

Delft University of Technology

Using Nemirovski's Mirror-Prox method as basic procedure in Chubanov's method for
solving homogeneous feasibility problems

Wei, Zhang; Roos, Kees

DOI
10.1080/10556788.2021.2023523
Publication date
2022
Document Version
Final published version
Published in
Optimization Methods and Software

Citation (APA)
Wei, Z., & Roos, K. (2022). Using Nemirovski's Mirror-Prox method as basic procedure in Chubanov's
method for solving homogeneous feasibility problems. Optimization Methods and Software, 37(4), 1447-
1470. https://doi.org/10.1080/10556788.2021.2023523

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/10556788.2021.2023523
https://doi.org/10.1080/10556788.2021.2023523

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

Using Nemirovski's Mirror-Prox method as basic
procedure in Chubanov's method for solving
homogeneous feasibility problems

Zhang Wei & Kees Roos

To cite this article: Zhang Wei & Kees Roos (2022): Using Nemirovski's Mirror-Prox method as
basic procedure in Chubanov's method for solving homogeneous feasibility problems, Optimization
Methods and Software, DOI: 10.1080/10556788.2021.2023523

To link to this article: https://doi.org/10.1080/10556788.2021.2023523

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Mar 2022.

Submit your article to this journal

Article views: 243

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2021.2023523
https://doi.org/10.1080/10556788.2021.2023523
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2021.2023523
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2021.2023523
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.2023523&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.2023523&domain=pdf&date_stamp=2022-03-04

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2021.2023523

Using Nemirovski’s Mirror-Prox method as basic procedure in
Chubanov’s method for solving homogeneous feasibility
problems

Zhang Weia and Kees Roosb

aDepartment of Mathematics, South China University of Technology, Guangzhou, People’s Republic of China;
bDepartment of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,
Delft, Netherlands

ABSTRACT
We introduce a new variant of Chubanov’s method for solving
linear homogeneous systems with positive variables. In the Basic
Procedure we use a recently introduced cut in combination with
Nemirovski’s Mirror-Prox method. We show that the cut requires at
most O(n3) time, just as Chubanov’s cut. In an earlier paper it was
shown that the new cuts are at least as sharp as those of Chubanov.
Our Modified Main Algorithm is in essence the same as Chubanov’s
Main Algorithm, except that it uses the new Basic Procedure as a
subroutine. The new method has O(n3.5 log2(1/δA)) time complex-
ity, where δA is a suitably defined condition number. As we show,
a simplified version of the new Basic Procedure competes well with
the Smooth Perceptron Scheme of Peña and Soheili and, when com-
bined with Rescaling, also with two commercial codes for linear
optimization.

ARTICLE HISTORY
Received 25 June 2020
Accepted 20 December 2021

KEYWORDS
Linear optimization;
Mirror-Prox method;
Chubanov’s method;
homogeneous

MATHEMATICS SUBJECT
CLASSIFICATIONS
90C05; 90C46; 90C47

1. Introduction

We deal with the (primal) problem

find x ∈ Rn

subject to Ax = 0, x > 0, (1)

where A is an integer (or rational) matrix of size m × n and rank (A) = m. The dual
problem is

find w ∈ Rm

subject to ATw ≥ 0, ATw �= 0. (2)

According to a variant of Farkas’ lemma, due to Stiemke [13], the systems (1) and (2) form
an alternative pair in the sense that exactly one of them is feasible [10].

Recently Chubanov [4] proposed a polynomial-time algorithm to deal with this pair of
problems. Since the system (1) is homogeneous in x it has a feasible solution if and only

CONTACT Kees Roos c.roos@tudelft.nl

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2021.2023523&domain=pdf&date_stamp=2022-03-03
mailto:c.roos@tudelft.nl
http://creativecommons.org/licenses/by/4.0/

2 Z. WEI AND K. ROOS

if the system

Ax = 0, x ∈ (0, 1]n (3)

is feasible. A key ingredient in Chubanov’s algorithm is the so-called Basic Procedure (BP).
As a result of the BP one gets either

(i) a feasible solution of (1), or
(ii) a feasible solution for the dual problem (2) of (1), or
(iii) a cut for the feasible region of (3).

The cut in (iii) has the form xk ≤ 1
2 , for some index k, for all feasible solutions of (3). If

this happens, the cut is used to rescale the matrix A. The rescaling happens in Chubanov’s
MainAlgorithm (MA). TheMAmaintains a vector d such that x ≤ d for all x satisfying (3).
Initially we take d = 1. In case (iii) the MA multiplies dk with 1

2 and replaces A by AD,
where D = diag (d). Then the MA sends the rescaled matrix to the BP. This is repeated
until the BP returns (i) or (ii). If the BP yields (ii) then (1) is infeasible.

Following [9] we use the condition number δA, defined by

δA := max

{ n∏
i=1

xi : Ax = 0, x ∈ [0, 1]n
}
.

Obviously, 0 ≤ δA ≤ 1. Moreover, since x ≤ d for all feasible solutions of (3), δA ≤
d1d2 . . . dn. The number of iterations of theMA can now be easily expressed in δA, because
in case (iii) the MA reduces at least one of the entries in d with the factor 2. Hence, after
k iterations of the MA we will have δA ≤ 2−k. As a consequence, log2(1/δA) provides an
upper bound for the number of iterations of the MA.

The BP in [4] needs at most 4n3 iterations per call and O(n) time per iteration, in total
O(n4) time per call. So the overall time complexity becomes O(n4 log2(1/δA)).

In [11,12] some improvements of Chubanov’s method and its analysis were presented.
One improvement was the introduction of a new type of cut. It was shown in [12] that the
new cuts are at least as tight as the cuts used by Chubanov. As just mentioned, a Chubanov
cut is generated in atmost 4n3 iterations, whereby an iteration requiresO(n) time. The new
cuts are also generated in O(n3) iterations, but this is much more difficult to understand.
It was already claimed in a lemma in [12], but unfortunately the proof of this lemma is
wrong.

The first result of this paper is in Section 4, where we prove a slightly modified version
of [12, Lemma 4.2]. It implies that when the new cuts are used in Chubanov’s BP at most
n3 iterations are needed to generate such a cut.

It may be useful to point out that Chubanov’s BP is in essence nothing else than
an algorithm that in itself is able to solve the problem. In fact it is closely related to
the well-known Von Neumann algorithm, having exactly the same convergence rate as
that algorithm [5]. The idea underlying Chubanov’s method is that such a method can
be improved by using information that becomes available during the execution of the
algorithm to improve the condition of the underlying matrix A, by rescaling the columns
of this matrix. The second result is that Nemirovski’s Mirror-Prox method [8] can be used
in this way. It generates a cut in only 2n

√
n iterations, with each iteration requiring O(n2)

OPTIMIZATION METHODS & SOFTWARE 3

time. So each call of the new BP needs only O(n3.5) time. As a result we obtain that the
MA – which is in essence the same as in [4] – finds a solution of either (1) or (2) in
O(n3.5 log2(1/δA)) time.

The outline of the paper is as follows. In Section 2 we introduce the notions inducing
primal and inducing dual feasibility, for any vector y ∈ Rn. We recall in Section 3 how cuts
were obtained in [12], as well as some properties of these cuts. The main result in Section 4
is Proposition 4.1; it guarantees that Chubanov’s BP generates the new cuts in n3 iterations.

As a preparation for Section 6, where we present the simple version of Nemirovski’s
Mirror-Proxmethod that we use in our BP, we derive in Section 5 the saddle point problem
that we want to solve. In Section 7 we present the new BP and its analysis, and in Section 8
the MA. Finally, Section 9 contains some computational results. We compare the method
presented in this paper with the smooth perceptron BP presented in [9] and also with the
linear optimization codes in two commercial packages: Gurobi [14] and Mosek [1,15];
these packages are freely available for academic use. We conclude with some comments
in Section 10.

2. Preliminaries

As usual R denotes the set of real numbers and R+ the set of nonnegative real numbers.
The all-one vector in Rn is denoted as 1 and the n × n identity matrix as In. The null space
of matrix A is denoted as L and L⊥ denotes the row space of A. So

L := {
x ∈ Rn : Ax = 0

}
, L⊥ :=

{
ATu : u ∈ Rm

}
. (4)

Since rank (A) = m, the inverse of AAT exists. Hence the orthogonal projections PA and
QA of Rn onto L and L⊥ are, respectively, given by

PA := I − AT
(
AAT

)−1
A, QA := AT

(
AAT

)−1
A.

For any y ∈ Rn we use the notation

yL = PAy, yL
⊥ = QAy.

So yL and yL⊥
are the orthogonal components of y in the spaces L and L⊥, respectively:

y = yL + yL
⊥
, yL ∈ L, yL

⊥ ∈ L⊥.

Lemma 2.1. Let y ∈ Rn. If yL > 0 then yL solves the primal problem (1) and if 0 �= yL⊥ ≥ 0
then yL⊥ gives rise to a solution of the dual problem (2) in O(n3) time.

Proof: Since yL is the projection of y into the null space of A we have AyL = 0. Hence
the first statement in the lemma is obvious. The second statement follows by noting that
yL⊥ ∈ L⊥ implies yL⊥ = ATw for some w, thus yielding a solution w of (2). Since A has
full row rank, w is uniquely determined by yL⊥

and can be computed from yL⊥
in O(n3)

time. �

4 Z. WEI AND K. ROOS

Because of Lemma 2.1 it becomes natural to say that a vector y induces primal feasibility
if yL > 0 and that y induces dual feasibility if 0 �= yL⊥ ≥ 0. If y does not yield a solution of
the primal or the dual problem, it is modified in Chubanov’s BP until it induces primal or
dual feasibility, or can be used to generate a cut. In the next section we discuss how cuts
can be obtained from a vector y, as proposed in [12].

3. Cuts and cutting vectors

While Chubanov used the vector yL to construct cuts for (3), we showed in [12] that by
using the vector yL⊥

one gets cuts that are at least as tight as the cuts used by Chubanov.
Next we recall how this goes.

We introduce the following notations. Let v = yL⊥
. The vector that arises from v by

replacing all its negative entries by zero is denoted as v+. So v+ = max(v, 0). Similarly,
v− = min(v, 0). For each entry vk of v we define σk(v) = 1 if vk = 0 and otherwise

σk(v) := 1T
(

v
−vk

)+
, vk �= 0.

In words, if vk is nonzero then σk(v) is the sum of the positive entries in the vector −v/vk.
Obviously, σk(v) ≥ 0 and σk(v) = σk(−v). More generally, σk(v) is homogeneous in v, i.e.
σk(βv) = σk(v) for each β �= 0. Moreover, σk(v) > 0 holds if and only if v has entries with
a sign opposite to the sign of vk. Hence, σk(v) = 0 holds if and only if vk �= 0 and v ≥ 0 or
v ≤ 0.

We recall the following important lemma [12, Lemma 2.2]; for the sake of completeness
we include its simple proof.

Lemma 3.1. Let x be feasible for (3) and v ∈ L⊥. Then every nonzero entry vk in v gives rise
to an upper bound for xk, according to

xk ≤ σk(v). (5)

Proof: Since x ∈ L and v ∈ L⊥ we have vTx = 0. Let k be such that vk < 0. Using vTx = 0
and 0 ≤ x ≤ 1 we may write

−vkxk =
∑
i�=k

vixi ≤
∑
i, vi>0

vixi ≤
∑
i, vi>0

vi = 1Tv+.

After dividing both sides by −vk we obtain that xk is bounded from above by the sum of
the positive entries in the vector−v/vk. If vk > 0 a similar argument yields the same upper
bound for xk. This proves the lemma. �

If x is feasible for (3) then we already know that xk ≤ 1, for each k. Therefore we say that
the cut (5) is void if σk(v) ≥ 1. Of course, we are only interested in the nonvoid cases. The
following lemma is in the same spirit as Corollary 2.3 in [12], but stronger.

Lemma 3.2. Let vk �= 0 and σk(v) < 1 for some k. Then vk1Tv > 0.

OPTIMIZATION METHODS & SOFTWARE 5

Proof: First consider the case where vk < 0. In that case σk(v) < 1 holds if and only
if 1Tv+ < −vk. Therefore, we may write

1Tv = 1Tv+ + 1Tv− ≤ 1Tv+ + vk < 0.

Similarly, if vk > 0 then σk(v) < 1 holds if and only if −1Tv− < vk, whence we get

1Tv = 1Tv+ + 1Tv− ≥ vk + 1Tv− > 0.

This proves the lemma. �

Below it is always assumed that v = yL⊥
for some y. We define

σ+(v) := min
k

{σk(v) : vk > 0}

σ−(v) := min
k

{σk(v) : vk < 0}

σ(v) := min
(
σ+(v), σ−(v)

)
.

(6)

Because of Lemma 3.2 σ+(v) < 1 can hold only if 1Tv > 0 and σ−(v) < 1 only if 1Tv < 0.
So we cannot have both σ+(v) < 1 and σ−(v) < 1. As a consequence, if σ(v) < 1 then all
vk’s such that σk(v) = σ(v) have the same sign as 1Tv. Let us point out that this may be
not true if σ(v) ≥ 1. Take, e.g. v = [1, 1, 1, 1, −2]. Then σk(v) = 2 for each k.

Lemma 3.3. Let v = yL⊥ for some y. If σ(v) = 0 then problem (1) is infeasible.

Proof: Let v be as in the lemma and σ(v) = 0. Then σk(v) = 0 for some k, by (6). By
Lemma 3.1 this implies xk = 0 for every x such that Ax = 0. This means that (1) is
infeasible, proving the lemma. �

We call y a cutting vector if σ(v) < 1, and a proper cutting vector if σ(v) < 1
2 .

If y induces primal feasibility then yL > 0. Since yL = PAyL wemay restrict our search
for a cutting vector to nonnegative vectors y. Due to homogeneity we may further assume
1Ty = 1. We conclude this section with a slight modification of a result from [12] that
provides a sufficient condition for y being a cutting vector.

Lemma 3.4. Let y ≥ 0 satisfy 1Ty = 1 and

n3
∥∥∥yL∥∥∥2 ≤ 1. (7)

Then y is a proper cutting vector, i.e. σ(yL⊥
) < 1

2 .

As mentioned in the Introduction, the proof of the original lemma in [12] is wrong.
In the next section we provide a proof of Lemma 3.4. As is known, each iteration of
Chubanov’s BP increases 1/‖yL‖2 with at least 1 [4,11]. Therefore, when Chubanov’s BP
is equipped with the new cuts, after n3 iterations (7) certainly holds. It follows that n3 will
be an upper bound for the number of iterations, despite the fact that the new cut is usually
tighter than Chubanov’s cut and never less tight [11, Section 2.2].

6 Z. WEI AND K. ROOS

4. Sufficient condition for cutting vectors

In this section L denotes a fixed linear space in Rn. Moreover, the vector y will be such
that y ≥ 0, 1Ty = 1, and z and v are defined by z = yL, v = yL⊥

. Note that if y is not a
proper cutting vector, then Lemma 3.4 states that 1 < n3 ‖z‖2. More generally, we have the
following result.

Proposition 4.1. If σ(v) ≥ 1
2 , then

1 < n3 ‖z‖2 ≤ n2.

For the proof of this proposition we need a couple of lemmas. We have

y ≥ 0, 1Ty = 1, y = z + v, zTv = 0, (8)

with σ(v) ≥ 1
2 . The latter implies n ≥ 2, because σ(v) > 0 can hold only if v has entries

with different signs. In order to derive a lower bound for ‖z‖ we consider the problem

min
y,z∈Rn, β∈R

{
‖z‖ : y ≥ 0, 1Ty = 1, y = z + βv, zTv = 0

}
, (9)

with the vector v fixed. We introduced an additional variable β because if β = 1, as in (8),
then problem (9) may be infeasible. This can be understood by noting that if z and v form
an orthogonal decomposition of y, as in (8), then ‖v‖ ≤ ∥∥y∥∥. Since 1Ty = 1 and y ≥ 0 we
have

∥∥y∥∥ ≤ 1. So, if ‖v‖ > 1, the system (8) will be infeasible. 1
The proof below of Proposition 4.1 depends on the fact that we can solve problem (9)

analytically. We start with two simple lemmas.

Lemma 4.2. Let σ(v) ≥ 1
2 and (y, z,β) a feasible solution of (9). Then z �= 0.

Proof: Suppose z = 0. Then y = z + βv implies y = βv. Now 0 �= y ≥ 0. As a conse-
quence v �= 0 and either v ≥ 0 or v ≤ 0. So, all nonzero entries of v have the same sign.
But then σ(v) = 0, contradicting σ(v) ≥ 1

2 . Hence the lemma follows. �

In order to proceed we need the dual problem of (9), which is given by

max
λ∈Rn, α∈R

{
α : λ ≥ α1, ‖λ‖ ≤ 1, λTv = 0

}
. (10)

This problem is strictly feasible (take λ = 0, α = −1). The dual objective value is bounded
above (α < 1, because if α ≥ 1 then λ ≥ 1, whence ‖λ‖ ≥ √

n). These two properties (i.e.
strict feasibility and boundedness) imply that (9) is solvable (i.e. has an optimal solution)
and that the optimal values of (9) and (10) coincide [2, Thm. 2.4.1]. In the same way it
follows that the dual problem is solvable. Hence, there exist optimal solutions (y, z,β) and
(λ,α)of (9) and (10), respectively, and ‖z‖ = α.Moreover, by Lemma4.2, ‖z‖ > 0,whence
also α > 0. From now on we always assume that the triple (y, z,β) is primal optimal and
the pair (λ,α) dual optimal.

OPTIMIZATION METHODS & SOFTWARE 7

Due to the Cauchy-Schwarz inequality and the feasibility conditions we may write

‖z‖ ≥ ‖z‖ ‖λ‖ ≥ λTz = λT(y − βv) = λTy ≥ α1Ty = α. (11)

Since ‖z‖ = α, the three inequalities in (11) hold with equality. Thus we obtain

‖z‖ = ‖z‖ ‖λ‖ , ‖z‖ ‖λ‖ = λTz, yT(λ − α1) = 0. (12)

Since z �= 0, by Lemma 4.2, the first equality in (12) implies ‖λ‖ = 1 and then the second
equation implies λ = z/ ‖z‖, whence we obtain

z = αλ. (13)

We derive from ‖λ‖ = 1 and the Cauchy-Schwarz inequality that

1Tλ ≤ ‖1‖ ‖λ‖ = ‖1‖ = √
n. (14)

Lemma 4.3. We always have n ‖z‖2 ≤ 1. Equality holds if and only if 1Tv = 0.

Proof: Using 1T1 = n, λ ≥ α1 and (14), we may write

αn = 1T(α1) ≤ 1Tλ ≤ √
n. (15)

Therefore, α
√
n ≤ 1. Since ‖z‖ = α, the first statement in the lemma follows.

Next we deal with the second statement. It can be restated as nα2 = 1 holds if and
only if 1Tv = 0. First assume nα2 = 1. Then (15) implies 1Tλ = √

n, whence (14) implies
1Tλ = ‖1‖ ‖λ‖. Since ‖λ‖ = 1 this gives λ = 1/

√
n. Since λ is dual feasible, we have

λTv = 0, and hence also 1Tv = 0. On the other hand, if 1Tv = 0 then y = z + βv and
1Ty = 1 imply 1Tz = 1. This implies ‖1‖ ‖z‖ ≥ 1, whence n ‖z‖2 ≥ 1. Due to the first
statement in the lemma and α = ‖z‖ we obtain nα2 = 1, thereby completing the proof of
the lemma. �

The inequality n ‖z‖2 ≤ 1 in Lemma 4.3 is equivalent with the inequality at the right
in Proposition 4.1. The proof of the left inequality in Proposition 4.1 requires in general
much more work, but not if 1Tv = 0. Then Lemma 4.3 yields n ‖z‖2 = 1. Since n > 1 this
implies n3 ‖z‖2 = n2 · n ‖z‖2 = n2 > 1. So, for the rest of proof we may assume 1Tv �= 0.

In the sequel I will denote the subset of the index set {1, 2, . . . , n} defined by

I = {
i : yi > 0

}
, (16)

and J its complement. The restriction of v ∈ Rn to the coordinates in I is denoted as vI .
Using these notations we have the following lemma.

Lemma 4.4. Let v be such that σ(v) ≥ 1
2 and 1

Tv �= 0. Then

β = α21TI vI∥∥vJ∥∥2 , α2 =
∥∥vJ∥∥2

|I| ∥∥vJ∥∥2 + (
1TI vI

)2 . (17)

8 Z. WEI AND K. ROOS

Proof: We already derived from the first two equalities in (12) that ‖λ‖ = 1 and, in (13),
z = αλ. Since y ≥ 0 and λ − α1 ≥ 0, the third equality in (12) implies yi (λi − α) = 0, for
each i. Therefore, due to the definition of I, λi = α for each i ∈ I. So we have

λI = α1I , λJ ≥ α1J ,

where the inequality is due to λ ≥ α1. From yJ = 0 we deduce zJ = −βvJ . Also using z =
αλwe get zI = αλI = α21I . Partitioning the vectors v, y, z and λ according to the partition
(I, J), we get the following expressions:

v =
[
vI
vJ

]
, y =

[
α21I + βvI

0

]
, z =

[
α21I
−βvJ

]
, λ =

[
α1I

−β
α
vJ .

]
(18)

Now the primal feasibility conditions 1Ty = 1 and zTv = 0 yield two linear relations
between α2 and β , as follows:

1 = 1Ty = 1TI yI = 1TI
(
α21I + βvI

) = α2 |I| + β1TI vI ,

0 = zTv = zTI vI + zTJ vJ = α21TI vI + (−βvJ)TvJ = α21TI vI − β
∥∥vJ∥∥2 .

The determinant of the matrix of coefficients of this linear system of equations equals
(1TI vI)

2 + |I| ∥∥vJ∥∥2. This expression is positive, because otherwise wewould have 1TI vI = 0
and vJ = 0, which would imply 1Tv = 0, a contradictionwith the hypothesis in the lemma.
Hence the solution of the above system is unique. It is given by (17). This completes the
proof. �

Obviously, we can compute α and β from (17) if we know the ‘optimal’ partition (I, J)
of the index set, since α is positive. After this the optimal solution immediately follows
from (18). In order to proceed we need to knowmore about this partition. For that purpose
the next lemma is important.

Lemma 4.5. With v as in Lemma 4.4, let (y, z,β) be optimal for (9). Then β1Tv > 0.

Proof: Taking the inner product with 1 at both sides of y = z + βv we may write

1 = 1Ty = 1Tz + β1Tv = α1Tλ + β1Tv ≤ α
√
n + β1Tv < 1 + β1Tv,

where we used z = αλ, by (13), 1Tλ ≤ √
n, from (14), and α

√
n < 1, by Lemma 4.3. This

suffices for the proof of the lemma. �

If we replace v by−v, andβ by−β , then (y, z,β) and (λ,α) stay primal and dual optimal,
respectively. We may therefore assume that 1Tv is nonnegative, without loss of generality.
Since we only need to deal with the case where 1Tv �= 0, we assume in the sequel that
1Tv > 0. Because of Lemma 4.5 we then have

1Tv > 0, β > 0. (19)

Yet we take into account the feasibility conditions yI > 0 and λJ ≥ α1J . By (18) these
conditions require α21I + βvI > 0 and −β

α
vJ ≥ α1J . Since α > 0, these inequalities can

be reformulated as follows:

α2 + βvi > 0, i ∈ I,

OPTIMIZATION METHODS & SOFTWARE 9

α2 + βvj ≤ 0, j ∈ J.

Since β > 0, this makes clear that the entries of v in vI are strictly larger than those in vJ .
Moreover, the entries in vJ are negative, and they are separated from the entries in vI by
the (negative!) number −α2/β . Due to Lemma 4.4 this leads to the inequalities

vi > −
∥∥vJ∥∥2
1TI vI

≥ vj, i ∈ I, j ∈ J. (20)

At this stage it becomes natural to order the entries of v in nonincreasing order. Since
v has entries of different signs, there must exist a (unique) index p such that, after the
ordering of v,

v1 ≥ v2 ≥ . . . ≥ vp ≥ 0 > vp+1 ≥ . . . ≥ vn.

Moreover, since vJ < 0, we have for some q ≥ p:

I = {
1, . . . , q

}
, J = {

q + 1, . . . , n
}
.

Note that q ≥ p implies vq+1 < 0. Now (20) holds if and only if

vq > −
∥∥vJ∥∥2
1TI vI

≥ vq+1. (21)

Next we show not only that (21) determines q uniquely, and hence also I and J, but also
that q can be found inO(n) time. For that purpose we define, for each k (1 ≤ k ≤ n), index
sets Ik := {1, . . . , k} and Jk := {k + 1, . . . , n}, and numbers ωk, according to

ωk :=
∥∥vJk∥∥2
1TIkvIk

=
∑n

i=k+1 v
2
i∑k

i=1 vi
.

With this definition, (21) can be restated as

vq > −ωq ≥ vq+1. (22)

Observe that the vector ω is nonnegative and ωn = 0. Moreover, the expressions
∑k

i=1 vi
and

∑n
i=k+1 v

2
i can be computed from v in O(k) time. As a consequence, the vector ω can

be computed in O(n) time. The following lemma determines the index q uniquely.

Lemma 4.6. q is the first index such that

ωq = max
k

{
ωk : p ≤ k ≤ n

}
. (23)

Proof: For k<n one may easily verify that

ωk+1 − ωk = −vk+1
(
ωk + vk+1

)
∑k+1

i=1 vi
= −vk+1

(
ωk+1 + vk+1

)
∑k

i=1 vi
.

Let k ≥ p. Then vk+1 < 0. Since
∑k

i=1 vi > 0 for each k, we find that if k < n then

ωk+1 > ωk ⇔ ωk + vk+1 > 0, (24)

10 Z. WEI AND K. ROOS

⇔ ωk+1 + vk+1 > 0. (25)

Because of (22)we haveωq + vq > 0 andωq + vq+1 ≤ 0.Hence (25) impliesωq > ωq−1
and (24) implies ωq+1 ≤ ωq. Thus it becomes clear that ω is increasing at k = q − 1 and
nonincreasing at k = q.

Now suppose that ωk is nonincreasing at some index k ≥ p. Then ωk+1 ≤ ωk. Due
to (25) we then have ωk+1 + vk+1 ≤ 0. Since vk+2 ≤ vk+1 it follows that ωk+1 + vk+2 ≤ 0,
which means that ωk+2 ≤ ωk+1, by (24). So, if ωk is nonincreasing at k ≥ p, then ωk
remains nonincreasing if k increases. As we proved that ωk is nonincreasing at k = q, it
follows that ωk is nonincreasing at all k ≥ q. If ωk were nonincreasing at some k < q, it
would yield the contradiction that ωk is nonincreasing at k = q − 1. Hence ωk must be
increasing (strictly!) at all k such that p ≤ k < q. Since ωk is nonincreasing at all k ≥ q, the
lemma follows. �

Example 4.7. By way of example we demonstrate in Table 1 the computation of p and q for
the case where

v = [5 ; 4 ; 3 ; 2 ; 1 ; −1 ; −2 ; −2 ; −3 ; −4] .

In this case p = 5. For k ≥ p the largest value ofωk occurs at k = 8. So q = 8. In agreement
with (24) and (25) the table demonstrates that ωk+1 + vk+1 and ωk + vk+1 have the same
sign, for each k. Observe that q is the first index for which these expressions are negative.

Table 1. Computation of q.

k vk ωk ωk + vk+1 ωk+1 + vk+1

1 5.0000 12.8000 16.8000 9.3333
2 4.0000 5.3333 8.3333 6.2500
3 3.0000 3.2500 5.2500 4.5000
4 2.0000 2.5000 3.5000 3.2667

p= 5 1.0000 2.2667 1.2667 1.3571
6 −1.0000 2.3571 0.3571 0.4167
7 −2.0000 2.4167 0.4167 0.5000

q= 8 −2.0000 2.5000 −0.5000 −0.7143
9 −3.0000 2.2857 −1.7143 −4.0000
10 −4.0000 0.0000 – –

Lemma 4.8. With v, α and I as defined above, one has 2

α2 ≥
∥∥v−∥∥2

q
∥∥v−∥∥2 + (

1Tv+)2 .
Proof: As before, I = {

1, . . . , q
}
. Because of Lemma 4.4, the inequality in the lemma

holds if and only if

∥∥vJ∥∥2
|I| ∥∥vJ∥∥2 + (

1TI vI
)2 ≥

∥∥v−∥∥2
q
∥∥v−∥∥2 + (

1Tv+)2 .

OPTIMIZATION METHODS & SOFTWARE 11

Since |I| = q this is equivalent to ∥∥vJ∥∥2(
1TI vI

)2 ≥
∥∥v−∥∥2(
1Tv+)2 ,

which can be written as (
1Tv+

)
ωq ≥

(
1TI vI

)
ωp.

By Lemma 4.6 we have ωq ≥ ωp > 0. Since 1Tv+ ≥ 1TI vI > 0, the lemma follows. �

Now we are ready to show that n3α2 > 1, which will complete the proof of Proposi-
tion 4.1. According to Lemma 4.8 we have

1
α2 ≤ q +

(
1Tv+)2∥∥v−∥∥2 .

The largest element in v is v1 and v1 > 0. So 1Tv+ ≤ pv1. By the Cauchy-Schwarz inequal-
ity,

(
n − p

) ∥∥v−∥∥2 ≥ (
1Tv−)2. Definition (6) implies σ+(v) = σ1(v) = −1Tv−/v1. We

therefore may write(
1Tv+)2∥∥v−∥∥2 ≤

(
pv1
)2∥∥v−∥∥2 ≤ (n − p)

(
pv1
)2(

1Tv−)2 = (n − p)p2

σ+(v)2
≤ (n − p)p2

σ(v)2
≤ 4n3

27σ(v)2
,

where we also used σ+(v) ≥ σ(v) and that (n − p)p2 ismaximal if p = 2n/3. Since σ(v) ≥
1
2 and q ≤ n we thus obtain

1
α2 ≤ q + 16n3

27
≤ n + 16n3

27
.

The last expression is smaller than n3 if and only if 11n2 > 27 and this certainly holds,
because n ≥ 2. Hence the proof of Proposition 4.1 is complete.

5. A bilinear saddle point problem

In this sectionwe derive a simple saddle point problem that arises when searching for a cut-
ting vector. In the next section we describe Nemirovski’s mirror-prox method for solving
that saddle point problem.

According to Proposition 4.1, y is a cutting vector if it satisfies y ≥ 0, 1Ty = 1 and
‖yL‖ ≤ 1/n

√
n, where L denotes the null space of A. Since yL = PAy, we therefore

consider the (primal) problem

min
{∥∥PAy∥∥ : y ≥ 0, 1Ty = 1

}
. (26)

This is a second-order cone problem again, just as the problem considered in the previous
section. Its dual problem is given by

max {α : PAu ≥ α1, ‖u‖ ≤ 1} . (27)

Now let y∗ and u∗ denote optimal solutions of (26) and (27), respectively. Then the optimal
value of α is given by α∗ = min(PAu∗).

12 Z. WEI AND K. ROOS

Lemma 5.1. If α∗ > 0, then PAu∗ solves (1). Otherwise, if α∗ = 0, then y∗ solves (2).

Proof: Note that if (u,α) is feasible for (27) and α positive then PAu is a positive vector
in the null space of A. So, in that case x = PAu is a solution of (1). On the other hand, if
no such pair (u,α) with α > 0 exists, then the optimal value of (27) equals 0. Since the
problems (26) and (27) have bounded feasible regions, they have optimal solutions and
their optimal values are equal. So, problem (26) has optimal value 0 as well and this value
is attained. Hence there exists a nonzero nonnegative vector y such that PAy = 0. The lat-
ter means that 0 �= y ∈ L⊥ and y ≥ 0. By Lemma 2.1 this implies that (2) has a solution.
Since (2) has a solution if and only if (1) has no solution, the lemma follows. �

For a given u the best value of α in (27) equals the smallest entry in PAu. We there-
fore assume below that α always satisfies α = min(PAu). Then the feasible regions of (26)
and (27) are, respectively, the unit simplex � and the unit sphere B, as defined by

� =
{
y ∈ Rn : 1Ty = 1, y ≥ 0

}
, B = {

u ∈ Rn : ‖u‖ ≤ 1
}
.

If y ∈ � and u ∈ B then we may write∥∥PAy∥∥ ≥ ∥∥PAy∥∥ ‖u‖ ≥ yTPAu ≥ yT(α1) = α1Ty = α = min(PAu). (28)

Putting y = y∗ in (28) it follows that y∗TPAu ≤ ∥∥PAy∗∥∥ for each u ∈ B. Similarly, putting
u = u∗ in (28) we get yTPAu∗ ≥ min(PAu∗) for each y ∈ �. At optimality the primal and
dual objective values are equal. So we have min(PAu∗) = ∥∥PAy∗∥∥ = y∗TPAu∗. Thus we
obtain

y∗TPAu ≤ y∗TPAu∗ ≤ yTPAu∗, ∀ y ∈ �, ∀ u ∈ B. (29)

This reveals that
(
y∗, u∗) is a saddle point for the bilinear function yTPAu. Thus we have

reduced the solution of (26) and (27) to the computation of the saddle point of yTPAu.

6. Nemirovski’s Mirror-Proxmethod

6.1. Definition of themethod

To simplify notation, from now on we denote PA simply as P. Following [8], we define the
vector field F(z), where z = (y, u) ∈ � × B, by

F(z) =
[

∂
∂y y

TPAu
− ∂

∂uy
TPAu

]
=
[
Pu

−Py

]
.

The Mirror-Prox method can now be stated as follows. It is initialized with

z1 = (y1, u1) ∈ � × B,
and uses the following update in each iteration:

ẑk = argminz∈�×B
{
γ F(zk)Tz + 1

2 ‖z − zk‖2
}

(30)

OPTIMIZATION METHODS & SOFTWARE 13

zk+1 = argminz∈�×B
{
γ F(ẑk)Tz + 1

2 ‖z − zk‖2
}
, (31)

where γ is a fixed positive ‘step size’, with γ ∈ (0, 1].
Below we present the analysis of this method. Not surprisingly, due to the linearity in y

and u the analysis goes easier than in [8], but the resulting iteration bound is the same.

6.2. Analysis of themethod

Lemma 6.1. For any z, z̄ ∈ � × B we have

(i) F(z)Tz̄ = −F(z̄)Tz;
(ii) (F(z) − F(z̄))T (z − z̄) = 0;
(iii) ‖F(z) − F(z̄)‖2 ≤ ‖z − z̄‖2;

Proof: With z = (y; u) and z̄ = (ȳ; ū) we have

F(z)Tz̄ =
[
Pu

−Py

]T [ȳ
ū

]
= ȳTPu − ūTPy =

[−Pū
Pȳ

]T [y
u

]
= −F(z̄)Tz,

proving (i). Taking z̄ = z in (i) we get F(z)Tz = 0 for each z. As a consequence we have

(F(z) − F(z̄))T (z − z̄) = F(z)Tz − F(z)Tz̄ − F(z̄)Tz + F(z̄)Tz̄ = 0,

proving (ii). Since P is an orthogonal projection matrix, we may write

‖F(z) − F(z̄)‖2 =
∥∥∥∥
[
P(u − ū)
−P(y − ȳ)

]∥∥∥∥
2

≤
∥∥∥∥
[
u − ū
y − ȳ

]∥∥∥∥
2

= ‖z − z̄‖2 , (32)

proving (iii). �

To measure the distance between z and z̄ we introduce the notation

δ(z, z̄) := 1
2 ‖z − z̄‖2 . (33)

Lemma 6.2. Let u, v,w ∈ � × B. Then
(F(u) − F(v))T (u − w) ≤ δ(u, v) + δ(u,w).

Proof: By the Cauchy-Schwarz inequality and Lemma 6.1 we get

(F(u) − F(v))T (u − w) ≤ ‖F(u) − F(v)‖ ‖u − w‖ ≤ ‖u − v‖ ‖u − w‖ .
The last expression does not exceed 1

2 ‖u − v‖2 + 1
2 ‖u − w‖2.Hence, due to definition (33)

the lemma follows. �

For any three vectors u, v and w of the same dimension we have the trivial identity
‖w − v‖2 = ‖u − v − (u − w)‖2. Evaluation of the right-hand side yields the so-called
three-point relation of Bregman:

(u − v)T (u − w) = δ(u, v) + δ(u,w) − δ(v,w). (34)

14 Z. WEI AND K. ROOS

Lemma 6.3. One has the following three inequalities:

(i) γ
(
F(ẑk) − F(zk)

)T
(ẑk − zk+1) ≤ δ(ẑk, zk+1) + δ(ẑk, zk),

(ii) γ F(zk)T(ẑk − zk+1) ≤ −δ(ẑk, zk+1) − δ(ẑk, zk) + δ(zk+1, zk),
(iii) γ F(ẑk)T(zk+1 − z) ≤ δ(z, zk) − δ(z, zk+1) − δ(zk+1, zk).

Proof: Since γ ≤ 1, (i) follows immediately from Lemma 6.2. The gradient with respect to
z of γ F(zk)Tz + δ(z, zk) is equal to γ F(zk) + z − zk. Hence optimality of ẑk in (30) implies(

γ F(zk) + ẑk − zk
)T

(z − ẑk) ≥ 0, ∀ z ∈ � × B.
Using (34) this gives

γ F(zk)T(ẑk − z) ≤ (
ẑk − zk

)T
(z − ẑk) = δ(z, zk) − δ(z, ẑk) − δ(ẑk, zk).

Letting z = zk+1, we get (ii). Finally, the gradient with respect to z of γ F(ẑk)Tz + δ(z, zk)
is equal to γ F(ẑk) + z − zk. Hence optimality of zk+1 in (31) implies(

γ F(ẑk) + zk+1 − zk
)T

(z − zk+1) ≥ 0, ∀ z ∈ � × B,
which is equivalent to

γ F(ẑk)T(zk+1 − z) ≤ (
zk+1 − zk

)T
(z − zk+1).

By applying Bregman’s formula, we get (iii). �

By adding the three inequalities in Lemma 6.3 we get the following lemma, without
further proof (cf. [6, Theorem 18.2]).

Lemma 6.4.

γ F(ẑk)T(ẑk − z) ≤ δ(z, zk) − δ(z, zk+1), ∀ z ∈ � × B.

For K = 1, 2, . . . we define

z̃K := (ỹK ; ũK) = 1
K

K∑
k=1

ẑk. (35)

So z̃K is simply the average of all iterates ẑk with 1 ≤ k ≤ K. We denote the duality gap at
any pair (y, u) with y ∈ � and u ∈ B as

gap(y, u) := ∥∥PAy∥∥− min(PAu). (36)

The next theorem is the main result in this section. It says that the duality gap at z̃K is
inversely proportional to the iteration number K.

Theorem 6.5. By taking y1 = 1/n and u1 = 0 we obtain

gap(ỹK , ũK) = ∥∥PỹK∥∥− min(PũK) ≤ 1
Kγ

, K ≥ 1.

OPTIMIZATION METHODS & SOFTWARE 15

Proof: Recall that F(z)Tz = 0 for every z ∈ � × B. Using this we may write

F(ẑk)T(ẑk − z) = −F(ẑk)Tz = −
[
Pûk

−Pŷk

]T [y
u

]
= −yTPûk + ŷTk Pu,

∀ z = (y, u) ∈ � × B.

Hence we obtain from Lemma 6.4 that for each k = 1, 2, . . . , K,

γ
(
−yTPûk + ŷTk Pu

)
≤ δ(z, zk) − δ(z, zk+1), ∀ z = (y, u) ∈ � × B.

By taking the sum of these inequalities for k = 1, . . . , K, and then dividing by Kγ we get

1
Kγ

K∑
k=1

γ
(
ŷTk Pu − yTPûk

)
≤ 1

Kγ

K∑
k=1

(
δ(z, zk) − δ(z, zk+1)

) ≤ δ(z, z1)
Kγ

.

Since y1 = 1/n and u1 = 0 we have

max
z∈�×B

δ(z, z1) = 1
2

(
max
y∈�

∥∥y − y1
∥∥2 + max

u∈B
‖u − u1‖2

)
≤ 1

2

(
n − 1
n

+ 1
)

< 1.

Thus we obtain

1
K

K∑
k=1

(
ŷTk Pu − yTPûk

)
≤ 1

Kγ
, ∀ z = (y, u) ∈ � × B.

Using that yTPu is linear in both y and u we may write the expression at the left as follows:

1
K

K∑
k=1

(
ŷTk Pu − yTPûk

)
=
(
1
K

K∑
k=1

ŷk

)T

Pu − yTP

(
1
K

K∑
k=1

ûk

)
= ỹTKPu − yTPũK .

We take u = PỹK/
∥∥PỹK∥∥ and y = ei, where i is the entry for which PũK is minimal. Then

the expression at the left takes the value gap(ỹK , ũK). Hence the inequality in the lemma
follows. �

7. TheMirror-Prox basic procedure

We now are ready to describe the new BP, called Mirror-Prox BP (abbr. MPBP). Each iter-
ation of the MPBP requires the computation of ẑk and zk+1, as given by (30) and (31). We
claim that this can be done in O(n2) time. To understand this let z = (y; u), zk = (yk; uk)
and ẑk = (ŷk; ûk). Since F(zk) = (Puk;−Pyk) we may rewrite (30) as follows

ẑk = argminz∈�×B
{
γ F(zk)Tz + 1

2 ‖z − zk‖2
}

= argminy∈�, u∈B
{
γ
(
yTPuk − uTPyk

)
+ 1

2
∥∥y − yk

∥∥2 + 1
2 ‖u − uk‖2

}
.

16 Z. WEI AND K. ROOS

Obviously the computation of ẑk can be separated into the computation of its components
ŷk and ûk, as follows:

ŷk = argminy∈�

{
γ yTPuk + 1

2
∥∥y − yk

∥∥2} (37)

ûk = argminu∈B
{
−γ uTPyk + 1

2 ‖u − uk‖2
}
. (38)

In a similar way problem (31) can be split into the simpler problems

yk+1 = argminy∈�

{
γ yTPûk + 1

2
∥∥y − yk

∥∥2} (39)

uk+1 = argminu∈B
{
−γ uTPŷk + 1

2 ‖u − uk‖2
}
. (40)

So, given a pair (yk, uk), the solution of these four problems yields the pair (yk+1, uk+1).
Each of the four problems can be solved in O(n2) time. Let us demonstrate this for prob-
lem (37), which computes ŷk. We first need to compute the objective vector Puk. This
already requires O(n2) time. After this, the resulting minimization problem can be solved
in only O(n) time. This is easy to understand for (38) and (40); for (37) and (39) it can be
realized by using the approach used in [3].

TheMPBP is presented in Algorithm 1. In this algorithm ṽ = ỹL⊥ = ỹ − PAỹ. As usual,
we use an iteration counter k as subscript of all relevant vectors. The input is the matrix PA
and vectors y ∈ � and u ∈ B. The MPBP is initialized with ỹ = y1 = y and ũ = u1 = u.
At the end of the k-th iteration ỹ denotes the average of the iterates ŷ1 to ŷk, and similar for
ũ.

Algorithm 1: [ỹ, ũ,J , case] =Mirror-Prox BP(PA, y, u)

1: Initialize: k = 0; y1 = y; ỹ = y; u1 = u; ũ = u; case = 0; J = ∅;
2: while case = 0 do
3: k = k + 1
4: if PAũ > 0 then
5: case = 1 (problem 1 is feasible)
6: else if σ(ỹ − PAỹ) = 0 then
7: case = 2 (problem 1 is infeasible)
8: else if σ(ỹ − PAỹ) ≤ 1

2 then
9: case = 3 (a proper cut has been found)
10: find a nonempty index set J such that J ⊆ {

j : σj(ṽ) ≤ 1
2
}

11: else
12: ŷk = argminy∈�

{
γ yTPAuk + 1

2
∥∥y − yk

∥∥2}
13: ûk = argminu∈B

{−γ uTPAyk + 1
2 ‖u − uk‖2

}
14: yk+1 = argminy∈�

{
γ yTPAûk + 1

2
∥∥y − yk

∥∥2}
15: uk+1 = argminu∈B

{−γ uTPAŷk + 1
2 ‖u − uk‖2

}
16: ỹ = 1

k
(
(k − 1)ỹ + ŷk

)
17: ũ = 1

k
(
(k − 1)ũ + ûk

)

OPTIMIZATION METHODS & SOFTWARE 17

At the start of the MPBP we first check (in line 4) if ũ is primal feasible with positive α.
If so, we put case = 1, which means that a feasible solution of problem (1) has been found.
Otherwise, we compute σ(ṽ). If σ(ṽ) = 0, problem (1) is infeasible, by Lemma 3.3. This
is expressed by putting case = 2. Otherwise σ(ṽ) > 0. If σ(ṽ) ≤ 0.5 then we have found a
proper cutting vector, and we put case = 3. We then also determine all other proper cuts
(in line 10).

In the remaining case we have σ(ṽ) > 0.5, and then Nemirovski’s Mirror-Prox method
is used to compute new values for ŷk, ûk, yk+1 and uk+1. These values are the solutions of
easy to solve minimization problems. Then ỹ is updated in such a way that it becomes the
average of the iterates ŷ1, ŷ2, . . . , ŷk, and similarly for ũ. After this we enter the while loop
again.

As we show in the next lemma, the BP stops after at most 2n
√
n iterations, and then

case ∈ {1, 2, 3}. In each of these three cases the BP returns the value of the variable case
and the current values of ỹ, ũ to the MA, as well as the set J of indices for which proper
cuts has been found and the values of the upper bounds for the related entries in x.

Lemma 7.1. With γ = 1
2 , the MPBP stops after at most 2n

√
n iterations.

Proof: After the k-th iteration we have, by Theorem 6.5,

∥∥Pỹ∥∥− min(Pũ) ≤ 1
kγ

, k ≥ 1.

Since Pũ is not primal feasible, min(Pũ) ≤ 0. Hence we obtain

∥∥Pỹ∥∥ ≤ 1
kγ

.

According to Lemma 3.4 the vector ỹ is cutting if
∥∥Pỹ∥∥ < 1

n
√
n . This certainly holds if

1
kγ

<
1

n
√
n
.

Since γ = 1
2 , it follows that if k ≥ 2n

√
n the MPBP will have stopped. Hence the lemma

follows. �

Theorem 7.2. Each execution of the MPBP needs at most O(n3.5) arithmetic operations.

Proof: We established before that each iteration of the MPBP requires O(n2) time. The
number of iterations being at most 2n

√
n, the theorem follows. �

The above theoremmakes clear that we have achieved an improvement over the original
BP’s in [4] and [12] which require O(n4) arithmetic operations.

8. ModifiedMain Algorithm

In order to solve (1) one needs to call theMPBP several times by another algorithm, named
the Modified main algorithm (MMA), which is described in Algorithm 2. It is a simplified

18 Z. WEI AND K. ROOS

version of theMMA in [12]. In [12] we used a property that is due toKhachiyan [7], namely
that in the feasible case there exists a positive number κ such that positive entries in a
basic feasible solution of (3) are larger than or equal to κ . The need for this number was a
drawback, because it is not known in advance. In the new MMA we avoid the use of this
number. We only use that (1) is infeasible if and only if the MPBP returns case = 2.

Algorithm 2: [x, case] =Modified main algorithm(A)

1: Initialize: d = 1; y = 1/n; u = 0; case = 3;
2: while case = 3 do
3: PA = I − AT(AAT)−1A /* compute projection matrix */
4: [y, u,J , case] =Mirror-Prox BP(PA, y, u) /* call the MPBP */
5: if case = 1 then
6: D = diag (d)
7: x = DPAu /* x solves problem 1 */

8: else if case = 2 then
9: x = 0 /* problem 1 is infeasible */

10: else
11: dJ = dJ /2 /* update d, A, y, u */
12: AJ = AJ /2
13: yJ = yJ /2
14: uJ = uJ /2

The newMMA is initialized with d = 1 and case = 3, and with y and u as the centres of
� of B, respectively. At the start of the while loop the projection matrix PA onto the null
space of A is computed. Then the MPBP is called with PA, y and u as input. The MPBP
returns to the MMA with the quadruple (y, u,J , case) as output. If case = 1 the BP has
found a u such that x = DPAu is feasible for problem (1); if case = 2 it halts with x = 0,
indicating that (1) has no positive solution. Finally, if the MPBP returns case = 3, it has
found proper cuts, indexed by the set J . Then the entries in dJ are divided by 2 and we
rescaleA, y and u as indicated in lines 11-14. After this we enter the while loop again. Then
the MPBP will be called again, and so on.

Theorem 8.1. The execution of the MMA needs at most O(n3.5 log2(1/δA)) time.

Proof: From the Introduction we recall that the MMA calls the MPBP at most log2(1/δA)

times. In each iteration the MMA needsO(n3) time for the computation of PA before call-
ing the MPBP. After this the MPBP needs O(n3.5) time. So the time per MMA-iteration is
O(n3.5). Hence in total the MMA will require at most O(n3.5 log2(1/δA)) time. �

9. Numerical comparisons

Like our MMA, the so-called Enhanced Projection and Rescaling Algorithm (EPRA) in
[9] is designed to solve problem (1). Just as our MMA uses the MPBP as BP, the EPRA
uses the Smooth Perceptron Scheme (SPS) as BP. As shown in [9], the SPS is by far more
efficient than the three other candidates in [9]: the Perceptron Scheme, the Von Neumann

OPTIMIZATION METHODS & SOFTWARE 19

Scheme and the Von Neumann Scheme with Away Steps. Therefore, following [9], we only
considered SPS as a serious candidate for the BP in the EPRA.

Both the MPBP and the SPS establish feasibility of the primal or the dual problem, or
they generate a ‘proper’ cut, where the meaning of ‘proper’ depends on a chosen threshold
value. Below we denote this threshold value as τ . 3 Recall that in our MPBP (Algorithm 1)
we took τ = 1

2 , but any other number in the interval (0, 1] would have been appropriate.
A nice feature in [9] is that the authors found a way to construct random matrixes A

with a prescribed value of δA [9, Proposition 3.1]. This generator will be also used in our
experiments.

As in [9] we start by a computational comparison of the two competing BP’s in the
next subsection, whereas in Subsection 9.2 we compare ourMMA and the main algorithm
EPRA in [9]. In both sections we use an appropriate variant of the Matlab code that was
used for the experiments in [9] and that has been made publicly available at the website

http://www.andrew.cmu.edu/user/jfp/epra.html.

By using this code it was easy tomake the desired comparisons.We simply ignored the lines
related to the three BPs in [9] that differ from the SPS and replaced them by the MPBP for
the experiments in Section 9.1. A similar approach made it relatively easy to set up the
comparison in Section 9.2.

One more remark should be made. Though the MPBP as presented in Algorithm 1
gave CPU times that were competing with those of the SPS, significantly better results
were obtained by modifying lines 16–17. Recall that line 16 forces ỹ to be the average
of the iterates ŷ1, ŷ2 . . . , ŷn. Instead of this we simply used ỹ = yk+1. Similarly, in our
implementation we replaced the command in line 17 by ũ = uk+1.

9.1. Comparison ofMPBP and SPS

As in [9], for the comparison of MPBP and SPS we used six tables. Besides the parameters
τ and δA we use N to denote the number of instances per size, and as in [9], an iteration
limit, which we denote as K. Per table these parameters are as given in Table 2. Except for
the values of τ in Tables 3 and 4, the values are the same as in [9]. These two tables served
in [9] to demonstrate the effect of the iteration limitK. In the case whereK is finite the limit
is active only in Tables 5 and 6. Therefore, we used in Tables 3 and 4 the same parameters
as in Tables 5 and 6, respectively, but without iteration limit.

In each of the six tables below we considered matrices A of four different sizes, as indi-
cated in the first two columns of each table. For each size N different matrices A were
generated.

Table 2. Parameter values in the six tables.

Table τ δA K N

3 0.0001 1 ∞ 100
4 0.0001 0.001 ∞ 100
5 0.0001 1 10,000 1000
6 0.0001 0.001 10,000 1000
7 0.1 1 10,000 1000
8 0.1 0.001 10,000 1000

20 Z. WEI AND K. ROOS

Table 3. Naive random instances (τ = 0.0001, δA = 1,N = 1000, K = ∞).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 200 254.33 73.65 0.0210 0.0052 1.000 1.000
250 500 663.76 138.60 0.1421 0.0303 1.000 1.000
500 1000 924.11 201.59 1.2723 0.3059 1.000 1.000
1000 2000 885.26 219.27 4.8760 1.6163 1.000 1.000

Table 4. Controlled condition instances (τ = 0.0001, δA = 0.001,N = 100, K = ∞).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 1000 14,489.95 2,563.11 19.0735 3.8679 1.000 1.000
200 1000 14,462.39 1,929.51 18.9831 2.8488 1.000 1.000
800 1000 8,972.84 1,318.23 12.8103 2.1570 1.000 1.000
900 1000 7,542.89 1,950.49 10.3521 3.0315 1.000 1.000

Table 5. Naive random instances (τ = 0.0001, δA = 1,N = 1000, K = 10, 000).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 200 208.59 60.34 0.0171 0.0043 1.000 1.000
250 500 425.15 118.78 0.0969 0.0271 0.998 0.999
500 1000 579.90 145.78 0.8463 0.2428 0.997 1.000
1000 2000 823.48 208.45 4.8652 1.6833 0.989 1.000

Table 6. Controlled condition instances (τ = 0.0001, δA = 0.001,N = 1000, K = 10, 000).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 1000 9550.41 2654.55 13.5566 4.3351 0.662 0.956
200 1000 9567.92 1773.15 13.5134 2.8833 0.707 0.977
800 1000 8646.16 1276.30 11.7611 1.9800 0.999 1.000
900 1000 7578.60 1904.01 10.4732 2.9954 1.000 1.000

After the computation of the projection matrix PA both the SPS and the MPBP were
called, with input PA, the centre u of B and the centre y of �. The tables show the aver-
ages of, respectively, the number of iterations and the CPU time in seconds. The last two
columns show the ‘rate of success’, which is the ratio of successful runs for the specific
problem size; a run is considered successful if the iteration limit K was not the reason for
stopping the run. Thus we see that in Tables 3, 4, 7 and 8 all runs were successful. But in
Table 5, line 2, 2 runs of the SPS and 1 run of the MPBP were not successfull and in Table 6
many runs failed to establish feasibility or infeasibility, or to generate a cut. Obviously, low
values of the success rate are due the small value of τ in Tables 5 and 6. Note that in the
extreme case that we would put τ = 0, any BP would stop its execution only after hav-
ing solved the problem, i.e. only after having found a solution or having found proof for
infeasibility of (1).

The six tables in this section permit us to conclude that in most cases MPBP is more
efficient than SPS. In only two cases (in Table 8) SPS behaves slightly better than MPBP,

OPTIMIZATION METHODS & SOFTWARE 21

Table 7. Naive random instances (τ = 0.1, δA = 1,N = 1000, K = 10, 000).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 200 66.09 31.73 0.0060 0.0024 1.000 1.000
250 500 115.28 53.82 0.0285 0.0129 1.000 1.000
500 1000 174.84 77.01 0.2557 0.1252 1.000 1.000
1000 2000 254.22 108.07 1.5426 0.8847 1.000 1.000

Table 8. Controlled condition instances (τ = 0.1, δA = 0.001,N = 1000, K = 10, 000).

size(A) av. iterations av. cputime success rate

m n SPS MPBP SPS MPBP SPS MPBP

100 1000 126.86 160.18 0.2140 0.3046 1.000 1.000
200 1000 140.21 158.28 0.2224 0.2820 1.000 1.000
800 1000 218.91 24.98 0.3720 0.0488 1.000 1.000
900 1000 199.88 19.58 0.2801 0.0313 1.000 1.000

Table 9. Parameter settings for Gurobi (version 9.0.3) and Mosek (version 9.1.0).

Mosek Gurobi

param.MSK_IPAR_PRESOLVE_USE = ’MSK_OFF’ params.presolve = 0
param.MSK_IPAR_INTPNT_BASIS = ’MSK_BI_NEVER’ params.crossover = 0
param.MSK_DPAR_INTPNT_TOL_INFEAS = 1e-14 params.barconvtol = 1e-14

namely when δA = 0.001 and m � n. It is an interesting question whether this can be
explained.

9.2. Comparison ofMMAwith EPRA, Gurobi andMosek

In this section we compare our Main Algorithm (MMA) with the Enhanced Projection
and Rescaling Algorithm (EPRA) in [9] and also with the commercial packages Gurobi
and Mosek. For that purpose we used the publicly available Matlab code that was used
to generate Table 7 in [9]; this table contains for eight different sizes the averages of the
number of iterations of the EPRA, the number of iterations of SPS and the CPU time forN
randomly generated matrices A. We modified this code in such a way that every matrix A
was also sent to our MMA and to Gurobi and Mosek. For Gurobi and Mosek we used the
parameter setting as given in Table 9. Tables 10 and 11 show the results.

Table 10. MMA versus EPRA, Gurobi and Mosek (N = 500, τ = 0.5, x> 0, δ = 0.001).

size(A) av. iterations av. iterations average cputime fract.

m n EPRA MMA SPS MPBP EPRA MMA Gurobi Mosek feas.

100 200 10.39 11.73 725.20 97.92 0.0484 0.0148 0.0130 0.0080 1.0000
250 500 12.11 13.07 1452.15 196.04 0.3901 0.1141 0.1149 0.0568 1.0000
100 1000 9.16 9.15 1842.24 235.96 2.0005 0.4595 0.0650 0.0392 1.0000
200 1000 9.97 9.86 1996.34 169.71 2.1449 0.3925 0.1108 0.0821 1.0000
500 1000 12.99 13.14 2504.04 317.24 2.4293 0.7992 0.2950 0.2190 1.0000
800 1000 13.94 13.73 4000.80 484.64 3.6971 1.4788 0.7066 0.4504 1.0000
900 1000 12.60 13.31 4154.81 548.44 3.7366 1.7188 0.9319 0.5308 1.0000
1000 2000 13.16 12.82 4349.33 481.47 21.8629 5.8430 1.6831 1.1653 1.0000

22 Z. WEI AND K. ROOS

Table 11. MMA versus EPRA, Gurobi and Mosek (N = 1000, τ = 0.5, x free).

size(A) av. iterations av. iterations average cputime fract.

m n EPRA MMA SPS MPBP EPRA MMA Gurobi Mosek feas.

100 200 1.41 4.48 146.86 35.45 0.0088 0.0058 0.0134 0.0065 0.5168
250 500 1.32 4.57 264.94 58.35 0.0499 0.0395 0.1159 0.0426 0.4760
100 1000 1.00 1.00 5.50 3.31 0.0692 0.0170 0.0531 0.0257 1.0000
200 1000 1.00 1.00 9.70 4.45 0.0632 0.0208 0.0734 0.0532 1.0000
500 1000 1.21 4.54 400.10 89.16 0.3211 0.3028 0.2862 0.2012 0.4885
800 1000 1.00 1.02 9.78 3.00 0.0661 0.0538 0.5432 0.3029 0.0000
900 1000 1.00 1.69 5.50 1.69 0.0681 0.1085 0.6406 0.3383 0.0000
1000 2000 1.19 4.88 638.81 137.98 2.3357 1.9746 2.0024 0.9475 0.5020

In Table 10 thematricesA are generated by thematrix generator in the EPRA code. This
implies that there exists a positive vector in the null space ofA. In other words, problem (1)
is always feasible in Table 10. Table 11 differs only in the way the matrices A are generated;
we allow the resulting problem (1) to be infeasible, by simply using the Matlab command
A = rand(m,n)-0.5. This difference is indicated by writing ’x>0’ in the caption of
Table 10 and ’x free’ in the caption of Table 11.

The first two columns in both tables contain the eight sizes that were considered; these
are the same as in [9]. The next two columns give the average numbers of iterations of the
EPRA and the MMA, respectively, whereas the subsequent two columns give the averages
of the total number of iterations of the SPS and the MPBP, respectively. Then the next four
columns give the average CPU times (in seconds) for both cases and also for Gurobi and
for Mosek. Finally, the last column presents the percentage of the N instances that turned
out feasible. By the construction of the matrices A, this fraction is always 1 in Table 10.

For Gurobi and Mosek we used the parameter setting as given in Table 9.
We finally discuss the values of the parameters τ , δA and N. The matrix generator in

[9] has the property that the matrix A is always such that δA is given and positive. This
implies that problem (1) is always feasible, as stated before. In practice, deciding on feasi-
bility or infeasibility of a given problem is one of themain tasks of a solutionmethod. In the
infeasible case we have δA = 0. In order to allow this important case in our experiments,
we also included Table 11. By their construction, on average the matrices that were gen-
erated had an equal division of the signs of the entries. It may therefore be not surprising
that if n ≈ 2m this leads–roughly spoken–to an equal division of feasible and infeasible
instances, as we see in the lines 1, 2, 5 and 8 of the table. The other lines give rise to an
interesting probabilistic question: should we have expected that each of the 1000 instances
were feasible if n ≥ 5m and infeasible if n ≤ 1.25m?

10. Conclusions

The results in Section 9.1 reveal that the Mirror-Prox Basic Procedure (MPBP) that we
introduced in this paper competes very well with the Smooth Perceptron Scheme (SPS)
of [9]. The comparison in Section 9.2 confirms these results for the numerical behaviour
of the Enhanced Projection and Rescaling Algorithm (EPRA), which uses the SPS as a
subroutine, and the Modified Main Algorithm (MMA), which uses the MPBP as subrou-
tine. The barrier codes for linear optimization in the commercial packages Gurobi and
Mosek do very well in this comparison. It should be mentioned that this became true only

OPTIMIZATION METHODS & SOFTWARE 23

after changing the default parameter setting as indicated in Tabel 9. In all considered cases
Mosek beats Gurobi, but it is quite surprising that the straightforward implementations of
EPRA andMMA compete very well with both. In six of the eight cases MMA is faster than
Mosek.

Also a new challenge arises, because the implementation of the MMA that we used dif-
fers from the method that we analysed theoretically. Can one prove that the implemented
method also requires only polynomial time?

Two other points are worth to be noticed. First, in the MMA, after the first time, the
MPBP is initialized with the vectors y and u generated in the previous iteration of the
MMA, hence not starting every time from y = 1/n and u = 0. Second, Table 11 suggests
that when generating random matrices, the value of n/m strongly affects the feasibility of
the problem.

Notes

1. As we showed in [12], system (8) is feasible if and only if ‖v‖2 ≤ max(v). Since max(v) ≤ ‖v‖
this only holds if ‖v‖ ≤ 1. It may be worth mentioning that this result is not used in this paper.

2. At this stage the mistake in [12] becomes visible. There we incorrectly assumed that q = p, or,
in other words, that vI consists of the positive entries in v. This, however, yields a dual feasible
solution that may be not optimal.

3. In [9] the related parameter is denoted as ε.
4. The original text, in Dutch: Ich thu dat meine, Soo viel mijr God bescheert, Ein ander thu dat

seine, Soo wirdt de Const ghemheert.

Acknowledgments

Thanks are due to the anonymous referees for their comments. Their recommendation to use
the Matlab code in [9] for the computational comparisons were very useful. Thanks are also
due to Erling Andersen (Mosek) who suggested the parameter settings in Table 9 for Mosek; the
parameters for Gurobi were set accordingly. Citing the Dutch mathematician Ludolph van Ceulen
(1540–1610)–who became famous for his computation of 36 decimals of the number π–we offer
this paper to the readers:4

Wedid what we could, as much as God enabled us to do. Let everyone do his sake, in this way science
blossoms.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Zhang Wei (1986) is an Assistant Professor in the School of Mathematics, South China University
of Technology. He received his bachelor’s degree at Peking University (2010) and PhD’s degree in
the University of Chinese Academy of Sciences (2015). After that he worked in Shanghai University
and the National University of Singapore as a postdoc research fellow. His research interest lies in
the first order methods in mathematical optimization and spectral graph theory.

Kees Roos (1941) has hold a chair on Optimization Technology at Delft University of Technology
until 2006, when he retired. From 1998 to 2002 he was a part-time professor at Leiden University.
The past 25 years his research concentrated on interior-point methods for linear and convex opti-
mization. He is a (co-)author of several books and more than hundred papers in refereed journals.

24 Z. WEI AND K. ROOS

He is (or was) member of the editorial board of several journals, among them the SIAM Journal on
Optimization. He was secretary/treasurer of the SIAM Activity Group on Optimization. He super-
vised a large number of research projects, among them the Dutch nationwide NWO-project High
Performance Methods for Mathematical Optimization, and the project Discrete Mathematics and
Optimization of the (Dutch) Stieltjes Institute. He was also involved in a big project ‘Optimal safety
of the dikes in the Netherlands’, financed by the Dutch government. that received the Franz Edel-
man award 2013 of INFORMS. He shared the 2011 Khachiyan prize of the INFORMSOptimization
Society with Jean-Philippe Vial (University of Geneva).

References

[1] E.D. Andersen and K.D. Andersen, The MOSEK interior-point optimizer for Linear Program-
ming: an implementation of the homogeneous algorithm, in High Performance Optimization
Techniques, S. Zhang, H. Frenk, C. Roos, and T. Terlaky, eds., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1999, pp. 197–232.

[2] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization, analysis, algorithms,
and engineering applications, MPS/SIAM Series on Optimization, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[3] P. Brucker,AnO(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3(3) (1984), pp.
163–166.

[4] S. Chubanov, A polynomial projection algorithm for linear feasibility problems, Math. Program.
153 (2015), pp. 687–713. DOI: 10.1007/s10107-014-0823-8.

[5] G.B. Dantzig, An ε-precise feasible solution to a linear program with a convexity constraint
in 1/ε2 iterations, independent of problem size, Tech. Rep. SOL 92-5, Systems Optimization
Laboratory. Department of Operations Research. Stanford University, Stanford, USA, Oct
1992.

[6] N. He, IE 598 Big Data Optimization, Lecture Notes, Vol. 18, University Of Illinois At Urbana-
Champaign, Fall, Oct 2016.

[7] L.G. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademiia Nauk
SSSR. 244 (1979), pp. 1093–1096. Translated into English in Soviet Mathematics Doklady. Vol.
20, pp. 191–194.

[8] A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems,
SIAM J. Optim.15(1) (2004), pp. 229–251.

[9] J. Peña and N. Soheili, Computational performance of a projection and rescaling algorithm,
Optim. Methods Softw. (2019), pp. 1–18. https://www.tandfonline.com/doi/full/10.1080/
10556788.2019.1615910.

[10] C. Roos, Linear optimization: Theorems of the alternative, in Encyclopedia of Optimization,
C.A. Floudas and P.M. Pardalos, eds., Vol. III, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2001, pp. 181–184, ISBN 0-19-512594-0.

[11] C. Roos,OnChubanovsmethod for solving a homogeneous inequality system, inNumerical Anal-
ysis and Optimization. NAO-III, Muscat, Oman, January 2014, M. Al-Baali, L. Grandinetti, and
A, Purnama, eds., Springer Proceedings in Mathematics & Statistics, Switzerland, 2015, pp.
319–338, ISBN 978-3-319-17688-8.

[12] C. Roos, An improved version of Chubanov’s method for solving a homogeneous feasibility prob-
lem, Optim. Methods Softw. 33(1) (2018), pp. 26–44. DOI: 10.1080/10556788.2017.1368509.

[13] E. Stiemke,Über positive Lösungen homogener linearer Gleichungen,MathematischeAnnalen76
(1915), pp. 340–342.

[14] Available at https://www.gurobi.com/.
[15] Available at https://www.mosek.com/.

https://doi.org/10.1007/s10107-014-0823-8
https://www.tandfonline.com/doi/full/10.1080/10556788.2019.1615910
https://doi.org/10.1080/10556788.2017.1368509
https://www.gurobi.com/
https://www.mosek.com/

	1. Introduction
	2. Preliminaries
	3. Cuts and cutting vectors
	4. Sufficient condition for cutting vectors
	5. A bilinear saddle point problem
	6. Nemirovski's Mirror-Prox method
	6.1. Definition of the method
	6.2. Analysis of the method

	7. The Mirror-Prox basic procedure
	8. Modified Main Algorithm
	9. Numerical comparisons
	9.1. Comparison of MPBP and SPS
	9.2. Comparison of MMA with EPRA, Gurobi and Mosek

	10. Conclusions
	Notes
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

