +Yi )
)
, where Xi (respectively, Yi ) is the cardinality of the i -th dimension of the

grid Xg (respectively, Yg). If the grids Xg and Yg have approximately the same cardinality
in each dimension, then the time complexity of LLT is of O (X +Y ) [77, Cor. 5].

Hereafter, to simplify the exposition, we consider the following assumption.

Assumption 4.2.4 (Grid sizes in LLT). The primal and dual grids used for LLT operation
have approximately the same cardinality in each dimension.

4.2.4. PRELIMINARY RESULTS ON CONJUGATE TRANSFORM
We now provide two preliminary lemmas on the error of discrete conjugate transform
and its approximate version. To this end, we recall some of the notations introduced so
far. For a function h :Rn →Rwith nonempty effective domain X= dom(h), let hd :Xd →
R be the discretization of h where Xd ⊂ X, h∗ : Rn → R be the conjugate (4.4) of h, and
hd∗ :Rn →R be the discrete conjugate (4.5) of h using the primal discrete domain Xd.

Lemma 4.2.5 (Conjugate vs. discrete conjugate). Let h be proper, closed, and convex. For
each y ∈Rn , it holds that

0 ≤ h∗(y)−hd∗(y) ≤ min
x∈∂h∗(y)

{[∥∥y
∥∥

2 +L
(
h; {x}∪Xd)] ·d(x,Xd)

}
=: ẽ1(y,h,Xd). (4.8)

If, moreover, X is compact and h is Lipschitz continuous, then for each y ∈Rn ,

0 ≤ h∗(y)−hd∗(y) ≤ [∥∥y
∥∥

2 +L(h)
] ·dH(X,Xd) =: ẽ2(y,h,Xd). (4.9)
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The preceding lemma indicates that discrete conjugate transform leads to an under-
approximation of the conjugate function, with the error depending on the discrete rep-
resentationXd of the primal domainX. In particular, the inequality (4.8) implies that for
y ∈ Rn , if Xd contains x ∈ ∂h∗(y), which is equivalent to y ∈ ∂h(x) by the assumptions,
then hd∗(y) = h∗(y).

We next present another preliminary however vital result on approximate conju-
gation. Let h∗d : Yg → R be the discretization of h∗ over the grid-like dual domain

Yg ⊂ dom(h∗) ⊆ Rn . Also, let h∗d : Rn → R be the extension of h∗d using LERP. The ap-

proximate conjugation is then simply the approximation of h∗(y) via h∗d(y) for y ∈ Rn .
This approximation introduces a one-sided error:

Lemma 4.2.6 (Approximate conjugation using LERP). LetX= dom(h) be compact. Then,

0 ≤ h∗d(y)−h∗(y) ≤∆X ·d(y,Yg), ∀y ∈ co(Yg). (4.10)

If, moreover, the dual grid Yg is such that co(Yg
sub) ⊇ L(h), then

0 ≤ h∗d(y)−h∗(y) ≤∆X ·dH
(

co(Yg),Yg), ∀y ∈Rn . (4.11)

As expected, the error due to the discretization Yg of the dual domain Y depends on
the resolution of the discrete dual domain. We also note that the condition co(Yg

sub) ⊇
L(h) in the second part of the preceding lemma, essentially requires the dual grid Yg to
“more than cover the range of slopes” of the function h.

The algorithms developed in this chapter use LLT to compute discrete conjugate
functions. However, as we will see, we sometimes require the value of the conjugate
function at points other than the dual grid points used in LLT. To solve this issue, we use
the same approximation described above, but now for discrete conjugation. In this re-
gard, we note that the result of Lemme 4.2.6 also holds for discrete conjugation. To be
precise, consider the discrete function hd : Xd → R. Let hd∗d : Yg → R be the discretiza-

tion of hd∗ over the grid-like dual domainYg ⊂Rn , and hd∗d :Rn →R be the extension of
hd∗d using LERP.

Corollary 4.2.7 (Approximate discrete conjugation using LERP). We have

0 ≤ hd∗d(y)−hd∗(y) ≤∆Xd ·d(y,Yg), ∀y ∈ co(Yg). (4.12)

If, moreover, the grid Yg is such that co(Yg
sub) ⊇ L(hd), then

0 ≤ hd∗d(y)−hd∗(y) ≤∆Xd ·dH
(

co(Yg),Yg) ∀y ∈Rn . (4.13)

4.3. PROBLEM STATEMENT AND STANDARD SOLUTION
In this chapter, we consider the optimal control of deterministic, discrete-time systems

xt+1 = f (xt ,ut ), t = 0, . . . ,T −1, (4.14)
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where f :Rn ×Rm →Rn describes the dynamics, and T ∈N is the finite horizon. We also
consider state and input constraints of the form{

xt ∈X⊂Rn for t ∈ {0, . . . ,T },
ut ∈U⊂Rm for t ∈ {0, . . . ,T −1}.

(4.15)

Let C : X×U→ R and CT : X→ R be the stage and terminal costs, respectively. Note
that we let the stage cost C take +∞ for (x,u) ∈ X×U so that it can embed the state-
dependent input constraints. For an initial state x0 ∈ X, the cost incurred by the state
trajectory x = (x0, . . . , xT ) in response to the input sequence u = (u0, . . . ,uT−1) is

J (x0,u) =∑T−1
t=0 C (xt ,ut )+CT (xT ).

The problem of interest is then to find an optimal control sequence u⋆(x0), that is, a
solution to the minimization problem

J⋆(x0) = min
u

{
J (x0,u) : (4.14) & (4.15)

}
. (4.16)

In this chapter, we assume that the problem data satisfy the following conditions.

Assumption 4.3.1 (Problem data). Assume:

(i) Dynamics. The mapping f :Rn ×Rm →Rn is locally Lipschitz continuous.

(ii) Constraints. The sets X and U are compact. Moreover, the set of admissible inputs
U(x) := {u ∈U : C (x,u) <+∞, f (x,u) ∈X} is nonempty for all x ∈X.

(iii) Cost functions. C :X×U→R has a compact effective domain. Moreover, C and CT

are Lipschitz continuous.

The properties laid out in Assumption 4.3.1 imply that the set U(x) of admissible
inputs is nonempty and compact, and the objective in (4.16) is continuous (compactness
of U(x) follows from compactness of dom(C ) and X, and continuity of f ). Hence, the
optimal value in (4.16) is achieved. To solve this problem using VI, we have to solve the
DP equation

Jt (xt ) = min
u

{
C (xt ,ut )+ Jt+1(xt+1) : (4.14) & (4.15)

}
, xt ∈X,

backward in time t = T − 1, . . . ,0, initialized by JT = CT . The iteration finally outputs
J0 = J⋆ [68, Prop. 1.3.1]. To simplify the exposition, let us embed the state and input
constraints in the cost functions (C and Jt ) by extending them to infinity outside their
effective domain. Let us also drop the time subscript t and focus on a single step of the
recursion by defining the DP operator

T J (x) := min
u

{
C (x,u)+ J

(
f (x,u)

)}
, x ∈X, (4.17)

so that Jt =T Jt+1 =T (T−t ) JT for t = T −1, . . . ,0.
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Notice that the DP operation (4.17) requires solving an infinite number of optimiza-
tion problems for all x ∈ X. Except for a few cases with an available closed-form solu-
tion, the exact implementation of DP operation is impossible. A standard approxima-
tion scheme is then to incorporate function approximation techniques and solve (4.17)
for a finite sample (i.e., a discretization) of the underlying continuous state space. Pre-
cisely, we consider solving the optimization in (4.17) for a finite number of x ∈Xg, where
Xg ⊂ X is a grid-like discretization of the state space. The T -step VI problem then in-
volves finding the discrete costs-to-go J d

t : Xg → R for t = 0,1, . . . ,T −1. Notice that the
DP operator T now takes the discrete function J d :Xg → R as an input. However, in or-
der to compute the output [T J ]d : Xg → R, we require evaluating J at points f (x,u) for
(x,u) ∈ Xg ×U, which do not necessarily belong to the discrete state space Xg. Hence,
along with the discretization of the state space, we also need to consider some form of

function approximation for the cost-to-go function, that is, an extension J̃ d : X→ R of
the function J d :Xg →R. Next to be addressed is the issue of solving the minimization

min
u∈U

{
C (x,u)+ J̃ d

(
f (x,u)

)}
,

for each x ∈ Xg, where the next step cost-to-go is approximated by the extension J̃ d.
This minimization problem is often a difficult, non-convex problem. Again, a common
approximation involves enumeration over a proper discretization Ud ⊂ U of the inputs
space.1 Incorporating these approximations, we can introduce the discrete DP (d-DP)
operator as follows

T d J d(x) := min
u∈Ud

{
C (x,u)+ J̃ d

(
f (x,u)

)}
, x ∈Xg. (4.18)

Under some regularity assumptions, the error corresponding to these approximations
depends on the discretization of the state and input spaces and the extension operation:

Proposition 4.3.2 (Error of d-DP). Consider the DP operator T (4.17) and the d-DP

operator T d (4.18). Assume that the functions J and J̃ d are Lipschtiz continuous, and

J̃ d(x) = J (x) for all x ∈Xg. Then,

−e1 ≤T d J d(x)−T J (x) ≤ e1 +e2(x), ∀x ∈Xg,

where

e1 =
[

L(J )+L( J̃ d)
] ·dH(X,Xg),

e2(x) = [
L(J )+L(C )

] ·dH
(
U(x),Ud(x)

)
.

The VI algorithm that utilizes the d-DP operator (4.18) will be our benchmark for
evaluating the performance of the proposed algorithms. To this end, we discuss the time
complexity of the d-DP operation in the following remark.

1We assume that the joint discretization of the state-input space is “proper” in the sense that the feasibility
condition of Assumption 4.3.1-(ii) holds for the discrete state-input space, i.e.,Ud(x) :=U(x)∩Ud is nonempty
for all x ∈Xg.
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Remark 4.3.3 (Complexity of d-DP). Let the time complexity of a single evaluation of the
extension operator [̃·] in (4.18) be of O (E). Then, the time complexity of the d-DP opera-
tion (4.18) is of O

(
XU E

)
. Moreover, for solving the T -step VI problem, the time complexity

increases linearly with the horizon T .

Let us clarify that the scheme described above essentially involves approximating a
continuous-state/action MDP with a finite-state/action MDP, and then applying the VI
algorithm. In this regard, we note that O (XU ) is the best existing time-complexity in the
literature for finite MDPs; see, e.g., [89, 92]. Indeed, regardless of the problem data, the d-
DP algorithm involves solving a minimization problem for each x ∈Xg, via enumeration
over u ∈ Ud. However, as we will see in the subsequent sections, for certain classes of
problems, it is possible to exploit the structure of the underlying continuous setup to
avoid the minimization over the input and achieve a lower time complexity.

4.4. FROM MINIMIZATION TO ADDITION
We now introduce a general class of problems that allows us to employ conjugate duality
for the DP problem and hence propose an alternative path for implementing the corre-
sponding operator. In particular, we show that the linearity of dynamics in the input is
the key property in developing the alternative solution, whereby the minimization in the
primal domain is transformed to an addition in the dual domain at the expense of three
conjugate transforms. The problem class of interest is as follows:

Setting 4.4.1. The dynamics are input-affine, that is, f (x,u) = fs(x)+ fi(x) ·u, where fs :
Rn →Rn is the “state” dynamics, and fi :Rn →Rn×m is the “input” dynamics.

4.4.1. THE d-CDP OPERATOR
Alternatively, we can approach the optimization problem in the DP operation (4.17) in
the dual domain. To this end, let us fix x ∈ X, and consider the following reformulation
of the problem (4.17)

T J (x) = min
u,z

{
C (x,u)+ J (z) : z = f (x,u)

}
.

Notice how for input-affine dynamics of Setting 4.4.1, this formulation resembles the
infimal convolution (4.3) (by taking w1 = z and w2 = u, the equality constraint becomes
w1 − fi(x) ·w2 = fs(x)). In this regard, consider the corresponding dual problem

T̂ J (x) := max
y

min
u,z

{
C (x,u)+ J (z)+〈

y, f (x,u)− z
〉}

, (4.19)

where y ∈ Rn is the dual variable. Indeed, for input-affine dynamics, we can derive an
equivalent formulation for the dual problem (4.19), which forms the basis for the pro-
posed algorithms.

Lemma 4.4.2 (CDP operator). Let

C∗
x (v) := max

u

{〈v,u〉−C (x,u)
}
, v ∈Rm , (4.20)
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denote the partial conjugate of the stage cost with respect to the input variable u. Then,
for the input-affine dynamics of Setting 4.4.1, the operator T̂ (4.19) equivalently reads as

φx (y) :=C∗
x (− fi(x)⊤y)+ J∗(y), y ∈Rn , (4.21a)

T̂ J (x) =φ∗
x

(
fs(x)

)
, x ∈X. (4.21b)

As we mentioned, the construction above suggests an alternative path for comput-
ing the output of the DP operator through the conjugate domain. We call this alternative
approach conjugate DP (CDP). Figure 4.1a characterizes this alternative path schemat-
ically. Numerical implementation of CDP operation requires the computation of con-
jugate functions. In particular, as shown in Figure 4.1a, CDP operation involves three
conjugate transforms. In this chapter, we assume that the partial conjugate C∗

x of the
stage cost in (4.20) is analytically available.

Assumption 4.4.3 (Conjugate of stage cost). The conjugate function C∗
x (4.20) is analyt-

ically available. That is, the complexity of evaluating C∗
x (v) for each v ∈Rm is of O (1).

The two remaining conjugate operations of the CDP path in Figure 4.1a are handled
numerically. In particular, we again take a sample-based approach and compute T̂ J for
a finite number of states x ∈ Xg. To be precise, for a grid-like discretization Yg of the
dual domain, we employ LLT to compute J d∗d :Yg →R using the data points J d :Xg →R.
Proper construction of Yg will be discussed in Section 4.4.3. Now, let

ϕd
x (y) :=C∗

x (− fi(x)⊤y)+ J d∗d(y), y ∈Yg,

be a discrete approximation ofφx in (4.21a). The approximation stems from the fact that
we used the discrete conjugate J d∗ instead of the conjugate J∗. Using this object, we can
also handle the last conjugate transform in Figure 4.1a numerically, and approximate
φ∗

x

(
fs(x)

)
in (4.21b) by

ϕd∗
x

(
fs(x)

)= max
y∈Yg

{〈
fs(x), y

〉−ϕd
x (y)

}
,

via enumeration over y ∈Yg. Based on the construction described above, we can intro-
duce the discrete CDP (d-CDP) operator as follows

J d∗d(y) = max
x∈Xg

{〈
y, x

〉− J d(x)
}

, y ∈Yg, (4.22a)

ϕd
x (y) =C∗

x (− fi(x)⊤y)+ J d∗d(y), y ∈Yg, (4.22b)

T̂ d J d(x) :=ϕd∗
x

(
fs(x)

)
, x ∈Xg. (4.22c)

Algorithm 3 provides the pseudo-code for the numerical implementation of the T -
step conjugate VI (ConjVI) algorithm that utilizes the d-CDP operation (4.22). Next, we
analyze the complexity and error of the d-CDP operation.

4.4.2. ANALYSIS OF d-CDP OPERATOR
We begin with the computational complexity of the d-CDP operator.
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Algorithm 3 ConjVI algorithm via d-CDP operator (4.22) for Setting 4.4.1.

Input: dynamics fs : Rn → Rn , fi : Rn → Rn×m ; discrete state space Xg ⊂ X; conjugate of stage
cost C∗

x :Rm →R for x ∈Xg; discrete terminal cost C d
T :Xg →R.

Output: discrete costs-to-go J d
t :Xg →R, t = 0,1, . . . ,T .

initialization:
1: J d

T (x) ←C d
T (x) for x ∈Xg;

backward iteration:
2: for t = T, . . . ,1 do
3: construct the grid Yg;

d-CDP operation:
4: use LLT to compute J d∗d

t :Yg →R from J d
t :Xg →R;

5: for each x ∈Xg do
6: ϕd

x (y) ←C∗
x (− fi(x)⊤y)+ J d∗d

t (y) for y ∈Yg;

7: J d
t−1(x) ← T̂ d J d

t (x) = max
y∈Yg

{〈
fs(x), y

〉−ϕd
x (y)

}
;

8: end for

9: end for

Theorem 4.4.4 (Complexity of d-CDP). Let Assumptions 4.2.4 and 4.4.3 hold. Then, the
implementation of the d-CDP operator (4.22) in Algorithm 3 requires O (X Y ) operations.

Recall that the time complexity of the d-DP operator (4.18) is of O (XU E); see Re-
mark 4.3.3. Comparing this complexity to the one reported in Theorem 4.4.4, points to
a basic characteristic of the proposed approach: CDP avoids the minimization over the
control input in DP and casts it as a simple addition in the dual domain at the expense of
three conjugate transforms. Consequently, the time complexity is transferred from the
primal input domain Ud into the dual state domain Yg. This observation implies that if
Y <U E , then d-CDP is expected to computationally outperform d-DP. We also note that
the complexity of the ConjVI Algorithm 3 for solving the T -step VI problem increases
linearly with the horizon T (assuming that the dual grid Yg can be constructed with at
most O (X ) operations; see Remark 4.4.7).

We now consider the error introduced by the d-CDP operator (4.22) with respect to
the DP operator (4.17). Let us begin with presenting an alternative representation of the
d-CDP operator that sheds some light on the main sources of error.

Proposition 4.4.5 (d-CDP reformulation). Assume that the stage cost C : X×U→ R is
convex in the input variable. The d-CDP operator (4.22) equivalently reads as

T̂ d J d(x) = min
u

{
C (x,u)+ J d∗d∗(

f (x,u)
)}

, x ∈Xg, (4.23)

where J d∗d∗ is the discrete biconjugate of J , using the primal gridXg and the dual gridYg.

First, note that

J d∗d∗(x) = max
y∈Yg

{〈
x, y

〉− J d∗d(y)
}

, (4.24)
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is a max-plus linear combination using the basis functions
{〈·, y

〉
: y ∈Yg

}
and coeffi-

cients
{

J d∗d(y) : y ∈Yg
}
. That is, ConjVI algorithm, similarly to the approximate VI al-

gorithms in [89, 90], employs a max-plus approximation of J . The key difference in the
proposed algorithm is however that by choosing a grid-like dual domain Yg, we can in-
corporate the linear-time complexity of the LLT in our advantage in computing the coef-
ficients

{
J d∗d(y) : y ∈Yg

}
. Moreover, as we discuss below, instead of using a fixed basis,

we incorporate a dynamic basis by updating the grid Yg at each iteration in order to re-
duce the error of the algorithm.

Comparing the representations (4.17) and (4.23), we also note that the d-CDP oper-
ator T̂ d differs from the DP operator T in that it uses J d∗d∗ as an approximation of J .
This observation points to two main sources of error in the proposed approach, namely,
dualization and discretization. Indeed, T̂ d is a discretized version of the dual prob-
lem (4.19). Regarding the dualization error, we note that the d-CDP operator is “blind” to
non-convexity; that is, it essentially replaces the cost-to-go J by its convex envelope (the
greatest convex function that supports J from below). The discretization error, on the
other hand, depends on the choice of the finite primal and dual domains Xg and Yg. In
particular, by a proper choice of Yg, it is indeed possible to eliminate the corresponding
error due to discretization of the dual domain. To illustrate, let J d be a one-dimensional,
discrete, convex-extensible function with domainXg = {xi }N

i=1 ⊂R, where xi < xi+1. Also,

chooseYg = {y i }N−1
i=1 ⊂Rwith y i = J d(xi+1)−J d(xi )

xi+1−xi as the discrete dual domain. Then, for all

x ∈ co(Xg) = [x1, xN ], we have J d∗d∗(x) = J d(x), where [·] is the LERP extension. Hence,
the only source of error under such construction is the discretization of the primal state

space (i.e., approximation of the true J via J d). However, a similar construction of Yg in
dimensions n ≥ 2 can lead to dual grids of size Y = O (X n), which makes the proposed
algorithm computationally inefficient; see Theorem 4.4.4. The following result provides
us with specific bounds on the discretization error that point to a more practical way for
construction of Yg.

Theorem 4.4.6 (Error of d-CDP). Consider the DP operator T (4.17) and the d-CDP op-
erator T̂ d (4.22). Assume that C :X×U→ R is convex in the input variable. Also assume
that J :X→R is a Lipschitz continuous, convex function. Then,

−ex ≤T J (x)− T̂ d J d(x) ≤ ey(x), ∀x ∈Xg, (4.25)

where

ey(x) = [∥∥ fs(x)
∥∥

2 +
∥∥ fi(x)

∥∥
2 ·∆U+∆X

] ·d
(
∂T J (x),Yg), (4.26a)

ex = [∆Yg +L(J )] ·dH(X,Xg). (4.26b)

4.4.3. CONSTRUCTION OF Yg

We now use the result of our error analysis in Theorem 4.4.6 to provide a computationally
efficient numerical scheme for construction of the gridYg in Algorithm 3. Notice how the
two terms ey and ex in(4.26) capture the errors due to the discretization of the dual state
space (Y) and the primal state space (X), respectively. In particular, the first error term
suggests that we chooseYg such that ∂T J (x)∩Yg ̸= ; for all x ∈Xg. Even if we had access
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to T J , satisfying such a condition can again lead to dual grids of size Y =O (X n). A more
realistic objective is then to chooseYg such that co(Yg)∩∂T J (x) ̸= ; for all x ∈Xg. With
such a construction, the distance d

(
∂T J (x),Yg

)
and hence ey decrease by using finer

grids for the dual domain. The latter condition is satisfied if co(Yg) ⊇ L(T J ). Hence, we
need to approximate “the range of slopes” of the function T J . Notice, however, that we
do not have access to T J since it is the output of the d-CDP operation in Algorithm 3.
What we have at our disposal as inputs are the stage cost C and the next step (discrete)
cost-to-go J d. A coarse way to approximate the range of slopes of T J is then to use
the extrema of the functions C and J d, and the diameter of Xg in each dimension. The
following remark explains such an approximation for the construction of Yg.

Remark 4.4.7 (Construction of Yg). Let

rng(C ) = max
(x,u)∈dom(C )

C (x,u) − min
(x,u)∈dom(C )

C (x,u).

Compute
rng(J d) = max

x∈Xg
J d(x) −min

x∈Xg
J d(x),

and then choose Yg =Πn
i=1Y

g
i ⊂Rn such that for each dimension i = 1, . . . ,n, we have

±α · rng(C )+ rng(J d)

∆Xg
i

∈ co(Yg
i ).

Here, α > 0 is a scaling factor mainly depending on the dimension n of the state space.
Construction ofYg as described above requires O (X ) operations per iteration (for comput-
ing rng(J d) via enumeration).

4.5. FROM QUADRATIC TO LINEAR COMPLEXITY
In this section, we focus on a specific subclass of the optimal control problems consid-
ered in this study. In particular, we exploit the problem structure in this subclass to re-
duce the computational cost of the d-CDP operation. In this regard, a closer look to Algo-
rithm 3 reveals a computational bottleneck in its numerical implementation: the com-
putation of the objects ϕd

x :Yg →R, x ∈Xg, and their conjugates which requires working
in the product spaceXg ×Yg. This step is indeed the dominating factor in the time com-
plexity of O (X Y ) of the d-CDP operation; see the proof of Theorem 4.4.4. Hence, if the
structure of the problem allows for the complete decomposition of these objects, then
a significant reduction in the time complexity is achievable. This is indeed possible for
problems with separable data:

Setting 4.5.1. (i) The dynamics are input-affine with state-independent input dynamics,
i.e., f (x,u) = fs(x)+B ·u, where fs :Rn →Rn and B ∈Rn×m . (ii) The stage cost is separable
in state and input, i.e., C (x,u) = Cs(x)+Ci(u), where Cs : X→ R and Ci : U→ R are the
state and input costs, respectively.

Note that the separability of the stage cost C implies that the constraints are also
separable, i.e, there are no state-dependent input constraints.
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4.5.1. MODIFIED d-CDP OPERATOR
For the separable cost of Setting 4.5.1, the state cost (Cs) can be taken out of the mini-
mization in the DP operator (4.17) as follows

T J (x) =Cs(x)+min
u

{
Ci(u)+ J

(
f (x,u)

)}
, x ∈X. (4.27)

Following a similar dualization and discretization procedure described in Section 4.4.1,
we can derive the corresponding d-CDP operator

J d∗d(y) = max
x∈Xg

{〈
y, x

〉− J d(x)
}

, y ∈Yg, (4.28a)

ϕd(y) :=C∗
i (−B⊤y)+ J d∗d(y), y ∈Yg, (4.28b)

T̂ d J d(x) =Cs(x)+ϕd∗(
fs(x)

)
, x ∈Xg. (4.28c)

Here, again, we assume that the conjugate of the input cost is analytically available (sim-
ilar to Assumption 4.4.3, now in the context posed by Setting 4.5.1).

Assumption 4.5.2 (Conjugate of input cost). The conjugate function

C∗
i (v) = max

u
{〈v,u〉−Ci(u)} , v ∈Rm ,

is analytically available, i.e., the complexity of evaluating C∗
i (v) for each v ∈Rm is of O (1).

Notice how the function ϕd in (4.28b) is now independent of the state variable x.
This means that the computation of ϕd requires O (X + Y ) operations, as opposed to
O (X Y ) for the computation of ϕd

x in Algorithm 3. What remains to be addressed is the
computation of the conjugate functionϕd∗(

fs(x)
)= maxy∈Yg {

〈
fs(x), y

〉−ϕ(y)} for x ∈Xg

in (4.28c). The straightforward maximization via enumeration over y ∈Yg for each x ∈Xg

(as in Algorithm 3) again leads to a time complexity of O (X Y ). The key idea here is to use
approximate discrete conjugation:

• Use LLT to compute ϕd∗d :Zg →R from the data points ϕd :Yg →R for a grid Zg;

• For each x ∈Xg, use LERP to compute ϕd∗d
(

fs(x)
)

using ϕd∗d :Zg →R.

Proper construction of the grid Zg will be discussed in Section 4.5.3. With such an ap-
proximation, the d-CDP operator (4.28) modifies to

J d∗d(y) = max
x∈Xg

{〈
y, x

〉− J d(x)
}

, y ∈Yg, (4.29a)

ϕd(y) =C∗
i (−B⊤y)+ J d∗d(y), y ∈Yg, (4.29b)

ϕd∗d(z) = max
y∈Yg

{〈
z, y

〉−ϕd(y)
}

, z ∈Zg, (4.29c)

T̂ d
m J d(x) :=Cs(x)+ϕd∗d

(
fs(x)

)
, x ∈Xg. (4.29d)

Algorithm 4 provides the pseudo-code for the ConjVI algorithm that utilizes the mod-
ified d-CDP operator.
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Algorithm 4 ConjVI algorithm via modified d-CDP operator (4.29) for Setting 4.5.1.

Input: dynamics fs :Rn →Rn , B ∈Rn×m ; discrete state spaceXg ⊂X; discrete state cost C d
s :Xg →

R; conjugate of input cost C∗
i :Rm →R; discrete terminal cost C d

T :Xg →R.

Output: discrete costs-to-go J d
t :Xg →R, t = 0,1, . . . ,T .

initialization:
1: construct the grid Zg;
2: J d

T (x) ←C d
T (x) for x ∈Xg;

backward iteration:
3: for t = T, . . . ,1 do
4: construct the grid Yg;

modified d-CDP operation:
5: use LLT to compute J d∗d

t :Yg →R from J d
t :Xg →R;

6: ϕd(y) ←C∗
i (−B⊤y)+ J d∗d

t (y) for y ∈Yg;

7: use LLT to compute ϕd∗d :Zg →R from ϕd :Yg →R;
8: for each x ∈Xd do
9: use LERP to compute ϕd∗d

(
fs(x)

)
from ϕd∗d :Zg →R;

10: J d
t−1(x) ← T̂ d

m J d
t (x) =C d

s (x)+ϕd∗d
(

fs(x)
)

;
11: end for

12: end for

4.5.2. ANALYSIS OF MODIFIED d-CDP OPERATOR
We again begin with the time complexity of the modified d-CDP operator.

Theorem 4.5.3 (Complexity of modified d-CDP). Let Assumptions 4.2.4 and 4.5.2 hold.
Then, the computation of the modified d-CDP operator (4.29) in Algorithm 4 has a time
complexity of Õ (X +Y +Z ).

Once again, we note that in the application of the ConjVI Algorithm 4 for solving
the T -step VI problem, the time complexity increases linearly with the horizon T (as-
suming that the grids Yg and Zg can be constructed with at most O (X ) operations; see
Remarks 4.4.7 and 4.5.5).

Comparing the time complexity of the modified d-CDP operator T̂ d
m (4.29) with that

of d-DP operator T d (4.18) and d-CDP operator T̂ d (4.22) (i.e., O (XU E) and O (X Y ), re-
spectively), we observe a reduction from quadratic complexity to (log-)linear complexity.
To illustrate, let us assume that all of the involved grids (Xg, Yg, and Zg) are of the same
size, i.e., Y , Z = X (this is also consistent with Assumption 4.2.4). Then, the complexity
of T̂ d is of O (X 2), while the complexity of T̂ d

m is of Õ (X ).
We next consider the error of the proposed algorithm by providing a bound on the

difference between the modified d-CDP operator (4.29) and the DP operator (4.27).

Theorem 4.5.4 (Error of modified d-CDP). Consider the DP operator T (4.27) and the
modified d-CDP operator T̂ d

m (4.29). Assume that the input cost Ci :U→R is convex, and
the function J : X→ R is a Lipschitz continuous, convex function. Also, assume that the
grid Zg is such that co(Zg) ⊇ fs(Xg). Then,

− (
ex +ez

)≤T J (x)− T̂ d
m J d(x) ≤ em

y (x), ∀x ∈Xg, (4.30)
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where

em
y (x) = [∥∥ fs(x)

∥∥
2 +∥B∥2 ·∆U+∆X

] ·d
(
∂
(
T J −Cs

)
(x),Yg), (4.31a)

ex = [∆Yg +L(J )] ·dH(X,Xg), (4.31b)

ez =∆Yg ·dH
(

fs(Xg),Zg). (4.31c)

4.5.3. CONSTRUCTION OF Yg AND Zg

We now provide specific guidelines for proper construction of the grids Yg and Zg using
the result of our error analysis in Theorem 4.5.4. Once again, the three terms capture the
errors due to discretization in y , x, and z, respectively. Concerning the grid Yg, because
of the error term em

y (4.31a), similar guidelines to the ones provided in Section 4.4.3 apply

here. In particular, notice that em
y now depends on d

(
∂
(
T J−Cs

)
(x),Yg

)
, and hence in the

construction of Yg, we need to consider the range of slopes of T J −Cs. This essentially
means using rng(Ci) instead of rng(C ) in Remark 4.4.7.

Next to be addressed is the construction of the grid Zg. Here, we are dealing with
the issue of constructing the dual grid for approximate discrete conjugation. Then, by
Corollary 4.2.7, we can

• either construct a fixed grid Zg such that co(Zg) ⊇ fs(Xg),

• or construct Zg dynamically such that co(Zg
sub) ⊇ L(ϕd) at each iteration.

The former has a one-time computational cost of O (X ), while the latter requires O (Y )
operations per iteration. For this reason, as also assumed in Theorem 4.5.4, we use the
first method to construction Zg. The following remark summarizes this discussion.

Remark 4.5.5 (Construction of Zg). Construct the grid Zg such that co(Zg) ⊇ fs(Xg). This
can be done by finding the vertices of the smallest hyper-rectangle that contains the set
fs

(
Xg

)
. Such a construction has a one-time computational cost of O (X ).

4.5.4. PERFECT TRANSFORMATION

Let us first note that the developed algorithms involve two conjugate transforms at the
beginning and end of each step (see, e.g., lines 5 and 7 in Algorithm 4). Hence, the possi-
bility of a “perfect” transformation of the minimization in the primal domain to a simple
addition in the conjugate domain is interesting since it allows for performing the value
iteration completely in the conjugate domain for the conjugate of the costs-to-go. In
other words, we can stay in the conjugate domain over multiple steps in time, and avoid
the conjugate operation at the beginning of the intermediate steps. This, in turn, leads to
a lower computational cost in multistep implementations. However, for such a perfect
transformation to be possible, we need to impose further restrictions on the problem
data. To be precise, on top of the properties laid out in Setting 4.5.1, we need

• the dynamics to be linear, i.e., f (x,u) = Ax +Bu, with invertible A ∈Rn×n ,

• and the cost to be state-independent, i.e., Cs(x) = 0, and hence C (x,u) =Ci(u).
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For systems satisfying these conditions, the DP operator reads as

T J (x) = min
u

{
Ci(u)+ J (Ax +Bu)

}
, x ∈X,

and its conjugate can be shown to be given by

[T J ]∗(y) =C∗
i (−B⊤A−⊤y)+ J∗(A−⊤y), y ∈Rn .

Notice how the minimization in the DP operator in the primal domain is perfectly trans-
formed to an addition in the dual domain. This property indeed allows us to stay in
the dual domain over multiple steps in time, while only computing the conjugate of the
costs in the intermediate steps. The possibility of such a perfect transformation, accom-
panied by the application of LLT for better time complexity, was first noticed in [85].
Indeed, there, the authors introduced the “fast value iteration” algorithm for a more re-
stricted class of DP problems (besides the properties discussed above, they required,
among other conditions, the state matrix A to be non-negative and monotone). In this
regard, we also note that, as in [85], the possibility of staying in the conjugate domain
over multiple steps is particularly interesting for infinite-horizon problems.

4.5.5. TOTAL COMPLEXITY OF SOLVING THE OPTIMAL CONTROL PROBLEM
We finish this section with some remarks on using the output of the backward value
iteration for finding a suboptimal control sequence u⋆(x0) for a given instance of the
optimal control problem with initial state x0. Having the discrete costs-to-go J d

t : Xg →
R, t = 0,1, . . . ,T −1, at our disposal (the output of the VI or ConjVI algorithms), at each
time step, we can use the greedy action with respect to the next step’s cost-to-go, i.e.,

u⋆t ∈ argmin
ut∈Ud

{
C (xt ,ut )+ J̃ d

t+1

(
f (xt ,ut )

)}
, t = 0,1, . . . ,T −1, (4.32)

for a proper discrete input space Ud. Assuming these minimization problems are han-
dled via enumeration, they lead to an additional computational burden of O (U E) per
iteration, where E represents the complexity of the extension operation in (4.32). Then,
the total time complexity of solving a T -step optimal control problem (i.e., the time re-
quirement of backward value iteration for finding J d

t , t = 0,1, . . . ,T − 1, plus the time
requirement of forward iteration for finding u⋆t , t = 0,1, . . . ,T −1) of the three algorithms
can be summarized as follows.2

2We note that the standard VI algorithm that utilizes the d-DP operation (4.18) also provides us with control
laws µd

t : Xg → Ug, t = 0,1, . . . ,T −1. However, the ConjVI algorithms only provide us with the costs J d
t , t =

0,1, . . . ,T − 1. Hence, when the standard VI algorithm is applied, we can alternatively use the control laws,
accompanied by a proper extension operator, to produce a suboptimal control sequence, i.e.,

u⋆t (xt ) = µ̃d
t (xt ), t = 0,1, . . . ,T −1.

This method has a time complexity of O (E), where E represents the complexity of the extension operation
used above. This complexity can be particularly lower than that of generating greedy actions with respect to
the computed costs in (4.32). However, generating control actions using the control laws has a higher mem-
ory complexity for systems with multiple inputs, and is also usually more sensitive to modeling errors due
to its completely open-loop nature. Moreover, we note that the total time complexity of solving an instance
of the optimal control problem, i.e., backward iteration for computing the costs J d

t and control laws µd
t , and

forward iteration for computing the control sequence u⋆(x0), is in both methods of O (T XU E). That is, com-
putationally, the backward value iteration is the dominating factor.
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Remark 4.5.6 (Comparison of total complexities). The total time complexity of solving a
T -step optimal control problem for a given initial state, where the control input is gener-
ated using the greedy policy (4.32), is of

• O (T XU E) for the VI algorithm that utilizes the d-DP operation (4.18),

• O
(
T (X Y +U E)

)
for the ConjVI Algorithm 3,

• Õ
(
T (X +Y +Z +U E)

)
for the ConjVI Algorithm 4,

where E represents the complexity of the extension operation in (4.18) and (4.32).

Once again, we see a reduction from quadratic to linear complexity in the modified
d-CDP Algorithm 4 compared to both the d-DP algorithm and the d-CDP Algorithm 3.

4.6. NUMERICAL EXPERIMENTS
In this section, we examine the performance of the ConjVI Algorithms 3 and 4 (referred
to as ConjVI 3 and ConjVI-m 4, respectively, in this section) in comparison with the stan-
dard VI algorithm in the primal domain that utilizes the d-DP operation (4.18) (referred
to as VI in this section). In particular, we use a synthetic numerical example to verify
our theoretical results on the complexity and error of the proposed algorithms. All the
simulations presented in this chapter were implemented via MATLAB version R2017b,
on a PC with an Intel Xeon 3.60 GHz processor and 16 GB RAM. We also note that the
presented numerical example is also included in the d-CDP MATLAB package [64].

We consider a linear system with two states and two inputs described by

xt+1 =
[ −0.5 2

1 3

]
xt +

[
1 0.5
1 1

]
ut ,

over the finite horizon T = 10, with the state and input constraints xt ∈ X = [−1,1]2 ⊂
R2 and ut ∈ U = [−2,2]2 ⊂ R2, respectively. Moreover, we consider quadratic state cost
Cs(x) = CT (x) = ∥x∥2

2 and exponential input cost Ci(u) = e |u1| + e |u2| − 2. Note that the
conjugate of the input cost is indeed analytically available and given by

C∗
i (v) = 1+〈û, v〉−e |û1|−e |û2|, v ∈R2,

where

ûi =
{

max
{−2, min

{
2, sgn(vi ) ln |vi |

}}
, vi ̸= 0,

0, vi = 0,
i = 1,2.

Moreover, corresponding to the notation of Section 4.4, the stage cost and its conjugate
are given by

Cx (u) =C (x,u) = ∥x∥2
2 +e |u1|+e |u2|−2, (x,u) ∈X×U,

C∗
x (v) =C∗

i (v)−∥x∥2
2 , (x, v) ∈X×R2.

We use uniform grid-like discretizations Xg and Ug for the state and input spaces,
such that co(Xg) =X and co(Ug) =U. The grids Yg and Zg involved in ConjVI algorithms
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Figure 4.2: Error of the computed discrete costs J d
t : Xg → R using VI, ConjVI 3 (CVI), and

ConjVI-m 4 (CVIm) for grid sizes X ,U ,Y , Z = N . Notice that the time axis is backward.

are also constructed uniformly, according to the guidelines provided in Remarks 4.4.7
and 4.5.5 (with α= 1). We are interested in the performance (error and time complexity)
of ConjVI algorithms in comparison with VI, as the size of these discrete sets increases.
Since all the discrete sets are uniform grids, and we use LERP for all the extension op-
erations (particularly, for the extension of the discrete cost functions in the d-DP oper-
ation (4.18) and for generating the greedy control actions in (4.32)), the complexity of a
single evaluation of all extensions is of O (E) =O (1); see Remark 4.2.2.

We begin with examining the error in VI and ConjVI algorithms with respect to the
“reference” costs-to-go J⋆t :X→R. Since the problem does not have a closed-form solu-
tion, J⋆t is computed numerically via a high-resolution application of VI with X ,U = 812.
Figure 4.2 depicts the maximum absolute error in the discrete cost functions J d

t com-
puted using these algorithms over the horizon. As expected and in line with our error
analysis (Theorems 4.4.6 and 4.5.4 and Proposition 4.3.2), using a finer discretization
scheme with larger X ,U ,Y , Z = N , leads to a smaller error. Moreover, over the time steps
in the backward iteration, a general increase is seen in the error which is due to the ac-
cumulation of error.

For further illustration, Figure 4.3 shows the corresponding costs-to-go at t = 9 and
t = 0, with N = 212. Notice that, since the stage and terminal costs are convex and the
dynamics are linear, the costs-to-go are also convex. As can be seen in Figure 4.3, while
ConjVI 3 preserves the convexity, VI and ConjVI-m 4 output non-convex costs-to-go (due
to the application of LERP in these algorithms). In particular, notice how J CVI

0 is convex-
extensible while J VI

0 and J CVIm
0 are not.

We next compare the performance of the three algorithms in solving instances of
the optimal control problem, using the cost functions derived from the backward value
iteration. To this end, we apply the greedy control input (4.32) with respect to the com-
puted discrete costs-to-go J d

t using VI and ConjVI algorithms, and the same discrete
input space Ug as the one in VI. Let us first consider the complexity of VI and ConjVI
algorithms. Figure 4.4a reports the total run-time of a random problem instance for
different grid sizes (i.e., the time requirement of backward value iteration for finding
J d

t , t = 0,1, . . . ,T −1, plus the time requirement of forward iteration for finding u⋆t , t =
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Figure 4.3: Computed discrete costs J d
t : Xg → R using VI, ConjVI 3 (CVI), and ConjVI-m 4

(CVIm) for grid sizes X ,U ,Y , Z = 212 at t = 9 (top) and t = 0 (bottom).

0,1, . . . ,T −1). Regarding the reported running times, note that they correspond to the
given complexities in Theorems 4.4.4 and 4.5.3 and Remark 4.5.6: For our numerical ex-
ample, the running time is of O (T N 2) for VI and ConjVI 3, and of O (T N ) for ConjVI-m 4.
The difference can be readily seen in the slope of the corresponding lines in Figure 4.4a
as N increases. In this regard, we also note that the backward value iteration is the dom-
inant factor in the reported running times. (Effectively, the reported numbers can be
taken to be the run-time of the backward value iteration). In Figure 4.4b, we also report
the average cost of the controlled trajectories over 100 instances of the optimal control
problem with random initial conditions, chosen uniformly from X= [−1,1]2.

Looking at Figure 4.4, one notices that ConjVI-m 4, compared to VI, has a similar
performance when it comes to the quality of greedy control actions, however, with a
significant reduction in the running time. In particular, notice how the lower complexity
of ConjVI-m 4 allows us to increase the size of the grids to N = 412, while keeping the
running time at the same order as that of VI with N = 112.

Comparing the performance of ConjVI 3 with VI, on the other hand, one notices that
they show effectively the same performance with respect to the considered measures.
ConjVI 3, however, gives us an extra degree of freedom for the size Y of the dual grid. In
particular, if the cost functions are “compactly representable” in the dual domain (i.e.,
via their slopes), we can reduce the time complexity of ConjVI 3 by using a more coarse
grid Yg, with a limited effect on the “quality” of computed cost functions. This effect is
illustrated in Table 4.2: For solving the same optimal control problem with X ,U ,Y = 412,
we can reduce the size of the dual grid by a factor of 4 to Y = 212, and hence reduce
the running time of ConjVI 3, while achieving the same average cost in the controlled
trajectories.
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(b) Average cost of 100 random instances of the optimal control problem.

Figure 4.4: Performance of VI, ConjVI 3 (CVI), ConjVI-m 4 (CVIm) for different grid sizes
X ,U ,Y , Z = N .

4.7. TECHNICAL PROOFS

PROOF OF LEMMA 4.2.5

Let y ∈Rn , and observe that (recall that hd(x) = h(x) for all x ∈Xd ⊂X)

hd∗(y) = max
x∈Xd

{
〈

y, x
〉−hd(x)} ≤ max

x∈X
{
〈

y, x
〉−h(x)} = h∗(y).

This settles the first inequality in (4.8) and (4.9). Also, observe that if ∂h∗(y) =;, then the
upper bound in (4.8) becomes trivial, i.e., h∗(y) =+∞, hd∗(y) <+∞, and ẽ1 =+∞. Now,
assume that ∂h∗(y) ̸= ;, and let x ∈ ∂h∗(y) so that h(x)+h∗(y) = 〈

y, x
〉

[70, Prop. 5.4.3].
Also, let x̃ ∈ argminz∈Xd ∥x − z∥2, and note that hd∗(y) ≥ 〈

y, x̃
〉−hd(x̃). Then,

h∗(y)−hd∗(y) ≤ 〈
y, x − x̃

〉−h(x)+hd(x̃)

≤ [∥∥y
∥∥

2 +L
(
h; {x}∪Xd)] · ∥x − x̃∥2

= [∥∥y
∥∥

2 +L
(
h; {x}∪Xd)] ·d(x,Xd).
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Table 4.2: Performance VI and ConjVI 3 for grid sizes X ,U = 412 and Y . The first two rows
correspond to the rightmost data points in Figure 4.4.

Algorithm Total run-time (sec) Avg. cost (100 runs)

VI 1790 5.09
ConjVI 3 with Y = 412 570 5.05
ConjVI 3 with Y = 212 187 5.05

Hence, by minimizing over x ∈ ∂h∗(y), we derive the upper bound provided in (4.8).
Finally, the additional constraint of compactness ofX= dom(h) implies that ∂h∗(y)∩X ̸=
;. Hence, we can choose x ∈ ∂h∗(y)∩X and use Lipschitz-continuity of h to write

h∗(y)−hd∗(y) ≤ [∥∥y
∥∥

2 +L
(
h; {x}∪Xd)] ·d(x,Xd)

≤ [∥∥y
∥∥

2 +L(h)
] ·max

z∈X
d(z,Xd) = ẽ2(y,h,Xd).

PROOF OF LEMMA 4.2.6
Let us first consider the case y ∈ co(Yg). The value of the multi-linear interpolation

h∗d(y) is a convex combination of h∗d(y (k)) = h∗(y (k)) over the grid points y (k) ∈Yg, k ∈
1, . . . ,2n , located at the vertices of the hyper-rectangular cell that contains y such that

y =∑
k α

(k) y (k) and h∗d(y) =∑
k α

(k) h∗(y (k)),

where
∑

k α
(k) = 1 and α(k) ∈ [0,1]. Then,

h∗(y) = h∗ (∑
k α

(k) y (k)
)≤∑

k α
(k) h∗(y (k)) = h∗d(y), (4.33)

where the inequality follows from the convexity of h∗. Also, notice that

h∗d(y) =∑
k α

(k) h∗(y (k)) =∑
k α

(k) max
x∈X

{〈
y (k), x

〉−h(x)
}

=∑
k α

(k) max
x∈X

{〈
y, x

〉−h(x)+〈
y (k) − y, x

〉}
≤∑

k α
(k) max

x∈X
{〈

y, x
〉−h(x)+∥∥y (k) − y

∥∥
2 · ∥x∥2

}
≤∑

k α
(k) max

x∈X
{〈

y, x
〉−h(x)+∆X ·d(y,Yg)

}
.

Then, using
∑

k α
k = 1, we have

h∗d(y) ≤ max
x∈X

{〈
y, x

〉−h(x)
}+∆X ·d(y,Yg) = h∗(y)+∆X ·d(y,Yg). (4.34)

Combining the two inequalities (4.33) and (4.34) gives us the inequality (4.10).
We next consider the case y ̸∈ co(Yg) under the extra assumption co(Yg

sub) ⊇ L(h).
Note that this assumption implies that:
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• L(h) is bounded (h is Lipschitz continuous); and,

• y1
i < y2

i ≤ L−
i (h) and L+

i (h) ≤ yYi−1
i < yYi

i for all i ∈ {1, . . . ,n}.

To simplify the exposition, we consider the two-dimensional case (n = 2), while noting
that the provided arguments can be generalized to higher dimensions. So, let Yg =Yg

1 ×
Y

g
2, where Yg

i (i = 1,2) is the finite set of real numbers y1
i < y2

i < . . . < yYi
i with Yi ≥ 3.

Let us further simplify the argument by letting y = (y1, y2) ̸∈ co(Yg) be such that y1 < y1
1

and y1
2 ≤ y2 ≤ y2

2 , so that computing h∗d(y) involves extrapolation in the first dimension
and interpolation in the second dimension; see Figure 4.5a for a visualization of this
instantiation. Since the extension uses LERP, using the points depicted in Figure 4.5a,
we can write

h∗d(y) =α h∗d(y ′)+ (1−α) h∗d(y ′′), (4.35)

where α= (y2
1 − y1)/(y2

1 − y1
1 ), and (recall that h∗d(y) = h∗(y) for y ∈Yg)

h∗d(y ′) =β h∗d(y1,1)+ (1−β) h∗d(y1,2) =β h∗(y1,1)+ (1−β) h∗(y1,2),

h∗d(y ′′) =β h∗d(y1,2)+ (1−β) h∗d(y2,2) =β h∗(y1,2)+ (1−β) h∗(y2,2),
(4.36)

where β = (y2
2 − y2)/(y2

2 − y1
2 ). In Figure 4.5a, we have also paired each of the points

of interest in the dual domain with its corresponding maximizer in the primal domain.
That is, for

ξ= y, y ′, y ′′, y1,1, y1,2, y1,2, y2,2,

we have respectively identified

η= x, x ′, x ′′, x1,1, x1,2, x1,2, x2,2 ∈X,

where ξ ∈ ∂h(η) so that

h∗(ξ) = 〈
η,ξ

〉−h(η). (4.37)

We now list the implications of the assumption y1
1 < y2

1 ≤ L−
1 (h); Figure 4.5b illustrates

these implications in the one-dimensional case:

I.1. We have h∗(y) =α h∗(y ′)+ (1−α) h∗(y ′′).

I.2. We can choose the maximizers in the primal domain such that

I.2.1. x1,1 = x2,1, x1,2 = x2,2, and x = x ′ = x ′′;

I.2.2. x1,1
1 = x1,2

1 = x1 = min
(z1,z2)∈X

z1.

With these preparatory discussions, we can now consider the error of extrapolative
discrete conjugation at the point y . In this regard, first note that {y ′, y ′′} ⊂ co(Yg), and
hence we can use the result of the first part of the lemma to write

h∗d(y ′) = h∗(y ′)+e ′, h∗d(y ′′) = h∗(y ′′)+e ′′, (4.38)
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Figure 4.5: Illustration of the proof of Lemma 4.2.6. (a) The grid Yg and the position of the
point y with respect to the grid. The blue dots show the points of interest and their cor-
responding maximizer in the primal domain. E.g., “y [x]” implies that y ∈ ∂h(x), where
x ∈ X, so that

〈
x, y

〉 = h(x) + h∗(y). (b) Illustration of the implications of the assump-
tion y1 < y2 ≤ s− = L−(h) in the one-dimensional case. The colored (red and blue) vari-
ables denote the slope of the corresponding lines. Note that {y, y1, y2} ⊂ ∂h(xm ), where
xm = minx∈X x. Indeed, for all y ≤ s−, the conjugate h∗(y) = 〈

xm , y
〉− h(xm ) is a linear

function with slope xm . In particular, for y < y1, we have h∗(y) = αh∗(y1)+ (1−α)h∗(y2),
where α= (y2 − y)/(y2 − y1).

where {e ′,e ′′} ⊂ [0,∆X ·dH({y ′, y ′′},Yg)]. We claim that these error terms are equal. Indeed,
from (4.36) and (4.38), we have

e ′−e ′′ =β[
h∗(y1,1)−h∗(y2,1)

]+ (1−β)
[
h∗(y1,2)−h∗(y2,2)

]+h∗(y ′′)−h∗(y ′).

Then, using the pairings in (4.37) and the implication I.2, we can write

e ′−e ′′ (I .2.1)= β
〈

x1,1, y1,1 − y2,1〉+ (1−β)
〈

x1,2, y1,2 − y2,2〉+〈
x, y ′′− y ′〉

= β
〈

x1,1, (y1
1 − y2

1 ,0)
〉+ (1−β)

〈
x1,2, (y1

1 − y2
1 ,0)

〉+〈
x, (y2

1 − y1
1 ,0)

〉
=

(
βx1,1

1 + (1−β)x1,2
1 −x1

)
(y1

1 − y2
1 )

(I .2.2)= 0.

With this result at hand, we can employ (4.35) and the implication I.1 to write

h∗d(y)−h∗(y) =α
[

h∗d(y ′)−h∗(y ′)
]
+ (1−α)

[
h∗d(y ′′)−h∗(y ′′)

]
=αe ′+ (1−α)e ′′ = e ′.

That is,

0 ≤ h∗d(y)−h∗(y) ≤∆X ·dH({y ′, y ′′},Yg) ≤∆X ·dH
(

co(Yg),Yg),

where for the last inequality we used the fact that {y ′, y ′′} ⊂ co(Yg).
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PROOF OF COROLLARY 4.2.7

The first statement follows from Lemma 4.2.6 since the finite set Xd is compact. For the
second statement, the extra condition co(Yg

sub) ⊇ L(h) has the same implications as the
ones provided in the proof of Lemma 4.2.6. Hence, following the same arguments, we
can show that provided bounds hold for all y ∈Rn under the given condition.

PROOF OF PROPOSITION 4.3.2

Define Qx (u) := C (x,u)+ J
(

f (x,u)
)

and Q̃x (u) := C (x,u)+ J̃ d
(

f (x,u)
)
. Let us fix x ∈ Xg.

In what follows, we consider the effect of (i) replacing J with J̃ d, and (ii) minimizing over
Ud instead of U(x), separately. To this end, we define the intermediate DP operator

T i J (x) := min
u

Q̃x (u), x ∈Xg.

(i) Difference between T and T i: Let u⋆ ∈ argminu Q(x,u) ⊆ U(x), so that T J (x) =
Q(x,u⋆) and T i J (x) ≤ Q̃(x,u⋆). Also, let z⋆ ∈ argminz∈Xg

∥∥z − f (x,u⋆)
∥∥

2. Then,

T i J (x)−T J (x) ≤ Q̃(x,u⋆)−Q(x,u⋆)

= J̃ d
(

f (x,u⋆)
)− J̃ d(z⋆)+ J (z⋆)− J

(
f (x,u⋆)

)
,

where we used the assumption that J̃ d(z⋆) = J (z⋆) for z⋆ ∈Xg. Hence,

T i J (x)−T J (x) ≤ [
L(J )+L( J̃ d)

] ·∥∥z⋆− f (x,u⋆)
∥∥

2

= [
L(J )+L( J̃ d)

] ·min
z∈Xg

∥∥z − f (x,u⋆)
∥∥

2

≤ [
L(J )+L( J̃ d)

] ·max
z ′∈X

min
z∈Xg

∥∥z − z ′∥∥
2

= [
L(J )+L( J̃ d)

] ·dH(X,Xg) = e1,

where for the second inequality we used the fact that f (x,u⋆) ∈X. We can use the same
line of arguments by defining ũ⋆ ∈ argminu Q̃(x,u), and z̃⋆ ∈ argminz∈Xg

∥∥z − f (x, ũ⋆)
∥∥

2
to show that T i J (x)−T J (x) ≤ e1. Combining these results, we have

−e1 ≤T i J (x)−T J (x) ≤ e1. (4.39)

(ii) Difference between T i and T d: First note that, by construction, we have T i J (x) ≤
T d J d(x). Now, let ũ⋆ ∈ argminu Q̃(x,u) ⊆U(x), so that T i J (x) = Q̃(x, ũ⋆). Also, let ū⋆ ∈
argminu∈Ud(x)

∥∥u − ũ⋆
∥∥

2, and note that T d J d(x) ≤ Q̃(x, ū⋆). Then, since Q̃ is Lipschitz
continuous, we have

0 ≤T d J d(x)−T i J (x) ≤ Q̃(x, ū⋆)−Q̃(x, ũ⋆) ≤ L(Q̃x ) ·∥∥ū⋆− ũ⋆
∥∥

2

≤ [
L(J )+L(C )

] · min
u∈Ud(x)

∥∥u − ũ⋆
∥∥

2

≤ [
L(J )+L(C )

] · max
u′∈U(x)

min
u∈Ud(x)

∥∥u −u′∥∥
2

= [
L(J )+L(C )

] ·dH
(
U(x),Ud(x)

)= e2(x),

Combining this last result with the inequality (4.39), we derive the reported bounds.
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PROOF OF LEMMA 4.4.2
Using the definition of conjugate transform, we have

T̂ J (x) = max
y∈Rn

min
u,z∈Rn

{
C (x,u)+ J (z)+〈

y, fs(x)+ fi(x)u − z
〉}

= max
y

{〈
y, fs(x)

〉−max
u

[〈− fi(x)⊤y,u
〉−C (x,u)

]−max
z

[〈
y, z

〉− J (z)
]}

= max
y

{〈
y, fs(x)

〉−C∗
x (− fi(x)⊤y)− J∗(y)

}
= max

y

{〈
y, fs(x)

〉−φx (y)
}=φ∗

x

(
fs(x)

)
.

PROOF OF THEOREM 4.4.4
In what follows, we provide the time complexity of each line of the d-CDP operation in
Algorithm 3. The LLT of line 4 requires O (X +Y ) operations; see Remark 4.2.3. By As-
sumption 4.4.3, computing ϕd

x in line 6 has a complexity of O (Y ). The minimization via
enumeration in line 7 also has a complexity of O (Y ). This, in turn, implies that the for
loop over x ∈Xg requires O (X Y ) operations. Hence, the total complexity is of O (X Y ).

PROOF OF PROPOSITION 4.4.5
We can use the representation (4.22) and the definition (4.20) to obtain

T̂ d J d(x) = max
y∈Yg

{
〈

fs(x), y
〉−ϕd

x (y)}

= max
y∈Yg

{〈
fs(x), y

〉−C∗
x (− fi(x)⊤y)− J d∗d(y)

}
= max

y∈Yg

{〈
fs(x), y

〉− max
u∈domC (x,·)

[〈− fi(x)⊤y,u
〉−C (x,u)

]− J d∗d(y)

}
= max

y∈Yg
min

u∈domC (x,·)

{
C (x,u)+〈

y, f (x,u)
〉− J d∗d(y)

}
,

Since C is convex in u and the map f is affine in u, the objective function of this maximin
problem is convex in u, with dom

(
C (x, ·)) being compact. Moreover, the objective is Ky

Fan concave in y , which follows from the convexity of J d∗. Then, by the Ky Fan’s Mini-
max Theorem (see, e.g., [93, Thm. A]), we can swap the maximization and minimization
operators to obtain

T̂ d J d(x) = min
u∈domC (x,·)

max
y∈Yg

{
C (x,u)+〈

y, f (x,u)
〉− J d∗d(y)

}
= min

u

{
C (x,u)+ J d∗d∗(

f (x,u)
)}

.

PROOF OF THEOREM 4.4.6
Fix x ∈Xg and observe that

T J (x)− T̂ d J d(x) =
[
T J (x)− T̂ J (x)

]
+

[
T̂ J (x)− T̂ d J d(x)

]
. (4.40)

Let us first note that the convexity C : X×U→ R (in u) and J : X→ R implies that the
duality gap T J − T̂ J in (4.40) is zero. Indeed, following a similar argument as the one
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provided in the proof of Proposition 4.4.5, and using Sion’s Minimax Theorem (see, e.g.,
[94, Thm. 3]), we can show that

T̂ J (x) = min
u

{
C (x,u)+ J∗∗

(
f (x,u)

)}
, x ∈X.

Then, since J is a proper, closed, convex function, we have J∗∗ = J , and hence T̂ J =T J .
We next consider the discretization error T̂ J −T̂ d J d in (4.40). From (4.21b) and (4.22c),
we have

T̂ J (x)− T̂ d J d(x) =φ∗
x

(
fs(x)

)−ϕd∗
x

(
fs(x)

)
=

[
φ∗

x

(
fs(x)

)−φd∗
x

(
fs(x)

)]+[
φd∗

x

(
fs(x)

)−ϕd∗
x

(
fs(x)

)]
, (4.41)

where φd
x :Yg → R is the discretization of φx : Rn → R. For φ∗

x −φd∗
x in (4.41), we can use

Lemma 4.2.5, to write

0 ≤φ∗
x

(
fs(x)

)−φd∗
x

(
fs(x)

)≤ ẽ1( fs(x),φx ,Yg)

= min
y∈∂φ∗

x ( fs(x))

{[∥∥ fs(x)
∥∥

2 +L
(
φx ; {y}∪Yg)] ·d(y,Yg)

}
≤ min

y∈∂T J (x)

{[∥∥ fs(x)
∥∥

2 +
∥∥ fi(x)

∥∥
2 ·∆U+∆X

] ·d(y,Yg)
}

,

where we used the fact that φ∗
x

(
fs(·))= T̂ J (·) =T J (·), and

L
(
φx (·))≤ L

(
C∗

x (− fi(x)⊤·))+L
(

J∗(·))
≤ ∥∥ fi(x)

∥∥
2 ·L(C∗

x )+L(J∗)

≤ ∥∥ fi(x)
∥∥

2 ·∆dom(C (x,·)) +∆dom(J )

≤ ∥∥ fi(x)
∥∥

2 ·∆U+∆X.

Hence,

0 ≤φ∗
x

(
fs(x)

)−φd∗
x

(
fs(x)

)≤ [∥∥ fs(x)
∥∥

2 +
∥∥ fi(x)

∥∥
2 ·∆U+∆X

] · min
y∈∂T J (x)

d(y,Yg)

= [∥∥ fs(x)
∥∥

2 +
∥∥ fi(x)

∥∥
2 ·∆U+∆X

] ·d
(
∂T J (x),Yg)

= ey(x) (4.42)

Forφd∗
x −ϕd∗

x in (4.41), first observe that for each y ∈Yg, we have (see (4.21a) and (4.22b),
and recall that hd is simply a sampled version of h)

φd
x (y)−ϕd

x (y) = J∗d(y)− J d∗d(y) = J∗(y)− J d∗(y).

Moreover, we can use Lemma 4.2.5, and the fact that dom(J ) =X is compact, to write

0 ≤ J∗(y)− J d∗(y) ≤ [∥∥y
∥∥

2 +L(J )
] ·dH(X,Xg)

≤ max
y∈Yg

[∥∥y
∥∥

2 +L(J )
] ·dH(X,Xg)

≤ [∆Yg +L(J )] ·dH(X,Xg) = ex.
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That is,
0 ≤φd

x (y)−ϕd
x (y) ≤ ex, ∀y ∈Yg.

Then, using the definition of discrete conjugate, we have

0 ≤ϕd∗
x

(
fs(x)

)−φd∗
x

(
fs(x)

)≤ ex.

Combining the last inequality with the inequality (4.42) completes the proof.

PROOF OF THEOREM 4.5.3
In what follows, we provide the time complexity of each line of the modified d-CDP op-
eration in Algorithm 4. The LLT of line 5 requires O (X +Y ) operations; see Remark 4.2.3.
By Assumption 4.5.2, computing ϕd in line 6 has a complexity of O (Y ). The LLT of line 7
requires O (Y +Z ) operations. The approximation of line 9 using LERP has a complexity
of O (log Z ); see Remark 4.2.2. Hence, the for loop over x ∈ Xg requires O (X log Z ) =
Õ (X ) operations. The time complexity of the whole operation can then be computed by
adding all the aforementioned complexities.

PROOF OF THEOREM 4.5.4

Let T̂ d denote the output of the implementation of the d-CDP operator (4.28). Note
that the computation of the modified d-CDP operator T̂ d

m (4.29)differs from that of the
d-CDP operator T̂ d (4.28) only in the last step. To see this, note that T̂ d exactly com-
putes ϕd∗(

fs(x)
)

for x ∈ Xd (see Algorithm 3:7). However, in T̂ d
m , the approximation

ϕd∗d
(

fs(x)
)

is used (see Algorithm 4:9), where the approximation uses LERP over the
data pointsϕd∗d :Zg →R. By Corollary 4.2.7, this leads to an over-approximation ofϕd∗,
with the upper bound

ez =∆Yg ·max
x∈Xg

d
(

fs(x),Zg)=∆Yg ·dH
(

fs(Xg),Zg).

Hence, compared to T̂ d, the operator T̂ d
m is an over-approximation with the difference

bounded by ez, i.e.,
0 ≤ T̂ d

m J d(x)− T̂ d J d(x) ≤ ez, ∀x ∈Xg. (4.43)

The result then follows from Theorem 4.4.6. Indeed, using the definition of T̂ d (4.28),
we can define

Î d J d(x) := T̂ d J d(x)−Cs(x) =ϕd∗(
fs(x)

)
, x ∈Xg,

ϕd(y) :=C∗
i (−B⊤y)+ J d∗d(y), y ∈Yg.

Similarly, using the DP operator (4.27), we can also define

I J (x) :=T J (x)−Cs(x) = min
u

{
Ci(u)+ J

(
f (x,u)

)}
.

Then, by Theorem 4.4.6, for all x ∈Xg, it holds that

−ex ≤I J (x)− Î d J d(x) =T J (x)− T̂ d J d(x) ≤ em
y (x), (4.44)

where ex is given in (4.26), and

em
y (x) = [∥∥ fs(x)

∥∥
2 +∥B∥2 ·∆U+∆X

] ·d
(
∂I J (x),Yg)

= [∥∥ fs(x)
∥∥

2 +∥B∥2 ·∆U+∆X
] ·d

(
∂
(
T J −Cs

)
(x),Yg).

Combining the inequalities (4.43) and (4.44) completes the proof.





5
INFINITE-HORIZON PROBLEM

WITH STOCHASTIC DYNAMICS

Parts of this chapter have been published in Advances in Neural Information Processing Systems 34 (2021)
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In this chapter, we discuss the extensions of the proposed conjugate value iteration
(ConjVI) algorithm introduced in Chapter 4 for solving the optimal control problem of
discrete-time systems, with continuous state-input space. We focus on the extension
of the ConjVI Algorithm 4 based on the modified d-CDP operator (4.29). However, we
note that the same extensions can be applied on the ConjVI Algorithm 3 that utilizes
the d-CDP operator (4.22). The extensions are three-fold: We consider infinite-horizon,
discounted cost problems with stochastic dynamics, while computing the the conjugate of
input cost numerically. We also note that these extensions can be applied independently
of one another, corresponding to the problem at hand.

The chapter is organized as follows.1 We provide the problem statement with the
added extensions and its standard solution via the VI algorithm (in primal domain) in
Section 5.1. In Section 5.2, we present our main results: We begin with presenting the
class of problems that are of interest and then introduce the corresponding ConjVI al-
gorithm and its numerical implementation. The theoretical results on the convergence,
complexity, and error of the proposed algorithm along with the guidelines on the con-
struction of dual grids are also provided in this section. In Section 5.3, we compare the
performance of the ConjVI algorithm with that of the benchmark VI algorithm through
three numerical examples. The technical proofs are provided in Section 5.4. We follow
the same notational conventions presented in Section 4.2.1. To facilitate the applica-
tion of the proposed algorithm, we provide a MATLAB package [96]. In particular, the
provided numerical examples in Section 5.3 are also included in the package.

5.1. VI IN PRIMAL DOMAIN
In this chapter, we are concerned with the infinite-horizon, discounted cost, optimal
control problems of the form

J⋆(x) =min Ewt

[ ∞∑
t=0

γt C (xt ,ut )
∣∣∣x0 = x

]
s.t. xt+1 = g (xt ,ut , wt ), xt ∈X, ut ∈U, wt ∼P(W), ∀t ∈ {0,1, . . .},

where xt ∈ Rn , ut ∈ Rm , and wt ∈ Rl are the state, input and disturbance variables at
time t , respectively; γ ∈ (0,1) is the discount factor; g : Rn ×Rm ×Rl → Rn describes the
stochastic dynamics;P(·) is the distribution of the disturbance over the supportW⊂Rl ,
andEw [·] denotes the expectation with respect to the random variable w . C :X×U→R

is again the stage cost, and X ⊂ Rn and U ⊂ Rm again describe the state and input con-
straints, respectively. Throughout this chapter we assume that the problem data satisfy
the following properties:

Assumption 5.1.1 (Problem data). 2 The problem data has the following properties:

(i) Disturbance. The disturbance w has a finite support Wd ⊂ Rl with a given proba-
bility mass function (p.m.f.) p :Wd → [0,1].3

1For completeness and also for better readability, we try to keep references to Chapter 4 at a minimum and
provide all the necessary details in this chapter.

2This is an extension of Assumption 4.3.1 for stochastic dynamics.
3We consider this assumption to simplify the exposition and explicitly include the computational cost of the
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(ii) Dynamics. The mapping (x,u) 7→ g (x,u, w) is locally Lipschitz continuous for each
w ∈Wd.

(iii) Constraints. The sets X⊂ Rn and U⊂ Rm are compact. Moreover, the set of admis-
sible inputs U(x) := {u ∈U : g (x,u, w) ∈X, ∀w ∈Wd} is nonempty for all x ∈X.

(iv) Cost function. C :X×U→R is Lipschitz continuous.

Assuming the stage cost C is bounded (which is true under Assumption 5.1.1), the
optimal value function solves the DP equation J⋆ = T J⋆, where T 4 is the DP operator
(C and J are extended to infinity outside their effective domains) [97, Prop. 1.2.2]

T J (x) := min
u

{
C (x,u)+γ ·Ew J

(
g (x,u, w)

)}
, ∀x ∈X. (5.1)

The operator T is γ-contractive in the infinity-norm, i.e., ∥T J1 −T J2∥∞ ≤ γ∥J1 − J2∥∞
[97, Prop. 1.2.4]. This property means that the VI algorithm Jk+1 = T Jk converges to
J⋆ as k → ∞, for arbitrary initialization J0. Moreover, assuming that the composition
J ◦ g (for each w) and the cost C are jointly convex in the state and input variables, T

also preserves convexity [70, Prop. 3.3.1]. Let us note that the properties laid out in As-
sumption 5.1.1 imply that the set of admissible inputs U(x) is a compact set for each
x ∈X. This, in turn, implies that the optimal value in (5.1) is achieved if J :X→ R is also
assumed to be continuous (which also holds true under Assumption 5.1.1).

Once again, note that the optimization problem (5.1) is infinite-dimensional for the
continuous state space X. This renders the exact implementation of VI impossible in
most cases. Here, again, we use a sample-based approach, accompanied by a function
approximation scheme. To be precise, for a finite grid-like subset Xg of X, at each it-
eration k ≥ 0, we take the discrete function J d

k : Xg → R as the input, and compute the

discrete function J d
k+1 =

[
T J̃ d

k

]d
: Xg → R, where J̃ d

k : X→ R is an extension of J d
k ; see

Section 4.2.2. Moreover, for solving the minimization problem in (5.1) over the control
input (for each x ∈Xg), we again use the approximation that involves enumeration over
a discretization Ud ⊂ U of the inputs space. In the numerical implementation of VI for
stochastic dynamics, we need to address another issue, namely, computing the expecta-
tion in (5.1). Under Assumption 5.1.1-(i), this operation simplifies to

Ew J
(
g (x,u, w)

)= ∑
w∈Wd

p(w) · J
(
g (x,u, w)

)
.

With these approximations, we end up with the approximate VI algorithm J d
k+1 =T d J d

k ,
characterized by the d-DP operator

T d J d(x) := min
u∈Ud

{
C (x,u)+γ · ∑

w∈Wd

p(w) · J̃ d
(
g (x,u, w)

)}
, ∀x ∈Xg. (5.2)

expectation operation with respect to the disturbance. Indeed, Wd can be considered as an approximation
of the true supportW of the disturbance. Moreover, one can consider other approximation schemes, such as
Monte Carlo simulation, for the expectation operation.

4We are using the same notations T for the discounted, stochastic DP operation in (5.1), T d for its discretiza-
tion in (5.2), and T̂ for its dualization in (5.3).
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The convergence of approximate VI described above depends on the properties of the
extension operation [̃·]. In particular, if [̃·] is non-expansive (in the infinity-norm), then
T d is also γ-contractive. The error of this approximation (lim

∥∥J d
k − J d

⋆

∥∥
∞) also depends

on the extension operation [̃·] and its representative power. We refer the interested reader
to [69, 97, 98] for detailed discussions on the convergence and error of different approx-
imation schemes for VI.

The d-DP operator (5.2) and the corresponding approximate VI algorithm are again
our benchmark for evaluating the performance of the ConjVI algorithm to be intro-
duced. In this regard, we note that the time complexity of the d-DP operation (5.2) is
of O

(
XUW E

)
, where E is used to denote the time complexity of a single evaluation of

the extension operator [̃·]; see Remark 4.2.1.

5.2. VI IN CONJUGATE DOMAIN
In this section, we discuss the extension of the ConjVI algorithm for the problem class
corresponding to Setting 4.5.1 presented in Chapter 4. In particular, we present the nu-
merical scheme for implementing the proposed algorithm and analyze its convergence,
complexity, and error. The problem class of interest is as follows:

Setting 5.2.1. 5 (i) The disturbance is additive, i.e., g (x,u, w) = f (x,u)+ w, where f :
Rn ×Rm → Rn describes the deterministic dynamics. (ii) The deterministic dynamics are
input-affine with state-independent input dynamics, i.e., f (x,u) = fs(x)+B ·u, where fs :
Rn → Rn and B ∈ Rn×m . (iii) The stage cost is separable in state and input, i.e., C (x,u) =
Cs(x)+Ci(u), where Cs :X→R and Ci :U→R are the state and input costs, respectively.

5.2.1. EXTENSION OF CDP OPERATOR
For the problem class of Setting 5.2.1, consider the following reformulation of the opti-
mization problem (5.1) for a fixed x ∈X

T J (x) =Cs(x)+min
u,z

{
Ci(u)+γ ·Ew J (z +w) : z = f (x,u)

}
,

where we used additivity of disturbance and separability of stage cost. The correspond-
ing dual problem, i.e., the CDP operator, then reads as

T̂ J (x) :=Cs(x)+max
y

min
u,z

{
Ci(u)+γ ·Ew J (z +w)+〈

y, f (x,u)− z
〉}

, (5.3)

where y ∈ Rn is the dual variable corresponding to the equality constraint. For input-
affine dynamics, we then have (the derivation is similar to the one provided in the proof
of Lemma 4.4.2)

ϵ(x) := γ ·Ew J (x +w), x ∈X, (5.4a)

φ(y) :=C∗
i (−B⊤y)+ϵ∗(y), y ∈Rn , (5.4b)

T̂ J (x) =Cs(x)+φ∗(
fs(x)

)
, x ∈X. (5.4c)

We next provide an alternative representation of the CDP operator that captures the
essence of this operation.

5This is an extension of Setting 4.5.1 for stochastic dynamics.
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Proposition 5.2.2 (CDP reformulation). The CDP operator T̂ equivalently reads as

T̂ J (x) =Cs(x)+min
u

{
C∗∗

i (u)+γ · [Ew J (·+w)]∗∗
(

f (x,u)
)}

. (5.5)

This result implies that the indirect path through the conjugate domain essentially
involves substituting the input cost and (expectation of the) value function by their bi-
conjugates. In particular, it points to a sufficient condition for zero duality gap.

Corollary 5.2.3 (Equivalence of T and T̂ ). If the functions Ci :U→ R and J :X→ R are
convex, then T̂ J =T J .

Hence, T̂ has the same properties as T if Ci and J are convex. More importantly,
if T and T̂ preserve convexity, then the conjugate VI (ConjVI) algorithm Jk+1 = T̂ Jk

also converges to the optimal value function J⋆, with arbitrary convex initialization J0.
For convexity to be preserved, however, we need more assumptions: First, the state cost
Cs :X→ R needs to be also convex. Then, for T̂ J to be convex, a sufficient condition is
convexity of J ◦ f (jointly in x and u), given that J is convex. The following assumption
provides the sufficient conditions for equivalence of the VI and ConjVI algorithms.

Assumption 5.2.4 (Convexity). (i) The sets X⊂ Rn and U⊂ Rm are convex. (ii) The costs
Cs :X→R and Ci :U→R are convex. (iii) The deterministic dynamics f :Rn ×Rm →Rn is
such that given a convex function J :X→ R, the composition J ◦ f is jointly convex in the
state and input variables.

We note that the last condition in the preceding assumption usually does not hold
for nonlinear dynamics, however, for fs(x) = Ax with A ∈Rn×n , this is indeed the case for
problems satisfying Assumptions 5.1.1 and 5.2.4 and the properties of Setting 5.2.1 [99].
Note that, if convexity is not preserved, then the alternative path suffers from duality gap
in the sense that in each iteration it uses the convex envelope of (the expectation of) the
output of the previous iteration.

5.2.2. EXTENDED d-CDP OPERATOR
In this section, we discuss the numerical implementation of the CDP operator (5.4) that
again uses a sample-based approach by solving (5.4) for a finite set Xg ⊂ X. The corre-
sponding ConjVI algorithm then involves the consecutive applications of this operator,
until some termination condition is satisfied. Algorithm 5 provides the pseudo-code
of this procedure, in which the iteration terminates when the difference between two
consecutive discrete value functions (in the infinity-norm) is less than a given constant
et > 0; see Algorithm 5:7. The main steps of Algorithm 5 are as follows:

• For the expectation operation in (5.4a), by Assumption 5.1.1-(i), we again have
Ew J (· + w) = ∑

w∈Wd p(w) · J (· + w). Hence, we need to pass the value function
J d : Xg → R through the “scaled expection filter” to obtain εd : Xg → R in (5.6a)
as an approximation of ϵ in (5.4a). Notice that here we are using an extension

J̃ d :X→R of J d (recall that we only have access to the discrete value function J d).

• To compute φ in (5.4b), we need access to two conjugate functions:
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– For ϵ∗, we use the approximation εd∗d : Yg → R in (5.6b), by applying LLT to
the data points εd :Xg →R, for a properly chosen dual state grid Yg ⊂Rn .

– Having fixed the dual state grid Yg ⊂ Rn , we need the value of C∗
i at (−B⊤y)

for y ∈Yg.6 For that, we use approximate discrete conjugation: For a properly
chosen dual input grid Vg ⊂Rm , we first employ LLT to compute C d∗d

i :Vg →
R in (5.6c) using the data points C d

i : Ug → R, where Ug is a grid-like finite

subset of U.7 We then use the LERP extension C d∗d
i of C d∗d

i to approximate

C d∗
i at the required points (−B⊤y) for each y ∈Yg.

With these conjugate functions at hand, we can now computeϕd :Yg →R in (5.6d),
as an approximation of φ in (5.4b).

• To be able to compute the output according to (5.4c), we need to perform another
conjugate transform. In particular, we need the value of φ∗ at fs(x) for x ∈ Xg.
Here, we again use approximate discrete conjugation: We first computeϕd∗d :Zg →
R in (5.6e), by applying LLT to the data points ϕd : Yg → R, for a properly chosen

gridZg ⊂Rn . Then, we use the LERP extensionϕd∗d ofϕd∗d to approximateϕd∗ at
the required point fs(x) for each x ∈Xg. Finally, we compute T̂ d

e J d in (5.6f) as an
approximation of T̂ J in (5.4c).

With these approximations, we can introduce the extended d-CDP operator as follows8

εd(x) := γ · ∑
w∈Wd

p(w) · J̃ d(x +w), x ∈Xg, (5.6a)

εd∗d(y) = max
x∈Xg

{〈
x, y

〉−εd(x)
}

, y ∈Yg, (5.6b)

C d∗d
i (v) = max

u∈Ug

{
〈u, v〉−C d

i (u)
}

, v ∈Vg, (5.6c)

ϕd(y) :=C d∗d
i (−B⊤y)+εd∗d(y), y ∈Yg, (5.6d)

ϕd∗d(z) = max
y∈Yg

{〈
y, z

〉−ϕd(y)
}

, z ∈Zg, (5.6e)

T̂ d
e J d(x) :=Cs(x)+ϕd∗d

(
fs(x)

)
, x ∈Xg. (5.6f)

We will discuss the proper construction of the grids Yg, Vg, and Zg in Section 5.2.4.

5.2.3. ANALYSIS OF CONJVI ALGORITHM

We now provide our main theoretical results concerning the convergence, complexity,
and error of the proposed algorithm. Let us begin by presenting the assumptions to be
called in this subsection.

6Note that, unlike Chapter 4, we are not assuming that C∗
i is analytically available; see Assumption 4.5.2.

7Note that the set Ug employed here for discrete conjugation need not be the same as the set Ud used in the
d-DP operator (5.2).

8This is the extension of the modified d-CDP operator (4.29) that accounts for discounted cost, additive
stochasticity in the dynamics, and numerical approximation of the conjugate of input cost.
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Algorithm 5 ConjVI algorithm for Setting 5.2.1

Input: dynamics fs :Rn →Rn , B ∈Rn×m ; discrete state spaceXg ⊂X; discrete input spaceUg ⊂U;
discrete state cost C d

s :Xg →R; discrete input cost C d
i :Ug →R; discrete disturbance spaceWd

and its p.m.f. p :Wd → [0,1]; discount factor γ; termination bound et.
Output: discrete value function Ĵ d :Xg →R.

initialization:
1: construct the grid Vg;
2: use LLT to compute C d∗d

i :Vg →R from C d
i :Ug →R;

3: construct the grid Zg;
4: construct the grid Yg;
5: J d(x) ← 0 for x ∈Xg;
6: J d+(x) ←C d

s (x)−minC d
i for x ∈Xg;

iteration:
7: while

∥∥∥J d+− J d
∥∥∥∞ ≥ et do

8: J d ← J d+;
d-CDP operation:

9: εd(x) ← γ ·∑w∈Wd p(w) · J̃ d(x +w) for x ∈Xg;

10: use LLT to compute εd∗d :Yg →R from εd :Xg →R;
11: for each y ∈Yg do

12: use LERP to compute C d∗d
i (−B⊤y) from C d∗d

i :Vg →R;

13: ϕd(y) ←C d∗d
i (−B⊤y)+εd∗d(y);

14: end for
15: use LLT to compute ϕd∗d :Zg →R from ϕd :Yg →R;
16: for each x ∈Xg do
17: use LERP to compute ϕd∗d

(
fs(x)

)
from ϕd∗d :Zg →R;

18: J d+(x) ←Cs(x)+ϕd∗d
(

fs(x)
)
;

19: end for
20: end while
21: output Ĵ d ← J d+.

Assumption 5.2.5 (Grids). Consider the following properties for the grids in Algorithm 5
(consult the Notations in Section 4.2.1):

(i) The grid Vg is constructed such that co(Vg
sub) ⊇ L(C d

i ).

(ii) The grid Zg is constructed such that co(Zg) ⊇ fs
(
Xg

)
.

(iii) The construction ofYg,Vg, andZg requires at most O (X +U ) operations. The cardi-
nality of the gridsYg and Zg (respectively,Vg) in each dimension is the same as that
of Xg (respectively, Ug) in that dimension so that Y , Z = X and V =U .9

Assumption 5.2.6 (Extension operator). Consider the following properties for the exten-
sion operator [̃·] in (5.6a):

9The second part of this assumption corresponds to Assumption 4.2.4.
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(i) [̃·] is non-expansive with respect to the infinity norm, i.e, ∥ J̃ d
1 − J̃ d

2 ∥∞ ≤ ∥J d
1 − J d

2 ∥∞
for two discrete functions J d

i :Xg →R and their extensions J̃ d
i :X→R (i = 1,2).

(ii) Given a function J : X→ R and its discretization J d : Xg → R, the error of [̃·] is uni-

formly bounded, i.e., ∥J − J̃ d∥∞ ≤ ee for some constant ee ≥ 0.

Our first result concerns the contractiveness of the d-CDP operator.

Theorem 5.2.7 (Convergence). Let Assumptions 5.2.5-(ii) and 5.2.6-(i) hold. Then, the
d-CDP operator (5.6) is γ-contractive with respect to the infinity-norm.

The preceding theorem implies that the approximate ConjVI Algorithm 5 is indeed
convergent given that the required conditions are satisfied. In particular, for determin-
istic dynamics, co(Zg) ⊇ fs

(
Xg

)
is sufficient for Algorithm 5 to be convergent. We next

consider the time complexity of our algorithm.

Theorem 5.2.8 (Complexity). Let Assumption 5.2.5-(iii) hold. Then, the time complexity
of initialization and each iteration in Algorithm 5 are of O (X +U ) and Õ (X W E), respec-
tively, where E denotes the complexity of each evaluation of the operator [̃·] in (5.6a).

The requirements of Assumption 5.2.5-(iii) will be discussed in Section 5.2.4. Recall
that each iteration of VI (in primal domain) has a complexity of O (XUW E), where E
denotes the complexity of the extension operation in (5.2). That is, ConjVI reduces the
quadratic complexity of VI to a linear one by replacing the minimization operation in the
primal domain with a simple addition in the conjugate domain. We note however that
ConjVI, like our benchmark VI and other approximation schemes that utilize discretiza-
tion of the continuous state and input spaces, still suffers from the so-called “curse of
dimensionality.” This is because the sizes X and U of the discretizations increase ex-
ponentially with the dimensions n and m of the corresponding spaces. However, for
ConjVI, this exponential increase is of rate max{m,n}, compared to the rate m +n for
standard VI.

Theorem 5.2.9 (Error). Let Assumptions 5.2.4, 5.2.5-(i)&(ii), and 5.2.6-(i) hold. Consider
the true optimal value function J⋆ = T J⋆ :X→ R and its discretization J d

⋆ :Xg → R, and
let Assumption 5.2.6-(ii) hold for J⋆. Also, let Ĵ d :Xg →R be the output of Algorithm 5 with
grids Yg, Vg, and Zg. Then,

∥ Ĵ d − J d
⋆∥∞ ≤ γ(ee +et)+ed

1−γ , (5.7)

where ed = eu +ev +ex +ey +ez, and

eu = cu ·dH(U,Ug), (5.8a)

ev = cv ·dH
(

co(Vg),Vg), (5.8b)

ex = cx ·dH
(
X,Xg), (5.8c)

ey = cy ·max
x∈Xg

d
(
∂(J⋆−Cs)(x),Yg), (5.8d)

ez = cz ·dH
(

fs(Xg),Zg), (5.8e)

with constants cu,cv,cx,cy,cz > 0 depending on the problem data.
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Let us first note that Assumption 5.2.4 implies that the DP and CDP operators pre-
serve convexity, and they both have the true optimal value function J⋆ as their fixed point
(i.e., the duality gap is zero). Otherwise, the proposed scheme can suffer from large er-
rors due to dualization. The remaining sources of error are captured by the three error
terms in (5.7): (i) ee is due to the approximation of the value function using the extension
operator [̃·]; (ii) et corresponds to the termination of the algorithm after a finite number
of iterations; (iii) ed captures the error due to the discretization of the primal and dual
state and input domains. In particular, Assumptions 5.2.5-(i)&(ii) on the gridsVg and Zg

are required for bounding the error of approximate discrete conjugations using LERP in
(5.6d) and (5.6f); see the proof of Lemmas 5.4.6 and 5.4.8.

5.2.4. CONSTRUCTION OF THE GRIDS
In this subsection, we provide specific guidelines for the construction of the grids Yg,
Vg and Zg. The presented guidelines aim to minimize the error terms in (5.8) while tak-
ing into account the properties laid out in Assumption 5.2.5. In particular, the schemes
described below satisfy the requirements of Assumption 5.2.5-(iii).

CONSTRUCTION OF Vg

Assumption 5.2.5-(i) and the error term ev (5.8b) suggest that we find the smallest dual
input grid Vg such that co(Vg

sub) ⊇ L(C d
i ).10 This latter condition essentially means that

Vg must “more than cover the range of slopes” of the function C d
i ; Hence, we need to

compute/approximate L±
j (C d

i ) for j = 1, . . . ,m. A conservative approximation is L−
j (Ci) =

min∂Ci/∂u j and L+
j (Ci) = max∂Ci/∂u j , assuming Ci is differentiable.11 Having L±

j (C d
i ) at our

disposal, we can then construct Vg
sub =Πm

j=1V
g
sub j

such that, in each dimension j , Vg
sub j

is uniform with the same cardinality as Ug
j and co(Vg

sub j
) =

[
L−

j (C d
i ),L+

j (C d
i )

]
. Finally, we

construct Vg by extending Vg
sub uniformly in each dimension (by adding a smaller and a

larger element toVg
sub in each dimension). This numerical scheme has a time complexity

of O (1) assuming, we have access to L±
j (C d

i ), j = 1, . . . ,m.

CONSTRUCTION OF Zg

According to Assumption 5.2.5-(ii), the grid Zg must be constructed such that co(Zg) ⊇
fs

(
Xg

)
. This can be simply done by finding the vertices of the smallest box that contains

the set fs
(
Xg

)
. Those vertices give the range ofZg in each dimension. We can then, for ex-

ample, take Zg to be the uniform grid with the same cardinality asYg in each dimension
(so that Z = Y ). This way, dH

(
fs(Xg),Zg

) ≤ dH
(

co(Zg),Zg
)
, and hence ez (5.8e) reduces

by using finer grids Zg. This construction has a time complexity of O (X ).12

10Recall that L(C d
i ) = Πm

j=1

[
L−j (C d

i ),L−j (C d
i )

]
, where L−j (C d

i ) (respectively, L+j (C d
i )) is the minimum (respec-

tively, maximum) “slope” of C d
i along the j -th dimension.

11Alternatively, we can directly use the discrete input cost C d
i :Ug →R for computing L±j (C d

i ). In particular, if Ci

is convex, we can take L−j (C d
i ) (respectively, L+j (C d

i )) to be the minimum first forward difference (respectively,

maximum last backward difference) of C d
i along the j -th dimension. This scheme requires O (U ) operations

for computing L±j (C d
i ), j = 1, . . . ,m.

12These guidelines are the same as the ones provided in Remark 4.5.5.
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CONSTRUCTION OF Yg

Construction of the dual state grid Yg is more involved. According to Theorem 5.2.9,
we need to choose a grid that minimizes ey (5.8d). This can be done by choosing Yg

such that Yg ∩∂(J⋆−Cs) ̸= ; for all x ∈ Xg so that ey = 0. Even if we had access to the
optimal value function J⋆, satisfying such a condition could lead to dual grids Yg ⊂ Rn

of size O (X n). Such a large size violates Assumption 5.2.5-(iii) on the size of Yg, and
essentially renders the proposed algorithm impractical for dimensions n ≥ 2. A more
practical condition is co(Yg)∩∂(J⋆−Cs) ̸= ; for all x ∈Xg so that

max
x∈Xg

d
(
∂(J⋆−Cs)(x),Yg)≤ dH

(
co(Yg),Yg),

and hence ey reduces by using finer grids Yg. The latter condition is satisfied if co(Yg) ⊇
L(J⋆−Cs), i.e., if co(Yg) “covers the range of slops” of (J⋆−Cs). Hence, we need to ap-
proximate the range of slopes of (J⋆−Cs). To this end, we first use the fact that J⋆ is the

fixed point of DP operator (5.1) to approximate rng(J⋆−Cs) by R = rng(C d
i )+γ·rng(C d

s )
1−γ . We

then construct the gird Yg =Πn
i=1Y

g
i such that, for each dimension i , we have

± αR

∆Xg
i

∈ co(Yg
i ). (5.9)

Here, the coefficient α> 0 is a scaling factor mainly depending on the dimension of the
state space. In particular, by setting α= 1, the value R/∆

X
g
i

is the slope of a linear function

with range R over the domain∆Xg
i
. This construction has a one-time computational cost

of O (X +U ) for computing rng(C d
i ) and rng(C d

s ).

DYNAMIC CONSTRUCTION OF Yg

Alternatively, we can constructYg dynamically at each iteration in order to minimize the
corresponding error of each application of the d-CDP operator given by13

ey = cy ·max
x∈Xg

d
(
∂(T J −Cs)(x),Yg).

This means that line 4 in Algorithm 5 is moved inside the iterations, after line 8. Sim-
ilar to the static scheme described above, the aim here is to construct Yg such that
co(Yg) ⊇ L(T J −Cs).14 Since we do not have access to T J (it is the output of the cur-
rent iteration), we can again use the definition of the DP operator (5.2) to approximate
rng(T J −Cs) by R = rng(C d

i )+γ · rng(J d), where J d is the output of the previous itera-

tion. We then construct the gird Yg = Πn
i=1Y

g
i such that, for each dimension i , the in-

clusion (5.9) holds true. This construction has a one-time computational cost of O (U )
for computing rng(C d

i ) and a per iteration computational cost of O (X ) for computing

rng(J d). Notice, however, that under this dynamic construction, the error bound of The-
orem 5.2.9 does not hold true. More importantly, with a dynamic grid Yg that varies in
each iteration, there is no guarantee for ConjVI to converge. However, as we will see
in the numerical examples, the proposed scheme leads to a (possibly non-monotone)
convergent behavior.

13See Lemma 5.4.7 and Proposition 5.4.3.
14These guidelines are a modified version of the ones provided in Section 4.5.3.
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5.3. NUMERICAL EXPERIMENTS
In this section, we compare the performance of the proposed ConjVI Algorithm 5 (re-
ferred to as ConjVI in this section) with the benchmark VI algorithm that utilizes the
d-DP operator (5.2) (referred to as VI in this section) through three numerical examples.
In particular, we also consider the dynamic scheme for the construction of Yg in ConjVI
(referred to as ConjVI-d in this section). For the first example, we focus on a synthetic
system satisfying the conditions of assumptions considered in this chapter in order to
examine our theoretical results. In the second and third examples, we showcase the ap-
plication of ConjVI in solving the optimal control problem of an inverted pendulum and
an unstable batch reactor. We note that the simulations were implemented via MATLAB
version R2017b, on a PC with an Intel Xeon 3.60 GHz processor and 16 GB RAM.

5.3.1. EXAMPLE 1 – SYNTHETIC

We consider the linear system

x+ = A =
[

2 1
1 3

]
x +

[
1 1
1 2

]
u +w.

The problem of interest is the infinite-horizon, optimal control of this system with cost
functions Cs(x) = 10∥x∥2

2 and Ci(u) = e |u1| + e |u2| − 2 and discount factor γ = 0.95. We
consider state and input constraint sets X = [−1,1]2 ⊂ R2 and U = [−2,2]2 ⊂ R2, respec-
tively. The disturbance is assumed to have a uniform distribution over the finite sup-
port Wg = {0,±0.05}× {0} ⊂ R2 of size W = 3. Notice how the stage cost is a combina-
tion of a quadratic term (in state) and an exponential term (in input). Particularly, the
control problem at hand does not have a closed-form solution. We use uniform, grid-
like discretizations Xg and Ug for the state and input spaces such that co(Xg) = X and
co(Ug) = U. This choice allows us to deploy multilinear interpolation, which is non-
expansive, as the extension operator [̃·] in the d-DP operation (5.2) in VI, and in the d-
CDP operation (5.6a) in ConjVI. The grids Vg,Zg ⊂ R2 are also constructed uniformly,
following the guidelines provided in Section 5.2.2. For the construction of Yg ⊂ R2, we
also follow the guidelines of Section 5.2.2 with α = 1. In particular, we also consider
the dynamic scheme for the construction of Yg. Moreover, in each implementation of
these algorithms, all of the involved grids (Xg,Ug,Yg,Vg,Zg) are chosen to be of the same
size N 2 (N points in each dimension). We are particularly interested in the performance
of these algorithms, as N increases. We note that the described setup satisfies all of the
assumptions in this chapter.

The results of our numerical simulations are shown in Figure 5.1. As shown in Fig-
ure 5.1a, both VI and ConjVI are indeed convergent with a rate less than or equal to
γ = 0.95; see Theorem 5.2.7. In particular, ConjVI terminates in kt = 55 iterations, com-
pared to kt = 102 iterations required for VI to reach the termination bound et = 0.001.
Not surprisingly, this faster convergence, combined with the lower time complexity of
ConjVI in each iteration, leads to a significant reduction in the running time of this al-
gorithm compared to VI. This effect can be clearly seen in Figure 5.1b, where the run-
time of ConjVI for N = 412 is an order of magnitude less than that of VI for N = 112. In
this regard, we note that the setting of this numerical example leads to O (ktN 4W ) and
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(c) Average cost of 100 random instances of the control problem over T = 100 time steps.

Figure 5.1: Performance of VI and ConjVI 5 (CVI) – synthetic example: The black dashed-
dotted line in (a) corresponds to exponential convergence with rate γ = 0.95. CVI-d is the
ConjVI algorithm with dynamic dual grid Yg.

O (ktN 2W ) time complexities for VI and ConjVI, respectively; see Theorem 5.2.8. Indeed,
the running times shown in Figure 5.1b match these complexities.

Since we do not have access to the true optimal value function, we consider evaluat-
ing the performance of the greedy policy

µ(x) ∈ argmin
u∈U(x)∩Ug

{
C (x,u)+γ ·Ew J d

(
g (x,u, w)

)}
,

with respect to the discrete value function J d computed using VI and ConjVI (we note
that, for finding the greedy control action, we used the same discretization Ug of the

input space and the same extension J d of the value function as the one used in VI and
ConjVI algorithms, however, this need not be the case in general). Figure 5.1c reports
the average cost of one hundred instances of the optimal control problem with greedy
control actions. As can be seen, the reduction in the running time in ConjVI comes with
an increase in the cost of the controlled trajectories.

Let us now consider the effect of dynamic construction of the dual state grid Yg. As
can be seen in Figure 5.1a, using a dynamic Yg leads to a slower convergence (ConjVI-d
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terminates in kt = 100 iterations). We note that the relative behavior of the convergence
rates in Figures 5.1a was also seen for other grid sizes in the discretization scheme. How-
ever, we see a small increase in the running time of ConjVI-d compared to ConjVI since
the per iteration complexity for ConjVI-d is again of O (ktN 2W ); see Figure 5.1b. More
importantly, as depicted in Figure 5.1c, ConjVI-d shows almost the same performance
as VI when it comes to the quality of the greedy actions. This is because the dynamic
construction of Yg in ConjVI-d uses the available computational power (related to the
size of the discretization) smartly by finding the smallest grid Yg in each iteration, to
minimize the error of that same iteration.

5.3.2. EXAMPLE 2 – INVERTED PENDULUM
We now consider the optimal control of an inverted pendulum with quadratic state and
input costs Cs(x) = ∥x∥2

2 and Ci(u) = ∥u∥2
2. The deterministic continuous-time dynamics

of the system is described by θ̈ = αsinθ+βθ̇+λu, where θ is the angle (with θ = 0 cor-
responding to upward position), and u is the control input [98, Sec. 4.5.3]. The values of
the parameters are α= 118.6445, β=−1.599, and λ= 29.5398 (corresponding to the val-
ues of the physical parameters in [98, Sec. 4.5.3]). Here, we consider the corresponding
discrete-time dynamics, by using the forward Euler method with sampling time τ= 0.05.
We also introduce stochasticity by considering an additive disturbance in the dynamics.
The discrete-time dynamics then reads as

x+ = fs(x)+Bu +w,

where x = (θ, θ̇) ∈R2 is the state variable (angle and angular velocity),

w ∈Wg =
{

0,±0.025π

3
,±0.05π

3

}
× {0,±0.025π,±0.05π} ⊂R2,

is the disturbance with a uniform distribution, and

fs(x) = x +τ ·
[

x2

αsin x1 +βx2

]
, B =

[
0
λ

]
.

State and input constraints are described by X= [−π
3 , π3 ]× [−π,π] ⊂ R2 and U= [−3,3] ⊂

R. The discount factor is set to γ= 0.95 and the termination bound is et = 0.001.
We use uniform, grid-like discretizations Xg and Ug for the state and input spaces

such that co(Xg) = [−π
4 , π4 ]× [−π,π] ⊂ X and co(Ug) = U. With this choice of discrete

state space Xg, the feasibility condition of Assumption 5.1.1-(iii) holds for co(Xg). (Note
that the entire set X however does not satisfy the feasibility condition). Also, we use
nearest neighbor extension, which is non-expansive, for the extension operators in (5.2)
for VI and in (5.6a) for ConjVI. The grids Vg ⊂ R and Zg,Yg ⊂ R2 are also constructed
uniformly, following the guidelines of Section 5.2.4 (with α= 1). We again also consider
the dynamic scheme for the construction of Yg. Moreover, in each implementation of
these algorithms, all the grids are chosen to be of the same size in each dimension, i.e.,
X ,Y , Z = N 2 and U ,V = N .

The results of our numerical simulations are shown in Figure 5.2. As reported, we
essentially observe the same behaviors as before. In particular, the application of Con-
jVI, leads to faster convergence and a significant reduction in the running time; see Fig-
ures 5.2a and 5.2b. Moreover, as shown in Figures 5.2b and 5.2c, the dynamic scheme for
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(c) Average cost of 100 random instances of the control problem over T = 100 time steps.

Figure 5.2: Performance of VI and ConjVI 5 (CVI) – optimal control of inverted pendulum:
The black dashed-dotted line in (a) corresponds to exponential convergence with rate γ =
0.95. CVI-d is the ConjVI algorithm with dynamic dual grid Yg.

construction of Yg leads to a huge improvement in the performance of the correspond-
ing greedy policy at the expense of a small increase in the computational cost.

5.3.3. EXAMPLE 3 – BATCH REACTOR
Our last numerical example concerns the optimal control of a system with four states
and two input channels, namely, an unstable batch reactor borrowed from [100, Sec. 6].
The discrete-time dynamics are given by

x+ =


1.08 −0.05 0.29 −0.24

−0.03 0.81 0.00 0.03
0.04 0.09 0.73 0.24
0.00 0.19 0.05 0.91

x +


0.00 −0.02
0.26 0.00
0.08 −0.13
0.08 0.00

u,

with constraints x ∈ X = [−2,2]4 ⊂ R4 and u ∈U = [−2,2]2 ⊂ R2. Note that the dynamics
are deterministic. The problem of interest is then the optimal control of the system with
quadratic costs Cs(x) = 2∥x∥2

2 and Ci(u) = ∥u∥2
2 and discount factor γ= 0.95. Once again,
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Figure 5.3: Performance of VI and ConjVI 5 (CVI) – optimal control of batch reactor: The black
dashed-dotted line in (a) corresponds to exponential convergence with rate γ = 0.95. CVI-d
is the ConjVI algorithm with dynamic dual grid Yg.

we use uniform, grid-like discretizations Xg and Ug for the state and input spaces such
that co(Xg) = [−1,1]4 ⊂X and co(Ug) =U. The grids Vg ⊂R and Zg,Yg ⊂R2 are also con-
structed uniformly, following the guidelines of Section 5.2.4 (with α = 1). Moreover, in
each implementation of VI and ConjVI(-d), the termination bound is et = 0.001 and all of
the involved grids are chosen to be of the same size in each dimension, i.e., X ,Y , Z = N 4

and U ,V = N 2. Finally, we note that we use multi-linear interpolation and extrapolation
for the extension operator in (5.2) for VI. Due to the extrapolation, the extension operator
is no longer non-expansive and hence the convergence of VI is not guaranteed. On the
other hand, since the dynamics are deterministic, there is no need for extension in Con-
jVI (the scaled expectation in (5.6a) in ConjVI reduces to the simple scaling εd := γ · J d),
and hence the convergence of ConjVI only requires co(Zg) ⊇ fs

(
Xg

)
and is guaranteed.

The results of our numerical simulations are shown in Figure 5.3. Once again, we
see the trade-off between the time complexity and the greedy control performance in
VI and ConjVI. On the other hand, ConjVI-d has the same control performance as VI
with an insignificant increase in running time compared to ConjVI. In Figure 5.3a, we
also observe the non-monotone behavior of ConjVI-d. In this regard, recall that when
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the grid Yg is constructed dynamically and varies at each iteration, the d-CDP operator
is not necessarily contractive, which is here the case for the first six iterations. The VI
algorithm also shows a non-monotone behavior, where for the first nine iterations the
d-DP operation is actually expansive. As we noted earlier, this is because the extension
via multilinear extrapolation is expansive.

5.4. TECHNICAL PROOFS
PROOF OF PROPOSITION 5.2.2
We can use the representation (4.21) and the definition of conjugate operation to obtain

T̂ J (x)−Cs(x) = max
y

{
〈

fs(x), y
〉−φ(y)}

= max
y

{〈
fs(x), y

〉−C∗
i (−B⊤y)−ϵ∗(y)

}
= max

y

{〈
fs(x), y

〉− [C∗
i ]∗∗(−B⊤y)−ϵ∗(y)

}
= max

y

{〈
fs(x), y

〉− max
u∈co(U)

[〈−B⊤y,u
〉−C∗∗

i (u)
]−ϵ∗(y)

}
= max

y
min

u∈co(U)

{
C∗∗

i (u)+〈
y, fs(x)+Bu

〉−ϵ∗(y)
}

,

where we used the fact that C∗
i :Rm →R is proper, closed, and convex, and hence [C∗

i ]∗∗ =
C∗

i . This follows from the fact that dom(Ci) = U is assumed to be compact (Assump-
tion 5.1.1-(iii)). Hence, the objective function of this maximin problem is convex in u,
with co(U) being compact, which follows from convexity of C∗∗

i : co(U) → R. Also, the
objective function is concave in y , which follows from the convexity of ϵ∗. Then, by
Sion’s Minimax Theorem (see, e.g., [94, Thm. 3]), we have minimax-maximin equality,
i.e.,

T̂ J (x)−Cs(x) = min
u

max
y

{
C∗∗

i (u)+〈
y, f (x,u)

〉−ϵ∗(y)
}

= min
u

{
C∗∗

i (u)+max
y

[〈
y, f (x,u)

〉−ϵ∗(y)
]}

= min
u

{
C∗∗

i (u)+ϵ∗∗(
f (x,u)

)}
= min

u

{
C∗∗

i (u)+γ · [Ew J (·+w)]∗∗
(

f (x,u)
)}

,

where for the last equality, we used [γh]∗∗ = γ ·h∗∗; see [101, Prop. 13.23–(i)&(iv)].

PROOF OF COROLLARY 5.2.3
By Proposition 5.2.2, we need to show C∗∗

i =Ci and [Ew J (·+w)]∗∗ =Ew J (·+w) so that

C∗∗
i (u)+γ · [Ew J (·+w)]∗∗

(
f (x,u)

)=Ci(u)+γ · [Ew J (·+w)]
(

f (x,u)
)

=Ci(u)+γ ·Ew J
(

f (x,u)+w
)

=Ci(u)+γ ·Ew J
(
g (x,u, w)

)
.

This holds if Ci and Ew J (· +w) are proper, closed, and convex. This is indeed the case
since X and U are compact, and Ci :U→R and J :X→R are assumed to be convex.
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PROOF OF THEOREM 5.2.7
We begin with two preliminary lemmas on the non-expansiveness of conjugate and mul-
tilinear interpolation operations within the d-CDP operation (4.22).

Lemma 5.4.1 (Non-expansiveness of conjugate operator). Consider two functions hi (i =
1,2), with the same nonempty effective domain X. We have

|h∗
1 (y)−h∗

2 (y)| ≤ ∥h1 −h2∥∞ , ∀y ∈ dom(h∗
1 )∩dom(h∗

2 ).

Proof. For any y ∈ dom(h∗
1 )∩dom(h∗

2 ), we have

h∗
1 (y) = max

x∈X
〈

x, y
〉−h1(x) = max

x∈X
〈

x, y
〉−h2(x)+h2(x)−h1(x).

Hence,

h∗
2 (y)−∥h1 −h2∥∞ ≤ h∗

1 (y) ≤ h∗
2 (y)+∥h1 −h2∥∞ ,

that is,

|h∗
1 (y)−h∗

2 (y)| ≤ ∥h1 −h2∥∞ .

Lemma 5.4.2 (Non-expansiveness of interpolative LERP operator). Consider two discrete
functions hd

i (i = 1,2) with the same grid-like domain Xg ⊂ Rn , and their interpolative

LERP extensions hd
i : co(Xg) →R. We have∥∥∥hd

1 −hd
2

∥∥∥∞ ≤
∥∥∥hd

1 −hd
2

∥∥∥∞ .

Proof. For any x ∈ co(Xg), we have (i = 1,2)

hd
i (x) =

2n∑
j=1

α j hd
i (x j ),

where x j , j = 1, . . . ,2n , are the vertices of the hyper-rectangular cell that contains x, and
α j , j = 1, . . . ,2n , are convex coefficients (i.e., α j ∈ [0,1] and

∑
j α

j = 1). Then

∣∣∣hd
1 (x)−hd

2 (x)
∣∣∣≤ 2n∑

j=1
α j

∣∣∣hd
1 (x j )−hd

2 (x j )
∣∣∣≤ ∥∥∥hd

1 −hd
2

∥∥∥∞ .

With these preliminary results at hand, we can now show that T̂ d is γ-contractive.
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Consider two discrete functions J d
i :Xd →R (i = 1,2). For any x ∈Xd ⊂Rn , we have

∣∣∣T̂ d J d
1 (x)− T̂ d J d

2 (x)
∣∣∣ (5.6f)=

∣∣∣ϕd∗d
1

(
fs(x)

)−ϕd∗d
2

(
fs(x)

)∣∣∣ Lem. 5.4.2≤
∥∥∥ϕd∗d

1 −ϕd∗d
2

∥∥∥∞
Def.≤

∥∥∥ϕd∗
1 −ϕd∗

2

∥∥∥∞ Lem. 5.4.1≤
∥∥∥ϕd

1 −ϕd
2

∥∥∥∞ (5.6d)≤
∥∥∥εd∗d

1 −εd∗d
2

∥∥∥∞
Def.≤

∥∥∥εd∗
1 −εd∗

2

∥∥∥∞ Lem. 5.4.1≤
∥∥∥εd

1 −εd
2

∥∥∥∞
(5.6a)= γ ·

∥∥∥∥∥ ∑
w∈Wd

p(w) ·
(

J̃ d
1 (x +w)− J̃ d

2 (x +w)
)∥∥∥∥∥

∞
≤ γ ·

∥∥∥ J̃ d
1 − J̃ d

2

∥∥∥∞ ≤ γ ·
∥∥∥J d

1 − J d
2

∥∥∥∞ .

We note that we are using: (i) Assumption 5.2.5-(ii) in the application of Lemma 5.4.2,
(ii) dom(ϕd∗

i ) = dom(εd∗
i ) =Rn for i = 1,2 in the applications of Lemma 5.4.1, and (iii) As-

sumption 5.2.6-(i) in the last inequality.

PROOF OF THEOREM 5.2.8
In what follows, we provide the time complexity of each line of Algorithm 5. In particular,
we use the fact that Y , Z = X and V = U by Assumption 5.2.5-(iii). The complexity of
construction of Vg in line 1 is of O (X +U ) by Assumption 5.2.5-(iii). The LLT of line 2
requires O (U +V ) = O (U ) operations [77, Cor. 5]. The complexity of lines 3 and 4 is of
O (X +U ) by Assumption 5.2.5-(iii) on the complexity of construction of Zg and Yg. The
operation of line 5 also has a complexity of O (X ), and line 6 requires O (X +U ) operations.
This leads to the reported O (X +U ) time complexity for initialization.

In each iteration, lines 8 requires O (X ) operations. The complexity of line 9 is of
O (X W E) by the assumption on the complexity of the extension operator [̃·]. The LLT
of line 10 requires O (X +Y ) = O (X ) operations [77, Cor. 5]. The application of LERP in
line 12 has a complexity of O (logV ); see Remark 4.2.3. Hence, the for loop over y ∈Yg

requires O (Y logV ) = O (X logU ) = Õ (X ) operations. The LLT of line 15 requires O (Z +
Y ) = O (X ) operations [77, Cor. 5]. The application of LERP in line 17 has a complexity
of O (log Z ); see Remark 4.2.3. Hence, the for loop over x ∈ Xg requires O (X log Z ) =
O (X log X ) = Õ (X ) operations. The time complexity of each iteration is then of Õ (X W E).

PROOF OF THEOREM 5.2.9
Note that the ConjVI Algorithm 5 involves consecutive applications of the d-CDP oper-
ator T̂ d

e (4.22), and terminates after a finite number of iterations corresponding to the
bound et. We begin with bounding the difference between the DP and d-CDP operators.

Proposition 5.4.3 (Error of d-CDP operation). 15 Let J :X→R be a Lipschitz continuous,
convex function that satisfies the condition of Assumption 5.2.6-(ii). Assume Ci : U→ R

is convex. Also, let Assumptions 5.2.5-(i)&(ii) hold. Consider the output of the d-CDP

15This result extends Theorem 4.5.4 on the error of the modified d-CDP operator, by considering the error of
extension operation for computing the expectation with respect to to the additive disturbance in (5.6a) and
the approximate discrete conjugation of the input cost in (5.6d).
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operator T̂ d
e J d : Xg → R and the discretization of the output of the DP operator [T J ]d :

Xg →R. We have ∥∥∥T̂ d
e J d − [T J ]d

∥∥∥∞ ≤ γ ·ee +ed. (5.10)

Proof. First note that, by Corollary 5.2.3, the DP and CDP operators are equivalent, i.e.,
T J = T̂ J . Hence, it suffices to bound the error of the d-CDP operator T̂ d

e with respect
to the CDP operator T̂ . We begin with the following preliminary lemma.

Lemma 5.4.4. The scaled expectation ϵ in (5.4a) is Lipschitz continuous and convex with
a nonempty, compact effective domain. Moreover, L(ϵ) ≤ γ ·L(J ).

Proof. The convexity follows from the fact that expectation preserves convexity and γ>
0. The effective domain of ϵ is nonempty by the feasibility condition of Assumption 5.1.1-
(iii), and is compact since X is assumed to be compact. Finally, the bound on the Lips-
chitz constant of ϵ immediately follows from (5.4a).

We now provide our step-by-step proof. Consider the function ϵ in (5.4a) and its
discretization ϵd :Xg →R. Also, consider the discrete function εd :Xg →R in (5.6a).

Lemma 5.4.5. We have dom(ϵd) = dom(εd) ̸= ;. Moreover,
∥∥ϵd −εd

∥∥∞ ≤ γ ·ee.

Proof. The first statement follows from the feasibility condition of Assumption 5.1.1-(iii).
For the second statement, note that for every x ∈ dom(ϵd) = dom(εd), we can use (5.4a)
and (5.6a) to write

∣∣∣ϵd(x)−εd(x)
∣∣∣= γ · ∣∣∣∣∣ ∑

w∈Wd

p(w) · (J (x +w)− J̃ d(x +w)
)∣∣∣∣∣

≤ γ · ∑
w∈Wd

p(w) ·
∣∣∣J (x +w)− J̃ d(x +w)

∣∣∣
≤ γ ·

∥∥∥J − J̃ d
∥∥∥∞ .

The result then follows from Assumption 5.2.6-(ii) on J .

Now, consider the function φ : Rn → R in (5.4b) and its discretization φd : Yg → R.
Also, consider the discrete function ϕd :Yg →R in (5.6d).

Lemma 5.4.6. We have
∥∥φd −ϕd

∥∥∞ ≤ γ ·ee +eu +ev +ex, where

eu = [∥B∥2 ·∆Yg +L(Ci)] ·dH(U,Ud),

ev =∆Ud ·dH
(

co(Vg),Vg),

ex =
[
∆Yg +γ ·L(J )

] ·dH(X,Xg).

Proof. Let y ∈Yg. According to (5.4b) and (5.6d), we have (note that εd∗d(y) = εd∗(y))

φd(y)−ϕd(y) =φ(y)−ϕ(y) =C∗
i (−B⊤y)−C d∗d

i (−B⊤y)+ϵ∗(y)−εd∗(y). (5.11)
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First, let us use Lemma 4.2.5 to write

0 ≤C∗
i (−B⊤y)−C d∗

i (−B⊤y) ≤ [∥−B⊤y∥2 +L(Ci)
] ·dH(U,Ud)

≤ [∥B∥2 ·∆Yg +L(Ci)] ·dH(U,Ud) = eu. (5.12)

Also, Assumption 5.2.5-(i) allows to use Corollary 4.2.7 and write

0 ≤C d∗d
i (−B⊤y)−C d∗

i (−B⊤y) ≤∆Ud ·dH
(

co(Vg),Vg)= ev. (5.13)

Now, by Lemma 5.4.1 (non-expansiveness of conjugation) and Lemma 5.4.5, we have∣∣∣ϵd∗(y)−εd∗(y)
∣∣∣≤ ∥∥∥ϵd −εd

∥∥∥∞ ≤ γ ·ee. (5.14)

Moreover, we can use Lemmas 4.2.5 and 5.4.4 to obtain

0 ≤ ϵ∗(y)−ϵd∗(y) ≤ [∥∥y
∥∥

2 +L(ϵ)
] ·dH(X,Xg)

≤ [
∆Yg +γ ·L(J )

] ·dH(X,Xg) = ex. (5.15)

Combining (5.11)-(5.15), we then have∣∣∣φd(y)−ϕd(y)
∣∣∣= ∣∣∣C∗

i (−B⊤y)−C d∗d
i (−B⊤y)+ϵ∗(y)−εd∗(y)

∣∣∣
≤

∣∣∣C∗
i (−B⊤y)−C d∗

i (−B⊤y)
∣∣∣+ ∣∣∣C d∗

i (−B⊤y)−C d∗d
i (−B⊤y)

∣∣∣
+

∣∣∣ϵ∗(y)−ϵd∗(y)
∣∣∣+ ∣∣∣ϵd∗(y)−εd∗(y)

∣∣∣
≤ eu +ev +γ ·ee +ex.

Next, consider the discrete composite functions [φ∗ ◦ fs]d : Xg → R and [ϕd∗ ◦ fs]d :
Xg →R. In particular, notice that φ∗ ◦ fs appears in (5.4c).

Lemma 5.4.7. We have
∥∥[φ∗ ◦ fs]d − [ϕd∗ ◦ fs]d

∥∥∞ ≤ γ ·ee +eu +ev +ex +ey, where

ey =
[
∆ fs(Xg) +∆X+∥B∥2 ·∆U

] ·max
x∈Xg

d
(
∂(T J −Cs)(x),Yg).

Proof. Let x ∈ Xg. Also let φd : Yg → R be the discretization of φ : Rn → R. Since φ is
convex by construction, we can use Lemma 4.2.5 to obtain (recall that L(h;X) denotes
the Lipschtiz constant of h restricted to the set X⊂ dom(h))

0 ≤φ∗(
fs(x)

)−φd∗(
fs(x)

)≤ min
y∈∂φ∗( fs(x))

{[∥∥ fs(x)
∥∥

2 +L
(
φ; {y}∪Yg)] ·d(y,Yg)

}
(5.16)

By using (5.4c) and the equivalence of DP and CDP operators we haveφ∗◦ fs = T̂ J−Cs =
T J −Cs. Also, the definition (5.4b) implies that

L(φ) ≤ L
(
C∗

i ◦−B⊤)+L(ϵ∗) ≤ ∥B∥2 ·L(C∗
i )+L(ϵ∗)

≤ ∥B∥2 ·∆dom(Ci) +∆dom(ϵ) ≤ ∥B∥2 ·∆U+∆X,
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where for the last inequality we used the fact that dom(ϵ) ⊆ dom(J ) = X. Using these
results in (5.16), we have

0 ≤φ∗(
fs(x)

)−φd∗(
fs(x)

)≤ min
y∈∂(T J−Cs)(x)

{[∥∥ fs(x)
∥∥

2 +∆X+∥B∥2∆U
] ·d(y,Yg)

}
≤ [

∆ fs(Xg) +∆X+∥B∥2 ·∆U
] · max

x′∈Xg
d

(
∂(T J −Cs)(x ′),Yg)= ey.

(5.17)

Second, by Lemmas 5.4.1 and 5.4.6, we have∣∣∣φd∗(z)−ϕd∗(z)
∣∣∣≤ ∥∥∥φd −ϕd

∥∥∥∞ ≤ γ ·ee +eu +ev +ex, (5.18)

for all z ∈ Rn , including z = fs(x). Here, we are using the fact that dom(φd) = dom(ϕd) =
Yg and dom(φd∗) = dom(ϕd∗) =Rn . Combining inequalities (5.17) and (5.18), we obtain∣∣∣φ∗(

fs(x)
)−ϕd∗(

fs(x)
)∣∣∣≤ ∣∣∣φ∗(

fs(x)
)−φd∗(

fs(x)
)∣∣∣+ ∣∣∣φd∗(

fs(x)
)−ϕd∗(

fs(x)
)∣∣∣

≤ ey +γ ·ee +eu +ev +ex.

This completes the proof.

Finally, consider the output of the d-CDP operator T̂ d
e J d :Xg →R. Also, consider the

output of the CDP operator T̂ J :X→R and its discretization [T̂ J ]d :Xg →R.

Lemma 5.4.8. We have∥∥∥T̂ d
e J d − [T̂ J ]d

∥∥∥∞ ≤ γ ·ee +eu +ev +ex +ey +ez = γ ·ee +ed,

where
ez =∆Yg ·dH

(
fs(Xg),Zg).

Proof. Let x ∈Xg. According to (5.4c) and (5.6f), we have

T̂ d
e J d(x)− [T̂ J ]d(x) = T̂ d

e J d(x)− T̂ J (x) =ϕd∗d
(

fs(x)
)−φ∗(

fs(x)
)

(5.19)

Now, by Lemma 5.4.7, we have∣∣∣φ∗(
fs(x)

)−ϕd∗(
fs(x)

)∣∣∣≤ γ ·ee +eu +ev +ex +ey. (5.20)

Moreover, Assumption 5.2.5-(ii) allows us to use Corollary 4.2.7 and obtain

0 ≤ϕd∗d
(

fs(x)
)−ϕd∗(

fs(x)
)≤∆Yg ·dH

(
fs(Xg),Zg)= ez. (5.21)

Combining (5.19), (5.20), and (5.21), we then have∣∣∣T̂ d
e J d(x)− [T̂ J ]d(x)

∣∣∣= ∣∣∣ϕd∗d
(

fs(x)
)−φ∗(

fs(x)
)∣∣∣

≤
∣∣∣ϕd∗d

(
fs(x)

)−ϕd∗(
fs(x)

)∣∣∣+ ∣∣∣ϕd∗(
fs(x)

)−φ∗(
fs(x)

)∣∣∣
≤ γ ·ee +eu +ev +ex +ey +ez.
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The inequality (5.10) then follows from Lemma 5.4.8 by noticing the equivalence of
the DP and CDP operators.

With the preceding result at hand, we can now provide a bound for the difference
between the fixed points of the d-CDP and DP operators. To this end, let Ĵ d

⋆ = T̂ d
e Ĵ d

⋆ :
Xg → R be the fixed point of the d-CDP operator. Recall that J⋆ = T J⋆ : X → R and
J d
⋆ :Xg →R are the true optimal value function and its discretization.

Lemma 5.4.9 (Error of fixed point of d-CDP operator). We have∥∥∥ Ĵ d
⋆− J d

⋆

∥∥∥∞ ≤ γ ·ee +ed

1−γ .

Proof. By Assumptions 5.2.5-(ii) and 5.2.6-(i), the operator T̂ d
e is γ-contractive (Theo-

rem 5.2.7) and hence ∥∥∥T̂ d
e Ĵ d

⋆− T̂ d
e J d

⋆

∥∥∥∞ ≤ γ ·
∥∥∥ Ĵ d

⋆− J d
⋆

∥∥∥∞ .

Also, notice that Assumptions 5.1.1 and 5.2.4 imply that J⋆ is Lipschitz continuous and
convex. Moreover, J⋆ is assumed to satisfy the condition of Assumption 5.2.6-(ii). Hence,
by Proposition 5.4.3, we have∥∥∥T̂ d

e J d
⋆− [T J⋆]d

∥∥∥∞ ≤ γ ·ee +ed.

Using these two inequalities, we can then write∥∥∥ Ĵ d
⋆− J d

⋆

∥∥∥∞ =
∥∥∥ Ĵ d

⋆− T̂ d
e J d

⋆+ T̂ d
e J d

⋆− J d
⋆

∥∥∥∞
≤

∥∥∥ Ĵ d
⋆− T̂ d

e J d
⋆

∥∥∥∞+
∥∥∥T̂ d

e J d
⋆− J d

⋆

∥∥∥∞
=

∥∥∥T̂ d
e Ĵ d

⋆− T̂ d
e J d

⋆

∥∥∥∞+
∥∥∥T̂ d

e J d
⋆− [T J⋆]d

∥∥∥∞ .

≤ γ ·
∥∥∥ Ĵ d

⋆− J d
⋆

∥∥∥∞+γ ·ee +ed.

This completes the proof.

Finally, we can use the fact that T̂ d
e is γ-cantractive to provide the following bound

on the error due to finite termination of the algorithm. Recall that Ĵ d : Xg → R is the
output of Algorithm 5.

Lemma 5.4.10 (Error of finite termination). We have∥∥∥ Ĵ d − Ĵ d
⋆

∥∥∥∞ ≤ γ ·et

1−γ .

Proof. By Assumptions 5.2.5-(ii) and 5.2.6-(i), the operator T̂ d
e is γ-contractive (The-

orem 5.2.7). Let us assume that Algorithm 5 terminates after k ≥ 0 iterations so that
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Ĵ d = J d
k+1 and

∥∥J d
k+1 − J d

k

∥∥
∞ ≤ et. Then,∥∥∥ Ĵ d − Ĵ d

⋆

∥∥∥∞ =
∥∥∥J d

k+1 − T̂ d
e J d

k+1 + T̂ d
e J d

k+1 − Ĵ d
⋆

∥∥∥∞
≤

∥∥∥J d
k+1 − T̂ d

e J d
k+1

∥∥∥∞+
∥∥∥T̂ d

e J d
k+1 − Ĵ d

⋆

∥∥∥∞
=

∥∥∥T̂ d
e J d

k − T̂ d
e J d

k+1

∥∥∥∞+
∥∥∥T̂ d

e J d
k+1 − T̂ d

e Ĵ d
⋆

∥∥∥∞
≤ γ ·

∥∥∥J d
k − J d

k+1

∥∥∥∞+γ ·
∥∥∥J d

k+1 − Ĵ d
⋆

∥∥∥∞
≤ γ ·et +γ

∥∥∥ Ĵ d − Ĵ d
⋆

∥∥∥∞ ,

where for the second inequality we used the fact that T̂ d
e is a contraction.

The inequality (5.7) is then derived by combining the results of Lemmas 5.4.9 and
5.4.10.
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CONCLUDING REMARKS

This chapter concludes this thesis by providing some final remarks. In particular, we
discuss some of the limitations of the proposed models/approaches and also point to
interesting future research directions.

PART ONE

In the first part of the thesis, we considered a macroscopic model for bounded confi-
dence opinion dynamics with environmental noise. In particular, we studied the effect of
exogenous influence by adding a mass of radical (continuum) agents to the original pop-
ulation of the normal agents. The well-posedness of the continuum dynamics expressed
as a nonlinear Fokker-Planck equation was established under some assumptions on the
initial density of the normal opinions and the density of radical opinions. The long-term
behavior of the model was also discussed by considering the corresponding stationary
equation. In this regard, we provided a sufficient condition on the noise level that guar-
antees exponential convergence of the dynamics towards the stationary state that can be
made arbitrarily close to the uniform distribution. In the context of opinion dynamics,
we derived a theoretical bound on the minimum noise level required to counteract the
effect of radical agents and keep the system in a somewhat uniform state.

Exploiting the periodicity of the continuum-agent model, we used Fourier analysis
to provide a general framework for characterization of the clustering behavior of the sys-
tem with the uniform initial distribution. We then applied this framework for a particular
distribution of radical opinions, namely, a relatively concentrated triangular distribu-
tion. In particular, we studied the effect of the relative mass of the radicals on the criti-
cal noise level for order-disorder transition. As expected, the analysis showed that for a
larger number of radical agents, the critical noise level increases. We note that this result
corresponds to the theoretical result on the global estimate for stationary state. However,
comparing the theoretical lower bound on the noise level for the global estimate with its
counterpart derived numerically, we find that the theoretical bound is quite conserva-
tive, which was expected considering its theoretical nature. We also considered the effect
of relative mass and average opinion of radicals on the number, timing, and positioning
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of the clusters for noises smaller than the critical noise level. Here, the noise level was
shown to be the main factor in determining the number of clusters. Meanwhile, the rel-
ative mass of the radicals mainly affects the timing of the clustering behavior, that is, for
larger masses of radicals, the clustering behavior is expected to emerge faster. On the
other hand, the main effect of the average opinion of the radicals is on the positioning of
the clusters; the clusters are positioned in a way that we see a cluster formed around the
average opinions of radicals. The simulations of the continuum-agent model and the
corresponding discrete-agent model were in agreement with these results.

The most important limitation of the considered macroscopic model for opinion dy-
namics is in the unwanted effects of the proposed even 2-periodic boundary condition.
The proposed boundary condition addresses a disadvantage of simple periodic bound-
ary condition by distinguishing the extreme opinions 0 and 1. However, it reinforces the
influence of more extreme neighbors of opinion values in the R-neighborhood of ex-
treme opinions 0 and 1; see Figure 1.1. In a recent paper [102], the authors discussed our
even 2-periodic boundary condition and performed a numerical comparison with the
"ideal" no-flux boundary condition.

Another restricting aspect of the proposed mean-field model is the underlying as-
sumption that the number of interacting agents is infinite. In some applications such
as economics and social sciences, where we are dealing with huge-scale systems with
thousands to millions of agents, such an assumption is justifiable. However, in other ap-
plications such as multi-agent robotic systems with tens to hundreds of agents, it can be
restricting [103]. In this regard, a promising research direction is to look into quantitative
bounds on the difference between the population density and its mean-field approxi-
mation as a function of the finite size of the population. This seems to be a promising
direction considering the results already available in the study of the mean-field limit for
interacting particle systems [104].

Another interesting research direction, which can be considered as the next natu-
ral step from a control engineering point of view, is the control of the normal popula-
tion’s state/opinion via proper placement of virtual stubborn agents (zealots, leaders).
This particular control problem has attracted a lot of attention recently because of the
ever-increasing influence of social media in political and commercial campaigns; see,
e.g., [105–108]. However, to the best of the author’s knowledge, the available literature
mainly focuses on employing discrete-agent models for both analysis and synthesis,
hence making the application of mean-field models for control synthesis a promising di-
rection. We note that the optimal control of the population density via the corresponding
mean-field PDE is a well-established problem in the mathematics and control commu-
nities [109, 110], however, the application of mean-field models for proper placement of
the virtual stubborn agents has not been explored to the best of our knowledge.

PART TWO

In the second part of the thesis, we considered the approximate implementation of the
DP operation arising in the optimal control of discrete-time systems with continuous
state and input spaces. The proposed approach involved discretization of the state space
and was based on an alternative path that solves the dual problem corresponding to the
DP operation by utilizing the LLT algorithm for discrete conjugation. Particularly, we
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introduced the d-CDP operator for problems with deterministic input-affine dynamics.
There we used the linearity of the dynamics in the input to effectively incorporate the
operational duality of addition and infimal convolution, and transformed the minimiza-
tion in the DP operation to a simple addition at the expense of three conjugate trans-
forms. This, in turn, led to transferring the computational cost from the primal input
domain U to the dual state domain Y. We then modified the proposed d-CDP operator
and reduced its time complexity for a subclass of problems with separable data in the
state and input variables: For this class, the per-step time complexity was reduced to
O (X +U ), compared to the standard complexity of O (XU ). We note that since the pro-
posed scheme essentially solves the discretized dual problem, it is prone to dualization
error in non-convex problem. The discretization error, on the other hand, was analyzed
and then used to provide concrete guidelines for the construction of a dynamic discrete
dual space in the proposed algorithms. We next discussed the extensions of the d-CDP
operator for infinite-horizon, discounted cost problems with stochastic dynamics, while
computing the conjugate of input cost numerically. In particular, we provided sufficient
conditions for the convergence of the corresponding ConjVI algorithm and extended our
error and complexity analysis accordingly. Two MATLAB packages were also developed
for the implementation of the proposed ConjVI algorithms in this part.

An interesting feature of the conjugate dynamic programming framework proposed
in this thesis is that it can be potentially combined with existing tools/techniques for fur-
ther reduction in time complexity. For example, the proposed framework can be readily
combined with sample-based value iteration algorithms that focus on transforming the
infinite-dimensional optimization in DP problems into computationally tractable ones
(e.g., the common state aggregation technique [69, Sec. 8.1] with piece-wise constant ap-
proximation). More interestingly, motivated by the recent quantum speedup for discrete
conjugation [79], we envision that the proposed framework paves the way for developing
a quantum DP algorithm. Indeed, the proposed algorithms are developed such that any
reduction in the complexity of discrete conjugation immediately translates to a reduced
computational cost of these algorithms.

The most important drawback of the proposed ConjVI algorithms is their depen-
dence on grid-like discretizations of both primal and dual domains for discrete conju-
gate operations. Factorized discretizations are particularly suitable for problems with
(almost) boxed constraints on the state (and input) spaces. More importantly, with such
discretizations, ConjVI, much like the standard VI algorithm, suffers from the curse of
dimensionality since the size of the finite representations of the corresponding spaces
increases exponentially with the dimension of those spaces. A promising approach to
address this issue is to employ adaptive and/or sparse grids for the discretization of the
primal space [111, 112]. Moreover, we note that in order to enjoy the linear-time com-
plexity of LLT, we are only required to choose a grid-like dual grid [77, Rem. 5]; that is, the
discretization of the state (and input) space in the primal domain need not be grid-like.
However, since the grid-like dual domain is usually chosen to include the same number
of points as the primal domain in each dimension, we still face the curse of dimensional-
ity. This, in particular, impairs the performance of the ConjVI Algorithm 3 for problems
in which the dimension of the state space is greater than that of the input space. Proper
exploitation of the aforementioned property of LLT in such cases calls for a more efficient
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construction of the dual grid based on the provided data points in the primal domain.
Consider a discrete function hd : Xd → R and its discrete conjugate hd∗d : Yg → R

computed using LLT for some finite set Yg. LLT is, in principle, capable of providing us
with the optimizer mapping

x⋆ :Yg →Xd : y 7→ argmax
x∈Xd

{〈
x, y

〉−hd(x)
}

,

where for each y ∈ Yg, we have hd∗d(y) = 〈
x⋆(y), y

〉−hd
(
x⋆(y)

)
. Proper exploitation

of this capability of LLT is an interesting researh direction that can potentially address
one of the drawbacks of the proposed ConjVI Algorithms 4 and 5 by avoiding the ap-
proximate discrete conjugation within these algorithms. Let us first recall that by ap-
proximate discrete conjugation we mean that we first compute the conjugate function
hd∗d :Yg →R for some grid Yg using the data points hd :Xd →R, and then for any ỹ (not

necessarily belonging toYg) we use the LERP extension hd∗d(ỹ) as an approximation for
hd∗(ỹ). Indeed, it is possible to avoid this approximation and compute hd∗(ỹ) exactly by
incorporating a smart search for the corresponding optimizer x̃ ∈Xd for which hd∗(ỹ) =〈

x̃, ỹ
〉−h(x̃). To be precise, if ỹ ∈ co(Ỹd) for some subset Ỹd of Yg, then x̃ ∈ co

(
x⋆(Ỹd)

)
,

where x⋆ : Yg → Xd is the corresponding optimizer mapping. Hence, in order to find
the optimizer x̃ ∈Xd corresponding to ỹ , it suffices to search in the set Xd ∩co

(
x⋆(Ỹd)

)
,

instead of the entire set Xd. This, in turn, can lead to a lower time complexity for com-
puting the exact discrete conjugate function.1

Recall the d-CDP reformulation

T̂ d[J d](x) = min
u

{
C (x,u)+ J d∗d∗(

f (x,u)
)}

,

for deterministic dynamics (Proposition 4.4.5), and note that

J d∗d∗(x) = max
y∈Yg

{〈
x, y

〉− J d∗d(y)
}

,

is a max-plus linear combination using the linear basis functions x 7→ 〈
x, y

〉
and coeffi-

cients J d∗d(y), with y ∈Yg being the slopes for the basis functions. An interesting future
research direction is to consider other forms of max-plus linear approximations for the
cost functions. In particular, instead of convex, piece-wise affine approximation, one
can consider the semi-concave, piece-wise quadratic approximation [86]

J d⊛d⊛(x) = max
w∈Wg

{
c ∥x −w∥2 + J d⊛d(w)

}
,

for a proper finite set Wg ⊂ X and constant c > 0. The important issue then is the fast
computation of the coefficients J d⊛d : Wg → R using the data points J d : Xg → R. This

1We note that the capability of LLT in providing the optimizer mapping x⋆ :Yg →Xd also allows us to extract
the optimal policy within the ConjVI algorithms. In this regard, note that the implementation of the ConjVI
algorithms in this thesis only provides us with the costs J d

t :Xg →R, t = 0,1, . . . ,T −1, and not the control laws

µd
t : Xg → Ug, t = 0,1, . . . ,T −1 (in the finite-horizon problem). To address this issue, we have to look at the

possibility of extracting the optimal policy within the d-CDP operation by keeping track of the dual pairs in
each conjugate transform, i.e., the pairs (x, y) for which

〈
x, y

〉= h(x)+h∗(y). We note that this idea has been
implemented in the Master thesis [113].
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seems to be possible considering the fact that the operation [·]⊛ closely resembles the
“distance transform” [82, 83].

Another interesting research direction is the extension of the proposed conjugate
value iteration scheme in a data-driven setup for reinforcement learning problems. This
has been the main focus of the author’s recent research. In what follows, we provide
an overview of the recent developments in this direction. Consider a standard off-line
(batch) reinforcement learning problem: We are given a set of size S of samples

(xi ,ui , x+
i ,ci ), i = 1, . . . ,S,

of the agents interaction with the environment. Each sample corresponds to the agent
taking the action ui ∈ U ⊂ Rn in the state xi ∈ X ⊂ Rm , which pushes the system to the
state x+

i ∈ X, while incurring the cost ci ∈ R. The problem is then to use these samples
in order to find the Q-function Q = T Q : X×U→ R. Recall that the DP operator T is
defined as (for deterministic systems)2

T Q(x,u) :=C (x,u)+γ ·min
u+ Q(x+,u+),

A standard solution for this problem is the so-called fitted Q-iteration (FQI) algorithm,
in which we use a parametric approximation Q̂θ :X×U→R for the Q-function, and find
the parameter θ ∈RP using some form of recursive regressions. Precisely, we solve

θℓ+1 = Regression
(
Q̂θℓ+1

,
{
Sd,Qd

ℓ+1

})
, ℓ= 0,1, . . . , (6.1)

using the data Qd
ℓ+1 :Sd = {(xi ,ui )}S

i=1 →R given by

Qd
ℓ+1(xi ,ui ) :=T Q̂θℓ (xi ,ui ) = ci +γ ·min

u+ Q̂θℓ (x+
i ,u+). (6.2)

That is, we find the best θℓ+1 by fitting Q̂θℓ+1
to T Q̂θℓ over the samples. Let us now use

this basic procedure for developing a similar algorithm in the conjugate domain. To this
end, we employ the following max-plus linear approximator for the Q-function

Q̂θ(x,u) = max
(y,v)∈Yd×Vd

{〈
y, x

〉+〈v,u〉−θd(y, v)
}
= θd∗(x,u), (6.3)

for proper discrete dual state and input spacesYd andVd, respectively (we are now treat-
ing the vector θ ∈RP as a discrete function θd :Yd×Vd →R such that P = Y V ). Note that
this is exactly the same type of approximation that is used within the proposed d-CDP
operators. Let θℓ ∈RP be the vector of parameters at the current iteration ℓ≥ 0. By plug-
ging the approximator (6.3) in (6.2), the values of the Q-function at the sample points in
the current iteration can be estimated as follows

Qd
ℓ+1(xi ,ui ) = ci +γ ·min

u+ θd∗
ℓ (x+

i ,u+).

2The Q-function is related to the value function via J (x) = minu Q(x,u).
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We can then find the updated vector of coefficients θℓ+1 ∈ RP , by fitting Q̂θℓ+1
to the

estimates computed above, i.e., by setting

Q̂θℓ+1
(xi ,ui ) = max

(y,v)∈Yg×Vg

{〈
y, x

〉+〈v,u〉−θd
ℓ+1(y, v)

}
=Qd

ℓ+1(xi ,ui ).

The proceeding equations form a system of max-plus linear equations. To solve that
equation, we can use the largest subsolution [114]

θd
ℓ+1(y, v) =− max

(xi ,ui )∈Sd

{〈
y, xi

〉+〈v,ui 〉−Qd
ℓ+1(xi ,ui )

}
=−Qd∗

ℓ+1(y, v).

Hence, the proposed conjugate FQI involves the following steps at each iteration:

1. Compute Qd
ℓ+1(xi ,ui ) = ci +γ ·minu+ θd∗

ℓ
(x+

i ,u+) for (xi ,ui ) ∈Sd;

2. Compute θd
ℓ+1(y, v) =−Qd∗

ℓ+1(y, v) for (y, v) ∈Yd ×Vd.

Now, the important observation is that if the sets Sd, Yd, and Vd are grid-like, then
we can use the LLT algorithm for computing the involved discrete conjugate operation.
This can reduce the time complexity of each iteration of the FQI algorithm to O (S +P )
from to the standard O (SP ) (disreg the complexity of solving the minimization over u+
in the first step).
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