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Exciting Nonlinear Modes of Conservative Mechanical Systems
by Operating a Master Variable Decoupling

Cosimo Della Santina1,2, Dominic Lakatos1, Antonio Bicchi3, Alin Albu-Schaeffer1,4

Abstract— Eigenmanifolds extend eigenspaces to nonlinear
mechanical systems with possibly non-Euclidean metrics. Re-
cent work has shown that simple controllers can excite hyper-
efficient oscillations by simultaneously stabilizing an Eigenman-
ifold and regulate the total energy. Yet, existing techniques
require imposing assumptions on the system dynamics that
the controlled system may not fulfill. This paper overcomes
these limitations by allowing for partial dynamic compensation,
which produces a good decoupling of the system’s dynamics.
This decoupling happens in a convenient set of coordinates in-
duced by the modal characterization of the mechanical system.
Two control algorithms taking advantage of this property are
proposed and validated in simulation.

I. INTRODUCTION

The evolution of complex mechanical systems is governed
by the interplay of potential fields and dynamic forces.
The two actions dynamically balance each other for spe-
cific initial conditions, yielding regular oscillations. Often,
these oscillations are not isolated but part of entire families
continuously evolving from an equilibrium of the system.
These collections of periodic orbits are well understood
for linear systems thanks to the celebrated linear modal
analysis. However, when nonlinearities are involved, the
analysis becomes dramatically more complex [1], especially
when multi-body effects are involved [2]. Still, most of the
interesting oscillatory mechanical systems are nonlinear. For
example, animals are well known to rely on natural oscil-
lations to locomote efficiently [3], [4]. Inspired by biology,
researchers have introduced elastic and soft elements into
the mechanical design of robotic systems, leading to soft
robots [5]. These systems are thought to be especially suited
for performing oscillatory tasks, and their expected practical
applications include locomotion [6], periodic pick and place
[7], and carrying payloads that exceed the static torque limits
[8]. Elastic elements may also be optimized to maximize
performance [9], [10].

Consequently, understanding how to produce nonlinear
oscillations in mechanical systems has become an increas-
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ingly important goal for control theorists. For example [11]–
[13] deal with the challenge from the perspective of virtual
holonomic constraints, [14] using immersion and invariance
control, [15] through energy shaping, [16] in the context of
Floquet theory, and [17] by means of transverse feedback
linearization. Alternatives range from optimal control [18],
[19] to data-driven methods [20], [21]. Although effective, all
these techniques require some form of steady-state dynamic
cancellation and persistent excitation.

We focus specifically on exciting oscillatory behaviors that
do not require any energy expenditure at a steady state.
This is possible only if the desired steady-state orbits are
autonomous evolutions of the open-loop system. These oscil-
lations can be identified and described using nonlinear modal
theory [2], [22]. Based on this intuition, we recently proposed
[23]–[28] to excite nonlinear oscillations by combining two
control loops. The first [24] stabilizes nonlinear counterparts
of the linear eigenspace: the Eigenmanifolds [2]. The second
loop imposes a desired amplitude of oscillations by regulat-
ing the total energy of the system [25]. Interestingly, a PD-
like regulation of Eigenmanifolds may already be sufficient
to realize Eigenmanifold stabilization [24]. Yet, the approach
works only under simplifying hypotheses on the transverse
dynamics. Even more importantly, to prove the convergence
of the nested loops, the energy regulation must be designed
not to perturb the invariance of the Eigenmanifold. This is,
however, possible only in a restricted class of mechanical
systems [25].

The present paper aims to extend this theory to the case in
which the model of the system is sufficiently well known to
allow for model cancellations during the transient. We show
that in this case, the discussed limitations in our framework
are overcome by employing a decoupling action. This way,
the system can be brought in a special form where a master
oscillator acts as a clock for a periodic time-variant system.
We propose two controllers - one for Eigenmanifold stabi-
lization and the other for energy regulation - and prove their
convergence properties. We then show their effectiveness in
exciting the nonlinear modes of a system that we could not
have handled using [24], [25].

II. EXCITING EFFICIENT OSCILLATIONS THROUGH
EIGENMANIFOLD STABILIZATION

The formal coordinate-free definition of Eigenmanifold
can be found in [2]. We provide here only a brief and
coordinate-dependent introduction. We also define here some
novel concepts that we will then use to derive the results of
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this paper - namely master dynamics, slave variables, and
master energy.

A. Dynamics in linear modal coordinates
Consider a generic conservative mechanical system, not

subject to non-holonomic constraints, and fully actuated
q̈ = −M−1(q)(C(q, q̇)q̇+G(q))+M−1(q)τ , where M(q) ∈
Rn×n is the inertia matrix, C(q, q̇)q̇ are Coriolis and cen-
trifugal forces, G(q) are potential forces (usually including
gravity and elastic field), and τ ∈ Rn are the generalized
forces that we use as inputs. The energy of this system is
E(q, q̇) = q̇TM(q)q̇/2+U(q), with U(q) being the potential
energy - i.e. the scalar function having G(q) as gradient
vector. Consider now an isolated stable equilibrium qeq of
this system. We perform linear modal analysis [2, Sec. II]
on the linearized system at the equilibrium. For the sake of
space, we suppose that all eigenspaces have dimension two
(non resonance condition). We call W the matrix bringing
the configuration of the linear system in modal coordinates.
Without loss of generality, we order the rows of W such that
the first one refers to the eigenspace we aim to extend to the
nonlinear realm. To simplify the notation, we introduce the
linear change of coordinates x = W (q − qeq), which leads
to the dynamics

ẍ = f(x, ẋ) + g(x)τ, (1)

where x = [x1, . . . , xn]T ∈ Rn are the mechanical system’s
configuration expressed in the modal coordinates of the
linearized system, and ẍ, ẋ ∈ Rn are their time derivatives.
The drag of the system is f : R2n → Rn, and the input field
is the full rank matrix g : Rn → Rn×n.

B. Eigenmanifold
Consider system (1) with τ = 0. An Eigenmanifold is a

2-dimensional submanifold of the state space R2n, such that
i) it contains the equilibrium, i.e. (0, 0) ∈M,

ii) it is a collection of periodic orbits characterized by a
distinct energy - i.e. each x(t) such that (x(0), ẋ(0)) ∈
M is periodic, it is fully contained in M, and have a
total energy E distinct from all other trajectories in M,

iii) all these orbits are line-shaped - i.e. they do not self-
intersect, and do not have circular topology.

C. Coordinate embeddings
We say that an Eigenmanifold is an extension of an

eigenspace if the latter is tangent to the first at the equi-
librium. In the rest of the paper we will focus w.l.o.g. on
the Eigenmanifold M which is tangent to the eigenspace
identified by (x1, ẋ1). Under this hypothesis we can always
introduce (see [2, Secs. 8,9]) two functions X : R2 → Rn
and Ẋ : R2 → Rn. They are called coordinate embedding of
the Eigenmanifold, and they are such that M can be defined
implicitly as the locus of points that verify

x = X(x1, ẋ1), ẋ = Ẋ(x1, ẋ1). (2)

Note for (2) to be verified (X1, Ẋ1) must be the identity
function. We will release in the next future a tool for
automatically evaluate X, Ẋ from (1).

Fig. 1. If initialized on the invariant manifold, the system’s
evolution is entirely defined by the one-dimensional dynamics of the
master variable. The remaining n−1 slave variables are specified by
the master variable through a set of nonlinear algebraic functions.

D. Master dynamics and slave variables

We call modal dynamics the following second order sys-
tem

ẍ1 = f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) (3)

When evolving on the Eigenmanifold system (1) behaves
as the 1-DoF system (3), and all the other variables are
constrained by the algebraic rules (2). For this reason, we
refer to (x1, ẋ1) as master variables and the remaining part
of the state as slave variables. Note that this is a standard
terminology that we are borrowing from [29]. Fig. 1 depicts
this idea. This structure is lost as soon as we leave the
manifold, even if in the immediate boundary.

Finally, we define the energy of the master dynamics as

EM = E(X(x1, ẋ1), X(x1, ẋ1)), (4)

from which it is clear that in the general case (3) is not
itself a mechanical system. For example, the energy is in not
quadratic in ẋ1 as soon as Ẋ is not linear in ẋ1.

E. Tangency constraints

Since the Eigenmanifold is invariant by definition, time
derivative of the state (ẋ1, ẍ1) must always be tangent to
the Eigenmanifold itself (i.e. zero orthogonal component). A
simple way to express this condition is to evaluate the time
derivative of (2), and then substitute the vector field (1). We
then substitute back x = X(x1, ẋ1) and ẋ = Ẋ(x1, ẋ1). This
process yields the tangency constraints

Ẋj =
∂Xj
∂x1

ẋ1 +
∂Xj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)),

fj(X, Ẋ) =
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)).

(5)

∀j ∈ {2 . . . n}. Note that j = 1 trivially holds. The master
dynamics (3) clearly assumes an important role here.

III. EIGENMANIFOLD STABILIZATION

This section introduces a new feedback controller, whose
aim is to make the Eigenmanifold M a local attractor for
the closed-loop system. We have already shown in [24]
that achieving such a goal results in the generation of
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Fig. 2. Making the Eigenmanifold M an attractor using feedback
control is a simple way of generating regular steady-state oscilla-
tions that do not need any persistent excitation to be sustained at
steady-state. This is because they are already open-loop evolutions
of the system. Yet, an Eigenmanifold contains infinite modal
oscillations - some of which are shown in the picture as solid lines.
Since a different energy level labels each mode, we can pick the
desired one by including a further feedback action that regulates
the energy of the mechanical system.

nonlinear oscillations that require no persistent excitation to
be sustained. This idea is summarized by Fig. 2. Yet, the
simple PD-like action proposed in our previous work only
worked under simplifying assumptions.

We have seen in Sec. II-D and Fig. 1 that the system
assumes a simplified structure when evolving on the Eigen-
manifold. We aim here to design a feedback action that
can force similar hierarchical dynamics in the vicinity of
the Eigenmanifold. We propose to achieve this goal through
compensatory acceleration acting only on the master variable

a1(x, ẋ) = f1(X(x1, ẋ1), Ẋ(x1, ẋ1))− f1(x, ẋ), (6)

which in turn can be used to augment a PD-like loop

τ(x, ẋ) = g−1(x)

κp ∆ + κd ∆̇ +


a1(x, ẋ)

0...
0


 , (7)

where κp ∈ R+, κd ∈ R+, ∆ = X(x1, ẋ1) − x, and ∆̇ is
the time derivative of ∆.

Lemma 1. If (8) is asymptotically stable with (ξ, ξ̇) open
loop evolution of ξ̈ = f1(X(ξ, ξ̇), Ẋ(ξ, ξ̇)), then (7) makes
M a local attractor of the closed loop system.

Proof. Differentiating w.r.t. time ∆j = Xj(x1, ẋ1) − xj
yields

∆̇j = −ẋj +
∂Xj
∂x1

ẋ1 +
∂Xj
∂ẋ1

[f1(x, ẋ) + g1(x)τ ]

= −ẋj + Ẋj(x1, ẋ1)

+
∂Xj
∂ẋ1

[f1(x, ẋ)− f1(X, Ẋ) + g1(x)τ ] ,

where in the first step we used the chain rule, and in the
second step we used (5), i.e. the manifold invariance. Now,
we close the loop with (7) and (6). Recalling that ∆1 ≡ 0
by definition yields

∆̇j = Ẋj(x1, ẋ1)− ẋj , (9)

which now describes the displacement between velocities and
corresponding manifold coordinates. We differentiate (9) a
second time obtaining

∆̈j =− fj(x, ẋ)− gj(x)τj

+
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

[f1(x, ẋ) + a1]

=− fj(x, ẋ)− gj(x)τj

+
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) ,

(10)

where again we applied the chain rule and plugged in (6) and
(7). Now, we exploit once more the tangency constraints (5),
together with the definition of ∆ and the expression of its
time derivative (9). The result is

∆̈j = fj(X, Ẋ)− fj(X −∆, Ẋ − ∆̇)− κp ∆j − κd ∆̇j .

To complete the proof, we linearize the dynamics for small
displacements from the manifold M, i.e. around ∆j = 0
and ∆̇j = 0 ∀j ∈ {2 . . . n}. The result is (8), with
z =

[
∆2 . . .∆n

]T
and ż =

[
∆̇2 . . . ∆̇n

]T
, and where we

exploited that ∆1 ≡ 0 and ∆̇1 ≡ 0 by construction. In (8),
x1 and ẋ1 do not appear as an input, but only as dependencies
in the dynamic matrix. Indeed, the following equations hold

∂fj(x, ẋ)

∂x1
=
∂fj(X−∆, Ẋ−∆̇)

∂x1

∣∣∣∣∆j = 0

∆̇j = 0

, (11)

∂fj(x, ẋ)

∂ẋ1
=
∂fj(X−∆, Ẋ−∆̇)

∂ẋ1

∣∣∣∣∆j = 0

∆̇j = 0

. (12)

Note that the controller a1 decouples the dynamics of
master variable from the slave variables. Indeed it holds
ẍ1 = f1(x, ẋ) + (f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) − f1(x, ẋ)) =
f1(X(x1, ẋ1), Ẋ(x1, ẋ1)), i.e. x1 evolves according to the
modal dynamics (3) also outside the manifold. Thus, the
dependency of (8) from ξ and ξ̇ can be regarded as a time-
variance.

IV. ENERGY REGULATION

The advantages of introducing the decoupling action (6) do
not stop the challenge of making the Eigenmanifold a local
attractor. On the contrary, we can leverage the simplified
resulting dynamics to include an energy regulation loop and
still prove convergence to the desired behavior. Achieving
this goal without (6) requires imposing strong constraints
to the kind of behaviors that can be implemented and to
the control actions that must be exerted - as discussed in
[25]. Also, it would require to be able to regulate the dis-
placements from the Eigenmanifold in finite time. Note that
regulating the energy is paramount in our framework since it
allows to select of the desired oscillation among the infinite
similar ones which are part of the same Eigenmanifold (see
Fig. 2). This, in practice, means selecting the amplitude of
the oscillation.

We propose to inject or remove energy from the system
when needed with a simple bang-bang loop (14), which
accelerates the master variable only. The modal energy EM
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ż =

[
0 I

−Σ(ξ(t), ξ̇(t))− κp −Γ(ξ(t), ξ̇(t))− κd

]
z, with Σi,j(x1, ẋ1) =

∂fi+1

∂xj+1

∣∣∣∣x=X,

ẋ=Ẋ

, Γi,j(x1, ẋ1) =
∂fi+1

∂ẋj+1

∣∣∣∣x=X,

ẋ=Ẋ

. (8)

(a) Trajectory in Master space

(b) Evolution of Energy in time

Fig. 3. Pictorial example of the effect of (13). Panel (a) presents an
evolution in master variables space (x1, ẋ1), while Panel (b) presents the
corresponding evolution of the energy in time. When the system is in a
neighborhood of equilibrium configuration x1 = 0 (i.e., when it crosses
the gray area), energy is injected by the controller, moving the system to
another of its autonomous orbits. Eventually, this brings the robot to the
region of state space with the desired amount of energy. labelfig:bangbang

is defined in (4). The key idea here is that thanks to discussed
decoupling operated by (6) we can look at the master
dynamics as a conservative autonomous system. Thus we can
regulate the modal energy and then wait that E converges to
EM when the system reaches the Eigenmanifold.

Thus, combining (14) with the controller (7) yields

τ(x, ẋ)=g−1(x)

κp ∆ + κd ∆̇ +


a1(x, ẋ) + ā1(x1, ẋ1)

0...
0


 ,

(13)

where γ > 0, E+ > E− > 0, and x+
1 > 0 > x−1 are scalar

constants. a1 is the decoupling action (6).

Lemma 2. If the following hypotheses hold
H1 the level curves of the modal energy EM are closed
H2 f1(X(x1, 0), Ẋ(x1, 0)) /∈ {0, γ} ∀x1 /∈ [x−1 , x

+
1 ]

H3 the hypotheses of Theorem 1 are verified
then (13) produces a closed loop system having M as a local
attractor and limt→∞E(x(t), ẋ(t)) ∈ [E−, E+].

Proof. We consider the case E(x1(0), ẋ1(0)) < E−, which
we sketch in Fig. ??. The proof for E(x1(0), ẋ1(0)) > E+

follows similar arguments. Thus, the closed loop dynamics
of the master variable x1 is

ẍ1 = f1(X(x1, ẋ1), Ẋ(x1, ẋ1))

+


0 if x1 /∈ [x−1 , x

+
1 ]

+ γ if x1 ∈ [x−1 , x
+
1 ] ∧ ẋ1 > 0

− γ otherwise,

(15)

which is autonomous, and it does not depend on the evolution
of slave variables x2 . . . xn. Note that system (15) verifies
the basic conditions [30, Sec. 2.7]. Thus, its solution always
exists unique and finite for a given initial condition.

a) Time partitioning: We introduce a partition of the
time into a sequence of intervals [31]

[0, t) = (

i+(t)⋃
1

tini ) ∪ (

j+(t)⋃
1

tout
j ) ∪ (

k+(t)⋃
1

t0k) , (16)

where (a) tini is the i− th interval for which x1 ∈ [x−1 , x
+
1 ]

and ẋ1 6= 0; (b)tout
j is the j − th interval for which x1 /∈

[x−1 , x
+
1 ]; (c) t0k is the k−th interval for which x1 ∈ [x−1 , x

+
1 ]

and ẋ1 = 0. i+(t),j+(t),k+(t) are the number of intervals
tini ,tout

j ,t0k contained in [0, t). Of the three classes of intervals,
only in tini energy is introduced in the system.

b) The system always exits from x1(t) /∈ [x−1 , x
+
1 ]:

If x1(t) /∈ [x−1 , x
+
1 ] then (15) becomes ẍ1 =

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)), which is the master variable’s
dynamics on the manifold (3).

Since the system is conservative, then the modal energy
is constant in time. As a consequence

dEM

dt
= 0⇒ dEM

dx1
ẋ1 +

dEM

dẋ1
ẍ1 = 0 , (17)

i.e. x1 evolves on the level curves of EM. Note that this
is not a trivial consequence of the conservation of energy,
but it also required that modal energy is dependent only
from the master variables. This property, together with H1,
implies that the orbits (x1, ẋ1) intercept the interval [x−1 , x

+
1 ].

Finally, H2 assures that (3) has no equilibrium on the orbit.
This is sufficient to that the evolution of x1 reaches the
interval [x−1 , x

+
1 ] in finite time. So each tout

j is finite, and
it is always followed by a tini .

c) Energy increases in tini : When x1 ∈ [x−1 , x
+
1 ] and

ẋ1 6= 0, (15) is excited by a nonconservative force. This
implies a energy change equal to

dEM

dt
(x1, ẋ1) = ẋ1

{
+γ if ẋ1 > 0

−γ otherwise

= γ |ẋ1| > 0 , ∀t ∈ tini .

(18)

d) Energy increases in time: Conditions x1 ∈ [x−1 , x
+
1 ]

and ẋ1 = 0 hold only for isolated instants, since H3 implies
ẍ1 6= 0. Thus t0k are all of zero measure. Putting together
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ā1 = γ


0 if x1 /∈ [x−1 , x

+
1 ] or EM ∈ [E−, E+]

1 if x1 ∈ [x−1 , x
+
1 ] and ((EM < E− and ẋ1 > 0) or (EM > E+ and ẋ1 < 0))

−1 otherwise.

(14)

(a) (b) (c)

Fig. 4. Panel (a) shows the generalized inverted elastic pendulum, with main quantities underlined. θ and r are the polar coordinates of the point mass. γ1

and γ2 are a polar and a radial spring, normalized by the mass. γ1 is equal to zero in the classic inverted elastic pendulum model. The mass is subjected
to a constant gravitational field g. Panels (b) and (c) show the Eigenmanifold of system (20), for γ1 = 20 1

s2
, γ2 = 60 1

s2
, g = 9.81 m

s2 , r0 = 1m. The
solid line is the trajectory corresponding to the initial condition θ = 0 and θ̇ = π

2
rad
s .

Fig. 5. Representation of the modal dynamics of the generalized inverted
pendulum. The red arrows are a representation of the modal acceleration
field f1(X, Ẋ). The black lines are examples of modal oscillations ex-
pressed in modal coordinates.

the energy balances for all the intervals yields

EM(t) = EM(0) +

∫ t

0

dEM

dt
dt′

= EM(0) +

∫ t̄

0

dEM

dt
dt′′

≥ EM(0) + εt̄,

(19)

where t̄ =
∑i+(t)

1 max (tini ), and in the second step we
changed the integral coordinate to express the time as union
of tini intervals.

e) EM reaches [E−, E+] in finite time: Eqs. (18) and
(19) imply that EM(t) is increasing for EM < E−. Thus x1

and ẋ1 eventually reach a value such that EM = E−. Since
(17), then once reached the desired energy band [E−, E+],
the model energy EM remains in it. Therefore a T ∈ R
always exists such that EM(x1(t), ẋ1(t)) ∈ [E−, E+] for
all the t > T .

f) E reaches [E−, E+] asymptotically: The previous
step of the proof implies that ā1(x1(t), ẋ1(t)) = 0, and (13)
is equal to (7) for all the t > T . The manifold attractiveness
follows from H3 and lemma 1, and in turn

lim
t→∞

E(x(t), ẋ(t)) = lim
t→∞

EM(x1(t), ẋ1(t)) ∈ [E−, E+] .

It is worth mentioning that both controllers (7) and (13) are
such that τi → 0, since τi(x1, ẋ1, X2, Ẋ2, . . . , Xn, Ẋn) ≡ 0.
So the closed loop system evolves autonomously at steady
state, without any injection of external energy. Also, note
that E− and E+ can be selected arbitrarily close to each
other. However, smaller is the interval [E−, E+] higher are
the chances of chattering in the practice.

V. SIMULATION

We present here the application of the proposed strategy to
a representative yet straightforward example of a nonlinear
mechanical system: the generalized inverted elastic pendu-
lum shown in Fig. 4(a). Note that the controllers that we
have proposed in our previous work [25] cannot be applied
to this system since its Eigenmanifold does not self-intersects
when projected in configuration space - as we will see later
in this section.

The system’s dynamics is

θ̈ = −2
ṙ

r
θ̇ +

g

r
sin(θ)− γ1

r2
θ +

τθ
m
,

r̈ = +rθ̇2 − g cos(θ)− γ2 (r − r0) +
τr
m
,

(20)

where θ and r are the polar coordinates of the body, with
their derivatives θ̇, θ̈, ṙ, r̈. g is the gravity constant. γ1 and
γ2 are the ratio between stiffnesses of both springs and the
body mass m. The system has an equilibrium in θ ≡ 0 and
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Fig. 6. Inverted elastic pendulum (20) controlled through (7), with κd = 1Ns
m

(a,b,c), κd = 10Ns
m

(d,e,f). The considered physical parameters are
γ1 = 20 1

s2
, γ2 = 60 1

s2
, g = 9.81 m

s2 , r0 = 1m. The selected initial condition is θ = 0, θ̇ = 7
16
π rad

s
, r ' 0.54m, ṙ = 0.5m

s . Note that for these values
the system is outside the invariant manifold, indeed r(0) −X(θ(0), θ̇(0)) ' − 1

4
m and ṙ(0) − Ẋ(θ(0), θ̇(0)) = −0.5m

s . Panels (a,d) present the time
evolution of the Lagrangian variables θ and r. Panels (b,e) show the control action generated by the controller. Panels (c,f) present the evolution of the
mass in Cartesian space.

r ≡ r0 − g
γ2

. Its linearized dynamics is

∆θ̈ '

(
g(r0 − g

γ2
)− γ1

(r0 − g
γ2

)2

)
∆θ, ∆r̈ ' −γ2∆r. (21)

So, the normal modes of the linearized system are two decou-
pled evolutions: an angular oscillation with fixed radius, and
a radial oscillation with fixed angle. The nonlinear extension
of the latter is trivial, since for θ ≡ 0 and θ̇ ≡ 0 the dynamics
collapses into a linear one.

The other mode turns into a more complex oscillation,
characterized by a non strict Eigenmanifold. We evaluate
its parametrization (X, Ẋ) by approximating the solution of
(5) extending a Galerkin procedure tipically used in center
manifold theory [29]. We approximate (20) with a 3rd order
Taylor expansion around the equilibrium. We then consider
the symmetry of (20), w.r.t. θ and around θ = 0. If (θ̂,
˙̂
θ,r̂, ˙̂r) is a system evolution, than also (−θ̂, − ˙̂

θ,r̂, ˙̂r) is. This
implies that X and Ẋ must be even. Therefore, we consider
as guess for the two maps a fourth order polynomial without
odd terms. This implicitly assures that the tangent to the
Eigenmanifold at the equilibrium is the linear eigenspace.
We force condition (i) to hold by taking the constant terms
of the polynomial to be the equilibrium of the system.
Plugging the Taylor approximation of the dynamics and the
polinomial guesses for X, Ẋ into (5) yields 12 algebraic
equations in the parameters of the polynomial. We cannot
report them here for the sake of space. We used solve

function from MatLab to solve them. Substituting the two
maps into the dynamics of θ, we obtain the modal dynamics
θ̈ = −2 Ẋ2(θ,θ̇)

X2(θ,θ̇)
θ̇ + g X2(θ,θ̇) sin(θ)−γ1 θ

X2(θ,θ̇)2
. As an example, we

take γ1 = 20 1
s2 and γ2 = 60 1

s2 . Figs. 4(b) and 4(c) show
the resulting Eigenmanifold. The orbit corresponding to the
initial condition θ = 0 and θ̇ = π

2
rad
s is superimposed as an

example. Fig. 5 depicts the resulting modal dynamics.
We consider now the application of the control law (7)

to make the Eigenmanifold parametrized by X and Ẋ an
attractor. Σ and Γ are the scalars Σ = −γ2 + θ̇2, Γ = 0.
Thus, the stability of the transverse dynamics (8) is proven
using [32], which yields γ2 + κp > θ̇2 and κd > 2θ̇θ̈

θ̇2−γ2
.

So, in case the speed of the master variable is not too big
compared to the radial stiffness, a pure damping feedback
on r is sufficient to make the Eigenmanifold an attractor.
Fig. 6 presents the evolution of the system (20) controlled
through (7). We present two different choices of κd: low
gain 1Ns

m , and higher gain κd = 10Ns
m . The initial condition

is θ = 0, θ̇ = 7
16π

rad
s , r = X(0, 7

16π) − 1
4 m ' 0.54m,

ṙ = Ẋ(0, 7
16π) − 0.5 m

s = 0.5 m
s . In both cases the robot

converges to a stable oscillation. Panels (a,d) show the time
evolutions. In the less damped case (a-c), r takes more time
to converge, and does that with an overshoot. Looking to the
control actions (b,e), this translates into a more prominent
action of the decoupling controller τθ. Note that in both
cases the control action converges to values close to zero,
i.e. the robot evolves on the manifold following autonomous
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Fig. 7. Evolution of inverted elastic pendulum (20) controlled through
(13), with κd = 10Ns

m
, E− = 21J, E+ = 22J, x− = − π

32
, x+ = + π

32
,

γ = 1N. The system starts from the equilibrium r = r0 − g
κ1

, θ = 0. The
controller successfully increases the system oscillations, while maintaining
the two degrees of freedom synchronized (i.e. on the modal manifold). This
is particularly evident in panel (b).

trajectories. The small deviations from the null value are
due to the mismatches between ideal and approximated maps
X, Ẋ . Panels (c,f) show the trajectory of the center of mass
in Cartesian space. A much more dynamic transient can be
observed in (c).

Fig. 7 presents the time evolutions of system (20) con-
trolled through the complete controller (13). Note that
the system is conservative, and the energy E(θ, θ̇, r, ṙ) =
1
2 (r2θ̇2+ṙ2)+ 1

2 (γ1θ
2+κ2(r−r0)2)+g (r cos(θ)) has closed

level curves, thus fulfilling the hypotheses of lemma 2. We
considered E− = 21J, E+ = 22J, x− = − π

32 , x+ = + π
32 ,

γ = 1N. The system starts at the equilibrium, i.e. θ = 0,
r = r0 − g

κ2
' 0.84m, θ̇ = 0, ṙ = 0, and it reaches the

desired level of energy after about 9s. Note that thanks to the
stabilizing controller, evolutions remain synchronized during
the whole excitation phase despite the perturbations. This
is evident from the zero-crossings of the velocity in Fig. 7
(b). The same figure also highlights a key characteristics of
the considered mode: the frequency of oscillation of θ is
half of the frequency of oscillation of r. This type of non-
unison oscillations are a peculiar product of the non-linear
dynamics, made possible by the fact that the parametrization
of the manifold X decreases in one direction and increases
in the other (see Fig. 4(b)). For the same simulation, Fig.
8(a) presents the Cartesian evolution of the center of mass.
Fig. 8(b) reports a comparison between the control actions

exerted by the proposed controller (τθ and τr), and the ones
that would have been necessary to regulate an equivalent
rigid robot along the same trajectory when the mass is 1Kg
(τθ,fa and τr,fa). Fig. 8(c) shows the trajectory in (a portion
of) state space, which can be qualitatively compared with
Fig. 4(b). Finally, in Fig. 9 we report the application of the
proposed control strategies to a more complex system: a 3-
DoF planar manipulator. Due to space limitations, we cannot
show the derivation of the Eigenmanifold embedding and
the associated control rule, which follows the same steps as
for the generalized elastic pendulum discussed above. This
example is meant to show the generality of the method.

VI. CONCLUSIONS

This paper proposed a model-based solution to the prob-
lem of exciting nonlinear oscillations through Eigenmanifold
stabilization and energy injection. This solution can be used
when a good knowledge of the master variable dynamics
is available. We showed that by including a model-based
compensation in our control strategy, the transverse dynamics
could be studied locally as a linear problem, and the energy
regulation can be achieved in finite time through a bang-
bang controller. Future work will be devoted to assessing
global convergence, including a more robust mechanism
to compensate for energy losses and validating the results
experimentally on a multi-DoF robotic system. Furthermore,
we will release a toolbox for automatically evaluating the
expression of X, Ẋ of a given mechanical system.
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