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Summary

The importance of inverse problems is paramount in science and physics because
their solution provides information about parameters that cannot be directly ob
served. This thesis discusses and details the application of a few inverse methods
in optical imaging, metrology and inspection of lithographic targets, particularly
patterned structures on top of an extreme ultraviolet (EUV) lithographic mask.

Chapter 1 is an introductory chapter. The defining aspects and characteristics
of inverse problems are presented, explained and illustrated with examples. The
concept of ill–posedness is discussed and its cure, regularization theory, is described
and introduced. Particular emphasis is placed on the importance of the inclusion of
a–priori information in inverse problem solving. The distinction among variational
and statistical methods is outlined and relevant references are highlighted. We
conclude this chapter by discussing a few optimization methods required for the
minimization of a given loss functional.

Chapter 2 focuses on scatterometry, the industrial workhorse for fast, non–
destructive metrology of periodic structures realized in the lithographic process. We
discuss the three fundamental building blocks of scatterometry: data acquisition,
modeling of light matter interaction and methods to solve the underlying inverse
problem. We subsequently focus on the problem of dimensionality reduction as a
cure for the curse of dimensionality. After describing a few fundamental methods
for model reduction we introduce a novel algorithm for automatic feature selection.
We discuss the application of this method to periodic and isolated scatterers and
we compare its outcome to the one given by sensitivity analysis methods.

Chapter 3 is dedicated to the introduction of the problem of extreme ultraviolet
(EUV) mask imaging and inspection. We discuss a few existing solutions for the
imaging of EUVmasks and we subsequently focus on a particular approach: imaging
via iterative phase retrieval algorithms. We present and discuss the physical origin
of the phase problem and we detail its mathematical formulation. We focus on the
algorithms and discuss single intensity phase retrieval methods and ptychography, a
phase retrieval method where one processes multiple diffraction patterns acquired
by means of partially overlapping successive illuminations of a scattering object by
a certain illumination function, which is typically a focused light field or probe.. We
apply these methods to the reconstruction of EUV mask layouts and we reason that
a possible improvement may be obtained by including a priori information in the
phase retrieval optimization algorithm.

Chapter 4 focuses on developing methods to improve the ptychographic in
spection of EUV masks by including prior information in the optimization algorithm.
We discuss how the nominal layout of the EUV mask can be used as an input to
a rigorous forward Maxwell solver to obtain a precise estimation of the exit wave
for the nominal mask and how this can be subsequently employed as a prior dur

ix



x Summary

ing the reconstruction of the defective masks. We demonstrate the feasibility of
this method and we show that the inclusion of this physically sound prior results
in the reconstruction of finer and subwavelength extrusion and intrusion absorber
defects in EUV mask layouts. Different update rules, obtained by employing vari
ational and statistical methods, are given and discussed. We further analyze and
compare the introduced “hand–crafted” prior with popular sparsity priors (total vari
ation and Lasso). We end the chapter by noting that further improvements in the
reconstruction may be obtained by developing more sophisticated approaches to
the ptychographic imaging of mask layouts. One of these is polarization sensitive
imaging.

Chapter 5 discusses an approach for polarization sensitive imaging of semi
conductor structures. We show how to mathematically describe the light matter
interaction for the considered structures and how the recorded intensity is directly
related, in this particular case, to the Jones matrix of the scatterer. We present
results obtained with this approach for a cluster of nanostructures whose critical
dimensions are of the order of the wavelength and discuss our findings.

Chapter 6 presents ideas for future work. We introduce a method that can
potentially yield subwavelength reconstruction of targets: total internal reflection
phase retrieval and ptychography. After a brief discussion on the physics of this
method we highlight potential research directions.

Finally, we offer a closing and brief summary of the findings of this thesis in (7).
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2 1. Introduction

In the words of the mathematician J.B. Keller [1] “two problems are inverses of
one another if the formulation of each involves all or part of the solution of the
other. Often, for historical reasons, one of the two problems has been studied
extensively for some time, while the other has never been studied and is not so
well understood. In such cases, the former is called the direct problem, while the
latter is the inverse problem”. For a physicist the distinction among direct and
inverse problem can be thought of in terms of causality. In the direct problem
(often also referred to as the forward problem) we follow the cause–effect chain
meaning that we try to establish or to compute the consequences of some known
causes, while in the inverse problem we “walk backwards” and we try to retrieve
unknown causes from known consequences. Solving the inverse problem is usually
more challenging than solving the forward one. For instance in electromagnetics
we can avail ourselves of a theorem known as the uniqueness theorem. Loosely
stated it says that if we have a source of light in a certain medium, and we know the
boundary conditions that are to be satisfied by the resulting field, then we can safely
compute the field distribution that is the unique solution – the physical solution –
of the boundary value problem. Unfortunately this theorem does not hold when
read backwards: given a certain measured field distribution and the knowledge of
the boundary conditions we cannot uniquely determine the distribution of the light
source which has generated the observed field.
Generally stated, inverse problems are challenging because they are ill–posed. A
mathematical problem is said to be ill–posed when it is not well–posed. According
to Hadamard [2], given two Banach spaces ℬ1 and ℬ2 and two vectors 𝑥 ∈ ℬ1 and
𝑦 ∈ ℬ2, an operator equation

𝐹(𝑥) = 𝑦 (1.1)

with 𝐹 ∶ ℬ1 → ℬ2, is well–posed when the following criteria are simultaneously
fulfilled:

• for any 𝑦 ∈ ℬ2, a solution 𝑥 ∈ ℬ1 exists that satisfies:

• the solution 𝑥 is unique; and

• the solution is stable with respect to perturbations in 𝑦: if 𝐹𝑥∗ = 𝑦∗ and
𝐹𝑥 = 𝑦, then 𝑥 → 𝑥∗ when 𝑦 → 𝑦∗.

1.1. Examples
We consider two examples that can illustrate the difficulties that arise when treating
inverse problems and how they are related to the Hadamard conditions presented
above.

1.1.1. Example 1: inverse scattering
We consider the interaction of a known incident monochromatic light field with a
certain object [3]. We suppose that the scattering object is embedded within a
certain background material. We assume, without loss of generality, that both the
background material and the scatterer are isotropic. We introduce the Cartesian
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position vector r = [𝑥 𝑦 𝑧]𝑇 and the relative electric permittivities of the back
ground and of the scattering media, 𝜖𝑏 = 𝑛2𝑏 and 𝜖𝑠(r) = 𝑛2𝑠 , respectively. If we
call Ω the region of space that is occupied by the scatterer we define:

𝜖(r) = {𝜖𝑏 , for r ∉ Ω
𝜖𝑠(𝐫), for r ∈ Ω. (1.2)

Further, we introduce

𝑘𝑏 =
2𝜋𝑛𝑏
𝜆 ,

𝑛(r) = 𝑛𝑏 + 𝑛𝑠(r),

𝑘(r) = 𝑘𝑏
𝑛(r)
𝑛𝑏

= 𝑘𝑏 (1 +
𝑛𝑠(r)
𝑛𝑏

) ,

(1.3)

where 𝑘𝑏 is the wavenumber in the background material, 𝜆 is the wavelength in
vacuum and 𝑘(r) is the wave number that depends of the locally varying index of
refraction 𝑛(r). Assuming the electric field to be time harmonic, and assuming that
𝑛𝑠(r) = 0, the scalar total field 𝑈(r) is a solution of the homogeneous Helmholtz
equation:

(∇2 + 𝑘2𝑏)𝑈(r) = 0. (1.4)

When 𝑛𝑠(r) ≠ 0 Eq. (1.4) can be rewritten as the inhomogeneous Helmholtz equa
tion. We start by defining 𝐷(𝐫) as the support of the scatterer:

𝐷(r) = {0, for r ∉ Ω
1, for r ∈ Ω. (1.5)

Given a generic position vector r and by noting that 𝐷(r) is a binary function (i.e.
(1 − 𝐷)𝑛 = 1 − 𝐷) we can rewrite the wavevector, and its square, as:

𝑘(r) = 𝑘𝑏(1 − 𝐷(r)) + 𝑘𝑠(r)𝐷(r),
𝑘2(r) = 𝑘2𝑏(1 − 𝐷(r)) + 𝑘2𝑠 (r)𝐷(r).

(1.6)

Given Eq. (1.6) the Helmholtz equation can be rewritten

(∇2 + 𝑘2(r))𝑈(r) = 0,

(∇2 + 𝑘2𝑏)𝑈(r) = 𝑘2𝑏 (1 −
𝑘2𝑠 (r)
𝑘2𝑏

)𝐷(r)𝑈(r),

(∇2 + 𝑘2𝑏)𝑈(r) = 𝜒(r)𝑈(r),

with 𝜒(r) = 𝑘2𝑏 [1 − (
𝑛(r)
𝑛𝑏

)
2
] 𝐷(r).

(1.7)

where 𝜒(r) is the contrast function given by the scatterer.
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Eq. (1.7) states that the scatterer acts as a source for the electromagnetic field.
Owing to the linearity of Maxwell’s equations the field originated by a certain ob
ject can be thought of as the superposition of the fields originated by elementary
impulses. We introduce the Green function, 𝐺(r, r′), as the solution of

(∇2 + 𝑘2𝑏)𝐺(r, r′) = 𝛿(r− r′), (1.8)

where 𝛿(r) is the Dirac delta function defined to have the property that

∫𝛿(r− r′)𝑓(r′)𝑑3𝑟′ = 𝑓(r). (1.9)

In free space it holds that

𝐺(r, r′) = 𝑒𝑖𝑘𝑏|r−r′|
4𝜋|r− r′| . (1.10)

We now define the incident field, 𝑈𝑖𝑛(r), as the field that is present when there is
no scatterer. By this definition 𝑈𝑖𝑛(r) satisfies the homogeneous Helmholtz equa
tion (1.4). The total field is then given by the summation of the incident and the
scattered fields:

𝑈(r) = 𝑈𝑖𝑛(r) + 𝑈𝑠(r). (1.11)

We can now derive from Eqs. (1.4) – (1.11) the expressions for both the scattered
and the total fields due to sources in Ω as observed at a certain position r:

𝑈𝑠(r) = ∫
Ω
𝐺(r− r′)𝜒(r′)𝑈(r′)𝑑3𝑟′,

𝑈(r) = 𝑈𝑖𝑛(r) + ∫
Ω
𝐺(r− r′)𝜒(r′)𝑈(r′)𝑑3𝑟′.

(1.12)

Equation (1.12) is an implicit equation for the scattered field and it has no generic
analytical solution. The field generated by scatterers of a given geometry is usually
computed numerically using dedicated solvers.
In the inverse scattering problem we usually measure the intensity or the power of
the scattered field Eq. (1.12) in the far zone and we apply an inversion method to
retrieve from it the optical contrast 𝜒(r). The algorithms that attempt to solve this
problem often assume that the Born approximation is valid. The Born approximation
is the first iteration of the Born series which is obtained by iteratively replacing the
field 𝑈(r) in the Lippmann–Schwinger equation – Eq. (1.12) – with its successive
evaluations. Letting 𝑛 = 1, 2, 3, ..., ∞, the Born series evaluates the field at the 𝑛𝑡ℎ
iteration as:

𝑈𝑛(r) = 𝑈𝑖𝑛(r) + ∫
Ω
𝐺(r− r′)𝜒(r′)𝑈𝑛−1(r′)𝑑3𝑟′. (1.13)

At the first iteration the total field 𝑈(r) in the integral in Eq. (1.12) is replaced by
the incident field 𝑈𝑖𝑛(r) and

𝑈𝐵(r) = 𝑈𝑖𝑛(r) + 𝑈𝐵,𝑠(r),

𝑈𝐵,𝑠(r) = ∫
Ω
𝐺(r− r′)𝜒(r′)𝑈𝑖𝑛(r′)𝑑3𝑟′,

(1.14)
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where 𝑈𝐵(r) and 𝑈𝐵,𝑠(r) are the total field and the scattered field evaluated in the
first Born approximation respectively. This approximation is valid only for weak
scattering potentials or, equivalently, for small scattering cross–sections.
If we now assume that the wavelength of the incident field is much bigger than
the characteristic length of the scatterer, 𝜆 >> 𝑑, then we can assume that 𝑈𝑖𝑛
is approximately constant all over the scatterer, assuming a value approximately
equal to 𝑈0. It follows that the scattered field in Eq. (1.14) depends mainly on
the product of the optical contrast and the volume occupied by the sources. This,
intuitively speaking, means that the scattered field given by a certain scattering
object of optical contrast 𝜒(r) extending over a volume Ω could be quite close to
the one given by an object of smaller optical contrast but bigger volume. This
in principle makes the retrieval of the scattering contrast extremely challenging
as multiple combinations of volume and scattering potential exist that adequately
fit the far–field dataset. The problem is then ill–posed as it violates at least one
of the conditions for well–posedness in (1.1) in that the solution of the problem
should be unique. Authors in [4] solved for this ambiguity by including apriori
information about the optical contrast to be retrieved. They demonstrated that
lifting this ambiguity has immediate effect on the reconstruction quality and that
this affects the resolution of the optical instrument.

1.1.2. Example 2: linear inverse problems
We consider an equation of the form

𝐹x = y𝛿 , (1.15)

where we are interested in retrieving x from noisy measurements y𝛿. We assume,
for simplicity’s sake, that 𝐹 ∈ ℝ𝑚𝑥𝑚 is a real matrix with strictly positive decreasing
singular values and that it is invertible. We denote by y𝛿 ∈ ℝ𝑚 the data, contam
inated with additive noise. We further denote by y the unknown error–free data
vector:

y𝛿 = y+ 𝜹, (1.16)

where 𝜹 is the error vector. The error–free linear system of equation then reads:

𝐹x𝑡𝑟 = y, (1.17)

where x𝑡𝑟 ∈ ℝ𝑚 is the input vector associated with the error–free output y. The
solution of Eq. (1.15)

x = 𝐹−1y𝛿 = 𝐹−1(y+ 𝜹) = x𝑡𝑟 + 𝐹−1𝜹, (1.18)

is usually dominated by the back–propagated error, 𝐹−1𝜹, and therefore does not
carry any physical meaning. This behaviour can be understood in terms of the
singular value decomposition (SVD) of 𝐹. If 𝐹 = 𝑈 diag(𝜎𝑖) 𝑉𝑇 then

𝐹−1y𝛿 = 𝑉 diag(𝜎−1𝑖 ) 𝑈𝑇y𝛿 = x𝑡𝑟 +
𝑚

∑
𝑖=1
𝜎−1𝑖 (u𝑇𝑖 𝜹)v𝑖 , (1.19)
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Where u𝑖 and v𝑖 are the column vectors of 𝑈 and 𝑉 respectively. The presence of
small singular values causes amplification of the noise and due to the high condition
number – i.e. high ratio among the biggest and the smallest singular value of the
matrix – of 𝐹 the reconstruction is unstable with respect to perturbations in the
data (noise). A matrix with high condition number is said to be ill–conditioned. In
order to overcome this instability we need to filter out small singular values from
the matrix 𝐹. However it shall be noted that this filtering corresponds to a low pass
filtering operation because the small singular values are associated with the high
frequency information of the sought signal. This is important to realize especially in
optical sciences when we attempt to retrieve an unknown quantity form measured
data. Propagation of light from the object to the detector implies a loss of informa
tion, and the inverse problem also requires to sacrifice a part of the information in
favour of the possibility to, at the very least, retrieve something intelligible.

The two examples in Sections 1.1.1 and 1.1.2 should have clarified two instances
in which the Hadamard conditions for well–posedness are not satisfied. We have
noticed how ill–posed solutions can arise and how this can somehow happen due
to a lack of information about the object we seek to retrieve. It appears natural
to compensate for this information deficit by introducing in the problem further a–
priori information. This is the task tackled by regularization methods. In the next
sections we introduce tools necessary to understand and tackle inverse problems.
The main references related to the next sections are [5–8].

1.2. Elements of regularization theory.
We briefly discuss various ways to regularize a solution.

Regularization by filtering. We start by recalling Eq. (1.19). We noticed that
fluctuations in the data causes instability in the reconstruction due to the presence
of small singular values in the forward operator 𝐹. A way to overcome this instability
is to alter the expression in (1.19) by introducing a regularization filter 𝑤𝛼(𝜎2𝑖 ),
depending on the regularization parameter 𝛼, for which 𝑤𝛼(𝜎2)𝜎−1 → 0 as 𝜎 → 0.
Thus we obtain an approximation of x𝑡𝑟:

x𝛼 = 𝑉 diag(𝑤𝛼(𝜎2𝑖 )𝜎−1𝑖 ) 𝑈𝑇y𝛿

=
𝑚

∑
𝑖=1
𝑤𝛼(𝜎2𝑖 )𝜎−1𝑖 (u𝑇𝑖 y𝛿)v𝑖 .

(1.20)

A possible choice for 𝑤𝛼(𝜎2) is a cut–off filter (so called truncated SVD):

𝑤𝛼(𝜎2) = {
1 if 𝜎2 > 𝛼,
0 if 𝜎2 ≤ 𝛼. (1.21)

Another example is given by the Tikhonov filter:

𝑤𝛼(𝜎2) =
𝜎2

𝜎2 + 𝛼 , (1.22)
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with corresponding solution:

x𝛼 =
𝑚

∑
𝑖=1

𝜎𝑖(u𝑇𝑖 y𝛿)
𝜎2𝑖 + 𝛼

= (𝐹𝑇𝐹 + 𝛼𝐼)−1𝐹𝑇y𝛿 ,

(1.23)

where 𝛼 in Eqs. (1.20)–(1.23) is called regularization parameter. It should be
clear at this point that the value chosen for 𝛼 when solving the inverse problem is
extremely important. A value that is too low leads to an over–oscillatory behaviour
of the solution with respect to fluctuations in the data due to the noise, while
assigning an exaggerated value to 𝛼 alters the operator 𝐹−1 to the point where the
retrieved reconstruction is too far away from the correct one. The solution is then
said to be biased. If we denote the error in the solution space as

e𝛼 = x𝛼 − x𝑡𝑟𝑢𝑒
= e𝑏𝑖𝑎𝑠𝛼 + e𝛿𝛼 ,

(1.24)

then we can see that the error is comprised by two parts. The error introduced by
the truncation of the small singular values of the operator 𝐹−1 is named e𝑏𝑖𝑎𝑠𝛼 while
the error caused by the amplification of the noise during the back–propagation
is called e𝛿𝛼. The value of the regularization parameter 𝛼 must be tuned so to
guarantee that the retrieved solution is stable with respect to the noise and that
the solution is not excessively smooth (i.e. the back–propagator 𝐹−1 has not been
excessively altered by the truncation of its singular values). The machine learning
community refers to this aspect of the data fitting as the bias–variance tradeoff.
Without going into details we just point out that a multitude of methods are available
to properly select the regularization parameter 𝛼. For a more detailed analysis of
the error and a discussion about the regularization parameter selection methods
please refer to [5, 7].

Variational regularization methods. We can introduce these methods by not
ing that Eq. (1.23) is equivalent to the following problem:

minimize ||𝐹x− y𝛿||2 + 𝛼||x||2. (1.25)

where || ⋅ || denotes the 𝓁2 norm. We start by rewriting Eq. (1.25)

minimize || ( 𝐹√𝛼𝐼)x− (
y𝛿
0 ) ||

2

= || (𝐹x− y𝛿

√𝛼x ) ||
2

. (1.26)

The solution by the normal equations is:

(𝐹𝑇 √𝛼𝐼) ( 𝐹√𝛼𝐼)x𝛼 = (𝐹
𝑇 √𝛼𝐼) (y

𝛿

0 ) , (1.27)
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and therefore
x𝛼 = (𝐹𝑇𝐹 + 𝛼𝐼)−1𝐹𝑇y𝛿 . (1.28)

The advantage is that the problem in Eq. (1.25) does not require the computation
of an SVD and this can be advantageous for problems that involve the retrieval
of many parameters. Generally speaking the variational formulation of regularized
inverse problems seeks to minimize a data loss functional, ℒ(x,y𝛿), penalized by a
regularizer 𝑅𝛼(x)

x𝛼 = argmin
x

{ℒ(x,y𝛿) + 𝑅𝛼(x)}, (1.29)

where the loss functional ℒ(x,y𝛿) is a scalar that quantifies how much two elements
in the data space are close to each other and the regularizer, 𝑅𝛼(x), is a scalar that
quantifies how much the solution possesses certain desired characteristics and 𝛼 is
the regularization parameter. It is customary to introduce all the apriori information
about the sought signal in 𝑅𝛼. Classical examples of 𝑅𝛼 are Tikhonov, total variation
(TV) and lasso regularization.
It is worthwhile noting that Eq. (1.25) is a particular instance of the more generic
problem

minimize ||𝐹x− y𝛿||2 + ||𝐿𝛼x||2. (1.30)

where 𝐿𝛼 has been chosen as 𝐿𝛼 = 𝛼𝐼, however there are examples in which the
regularization matrix, 𝐿𝛼, has been deliberately tuned to satisfy certain properties
of the sought solution (see for instance [9]).

Discretization as regularization. Here the level of discretization of the forward
operator controls the accuracy of the forward operator but it also stabilizes the
reconstruction, see for instance [10].

Iterative regularization. The core idea of these methods is to use the iteration
count as a regularization parameter. This is due to the fact that ill–posedness of
the inverse problem leads to semiconvergent behaviour. If we define a data misfit

ℒ(x,y𝛿) = ||𝐹x− y𝛿||2, (1.31)

we can observe that too few iterations yield an overly smooth approximate solution
and too many iterations lead to highly oscillatory reconstructions. Terminating the
iterations at the appropriate iteration count can grant a satisfactory solution.
A different aspect of these methods is highlighted in [11] where the author stresses
out that in these family of methods the cost functional to be minimized is refined
iteratively at each step and that this can be beneficial in some cases.

Statistical regularization. Statistical regularization theory is a framework for
statistical inference in inverse problems. Both the data and the model parameters
are assumed to be a realization of certain random variables which are described by
certain probability functions. In variational methods the data can be thought of as a
particular realization of a random variable, but the model parameters to be retrieved
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are usually not assumed to be described by a certain statistics [7]. In Bayesian
inference the information we have about certain model parameters x is influenced
by both an apriori knowledge about these parameters and by observations of the
misfit of the output of the statistical model given the parameters and the data. In
mathematical terms:

𝜋𝑝𝑜𝑠𝑡(x|y𝛿) =
𝐿(x)𝜋𝑝𝑟𝑖𝑜𝑟(x)

∫ 𝐿(x)𝜋𝑝𝑟𝑖𝑜𝑟(x)𝑑x
,

𝐿(x) ∶= 𝑝y(y𝛿 ,x),
(1.32)

where 𝜋𝑝𝑜𝑠𝑡 denotes the posterior probability, the prior distribution 𝜋𝑝𝑟𝑖𝑜𝑟(x) de
scribes the prior knowledge and 𝐿(x) is the likelihood function that is the probability
that y = y𝛿 for a certain input x.
The computation of the entire posterior distribution is computationally prohibitive
for many applications and a more practical approach consists of retrieving only an
estimator from the posterior distribution that is statistically relevant. Two important
point estimators – points which belong to the posterior distribution and that hold
statistical relevance – are introduced below.

Maximum a–posteriori (MAP) estimator. This estimator maximizes the posterior
probability Eq.(1.32):

x𝑀𝐴𝑃 = argmax
x

𝜋𝑝𝑜𝑠𝑡(x|y𝛿) = argmin
x

{− log 𝐿(x) − log𝜋𝑝𝑟𝑖𝑜𝑟(x)}. (1.33)

Eq. (1.33) shows that in Bayesian approaches the regularization term requires the
knowledge of a statistical prior distribution of the sought signal. We also note that
in case in which the prior is a Gaussian probability distribution, the MAPestimator
is equivalent to the Tikhonov regularization of Eq. (1.30).

Maximum likelihood (ML) estimator. This is the estimator that maximizes 𝐿(x). In
other words it is the value of the parameter x that, when used as input in the
statistical model, minimizes the discrepancy among the measured data, y𝛿, and
the model output y. It can be retrieved by letting the second term in Eq. (1.33)
equal to zero:

x𝑀𝐿 = argmax
x

𝐿(x) = argmin
x

− log 𝐿(x). (1.34)

Estimating x𝑀𝐿 requires only access to the data likelihood, which is known when
a model for the noise is available. This estimation scheme does not require the
knowledge of a prior distribution which may not be available. On the other hand
this implies that the reconstruction is not regularized, and this is problematic if the
problem is ill–posed.
Notice that variational methods can be interpreted, in finite dimensional problems,
as particular instances of statistical MAP or ML methods. In both the variational and
statistical methods presented above we ended up with a problem which consists of
minimizing or maximizing a certain functional. In the next section we discuss some
methods that do this.
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1.3. A few optimization methods
Optimization is a vast topic, here we briefly introduce a few important methods that
are discussed in literature and that are used in this thesis.

1.3.1. definitions and descent methods
We focus on the problem of finding a minimizer for a certain cost functional, ℒ(x) =
𝐹(x), where 𝐹(x) ∶ ℝ𝑛 → ℝ depends nonlinearly from x:

minimize 𝐹(x). (1.35)

We denote by J or by ∇𝐹 the gradient

𝐽 = ∇𝐹 = [

𝜕𝐹
𝜕𝑥1
⋮
𝜕𝐹
𝜕𝑥𝑛

,
] (1.36)

and with 𝐻 the Hessian

𝐻 =
⎡
⎢
⎢
⎣

𝜕2𝐹
𝜕𝑥21

… 𝜕2𝐹
𝜕𝑥1𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝐹
𝜕𝑥𝑛𝑥1

… 𝜕2𝐹
𝜕𝑥2𝑛

⎤
⎥
⎥
⎦

. (1.37)

It is convenient to introduce the Taylor expansion around a certain point x. The
methods introduced here can be derived by stopping the expansion at the quadratic
term:

𝐹(x+ Δx) = 𝐹(x) + Δx𝑇𝐽 + Δx𝑇𝐻Δx+ 𝒪(Δx3)
≈ 𝐹(x) + Δx𝑇𝐽 for Δx sufficiently small . (1.38)

The sufficient conditions for a local minimum of an unconstrained minimization
problem are that 𝐽 is zero and that 𝐻 is positive definite. A search direction Δx is
called a descent direction if 𝐹(x + Δx) < 𝐹(x). If we assume that the first order
approximation in Eq. (1.38) holds then this implies the condition Δx𝑇𝐽 < 0. The
process of choosing how far to move from the point x in the descent direction to
have an optimal decrease of the loss functional is called line search.
Many descent methods share a similar structure, where the search direction is taken
to have the form Δx = −𝐵−1𝐽, where 𝐵 is a matrix with:

• B = I in the steepest descent,

• B = H in the Newton’s method, and

• B ≈ H, in the Quasi–Newton method.

The steepest descent method, which will be employed later on, is outlined in more
details below.
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Steepest descent method. This method consists in noting that the gradient
of a given function corresponds to the direction of the steepest ascent. It follows
that the “best” (locally) decrease direction is given by the negative gradient. In an
iterative scheme the new iterate is then given by

x𝑛+1 = x𝑛 − ∇𝐹𝑛 . (1.39)

where 𝐹𝑛 = 𝐹(x𝑛). The choice of the update rule Eq. (1.39) can be combined with
a line search:

Δx𝑛 = −∇𝐹𝑛 ,
𝜇𝑛 = argmin

𝜇>0
𝐹(x𝑛 + 𝜇Δx𝑛),

x𝑛+1 = x𝑛 + 𝜇𝑛Δx𝑛 .
(1.40)

This method converges, but can be slow during the last stages of the optimization.
For this reason it is sometimes clustered with a method that is a better choice at
the last iterations. One of such methods is Newton’s method.

1.3.2. Methods for nonlinear least squares
Here we focus on the following problem:

minimize ℒ(x) = 𝐹(x) = 1
2||𝑓(x)||

2 = 1
2

𝑚

∑
𝑖=1
(𝑓𝑖(x))2, (1.41)

with 𝑓 ∶ ℝ𝑛 → ℝ𝑚 and 𝑚 ≥ 𝑛. This problem can be tackled using dedicated
algorithms that enjoy favorable convergence properties without requiring the im
plementation of second order derivatives. The Jacobian 𝐽 in Eq. (1.36) is here
defined as

𝐽 = [

𝜕𝑓1
𝜕𝑥1

… 𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

… 𝜕𝑓𝑚
𝜕𝑥𝑛

] . (1.42)

We consider two methods that solve the problem described in Eq. (1.41)

Gauß–Newtonmethod. This method can be derived by replacing 𝑓 in Eq. (1.41)
by its linear approximation:

Δx𝑛 = argmin
Δx𝑛

||𝑓(x𝑛) + Δx𝑇𝑛𝐽||2,

x𝑛+1 = x𝑛 + 𝜇𝑛Δx𝑛 ,
(1.43)

where 𝜇𝑛 is computed by the line search. The usual solution of Eq. (1.43) is via
the equations: Δx = −(𝐽𝑇𝐽)−1𝐽𝑇𝑓. A necessary condition for the algorithm above
to converge is that 𝐽 is full rank at each step. This limitation is lifted in the method
discussed below.
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Levenberg–Marquardt method. This method is essentially a damped Gauß–
Newton method. The update rule Eq. (1.43) is substituted by

min
Δx𝑛

||𝑓(x𝑛) + Δx𝑇𝑛𝐽||2,

s.t. ||Δx𝑛||2 ≤ 𝛿,
(1.44)

where 𝛿 is a positive number, assumed known, such that the model is sufficiently
accurate inside a ball with radius 𝛿, centered at x𝑛.
By introducing the Lagrangian multiplier 𝜇, we can rephrase the minimization prob
lem Eq. (1.44) as a variational problem that is similar to Eq. (1.25) which admits a
solution of the following form:

Δx𝑛 = −(𝐽𝑇𝐽 + 𝜇𝑛𝐼)−1𝐽𝑇𝑓 with 𝜇𝑛 ≥ 0, (1.45)

where the parameter 𝜇 influences the direction and the size of the step and it is
changed along the iterations in the attempt to grant optimal convergence [6].

1.4. Summary
In this chapter we introduced a few fundamental concepts that are of paramount
importance in the field of inverse problems. Moving from these premises we shall
focus on technical problems that arise in mask metrology and inspection for extreme
ultraviolet (EUV) lithography which are relevant and interesting. We rely on the
content of this chapter to devise new inversion schemes and introduce ideas that
can tighten and improve the inspection and metrology of targets on EUV wafers
and reticles.
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Scatterometry is the industrial workhorse for fast, quantitative and non–destructive
optical metrology of periodic semiconductor structures on a surface. Examples of
such periodic structures are line/space photoresist or absorber gratings and periodic
arrays of squares/holes. The periodicity of the sample dictates the diffraction of
the incoming light field into a finite set of diffraction orders. A measured dataset in
scatterometry consists of one or more measured diffraction orders, whose direction
of propagation is given by the grating equation:

sin𝜃𝑖 + sin𝜃𝑛 = 𝑛
𝜆
Λ , (2.1)

where 𝜃𝑖 is the angle of incidence, 𝜃𝑛 is the angular location of the 𝑛𝑡ℎ diffraction
order, 𝜆 is the wavelength and Λ is the pitch of the grating. The field above the
grating can then be written, for the case of a reflection setups, in terms of the
Rayleigh series:

𝐄(r) = 𝐄𝑖𝑛𝑐(r) + 𝐄𝑠(r) = 𝐄𝑖𝑛𝑐(r) +∑
𝑛
𝐑𝑛𝑒𝑖(𝑘𝑥𝑛𝑥+𝑘𝑦𝑛𝑦+𝑘𝑧𝑛𝑧), (2.2)

where 𝐄(r) is the total field above the grating, 𝐄𝑖𝑛𝑐(r) is the incident field, 𝐄𝑠(r) is
the scattered (diffracted) field, 𝐑𝑛 is the reflection coefficient of the 𝑛𝑡ℎ diffraction
order and 𝑘𝑥𝑛, 𝑘𝑦𝑛 and 𝑘𝑧𝑛 are the components of the wavevector of the 𝑛𝑡ℎ
diffraction order, with 𝑘 = 2𝜋

𝜆 . Notice that in a transmission setup the reflection
coefficient needs to be substituted by the transmission coefficient. As stated by
Eq. (2.1) the components of the diffracted vector k are linked to the ones of the
incident wavevector by the Bragg’s law. If we assume that the grating is periodic
in the 𝑥 direction, then:

𝑘𝑥𝑛 = 𝑘𝑥 +
2𝜋𝑛
Λ ,

𝑘𝑦𝑛 = 𝑘𝑦 ,

𝑘𝑧𝑛 = √𝑘2 − 𝑘2𝑥𝑛 − 𝑘2𝑦𝑛 .

(2.3)

It can be seen from Eq. (2.2) that the measured diffraction intensities are 𝐈𝑛 =
|𝐑𝑛|2. It is common to measure the 0𝑡ℎ order which has a high intensity and
consequently provides a high signal to noise ratio. Depending on the wavelength,
the pitch and the angle of incidence, higher diffraction orders can fall in the nu
merical aperture (NA) – i.e. the acceptance angle – of the detector and can be
measured [2], however it should be noticed that for short pitches only a few propa
gating diffraction orders can exist (Eq. 2.1). The fraction of incident light that gets
diffracted into any diffraction order encodes information about overlay and struc
tural parameters of the 3D profile of the grating such as height, critical dimension
(CD) and side–wall angle (SWA) [3], the latter information being the aim of the
3D profilometry of gratings. In the usual scatterometric approach one attempts to
retrieve this structural information by doing the following:
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• measure a set of diffracted intensities as a function – for instance – of wave
length or angular locations by, for instance, scanning the detector angle at a
fixed angle of incidence. This set of intensities can comprise only the zeroth
order or also the higher orders.

• model the light–sample interaction, usually using a fully rigorous Maxwell
solver,

• parameterize the grating, and eventually also the underlying stack, with cer
tain shape parameters, and

• solve the inverse problem by fitting the acquired data set. This can be done in
real–time, letting the optimization routine run while the industrial production
process is ongoing, or by searching through a previously assembled library of
simulations for different possible geometries.

In what follows we give a brief overview of these topics. For a more thorough
overview please refer to [4].

A few scatterometry setups. We describe a few important scatterometers,
classified according to their modus operandi, that have been discussed in litera
ture.

Angular scatterometers. In this configuration the light generated by a source passes
through an optical scanning system that refracts and focuses the light upon the
target. The optical system can be designed so that a discrete set of angles of inci
dence, 𝜃𝑖 are available. In a sequential measurement the detector can be moved
so to measure any of the diffracted orders, Eq. (2.2), as the angle of incidence
is changed while in a parallel acquisition all of the diffraction orders are simulta
neously measured [2]. We can then retrieve, for instance, the variations in the
diffraction efficiency of a certain order or of a set of orders with respect to the
angle of incidence [5, 6]. Alternatively one could measure the angle–dependent
scattering intensities for a fixed angle of illumination in the so called fixed–angle
scatterometers. When the pitch of the grating approaches the wavelength only a
few orders can be measured, and one may rather wish to study only the efficiency
of the specular reflection with respect to the angle of incidence. This is the 2 − Θ
configuration [7].

Spectral scatterometers. There are cases in which one may wish to keep the angle
of incidence fixed. In such cases one could illuminate with a broadband radiation
and filter the light at the detector side with a spectrometer. Because the angular
locations of the diffracted modes depend on the wavelength 𝜆, the grating scatters
the incoming light at different locations for different wavelengths, and one can re
trieve the diffraction intensities per wavelength at a specific location of, for instance,
a line array detector. One can then retrieve a data–set by measuring the diffraction
efficiency of a certain order or of a set of orders with respect to the wavelength
[6].
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Coherent Fourier scatterometry. In this scatterometric setup a high NA optics fo
cuses a coherent beam on the grating. When the pitch is sufficiently large compared
to the wavelength more than one diffraction order ends up in the collection NA lead
ing to overlapping diffraction orders [2]. The use of coherent light allows one to
retrieve phase information – intended as the phase difference among overlapping
orders – that can be disentangled by scanning the spot with respect to the grating.
In [8] authors demonstrated that this phase information can improve the sensitiv
ity of the scatterometer with respect to its incoherent version. The method has
also been successfully combined with interferometry [9] and with phase retrieval
algorithms [10].

The modeling of light matter interaction. For very simple grating structures,
when the wavelength is much smaller than the grating pitch, it may be possible to
simulate the light–matter interaction via the scalar diffraction theory. However in
the vast majority of cases a fully rigorous solver is employed. A thorough discussion
on the computational aspects of forward electromagnetic methods is beyond the
purpose of this thesis. Here we limit ourselves to the basic introduction of a few
methods.

Rigorous coupled wave analysis (RCWA). The Rigorous Coupled Wave Analysis
(RCWA) is a computational method for periodic structures that belongs to the class
of modal expansion methods [11]. In RCWA, a grating geometry is divided into
staircases/slabs typically along the direction orthogonal to the surface of the pat
terned sample. One solves for the field at each slab interface and enforces boundary
conditions at each slab in order to link the solutions of consecutive slabs to each
other, which in the end enables one to compute the diffraction efficiencies. Because
of the fact that the grating is divided into slices this method is not easily adaptable
to the case of a grating with oblique interfaces. This method has been extended to
the case in which the sample is aperiodic by using perfectly matched layers (PMLs)
[12, 13].

Finite element methods (FEM). In FEM solvers one starts from eliminating the
magnetic field from the Maxwell’s equations of time harmonic fields to obtain the
Helmholtz equation for the electric field:

∇ × ∇ × 𝐄 − 𝜔2𝜇𝜖𝐄 = 0, (2.4)

where impressed sources have been neglected and 𝜖 and 𝜇 are the permittivity and
permeability tensors. The scattering problem is solved by truncating the computa
tional domain into an interior domain Ω𝐶𝐷 and an exterior domain. The incoming
field is added as a light source in Eq. (2.4) and the infinite domain through which
the field in principle diffuses is terminated by the perfectly matched layer (PML).
The PML, which dampens the field that is entering its domain, occupies a region
slightly bigger then Ω𝐶𝐷 and inside the PML the scattered field is used as unknown.
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In the inner boundary the field boundary conditions are that the tangential compo
nents of the total electromagnetic field 𝐄 and 𝐇 should be continuous and on the
outer boundary the tangential component of 𝐄 or 𝐇 are set to zero. Inside the PML
complex stretching coordinates are defined by means of which the light field enters
the PML without getting reflected and is then absorbed [11]. Once the boundary
conditions are in place the FEM expresses the field as a summation of ansatz poly
nomials of finite support over discretization elements with a certain mesh size [14].
Eq. (2.4) is then reformulated into a weak form to yield a linear system of equations

𝐴𝐸 = 𝑏, (2.5)

where b contains contributions of the incoming field, 𝐴 is a sparse matrix and
𝐸 contains the coefficients of the ansatz functions. The system of equations in
Eq. (2.5) can be solved directly for small systems or iteratively, for instance via a
preconditioned method, for larger systems.

Integral equations methods. Volume integral equations (VIE) and surface integral
equations (SIE) methods for finding the solution to Maxwell’s equations are based
on the equivalence principles according to which a scatterer can be removed and
replaced by a certain source distribution that radiates the same EM field [15]. One
starts from dividing the space in a computational domain, Ω𝑐𝑑, and an external
domain. We assume, in the case of the SIE, that Ω𝑐𝑑 is isotropic and homogeneous
and that the incoming field is defined in this domain. In such cases one can show
that the total field inside Ω𝑐𝑑 is given by the primary fields plus the contribution
given by equivalent surface current densities which are the rotated tangential fields
components:

𝐉𝑆(𝐫) = 𝐧(𝐫) × 𝐇(𝐫), and 𝐌𝑆(𝐫) = 𝐄(𝐫) × 𝐧(𝐫), (2.6)

where 𝐧(𝐫) is the normal to the considered surface. The unknown fields are the
tangential components of the electric or magnetic fields and can be computed by
solving a linear system of equations. This method is difficult to implement for the
case of inhomogenous and/or anisotropic material.
In such cases the VIE method can be implemented. In this case the anisotropic
material with permittivity and permeability tensors 𝝐𝑟 and 𝝁𝑟 are embedded in a
certain background material with material parameters 𝜖 and 𝜇. In the VIE method
the equivalent polarization current densities are defined as

𝐉𝑉(𝐫) = −𝑖𝜔𝜖𝚫𝝐𝑟(𝐫) ⋅ 𝐄(𝐫), and 𝐌𝑉(𝐫) = −𝑖𝜔𝜇𝚫𝝁𝑟(𝐫) ⋅ 𝐇(𝐫), (2.7)

where 𝚫𝝐𝑟(𝐫) = 𝝐𝑟 − 𝐼 and 𝚫𝝁𝑟(𝐫) = 𝝁𝑟 − 𝐼 with 𝐼 being the identity matrix. The
scattered field is then an integral over the contribution of elementary dipoles in
Ω𝑐𝑑 and one can arrive to a linear set of equation in the unknowns. An advantage
of this method is that one only meshes the region where the nontrivial scatterers
are located so the non–patterned areas of a layer stack either above or below the
grating do not need to be numerically evaluated. A disadvantage is that the system
matrix is large and full.
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The inverse problem. The other fundamental building block of scatterometry
is the fitting of the acquired dataset. One usually defines a cost functional, which
reads:

ℒ(𝐩, 𝐲𝛿) = ||𝐲𝛿 − 𝐹(𝐩)||2
2𝝈2 , (2.8)

where 𝐲𝛿 is the noisy data, 𝐹(p) is the model evaluation given parameter vector
𝐩 and 𝝈 contains the uncertainty about the measured data. One then proceeds
to iteratively adjust 𝐩 to minimize ℒ(𝐩, 𝐲𝛿) thus finding the set of parameters that
should be close to the correct ones. Popular algorithms in this sense are the Gauß–
Newton – Eq. (1.42) – and the Levenberg–Marquardt – Eq. (1.43) – [3, 16],
although other interesting choices are available [17]. Another popular approach
consists of pre–assembling a library of simulations where the optimal parameters
are retrieved by looking at the simulated data that better resembles the measurand
[18].

Usually one is interested in a few parameters, for instance the critical dimensions
(CD), height and side–wall–angle (SWA) of the grating. The scatterometric ap
proach tends to be cumbersome and slow when many parameters are to be ad
justed. This is predominantly because of two reasons:

• the minimization of Eq. (2.8) requires multiple evaluations of many similar
systems. This implies multiple computationally intensive rigorous simulations.

• The features to be retrieved can be correlated. Correlation causes ill–posedness
and the presence of multiple local minima as it is difficult to distinguish the
signature of one feature from some of the others when analyzing the far field
pattern. In such cases regularization methods need to be employed because
the problem is ill–conditioned. It should also be noticed that the presence of
many features manifests itself by introducing in the optimization landscape
many local minima with higher error than the global minimum and saddle
points that might be mistakenly interpreted as a local minimum [19].

These and other challenges that arise when exploring high–dimensional data–sets
or when minimizing cost functionals over high dimensional spaces are referred to
as curse of dimensionality.
The industrial need for real–time computations and optimization in high dimensional
spaces is a driving force for research in computational methods in electromagnetics
and in optimization. In the following section we briefly discuss various approaches
to reduce the problem of the excessive dimensionality of the search space and
we introduce the approach we devised to mitigate the difficulties that arise in the
inverse problem of scatterometry when many features are to be retrieved.

2.1. Dimensionality reduction techniques
A list of few important methods for dimensionality reduction in multidimensional
spaces are reported below.
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Singular value decomposition (SVD) based methods. Usually these meth
ods consist of applying an SVD to a symmetric/hermitian (semi)positive–definite
matrix. The eigendecomposition of such matrices identifies a full set of orthogonal
eigenvectors that represent the basis for a vector space. One could then think of
identifying the eigenvectors which contain most of the information/variation of the
data or of the model. Methods based on the singular value decomposition are of
ten applied by the machine learning community to reduce the dimensionality of the
datasets for training purposes or to analyze and understand the data better. These
methods can also be applied in the model space to simplify the model by retain
ing its most important degree of freedom. An example is in [20], where authors
noticed that the feature of the model they were using showed interdependencies.
They considered a linear inverse problem of the form

𝐹𝐱 = 𝐲, (2.9)

with 𝐹 ∶ ℝ𝑛 → ℝ𝕞. They proceeded to build up a library of possible input states
𝑋 = [𝐱1, 𝐱2, … , 𝐱𝑁] constrained by prior information. 𝑋 was subsequently used to
build up a covariance matrix:

𝐂 = 1
𝑁

𝑁

∑
𝑙=1
(𝐱𝑙 − 𝝁)(𝐱𝑙 − 𝝁)𝑇 ,

𝝁 ∶= 1
𝑁

𝑁

∑
𝑙=1
𝐱𝑙 .

(2.10)

As 𝐂 is by construction symmetric and semi–definite positive it can be diagonalized
and it has orthogonal eigenvectors and real non–negative eigenvalues. They used
the principal component analysis (PCA) to retain in the model only a subset of the
eigenvectors (principal components) {𝐯1, 𝐯2, … , 𝐯𝑝}, 𝑝 < 𝑛, that provide an accurate
low dimensional representation of the original space. Any model in the starting
space is then represented as 𝐱 = 𝝁 + ∑𝑝𝑘=1 𝛼𝑘𝐯𝑘 and by substitution in Eq. (2.9)
one is left to solve a linear system of equations in the reduced set of uncorrelated
unknowns 𝜶.
Another application of SVD in the model space is in [21] where authors decomposed
the covariance matrix to identify and rank parameters based on their importance so
to retain in the model only the most relevant of them. Another interesting example
of the use of the SVD for the purpose of model reduction is in [22], where authors
decomposed the covariance matrix of the gradient vector to find the eigendirections
where the input function of interest varied more strongly. They proceeded to con
struct a response surface using only the most important of the rotated coordinates
identified by the eigenvectors. Such active subspace can, in some instances, be an
adequately informative low rank representation of the input space.

Regression based methods. This is a family of methods that reduces the di
mensionality of the model by enforcing a few coefficients in a regression problem
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to zero. Examples are forward selection [23], lasso [24] and elastic–net [25] re
gression. The main idea is to exclude from the model those degrees of freedom
that to do not contribute to improve the fitting too much. We will use one of these
methods in the next chapter.

Sensitivity based methods. In model based approaches one could assess the
importance of a parameter by looking at how much it affects the output. The most
inexpensive sensitivity analysis methods are the local ones, where a certain input
is perturbed from its nominal position and the impact on the output is observed.
This method however does not immediately reveal any secondary effect or any
interdependencies among parameters and the local sensitivities may change dras
tically depending on the particular evaluation point in the parameter space. Global
sensitivity analysis methods, such as variance decomposition methods [26, 27],
provide the means to tackle these issues, however they are expensive to evaluate
and require the approximation of a high dimensional integral with multiple expen
sive Monte Carlo methods. Screening methods are less expensive to evaluate than
global sensitivity analysis methods and give indication on the global importance of
a parameter. A particularly successful screening method, outlined in more details
in the next section, is the Morris design [28, 29].

We have summarized a few methods for dimensionality reduction in the model
space. In the next chapter we devise an algorithm for feature selection which is
applicable in the nonlinear regression case and we compare it to the Morris design.
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2.2. Automatic feature selection in EUV scatterom
etry

We are concerned with the retrieval of certain unknown parameters of an object
from measured data and with the understanding of which of these unknowns are
most relevant for an appropriate description of the object. The purpose is to simplify
the model, leaving only its most important parameters as unknowns.
One could tackle the problem using sensitivity analysis methods which “allow to
study how the uncertainty in the output of a model can be apportioned to different
sources of uncertainty in the model input or may be used to determine the most
contributing input variables to an output behavior, or to ascertain some interac
tion effects within the model” [30]. However for certain applications, especially
for the industrial ones, it may be preferable to make this sort of modeling decision
automatic, as one often wishes to keep the user from performing any kind of math
ematical operation on a certain system. In 1996, Tibshirani introduced a penalized
regression, the lasso [24], which is able to automatically select the most important
inputs in a model by shrinking the regression coefficients of the least relevant ones
to exactly zero. Further research has demonstrated that combining the 𝓁2 and 𝓁1
norm penalties in the regression can help to overcome some limitations of the lasso
[25]. Even though these algorithms have been developed to solve linear regression
problems, their use can be extended to the nonlinear case. In nonlinear regression
the aim is to minimize the cost functional:

ℒ(𝐩, 𝐲𝛿) = ||𝐲𝛿 − 𝐹(𝐩)||2
2𝝈2 . (2.11)

In Eq. (2.11) || ⋅ || denotes the euclidean norm, i.e. the 𝑙2 norm, 𝐲𝛿 represents the
noisy data, 𝐹(𝐩) is the model evaluation given the parameter vector 𝐩 and 𝝈 is the
vector containing the uncertainties about the measured data. We assume for the
variance of the measured value [3]:

𝝈(𝜆)2 = [𝑎 ⋅ 𝐄(𝜆)]2 + 𝑏2𝑔 , (2.12)

where 𝐄 is the vector that contains the diffraction efficiencies (which is the fraction of
incident power that is diffracted in a certain direction), 𝜆 denotes the wavelength, 𝑎
is a constant assumed to be equal to 0.05 (i.e. 5% noise relative to the diffraction
efficiencies) and 𝑏𝑔 is the background noise of the detector, whose contribution
becomes dominant for diffracted orders whose efficiency is less than 0.01% [31].
As stated in Chapter 1 problems as these are usually solved by dedicated methods
as explained in Section 1.3.2. Here we start recalling the Gauß–Newton update
rule, Eq. (1.43)

Δ𝐩 = argmin
Δ𝐩𝑛

||𝐲𝛿 − 𝐹(𝐩𝑛) − Δ𝐩𝑇𝐽𝑛||2,

𝐩𝑛+1 = 𝐩𝑛 + Δ𝐩.
(2.13)

Where, as usual, 𝐽𝑛 is the Jacobian of 𝐹(𝐩𝑛) evaluated at the current iterate and
𝐩𝑛 is the current estimate. When a sufficiently accurate prior, 𝐩0, is available, it is
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possible to replace 𝐩𝑛 in Eq. (2.13) by 𝐩0, alternatively 𝐩0 can be used as a first
guess. As previously discussed, the usual solution of Eq. (2.13) is via the normal
equations.
In those cases in which a large number of parameters have to be optimized, one
can penalize the incremental vector 𝚫𝐩 in Eq. (2.13) with a penalty term that
encourages a sparse reconstruction:

𝐩𝑛+1 = 𝐩𝑛 + argmin
𝚫𝐩

||𝚫𝐹 − 𝚫𝐩𝑇𝐽𝑛||2 + γ𝑃𝛼(𝚫𝐩), (2.14)

where

𝑃𝛼(𝚫𝐩) = (1 − 𝛼)
1
2||𝚫𝐩||

2
2 + 𝛼||𝚫𝐩||1. (2.15)

In (2.14) 𝚫𝐹 = 𝐲𝛿 − 𝐹(𝐩𝑛), γ is the regularization parameter to be determined by
seeking a balance among the data fitting term and the regularization term, || ⋅ ||𝑝,
with 𝑝 = 1, 2, is the 𝓁1 or 𝓁2 norm and 𝛼 ∈ [0, 1] is a parameter that determines the
relative strength among the 𝓁2 and the 𝓁1 norm. In all that follows we have chosen
𝛼 = 1/2. The penalized regression in (2.14), known in the literature as the “elastic
net” [25], produces a more simplistic model by removing redundant degrees of
freedom via a variable selection process. The output, 𝚫𝐩𝑛, of the regression (2.14)
will be a vector with some entries which can be equal to zero. By adding a zero
offset to some of the entries of 𝐩𝑛, some of the parameters will be fixed to a certain
value, resulting in a reduced number of unknowns to be retrieved by the estimation
routine.
A further important aspect to be considered while solving Eq. (2.14) lies in the
appropriate selection of the regularization parameter. In this work we have applied
the L–curve criterion at each iteration. As the value of γ given by the L–curve can
change at each iteration, this can result in an oscillatory trend. An heuristic formula
that deals with this problem is [32, 33]:

γ𝑛 = {
𝜖γ𝑛−1 + (1 − 𝜖)γ if γ < γ𝑛−1,
γ𝑛−1 otherwise

(2.16)

with 0 < 𝜖 < 1 being a–priori chosen. The algorithm described above is applicable
to those inverse problems for which prior information is available and for which it is
possible to compute the gradient of the function to be optimized. We stop iterating
after the second time in which ℒ in Eq. (2.11) decreases by a small amount (0.01)
[34].
It is interesting to compare the outcome of the method above with the one given
by sensitivity analysis methods. A particulary robust and widely used screening
method is the Morris design [28].

2.2.1. The Morris design
In the Morris method one aims to classify the inputs in three different categories:

• inputs having negligible effect on the output,
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• inputs having significant linear and no cross–coupling effects on the output,
and

• inputs having significant nonlinear and/or cross–coupling effects.

The method proceeds as follow:

• the input space is discretized in what Morris called an 𝑛–level grid (i.e. each
parameter is discretized in 𝑛 discrete values);

• a step, Δ𝑝 is defined as a multiple of 1
𝑛−1 ;

• the input space is sampled and a starting point (also known as base point),
in which the model output is evaluated, is selected;

• one moves away from this point by displacing one of the inputs by Δ𝑝. At
this new location of the input space the model output is again evaluated,
and an incremental ratio, named “elementary effect” (which we will formally
introduce at a slight later moment below) is computed;

• the procedure described in the point immediately above is repeated for all the
parameters, moving one parameter at a time while the others are kept fixed,
until each parameter has been displaced. Notice that this creates a “path” in
the input space. Morris referred to this path as a “trajectory”

• After each parameter has been displaced one selects randomly a different
base point and the whole procedure is repeated. This is done a total R times,
with R usually equal to 10–20, for R independently generated trajectories.

As mentioned the method is based on the computation of the “elementary effects”:

𝐸(𝑗)𝑖 = 𝐹(𝑝(𝑗)1 , 𝑝(𝑗)2 , … , 𝑝(𝑗)𝑖 + Δ𝑝(𝑗)𝑖 , … , 𝑝(𝑗)𝑛 ) − 𝐹(𝐩(𝑗))
Δ𝑝(𝑗)𝑖

(2.17)

where 𝐸(𝑗)𝑖 is the elementary effect associated to the i–th input and to the j–th
trajectory. The statistics of the distributions of the elementary effects in the R
trajectories is evaluated using the following estimators:

𝜇∗𝑖 =
1
𝑅

𝑅

∑
𝑗=1
|𝐸(𝑗)𝑖 |, 𝜎𝑖 = √

1
2

𝑅

∑
𝑗=1
(𝐸(𝑗)𝑖 − 1

𝑅

𝑅

∑
𝑗=1
𝐸(𝑗)𝑖 )

2

. (2.18a,b)

The absolute value in (2.18) is used in order to keep close–valued elements of op
posite sign from canceling each–other out [29]. A high mean value, 𝜇∗𝑖 , implies an
high overall effect of the i–th input over the output and a high spread, 𝜎𝑖, about
the mean implies that the elementary effects relative to this input are significantly
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different from each other, hence the value of an elementary effect is strongly af
fected by the choice of the point in the input space at which it is computed. This
indicates an input with a nonlinear effect on the output, or an input involved in
interactions with other inputs. A plot of 𝜇∗ against 𝜎 allows one to examine the
computed values relative to each other and to evaluate the importance of inputs in
the model. If a given input has both low 𝜇∗ and low 𝜎 values then it has low impact
on the output and it is not involved in significant non–linear interactions. Hence it
can be dropped from the model by fixing it to a certain value within its uncertainty
bounds.

It is important to mention that the accuracy of the method depends on an ap
propriate sampling of the input space. A finer grid (i.e. smaller Δ𝑝) in the input
space yields an overall more accurate result in terms of the evaluated sensitivities,
however a finer grid also implies that many trajectories need to be generated in
the input space in order for it to be sampled accurately hence leading to a more
computationally intensive procedure. There is no strict rule for the choice of Δ𝑝
and the selection of its value and the value of the number of trajectories is left to
the user. A practical way to select these parameters is to start by retrieving [𝜇∗𝑖 , 𝜎𝑖]
with a coarse grid and few trajectories and gradually refine the grid and increase
the number of trajectories. When the output of the method (i.e. [𝜇∗𝑖 , 𝜎𝑖]) does not
change much with further refinements one can understand which is a suitable value
for the Δ𝑝 and the number of trajectories.

There are important differences among the Morris method and the regression–
based methods as applied to the problem of the selection of important parameters
in a parameterized model. This is firstly because they explore the input space dif
ferently. Even though the Morris design is based on the computation of small steps
from one point to the other, it can be considered as a “global” sensitivity analysis
method as it explores the entire input space spanned by the parameters of interest.
Conversely the regression in Eq. (2.14) could be thought as a “local” method, in the
sense that it is looking for a solution in the neighborhood of 𝐩𝑛. Another difference
lies in the criteria of importance. In the Morris design a certain variable is consid
ered important when its perturbation significantly affects the output and/or when it
is involved in nonlinear effects. On the other hand, the elastic–net tries to remove
unimportant parameters solving a regularized regression problem. The metric of
the variable selection algorithm is determined by a trade–off among goodness of
fit and complexity of the model. Oversimplistic models fail to accurately describe
the data and lead to biased solutions, while overcomplicated ones are difficult to
interpret and “overfit”, in the sense that they are too sensitive to the noise in the
data, leading to poor predictions over future data–sets [35, 36]. The lasso and
elastic net are regression methods able to select a simple model, starting from a
complicated one, by shrinking some of the regressors to exactly zero. These meth
ods seek to find a simple model, selected from among many, that best captures
the data. A way to further understand this is by studying the algorithm that solve
the minimization problem (2.14). An example are coordinate–descent algorithms,
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in which the update rule, besides a scaling factor, is [37]:

Δ𝑝𝑗 =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑁
∑
𝑖=1
𝑟𝑖𝑗 + 𝛼γ, if

𝑁
∑
𝑖=1
𝑟𝑖𝑗 < −𝛼γ

0, if −𝛼γ <
𝑁
∑
𝑖=1
𝑟𝑖𝑗 < 𝛼γ

𝑁
∑
𝑖=1
𝑟𝑖𝑗 − 𝛼γ, if

𝑁
∑
𝑖=1
𝑟𝑖𝑗 > 𝛼γ.

(2.19)

In Eq. (2.19) ∑𝑟𝑖𝑗 represents the sum over the residuals of the linear regression,
each weighted by a certain coefficient, obtained while fitting such that the 𝑗–th
variable is excluded from the model. According to Eq. (2.19) a certain parameter
is excluded from the model if its presence does not improve significantly the fitting.

In what follows we have used the following matlab® packages: regtools for the
L–curve regularization [38] and “Morris SU sampling”, implemented by the group of
Rafael Muñoz–Carpena at the University of Florida [39]. Rigorous electromagnetic
solutions of the forward problem are computed using the finite element method
solver JCMsuite® [40].

2.2.2. Application to gratings on an EUV mask
We apply the algorithm described above to the problem of feature selection to
gratings on an EUV mask. As stated in Section 2.2 the problem we are challenged
with consists of devising a method for automatic profile selection of parameterized
gratings or nanostructures on an EUV mask. The purpose is to simplify the model
by eliminating redundant degrees of freedom. This can be useful especially for
industrial applications where one often does not want to let the user of a certain
system/machine perform modelling operations. We stress that all of the data and
results presented in this section are computationally generated.

Fig. 2.1(a) presents the cross section of a grating profile. The grating is parame
terized with six parameters that correspond to the X and Y coordinates within the
respective layers. The grating is assumed to be symmetric. The EUV radiation illu
minates a Mo/Si multilayer coated reflective mask, with a patterned absorber profile
on top of it. The angle of incidence is 6∘, for which the multilayer is in resonance,
giving a reflectance of 60–70 %. The materials properties are listed in Table 2.1
[16]. The side wall angle (SWA) of the SiO2 layer is assumed to be equal to the
SWA of the TaN layer above. The period of the grating at the level of the mask is
420 nm and the nominal width of the absorber is 140 nm , for a line to space ratio
of 1:2. For such configuration only the diffracted orders from 6 to +11 are de
tectable with sufficient intensity [3]. Figure 2.1(b) reports the recorded (simulated)
diffraction efficiencies for the aforementioned settings and for three different wave
lengths of the incoming s–polarized light field [3]: 𝜆1 = 13.398 nm, 𝜆2 = 13.664
nm, 𝜆3 = 13.931 nm.
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(a) (b)

Figure 2.1: a) Symmetric grating with parameterized profile. The independent degrees of freedom are
the X and Y coordinates of the yellow points. The grating is assumed to be symmetric. The materials are
given in Table 2.1. Angle of incidence is 6∘. Light is 𝑠 polarized. To preserve clarity the layers thicknesses
are not presented in real scale (for the nominal values refer to Table 2.1) b) Diffraction efficiencies are
given in percentage. For the given geometry and wavelengths only a subset of the diffraction orders
can be detected.

Table 2.1: Nominal layer thicknesses and material properties for the mask in Fig. 2.1 at
𝜆 = 13.5 nm

layer thickness [nm] n k
ARC TaO 12 0.951 0.003

Absorber TaN 54.9 0.946 0.0326
SiO2 (buffer) 8 0.97352 0.01608
SiO2 (oxidation) 1.246 0.97352 0.01608
Capping layer Si 12.536 0.99846 0.00184

MoSi2 0.5 0.96675 0.00446
Mo 2.256 0.91872 0.00672
MoSi2 0.5 0.96675 0.00446
Si 3.077 0.99846 0.00184

Substrate 6.35e6 0.97352 0.01608

We choose our starting point for the regression, 𝐩0, by sampling a uniform prior
distribution within the following intervals [41] : XBL = 70±7 nm, YBL = 21±5 nm,
XAL = 67 ± 7 nm, YAL = 77 ± 5 nm, XARC = 65 ± 7 nm, YARC = 89 ± 5 nm. The
data used in the computational experiment is gathered by simulating a grating with
parameter values equal to [XBL, YBL, XAL, YAL, XARC, YARC] = [70, 21, 67, 77, 65,
89].
In Figures 2.2, 2.3 and 2.4 we report the results of the presented algorithm for
different starting prior vectors and different noise levels, particularly we plot:

(a) the elastic net coefficients against the strength of the regularization parame
ter, and
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(b) the normalized local sensitivities evaluated at the end of the estimation rou

tine and defined as ∑𝑛 |
𝜕𝐼𝑛
𝜕𝑝𝑖

⋅ 𝑝𝑖𝐼𝑛 | where I is the computed intensity, 𝑝𝑖 is the
parameter of interest and the summation is over the diffraction efficiencies.
They are a measure of the overall perturbation of the output due to the slight
perturbation of a certain parameter.
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Figure 2.2: Plots at the last iteration of the automatic variable selection algorithm. 5% Gaussian noise
is added to the synthetic data. 𝐩0 is [XBL, YBL, XAL, YAL, XARC, YARC] = [66.9, 22.47, 73.41, 81.65,
60.21, 93.7] nm. a) Elastic net coefficients as a function of regularization parameter strength. γ0 is the
regularization strength selected according to the criteria in Eq. (2.16). b) Normalized local sensitivities
in percentage.
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Figure 2.3: Plots at the last iteration of the automatic variable selection algorithm. 10% Gaussian
noise is added to the synthetic data. 𝐩0 is [XBL, YBL, XAL, YAL, XARC, YARC] = [74.4, 26.05, 61.78, 81.13,
66.85, 84.97] nm. a) Elastic net coefficients as a function of regularization parameter strength. γ0 is the
regularization strength selected according to the criteria in Eq. (2.16). b) Normalized local sensitivities
in percentage.
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Figure 2.4: Plots at the last iteration of the automatic variable selection algorithm. 15% gaussian noise
is added to the synthetic data. 𝐩0 is [XBL, YAL, XAL, YAL, XARC, YARC] = [68.15, 23.25, 70.92, 72.81,
71, 91.7] nm. a) Elastic net coefficients as a function of regularization parameter strength. γ0 is the
regularization strength selected according to the criteria in Eq. (2.16). b) Normalized local sensitivities
in percentage.

The algorithm converges fast and, once converged, it successfully shrinks some of
the entries of 𝚫𝑝 to zero, however these entries depend on the noise level in the data
and on the starting point of the optimization. In Figure 2.2 the parameters that were
shrunk to exactly zero at the end of the optimization were XAL and YAL, in Figure
2.3 the selected ones were XBL and YARC, while in Figure 2.4 only YBL was exactly
equal to zero. We also notice a change in the local sensitivities, evaluated around
the estimated set of parameters 𝐩𝑛, in Figure 2.2(b), 2.3(b) and 2.4(b). Further,
a comparison among Figures 2.2, 2.3 (a) and (b) reveals that the parameters that
get fixed are not necessarily the ones for which the local sensitivity is the lowest.
In other words, the parameters that locally perturb the output the most, may not
be the ones that the elastic net locally identifies as important for proper fitting of
the data. Also, the 𝓁1 norm strongly biases towards the prior. Hence we used the
algorithm only to remove the unnecessary parameters. Once that the redundant
variables are identified and fixed by the algorithm the free ones can be estimated.
We have done this by employing the same method, but retaining only the 𝓁2 norm
penalty in Eq. (2.15) in order to avoid the more aggressive shrink towards 𝐩0
given by the 𝓁1 norm. An example of such estimation, evaluated using the free
parameters in Fig. 2.2(a), is given in Table 2.2:

Table 2.2: Reconstruction results

parameter Reconstructed value[nm] standard deviation [nm]
XBL 67.12 0.8
YBL 23.65 1.8
XARC 61.67 0.4
YARC 87.85 0.3
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where we have approximated the covariance matrix as (𝐽𝑇 ⋅ 𝐽)−1𝜎2 [34].
In what follows we report our findings for the application of the Morris design to
gratings. The input space is discretized in a 12 level grid. We have generated 1000
trajectories and have retained 30 of them which grant the highest “spread” in the
input space [29], for a total of 𝑅 ⋅ (𝑝 + 1) = 210 model evaluations. As the model
produces 54 outputs  18 diffraction efficiencies per wavelength  we have analyzed
them separately. Plots for an illustrative subset of the diffracted order at 𝜆 = 13.398
nm are shown in Figure 2.5, the other two wavelengths show similar trends.

(a) (b)

(c) (d)

Figure 2.5: Morris plots for four different diffracted orders at 𝜆 = 13.398 nm: a) order 6, b) order 1,
c) order 4, d) order 9.

Some conclusions can be drawn from the Morris plots in Figure 2.5:

• The widths of the buffer and of the absorber layer – XBL and XAL – which
determine the CDs of the grating, and the thickness of the ARC layer – YARC
– which determines the amount of incoming power that is transmitted to the
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grating, are quite separated from the other inputs for most of the diffracted
orders. This indicates their importance in the model.

• YAL, that determines, for a fixed thickness of the buffer layer, the thickness of
the absorber, is very important for the orders [3,4] which are the ones that
mostly propagate through the entire height of the absorber. Its importance
decreases for orders diffracted at higher angles.

• XARC and YBL always appear close the origin of the plot. This indicates that
they are the least important inputs in the model and can be considered fixed
to a certain value within their uncertainty bounds.

• For all of the diffracted orders some of the inputs are involved in nonlinear
effects, which causes them to appear close to the diagonal in Figure 2.5. It is
also interesting to note that the degree of nonlinearity or correlation related
to a certain input is captured by certain diffraction efficiencies rather than by
others. For example, examining the plot for the order 6 (Figure 2.5(a)), XBL
and XAL appear to be involved in strong interactions or non–linear behavior.
This doesn’t appear to be the case for the orders 1 or 4 in Figure 2.5(b–c) .

The observations above are consistent with previous modeling work [3], in which
the authors have retained in the model only those parameters that identified top and
bottom CDs and the SWA of the grating. However, according to the Morris design,
YARC should be considered as a free degree of freedom rather than be fixed.
As the Morris design and the elastic net penalty rank the importance of parameters
according to different criteria, and as they cover the input space differently, they
lead to different results. For instance in Figure 2.2(a) the elastic net penalty fixed
the parameters XAL and YAL. This, according to the Morris design, would have
deprived the model of two important variables.
In light of this, a better strategy could be to remove for the model those parameters
that are identified as unimportant by both the Morris design and the penalized
regression (4). For example, for the case in Figure 2.4(a), one could fix only YBL.
In this way one would retain in the model those parameters that are important for
proper fitting of the data and that, at the same time, have a substantial effect over
the output.

2.2.3. Application to 3–D scatterers
It is interesting to apply the method developed in Section 2 to the complex case of
feature selection for 3–D isolated nanostructures. The model–based approach has
been investigated predominantly for 2–D grating profiles and 3–D periodic scat
terers but its use for the reconstruction of isolated nanostructures is still to be
discussed. The modelling of a 3–D nanostructure is challenging, and understand
ing how to parametrize a given structure and which features to retain in the model
is difficult. In such cases the tools presented above can be particularly useful. We
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apply the algorithm described in Section 2 to the scatterer in Figure 2.6(a), which is
parameterized with 7 parameters. We fit the diffuse scattered intensities, displayed
in Figure 2.6(b).

(a) (b)

Figure 2.6: a) Scatterer with parameterized profile. The parameter p7, not indicated in figure, is the
thickness of the anti–reflective layer. b) Diffuse scattering given by the structure in Fig. 2.6(a).

For the 3D scatterer we use the following data:

Table 2.3: Layers thicknesses and material properties at 𝜆 = 13.5 nm

layer thickness [nm] n k
ARC TaBO 2 0.952 0.026

Absorber TaBN 58 0.95 0.031
Ru 0.5 0.88586 0.01727

Ru (Capping layer) 2 0.88586 0.01727
Si 1.8968 0.99888 0.00183

MoSi2 0.7986 0.96908 0.00435
Mo 2.496 0.92347 0.00649
MoSi2 1.8908 0.96908 0.00435

We replace the multilayer with an equivalent substrate that offers, for the given
wavelength and angles of incidence, approximately the same reflectance. The in
coming light field is a beam with a diameter of about 2𝜇𝑚 and radiating 5e11
photons/sec. The detection NA is 0.5. The computational domain is truncated on
all sides by the perfectly matched layers [42]. The meshing setting is such to have
a relative error in the far field evaluation of about 1%. The elastic net plots for the
isolated scatterer are reported in Figure 2.7.
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Figure 2.7: a) Elastic net coefficients as a function of the regularization parameter strength. b) Normal
ized local sensitivities in percentage.

Figure 2.7 reveals that all of the parameters should be kept in the model for a
proper fitting of the data, even though the contribution of p6 and p7 is quite limited
compared to the others. A thorough study of the applicability of model–based
reconstruction in 3–D a–periodic case, and related modeling work, is beyond the
purpose of this thesis.

2.3. Summary
We have discussed the inverse problem of scatterometry and offered a generic in
troduction. The focus has been on the reduction of complexity in inverse modeling.
We have devised an algorithm for automatic feature selection and compared its
outcome with sensitivity analysis methods. These methods can assists the modeler
by offering different viewpoints for selection of the appropriate degrees of freedom
in a parameterized physical structure.
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In EUV lithography the small features that get printed on a wafer are the result of
the projection of a mask on the wafer. In order to realize a mask a device maker
needs to design a chip which is translated into a file format. The file format, which
contains the mask layout, is then processed using various equipment to realize the
mask. EUV masks consist of a patterned mask blank which is composed of a low
thermal expansion substrate – needed to ensure that the absorbed light does not
cause distortions in the mask – followed by a series of 40–50 layers of alternating
silicon and molybdenum which compose a Bragg mirror followed by a protective
layer of ruthenium and an absorber material. The absorber has varying thickness
which gives the required pattern of the reflected light and consists of a tantalum
boron nitride film topped with an antireflective oxide.

The complexity of the EUV masks and of the processes by means of which they are
realized makes them vulnerable to defects. Defects on an EUV mask are classified
as phase or absorber defects. Phase defects are introduced by the substrate or by
particles in the multilayer (ML). Local pits and bumps in the ML cause the ideally
flat surface of the mirror to present irregularities of just nanometer height or depth
which cause a local intensity drop in the printed image [2]. Absorber defects are
caused by the improper patterning of the absorber and can cause a deviation of the
printed structures from their desired layout. These defects become critical when
they deteriorate the image of the mask on the wafer causing the device not to yield.
For this reason the development of mask inspection tools is an important part in the
further development of EUV lithography. These inspection tools need to scan the
entire mask to locate potential defective sites. The mask blank is firstly inspected.
After the inspection the locations of defects are reviewed. The printability of defects
is then assessed and one attempts to either avoid the printable defects – a process
by means of which the absorber pattern is moved along some degrees of freedom
(for instance shift/rotation) to hide the defects beneath the design pattern [3] – or
to repair them. The repair process involves an e–beam activated chemically induced
etching or deposition process that can compensate for the distortions introduced by
the defects [4]. The repair needs to be verified by a further review step to confirm
that the mask is defect–free [5]. The mask is subsequently inspected once the
absorber has been patterned.

This chapter introduces phase retrieval methods and discusses the framework within
which they operate. The methods are used, together with rigorous simulations, to
study their applicability for the imaging of patterned EUV masks. We remark that
the actinic inspection, which is the inspection done using a wavelength identical
to the one used in lithography to print the pattern, thus equal to 13.5 nm, of the
masks is particularly attractive. The reason for this is that detecting printable phase
defects is difficult when the inspection is carried out with deep ultra–violet (DUV)
or ebeam tools – which are at the moment the prevalent solution – because the
light at the corresponding wavelength does not penetrate the ML with appreciable
amplitude [6]. In order to reveal such defects the inspection should be carried
out via an actinic microscope. Further, images obtained using DUV or ebeam are
sometimes quite different from the aerial images of a scanner. In other words
an actinic microscope can mimic the scanner image. A few solutions for actinic
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inspection, presented in the literature are listed below.

A few actinic microscopes. Here are reported a few setups for actinic inspec
tion of defects.

A Fresnel zoneplate microscope: The SEMATECH Berkeley actinic inspection tool
(AIT). This is a “direct” EUV inspection tool and it employs a bending magnet at the
Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory as
its source. It employs a system of mirrors to focus the light at 6∘ on the EUV mask.
This is a dual–mode microscope that can be operated in two different modalities
[7]. In the scanning mode the mask moves continuously in the 2D plane of the
mask under the focused EUV spot, of dimensions of about 1𝜇𝑚, while the reflected
light intensity is measured by a photodiode. Both brightfield (specular reflectivity)
and darkfield scattering signals can be recorded. In the imaging mode a Fresnel
zoneplate lens projects an image of the illuminated mask surface, field size of about
40𝜇𝑚 onto an EUV charge–coupled device (CCD) camera with a magnification of
approximately 670×, or higher.
This tool was designed to initially emulate the resolution of a 0.25–NA 4x stepper
(a tool that prints directly in one illumination step a full image of the chip area
on a wafer with a demagnification of four times with respect to the mask reticle),
although other numerical aperture vales (0.3 and 0.35) were later made available
to the users [8]. Extensive work has been done by the researchers at SEMATECH
which has continued with the development of the SHARP microscope for future
technology nodes [9, 10].
As this solution directly projects the image at the camera, phase information is not
available. Two microscopes that can image the phase of the target are reported
below.

Zernike’s phase contrast microscopy. A way to retrieve the phase information, or
to image phase objects, is by means of phase contrast microscopy [11]. We briefly
discuss this method following Goodman [12].
Suppose that a transparent phase object is described by its transmission function

𝑡(𝐫) = exp(𝑖Φ(𝐫)), (3.1)

and that it is illuminated by a coherent spot which can be approximated as a plane
wave. We assume that the magnification is equal to unity and ignore the finite
extent of the NA of the lenses and any other non–idealities. We express the phase
in Eq. (3.1) as small variations about an average value Φ0 via a first order Taylor
expansion:

𝑡(𝐫) = 𝑒𝑖Φ0𝑒𝑖ΔΦ ≈ 𝑒𝑖Φ0[1 + 𝑖ΔΦ(𝐫)], (3.2)

where higher order terms have been neglected. The first term in Eq. (3.2) rep
resents a strong wave component, the undiffracted or zero–th order beam, that
passes through the sample accumulating a phase shift Φ0, while the second term
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generates diffracted light that is deflected from the optical axis. The image pro
duced by a brightfield microscope is then written as

𝐼𝑖 ≈ |1 + 𝑖ΔΦ|2 ≈ 1, (3.3)

where, as done previously, the second order term has been neglected. The diffracted
light arising from the phase structure is not observable in the focal plane because
it is in phase quadrature with respect to the strong undiffracted beam and it does
not lead to appreciable intensity fluctuations in the image plane. Zernike realized
this and proceeded to change the interference between the two beams by placing
a phase changing plate in the pupil plane (where only the phase of the undiffracted
beam is changed). The phase of the undiffracted beam was retarded with either
𝜋/2 or 3𝜋/2 radians with respect to the diffracted beams, for which the intensity
of the image becomes either

𝐼𝑖 = | exp(𝑖𝜋/2) + 𝑖ΔΦ|2 = |𝑖(1 + ΔΦ)|2 ≈ 1 + 2ΔΦ, (3.4)

or

𝐼𝑖 = | exp(𝑖3𝜋/2) + 𝑖ΔΦ|2 = | − 𝑖(1 − ΔΦ)|2 ≈ 1 − 2ΔΦ. (3.5)

The image intensity depends linearly on the phase modulation of the phase object
which can now yield appreciable intensity variations at the image plane.
The use of a phase contrast microscope for EUV mask inspection was proposed in
[13]. That study demonstrated that the phase contrast method is suitable for the
inspection of phase defects (bumps and pits in the ML) and it reported studies on
the signal strength of the defects with respect to a through focus scan and on the
impact of their size.

Phase retrieval and ptychography. This class of methods will be presented more
thoroughly in the next part of this chapter and a detailed description of these meth
ods will be given later on. Here it should be mentioned that lensless imaging has
been proposed and studied experimentally as a possible solution for actinic inspec
tion of EUV masks for instance in [14–16], where authors used synchrotron light
and a zone plate for the coherent illumination of the mask.

The remainder of this chapter (and of this thesis) is focused on iterative phase
retrieval methods. This class of methods is particularly attractive in that

• they enable the retrieval of phase information on top of the amplitude one,
which may lead to a higher sensitivity in the detection of defects,

• they could be employed as a technological solution for the metrology of phase
shifts imparted by phase–shift masks which may be adopted as a technological
solution for next–generation EUV lithography, and

• they reduce experimental complexity to a minimum (although this comes at
the cost of an increased computational burden).
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In what follows we shall discuss and familiarize with phase retrieval methods while
introducing results that will be necessary for the development of the algorithms that
will be discussed in the next chapter. We will focus exclusively on iterative methods.
For a broader discussion of methods for imaging of the phase please refer to [17].

3.1. Iterative phase retrieval methods
The phase problem appears in a variety of fields among which microscopy, wave
front sensing and crystallography and originates in cases in which it is not possible
to record the phase in experimental set–ups. In the usual case an object, described
by a certain complexvalued transmission or reflection function 𝑓(𝐫), is illuminated
by a coherent beam and the diffracted light is recorded in the far zone where –
as we described in Section 1.1.1 – the Fourier spectrum, 𝐹(𝐤), is recorded in in
tensity. The problem is then to retrieve the phase of 𝑓(𝐫) from the sole amplitude
information. In what follows we discuss this problem. We focus firstly on generic
physical requirements that ought to be satisfied to tackle the phase problem and
we subsequently discuss the mathematical aspects of phase retrieval.

3.1.1. Sampling and coherency requirements.
Sampling requirements. An early observation about the phase problem was
made in 1952 by Sayre [18] where the author noted that while we wish to recon
struct 𝑓(𝐫), we should keep in mind that the sampling is done on the intensity of its
Fourier transform, |𝐹(𝐤)|2, rather than on its complex–valued amplitude. Because
of the autocorrelation theorem the inverse Fourier transform of the intensity in the
momentum space is actually related to the autocorrelation of the object function
rather than to the object function itself:

|𝐹(𝐤)|2 = ℱ∫𝑓∗(𝐫′)𝑓(𝐫 + 𝐫′)𝑑𝐫′.

If we assume that the support of the object is 𝑅, than the support of the autocor
relation will be 2𝑅 and therefore the sampling at the far–field ought to be at twice
the rate than for the measurement of the complex field. This means that the pixel
spacing in the momentum domain has an upper bound of Δ𝑘 ≤ 1/2𝑅. It can be
shown [12] that in the far field it holds that 𝐤 = [𝑘𝑥 , 𝑘𝑦] = [

𝑥
𝜆𝑧0
, 𝑦𝜆𝑧0 ], therefore it

holds that for the sampling on the detector in the far field

Δ𝑥 ≤ 𝜆𝑧0
2𝑅 . (3.6)

Because the sampling in Fourier space is dictated by the field–of–view (FOV) in
real space of the sample plane, the finer sampling is achieved by zero–padding the
region around the object which experimentally means that the space outside the
support of the object has been filled with an optically transparent or opaque mask
which does not contribute to the diffraction pattern (apart from the undiffracted
beam).
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A different way to look at the oversampling requirement was presented by Miao
et al. in [19]. It was noted that, given that experimentally we retrieve intensity
information only, the data consists of:

|𝐹𝑚(𝐤)| = |
𝑁−1

∑
𝑛=0

𝑓𝑛(𝐱)𝑒−𝑖
2𝜋
𝑁 𝑚𝑛| with 𝑚 = 0, 1, .., 𝑁 − 1. (3.7)

When 𝑓(𝐱) is complex valued and no a–priori information is available, retrieving the
phase from Eq. (3.7) is not possible because this equation is underdetermined by
a factor 2. Although Eq. (3.7) refers to the 1D case the concept does not change
in higher order dimensions.

Spatial coherence. It is necessary for phase retrieval to be successful that the
scattered waves interfere at the detector and that the fringe visibility is not too low.
This translates in tight requirements in terms of coherence. It is demonstrated in
[20] that a coherence length larger than the extension of the autocorrelation of the
object is required to properly sample the Fourier transform of the autocorrelation
of the object. This is also understandable by Schell’s theorem which states that in
the far–field the diffraction pattern is proportional to the Fourier transform of the
product among the complex degree of coherence and the autocorrelation of the
diffracting structure [21]. Therefore the beam needs to illuminate the isolated ob
ject and the degree of coherence must be larger than the size of the autocorrelation
of the object.

Temporal coherence. The requirement in the temporal coherence length, 𝑙𝑇𝐶𝑜ℎ =
𝜆2/Δ𝜆, is that it has to be at least as great as the maximum path difference among
any pair of interfering rays [20]. This means that the coherence length must be
bigger than the path difference between rays from opposite sides of the sample
to the outer edge of the detector. It can be shown [17, 20] that this leads to a
condition that interrelates the coherence length to the width of the object and the
maximum scattering angle:

𝑙𝑇𝐶𝑜ℎ > 2𝑅𝜃𝑀𝐴𝑋 . (3.8)

3.1.2. Phase retrieval from a single diffraction pattern.
Mathematically speaking the generic phase problem aims to reconstruct an un
known signal 𝑓(𝐫) ∈ ℂ𝑛 satisfying 𝑀 quadratic constraints

find 𝑓(𝐫),
such that 𝑦𝑘 = |⟨𝐚𝑘 , 𝑓(𝐫)⟩|2 𝑘 = 1, ..., 𝑀, (3.9)

where 𝑦𝑘 ∈ ℝ is the measurement at pixel 𝑘, 𝐚𝑘 ∈ ℂ𝑛 is a discretized and known
operator and ⟨⋅, ⋅⟩ denotes the inner product. Notice that the Fourier phase problem
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in Eq. (3.7), which will be the focus of the following work, is a particular instance
of Eq. (3.9) and that additional geometric constraints may apply.
Suitable approaches to the problem can be devised by rewriting Eq. (3.9) in differ
ent forms.

Alternate Projection based methods. In case in which the forward operator
is a Fourier transform we can rewrite the problem in Eq. (3.9) as

minimize ||ℱ(𝑆(𝐫)𝑓(𝐫)) − 𝑏||2
such that |𝑏| = √𝑦

(3.10)

where we have introduced the support, 𝑆(𝐫), which defines – in the domain in which
the object is present – a non–zero window over the entire image:

𝑆(𝐫) = {1 if 𝐫 ∈ Ω
0 otherwise

(3.11)

where Ω is the domain in which the object is present. Eq. (3.10) says that we
should seek a complex object function that in real space can be factorized into
𝑏(𝐫) = 𝑆(𝐫)𝑓(𝐫) – meaning an object function that in real space occupies a bounded
domain – and that in Fourier space has an amplitude given by the observations √𝑦.
This has led to the proposal of a few algorithms that tackle the phase problem
using an alternating projections approach in which one propagates back and forth
among real and Fourier space, one iteration minimizing the quadratic functional in
Eq. (3.10) by enforcing the support constraint and the next enforcing a magnitude
equal to √𝑦 to the Fourier transform of the reconstructed signal [22]. Because the
projector is an operator that brings a point of a set to the closest point of the other
set, this class of algorithms can have a zig–zag path in the solution space which
may cause convergence issues when approaching the local minimum (Fig. 3.1(a)).
Various algorithms have been introduced that attempt to improve convergence,
by altering the path of the retrieved signal in the solution space, by changing the
projectors (example for the reflector operator Fig. 3.1(b)).
A list that describes the most used projectors can be found in [23]. Below we
report, as a particular case, the update rules of the Hybrid Input–Output (HIO) and
of the relaxed averaged alternating reflections (RAAR) that will be employed later
on:

𝑓𝐻𝐼𝑂𝑛+1 (𝐤) = [𝐏𝐒𝐏𝐌 + (𝐈 − 𝐏𝐒)(𝐈 − 𝛽𝐏𝐌)]𝑓𝐻𝐼𝑂𝑛 (𝐤),

𝑓𝑅𝐴𝐴𝑅𝑛+1(𝐤) = [
1
2𝛽(𝐑𝐒𝐑𝐌 + 𝐈) + (𝐈 − 𝛽)𝐏𝐌]𝑓

𝑅𝐴𝐴𝑅
𝑛 (𝐤),

(3.12)

where 𝐏𝐒 and 𝐏𝐌 are the projectors that are needed to satisfy the support and
magnitude constraints in real and momentum space respectively:

𝐏𝐒 ∶ 𝑓(𝐫) → 𝑆(𝐫)𝑓(𝐫),

𝐏𝐌 ∶ 𝑓(𝐫) → ℱ−1 {
𝐹(𝐤)
|𝐹(𝐤)|√𝑦}

(3.13)
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(a) (b)

Figure 3.1: a) An illustrative example of the zig–zag path of the solution in its space. Many projections
take place close to the optimal point that can cause stagnation or long convergence time. b) The reflector
projector can mitigate the convergence issues by overshooting the solution twice as far than the support
projector.

where 𝑦 is the recorded intensity and 𝐑 = 2𝐏𝐒 − 𝐈 is the reflector operator. In [23]
the author noticed heuristically that these methods present a different trajectory in
the solution space than the one in Fig. 3.1(a). For instance it was found that the
HIO can approach the local minimum in a spiral.

Phase retrieval as a cost functional minimization problem. We could also
think to tackle the problem in Eq. (3.10) by directly fitting the diffracted amplitudes:

minimize ℒ(𝐹, 𝑦) ≔ |||𝐹(𝐤)| − √𝑦||2. (3.14)

The problem of minimizing a real–valued functional of complex variables is usually
tackled with Wirtinger calculus [24]. Particularly Brandwood noticed how the steep
est descent direction is given by the component of the gradient along the complex
conjugate variable [25]. The update rule given by the steepest descent is then
given by:

𝑓𝑛+1(𝐫) = 𝑓𝑛(𝐫) − 𝜇∇𝑓∗ℒ(𝐹, 𝑦), (3.15)

where ∇𝑓∗ is the component of the gradient along the complex conjugate variable
𝑓∗. It can be shown that [17, 26]

∇𝑓∗ℒ(𝑓, 𝑦) = 𝑆(𝐫) [𝑓𝑛(𝐱) − ℱ−1 (
𝐹(𝐤)
|𝐹(𝐤)|√𝑦) (𝐫)] , (3.16)

and one can see that for 𝜇 = 1 Eqs. (3.153.16) are the update rule of the error
reduction algorithm [26] which is then given by the direct application of 𝐏𝐒 and
𝐏𝐌 defined in the previous section. The fact that phase retrieval can be cast as a
cost functional minimization problem has been instrumental in the development of
more advanced optimization algorithms, such as proximal methods [27], gradient
descent approaches with dynamic stepsize (Wirtinger flow) [28] and methods based
on convex relaxation [29] and sparsity [30] to mention a few. In the remainder of
this thesis we will approach the phase retrieval problem predominantly as a cost
functional minimization problem.
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A note on uniqueness It is worthwhile to notice that the phase problem is non–
convex and therefore there are no theoretical guarantees on the convergence to
the global minimum. The question of uniqueness was studied in some details in a
number of references and it was shown in [31–33] that in the noiseless case, for
dimensions 𝑁 ≥ 2, a real signal with a finite support can in some cases be uniquely
determined – apart from the trivial ambiguities of a global phase shift, conjugation
and spatial shift – by the magnitude of its Fourier transform. In practice the inclusion
of prior information has been shown in some cases to yield uniqueness [34, 35].
Anyway the question of uniqueness remains open and it should be clear that there
is no guarantee that the ground truth is retrieved when applying the algorithms on
the measured data.

3.1.3. Ptychography
Ptychography is a form of coherent diffractive imaging (CDI) that employs a scan
ning probe, 𝑃(𝐫) to sequentially illuminate an object at 𝐽 partially overlapping probe
positions specified by a position vector 𝐑𝑗. The illuminated object is assumed to be
optically thin and it is described by its transmission/reflection function 𝑂(𝐫). It is
then assumed that it is possible to rewrite the exit–wave at the 𝑗–th probe position
as

𝜓𝑗(𝐫) = 𝑃(𝐫 − 𝐑𝑗)𝑂(𝐫), (3.17)

and consequently the assumed intensity at the 𝑗–th probe position 𝐑𝑗 is modeled
as

𝐼𝑗(𝐤) = |ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂(𝐫))|2. (3.18)

The partial overlap at different probe positions and the scanning of the probe intro
duce redundancy and translational diversity in the data set which is subsequently
computationally processed to retrieve a large field–of–view and a diffraction limited
image of the studied object in both amplitude and phase.
It can be shown [17] that the ptychographic phase retrieval problem, in analogy
with the single intensity case, can be thought of – per probe position– as

• either the problem of finding the function that lies simultaneously in the do
main of the two operators 𝐏𝐒 and 𝐏𝐌 where

(𝐏𝐒𝑓)𝑗(𝐫) = 𝑃(𝐫 − 𝐑𝑗)𝑂(𝐫)

(𝐏𝐌𝑓)𝑗(𝐫) = ℱ−1 {
𝐹𝑗(𝐤)
|𝐹𝑗(𝐤)|

√𝐼𝑗(𝐤)}
(3.19)

• or the problem of fitting the diffracted amplitudes:

minimize ℒ(𝑂, 𝐼𝑗) ≔ |||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂(𝐫))| − √𝐼𝑗(𝐤)||
2
. (3.20)

Because the derivations of Eqs. (3.19, 3.20) are a generalization of what has been
presented above and because they are outlined elsewhere [17] the details are omit
ted here. The derivations will be carried out explicitly in the next chapters at those
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occasions where it will be necessary.

It is worthwhile to notice that ptychography, a technique that was initially thought
of as a means to retrieve the phase of an exit wave by letting the diffracted orders
interfere among themselves [36], and has begun in the area of scanning trans
mission electron microscopy by Rodenburg [37], has developed into an extremely
powerful computational imaging technique. On top of the retrieval of the trans
mission/reflection function of the object [37] it is now possible to reconstruct also
the illumination [38–40] together with its eigenmodes when the probe is partially
coherent [41, 42]. Experimental efforts and algorithm advancements paved the
way towards reconstruction of thick samples [43, 44], three dimensional imaging
of biological samples [45] and high resolution imaging with a synthetic high nu
merical aperture as done with Fourier ptychography at visible [46] and Xray [47]
wavelengths to mention a few.

It has to be emphasized that the only physical assumption made in the ptycho
graphic methods is that the exit wave can be partitioned into the product of the
probe and the object as in Eq. (3.17). In contrast with the method employed in scat
terometry, presented in the previous chapter, we do not use any physics based and
computationally heavy predictive model to infer the output. In this sense it could
be argued that ptychography is somehow similar to a model free approach where
the relevant information is inferred solely from the data, although this comes at the
price of accuracy as the forward model is not a fully rigorous one. By relying on
an approximate modeling of light–matter interaction, the ptychographic approach
provides a very flexible framework for diffraction–limited imaging through phase
retrieval which – together with its relatively easy implementation – has been one
of the reasons of its wide appeal and success. At the same time one may won
der whether the ptychographic reconstruction could be ameliorated by including
a–priori, domain specific and physics–based knowledge. Given that the most accu
rate way to compute light–matter interaction is given by solving Maxwell’s equations
we can ask ourselves whether a way can be devised to interface the ptychographic
method with the rigorous model–based methods. This question, on top of the tech
nological interest for actinic inspection of EUV layouts, motivates the research work
that follows below and in the next chapter.

3.2. EUV mask feature reconstruction via phase re
trieval

In this section we apply some of the concepts and methods that have been in
troduced in this chapter to the problem of EUV mask imaging. The methods and
algorithms are reported in more details below.

Hybrid Input–Output (HIO). As discussed in Subsection 3.1.2 the hybrid input–
output (HIO) algorithm [26], makes use of constraints in conjugated planes to drive
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the reconstruction. The recorded field amplitude |𝐹(k)| is used as a constraint in
the Fourier space, while the extent of the object in real space, or support, is used
as a constraint in real space. Information about the dimension of the object in real
space is available even without any prior information, as it can be computed by an
inverse Fourier of the recorded intensity which yields the autocorrelation of the
object function [48]. The algorithm proceeds by iteratively alternating projections
between Fourier space and real space.
At the 𝑛–th iteration:

1. given the current estimate of the object 𝑓𝑛(r)

2. we Fourier transform 𝑓𝑛(r) to get the estimated diffraction field 𝐹𝑛(k).

3. The current guessed Fourier amplitudes |𝐹𝑛(k)| are replaced by the measured
ones, √𝑦, while the phase of the current iterate is retained to get an updated
diffracted field 𝐹′(k).

4. The current Fourier estimate is propagated back to real space by means of an
inverse Fourier transform 𝑓′(r), and

5. the support constraint, S, is used to get an updated estimate of the object:

𝑓𝑛+1(r) = {
𝑓′𝑛(r), if r ∈ 𝑆
𝑓𝑛(r) − 𝛽𝑓′𝑛(r), otherwise.

(3.21)

In Eq. (3.21) the definition of 𝑆 is slightly different from the case of a real object
(an object described by a real index of refraction) because, for the case of objects
described by a complex refractive index, 𝑆 denotes the portion of space where at
the same time the object is non–zero and the imaginary part of the retrieved object
function is positive [19]. This is a way to include a priori information of the object
in the problem in the sense that for all of the materials that we considered in this
thesis the index of refraction, 𝔫 = 𝑛 + 𝑖𝑘, has a positive 𝑘.

Relaxed Averaged Alternating Reflections (RAAR). The RAAR algorithm
tries to approach the local solution of the phase problem by projecting the cur
rent solution to a closed set which is twice as far. This is done introducing the
reflector operator R = I + 2(P − I), where I is the identity operator and P is the
projection operator as previously explained in Section 3.1.2 [23, 49].
The abve step in the HIO is replaced by:

𝑓𝑛+1(r) = {
𝑓′𝑛(r), if r ∈ 𝑆
𝛽𝑓𝑛(r) − (1 − 2𝛽)𝑓′𝑛(r), otherwise.

(3.22)
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Ptychography. In ptychography, a set of computed far–field diffraction patterns
is processed by certain algorithms to get to an image via phase retrieval. In this
work we have used the ptychographical iterative engine (PIE). At the 𝑛–th iteration:

1. Given the guessed object 𝑂𝑔,𝑛,

2. Multiply the current guessed object by the illumination function at position R
to get the guessed exit wave at the current position

𝜓𝑔,𝑛(𝐫, 𝐑) = 𝑃(𝐫 − 𝐑)𝑂𝑔,𝑛(𝐫), (3.23)

3. Fourier transform the exit wave 𝜓𝑔,𝑛(𝐫, 𝐑) to get Ψ𝑔,𝑛(𝐤, 𝐑) = ℱ[𝜓𝑔,𝑛(𝐫, 𝐑)] =
|Ψ𝑔,𝑛|𝑒𝑖𝜃𝑔,𝑛(𝐤,𝐑).

4. Enforce the measured amplitude at the far–field on the current far–field guess,
to get a corrected guess:

Ψ𝑐,𝑛(𝐤, 𝐑) = |Ψ|𝑒𝑖𝜃𝑔,𝑛(𝐤,𝐑). (3.24)

5. Inverse Fourier transform to get a revised exit wave:

𝜓𝑐,𝑛(𝐫, 𝐑) = ℱ−1[Ψ𝑐,𝑛(𝐤, 𝐑)]. (3.25)

6. Update the transmission (or reflection) function of the object in the area cov
ered by the probe by

𝑂𝑔,𝑛+1 = 𝑂𝑔,𝑛 +
|𝑃(𝐫 − 𝐑)|
|𝑃𝑚𝑎𝑥(𝐫 − 𝐑)|

𝑃∗(𝐫 − 𝐑)
(|𝑃∗(𝐫 − 𝐑)|2 + 𝛼)𝛽(𝜓𝑐,𝑛(𝐫, 𝐑) − 𝜓𝑔,𝑛(𝐫, 𝐑)),

(3.26)
where 𝛼 prevents division by zero and 𝛽 is an appropriately chosen feedback
parameter.

7. Move the probe to the next position 𝐑 so that there is sufficiently overlap
between neighboring probes.

8. Repeat 2 to 7 for a sufficient number of iterations.

3.2.1. Numerical Results
Single Intensity phase retrieval
In the simulation study that follows we employ the methods described above to
retrieve the phase of nontrivially shaped isolated nanostructures. The x–polarized
EUV radiation illuminates a Mo/Si multilayer coated reflective mask, with a patterned
absorber profile on top of it. The angle of incidence is 6∘, for which the multilayer
is in resonance, giving a reflectance of 60–70%. We replace the multilayer with an
equivalent substrate that offers, for the given wavelength and angles of incidence,
approximately the same reflectance. In order to do so we compute the reflectance
of the multilayer via the transfer matrix method (TMM) [50]. In the TMM algorithm
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Figure 3.2: One 𝑦 polarized plane wave illuminated a system made by 3 successive materials and two
interfaces at 𝑧 = 0 and 𝑧 = 𝑑.

the multilayer response is computed by cascading the responses of single layers
which are accounted for in a matrix𝓜. To compute the theoretical response of the
multilayer we consider firstly the case of a single layer illuminated by an 𝑠 polarized
(𝑦–polarized) plane wave 3.2 The problem depicted in Fig. 3.2 consists of a bound
ary value problem which is solved by solving the Helmholtz equation separately at
each layer and enforcing boundary conditions (continuity of the tangential compo
nent of electric and magnetic field) at the interface between every two layers. We
have for the permittivity 𝜖(𝑧):

𝜖(𝑧) = {
𝜖1, for 𝑧 < 0,
𝜖2, for 0 < 𝑧 < 𝑑,
𝜖3, for 𝑧 > 𝑑.

(3.27)

.
The materials are further assumed to be isotropic. The generic solution of the
electric field, which is assumed to be polarized in the 𝑦 direction is:

𝐸(𝑥, 𝑧) = {
𝐴1𝑒𝑖(𝑘1𝑥𝑥+𝑘1𝑧𝑧) + 𝐵1𝑒𝑖(𝑘1𝑥𝑥−𝑘1𝑧𝑧), for 𝑧 < 0,
𝐴2𝑒𝑖(𝑘2𝑥𝑥+𝑘2𝑧𝑧) + 𝐵2𝑒𝑖(𝑘1𝑥𝑥−𝑘2𝑧𝑧), for 0 < 𝑧 < 𝑑,
𝐴3𝑒𝑖(𝑘3𝑥𝑥+𝑘3𝑧(𝑧−𝑑)), for 𝑧 > 𝑑,

(3.28)

where 𝐴𝑖=1,2,3 are the coefficients for the forward propagating waves and 𝐵𝑖=1,2,3
are the coefficients for the backwards propagating waves. The amplitude of the
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magnetic field can be computed by the relation 𝐇(𝑥, 𝑧) = 𝐤 × 𝐄/𝜔𝜇 to give:

𝐻(𝑥, 𝑧) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝐴1
𝜔𝜇 [

−𝑘1𝑧
0
𝑘1𝑥

] 𝑒𝑖(𝑘1𝑥𝑥+𝑘1𝑧𝑧) + 𝐵1
𝜔𝜇 [

𝑘1𝑧
0
𝑘1𝑥
] 𝑒𝑖(𝑘1𝑥𝑥−𝑘1𝑧𝑧), for 𝑧 < 0,

𝐴2
𝜔𝜇 [

−𝑘1𝑧
0
𝑘1𝑥

] 𝑒𝑖(𝑘2𝑥𝑥+𝑘2𝑧𝑧) + 𝐵2
𝜔𝜇 [

𝑘2𝑧
0
𝑘2𝑥
] 𝑒𝑖(𝑘1𝑥𝑥−𝑘2𝑧𝑧), for 0 < 𝑧 < 𝑑,

𝐴3
𝜔𝜇 [

−𝑘3𝑧
0
𝑘3𝑥

] 𝑒𝑖(𝑘3𝑥𝑥+𝑘3𝑧(𝑧−𝑑)), for 𝑧 > 𝑑.

(3.29)
Because we assume 𝐴1 and 𝐤1 to be known, and because 𝑘𝑥 is continuous across
interfaces and 𝑘𝑧 is determined by angles which are known via the laws of re
flection and refraction the only unknowns in Eqs. (3.28) and (3.29) are [𝐴2, 𝐴3]
and [𝐵1, 𝐵2]. The four equations necessary to solve the problem are given by the
boundary conditions at the two interfaces. At the first interface at 𝑧 = 0 it holds for
the electric and magnetic field respectively:

{
𝐸1 = 𝐴1 + 𝐵1 = 𝐴2 + 𝐵2,
𝐻1 = √

𝜖0
𝜇0
(𝐴1 − 𝐵1)𝑛0 cos(𝜃𝑖1) = √

𝜖0
𝜇0
(𝐴2 − 𝐵2)𝑛1 cos(𝜃𝑖2),

(3.30)

where 𝐸1 and 𝐻1 are the tangential components of the electric and magnetic field
at the first interface. At the second interface at 𝑧 = 𝑑 it holds for the electric and
magnetic field respectively:

{
𝐸2 = 𝐴2𝑒𝑖𝑘2𝑧𝑑 + 𝐵2𝑒−𝑖𝑘2𝑧𝑑 = 𝐴3,
𝐻2 = √

𝜖0
𝜇0
(𝐴2𝑒𝑖𝑘2𝑧𝑑 − 𝐵2𝑒𝑖𝑘2𝑧𝑑)𝑛1𝑐𝑜𝑠(𝜃𝑖1) = √

𝜖0
𝜇0
𝐴3𝑛3𝑐𝑜𝑠(𝜃𝑡3),

(3.31)

where 𝐸2 and 𝐻2 are the tangential components of the electric and magnetic field
at the second interface. The system of Equations (3.31) can be solved for 𝐴2 and
𝐵2 which once substituted in the systems of Equations (3.30) yields a matrix that
links the fields at the two interfaces:

[𝐸1𝐻1] = [
cos(𝑘1𝑑 cos𝜃𝑖2) (𝑖 sin(𝑘1𝑑 cos𝜃𝑖2)/𝑌1)
𝑌1𝑖 sin(𝑘1𝑑 cos𝜃𝑖2) cos(𝑘1𝑑 cos𝜃𝑖2) ] [𝐸2𝐻2] = 𝓜1 [

𝐸2
𝐻2] , (3.32)

where we have introduced the complex admittance 𝑌1 = √𝜖0/𝜇0𝑛1 cos(𝜃𝑖2). Be
cause tangential components of the electromagnetic field are continuous across
interfaces we can compute the response of the whole multilayer structure as a
sequence of products of single–layer matrices:

[𝐸1𝐻1] = 𝓜1𝓜2…𝓜𝑛 [
𝐸𝑛+1
𝐻𝑛+1] = [

𝑚11 𝑚12
𝑚21 𝑚22] [

𝐸𝑛+1
𝐻𝑛+1] . (3.33)
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We come back now at the single layer case. We assume that medium 1 in Eq.
(3.27) is air and that medium 3 is a certain substrate and we define the respective
admittance 𝑌0 = √𝜖0/𝜇0𝑛0 cos(𝜃𝑖1) and 𝑌𝑆 = √𝜖0/𝜇0𝑛3 cos(𝜃𝑡3) so that we can use
Eqs. (3.30–3.31) in Eq. (3.32) to obtain

[ 𝐴1 + 𝐵1
(𝐴1 − 𝐵1)𝑌0] = 𝓜1 [

𝐴3
𝐴3𝑌𝑠] . (3.34)

We can now introduce the reflection and transmission coefficients ,𝑟 = 𝐵1/𝐴1 and
𝑡 = 𝐴3/𝐴1, and expand Eq. (3.34) to find:

{1 + 𝑟 = 𝑚11𝑡 + 𝑚12𝑌𝑠𝑡,(1 − 𝑟)𝑌0 = 𝑚21𝑡 + 𝑚22𝑌𝑠𝑡.
(3.35)

If we solve for 𝑟 and 𝑡 we get :

𝑟 = 𝑌0𝑚11 + 𝑌0𝑌𝑆𝑚12 −𝑚21 − 𝑌𝑠𝑚22
𝑌0𝑚11 + 𝑌0𝑌𝑆𝑚12 +𝑚21 + 𝑌𝑆𝑚22

,

𝑡 = 2𝑌0
𝑌0𝑚11 + 𝑌0𝑌𝑆𝑚12 +𝑚21 + 𝑌𝑆𝑚22

.
(3.36)

Therefore, when we wish to compute 𝑟 and 𝑡 of a multilayer we need to know the
characteristic matrix of each layer, multiply them in proper order as in Eq. (3.33),
and substitute the elements of the resulting matrix in the equations above. The
reflectance of the multilayer composed of the materials given in Table 3.2.1 is given
in Fig. (3.3).

(a) (b)

Figure 3.3: Reflectance of the multilayer given by the materials specified in 3.2.1 as a function of (a)
wavelength and (b) incidence angle.

The incoming light field is a Gaussian beam, represented in Fig. 3.4, with a 3𝜎
diameter of about 2𝜇𝑚 and radiating 5e11 photons/sec. The detection NA is 0.6.
The computational domain, of about 160×160×90𝑛𝑚3 is truncated on all sides by
perfectly matched layers and the far field data is sampled to guarantee an abundant
oversampling ratio (≈ 10). The materials used for the simulations are reported
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in Table 3.2.1. Computations are performed using the rigorous forward Maxwell
solver JCMsuite [51]. The rigorous simulation tool used in this case has demanding
memory requirements, therefore in order to simplify the computational experiment,
we have replaced the detailed multilayer substrate with an equivalent substrate that
offers – for the same 𝜆 and angle of incidence – about the same reflectance. This
was done by fitting the curves in Fig 3.3.
Further we stress that, because of the reflective nature of EUV masks, the computa
tional phase retrieval study is done in reflection. This means that in the results that
follow we will retrieve the reflection function of the mask, in particular its amplitude
is of interest as we consider the multilayer to be perfectly flat and do not introduce
any phase defects in the simulations.
At the 𝑘–th iteration, an error metric is used to monitor the phase retrieval[19, 26]:

𝐸𝑘 = (
∑𝐫∉𝑆 |𝑓′𝑘(𝐫)|2
∑𝐫∈𝑆 |𝑓′𝑘(𝐫)|2

)
1/2

, (3.37)

where, as described in 3.21, 𝑓′𝑘(𝐫) is the real space estimate obtained at the 𝑘–th
iteration after enforcing the measured Fourier amplitudes in the Fourier transform of
the object. 𝑆 is the support defined as the locus of points where it holds at the same
time that 𝑓(𝐫) ≠ 0 and the imaginary part of the retrieved object function is positive
(i.e. we enforce in the support constraint the knowledge that the materials is lossy).
The error metric in Eq. (3.37) is often used in the works of Miao (for instance [19]).
It reflects the idea that, while the object is getting reconstructed through multiple
iterations, the number of pixels where the retrieved function violates the support
constraint should decrease.

Table 3. Layers thicknesses and material properties at 𝜆 = 13.5 nm
layer thickness [nm] n k
ARC TaBO 2 0.952 0.026
Absorber TaBN 58 0.95 0.031
Ru 0.5 0.88586 0.01727
Ru (Capping layer) 2 0.88586 0.01727
Si 1.8968 0.99888 0.00183
MoSi2 0.7986 0.96908 0.00435
Mo 2.496 0.92347 0.00649
MoSi2 1.8908 0.96908 0.00435

In what follows we considered structures of increasing complexity. Basically we
simulated a single isolated nanostructure given by a patterned absorber where the
patterning has been changed so to give structures of increasing geometrical com
plexity.
Figure 3.5 reports the results for an I–shaped structure, Figure 3.6 the ones for an L–
shaped structure while in Figure 3.7 we considered a U–shaped structure. The pixel
size in the real space has been computed by the theoretical limit 𝛿𝑥 = 𝜆

2𝑁𝐴 ≈ 11nm.
The images in Figs. 3.5 – 3.7 have been obtained by solving the inverse problem
a few times, selecting the 4 reconstructions with the lowest error and aligning and
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Figure 3.4: Probe used for the computational experiment. (a) full probe and (b) cross section.
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Figure 3.5: Reconstruction – magnitude – for an I–shaped nanostructure. (a) theoretical object (ampli
tude) obtained by direct inversion of the computed far–field; (b) reconstructed object (amplitude); (c)
far field intensities; (d) cross–section, along the white line in (a), of the theoretical and the reconstructed
amplitude of the object reflection function and (e) error according to Eq. (3.37).
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Figure 3.6: Reconstruction – magnitude – for an L–shaped nanostructure. (a) theoretical object (ampli
tude); (b) reconstructed object (amplitude) and (c) error according to Eq. (3.37).
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Figure 3.7: Reconstruction –magnitude – for an U–shaped nanostructure. (a) theoretical object (ampli
tude); (b) reconstructed object (amplitude); (c) support used for the reconstruction; (d) cross–section,
along the line in (a), of the theoretical and the reconstructed amplitude of the reflection function of the
object and (e) error according to Eq. (3.37).
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averaging them. The feedback parameter 𝛽 was heuristically set to 0.86. We have
added noise for a SNR = 90 dB. The cross sections in Figs. 3.6 and 3.7 (d) reveal that
the phase retrieval reconstruction mimics closely, albeit with some imperfections,
the theoretical object. The retrieval of the I and L–shaped structures did not require
any prior information about the precise shape of the object and we could retrieve
the object reflection function by using a loose square support of about 20 pixel side.
Notice that using a tighter support is generally favorable in that it results in a faster
convergence. Reconstructing the U–shaped structure was more involved and we
used prior information about the object, which is generally available in lithography,
to generate a suitable support. In this case this was done by finding the edges of
Fig 3.7(a) and filling them with ones. This support is depicted in Fig 3.7(c).

Ptychography
In what follows we describe the simulation results for actinic (𝜆 = 13.5 nm) in
spection of a specific EUV mask layout. To generate the data for the numerical
ptychographic experiment we have used a rigorous volume–integral Maxwell Solver
[52, 53]. The solver is formulated for the problem of scattering from periodic ob
jects hence, in order to avoid crosstalk among adjacent cells, we have opted for a
supercell approach. The cell size is Λ = 3.5𝜇𝑚. The sampling in the far field and in
the illuminating NA equals 2𝜋Λ . Although the lateral dimensions of the supercell are
of the order of hundreds times the wavelength, the computational complexity and
the memory requirement necessary to solve the forward problem are maintained
relatively low, of the order of 𝒪(𝑁 log𝑁) where N is the number of unknowns (the
coefficients of the Fourier series to be computed). The probe is assumed to be a
Gaussian beam with a 3𝜎 amplitude of about 1.5 𝜇𝑚 and it is described by its angu
lar spectrum. The scattered far–field is evaluated, for each of the plane waves which
compose the illumination, in parallel on a multicore high–performance–computing
(HPC) cluster. The output far–field that results from the interaction of the probe
with the object is then given by the weighed coherent superposition of the individual
contributions. The ptychographic scans are performed shifting the object in 5 posi
tions over a distance of 0.2𝜇𝑚 in positive and negative xdirection and ydirection,
respectively. The probe is polarized in the x direction – parallel to the horizontal
axis of the supercell – by proper linear combination of s and p polarization states.
The collection NA is 0.6, close to the value (0.54) used for an identical wavelength
in [54].
Although the sample is very complex, with a thickness of the structures which is
about 5 to 6 times the wavelength, and although the data has been generated by
rigorously solving Maxwell’ s equations, the scalar ptychographic modeling approach
delivers a high quality reconstruction (Fig. 3.8).
Some of the distances among structures are of the order of the wavelength and they
appear quite resolved in the final image of Figs. 3.8 (a–c). In spite of the fact that
the data–set was generated using a rigorous solver it was possible to obtain a high
quality reconstruction using a the ptychographic approach, without recurring to any
cumbersome model–based approach. In other words it was possible to interpret
the output of the rigorous solver in terms of the ptychographic object reflection
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Figure 3.8: (a) Ptychographic reconstruction – magnitude – of an ensemble of nanostructures. (b) Phase
of the reconstruction. (c) Zoom of (a).

function modeling. If this is true one may speculate that it should be possible to
use the Maxwell solver as an additional building block in ptychography, by means
of which one could include further information within this model–free CDI method.
This speculation is the driving force of the study presented in the next chapter.
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4
Improving the ptychographic
inspection of EUV reticles by
including prior information

We have articulated in Section 1.1.1 that a–priori information is important when
solving an inverse problem, because it can mitigate the ill–conditioning of the prob
lem and it restricts the search space towards appropriate solutions. We have no
ticed in the previous chapter that the phase problem is a non–convex optimization
problem and therefore multiple local minima or saddle points are present in the op
timization landscape. A further remark was that the sole physical assumption made
in ptychography is that light matter interaction can be modeled as the product of a
probe function and an object function, the latter either being an object transmission
function or an object reflection function. Therefore one might consider ptychogra
phy as a sort of model free method where the details of the object get retrieved
solely by processing the data and by assuming that the exit wave can be partitioned
as the product of the probe and the object, without the need of interfacing with a
sophisticated physics based simulation tool as we did in Chapter 2.
Inspired by these observations, this chapter presents and discloses inversion meth
ods that enrich the usual ptychographic approach by incorporating a–priori infor
mation which is generated by means of fully rigorous Maxwell solvers. The two
different, and seemingly incompatible, mathematical and physical models – the 3D,
modelbased, fully rigorous and vectorial one and the 2D model free and scalar
ptychographic model – are interfaced and combined. Their joint use is found to
be beneficial for the imaging of an intricate EUV absorber layout and to lead to
the detection of smaller absorber defects with a signal–to–noise (SNR) ratio which

Parts of this chapter have been published in Applied Optics 59, 5937–5947 (2020) [1] and in Extreme
Ultraviolet lithography 2020, International Society for Optics and Photonics (SPIE, 2019) 11517, 13–21
[2]
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is higher than the one computed with the standard ptychographic iterative engine
(PIE).

4.1. A variational method for the inclusion of prior
information in ptychography

As we have seen in Section 3.1.3, Eq. (3.20), ptychography can be seen as a cost
functional minimization problem in which, considering the j–th probe position 𝐑𝑗
with probe 𝑃(𝐫−𝐑𝑗), one seeks a certain object 𝑂𝑗(𝐫) that best fits the j–th recorded
diffraction intensity 𝐼𝑗(𝐤):

minimize ℒ(𝑂𝑗 , 𝐼𝑗) ≔ ||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑗(𝐫)) − √𝐼𝑗(𝐤)||
2
. (4.1)

In Eq. (4.1) and in all that follows we assume the probe to be known. The PIE pro
ceeds in a sequential fashion and the complete object, 𝑂(𝐫), is reconstructed by the
sequential reconstruction of its multiple views [3]. Notice that in Eq. (4.1) we did
not include a summation over the probe positions because the algorithms we have
used in this thesis optimize the object one probe position at a time. As previously
stated the phase problem is a non–convex optimization problem – meaning that
there can be multiple local minima – in which the reconstruction is obtained solely
by processing the data set, therefore one might wonder whether the inclusion of
physically sound prior knowledge in the algorithm can lead to a more satisfactory
solution. Prior information is commonly included introducing a regularization term
to the data discrepancy functional. In this case:

𝑂𝛼𝑗 (𝐫) ≔ argmin{ℒ(𝑂𝑗 , 𝐼𝑗) + 𝑅𝛼(𝑂𝑗)} ≔ argmin{ℒ𝛼(𝑂𝑗 , 𝐼𝑗)}, (4.2)

where 𝑅𝛼(𝑂𝑗) is the regularizer, which depends upon the regularization parameter
𝛼, ℒ𝛼(𝑂𝑗 , 𝐼𝑗) is the regularized cost functional at the j–th probe position and 𝑂𝛼𝑗 (𝐫)
is the associated object update. 𝑅𝛼(𝑂𝑗) is intended as a penalty term in variational
approaches or as the negative logarithm of a prior probability distribution from the
Bayesian viewpoint [4, 5]. Different regularizers (priors) have been studied in the
field of image reconstruction, for instance structural priors [6], sparsity promoting
priors [7] or edge–preserving priors. An important example of the latter is total
variation (TV), in which 𝑅(𝑂) = ||∇𝑂(𝐫)||1 . TV is commonly employed due to its
effectiveness in smoothing noise – by favouring images that have a sparse gradient
– while preserving edges. In recent years there have been a number of studies
reporting implementations of TV regularized ptychography [8–10]. In this work we
have taken a different approach and instead of considering a regularizer that pro
motes generic properties of the reconstructed image (like its sparsity or the sparsity
of its gradient), the regularizer 𝑅𝛼(𝑂𝑗) has been designed to promote adhesion to
a given prior image (object):

𝑅𝛼(𝑂𝑗) = 𝛼 ||𝑂𝑗(𝐫) − 𝑂𝑝,𝑗(𝐫)||
2 , (4.3)



4.1. A variational method for the inclusion of prior information in
ptychography

4

65

where 𝑂𝑝,𝑗(𝐫) is the prior of the object at the j–th probe position. Crafting a “good”
prior is challenging. This task requires one to properly account for the physics that
contributes to the process of image formation. For instance it is known that at EUV
wavelengths waveguiding effects and diffraction of light along the thickness of the
absorber materials have an impact on image formation [11]. Further, the phase of
the scattered wave Φ = 𝐤⋅𝐫 accumulates linearly as photons pass through an object
and the rate of accumulation depends on the refractive index which changes from
material to material [12]. This is important to realize when one wants to compute
an a–priori map for the phase of a wave scattered by nanostructures that consist of
a sequence of layers of different materials and thicknesses. Such a situation applies
to the multilayer Bragg–reflector and to the absorber layers of an EUV mask. These
aspects should be properly encoded in the prior, in order for it to be reliable and
accurate.
These physical aspects and the intrinsically 3D thickness effects can be duly ac
counted for by recurring to three dimensional fully rigorous simulations. Forward
Maxwell solvers can compute the complex field, which is a rigorous solution in terms
of amplitude and phase of Maxwell’s equations, for a given 3D scattering geometry
[13, 14]. It is important to notice that light–matter interaction is modeled differ
ently in the rigorous Maxwell solvers than in ptychography. On the one hand the
rigorous electromagnetic solvers provide an accurate solution of Maxwell’s equa
tion, on the other hand ptychography models light–matter interaction in terms of
the 2D “probe–times–object” approximation. This fundamental difference in the
physical models could be a reason of concern when intermixing the use of the rig
orous solvers with ptychographic algorithms. In other words, a certain rigorously
computed complex–valued far–fieldΨ𝑀𝑎𝑥𝑤 can be used in ptychographic algorithms
only when it can be interpreted in terms of the 2D ptychographic approximation of
light matter interaction:

Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 ≈ ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑝,𝑗(𝐫)), (4.4)

where Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 is the far–field, amplitude and phase, as computed by the forward
Maxwell solver, for the nominal – a priori known – scattering geometry on the mask.
Notice that although ptychography assumes the object function to be two dimen
sional, Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 is computed by rigorous 3D simulations. In other words, the 2D
object reflection function comprises genuine 3D information about the object. No
tice further that Eq. (4.4) effectively links and combines two fundamentally different
models when solving the inverse problem. Bearing Eq. (4.4) in mind we proceed
to write, at the j–th probe position, the ptychographic cost functional inclusive of
the prior term by using Eqs. (4.1–4.3):

ℒ𝛼(𝑂𝑗 , 𝐼𝑗) ≔ ℒ(𝑂𝑗 , 𝐼𝑗) + 𝑅𝛼(𝑂𝑗) =

= |||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑗(𝐫))| − √𝐼𝑗(𝐤)||
2
+ 𝛼 ||𝑂𝑗(𝐫) − 𝑂𝑝,𝑗(𝐫)||

2 ,
(4.5)

where 𝛼 regulates the interplay among the two terms on the right hand side of
Eq. (4.5). The second term in (4.5) penalizes large deviations of the reconstructed
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object from the prior of the object. Eq. (4.5) can be minimized analytically using
Wirtinger calculus to yield the update rule that can be used in a gradient descent
algorithm. The gradient of Eq. (4.5) with respect to 𝑂∗ is:

∇ℒ𝛼(𝑂𝑗 , 𝐼𝑗) = 𝑃∗𝑗 [ℱ−1(Ψ𝑗 −Ψ𝑐,𝑗)] + 𝛼(𝑂𝑗 − 𝑂𝑝,𝑗), (4.6)

and, by defining
∇ℒ1 ≔ 𝑃∗𝑗 [ℱ−1(Ψ𝑗 −Ψ𝑐,𝑗)] ,
∇ℒ𝛼2 ≔ 𝛼(𝑂𝑗 − 𝑂𝑝,𝑗),

(4.7)

we can rewrite Eq. (4.6) as

∇ℒ𝛼(𝑂𝑗 , 𝐼𝑗) = ∇ℒ1 + ∇ℒ𝛼2 . (4.8)

In Eq. (4.6) Ψ𝑗 = ℱ(𝑃𝑗𝑂𝑗) is the guessed wavefront in the momentum space,
𝑃𝑗 = 𝑃(𝐫−𝐑𝑗) andΨ𝑐,𝑗 is the revised wavefront obtained by enforcing the measured
amplitudes on the far–field guess while keeping the phase unchanged. We focus
now on ∇ℒ𝛼2 and, with the use of Eq. (4.4), we obtain:

∇ℒ𝛼2 = 𝛼(𝑂𝑗 − 𝑂𝑝,𝑗) = 𝛼
𝑃∗𝑗

(|𝑃𝑗|2)
(𝑃𝑗𝑂𝑗 − 𝑃𝑗𝑂𝑝,𝑗) =

= 𝛼
𝑃∗𝑗
|𝑃𝑗|2

ℱ−1(ℱ(𝑃𝑗𝑂𝑗) − ℱ(𝑃𝑗𝑂𝑝,𝑗)) = 𝛼
𝑃∗𝑗
|𝑃𝑗|2

ℱ−1(Ψ𝑗 −Ψ𝑀𝑎𝑤𝑥𝑗,𝑝 ).
(4.9)

The steepest descent update, at iteration 𝑛 is:

𝑂𝑗,𝑛+1 = 𝑂𝑗,𝑛 − 𝛽∇ℒ𝑎 , (4.10)

for some value of 𝛽. With Eqs. (4.6), (4.9) it follows that the part of the object that
is illuminated by the probe at the j–th probe position, 𝑂(𝐫), is updated as follows:

𝑂𝑛+1 = 𝑂𝑛 + 𝛽
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(Ψ𝑐,𝑗,𝑛 −Ψ𝑗,𝑛)

+ 𝛼′
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 −Ψ𝑗,𝑛),

(4.11)

where 𝛼′ = 𝛽𝛼. In Eq. (4.11) c is a small constant that prevents division by zero
and |𝑃𝑗|/|𝑃𝑗,𝑚𝑎𝑥| is a scaling factor – present in the PIE – that makes the update less
reliable where the probe is dim. This scaling factor increases the influence of those
areas of the sample that have been strongly illuminated while attenuating the errors
which could arise from those areas that have been weakly illuminated. Although the
prior 𝑂𝑝,𝑗 does not appear explicitly in (4.11), it is contained implicitly in its second
term as 𝑂𝑝,𝑗 = 𝑃∗𝑗

ℱ−1(Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 )
|𝑃𝑗|2

. Notice that, besides 𝛼′ and 𝛽, the scaling factors
in (4.11) are the same for the two terms. This is in order to avoid overenforcing
the prior in those pixels where the probe is dim. For 𝛼 = 0, Eq. (4.11) yields
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Figure 4.1: A schematic that illustrates the approach discussed in this work. In the detection path
– highlighted in blue – the actual defective mask is illuminated by the probe and the diffracted light
is measured in the far field. In the simulation path – highlighted in yellow – the probe illuminates
the nominal defect–free mask and the far–field is computed, in amplitude and phase, via the forward
Maxwell solver. The computationally generated far–field is interpreted in terms of the 2D ptychographic
approximation of light matter interaction (Eq. (4.5)) and contains information about the prior object
𝑂𝑝(𝐫). The simulated and detected far–field patterns are subsequently employed in the reconstruction
algorithm and in the update rule (4.11).

the same update rule of the regular PIE. As argued before, the algorithm proceeds
in a sequential fashion, and the complete object, 𝑂(r), is reconstructed by the
sequential reconstruction of its multiple j–th views, according to Eq. (4.11).
A layout of this approach is given in Fig. 4.1.
The inclusion of prior information as a regularizer in Eq. (4.5) is preferable the
alternative where one uses 𝑂𝑝(𝐫) as a starting guess in the optimization. There are
various reasons for this:

• instead of being used exclusively as a starting guess in the optimization, the
prior in Eq. (4.11) is present at every iteration of the optimization, therefore
preventing the reconstruction from diverging towards an “unphysical” solu
tion. Further,

• the presence of the quadratic term in Eq. (4.5) improves the conditioning
of the problem. This stabilizes the inversion with respect to the noise and
improves the performance of the iterative method. Further, the regularizer
aids in creating a better model by achieving a balance in the bias–variance
trade–off for a proper selection of 𝛼 [15]. Values of 𝛼 which are too small
make the reconstruction too sensitive to the noise, however setting 𝛼 to a
value that is too high biases the reconstruction towards the prior, yielding a
poor fit. A proper value of 𝛼 achieves a balance among these two cases.

In what follows, we will show that the inclusion of the regularization term, Eq.
(4.3), in the cost functional (4.5) via the use of the accurate physical–analytical
models yields a better reconstruction with respect to the standard case in which
the reflection function 𝑂(𝐫) is retrieved solely by processing the intensity data–set
as with the standard PIE approach.
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4.1.1. Results
We have applied the method outlined above to reconstruct the patterned absorber
of a 3D EUV mask. Table 4.1 reports the materials and the thicknesses of the layers
used in this work. The mask comprises 40 layers of SiMoSi2MoMoSi2.

Table 4.1: Layers thicknesses and Materials at 𝜆 = 13.5 nm

layer thickness [nm] n k
ARC TaBO 2 0.952 0.026

Absorber TaBN 58 0.95 0.031
Ru 0.5 0.88586 0.01727

Ru (Capping layer) 2 0.88586 0.01727
Si 1.8968 0.99888 0.00183

MoSi2 0.7986 0.96908 0.00435
Mo 2.496 0.92347 0.00649
MoSi2 1.8908 0.96908 0.00435

Four EUV masks have been considered in this study:

• the “nominal” mask. This is the cell as given by prior information. This cell
does not contain any information about the defects. This is the cell used in
the simulation path depicted in yellow in Fig. 4.1.

• The defect–free “actual” mask. This is the cell that mimics the “reference”
mask which is close to the prior but not exactly the same. In order to ac
count for this difference the actual cell has been generated from the prior
cell, displacing the sides of the polygons over a distance of 1–5 nm. This cell
is displayed in Fig. 4.2(a).

• Two “actual defective” or programmed defects masks. Consistently with the
practice in EUV mask defectivity studies we have perturbed the actual mask,
at known locations, with additive and subtractive features (extrusions and
intrusion defects) (Figs. 4.2(b–c)). This is the cell used in the detection path
depicted in blue in Fig. 4.1.

In Fig. (4.2) we do not show the nominal mask because, as mentioned previously,
the actual mask has been generated from the prior mask (4.2(a)), displacing the
sides of the polygons over a distance of 1–5 nm. This means that the prior and
actual mask would look indistinguishable from above as displayed in Fig. (4.2).
The size of the defects in Figs. 4.2(b,c) is the same on a given polygon, and it
changes from polygon to polygon. The number and the side length of the squares
that constitute the rough extrusions/intrusions on a certain polygon are the follow
ing: [number of squares, side length] = [3, 16 nm], [6, 12 nm], [7, 9 nm], [7, 6
nm]. Such sizes have been chosen in accordance to the theoretical Abbe resolution
limit imposed by the NA. Because the collection NA has been chosen to be equal
to 0.6 in this case, the theoretical achievable resolution limit is 𝜆/2𝑁𝐴 = 11 nm.
If the collection NA was to be smaller the defects would have been made bigger
accordingly.
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(a) (b)

(c)

Figure 4.2: Top views of EUV mask layouts. a) Actual cell, b) programmed defect mask (extrusions), c)
programmed defect mask (intrusions). The sidelength of the single defect is specified in the figure.
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To understand whether the inclusion of prior information yields any benefit for our
specific application we have carried out a computational die–to–database compari
son [16]. This is a procedure in which one compares the images collected from the
defective reticle with the images that are generated from the reticle design data.
In this case this is done comparing the reconstruction of the defective mask with
the reconstruction of the defect–free actual mask. The two reconstructions are
subtracted one from the other to identify the defects at their locations. The impact
of the defects is quantified by a certain figure of merit. In what follows we will use
the defect SNR – called 𝑆𝑁𝑅𝛿 – defined as [16]:

𝑆𝑁𝑅𝛿 =
�̄�𝑑 − �̄�𝑎
𝑠𝑡𝑑(𝐴𝑎)

, (4.12)

where �̄�𝑑 is the average magnitude of the defected area, �̄�𝑎 is the average magni
tude of the whole difference image – where the object is present – and 𝑠𝑡𝑑(𝐴𝑎) is
the standard deviation of the latter area. The definition of the defect SNR does not
depend directly on the defect size (as long as the total area occupied by the image
of the defects is the same) and it express the intensity of the defect signal with
respect to the dark noisy background. This investigation is done using the standard
PIE and the PIE with prior where the prior is given by the nominal mask, where we
use Eq. (4.11) as update rule to reconstruct both the actual mask (Fig. 4.2(a)) and
the defected masks (Fig. 4.2(b–c)).
As outlined above four data sets have been computed:

• one complex data set, in amplitude and phase, for the nominal mask. This is
the far field Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 , related to the nominal mask, we referred to in Eqs. (4.3)
and (4.11).

• One intensity–only data set for the actual defect–free mask in Fig. 4.2(a).
This data–set has been corrupted with noise to emulate measured data.

• Two intensity–only data sets for the defected masks, one for the extrusions
in Fig. 4.2(b) and one for the intrusions in Fig. 4.2(c). This data sets have
also been corrupted with noise to emulate measured data.

The simulations set–up was discussed before, in Section 3.2.1, and is reported here
for the convenience of the reader.
All the four data sets mentioned above have been generated via a fully rigorous 3D
simulations using a volume–integral Maxwell solver [17, 18] and taking account of
the actual multilayer, i.e. without recurring to an effective reflection function for
the substrate. The solver is formulated for the problem of scattering from periodic
objects hence, in order to avoid cross–talk among adjacent cells, we have opted
for a supercell approach. The cell is a square with lateral dimension Λ = 3.5𝜇𝑚.
The sampling in the far field and in the illuminating NA equals 2𝜋

Λ . Although the
lateral dimensions of the supercell are of the order of hundreds times the wave
length, the computational complexity and the memory requirement necessary to
solve the forward problem are maintained relatively low, of the order of 𝒪(𝑁 log𝑁)
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where 𝑁 is the number of unknowns which are the coefficient of the Fourier modes
in the Fourier series expansion of the electric field. The probe is assumed to be
a Gaussian beam with a 3𝜎 amplitude of about 1.5 𝜇𝑚 and it is described by its
angular spectrum. The scattered far–field is evaluated, for each of the plane waves
which compose the illumination, in parallel on a multicore HPC cluster. The output
far–field that results from the interaction of the probe with the object is then given
by the weighed coherent superposition of the individual contributions. The ptycho
graphic scans are performed shifting the object of 0.2 𝜇𝑚, in 5 positions, inside
the supercell. This grants a probe overlap of about 85%. The probe is polarized in
the x direction – parallel to the horizontal axis of the supercell – by proper linear
combination of s and p polarization states. The collection NA is 0.6, close to the
value (0.54) used for an identical wavelength in [19]. Fig. 4.3(a,b) illustrates the
probe, its cross–section and one of the acquired diffraction patterns for the mask
in Fig. 4.3(a).
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Figure 4.3: a) Gaussian probe used in the computations. b) Cross–section of (a). c) Diffraction pattern
(log scale).

700 nm

(a) (b) (c)

Figure 4.4: Zoom of the nominal reflection function associated to the a–priori known mask geometry
as retrieved from the fully rigorous simulations for an incoming beam incident at an angle of 6∘ on the
structures and polarized along the x axis, a) amplitude of nominal reflection function, b) phase and
c) amplitude after and removal of the strong unscattered beam. The fringes in (b) are caused by the
projection of the term 𝑒𝑖𝐤⋅𝐫 over the x–y plane related to the 6∘ angle of incidence of the probe.

Fig. 4.4(a,b) shows the prior for the central probe position. White Gaussian noise
has been added to the synthetically generated data for an SNR = 110 dB and the
regularization parameter 𝛼 has been fixed to 2e2. This value was chosen by trial
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and error, attempting the use of few values of 𝛼 and selecting the one for which
the defects were better visible in the resulting imaged.

Extrusion defects
The amplitude of the object function reconstructed with ptychography correspond
ing to the patterned absorber depicted in Fig. 4.2(b), without and with prior re
spectively, is depicted in Fig. 4.5(a,b), while the phase is shown in Fig. 4.5(d,e).
The object error, at iteration 𝑛, has been computed as the relative deviation of the
reconstructed object, 𝑂𝑛(𝐫), from the theoretical object 𝑂𝑡(𝐫):

𝐸𝑂,𝑛 =
∑𝐫 |𝑂𝑡(𝐫) − 𝛾𝑂𝑛(𝐫)|2

∑𝐫 |𝑂𝑡(𝐫)|2
, (4.13)

where 𝛾 is a parameter that compensates for phase ambiguities [20].
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Figure 4.5: Ptychographic reconstructions: a) amplitude of the reflection function of the object as given
by the PIE; b) amplitude of the reflection function of the object given by the new algorithm PIE with
prior term included. The rough extrusions are highlighted in the red circles;c) error; d) phase given by
the PIE and e) phase given by the PIE with prior.

The result of the reconstructions is highlighted in Figs. 4.5(a–d). As will be further
discussed and shown below, the rough extrusions, highlighted in Fig 4.5(b), are
better resolved in Figs. 4.5(b,e) – which show the amplitude and phase of the
object reflection function obtained with the inclusion of the prior term – than in Figs.
4.5(a,d) which are the amplitude and phase of the reconstruction obtained with the
standard PIE. The error, defined in Eq. (4.13) and shown in Fig 4.5(c) shows an
overall better reconstruction and convergence when the prior is included in the
optimization algorithm. Practically, we have observed the algorithm to converge in
about a third of the iterations of the regular PIE where the starting point of the
reconstruction was a transparent object with random phase. As stated before a
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quantitative assessment of the improvement in terms of defect inspection can be
obtained in a die–to–database comparison by computing difference images. Those
are defined as the magnitude of the difference among the retrieved ptychographic
reconstruction of the objects in Figs. 4.2(a,b):

Δ𝑂(𝐫) = |𝑂𝑎(𝐫) − 𝑂𝛿(𝐫)|, (4.14)

with 𝑂𝑎(𝐫) and 𝑂𝛿(𝐫) being the reconstructed reflection functions related to the
actual mask in Fig. 4.2(a) and to the defected actual mask in Fig. 4.2(b–c). In what
follows we will refer to Eq. (4.14) as the object difference metric. Fig. 4.6 shows
Δ𝑂(r) defined in (4.14), obtained when reconstructing 𝑂𝑎(𝐫) and 𝑂𝛿(𝐫) using prior
information – by the ptychographic update rule Eq. 4.11 – and the standard PIE.
Here, and in all that follows, the objects have been aligned before their subtraction.

700 nm

(a) (b)

Figure 4.6: a) and b) show the object difference metric Δ𝑂 in Eq. (4.14) obtained for extrusions. a)
makes use of prior while in b) we employed the standard PIE. The indicated sizes in a) are the side
lengths of each of the blocks of the extrusions.

All the defects are better resolved in Fig. 4.6(a) than in Fig. 4.6(b), and their
signature appear to be stronger in the difference image 4.6(a). Particularly, the
rough defects of 9 nm size are not distinguishable in Fig. 4.6(b), however they
are detectable in Fig. 4.6(a), as highlighted in the red circle. We found the finest
details, the rough extrusions of 6 nm size, to be absent in the reconstruction in Figs.
4.5(a–b), and in the difference images in Figs. 4.6(a–b). The side of the polygon
over which these defects are located appears to be smooth in the reconstructed im
age. This computational experiment highlights that subwavelength ptychographic
imaging is possible to a certain extent, however the spatial periodicities below the
theoretical limit of about 𝜆/2 cannot be reconstructed. Since the collection NA is
equal to 0.6, the Abbe limit is 11 nm which is slightly above the size, 9nm, of the
smallest defect we managed to resolve. A comparison of the retrieved defect SNR
(i.e. SNR𝛿) for Figs. 4.6(a,b) is reported in Table 4.2:
Table 4.2 highlights a steep improvement in the detectability of defects when incor
porating the prior term in the reconstruction algorithm. The value N/A means that
the defects are not visible in the difference image. A cross section of the recon
structions in Fig. 4.5(a–b), taken on the location of the defects, is shown in Figure
4.7.
The cross sections in Fig. 4.7 generally have a more pronounced peak to valley
ratio when the prior is included and, in case of the highest resolvable information
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Table 4.2: Extrusion defects SNR

Defect Size [nm] Number of defects SNR𝛿 PIE with prior SNR𝛿 PIE
16 3 3.8 1.8
12 6 5.3 1.2
9 7 1.6 N/A
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Figure 4.7: Cross section of the reconstruction at the defect sites.a) 3 defects of 16 nm sidelength; b)
6 defects of 12 nm sidelength; c) 7 defects of 9 nm sidelength.

of 9 nm (Fig. 4.7(c)) below Abbe’s resolution limit of 11nm, the periodicity of the
signal is more evident, while it is lost – in the central part of the plot – in the case
of the standard PIE.

Intrusion defects

The amplitude of the reconstructed object reflection function relative to the pat
terned absorber layout in Fig. 4.2(c), obtained by means of the ptychographic
algorithm without and with prior respectively, is depicted in Fig. 4.8(a,b), while the
phase is shown in Figs. 4.8(d,e).
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700 nm
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Figure 4.8: Ptychographic reconstructions: a) amplitude of the reflection function of the object as given
by the PIE; b) amplitude given by the PIE with prior included. The rough intrusions are highlighted in
the red circles; d) phase given by the PIE and e) phase given by the PIE with prior; c) error.

Fig. 4.9 shows the object difference metric Δ𝑂(𝐫) defined in Eq. (4.14), obtained
using the update rule Eq. (4.11) and the standard PIE.

700 nm

(a) (b)

Figure 4.9: a) and b) show Δ𝑂 in Eq. (12) obtained for intrusions. a) makes use of prior while in b) we
employed the standard PIE. The sizes in a) are the side lengths of each of the blocks of the intrusions.

The comparison of the defect SNR, called SNR𝛿, for Figs. 4.9(a,b) is reported in
Table 4.3:

Table 4.3: Intrusion defects SNR

Defect Size [nm] Number of defects SNR𝛿 with prior SNR𝛿 PIE
16 3 3.8 1.5
12 6 3.4 N/A
9 7 1 N/A

All the intrusion defects have decreased SNR𝛿 with respect to extrusion defects of
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the same size, and even with the inclusion of the prior term the 9 nm size intrusions
are difficult to image. It should be noticed that the imaging of small defects is also
hampered by the presence of guided modes that propagate in the gaps of the
absorber, making these defects harder to image with high contrast [11]. Fig. 4.10
illustrates the cross section of the reconstructions in Figs. 4.8(a–b), taken at the
location of the defects:
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Figure 4.10: Cross section of the reconstruction at the defect sites.a) 3 defects of 16 nm sidelength; b)
6 defects of 12 nm sidelength; c) 7 defects of 9 nm sidelength.

4.1.2. Effect of the number of probe positions, SNR, initial
guess and a comparison with TV regularization

Increasing the number of probe positions
Ptychography achieves a very robust reconstruction by exploiting translational di
versity and redundancy in the data set. In the study presented earlier the data set
included five probe positions. As the object is, in this case, entirely covered by the
probe there is a high degree of redundancy in the data in spite of the few probe
positions. However it can be interesting to see whether increasing the number of
probe positions allows one to get to a reconstruction which is as good as in the case
in which the prior term is included. We have performed this study for the case of
the extrusions type defects. We have used 9 probe positions and the reconstruction
has been carried out using the PIE. The 9 positions constitute a 3–by–3 grid which
span, in steps of 200𝑛𝑚 along the 𝑥 and 𝑦 directions, a square whose sidelength
is 400𝑛𝑚. The reconstruction and the difference image is shown in Fig. 4.11.
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Figure 4.11: Ptychographic reconstructions: a) magnitude as given by the PIE; b) difference image
given by PIE; c) error.
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Fig. 4.11(b) reports an overall better reconstruction of the defects with respect to
Fig. 4.6(b). Still the reconstruction is not as satisfactory as the one obtained with 5
probe positions and the inclusion of the prior term. This is highlighted in Table 4.4.

Table 4.4: Extrusion defects SNR

Defect Size [nm] SNR with prior (5 probe positions) SNR PIE (9 probe positions)
16 3.8 3
12 5.3 2.5
9 1.6 0.6

Decreasing SNR
The effect of the noise is studied here. A decrease of the SNR constitutes a problem
for the retrieval of fine features that weakly scatter light, because their signature
could be below the noise. A workaround could be to increase the radiation dose,
but this could in turn damage the sample. The role of the prior as a regularizer
is helpful in this, as it stabilizes the inversion and enables one to achieve a better
reconstruction when the SNR decreases. Here we have decreased the SNR from
110 dB to 100 dB and 90 dB. The results, for the extrusion defects, are given in
Figs. 4.12 and 4.13.

700 nm

(a) (b)

Figure 4.12: a) and b) show the object difference metric Δ𝑂 in Eq. 4.14 obtained when SNR = 100 dB.
a) PIE with prior; b) PIE.

700 nm

(a) (b)

Figure 4.13: a) and b) show the object difference metric Δ𝑂 in Eq. 4.14 obtained when SNR = 90 dB.
a) PIE with prior; b) PIE.

All of the defects are still visible in Fig. 4.12(a), while in Fig. 4.13(b) only the bigger
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ones are visible. In Fig. 4.13 the 16 and 12 nm size defects are visible when the
prior is applied as a regularizer, but none of the defects can be detected by the PIE.

Using the prior as initial guess
The advantages of having a regularizer in Eq. (4.5) rather than using the prior only
as a starting point were outlined in Section 4.1. Here we compare the amplitude of
the difference images associated to extrusions type defects and obtained by using
three different flavours of the ptychographic algorithm. Specifically we compare the
results obtained by reconstructing the reflection function of the object by using:

• the update rule Eq. (4.11),

• the standard ptychographic iterative engine (PIE), and

• the PIE where the first guess of the object is the full object reflection function
associated to the nominal mask.

Fig. 4.14 highlights results for an SNR = 110 dB. Fig. 4.15 shows results for an
SNR = 100 dB.

700 nm

(a) (b) (c)

Figure 4.14: Difference images SNR 110 dB: a) Update rule Eq. (4.11); b) PIE; c) PIE with prior as
starting guess.

700 nm

(a) (b) (c)

Figure 4.15: Difference images SNR 100 dB: a) Update rule Eq. (4.11); b) PIE; c) PIE with prior as
starting guess.

As it can be noticed, a proper starting guess in the standard PIE yields a better
reconstruction, however the absence of the regularizer – that stabilizes the recon
struction with respect to the noise and that promotes the retrieval of a better fit via
a bias–variance trade–off – has a negative impact on the reconstruction.
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Comparison with TV regularization
Recent works have reported the use of total variation as regularizer for denoising
in ptychography [8–10]. Here we compare the results obtained by using the two
different regularizers 𝑅𝛼(𝑂) = 𝛼||𝑂(𝐫) − 𝑂𝑝(𝐫)||2 and 𝑅𝛼𝑇𝑉(𝑂) = 𝛼𝑇𝑉||∇𝑂(𝐫)||1.
Notice that, since 𝑅𝛼𝑇𝑉(𝑂) is non–smooth, gradient based approaches are not im
mediately applicable anymore. One workaround is to replace the 𝓁1 norm by a
smooth approximation, another one, employed here, is to solve total variation via
the alternating direction method of multipliers (ADMM). We begin by writing the
following problem at the j–th probe position:

min
𝑂𝑗 ,𝑝

|||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑗(𝐫))| − √𝐼𝑗(𝐤)||
2
+ 𝛼𝑇𝑉||𝑝||1,

s.t. 𝑝 = ∇𝑂,
(4.15)

The augmented Lagrangian for a real functional of complex variables can be written
as [21]:

ℒ𝜌(𝑂𝑗 , 𝑝, 𝑦) = |||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑗(𝐫))| − √𝐼𝑗(𝐤)||
2

+ 2Re(⟨𝑝 − ∇𝑂𝑗 , 𝑦⟩) + 𝜌||𝑝 − ∇𝑂𝑗||2 + 𝛼𝑇𝑉||𝑝||1,
(4.16)

where

• ⟨⋅, ⋅⟩ is the inner product over the complex space,
• Re(𝑧) is the real part of 𝑧,
• 𝑦 is the Lagrangian multiplier. In this case 𝑦 is to be intended as a function of
position, i.e. it is a whole set of Lagrange multipliers, one for every position.

• 𝜌 is the penalty parameter.
Eq. (4.16) can be further simplified scaling the variable 𝑦 by 1/𝜌 [22]. At iteration
𝑛 the ADMM solves the following steps:

𝑂𝑛+1 = argmin
𝑂

ℒ𝜌(𝑂, 𝑝𝑛 , 𝑦𝑛),

𝑝𝑛+1 = argmin
𝑝

ℒ𝜌(𝑂𝑛+1, 𝑝, 𝑦𝑛),

𝑦𝑛+1 = 𝑦𝑛 + 𝜌(𝑝𝑛+1 − ∇𝑂𝑛+1).

(4.17)

The derivations necessary to minimize Eq. (4.17) are analogous to the ones that
can be found elsewhere [9] and are here omitted. Problem (4.15) is minimized per
probe position, the subproblem with respect to 𝑂𝑗 is solved via a steepest descent
and the subproblem with respect to 𝑝 has a closed–form solution in the form of a
soft–thresholding operator:

𝑝𝑜𝑝𝑡,𝑛 = 𝑚𝑎𝑥 {|∇𝑂𝑛𝑗 | −
𝑦𝑛−1
𝜌 } sign(∇𝑂𝑛𝑗 −

𝑦𝑛−1
𝜌 ) (4.18)
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where 𝑝𝑜𝑝𝑡,𝑛 is the optimal value of 𝑝 at iteration 𝑛 and sign is the extension of the
sign function as applied in the complex space:

sign(𝑧) = 𝑧
|𝑧| (4.19)

where 𝑧 ∈ ℂ.
The regularizer 𝛼𝑇𝑉 in Eq. 4.16 has been computed by the L–curve[23].
The object difference images for SNR=110 dB and for SNR=90 dB, for extrusions
defects, are shown in Figs. 4.16 and 4.17.
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Figure 4.16: Object difference image SNR 110 dB: a) Update rule (4.11); b) TV regularization; c) error,
Eq. (4.13).
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Figure 4.17: Object difference image SNR 90 dB: a) Update rule (4.11); b) TV regularization; c) error, ,
Eq. (4.13)

Although TV regularization produces results that are qualitatively superior to the
PIE (Figs. 4.6(b) and 4.13(b)) the proposed method that includes object prior
information in the optimization enables a more robust reconstruction.

Interlude
We have now seen that the inclusion of a–priori information – included in the ptycho
graphic method using additional fully three dimensional, model based and domain
specific fully rigorous solvers – yields a more robust reconstruction at an increased
resolution and that this paves the way for the inspection of finer defects. The ques
tion arises on whether further algorithmic developments can yield an even better
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reconstruction, possibly revealing the 6𝑛𝑚 size defects in Figs.4.2(b,c) that we could
not manage to resolve so far.
The remaining part of this chapter discloses update rules that have been found to
assist in the further improvement of the reconstruction under Poisson noise.

4.2. Refinement strategies for optimal inclusion of
prior information in ptychography

It is common practice in the phase retrieval community to cluster different update
rules and different methods together in order to avoid stagnation and achieve a
better reconstruction [5, 24, 25]. In the following we present cost functionals that
we have found to enable better reconstructions when combined with the update
rule given by the minimization of Eq. (4.5) in the presence of Poisson noise.

4.2.1. Maximum a posteriori estimation
The tools offered by statistical regularization theory can be employed (cf. Section
1.2) to derive a cost functional that accounts for the knowledge of both the noise
model and the prior information. If photon counting is the main source of noise
in the physical set–up then the number of photons detected follows the Poisso
nian statistics. The detected number of photons at the j–th probe position, 𝑛𝑚,𝑗 is
interrelated to the measured intensities 𝐼𝑚,𝑗 by:

𝑛𝑚,𝑗 ∝
𝐼𝑚,𝑗
ℎ𝜈 , where 𝜈 = 𝑣

𝜆 , (4.20)

where ℎ is the Plank’s constant, 𝜈 is the frequency, 𝜆 is the wavelength and 𝑣 is
the speed of light within a certain medium. If we assume the incoming light beam
to be monochromatic, the intensity distribution will also be Poissonian and, at the
j–th probe position, the probability of measuring a certain number of photons 𝑛𝑚,𝑗,
given a certain object 𝑂𝑗(r), will be given by the likelihood [5]:

𝐿(𝑂𝑗) ≔ 𝑝(𝑛𝑚,𝑗 , 𝑂𝑗) =∏
k

𝐼𝑗(k)𝑛𝑚,𝑗(k)
𝑛𝑚,𝑗(k)!

𝑒−𝐼𝑗(k). (4.21)

where 𝐼𝑗(k) is the guessed intensity as given by 𝐼𝑗 = |ℱ(𝑃(r−R𝑗))𝑂𝑗(r)|2. Following
Bayes theorem we can introduce, given Eq. (4.21) and a prior distribution for the
model parameters, the posterior:

𝜋𝑝𝑜𝑠𝑡(𝑂𝑗|𝑛𝑚,𝑗) =
𝐿(𝑂𝑗)𝜋𝑝𝑟𝑖𝑜𝑟(𝑂𝑗)

∫ 𝐿(𝑂𝑗)𝜋𝑝𝑟𝑖𝑜𝑟(𝑂𝑗)𝑑𝑂𝑗
, (4.22)

where 𝜋𝑝𝑟𝑖𝑜𝑟 represents the prior distribution. We assume the prior distribution to
be a Gaussian peaked at a certain prior object 𝑂𝑝:

𝜋𝑝𝑟𝑖𝑜𝑟(𝑂𝑗) =
𝑒−(𝑂𝑗−𝑂𝑝,𝑗)𝐻Γ−1(𝑂𝑗−𝑂𝑝,𝑗)

|𝜋Γ| = 1
𝜋𝜎2 exp [

−|𝑂𝑗 − 𝑂𝑝,𝑗|2
𝜎2 ] , (4.23)
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where 𝐻 denotes the Hermitian transpose and Γ is a Hermitian positive definite
matrix that contains the complex variance. We assumed in the right hand side of
Eq. (4.23) that Γ is diagonal with equal real elements given by 𝜎2. We notice that
the standard deviation in Eq. (4.23) essentially plays the role of the regularization
parameter. The reconstruction of the full posterior distribution in Eq. (4.22) is
extremely computationally demanding, and it is common to retrieve from it only
point estimators that are statistically relevant. The maximum–a–posteriori (MAP)
estimator is defined as the value of the sought object that maximizes Eq. (4.22):

𝑂𝑀𝐴𝑃,𝑗 = argmax
𝑂𝑗

𝜋𝑝𝑜𝑠𝑡(𝑂𝑗|𝑛𝑚,𝑗) = argmin
𝑂𝑗

{− log 𝐿(𝑂𝑗) − log𝜋𝑝𝑟𝑖𝑜𝑟(𝑂𝑗)} =

= argmin
𝑂𝑗

ℒ𝑀𝐴𝑃(𝑂𝑗 , 𝑛𝑚,𝑗)

(4.24)
The update of the object reflection function at the j–th probe position will be given
by:

𝑂𝑀𝐴𝑃,𝑗 = argmin{∑
𝐤
[𝐼𝑗(𝐤) − 𝑛𝑚,𝑗(𝐤) log(𝐼𝑗(𝐤))] +∑

𝐫

1
𝜎2 |𝑂𝑗(𝐫) − 𝑂𝑝,𝑗(𝐫)|

2}

(4.25)
where we have left out constant terms. In Eq. (4.25) 𝐤 runs over the pixels in the
Fourier space and 𝐫 over the pixels in real space. The prior 𝑂𝑝,𝑗 is the same as the
one we used previously in Section 4.1.
Eq. (4.25) can be minimized analytically and, when including Eq. (4.4), the gradient
descent rule reads:

𝑂𝑀𝐴𝑃,𝑗,𝑛+1 = 𝑂𝑗,𝑛 − 𝛽∇ℒ𝑀𝐴𝑃(𝑂𝑗 , 𝐼𝑗) = 𝑂𝑗,𝑛 + 𝛽
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(

𝑛𝑚,𝑗
𝐼𝑗
Ψ𝑗,𝑛 −Ψ𝑗,𝑛)

+ 𝛼
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(Ψ𝑀𝑎𝑥𝑤𝑝,𝑗 −Ψ𝑗,𝑛)

(4.26)
where Ψ𝑗,𝑛 = ℱ(𝑃(𝐫−𝐑𝑗)𝑂𝑗(𝐫)), 𝛼 = 𝛽/𝜎2 and the factor |𝑃𝑗|2 at the denominator
needs to be included so that Eq. (4.26) has the dimensions of an object.

4.2.2. Iteratively refined regularizer
In the section above we have changed the update rule to incorporate the knowl
edge of the noise model and we have introduced an assumed prior distribution for
the object reflection function to derive a certain update rule from statistical consid
erations. Another interesting update could be obtained by employing the update
rule that stems from the minimization of Eq. (4.5) followed by the minimizer of

ℒ𝐼𝑅(𝑂𝑗 , 𝐼𝑚,𝑗) = |||ℱ(𝑃(𝐫 − 𝐑𝑗)𝑂𝑗(𝐫))| − √𝐼𝑚,𝑗(𝐤)||
2
+ 𝛼 ||𝑂𝑗(𝐫) − 𝑂𝑗,𝑛−1(𝐫)||

2 ,
(4.27)
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where the subscript 𝐼𝑅 stresses the fact that the regularization weight is changed
iteratively. The reasoning behind this proposal is intuitive. As the optimization
proceeds, and once it has reached or is close to convergence, the retrieved solution
at the previous iteration should be closer to the ground truth than the prior 𝑂𝑝,𝑗
in Eq. (4.5). Therefore one could penalize large deviations of the object reflection
function with respect to 𝑂𝑗,𝑛−1 rather than 𝑂𝑝. In other words we are seeking to
introduce a regularizer that is closer to the true solution than 𝑂𝑝(𝐫). The update
rule in this case will read:

𝑂𝐼𝑅,𝑗,𝑛+1 = 𝑂𝑗,𝑛 − 𝛽∇ℒ𝐼𝑅(𝑂, 𝐼𝑗) = 𝑂𝑗,𝑛 + 𝛽
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(Ψ𝑐,𝑗,𝑛 −Ψ𝑗,𝑛)

+ 𝛼′
|𝑃𝑗|

|𝑃𝑗,𝑚𝑎𝑥|
𝑃∗𝑗

(|𝑃𝑗|2 + 𝑐)
ℱ−1(Ψ𝑗,𝑛−1 −Ψ𝑗,𝑛),

(4.28)
where 𝛼′ = 𝛼𝛽 andΨ𝑐,𝑗,𝑛 is the revised or corrected wavefront obtained by replacing
the guessed amplitudes with the measured ones.

4.3. Results
In what follows we apply the methods outlined above to the reconstruction of de
fective EUV mask layouts. The data set is the same as we used previously and it is
corrupted with Poisson noise. The materials are the ones we used previously and
are reported in Table 4.1.

To understand whether the use of Eqs.(4.26) and (4.28) yields any benefits for our
specific application we have repeated the same procedure followed in the previous
section, i.e. we have compared the reconstruction of the defected mask with the
reconstruction of the defect–free actual mask. The two reconstructions are sub
tracted one from the other to identify the defects at their locations. The impact
of the defects is quantified by the defect SNR, called SNR𝛿, as defined in 4.12. In
EUV mask defectivity studies this procedure is known as die–to–database inspec
tion. This investigation is done using the PIE with prior, Eq. (4.5), followed by the
update given by Eq. (4.26) or the one in Eq. (4.28).

4.3.1. Extrusion defects
Figure 4.18 shows the reconstructed amplitudes and phases of the object functions
for extrusion type defects. We used 600 iterations with the method presented in
our previous work followed by 200 iterations of either Eq. (4.26) or (4.28). The
SNR is 100 dB.

The difference images obtained after subtracting the defect and defect–free ampli
tudes of the retrieved object function are given below in Fig. 4.19.

The defect SNR, defined in Eq. (4.12), is reported in Table 4.5.
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Figure 4.18: Ptychographic reconstructions: a) amplitude as given by the MAP, Eq. (4.26); b) amplitude
given by the iteratively refined regularization weight, Eq. (4.28); c) amplitude given by the PIE with
prior information; d)–f) phase relative to Figs. a)–c); g) error in the far field

700 nm

(a) (b) (c)

Figure 4.19: Difference images for extrusion type defects. a)MAP, Eq. (4.26), b)IR Eq. (4.28), c) PIE
with prior information
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Table 4.5: Extrusions defects SNR𝛿

Defect Size [nm] MAP (5 probe positions) IR Prior PIE
16 5.2 4.8 4.7
12 6.7 5.1 5.2
9 3.5 2 2

The difference images in Fig. 4.19 and Table 4.5 show that the MAP refinements
give the best results – in terms of convergence and defects signal to noise ratio
– among the three algorithms we discussed. Table 4.5 also shows that further
refinements to the reconstruction of the object reflection function obtained by using
the iteratively refined regularizer idea discussed above did not lead to a substantial
improvement in defect signal to noise ratio with respect to the case in which the
reflection function of the object is retrieved by processing the data using the PIE
with prior information.

4.3.2. Intrusion defects

Figure 4.20 shows reconstructions in amplitude and phase for intrusion type defects.
The reconstruction proceeded as discussed in the previous section.
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Figure 4.20: Ptychographic reconstructions: a) amplitude as given by the MAP, Eq. (4.26); b) amplitude
given by the iteratively refined regularization weight, Eq. (4.28); c) amplitude given by the PIE with
prior information; d)–f) phase relative to Figs. a)–c); g) error in the far field

The difference images are given below in Fig 4.21.

700 nm

(a) (b) (c)

Figure 4.21: Difference images for intrusion type defects. a) MAP, Eq. (4.26), b) IR Eq. (4.28), c) PIE
with prior information

The defect SNR is reported below in Table 4.6.
Similarly to the case of the extrusion type defects Table 4.6 shows that the MAP
refinements yield an SNR𝛿 that is higher than the one given by the PIE with prior
information and by the iteratively refined regularizer.
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Table 4.6: Intrusion defects SNR𝛿

Defect Size [nm] MAP (5 probe positions) IR Prior PIE
16 5 5.2 3.5
12 5 4.6 3.4
9 3.5 2 2

4.3.3. Comparison with a sparsity prior for the object
As the object covers a small part of the reconstruction matrix it is interesting to
compare results with the one given by a sparsity constraint for the object. We solve,
per probe position, the following problem via the alternating direction method of
multiplier:

min
𝑂𝑗 ,𝑝

|||ℱ(𝑃(r− R𝑗)𝑂𝑗(r))| − √𝐼𝑗(k)||
2
+ 𝛼||𝑝||1,

s.t. 𝑝 = 𝑂.
(4.29)

Results are given, for extrusion type defects, in the figure below, and the defects
are better reconstructed when using the full knowledge of the prior object. Another
interesting choice could be to look for a sparse reconstruction of the object around
𝑂𝑝, in which case the regularizer would be ||𝑂 − 𝑂𝑝||1, but this is not discussed in
this thesis.

700 nm

(a) (b) (c)

(d)

Figure 4.22: Difference images for extrusion type defects. a) MAP, Eq. (4.26), b) IR, Eq. (4.28), c) PIE
with prior info,d) Lasso, Eq. (4.29).
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Summary
In this chapter we have seen how the ptychographic reconstruction benefits from
the inclusion of a prior term which is generated by the additional 3D, model–based
and fully rigorous Maxwell solvers. We have presented refinement strategies for
the inclusion of a–priori information in ptychography which lead to the imaging
of smaller defects than the usual case. The algorithmic efforts presented in this
chapter paved the way towards the imaging of finer defects and enabled a tighter
inspection of the patterned absorber on top of an EUV mask. However the finest
defects, of a size smaller than the Abbe limit, proved to be challenging to image.
In order to attempt a more satisfactory inspection of the target, we have thought
of a different approach that enriches the usual scalar ptychographic method by
means of a vectorial formulation of ptychography and which could possibly enable
the reconstruction of such fine details (i.e. defects whose size is below the Abbe
limit). In the next section we introduce the framework for polarization sensitive
imaging of semiconductor samples via vectorial ptychography.
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5
Polarization sensitive imaging
of semiconductor structures:

vectorial ptychography

We have previously seen that the ptychographic method is a scalar method. A vec
torial extension of ptychography for the imaging of anisotropic material properties
was presented in [1]. In this chapter we derive an explicit formalism for polariza
tion sensitive ptychographic imaging of semiconductor structures. This could be
interesting for the following reasons:

• it may be that one of the elements of the Jones matrix, which describes
the optical properties of the sample with respect to the polarization of the
incoming light, yields a better resolution in the reconstructed image than the
other elements, or

• we are interested in retrieving more information about the target (i.e. the full
scattering matrix).

5.1. The formalism
The formalism presented below is adapted in order to enforce consistency with the
volume integral Maxwell solver that has been used throughout this work. Because
the solver is implemented with periodic boundary conditions the isolated structures
are simulated via a supercell approach, and we remark that the solver takes as input
plane waves which can be polarized along the 𝑠 or 𝑝 directions and gives as output
the complex amplitudes of the computed scattering orders in the same polarization
basis. Eqs. (5.2–5.9) follow from the formalism presented and discussed in [2].
Suppose that the scatterer is located in the (𝑥, 𝑦) plane. If we assume the probe to
be a scalar quantity we can approximate the incoming Gaussian beam, propagating
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towards the scatterer in the negative 𝑧 direction, via its discrete angular spectrum:

𝑃(𝑥, 𝑦, 𝑧) = ∑
𝑘𝑖𝑥 ,𝑘𝑖𝑦

𝐺(𝑘𝑖𝑥 , 𝑘𝑖𝑦)𝑒𝑥𝑝[𝑖(𝑘𝑖𝑥𝑥 + 𝑘𝑖𝑦𝑦 + 𝑘𝑖𝑧𝑧)], (5.1)

where:

• [𝑘𝑖𝑥 , 𝑘𝑖𝑦 , 𝑘𝑖𝑧] = 𝐤𝑖 are the Cartesian components of a wavevector of an incoming

plane wave under a certain angle of incidence, with 𝑘𝑖𝑧 = −√𝑘20 − (𝑘𝑖𝑥)2 − (𝑘𝑖𝑦)2
(assuming the probe to be propagating in the direction of negative 𝑧) and
𝑘0 = 2𝜋/𝜆, and

• 𝐺(𝑘𝑖𝑥 , 𝑘𝑖𝑦) represents a scalar Gaussian scaling function.

Eq. (5.1) states that a light beam that is propagating in the positive/negative 𝑧 di
rection can be expressed from its values at 𝑧 = 0 by using two Fourier transforms.
First, the field in the plane 𝑧 = 0 must be transformed, and subsequently the field
for 𝑧 > 0 is obtained by calculating the inverse Fourier transform of the product
ℱ(𝐸)(𝑘𝑥 , 𝑘𝑦 , 0)𝑒±𝑖𝑧𝑘𝑧 where the sign in the exponential depend on the direction of
propagation (positive/negative z). Eq. (5.1) holds only in the scalar approximation,
an extension to the vectorial case is given below.

We start by defining the two vectors:

�̂�(𝐤) = 1

√𝑘2𝑥 + 𝑘2𝑦
(
𝑘𝑦
−𝑘𝑥
0
) , (5.2)

�̂�(𝐤) = 1

|𝐤|√𝑘2𝑥 + 𝑘2𝑦
(

𝑘𝑥𝑘𝑧
𝑘𝑦𝑘𝑧

−𝑘2𝑥 − 𝑘2𝑦
) , (5.3)

where
|𝐤| = (𝐤 ⋅ 𝐤∗)1/2 = (𝑘2𝑥 + 𝑘2𝑦 + |𝑘𝑧|2)1/2, (5.4)

is the modulus of the wavevector 𝐤. It can be shown that the basis given by
[𝐤/|𝐤|, ̂𝐬(𝐤), ̂𝐩(𝐤)] is an orthonormal basis of ℂ3. This means that the electric field,
𝐄, can be expressed – in the Fourier space – as a linear combination of such basis
vectors. We notice that �̂� and �̂� are given by a combination of Cartesian compo
nents.
As explained below Eq. (5.1) the electric field at a distance 𝑧 > 0 can be computed
via the angular spectrum by its values at 𝑧 = 0:

𝐄(𝑥, 𝑦, 𝑧) = ∫∫ℱ(𝐄(𝑘𝑥 , 𝑘𝑦 , 𝑧 = 0))𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 . (5.5)
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Because the divergence–free condition in a space 𝑧 > 0 without sources implies
𝐤 ⋅ 𝐄 = 0, it follows from Eq. (5.5) that

𝐤 ⋅ ℱ(𝐄(𝑘𝑥 , 𝑘𝑦 , 0)) = 0. (5.6)

Therefore there exists 𝐴𝑠(𝐤) and 𝐴𝑝(𝐤) such that:
ℱ(𝐄)(𝑘𝑥 , 𝑘𝑦 , 0) = 𝐴𝑠(𝐤)�̂�(𝐤) + 𝐴𝑝(𝐤)�̂�(𝐤), (5.7)

and hence the angular spectrum, Eq. (5.5) can be rewritten as:

𝐄(𝑥, 𝑦, 𝑧) = ∫∫[𝐴𝑠(𝐤)�̂�(𝐤) + 𝐴𝑝(𝐤)�̂�(𝐤)]𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 . (5.8)

which is the vectorial extension of Eq. (5.1). By using Eqs. (5.2, 5.3) we obtain
that the 𝑥 and 𝑦 components of the electric field can be computed from the [𝐬, 𝐩]
basis:

𝐸𝑥(𝐫) =∫∫
⎡
⎢
⎢
⎣
𝐴𝑠(𝐤)

𝑘𝑦

√𝑘2𝑥 + 𝑘2𝑦
+ 𝐴𝑝(𝐤)

𝑘𝑥𝑘𝑧

|𝐤|√𝑘2𝑥 + 𝑘2𝑦

⎤
⎥
⎥
⎦
𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦

= ∫∫𝐸𝑥(𝑘𝑥 , 𝑘𝑦)𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 ,

𝐸𝑦(𝐫) =∫∫
⎡
⎢
⎢
⎣
𝐴𝑠(𝐤)

−𝑘𝑥
√𝑘2𝑥 + 𝑘2𝑦

+ 𝐴𝑝(𝐤)
𝑘𝑦𝑘𝑧

|𝐤|√𝑘2𝑥 + 𝑘2𝑦

⎤
⎥
⎥
⎦
𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦

= ∫∫𝐸𝑦(𝑘𝑥 , 𝑘𝑦)𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 ,

(5.9)

and, by applying the source–free condition 𝐤⋅𝐄 = 0, the 𝑧 component of the electric
field can be calculated from [𝐸𝑥 , 𝐸𝑦] as:

𝐸𝑧(𝐫) = ∫∫
−(𝑘𝑥𝐸𝑥(𝑘𝑥 , 𝑘𝑦) + 𝑘𝑦𝐸𝑦(𝑘𝑥 , 𝑘𝑦))

𝑘𝑧
𝑒𝑖𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 . (5.10)

The formalism presented above allows us to establish a link among the Cartesian
coordinates and the [�̂�, �̂�] basis in which the Maxwell solver operates.
We discuss below, in more detail, the steps we went through during the simulations.
We start by noting, from Eqs. (5.9), that:

[𝐸𝑥(𝑘𝑥 , 𝑘𝑦)𝐸𝑦(𝑘𝑥 , 𝑘𝑦)] =
⎡
⎢
⎢
⎢
⎣

𝑘𝑦
√𝑘2𝑥+𝑘2𝑦

𝑘𝑥𝑘𝑧
|𝐤|√𝑘2𝑥+𝑘2𝑦

−𝑘𝑥
√𝑘2𝑥+𝑘2𝑦

𝑘𝑦𝑘𝑧
|𝐤|√𝑘2𝑥+𝑘2𝑦

⎤
⎥
⎥
⎥
⎦

[𝐴𝑠(𝑘𝑥 , 𝑘𝑦)𝐴𝑝(𝑘𝑥 , 𝑘𝑦)] = 𝒜 [
𝐴𝑠(𝑘𝑥 , 𝑘𝑦)
𝐴𝑝(𝑘𝑥 , 𝑘𝑦)] ,

𝒜 =
⎡
⎢
⎢
⎢
⎣

𝑘𝑦
√𝑘2𝑥+𝑘2𝑦

𝑘𝑥𝑘𝑧
|𝐤|√𝑘2𝑥+𝑘2𝑦

−𝑘𝑥
√𝑘2𝑥+𝑘2𝑦

𝑘𝑦𝑘𝑧
|𝐤|√𝑘2𝑥+𝑘2𝑦

⎤
⎥
⎥
⎥
⎦

.

(5.11)
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We define the probe, in the Cartesian basis, by means of its discrete angular spec
trum:

𝑃(𝐫) = ∑
𝑘𝑖𝑥 ,𝑘𝑖𝑦

[𝐺𝑥𝐺𝑦] 𝑒
𝑖𝐤𝑖⋅𝐫. (5.12)

In Eq. (5.12) 𝐤𝑖 is the incident wave vector and [𝐺𝑥 , 𝐺𝑦] are the Cartesian coeffi
cients which have been chosen in order to have a Gaussian probe in [𝑥, 𝑦].
We now define the scattered field, considering first the scalar case of a single in
cident plane wave defined by a certain 𝐤𝑖 and polarized along a certain direction.
When the plane wave hits the nanostructures on top of the EUV multilayer, multiple
diffracted orders are excited and generate a scattered field, 𝐄𝑠(𝐫), which is given
by Eq. (5.13):

𝐄𝑠(𝑟) = ∑
𝑘𝑆𝑥 ,𝑘𝑆𝑦

[𝑅𝑠(𝑘𝑆𝑥 , 𝑘𝑆𝑦)�̂�(𝑘𝑆𝑥 , 𝑘𝑆𝑦) + 𝑅𝑝(𝑘𝑆𝑥 , 𝑘𝑆𝑦)�̂�(𝑘𝑥 , 𝑘𝑦)]𝑒𝑖𝐤
𝑆⋅𝑟 , (5.13)

where [𝑅𝑠 , 𝑅𝑝] are the reflection coefficients computed by the Maxwell solver that
correspond to a certain scattered order which propagates along the direction given
by 𝐤𝑠 which depends on the incident kvector 𝐤𝑖, and which is defined by:

𝑘𝑆𝑥 = 𝑘𝑖𝑥 +
2𝜋𝑚
Λ ,

𝑘𝑆𝑦 = 𝑘𝑖𝑦 +
2𝜋𝑛
Λ ,

𝑘𝑆𝑧 = √𝑘20 − (𝑘𝑆𝑥)2 − (𝑘𝑆𝑦)2,

(5.14)

where Λ is the pitch of the supercell that we have used in our forward simulations
(i.e. Λ = 3.5𝜇𝑚).
We now generalize Eq. (5.13) to the case in which the probe is a scalar field defined
by multiple plane waves. We consider the probe given by eq. (5.1). If we assume
that the response of the scatterer (i.e. the scattered field) is independent from the
angle of incidence of the considered plane wave, a change in the angle of incidence
will only result in a shift of the scattered far–field. Therefore we can write:

𝐄𝑠(𝐫) = ∑
𝑘𝑆𝑥 ,𝑘𝑆𝑦

∑
𝑘𝑖𝑥 ,𝑘𝑖𝑦

𝐺(𝑘𝑖𝑥 , 𝑘𝑖𝑦)[𝑅𝑠(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦)�̂� + 𝑅𝑝(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑦 − 𝑘𝑖𝑦)�̂�]𝑒𝑖𝐤
𝑆⋅𝑟 .

(5.15)
We finally move to the case in which the probe is a vectorial quantity as defined
in Eq. (5.12), and by recalling the operator 𝒜 in Eq. (5.11) we obtain that the
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scattered field is given by:

[𝐸𝑠,𝑥(𝐫)𝐸𝑠,𝑦(𝐫)] = ∑
𝑘𝑆𝑥 ,𝑘𝑆𝑦

∑
𝑘𝑖𝑥 ,𝑘𝑖𝑦

𝒜(𝑘𝑆𝑥 , 𝑘𝑆𝑦) [
𝑅𝑠𝑠(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦) 𝑅𝑠𝑝(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦)
𝑅𝑝𝑠(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦) 𝑅𝑝𝑠(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦)

] ⋅

⋅ 𝒜−1(𝑘𝑖𝑥 , 𝑘𝑖𝑦) [
𝐺𝑥(𝑘𝑖𝑥 , 𝑘𝑖𝑦)
𝐺𝑦(𝑘𝑖𝑥 , 𝑘𝑖𝑦)

] 𝑒𝑖𝐤𝑆⋅𝐫.
(5.16)

We note again that the scattering matrix in Eq. (5.16) has been written in the
[𝑠, 𝑝] basis because our solver computes the reflection coefficients of the scattering
orders in such basis.
We remark that we have written𝒜(𝑘𝑆𝑥 , 𝑘𝑆𝑦) and𝒜(𝑘𝑖𝑥 , 𝑘𝑖𝑦) to stress that the operator
𝒜 is generally different for the incident wave and for the scattered diffraction orders.
By incorporating the effect of the operator 𝒜 in the scattering matrix we obtain

[𝐸𝑠,𝑥(𝐫)𝐸𝑠,𝑦(𝐫)] = ∑
𝑘𝑆𝑥 ,𝑘𝑆𝑦

∑
𝑘𝑖𝑥 ,𝑘𝑖𝑦

[𝑅𝑥𝑥(𝑘
𝑆
𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦) 𝑅𝑥𝑦(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦)

𝑅𝑦𝑥(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦) 𝑅𝑦𝑦(𝑘𝑆𝑥 − 𝑘𝑖𝑥 , 𝑘𝑆𝑦 − 𝑘𝑖𝑦)
] ⋅

⋅ [𝐺𝑥(𝑘
𝑖
𝑥 , 𝑘𝑖𝑦)

𝐺𝑦(𝑘𝑖𝑥 , 𝑘𝑖𝑦)
] 𝑒𝑖𝐤𝑆⋅𝐫,

(5.17)

where the input and the output are both given in x and y. We notice that Eq. (5.16,
5.17) has a convolution structure in the Fourier space which, although expressed in
a vectorial framework, is similiar to the convolution structure in the Fourier space
that is at the core of the usual scalar ptychographic approach.
In the usual ptychographic approach the probe is polarized along either the 𝑥 or the
𝑦 direction and we measure the total intensity 𝐼 = |𝐸𝑠,𝑥|2+|𝐸𝑇𝑠,𝑦| and we proceed to
retrieve the object transmission/reflection function by applying the ptychographic
algorithm. Here, our aim will be to try to reconstruct all of the elements of the
scattering matrix in Eq. (5.17). This can be done by retrieving each component
of the scattering matrix separately. Notice that in this case the phase relation
among the elements of the scattering matrix would be lost. A way to retain this
information consists in polarizing the probe at 45∘ degrees (i.e. [𝐺𝑥 , 𝐺𝑦] = [1, 1])
so that, for instance, the intensity component along 𝑥 would be |𝐸𝑠,𝑥|2 ∝ |𝑅𝑥𝑥|2 +
|𝑅𝑥𝑦|2 +2|𝑅𝑥𝑥||𝑅𝑥𝑦|𝑐𝑜𝑠(Δ𝜙) where Δ𝜙 represents the phase difference among the
two terms. In what follows we have not added this rotation, therefore the elements
of the scattering matrix are defined up to a relative phase factor and the phase
relation among the elements of the scattering matrix is lost.

5.2. Numerical results
In the first instance we applied the approach described in the previous paragraph
considering as object the same patterned structures used in the previous chapter.
In Fig. 5.1 we report the ptychographic reconstructions for the case in which the
probe is polarized in the 𝑥 and 𝑦 direction and the total intensity |𝐸𝑇𝑠,𝑥|2 + |𝐸𝑇𝑠,𝑦|2 is
detected. Negligible differences were observed among the results given by applying
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the PIE on the intensity data acquired by illuminating the sample with the two
different probe polarizations. The reconstruction of the off–diagonal entries of the
scattering matrix was unsuccessful in this case as cross–polarization effects were
not pronounced enough to be imaged.

700 nm

(a) (b)

Figure 5.1: Reconstructions. a) Probe polarized in the 𝑥 direction, total intensity detected. b) Probe
polarized in the 𝑦 direction, total intensity detected.

In order to make polarization effects more pronounced we considered a computa
tional cell which was filled with structures with critical dimensions comparable to
the wavelength. The cell was composed of a repetition of a few polygons on a 9𝑥9
grid and the distance from the center of two adjacent polygons is approximately
80 𝑛𝑚. The retrieved amplitude of the object reflection function associated to the
diagonal elements of the scattering matrix and to the total intensity for the two
probe polarizations is shown in Fig. 5.2.
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700 nm

(a) (b) (c)

(d)

Figure 5.2: Object obtained by processing the dataset in which: a) the probe has been polarized along
𝑥 and the intensity along 𝑥 has been recorded (corresponding to 𝑅𝑥𝑥 in Eq. (5.17), b) the probe has
been polarized along 𝑥 and the total intensity, |𝐸𝑇𝑠,𝑥|2+|𝐸𝑇𝑠,𝑦|2, has been recorded, c) the probe has been
polarized along 𝑦 and the intensity along 𝑦 has been recorded (corresponding to 𝑅𝑦𝑦 in Eq. (5.17), d)
the probe has been polarized along 𝑦 and the total intensity, |𝐸𝑇𝑠,𝑥|2 + |𝐸𝑇𝑠,𝑦|2, has been recorded.

The reconstructions in Fig. 5.2 appeared quite modulated and required considerably
more iterations before convergence was reached than the ones in Fig. 5.1. We
did not notice major differences, in terms of resolution or reconstruction quality,
among the two reconstructions obtained by polarizing the probe in the two different
directions [𝑥, 𝑦] and recording the total intensity (Figs. 5.2 b,d). Interestingly, a few
of the polygons in Figs. 5.2(a,c) – obtained by applying the ptychographic method
(PIE) to the intensity given by the two diagonal elements of the matrix in Eq. (5.17)
– looks better defined than the ones in Fig. 5.2(b,d) that were obtained processing
the total intensity detected for the two incoming probe polarizations. Our attempts
to reconstruct the off–axis elements of the polarization matrix were not successful,
as cross–polarization effects were not pronounced for this particular case. Similar
considerations were found to hold for another sample comprised of fewer polygons
of sizes of about the wavelength.
Although we did not manage to reconstruct the full scattering matrix of the object
we believe that the approach outlined in this section can be possibly useful for
other types of optical setups and wavelengths where the optical contrast is more
pronounced and were the higher NA can cause more marked polarization effects.
Particularly the fact that the reconstructions obtained by processing the detected
intensities as given by the diagonal entries of the scattering matrix in Eq. (5.17) (as
seen in the images of Figs. 5.2(a,c)) look slightly sharper than the ones obtained
by processing the whole detected intensity (Figs. 5.2(b,d)) may be interesting for
future experiments. We did not study this approach further.
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Summary
This chapter has introduced a formalism for the polarization sensitive imaging of
EUV mask layouts. We have shown that it is possible to represent the object with a
2𝑥2 scattering matrix whose entries are the reflection coefficients generated when
illuminating the sample with a x/y (or s/p) polarized probe. This respresent a vecto
rial extension of the scalar ptychographic approach. We have attempted to image
the separate entries of the scattering matrix relative to a sample composed of a
few scatterers (with dimensions close to the wavelength) located on top of an EUV
mask. We managed only to image the diagonal entries of the matrix as cross–
polarization effects were not pronounced for this specific sample and wavelength.
We believe this method might be appealing for future studies in other optical setups
where polarization effects are more marked.
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6
Future work

Imaging below the diffraction limit is the predominant challenge of imaging physi
cists. Such a task requires to retrieve information of the spatial frequencies of the
permittivity function that correspond to the evanescent part of the angular spec
trum of the scattered field and which therefore do not reach the detector. Hence
imaging below the diffraction limit requires a setup by means of which the infor
mation contained in the high spatial frequencies of the permittivity is coupled to the
propagating part of the angular spectrum of the scattered field, more precisely to
the part that is inside the NA of the detector so that these propagating waves can
reach the detector.
Armed with a few of the concepts we presented in this thesis and relying on the work
of other research groups we shall propose a (tentative) method for superresolved
and wide field–of–view imaging.

Total internal reflection phase retrieval and ptychog
raphy.
The concepts that we are about to discuss should in principle be applicable to
both single intensity phase retrieval methods (HIO/RAAR ets.) and ptychography.
The interest in total internal reflection microscopy stems from the fact that in a
conventional far–field scattering experiment the optical contrast is mapped over a
sphere (Ewald sphere) in the reciprocal space of radius dictated by the magnitude
of the free–space wavenumber, 𝑘0 = 2𝜋/𝜆. The fact that we cannot directly access
the region in the reciprocal space outside the Ewald limiting sphere implies that
the resolution of an optical instrument is generally limited to about 𝜆2 . However,
an evanescent field is characterized by the fact that the transverse component of
its wave vector is larger than the free–space wavenumber. This means that the
accessible region of the reciprocal space of the object increases and includes a
usually unexplored part of the Fourier space of the object [1]. In what follows we
discuss a possible explanation for the physical mechanism behind the propagation of
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subwavelength information of the object to the far zone of a total internal reflection
microscope. Suppose that we are dealing with the geometry in Fig. 6.1.

Figure 6.1: Geometry of the experiment: a light field is propagating from Si to Air and hits the interface
at an angle 𝜃 = 𝜃𝑐 therefore creating an evanescent field in Air (not illustrated). A scatterer (block in
light red) interacts with evanescent illuminating near field thereby transferring evanescent information
into propagating orders.

when the light, coming from a denser medium (Si) to a less dense medium (Air),
hits the interface at an angle 𝜃 ≥ 𝜃𝑐 an evanescent wave is excited in the medium 1
(Air). The presence of the scatterer (block coloured in light red in Fig. 6.1) converts
the confined evanescent field into propagating orders which hit a detector in the
far field. The sub–wavelength imaging performance of TIR microscopes may be
attributed to the propagation of subwavelengths details of the object in the excited
propagating diffraction orders. To try to understand how this may be happening
we consider the simplistic case in which we wish to image an amplitude grating
located at 𝑧 = 0. Suppose that this grating has such a tiny period that the kick
of momentum due to diffraction is such that – in the “regular” case in which the
incoming field, propagating from Si to Air in Fig. 6.1, is incident at an angle 𝜃 < 𝜃𝑐
– even the first diffraction order would be immediately evanescent. In other words
the spatial information of the grating is so fine that we cannot retain it in the far–
field in the usual case in which 𝜃 < 𝜃𝑐. In the assumption considered above the
grating is described by a transmission function:

𝑂(𝑥) = 1 + 𝐴𝑐𝑜𝑠(𝑘𝑥𝑥) (6.1)

where 𝑘𝑥 > 𝑘0 = 2𝜋/𝜆0. Suppose now, without loss of generality, that the incoming
light is a plane wave which hits at 𝜃 ≥ 𝜃𝑐. In this case the x component of the
wavevector of the incident field is bigger than 𝑘0: 𝑘𝑖𝑥 > 𝑘0. The incident field,
assumed to be a scalar, is the field that is present when there is no scatterer, and
in medium 1 (Air) it is:

𝑃(𝑥, 𝑧) = 𝑃0𝑒−𝛼|𝑦|𝑒𝑖𝑘
𝑖𝑥𝑥 . (6.2)
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In other words in air the field decays away from the interface towards the direction
of increasing positive 𝑦 at a rate given by 𝛼 and the complex exponential indicates
that a surface wave, which moves parallel to the boundary with speed 𝜔/𝑘𝑖𝑥, is
excited. We do not discuss here the interpretation of this surface wave, for which we
refer to [2]. At the plane of the grating (𝑦 = 0), and assuming that a transmission
function approach to the modeling of light–matter interaction is accurate enough,
we can evaluate the exit wave just above the grating as:

𝑃(𝑥)𝑂(𝑥) = 𝑃0𝐴𝑒𝑖𝑘
𝑖𝑥𝑥𝑐𝑜𝑠(𝑘𝑥𝑥)

Re(𝑃(𝑥)𝑂(𝑥)) = 𝑃0𝐴𝑐𝑜𝑠(𝑘𝑖𝑥𝑥)𝑐𝑜𝑠(𝑘𝑥𝑥) =
𝑃0𝐴
2 [𝑐𝑜𝑠(𝑘𝑖𝑥𝑥 − 𝑘𝑥𝑥) + 𝑐𝑜𝑠(𝑘𝑖𝑥𝑥 + 𝑘𝑥𝑥)]

(6.3)
where with Re(𝑧) we have indicated the operator that extracts the real part of a
given complex number 𝑧. When 𝑘𝑖𝑥 ≈ 𝑘𝑥 the first part of Eq. (6.3) is a low frequency
harmonic that can propagate because |𝑘𝑖𝑥 − 𝑘𝑥| < 𝑘0 and that indirectly conveys
information about the subwavelength details of the grating. In essence Eq. (6.3)
states that we are down–converting high spatial frequencies of the object to base–
band so that they can propagate and consequently be detected [3]. According to
Eq. (6.3) the physical mechanism that dictates the propagation of subwavelength
information of the object from the near to the far zone is the intermodulation among
the superoscillatory frequencies of the object and of the illumination. Although Eq.
(6.3) has been derived by considering the case of the imaging of a grating, similar
observations hold for a generic a–periodic object, which can be expressed in the
reciprocal space by a sum of harmonics some of which, containing subwavelength
informations, are superoscillatory.
Notice that:

• The probe to be used in ptychography would be an evanescent field that
should be retrieved with a near–field probe whose presence would alter the
evanescent field itself. Because ptychographic methods allow us to the re
trieve accurately the illumination this should not be an issue.

• The objects we consider in phase retrieval are usually comprised by a conti
nuity of spectral components. To detect higher and higher spatial frequencies
one could, according to Eq. (6.3), increase 𝑘𝑖𝑥 further by hitting the target at
even more grazing incidence from the Si side of Fig. 6.1. In an alternative ap
proach one could interfere two beams that come at opposite directions. As the
interference of two sources oscillates as 𝑐𝑜𝑠(𝑘1𝑥 − 𝑘2𝑥) if we pick 𝑘2 = −𝑘1
we would generate a field that oscillates twice as fast. This would further cut
the resolution in half. This is the so called standing wave TIR microscopy.

• One could generalize what has been presented here to three dimensional
imaging via evanescent ptycho–tomography with the approach in Fig. 6.1
or by means of alternative experimental arrangements (for instance an Otto
configuration where an evanescent tail is excited in the neighbourhood of a
glass prism [1, 4]).
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• The method presented here, if successful, could be employed to other type
of applications, for instance for the imaging of cells [5] and can be possibly
improved with the use of tailored algorithms similarly to what has been done
in this thesis.

In conclusion the idea of total internal reflection phase retrieval and ptychography
can possibly provide a framework for the super–resolved and wide–field–of–view
lensless imaging of semiconductor or fluorescent samples [6].
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7
Conclusion

The research work outlined in this thesis has been concerned with the develop
ment of methods for metrology and inspection of extreme ultraviolet lithographic
masks. In Chapter 1 we have outlined the fundamental theoretical and mathemat
ical concepts which are at the core of inverse problems. Moving from these generic
foundations we have focused on the inverse problems of scatterometry (Chapter
2) and lensless imaging (Chapters 3 to 5). The research performed in Chapter (2)
aimed at finding a feasible solution to the problem of the curse of dimensionality
– which originates when too many unknowns are to be retrieved in the inverse
problem – in scatterometry. We noticed that the often employed nonlinear least
squares routines solve the inverse problem by solving recursively a linear regres
sion problem. This led to the introduction of an optimization algorithm which is a
nonlinear extension of a variable selection method known as the ”elastic net” which
is a widely employed method for model simplification in linear regression problems.
The application of the novel algorithm to isolated and periodic scattering potentials
on an EUV mask revealed that the method converges fast and successfully yields
a reduced model that can be subsequently employed during the 3–D profile recon
struction phase. We have compared the outcome of the automatic feature selection
algorithm with the results given by one–at–a–time and screening (Morris design)
sensitivity analysis methods. A few observations were made that highlighted the
differences in the fundamental approach of these methods.
In Chapter (3) we have introduced the phase retrieval problem and the most com
monly employed numerical methods that have been proposed to approach the prob
lem. Motivated by the technological need and scientific interest for actinic micro
scopes we have discussed the application of a few phase retrieval methods for the
imaging of isolated and non–trivially shaped nanostructures. In Section (3.2.1) we
have shown results for

• the imaging of a single nanostructure via the use of single–intensity phase
retrieval algorithms, and
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• the imaging of an ensemble of nanostructures using the regular ptychographic–
iterative–engine (PIE).

We subsequently shifted the focus of our studies on ptychography. We considered
that the only physical assumption in ptychography is that the light–matter interac
tion can be modeled via a transmission function approach: the exit wave – the field
just above the diffracting structures – is assumed to be given by the product among
the illumination function (the probe, which we assumed known) and the transmis
sion (or reflection) function of the object which accounts for the way the object
interacts with light. This is an approximation of light–matter interaction which we
may interpret as a first–order Born approximation. Considering that

• the phase problem is a non–convex optimization problem for which there are
no theoretical guarantees on the optimality of the solution, and that

• the ptychographic approach models the light–matter interaction approximately

one could think that a better solution of the phase problem may be achieved by
including further and a–priori physically sound information in ptychography. This
idea was further expanded in Chapter (4) where it was demonstrated that the in
clusion of prior information via the use of rigorous Maxwell solvers simulation tools
can improve the reconstruction of the object. Specifically, it was shown by means
of comprehensive computational studies that the inclusion of a robust and physics–
informed prior in the inversion algorithm provides the means for the ptychographic
imaging and inspection of smaller and subwavelength defects in a defective EUV
absorber layout on top of a Bragg multilayer. The use of variational and statis
tical methods for the derivation of a suitable update rule to be employed in the
optimization scheme was studied and the performance of our methods were dis
cussed in detail. We further presented a comparative study with respect to two
examples of sparsity priors, the Lasso and the total–variation regression, that are
commonly used in computational methods and that were found to yield a less satis
factory reconstruction than the one obtained with our physics–informed prior. The
method we deviced improved the inspection of the targets and enabled the imaging
of smaller defects (intrusion/extrusions on the patterned absorber). Nonetheless
the finest defects, smaller then 𝜆/2 in size, were not retained in the final retrieved
object. The need for a more robust reconstruction and a finer resolution in the
retrieved object has driven the further thinking that we presented in the last two
chapters.
In Chapter (5) we have presented a vectorial approach for the ptychographic imag
ing of semiconductor structures (patterned absorber of an EUV mask in this case).
This approach can be interesting for polarization sensitive imaging of the consid
ered features when we wish to image the different entries of the scattering matrix
in order to verify if one of them is better resolved than the others or if we are
interested in reconstructing all of the scattering matrix in order to retrieve more in
formation about the scattering object. We have presented results for fine structures
with critical dimensions of the order of the wavelength. We managed to reconstruct
the diagonal entries of the scattering matrix but the off–diagonal were too weakly
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scattering to be imaged and consequently the whole scattering matrix could not be
retrieved. The two diagonal entries of the scattering matrix were found to yield, in
our case, a similar resolution in the final retrieved image.
This thesis closes with a proposal for a method for superresolved lensless imaging
of semiconductor structures: total internal reflection phase retrieval and ptychogra
phy. The approach is discussed and the underlying physics is presented. We have
reasoned that the superresolved imaging performance associated to total internal
reflection microscopes and observed in literature might be understood in terms of
intermodulation: superresolution is argued to be given by propagating orders that
are the result of a downconversion of high frequency information of the object. This
process has also been observation is in line with the findings of different groups
This thesis summarizes the research work done in the past four years and introduces
novel concepts, ideas and algorithms that can potentially enable tighter (i.e. better
resolved) metrology and inspection of EUV masks and semiconductor structures.
The results and the methods presented in this thesis can be particularly interesting
for the communities that work in the area of metrology and inspection of target
features for the monitoring of the quality of the lithographic patterns at the mask
level or wafer level.
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