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Abstract—For a language with no transcribed speech avail-
able (the zero-resource scenario), conventional acoustic modeling
algorithms are not applicable. Recently, zero-resource acoustic
modeling has gained much interest. One research problem is
unsupervised subword modeling (USM), i.e., learning a feature
representation that can distinguish subword units and is robust
to speaker variation. Previous studies showed that self-supervised
learning (SSL) has the potential to separate speaker and phonetic
information in speech in an unsupervised manner, which is highly
desired in USM. This paper compares two representative SSL
algorithms, namely, contrastive predictive coding (CPC) and
autoregressive predictive coding (APC), as a front-end method
of a recently proposed, state-of-the art two-stage approach, to
learn a representation as input to a back-end cross-lingual DNN.
Experiments show that the bottleneck features extracted by the
back-end achieved state of the art in a subword ABX task on the
Libri-light and ZeroSpeech databases. In general, CPC is more
effective than APC as the front-end in our approach, which is
independent of the choice of the out-domain language identity in
the back-end cross-lingual DNN and the training data amount.
With very limited training data, APC is found similar or more
effective than CPC when test data consists of long utterances.

Index Terms—zero-resource, unsupervised subword learning,
contrastive predictive coding, autoregressive predictive coding,
cross-lingual modeling

I. INTRODUCTION

Conventional automatic speech recognition (ASR) system
development relies heavily on annotated speech data for
training the acoustic models (AMs). However, for the vast
majority of languages not enough annotated training material
is available [1]. In the last decade, unsupervised learning
of acoustic models for ASR has gained increasing research
interests [2]–[4]. It aims at discovering [2], [5], [6] (also
referred to as acoustic unit discovery; AUD) or modeling [3],
[4], [7] (also referred to as unsupervised subword modeling;
USM) a set of basic speech units that represents all the sounds
in the language in a zero-resource scenario, i.e., with only
untranscribed data available. This research field aims to pave
the way to developing high-performance ASR systems for
languages that have very limited or no transcribed data.

One important research problem is to learn a frame-level
feature representation that can distinguish acoustic subword
units (phonemes) of a target language and is robust to speaker
variation [3]. This problem, denoted as unsupervised subword
modeling (USM) [3], [8], is the focus of this paper.

There are many interesting approaches to solving the USM
problem [7], [9]–[12]. One research line is to apply unsu-
pervised learning techniques, as they naturally fit the zero-
resource assumption. Clustering and self-supervised learning
(SSL) algorithms are two representatives. In [9], [10], a Dirich-
let process Gaussian mixture model (DPGMM) clustering was
shown to achieve best performances in ZeroSpeech 2015 [3]
and 2017 [8]. Very recently, SSL algorithms, which treat
input or modifications of the input as learning targets, were
proposed [13]–[15] and extensively investigated for the USM
problem [4], [7], [11]. Some studies show that SSL algorithms
outperform clustering for USM [7].

In another research line, speech and linguistic resources
of non-target, out-of-domain (OOD) languages are leveraged
for USM in a cross-lingual knowledge transfer manner [12],
[16]. A typical transfer learning approach is to use an OOD
ASR system to decode target speech so as to generate phone
alignment labels, followed by building a DNN AM of the
target language with the OOD phone labels and acoustic data
of the target language [17].

The two research lines mentioned above can be combined
to achieve a better performance to the USM task. In our recent
studies [4], [18], a two-stage bottleneck feature (BNF) learning
framework was proposed and achieved state of the art. The first
stage adopts an SSL model named autoregressive predictive
coding (APC) [15]. The APC model creates features that have
the potential to separate phonetic and speaker information in
speech. The created features are used as input features to
the second stage of the framework, i.e., a cross-lingual DNN
AM. The cross-lingual DNN AM uses OOD phone labels
provided by a non-target language’s ASR system as targets
during training, and extracts a BNF representation for the in-
domain speech as the learned representation for USM.

Despite the success of APC as the first stage [4], [18], a
research question that is still open is whether the choice of
APC, from the various SSL algorithms, is optimal for the
front-end of our two-stage USM approach. Previous studies on
USM and relevant zero-resource speech processing tasks [19],
[20] demonstrated the efficacy of contrastive predictive coding
(CPC) [14], another SSL algorithm, and reported superiority
of CPC over APC. The comparison between CPC and APC
as the front-end SSL model in our two-stage approach was
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Fig. 1. General framework of the proposed two-stage approach. The two
colors in the training phase represent the data used to train each model.

however not investigated before. In this paper, we aim to
answer the question whether CPC also outperforms APC in
our model, and moreover, we explore as our second research
question whether the efficacy of CPC is dependent on the
language identity of the OOD ASR system used in the our
approach’s back-end. Thirdly, we investigate whether any
performance differences between CPC and APC are dependent
on the amount of available training data. This will provide
us insights into the two SSL algorithms’ differences in the
sensitivity to the amounts of training data (see also [4]),
which is a particularly important property in low- and zero-
resource speech modeling. We follow the training data amount
settings of [4] which ranges between 13 and 526 hours. In
short, this paper compares the APC and CPC models across
two dimensions: the choice of OOD languages in the back-
end model, and the amount of training material. The code is
available1.

II. PROPOSED APPROACH

The general framework of our proposed two-stage approach
is illustrated in Figure 1. In the first stage, the front-end of
our approach pipeline, an APC model or a CPC model creates
APC or CPC features. In the second stage, the back-end, a
DNN AM extracts the subword-discriminative BNFs.

A. Front-end self-supervised learning (SSL) model

1) Autoregressive predictive coding (APC): An APC model
is trained to predict a future speech frame based on current and
past speech frames in an utterance. It has an encoder (denoted
as Enc(·)) which is usually realized as a multi-layer long
short-term memory (LSTM) network [15]. Assume a sequence
of T unlabeled speech frames for training are denoted as
{x1,x2, . . . ,xT }. At time t, Enc(·) outputs a feature vector
x̂t (same dimension as xt) based on x1:t = {x1, . . . ,xt},
i.e. x̂t = Enc(x1:t). x̂t should be as close as possible to
xt+n, where n is a pre-defined constant integer, denoted as
the prediction step. The training objective function of an APC
model is defined as: LossAPC =

∑T−n
t=1 |x̂t − xt+n|.

After APC training, the output of the top LSTM layer
is extracted as the learned acoustic representation, and is
henceforth referred to as the APC feature.

1https://github.com/syfengcuhk/libri-light/tree/master/kaldi related/crs
ling labeling/cpc feats.

2) Contrastive predictive coding (CPC): A CPC model is
trained to distinguish a near future speech frame from frames
of other utterances or more distant future frames of the input
utterance. A typical CPC model consists of a convolutional
neural network (CNN) based encoder genc and a recurrent
neural network (RNN) based sequence model gseq [14]. The
encoder maps speech frames {x1,x2, . . . ,xT } into a latent
representation {z1, z2, . . . ,zT } by zt = genc(xt). Next, the
sequence model converts the encoder output to a context
latent representation ct by ct = gseq({z1, z2, . . . ,zt}). Given
ct, CPC distinguishes K positive samples {zt+1:t+K} from
a random set of negative samples (latent representations of
other utterances’ frames or more distant frames of the input
utterance), denoted as Nt. The training objective function of
a CPC model is

LossCPC = − 1

K

T∑
t=1

K∑
k=1

log
exp(zᵀ

t+kgp(k, ct))∑
n∈Nt

exp(zᵀ
ngp(k, ct))

, (1)

where gp(k, ·) can be a Transformer [11] (adopted in this
study) or a linear classifier [14].

After CPC training, the context latent representation ct
is extracted as the learned representation, and is henceforth
referred to as the CPC features.

B. Back-end cross-lingual DNN AM

The back-end DNN AM contains a low-dimension hidden
layer (see Figure 1) which is named the bottleneck layer.
The DNN AM is trained to predict OOD phone labels given
APC or CPC feature representation of the target untranscribed
speech. The OOD phone labels are generated by using an
OOD, non-target language’s ASR system to decode target
speech into lattices, and find the best path for every utterance.
Afterwards, each speech frame is assigned with a phone label.
After training the DNN AM, subword-discriminative BNF
representation for target unlabeled speech data is extracted
from the output of the bottleneck layer.

III. EXPERIMENTAL SETUP

A. Databases and evaluation metric

English is chosen as the target language while Dutch and
Mandarin are chosen as the two OOD languages. The English
unlabeled training data for training the front-end APC and
CPC models and the back-end DNN AM are taken from
Libri-light [21], specifically, the unlab-600 set from Libri-
light. Unlab-600 consists of 526 hours of speech recordings.
Additionally, we follow [4] in randomly selecting subsets from
unlab-600 with varying sizes to investigate the performances
of our approach using APC or CPC front-end with regard to
different amounts of training material. These subsets consist
of 13 to 209 hours. Details of the training (sub)sets are listed
in Table I.

The Dutch and Mandarin data used to build the two OOD
ASR systems are the Dutch Spoken Corpus (CGN) [22] and
Aidatatang 200zh [23] respectively. The CGN training and test
data partition follows [24]. Its training data contains 483 hours



TABLE I
LIBRI-LIGHT TRAINING DATA AND ITS SUBSETS.

unlab-600 subsets of unlab-600

#utterances 36, 229 14, 400 7, 200 3, 600 900
#speakers 489 438 393 351 244
Hours 526 209 104 52 13

of a wide range of speaking styles including conversational
and read speech and broadcast news. Aidatatang 200zh is a
read speech corpus. Its training data consists of 140 hours of
speech.

Our approach is evaluated on two widely adopted databases,
namely the Libri-light and ZeroSpeech 2017 [8] datasets.
The Libri-light evaluation sets consist of dev-clean, dev-other,
test-clean and test-other, with *-clean having higher quality
and more standard US accents than *-other. The ZeroSpeech
evaluation sets of English are organized into three parts that
differ in per-utterance lengths (1s, 10s and 120s).

The created subword-discriminative BNF representation is
evaluated using the ABX subword discriminability metric [3].
In the ABX task, A, B and X are three speech segments, and
x and y are two different phonemes. A ∈ x, B ∈ y, X ∈ x or
y. Following [8] (see also for more details), an error occurs if
given a pre-defined distance measure d, d(A,X) > d(B,X),
given X ∈ x, or d(A,X) < d(B,X), given X ∈ y. Dynamic
time warping is chosen as the distance measure d. Segments
A and B belong to the same speaker. ABX error rates for
within-speaker and across-speaker are evaluated separately,
depending on whether X and A/B belong to the same speaker.

B. Front-end SSL model implementation

1) APC: We follow the setup in [4], [18] for training the
APC model. The APC encoder is a 5-layer 100-dimension
LSTM network with residual connections between two con-
secutive layers. It takes 13-dimension MFCC features with
cepstral mean normalization (CMN) as input. For each training
data amount setting, the prediction step n is picked from
{1, 2, 3, 4, 5} which gives the best ABX performance. The
model is trained by an open-source tool [15] for 100 epochs
with the Adam optimizer [25], an initial learning rate of 10−4

and a batch size of 32. After training, the output of the top
LSTM layer is extracted as the APC features.

2) CPC: We mainly follow the setup in [11] in training the
CPC model. The CPC encoder is a 5-layer CNN with kernel
sizes: 10, 8, 4, 4, 4, and stride sizes: 5, 4, 2, 2, 2. The CPC
sequence model is a 2-layer 256-dimension LSTM network.
The model is trained by an open-source tool [11] for 200
epochs with Adam, using numbers of positive and negative
samples being 12 and 128 respectively, an initial learning rate
of 5×10−5 and a batch size of 32. After training, the context
latent representation ct of the top LSTM layer is extracted as
the CPC features.

C. Back-end DNN AM implementation

1) OOD ASR systems: Two OOD ASR systems, one for
Dutch and the other for Mandarin, are trained beforehand in

order to generate OOD phone labels for in-domain (English)
untranscribed speech. Both OOD ASR systems use a 7-layer
time-delay neural network (TDNN) architecture, implemented
by Kaldi [26], and trained with a lattice-free maximum mutual
information (LF-MMI) criterion [27]. For the Dutch ASR, the
input features consist of 40-dimension MFCC, while for the
Mandarin ASR, the input features consist of 40-dimension
MFCC plus 3-dimension pitch features. Forced alignment used
to train the TDNN AM is obtained by a GMM-HMM AM
trained using the same training data. A tri-gram language
model (LM) trained on training data transcripts is used for
both the Dutch and the Mandarin ASR system.

The Dutch ASR system obtained a word error rate (WER)
of 8.98% on the CGN broadcast test set. The Mandarin ASR
system obtained a character error rate (CER) of 6.37% on the
Aidatatang 200zh test set.

2) Cross-lingual DNN AM: Finally, four cross-lingual DNN
AMs are trained, two taking the Dutch phone labels as training
labels and two taking the Mandarin phone labels as training
labels. Within DNN AMs that use the same OOD cross-lingual
phone labels, one uses APC features as the input and the other
uses CPC features as the input.

All the four DNN AMs use the same architecture and train-
ing criterion: 7 feed-forward layers (FFLs) of 450 dimensions
except a 40-dimension bottleneck layer located below the top
layer and the LF-MMI criterion. The input APC or CPC
features are appended with their respective neighboring frames
(-3 to +3) to capture temporal information. After training the
cross-lingual DNN AMs, 40-dimension BNF representations
are extracted and evaluated by the ABX task. Depending
on the choices of DNN AM input features and OOD phone
labels, the four BNF representations are denoted as A-BNF-Du
(APC input, Dutch labels), A-BNF-Ma (APC input, Mandarin
labels), C-BNF-Du (CPC input, Dutch labels) and C-BNF-Ma
(CPC input, Mandarin labels).

IV. RESULTS AND DISCUSSION

A. The effectiveness of the APC and CPC front-ends

In this subsection, all models trained on the Libri-light
training data used the full unlab-600 set (526 hours). ABX
error rates (%) of the A-BNF-Du/-Ma and C-BNF-Du/-Ma
evaluated on Libri-light are listed in Table II. The results of
A-BNF-Du/-Ma are taken from our previous study [4]. Two
reference systems (named M-BNF-Du and M-BNF-Ma) that
did not use an SSL front-end but did use the same cross-lingual
DNN back-end [18], and one reference system that beat the
previous SotA [28] are also listed in Table II. The table shows
that:

(1) Both SSL algorithms are effective on the subword
ABX task as both systems that use SSL outperform the
reference systems without the SSL front-end for both Dutch
and Mandarin and for both the across-speaker and within-
speaker ABX error rates. At the same time, CPC is more
effective than APC for both languages and for both the across-
speaker and within-speaker error rates.



TABLE II
ABX ERROR RATES OF BNF REPRESENTATIONS BY ADOPTING AN APC

[4] OR CPC FRONT-END, TWO REFERENCE SYSTEMS WITHOUT ADOPTING
A FRONT-END [18] AND A PREVIOUS BEST REFERENCE SYSTEM [28] ON

LIBRI-LIGHT. MODELS ARE TRAINED WITH UNLAB-600.

System dev-clean dev-other test-clean test-other Avg.
Across-speaker ABX error rate

A-BNF-Du [4] 6.18 11.02 6.03 10.94 8.54
C-BNF-Du 5.49 9.53 5.26 9.72 7.50
M-BNF-Du [18] 6.67 11.65 6.64 12.00 9.24

A-BNF-Ma [4] 7.00 11.80 6.84 11.81 9.36
C-BNF-Ma 6.64 10.86 6.39 10.95 8.71
M-BNF-Ma [18] 7.92 12.71 7.74 13.23 10.40

MR [28] 5.89 10.60 5.78 11.00 8.32

Within-speaker ABX error rate

A-BNF-Du [4] 4.77 6.69 4.49 6.43 5.60
C-BNF-Du 4.37 5.92 4.04 5.92 5.06
M-BNF-Du [18] 4.97 6.94 4.73 6.86 5.88

A-BNF-Ma [4] 5.25 7.14 5.21 7.09 6.17
C-BNF-Ma 5.16 6.87 4.93 6.71 5.92
M-BNF-Ma [18] 6.06 7.71 5.62 7.82 6.80

MR [28] 4.67 6.66 4.49 6.81 5.66

TABLE III
ABX ERROR RATES OF BNF REPRESENTATIONS BY ADOPTING AN APC

[4] OR CPC FRONT-END, AND A REFERENCE SYSTEM [16] ON THE
ZEROSPEECH 2017 ENGLISH EVALUATION SETS. MODELS ARE TRAINED

WITH UNLAB-600 IN LIBRI-LIGHT.

Across-speaker Within-speaker
1s 10s 120s Avg. 1s 10s 120s Avg.

A-BNF-Du [4] 7.65 6.69 6.66 7.00 5.52 4.77 4.68 4.99
C-BNF-Du 6.38 6.16 6.14 6.23 4.58 4.40 4.41 4.46

A-BNF-Ma [4] 8.19 7.33 7.30 7.61 5.97 5.39 5.37 5.58
C-BNF-Ma 7.37 7.20 7.21 7.26 5.37 5.24 5.24 5.28

SH [16] 7.9 7.4 6.9 7.40 5.5 5.2 4.9 5.20

(2) The advantage of CPC over APC as a front-end model
is greater when Dutch labels are used compared to when Man-
darin labels are used. The absolute ABX error rate reductions
from A-BNF-Du to C-BNF-Du are 1.04% (across-speaker)
and 0.54% (within-speaker) respectively, both larger than the
absolute error rate reductions from A-BNF-Ma to C-BNF-
Ma which are 0.65% and 0.25%. On the other hand, look-
ing at the performance difference of the proposed approach
with and without adopting a CPC front-end, the ABX error
rate difference of C-BNF-Du vs. M-BNF-Du (1.74% across-
speaker and 0.82% within-speaker) is highly similar to the
difference of C-BNF-Ma vs. M-BNF-Ma (1.69% and 0.88%).
This indicates that the effectiveness of the CPC front-end to
the proposed two-stage approach is insensitive to the choice
of OOD language identity in back-end model training. This
is different from when an APC front-end is applied (where
a larger improvement was found when using Mandarin labels
than when using Dutch labels).

(3) The best performance was obtained with the CPC
frontend and the Dutch OOD labels (C-BNF-Du). Moreover,
this best performance (C-BNF-Du) outperforms the previous
state of the art (shown as MR in Table II) by Rivière and
Dupoux [28]. Notably, the system MR is purely trained with
Libri-light unlab-600 data, without using OOD data.

The ABX error rates (%) of the A-BNF-Du/-Ma and C-

Fig. 2. ABX error rates of the BNF representations when adopting the APC
or CPC front-end with respect to the amount of training material on Libri-light
(averaged over the 4 test sets). The results of A-BNF-Du and A-BNF-Ma are
taken from our previous work [4].

Fig. 3. ABX error rates of the BNF representations when adopting the APC
or CPC front-end with respect to the amount of Libri-light training material
on ZeroSpeech 2017 (averaged over the 1s, 10s and 120s test sets). The results
of A-BNF-Du and A-BNF-Ma with 104, 209 and 526 hours of training data
are taken from our previous work [4].

BNF-Du/-Ma evaluated on the ZeroSpeech 2017 corpus are
listed in Table III. The results of A-BNF-Du/-Ma are taken
from our previous study [4]. The best-performing system
in the ZeroSpeech Challenge which exploited OOD cross-
lingual resources [16] is also listed as a reference (SH). Note
that unlike our approach, SH [16] used the target language’s
(English) transcribed data during model training. The total
amount of labeled data used in the SH system is over 1,000
hours. Similar to what was observed in Table II, Table III
shows that adopting a CPC front-end outperforms the APC
front-end which is consistent over all the evaluation sets and
conditions. The advantage of adopting a CPC front-end over
an APC front-end is consistent irrespective of the Dutch or
Mandarin OOD phone labels used at the back-end. Moreover,
our best performing system (C-BNF-Du) outperforms the
current state-of-the-art. This further confirms the effectiveness
of CPC in learning front-end features for the USM task.

B. Effect of the amount of training data

The proposed approach’s performances with regard to the
amount of Libri-light training material is evaluated on Libri-
light and ZeroSpeech 2017. The ABX error rate results of the
BNF representations by adopting the APC or CPC front-end on
Libri-light are illustrated in Figure 2. The results are averaged
over the 4 evaluation sets in Libri-light. Please note that the
results related to A-BNF-Du and A-BNF-Ma in Figure 2 are
taken from our previous study [4]. All panels in Figure 2 show
that the performances of all the systems improve when more



training data becomes available. Comparing the two front-
end SSL algorithms shows that CPC (∗) is consistently more
effective than APC (�). When training data is more than 52
hours, the performance difference between A-BNF-Du and C-
BNF-Du seems to be insensitive to the amount of training
material. A similar finding is observed for Mandarin when
comparing A-BNF-Ma with C-BNF-Ma. However, for both
languages, when the training data amount is very limited (13
hours), the performance gap between C-BNF-Du and A-BNF-
Du is larger. This indicates that the advantage of CPC over
APC is more prominent in a very low-resource setting.

The ABX error rate results of A-BNF-Du/-Ma and C-BNF-
Du/-Ma on ZeroSpeech 2017 English sets are illustrated in
Figure 3. The results are averaged values over the 3 English
evaluation sets in ZeroSpeech. Part of the results of A-BNF-Du
and A-BNF-Ma in Figure 3 (training data: 104 ∼ 526 hours)
are taken from our previous paper [4]. Figure 3 shows with
104 hours or more training material available, our approach
with the CPC front-end consistently outperforms that with the
APC front-end. While when limited training data (13 ∼ 52
hours) is available, CPC is close to, or worse than APC as the
front-end of our approach - opposite to what we observed for
Libri-light. Upon looking at the ABX difference per evaluation
set (not reported due to page limit), we found APC to be better
on the sets with long utterances (10s and 120s) mostly, and
CPC always better on the set with short utterances (1s). This
is believed to be caused by the use of CMN in APC but not
in CPC: a system could greatly benefit from the CMN based
speaker normalization if test utterances are very long.

V. CONCLUSION

This study compares two representative SSL algorithms
(APC and CPC) as a front-end method in a recently proposed
two-stage unsupervised subword modeling (USM) approach.
The experiments on the Libri-light and the ZeroSpeech 2017
databases show that both APC and CPC are effective, with
CPC consistently outperforming APC irrespective of the OOD
language chosen for back-end model training and the amount
of training material. The advantage of CPC is more prominent
when the training data amount is very limited for Libri-light.
Results on the ZeroSpeech evaluation sets show that with very
limited training data, CPC could be worse than APC on very
long test utterances (over 10s), which is likely caused by the
CMN speaker normalization used in APC but not CPC. The
superiority of CPC over APC is however language-dependent:
it was greater when Dutch was used as the OOD language
than when Mandarin is chosen.
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