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Joint cardiac tissue conductivity and activation time estimation using 
confirmatory factor analysis 
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A B S T R A C T   

Mathematical models of the electrophysiology of cardiac tissue play an important role when studying heart 
rhythm disorders like atrial fibrillation. Model parameters such as conductivity, activation time, and anisotropy 
ratio are useful parameters to determine the arrhythmogenic substrate that causes abnormalities in the atrial 
tissue. Existing methods often estimate the model parameters separately and assume some of the parameters to 
be known as a priori knowledge. In this work, we propose an efficient method to jointly estimate the parameters 
of interest from the cross power spectral density matrix (CPSDM) model of the electrograms. By applying 
confirmatory factor analysis (CFA) to the CPSDMs of multi-electrode electrograms, we can make use of the 
spatial information of the data and analyze the relationship between the desired resolution and the required 
amount of data. With the reasonable assumptions that the conductivity parameters and the anisotropy param-
eters are constant across different frequencies and heart beats, we estimate these parameters using multiple 
frequencies and multiple heart beats simultaneously to easier satisfy the identifiability conditions in the CFA 
problem. Results on the simulated data show that using multiple heart beats decreases the estimation errors of 
the conductivity and the estimated activation time parameters. The experimental results on clinical data show 
that using multiple heart beats for parameter estimation can reduce the reconstruction errors of the clinical 
electrograms, which further demonstrates the robustness of the proposed method.   

1. Introduction 

Mathematical modeling of the electrophysiological properties of 
atrial tissue could play an important role in understanding atrial fibril-
lation and detecting the underlying arrythmogenic substrate. Previous 
research has been shown that development and progression of cardiac 
arrhythmias are related to impaired conduction in caridac tissue [1–5]. 
As such, these models should, among other things, include cell and tissue 
properties like the cell conductivity, the anisotropy ratio of the con-
ductivity and the cell’s activation time to accurately describe the 
propagation of the electrical waves. Such models have been proposed in 
previous research, e.g., [6–9]. In addition to the (forward) modelling 
itself, being able to accurately determine these model parameters from 
measurements is at least as important to be able to investigate the cause 
of cardiac arrhythmias and localize the arrhythmogenic substrate in the 
tissue. However, such inversion problems are often rather challenging 
due to the limited amount of measurements on one hand, and the large 
number of desired parameters on the other hand. The study in [9] 

estimated the tissue conductivities from the transmembrane action po-
tential of each cell that were directly obtained using micro-electrode 
arrays. However, this is impractical for living human tissue. More 
recently, Abdi. et al. [10] proposed a simplified forward model to 
replace the computationally intensive reaction-diffusion equations for 
describing the electrical propagation in atrial tissue, which reduces the 
computation cost of calculating all cell action potentials. They assumed 
that an electrogram is a summation of electrical activity of cell groups 
surrounding the electrode location and proposed a deconvolution 
method to estimate the tissue conductivities. However, this approach 
did not make use of spatial information of multi-electrode data and 
assumed the anisotropy ratio and the activation time of the cells are 
known. Finally, the activation time was estimated using the steepest 
descent method before estimating conductivity parameters. Cardiolo-
gists often use the less complex conduction velocity to analyze the 
electrical propagation and electropathology [1,11]. However, conduc-
tion velocity is not very reliable for investigating the arrhythmogenic 
substrates in cardiac tissue, since the conduction velocity can be 
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changed by both pathological origins or non-pathological origins like 
local curvature [2]. 

We have recently proposed the use of an efficient method called 
confirmatory factor analysis (CFA) to jointly estimate a subset of the 
useful parameters, that are the tissue conductivity and the anisotropy 
ratio from electrograms [12]. By analyzing the identifiability conditions 
in the formulated CFA problem, we find the relation between the 
required amount of data and the desired resolution. However, the 
method presented in [12] was limited to the use of a single heart beat 
and could only estimate the conductivity and the anisotropy parameters. 
In this work, we further extend this algorithm to jointly estimate the 
conductivity, anisotropy ratio, as well as the activation time per cell 
using multiple heart beats and multiple frequencies by using the pro-
posed method called simultaneous CFA. 

CFA is a type of modeling that can deal with the relationships be-
tween observed measures and latent variables [13]. In CFA, a factor is a 
variable that influences more than one observed measure and affects the 
correlations among the observed measures. The goal of a factor analysis 
model is to establish the number and nature of factors that account for 
the variation and covariation among the observed measures. Therefore, 
CFA has been widely used to test whether the data fits a hypothesized 
measurement model that captures the variance-covariance structures of 
the measurements [13]. To estimate the parameters in the CFA model 
and reproduce the variance-covariance matrix, constraints are often 
imposed on the model. These are based on a priori knowledge that is 
required to satisfy the identifiability conditions in the CFA problem 
[14–17]. In our previous work [12], we have applied CFA to the 
cross-power spectral density (CPSDM) model of the measurements to 
estimate the conductivity parameters and the anisotropy ratio parame-
ters. In order to easier satisfy the identifiability conditions, we assumed 
that the conductivity parameters and the anisotropy ratio parameters 
are roughly constant across frequencies within a certain range and 
proposed simultaneous CFA (SCFA) using multiple temporal frequencies 
of a single heart beat. Although [18] showed that in general conductivity 
is frequency dependent for the human heart, it follows from [18] that 
the conductivity is nearly constant within the frequency range from 0 to 
100 Hz that we considered. The activation time parameters were 
assumed to be known and were in the end estimated by the steepest 
descent method, as described in [19], before estimating the 
conductivity. 

In this work, we propose a more efficient SCFA method to jointly 
estimate more model parameters from epicardial electrograms. It is 
based on the fact that the propagation of the electrical wave in the tissue 
might change its direction slightly from one heart beat to another, even 
during sinus rhythm (SR). Multiple of these heart beats then “illuminate” 
the tissue from (slightly) different directions and provide additional and 
different data that could facilitate the parameter estimation. Taking this 
into account, we further make use of multiple heartbeats to improve the 
parameter estimation. Since the conductivity and the anisotropy ratio 
parameters are roughly constant in different frequencies and different 
heart beats, we estimate these parameters across multiple frequencies 
and heart beats to increase the ratio between the number of equations 
and the number of unknown parameters in the SCFA problem. However, 
note that the activation time parameters will change across different 
heart beats and are therefore estimated for each heart beat. In order to 
utilize the spatial structure of the multi-electrode data, the proposed 
algorithm is based on the CPSDM model. Extra constraints that incor-
porate prior knowledge on the model parameters are used to reduce the 
feasibility set of the parameter space and therefore increase the 
robustness of the algorithm. 

Altogether, this paper makes more efficient use of the data than [12] 
and further improves the CFA approach for jointly estimating cardiac 
tissue parameters. More concretely, the differences between this paper 
and our previous work are as follows: 1) Our previous work was limited 
to only estimate the conductivity parameters assuming the activation 
time per cell is known exactly. In this paper we considered to not only 

estimate the conductivity and the anisotropy ratio parameters, but also 
to jointly estimate the activation time parameter; 2) In our previous 
work, we used only a single heart beat for parameter estimation. This is 
rather limited as the waveform can come from varying directions in 
consecutive heart beats. In this paper we therefore used multiple heart 
beats for estimation. This allows to exploit the fact that the tissue is 
“illuminated” from different directions, leading to a much better use of 
the data. Alternatively, one might consider to first obtain parameter 
estimates per heart beat and then calculate the average, which is not 
efficient and not effective. In this paper, instead we first analyzed which 
parameters are constant across heart beats. For the parameters that are 
constant across heart beats, i.e., the conductivity and the anisotropy 
ratio parameters, we considered to obtain one estimate of the parame-
ters from multiple heart beats; for the parameters that vary from 
beat-to-beat, i.e., the activation time parameter, we consider to obtain 
one estimate per heart beat. In this way we increased the ratio of known 
to unknown parameters such that a higher spatial resolution of param-
eters can be obtained given the same amount of data. By updating the 
values of the activation time with the other two parameters in the same 
optimization loop, we further improve the estimation accuracy of these 
parameters. 

The rest of the paper is organized as follows. In Section II, we 
introduce the notation, the impulse response model, the CPSDM model, 
and the problem formulation for the joint model parameter estimation. 
In Section III, we review the basic CFA theory and introduce the pro-
posed SCFA algorithm and practical consideration to increase the 
robustness of the proposed algorithm. In Section IV and V, we evaluate 
the proposed algorithm using simulated data and clinical data, respec-
tively. In Section VI, we discuss the advantages and the limitations of 
this work and draw the conclusions. 

2. Preliminaries 

In this section, we introduce the notation that we use and review the 
epicardial electrogram models in the time domain and the frequency 
domain, respectively. Although the details on the time and frequency 
domain models have been presented in [12], we summarize here the 
most important aspects to guide the reader. 

2.1. Notation 

Lower-case letters, bold-face lower-case letters and bold face upper- 
case letters are used to denote scalars, vectors, and matrices, respec-
tively. For example, a matrix A is denoted as A = [a1, …, am], where ai is 
the ith column of A. The element of a matrix A at position (i, j) is denoted 
as aij and the diagonal of a matrix A ∈ Cm×m is denoted as Diag(A) =

[a11,…, amm]
T . For the Frobenius norm of a matrix, we use ‖ ⋅‖F to denote 

it. A hermitian positive semi-definite matrix is denoted as A⪰0, where A 
= AH and the eigenvalues of A are real and non-negative. 

2.2. Atrial electrogram impulse response model 

To model the electrical propagation in epicardial tissue, we consider 
the cable theory and the monodomain approach, which assumes that the 
anisotropy ratios of the intracellular domain and the extracellular 
domain are equal. It has been found in the previous research that the 
monodomain model approximates its bidomain counterpart very well, 
even when the equal anisotropy assumption does not exactly hold 
[20–22]. 

We consider M electrodes that are positioned on an epicardial area of 
the left/right atrium. The electrodes are indexed by m ∈ {1, 2, …, M}. 
Fig. 1 illustrates as an example of the placement of the electrode array on 
different epicarcardial areas of the atria. These electrodes measure the 
changes in the extracellular potential of a group of cells that are close to 
the electrodes. These measurements are called epicardial electrograms. 
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To represent the electrograms in a computational model, we discretize 
the tissue into a two-dimensional grid with N regular elements to model 
N cells. We use rm,n to denote the distance between the mth electrode and 

the nth cell and let rm =

[
1

rm,0
, 1

rm,1
,…, 1

rm,N− 1

]T
. By stacking the action po-

tential of all cells in a vector v(t) = [v0(t), v1(t),…, vN− 1(t)]T , the atrial 
electrogram recorded by the mth electrode can be modeled as [10,23]. 

ym(t) =
aS− 1

v

4πσe
rT

mDσv(t), (1)  

where a represents the area of each grid element, σe represents the 
constant extra-cellular conductivity, Sv represents the cellular surface to 
volume ratio, and Dσ represents a double differentiation operator. We 
consider to decompose the propagation direction of the action potential 
into a component in the x-direction and a component in the y-direction 
and denote the ratio of the conductivity in the x-direction to the con-
ductivity in the y-direction at the nth cell position by αn. Stacking the 
conductivity of all cells in the x-direction as a vector σ, and stacking the 
anisotropy ratio of all cells as a vector α, the operator Dσ is defined as 

Dσ = DxDiag(σ)Dx + DyDiag(α)Diag(σ)Dy. (2) 

Similar as in [10], we assume that all cells have the same stereotype 
action potential waveform once activated and take the cell with action 
potential v0(t) as the reference cell. The electrogram model in (1) can 
then be rewritten as: 

ym(t) =
aS− 1

v

4πσe
rT

mDσδ(t) ∗ v0(t), (3)  

where δ(t) = [δ(t − τ0), δ(t − τ1),…, δ(t − τN− 1)]
T, with δ(⋅) the Dirac 

delta function and τn the time delay of the nth cell with respect to the 
reference cell, and * the convolution operator. 

Let am(t) denote the impulse response from all cells to the sensor at 
position m. From the model in (3), we have 

am(t) =
aS− 1

v

4πσe
rT

mDσδ(t). (4)  

with this, the atrial electrogram model in (3) can be further simplified as 

ym(t) = am(t) ∗ v0(t). (5) 

In practice, the electrodes at the atrial area measure not only the 

action potentials of the atrial cells, but also the action potentials of the 
ventricular cells and some noise. In this work, we only aim to estimate 
the parameters of the atrial tissue when atrial activity is present and 
ignore the ventricular activity. Denoting the noise received at the mth 
electrode by um(t), the impulse response model of the noisy atrial elec-
trogram measured by the mth electrode is given by 

ym(t) = am(t) ∗ v0(t) + um(t). (6) 

The conductivity parameters σ and the anisotropy ratio parameters α 
in Dσ and the activation time parameters τn for all n = 0, …, N − 1 are the 
parameters of interest in this work, which are all included in am(t). 
Estimating these parameters from the model in (6) is complex because of 
the convolution operator. To simplify the problem, we transform the 
model to the frequency domain with the short-time Fourier transform 
(STFT). 

2.3. Atrial electrogram CPSDM model 

The time domain electrogram model can be written in the frequency 
domain using the STFT. Let l denote the time-frame index and k denote 
the frequency-bin index. In the frequency domain, the electrogram 
model from (6) is then given by 

ỹm(l, k) = ãm(l, k)ṽ0(l, k) + ũm(l, k) (7)  

where ỹm(l,k), ãm(l,k), ṽ0(l, k), and ũm(l, k) are the STFT coefficients of 
ym(t), am(t), v0(t), and um(t), respectively. 

By stacking all electrodes in a vector, the electrogram model in the 
frequency domain becomes 

ỹ(l, k) = ã(l, k)ṽ0(l, k) + ũ(l, k), (8)  

where 

ỹ(l, k) = [̃y1(l, k),…, ỹM(l, k)]
T
, (9)  

ũ(l, k) = [ũ1(l, k),…, ũM(l, k)]T , (10)  

and 

ã(l, k) =
[

aS− 1
v

4πσe
rT

1 Dσ δ̃(l, k),…,
aS− 1

v

4πσe
rT

MDσ δ̃(l, k)
]T

(11)  

with 

δ̃(l, k) =
[

exp
(

− j
2πfsk

K
τ0(l)

)

,…, exp
(

− j
2πfsk

K
τN− 1(l)

)]T

, (12)  

where τn(l) is the time delay of the nth cell with respect to the reference 
cell in the lth frame. 

Based on (7), the cross power spectral density matrix (CPSDM) of the 
electrograms in the lth frame and the kth frequency bin can be expressed 
as 

Φy(l, k) = E[ỹ(l, k)ỹ(l, k)H
]

= φ(l, k)ã(l, k)ã(l, k)H
+ Φu(l, k),

(13)  

where φ(l, k) = E[|̃v0(l, k)|2] is the power spectral density of the reference 
cell, and Φu(l, k) = Diag([q1,…, qM]

T
) with the mth diagonal element 

qm = E[|ũm(l, k)|2] the power spectral density of the sensor-self noise of 
the mth sensor, which is assumed to be uncorrelated across sensors, 
across time and across frequency bins. 

For the CPSDM model, the unknown parameters of interest, i.e., σ 
and α are included in the spatial operator Dσ in ̃a(l, k) [ref. (2)], and the 
activation time parameters τn for all n = 0, …, N − 1 are included in 
δ̃(l, k) in ã(l,k). 

Fig. 1. The placement of the electrode array on different epicarcardial areas of 
the atria. The black dots represent the electrodes. VCI: vena cava inferior. 
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2.4. Problem formulation 

The goal of this work now is to jointly estimate the conductivity 
parameters σ, the anisotropy ratio parameters α, and the activation time 
parameters τn for all n = 0, …, N − 1 from the noisy CPSDM matrices 
Φy(l, k), estimated from the electrograms of multiple heart beats for all 
time frames. 

In this problem, the number of knowns depends on the number of 
electrodes used for data measurements and the number of unknowns 
depends on the number of cells (modeled by the spatial grid elements of 
the tissue) given a certain number of electrodes. To make the problem 
solvable, the number of knowns needs to be larger than the number of 
unknowns. This can be confirmed by analyzing the identifiability con-
ditions of the confirmatory factor analysis (CFA) problem. Next, we will 
use CFA to analyze the resolution that we can obtain with the given 
amount of data and estimate the target parameters. 

3. Simultaneous confirmatory factor analysis for joint 
estimation of tissue properties 

CFA has been proposed to estimate parameters to fit a hypothesized 
measurement model based on variance-covariance structures of the 
data, which can be applied to estimate the parameters in CPSDM models. 
Interested readers are referred to the studies in [14–17] for more details. 
Generally, solving the CFA problem is done by minimizing the distance 
between the estimated CPSDMs of the noisy measurements and the 
theoretical CPSDMs with respect to some free parameters while keeping 
the remaining parameters fixed at the given values. In most cases, this 
implies to solve an optimization problem with constraints to incorporate 
a priori knowledge of the models and parameters. 

Two necessary conditions have been proposed to ensure the pa-
rameters of the CPSDM model are uniquely identifiable [17]. The first 
identifiability condition is that the number of equations should be larger 
than the number of unknown parameters. The number of equations 
depend on the given amount of data. In this problem, it depends on the 
number of electrodes M used in the measurement. For guaranteeing 
unique identifiability, the first identifiability condition is not enough and 
the second identifiability condition is needed. This condition states the 
number of parameters in the CPSDM model that at least need to be fixed 
to have a unique solution. 

3.1. Simultaneous CFA problem for joint estimation in multiple 
frequencies and multiple heart beats 

In [12], we have adapted the CFA method to estimate the cardiac 
tissue conductivity parameters and the anisotropy ratio parameters from 
the CPSDM model using a single heart beat. We now apply the CFA to 
estimate interested parameters in this work, i.e., the conductivity, 
anisotropy ratio, and activation time parameters from the CPSDM model 
in (13) using multiple heart beats. 

To increase the robustness of the estimation, we put some constraints 
on the parameters exploiting some a priori knowledge. The power 
spectral density of the reference cell φ is fixed by a known constant φ̂, 
which is obtained based on the mathematical model of the action po-
tential of an atrial cell. For the reference cell with index zero, the acti-
vation time τ0(l) = 0 for all heart beats (for all l). Based on the 
assumption that the conductivity σ, the anisotropy ratio α and the 
activation time τn in different frequencies are roughly constant, we es-
timate these parameters simultaneouly in multiple frequencies to in-
crease the ratio of known-to-unknown variables when estimating the 
conductivity parameters using CPSDMs of noisy atrial electrograms. 
Moreover, we take into account multiple heart beats, since the con-
ductivity σ and the anisotropy ratio α can also be assumed constant 
across multiple heart beats. By using multiple heart beats, the first 
identifiability condition can be easier satisfied, and the estimation error 
may be further reduced since waves coming from varying directions 

illuminate the tissue from various viewpoints. Note that the activation 
time parameters are constant across frequencies but differ across heart 
beats. The simultaneous CFA (SCFA) problem formulation to jointly 
estimate the parameters in multiple frequencies and multiple heart beats 
is given by 

min
σ,α, {Φu(k, l)},

{τn(l)}, n = 0,…,N − 1

∑

∀k∈Sf ,∀l∈Sl

F(Φ̂y(k, l),Φy(k, l))

s.t. Φy(k, l) = ã(k, l)φ(k, l)ã(k, l)H
+ Φu(k, l),

ã(k, l) = [QrT
1 Dσ δ̃(k, l),…,QrT

MDσ δ̃(k, l)]
T
,

Dσ = DxDiag(σ)Dx + DyDiag(α)Diag(σ)Dy,

δ̃(k, l) =
[

exp
(

−
j2πfsk

K
τ0(l)

)

,…,

exp
(

−
j2πfsk

K
τN− 1(l)

)]

,

Φu(k, l) = Diag[q1(k, l), q2(k, l),…, qM(k, l)],

qm(k, l) ≥ 0,m = 1, 2,…,M,

φ(k, l) = φ̃(k, l),

0 < α ≤ αupper,

0 ≤ σ ≤ σupper,

τ0(l) = 0,

τlow ≤ τn(l) ≤ τupper, n = 1,…,N − 1,
(14)  

where F(Φ̂y ,Φy) is a cost function such as the maximum likelihood, least 
square, or generalized least square, and where the constraints are used 
to incorporate model knowledge, for example the a priori knowledge 
from (13) and incorporating the knowledge that Φu is diagonal and 
positive definite. Constraints are also put on the target parameters, 
which are expressed by the last four constraints in (14), where αupper 
σupper are respectively the real valued upper bounds on the anisotropy 
ratio and the conductivity parameters which are selected based on the 
previous research on the atrial tissue, and τlow and τupper are respectively 
the lower and upper bounds of activation time that are set by reasonable 
values. For the loss function in (14), we consider to use the least square 
cost function, which is given by 

F(Φ̂y,Φy)=
1
2
‖Φ̂y − Φy‖

2
F , (15)  

for ∀k ∈ Sf, ∀l ∈ Sl, where Sf = {k1, …, kN} is the set of the frequency 
indices and Sl = {l1, …, lN} is the set of the heart beats for conductivity 
and activation time estimation. Note that the problem in (14) is not 
convex and may have multiple local minima. 

3.2. Identifiability conditions of the SCFA problem 

Prior to estimating the target parameters in this CFA problem, we 
first analyze what resolution we can obtain given M electrodes. This can 
be achieved by analyzing the two identifiability conditions of the SCFA 
problem. To analyze whether the first identifiability condition is satisfied, 
we need to calculate the number of knowns and unknowns in (14). Since 
the noisy CPSDM estimated for M electrodes in one frequency band and 
one heart beat is symmetric, there are M2 real valued knowns due to 
Φ̂y(k, l) in total. (Note that the main diagonal elements of Φ̂y(k, l) are 
real values while others are complex values). When considering |Sf| 
frequency bands and |Sl| heat beats, the number of knowns due to the 
noisy CPSDMs of M electrodes in |Sf| frequency bands and |Sl| heart 
beats is |Sl||Sf|M2. The number of unknowns due to σ in Dσ is N, due to α 
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in Dσ is N, due to τn(n = 1, …, N − 1) is |Sl|(N − 1), and due to Φu is |Sl|| 
Sf|M. Therefore, the first identifiability condition is 

|Sl||Sf |M2 ≥ 2N + |Sl|(N − 1) + |Sl||Sf |M, (16)  

which means that the number of cells N for which we can estimate the 
desired parameters is constrained by 

N ≤
|Sl||Sf |(M2 − M) + |Sl|

2 + |Sl|
. (17)  

we can see that using multiple frequencies or/and multiple heart beats, i. 
e., |Sl| > 1 or/and |Sf| > 1, the first identifiability condition can be satisfied 
with less sensors. 

The second identifiability condition requires that at least r2 parameters 
in ã and φ in the CPSDM model in (13) need to be fixed, where r rep-
resents the number of sources that trigger the atrial activity in the car-
diac tissue [12]. According to the second identifiability condition, we need 
r2 independent restrictions on ã and φ. In this work we consider only a 
single source, therefore r2 = 1. Since we have fixed the value of φ in the 
constraint, the second identifiability condition is always satisfied. 

3.3. Practical consideration 

Due to the large number of cells in the tissue, the first identifiability 
condition cannot be satisfied if we estimate parameters at the finest 
resolution, that is, estimating the parameters for each cell. To ease this 
problem we considered groups of cells and used the center cell of the 
group to represent the group. 

Let N denote the number of cell groups and let R represent the res-
olution scale compared to the number of electrodes M, then N = RM. The 
first identifiability condition in (17) can be rewritten using R as 

RM ≤
|Sl||Sf |(M2 − M) + |Sl|

2 + |Sl|
. (18)  

which means that the highest resolution scale that can be obtained given 
M electrodes is 

R =
|Sl||Sf |(M2 − M) + |Sl|

(2 + |Sl|)M
. (19) 

By reducing the resolution scale R at which we estimate the pa-
rameters, that is, increasing the number of cells per group, we can 
reduce the number of unknowns and increase the ratio of the number of 
equations to the number of unknowns, which then satisfies easier the 
first identifiability condition. However, note that reducing the resolu-
tion scale R will reduce the model accuracy and increase the model- 
mismatch error compared to using the actual cells. 

The parameters are finally obtained by solving the non-convex 
optimization problem in (14). In this work, we used the MATLAB opti-
mization toolbox to solve this problem, which is based on a combination 
of the methods in [24–26]. 

4. Experiments on the simulated data 

In this section, we evaluate the performance of the proposed methods 
on simulated data. We first introduce the data generation based on the 
mathematical model and then evaluate the joint estimation of the con-
ductivity, anisotropy ratio, and activation time using one heart beat and 
multiple heart beats, respectively. The results of the proposed method 
are compared with our previously proposed SCFA method from [12], 
which assumed the activation time parameters were known and in the 
end were estimated by the steepest descent approach from [19] before 
conductivity estimation. For convenience, we use SCFA1 to represent 
the method in [12] and SCFA2 to represent the method proposed in this 
paper. The algorithms are first tested on two-dimensional simulated 
tissue and then on three-dimensional simulated tissue. 

4.1. Generation of two-dimensional simulated data 

4.1.1. Model of atrial cells 
To generate the atrial electrograms for evaluation, we first model 

individual cells and then integrated these cells to form the tissue. To 
generate realistic action potentials, properties and ionic mechanisms in 
atrial cells need to be considered in the computational cell model. In this 
work, we use the Courtemanche model proposed in[27] to model the 
atrial cells. 

4.1.2. Types of two-dimensional tissue 
Two-dimensional tissues with different conductivity settings are 

considered in the simulations to test the performance, including three 
types of tissues:  

(i) inhomogeneous tissue with two areas of conduction block and the 
area outside the conduction block is homogeneous and isotropic 
with conductivity σn = 1.1 mS/cm for all n and with anisotropic 
ratio αn = 1 for all n;  

(ii) inhomogeneous tissue with one area of conduction block and the 
area outside the conduction block has a smooth variation in 
conductivity, varying from 0.77 mS/cm to 1.1 mS/cm and its 
anisotropic ratio αn = 0.4 for all n;  

(iii) inhomogeneous tissue with two areas of conduction block and the 
area outside the conduction block has a higher variation in con-
ductivity than (ii) which varies from 0.75 mS/cm to 1.3 mS/cm 
and its anisotropic ratio αn changes from 0.9 to 0.5 from left to 
right. 

4.1.3. Simulation protocol 
Tissues are discretized into 90 × 90 regular grid points to model the 

cells. The cell-to-cell distance is 0.02 cm. At the beginning, all the cells 
are at their resting status with the initial conditions as set in Ref. [27]. 
Then, a train of stimulus with a basic cycle length of 1000 ms is applied 
to the source cells in the tissue during 5 s. The stimulus current is Ist =
200 μA with a duration of 0.5 ms. Once the source cells are activated, 
they generate and conduct the impulses to their neighbors, causing the 
spread of excitation through the tissue. The electrical waves in different 
heart beats are assumed to be originating from slightly different di-
rections, which is implemented by applying the stimulus at different 
positions of the tissue. 

4.1.4. Calculation of action potentials and electrograms 
The basic equation to calculate the transmembrane potentials of the 

cells is 

C
∂vn(t)

∂t
= Itm,n(t) + Ist,n(t) − Iion,n(t, vn(t)) (20)  

where vn(t) is the transmembrane potential of the nth cell, C is the 
membrane capacitance, Ist,n(t) is the stimulus current, Iion,n(t, v(t)) is the 
ionic current, and Itm,n(t) is the cell-to-cell transmembrane current per 
unit area that accounts for the spatial evolution of the action potential. 
By discretizing the tissue into a regular lattice, the reaction-diffusion 
equation in (20) can be solved using the finite difference method [28]. 
This is based on the assumption that the tissue surface is flat, which is 
reasonable when taking into account a small tissue area. Since the 
electrical wave should not propagate further than the tissue boundaries, 
the no-flux boundary conditions is considered. After solving (20) using 
forward Euler’s method with a time step of 0.05 ms, we obtain the action 
potential at every grid point of the tissue. The moment when the action 
potential of a cell reaches the threshold of − 40 mV is considered as the 
cell’s activation time. After calculating the action potentials of all cells, 
the electrograms are generated using the mathemetical model in (1). 
The noisy electrograms are then generated by adding Gaussian noise to 
the clean electrograms to simulate sensor self noise. The signal-to-noise 
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ratio (SNR) is set at 50 dB. In the numerical experiments, we assume the 
fiber is aligned along the x-axis and simply choose αupper = 1. The values 
of other parameters used for the experiments are summarized in Table 1. 

Fig. 2 shows an example of the experimental setup, the generated 
electrograms and the activation time maps of the heart beats. Fig. 2(a) 
shows tissue as having the two areas of conduction block with a 5 × 5 
electrode array placed on the center of the tissue. The two blue lines 
represent the two areas of conduction block. The cells outside the areas 
of conduction block have a conductivity of 1.1 mS/cm. The nine red 
points numbered from one to nine represent the simulated source po-
sitions of the nine heart beats, respectively, where an external stimulus 
current of Ist = 200 μA is applied to trigger the electrical activity in the 
tissue. Note that for each heart beat there is only one source to drive the 
propagation of the wave. Fig. 2(b) plots the generated electrograms of 
the nine heart beats measured by the electrode array in Fig. 2(a). We can 
see the small differences between these heart beats. Fig. 2(c) and (d) plot 
the activation time maps of the tissue area with 45 × 45 cells in the 
central part of the tissue boxed in Fig. 2(a) when applying the stimulus at 
position ‘1’ and position ‘3’ in Fig. 2(a), respectively. 

4.2. Evaluation on two-dimensional simulated data 

To quantify the estimation performance, we calculate the MSE of the 
conductivity parameters and the MSE of the activation time parameters. 
The conductivity parameters in the y-direction (the transverse direction) 
σyy can be obtained after estimating the conductivity parameters in x- 
direction (the longitudinal direction) σxx and the anisotropy ratio α. The 
longitudinal conductivity at the location of the nth cell, i.e., σyy,n, is 
equal to σxx,n ⋅ αn, where σyy,n, σxx,n and αn are the nth elements of the 
vector σyy, σxx and αn. Then we calculate the MSE for the estimation of 
the conductivity parameters by 

Errc =

⃦
⃦σxx − σ̂xx‖

2
+
⃦
⃦σyy − σ̂ yy‖

2

2N
, (21)  

where N represents the number of cell groups, σxx and σyy represents the 
real longitudinal and transverse conductivity parameters, and σ̂xx and 
σ̂yy represents their estimates, respectively. 

The MSE of the estimated activation time parameters for the lth time 
frame (heart beat) is calculated by 

Erra(l) =
1
N

∑N− 1

n=0
(τn(l) − τ̂n(l))2

, (22)  

where τn and τ̂n represent the real and estimated activation time pa-
rameters in ms, respectively. 

We first compare the parameters estimated by SCFA1 and SCFA2 
using a single heart beat. Table 2 shows the estimation errors for 
different heart beats. It can be seen that for all the tissue examples the 
estimation errors of the conductivity and the activation time parameters 
both decrease when using the joint estimation method SCFA2 proposed 
in this work. Moreover, it is clear that the estimation performance varies 
with the source position. This is due to the interplay between the origin 
of the wave (i.e., the source position) and the local conductivity. 
Compared with SCFA1, the average MSE of conductivity parameter per 
cell obtained by SCFA2 decreases from 0.0413 mS/cm to 0.0359 mS/cm 
for tissue type (i), from 0.0297 mS/cm to 0.0241 mS/cm for tissue type 

(ii), and from 0.0585 mS/cm to 0.0560 mS/cm for tissue type (iii). 
The estimation of the activation time is also improved by using the 

joint estimation method. The electrical wave propagates fast across the 
tissue. The SCFA1 method uses the steepest descent method to estimate 
the activation time parameters of the 45 × 45 cells per tissue. The MSE of 
the activation time parameter per cell is 0.8607 ms2, 1.2212 ms2, and 
1.2865 ms2 for tissue type (i), type (ii), and type (iii), respectively. 
Unlike SCFA1, the SCFA2 method jointly estimates all the parameters 
and the MSE of the activation time parameter per cell decreases to 
0.8490 ms2, 1.1991 ms2, and 1.2422 ms2 for tissue type (i), type (ii), and 
type (iii), respectively. Although the MSE decrease for per cell is small, 
at the high speed of wave propagation in tissue this difference can be 
significant. 

We then study the use of multiple heart beats to estimate the pa-
rameters. We start from using two heart beats and test different com-
binations of two heart beats, for example, combining heart beat ‘1’ with 
each of the heart beats ‘2’, ‘3’, …, ‘9’, respectively, i.e., heart beats 
‘1’&‘2’, ‘1’&‘3’, …, ‘1’&‘9’. We here compare the estimation perfor-
mance using three different methods, that are: 1) SCFA1 using one heart 
beat, 2) SCFA2 using one heart beat, and 3) SCFA2 using two heart beats. 
Fig. 3 shows the resulting estimation errors of the conductivity param-
eters and activation time parameters. The estimation errors of the first 
two methods are obtained by calculating the errors for the conductivity 
and activation time per heart beat and averaging these across the two 
heart beats. The estimation errors of SCFA2 using two heart beats are 
calculated directly. Fig. 3(a) and (b) respectively show the estimation 
errors of the conductivity parameters and the activation time parameters 
on the three tissue examples using different methods. We here use Errc 

and Erra to denote the estimation errors of the conductivity parameters 
and the activation time parameters, respectively. We can see that for all 
tissue examples, SCFA2 achieves better performance than SCFA1 and 
the estimation errors of the parameters are reduced by combining two 
different heart beats and estimating the parameters jointly. These results 
support our hypothesis that the electrical waves in different heart beats 
can “illuminate” the tissue from different directions and provide useful 
information for the tissue parameter estimation. 

We then increase the number of heart beats for estimation using 
SCFA2. Fig. 4(a) and Fig. 4(b) respectively plot the estimation errors of 
the conductivity parameters and the activation time parameters on the 
three tissue types from using one heart beat up to nine heart beats. From 
Fig. 4(a), we see that for all the tissue examples the estimation error of 
the conductivity parameters first decreases and then tends stabelize with 
the increase of the number of heart beats. We can also find that tissue 
type (iii) needs more heart beats to achieve good results since it has a 
more complicated underlying structure. However, we also see that it has 
the largest relative decrease in estimation error when going from one to 
multiple heart beats. This can also be explained by the more complex 
structure, where a larger benefit is obtained by combining heart beats 
originating from different directions. From Fig. 4 (b), we find that using 
multiple heart beats helps to improve the estimation of the activation 
time parameters, and always performs better than the steepest decent 
method. However, the improvement of the activation time estimation 
due to the increase of heart beats is less obvious compared to the con-
ductivity estimation in Fig. 4 (a). This might be because the activation 
time parameters change across different heart beats, while the conduc-
tivity parameters are shared across different heart heats. In addition, the 
increase of the unknown parameters due to the increase of the number of 
heart beats makes it more challenging to find the optimal solution in the 
non-convex optimization problem. 

In Fig. 5, we show examples of the real and estimated conductivity 
maps obtained with SCFA1 using one heart beat, SCFA2 using one heart 
beat, two heart beats, and three heart beats. Since the longitudinal 
conductivity is equal to the transverse conductivity for tissue type (i) 
and the estimation results are similar in the two directions, we only 
show here the conductivity maps in the longitudinal direction for tissue 

Table 1 
Summary of parameters used in the experiments.  

Parameters Definition Value 

T time-frame length 1000 samples 
ovT overlapping of time-frame 20% 
fs sampling frequency 1 kHz 
C membrane capacity 1 μF/cm2 

Sv cellular surface to volume ratio 0.24 μm− 1 
σupper maximum conductivity of a cell 2 mS/cm  

M. Sun et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 144 (2022) 105393

7

type (i). For tissue types (ii) and (iii), we show the conductivity maps in 
both the longitudinal and transverse directions. Comparing the results of 
SCFA1 and SCFA2 using one heart beat, we can see that SCFA2 achieves 
better estimation than SCFA1, which implies that improving the esti-
mation of activation time helps to improve the estimation of the con-
ductivity. Comparing the results of using one heart beat to the results of 
using two heart beats by SCFA2, we see that combining multiple heart 
beats obviously improves the estimation. From the estimated conduc-
tivity maps of tissue type (ii) in Fig. 5, we find that the algorithm also 
works well when there is a smooth variation in the conductivity maps. 

However, the estimated conductivity maps seem less accurate for more 
heterogeneous examples (iii), mainly in case of non-constant anisotropy 
ratios. This could be a consequence of the fixed stereotype waveform for 
all cells. 

From the simulation results, we here have some interesting findings 
on the conductivity estimation. For all tissue examples, we find that the 
combination of the waves from top and top left achieve a different 
conductivity map compared to the combination of the waves from top 
and left, which suggests that the propagation direction of the wave af-
fects the estimation results. From the visualized examples in Fig. 5, we 

Fig. 2. An example of the tissue, the generated electrograms and activation time maps. (a) Tissue with two areas of blocks. The 5 × 5 blue points represent the 5 × 5 
electrodes and the two blue lines represent the two areas of block. (b) electrograms of nine heart beats; (c) activation time map of the heart beat when applying the 
stimulus at position ‘1’ in (a); (d) activation time map of the heart beat when applying the stimulus at position ‘3’ in (a). 

Table 2 
Comparison of estimation errors with different methods.  

Heart 
beats 

Tissue Type (i) Tissue Type (ii) Tissue Type (iii) 

Errc 

(SCFA1) 
Errc 

(SCFA2) 
Erra 

(SCFA1) 
Erra 

(SCFA2) 
Errc 

(SCFA1) 
Errc 

(SCFA2) 
Erra 

(SCFA1) 
Erra 

(SCFA2) 
Errc 

(SCFA1) 
Errc 

(SCFA2) 
Erra 

(SCFA1) 
Erra 

(SCFA2) 

1 0.0435 0.0384 1.0318 1.0198 0.0322 0.0273 1.0752 1.0502 0.0866 0.0861 1.5108 1.3719 
2 0.0441 0.0360 0.6643 0.6480 0.0276 0.0236 1.0460 1.0142 0.0706 0.0672 1.1976 1.0890 
3 0.0399 0.0337 0.6748 0.6674 0.0301 0.0233 1.4008 1.3470 0.0558 0.0579 1.6209 1.5945 
4 0.0397 0.0342 0.8785 0.8598 0.0322 0.0212 0.6459 0.6262 0.0506 0.0462 0.9196 0.8440 
5 0.0386 0.0334 0.9985 0.9783 0.0299 0.0215 0.4763 0.4470 0.0509 0.0477 1.5565 1.5558 
6 0.0385 0.0343 0.7177 0.7010 0.0284 0.0216 0.6137 0.6030 0.0533 0.0480 0.5640 0.5601 
7 0.0381 0.0360 1.2966 1.2925 0.0272 0.0216 1.7445 1.7356 0.0480 0.0482 1.2185 1.1977 
8 0.0442 0.0386 0.7007 0.6944 0.0272 0.0273 1.5225 1.5130 0.0555 0.0504 2.0798 2.0526 
9 0.0455 0.0388 0.7837 0.7798 0.0329 0.0294 2.4660 2.4561 0.0539 0.0518 0.9106 0.9103 

Avg. 0.0413 0.0359 0.8607 0.8490 0.0297 0.0241 1.2212 1.1991 0.0585 0.0560 1.2865 1.2422  
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can see that using the wave from the left helps to estimate the longitu-
dinal conduction block as the time delay at the position of the block is 
more obvious when the wave is propagating from the left. Similarly, 
using the wave from the top is good for estimating the transverse con-
duction block. In addition, the readers may find that in tissue example 
(i), the conduction block in the transverse direction is better estimated 
than the longitudinal direction. This is because the electrode is exactly 
positioned on the conduction block in the transverse direction, while 
this is not the case for the conduction block in the longitudinal direction 
and the cells close to the electrode have a bigger impact on the 
electrograms. 

For comparison, we also provide in Fig. 6 the estimated conduction 
velocity (CV) maps [11], which are commonly used in the literature for 
analysis of conduction block in cardiac tissue. We see that the estimation 
of CV is significantly affected by the propagating directions of the 
electrical waves and that the areas of conduction block indicated by the 
conduction velocity maps are less accurate than those found using our 
estimated conductivity maps in Fig. 5. Unlike the proposed method, CV 
does not measure conductivity but only measures the local velocity of 
the action potential propagation. Although the estimation of the CV 
method and the proposed method can both be affected by the propa-
gation directions of the waves, CV is less reliable for localizing the 
abnormal areas in tissue. Moreover, the proposed method can make use 
of the spatial correlation of the multi-electrode data and utilize the in-
formation from multiple heart beats, which helps to estimate the tissue 
properties and thus better localizes the areas of the conduction block. 
This comparison further shows the superiority of the proposed method 
in this work. 

Based on these analyses, we find that the conductivity estimation is 
affected by many factors such as the estimation of the activation time 
parameters, the propagation direction of the electrical wave in a heart 
beat, the positions of the electrodes, and the underlying structure of the 
tissue. Since the underlying structure of the tissue is unknown and the 
relative positions of the electrodes to the cells are random, we cannot 
control these two factors in practice. To improve estimation of the 

conductivity parameters, it thus obviously helps to combine multiple 
heart beats to get more useful information and try to improve the esti-
mation of the activation time parameters. 

4.3. Generation of three-dimensional simulated data 

Since real tissue is three-dimensional, to evaluate the proposed al-
gorithm with even more realistic simulations, we generate in this section 
three-dimensional simulated data by simulating several layers of cells to 
simulate the effects of three-dimensional tissue. Real tissue has many 
layers of cells in practice. In Section 5 we will further test the algorithm 
with real tissue that effectively has many layers. However, with real 
tissue we do not know the truth of the tissue parameters. To have a 
computational feasible simulation and still simulate the effect of three- 
dimensional tissue, we use in this section a three-layer tissue to come 
close to a three-dimensional simulation where we know the truth. 

To generate the three-dimensional simulateion data, we still use the 
same cell model introduced in section 4.1.1. In our model, we only 
consider the conductivities in the x-direction (longitudinal direction) 
and the y-direction (transverse direction), i.e., σxx,n and σyy,n, and the 
anisotropy ratio of the conductivities in the transverse direction to the 
longitudinal direction to be estimated is αn = σyy,n/σxx,n. To simulate 
multiple layer tissues, we further take into account the conductivity in 
the z-direction that is perpendicular to the x-y plane and denote it as σzz,n 
at the nth cell position. Two types of three-layer tissue are simulated 
taking into account equal conductivities in each layer, including:  

(i) three-layer tissue with one area of conduction block in each layer. 
The area outside the conduction block has a smooth variation in 
conductivity, varying from 0.77 mS/cm to 1.1 mS/cm. For each 
layer, the anisotropy ratio in our model, i.e., αn, is set to 0.4. For 
the conductivities in the z-direction, we consider σzz,n/σxx,n = 0.3 
for all n.  

(ii) three-layer tissue with two areas of conduction block in each 
layer. The area outside the conduction block has a higher 

Fig. 3. Estimation errors of conductivity parameters (a) and activation time parameters (b). The SCFA2 method achieves better performance than the SCFA1 method 
and the estimation errors of the parameters are further reduced by combining two different heart beats and jointly estimating the parameters. 
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variation in conductivity than (i) which varies from 0.52 mS/cm 
to 1.1 mS/cm and its anisotropic ratio changes from 0.8 to 0.4 
from left to right. For the conductivities in the z-direction, we 
consider σzz,n/σxx,n = 0.5 for all n. 

We then use the same simulation protocol described in Section 4.1.3 

to generate the cell action potentials. To generate the action potentials in 
these three-layer tissues, the stimuli are applied to all layers at the same 
positions with respect to the x-y plane. Five different positions are 
considered to generate five heart beats. 

Fig. 7 illustrates the simulation of the three-dimensional tissues. 
Taking tissue (i) as an example, Fig. 7(a) and (b) show the conductivity 

Fig. 4. Estimation errors of conductivity parameters (a) and activation time parameters (b) obtained by SCFA2 using different number of heart beats.  
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maps in the x-direction and the y-direction of tissue (i), respectively. We 
consider an electrode array with 25 electrodes placed on the top layer of 
the tissue to generate the multi-electrode electrograms. Both uniform 
and non-uniform distribution of the electrodes are considered, as shown 
in Fig. 7(c) and (d). Compared to the uniform placement of the elec-
trodes, the distribution of the electrodes is more random in the non- 
uniform placement of the electrodes. Especially, the relative positions 
of the conduction blocks and the electrodes in two placements are 

different such that we can test the algorithm under different difficulty 
levels of detecting the areas of conduction blocks. Taking Tissue (i) as an 
example, Fig. 7(c) and (d) show the uniform and non-uniform placement 
of the electrodes on top of this tissue. We see that in Fig. 7(c) there are 
two electrodes exactly placed on top of the conduction block, while in 
Fig. 7(d) they are not on top of the conduction block. As we know the 
cells which are closer to the electrodes contribute more to the electro-
grams, detecting the area of conduction block would be more 

Fig. 5. Examples of the real conductivity maps and the estimated conductivity maps. The subfigures in the first column show the real conductivity maps and the 
subfigures in other columns show the estimated conductivity maps, which are obtained using different methods, including SCFA1 using one heart beat, SCFA2 using 
one heart beat, two heart beats, and three heart beats. The red arrow on the map represents the propagation direction of the wave in the heart beat. The number of 
arrows indicates the number of heart beats used in the estimation. (a) Longitudinal (L) conductivity maps for tissue types (i); (b) Longitudinal (L) and transverse (T) 
conductivity maps for tissue types (ii); (c) Longitudinal (L) and transverse (T) conductivity maps for tissue types (iii). 
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challenging with the non-uniform placement of the electrodes. Fig. 7(e) 
shows the 3D plot of the action potential propagation in tissue (i) when t 
= 200 ms when the stimuli is applied at position ‘1’ in Fig. 7(c). 

4.4. Evaluation on three-dimensional simulated data 

We now use the SCFA1 and the SCFA2 to estimate the parameters of 
the simulated 3D tissues. To quantify the estimation performance, we 
calculate the MSE of the conductivity parameters [ref. (21)] and the MSE 
of the activation time parameters [ref. (22)] of the whole tissue and the 
scar tissue areas around the conduction block, as highlighted in a red 
box in Fig. 7(c), (d), (h) and (i). Table 3 shows the parameter estimation 
errors of the whole tissue and the scar area obtained by the SCFA1 using 
one heart beat and the SCFA2 using five heart beats given uniform and 
non-uniform distributions of the electrodes. Form Table 3 we find that 
for both types of tissue, SCFA2 achieves better estimation performance 
than SCFA1. The estimation of the parameters near the scar tissue is 
more challenging, as we can see that the estimation errors of the scar 
tissue are larger than the errors of the whole tissue. This can (partly) be 
explained by the fact that the scar tissue is relatively small compared to 
non-scar tissue and sampled by at most one or two electrodes. We also 
see that given a more random distribution of the sensor, the estimation 

using the SCFA2 still performs better than SCFA1 and the conduction 
block areas are still detected. Since the underlying structure of tissue (ii) 
is more complicated than tissue (i), the estimation errors of tissue (ii) are 
larger than the errors of tissue (i). From Table 3, we also observe that the 
MSE difference of the conductivity estimation of the SCFA1 and the 
SCFA2 is about 0.01 near scar tissue given the non-uniform distribution 
of the electrodes, while the difference is about 0.07 given the uniform 
distribution of the electrodes. This implies that the estimation perfor-
mance is related to the relative positions of the conduction block and the 
electrodes. Taking Tissue (i) as example, there are two electrodes exactly 
placed on top of the conduction block in the case of uniform placement 
of electrodes, which makes it easier to detect the block than the non- 
uniform placement of electrodes. 

Fig. 8 shows examples of the real conductivity maps and the esti-
mated conductivity maps of the 3D tissue. We observe that the estima-
tion of the conductivity maps is further improved by the SCFA2 method 
using multiple heart beats compared to the SCFA1 method using a single 
heart beat. 

5. Experiments on the clinical data 

In this section, we evaluate the proposed method with clinical data. 

Fig. 6. Examples of the estimated conduction velocity maps for the three type of tissue. The red arrow on the map represents the propagation direction of the 
electrical wave in the heart beat. 
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These data are human atrial epicardial electrograms measured from 
patients during open heart surgery. The study protocol was approved in 
February 2010 by the Medical Ethics Committee (2010-054) in the 
Erasmus Medical Center, Rotterdam, The Netherlands. High resolution 
mapping arrays with 192 electrodes are used to measure the unipolar 
electrograms from different atrial epicardial sites. The distance between 
the neighboring electrodes is 2 mm. Five seconds of sinus rhythm and 10 
s of atrial fibrillation are recorded at every mapping site and all re-
cordings are sampled at 1 kHz. In this work we use recordings measured 
from Bachmann’s bundle during sinus rhythm. Readers can find more 
details on the mapping approach and the electrode array in [29]. The 
ventricular activities in the measurements are canceled by the method in 
[30] before doing the parameter estimation. The tissue is discretized 
into 192 equal square areas of 2 mm × 2 mm and each area is assumed to 
have an electrode positioned on top of it. Each small area is then dis-
cretized into 3 × 3 cell groups and each cell group is regarded as a cell to 
reduce the number of unknowns for practical consideration. In each 
estimation, we take a smaller tissue area measured by 5 × 5 electrodes 
instead of the whole tissue area to reduce the computation cost, then the 
spatial resolution to be obtained is 15 × 15, with resolution scale thus R 
= 3. 

We consider that a cell can be activated only once in a time frame. 

Before estimating the parameters, we first segmented the recording in 
heart beats and then one time frame includes one heart beat. The 
segment size is selected to include most of the information in one heart 
beat. Given the sampling rate of 1 kHz, each heart beat segment consists 
of 800 samples. Fig. 9 shows an example of the heart beat segmentation 
of an electrogram. We can see that the waveform shape varies among 
different heart beats, which motivates us to utilize different heart beats 
to increase the information for robust parameter estimation. 

We used five consecutive heart beats from each recording and test 
the performance of the proposed algorithm when using one, two, three, 
four, and five heart beats, respectively. Since there is no ground truth of 
the real parameters, we evaluate the performance of the proposed 
method by comparing the real electrograms to the reconstructed elec-
trograms obtained using the parameters estimated by the proposed 
method. Note that the conductivity parameters and the anisotropy ratio 
parameters are assumed to be similar for different heart beats while the 
activation time parameters differ across heart beats. We quantify the 
reconstruction errors of the electrograms by the reconstruction error 

Errrec =
1
M

∑M

1
‖ym − ŷm‖2, (23)  

where ym and ŷm respectively represent the real and the estimated EGM 

Fig. 7. Illustration of the 3D simulations. (a) and (b) Conductivity maps in the x-direction and the y-direction of tissue (i), respectively; (c) and (d) Uniform and non- 
uniform placement of the 25 electrodes on the top of tissue (i), respectively; (e) 3D plots of the action potential propagation in tissue (i) when t = 200 ms and when 
the stimuli are applied at position ‘1’ in (c); (f) and (g) Conductivity maps in the x-direction and the y-direction of tissue (ii), respectively; (h) and (i) Uniform and 
non-uniform placement of the 25 electrodes on the top of tissue (ii), respectively; (j) 3D plots of the action potential propagation in tissue (ii) when t = 200 ms and 
when the stimuli are applied at position ‘1’ in (h). 

Table 3 
Comparison of estimation errors with different methods for simulated 3D tissue.  

Tissue Type Tissue Area Uniform Distribution Non-Uniform Distribution 

Errc (SCFA1) Errc (SCFA2) Erra (SCFA1) Erra (SCFA2) Errc (SCFA1) Errc (SCFA2) Erra (SCFA1) Erra (SCFA2) 

Tissue (i) Whole Tissue 0.0377 0.0261 1.8204 1.8123 0.0311 0.0236 1.7614 1.7550 
Scar Tissue 0.2013 0.1328 7.2569 7.2146 0.1076 0.0945 6.5643 6.5411 

Tissue (ii) Whole Tissue 0.0603 0.0504 1.3754 1.3637 0.0516 0.0466 1.4123 1.4049 
Scar Tissue 0.2167 0.1449 3.6768 3.6510 0.1328 0.1227 3.9335 3.9349  
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segments during atrial activity, and ‖ ⋅‖2 represents the l2-norm of a 
vector. 

Fig. 10 shows the reconstruction errors of the electrograms from 
eight patients obtained by the proposed method when increasing the 
used number of heart beats from one to five. We see that in most cases 
the reconstruction error first decreases then tends to stabilize when 
increasing the number of heart beats for estimation, which demonstrates 
the added value of using multiple heart beats. For patient 1 and patient 
3, the improvement obtained by increasing the number of heart beats for 
parameter estimation is small, which is possibly because the electrical 
waves in different heart beats of these patients have a very similar 
propagation pattern. We further compare the proposed method with the 
CMM method proposed in [10] and the SCFA1 method in [12]. Fig. 11 
(a) shows the box plots of the reconstruction errors of the electrograms 
from eight patients using different methods. Overall, the reconstruction 
errors obtained by the SCFA2 method proposed in this work achieves 

better performance, and SCFA1 performs on average slightly better than 
CMM in most of cases. Fig. 11(b) further shows the reconstruction errors 
of the electrograms of each patient. We see that the SCFA2 always 
achieves the best performance, as it combines the information of mul-
tiple heart beats. The obvious improvement obtained by SCFA2 can be 
found from Patient 3 to Patient 7, while the smaller improvements are 
obtained from Patient 1, Patient 2, and Patient 8. This is possibly 
because the heart beats are similar in these patients and adding addi-
tional heart beats does not give much additional information for 
parameter estimation in SCFA2. For Patient 1, Patient 2, and Patient 8, 
the performance of the three methods are close, although SCFA1 and 
SCFA2 consider more realistic conditions and use less assumption to 
simplify the problem compared to CMM. This might be because the 
number of unknown parameters with SCFA1 and SCFA2 is larger than 
with CMM. This means it is more challenging to find the optimal solution 
when solving the non-convex optimization problem. 

Fig. 8. Examples of the real conductivity maps and the estimated conductivity maps of the simulated 3D tissues. (a) Tissue type (i). (b) Tissue type (ii). The sub-
figures in the first column show the real conductivity maps in the Longitudinal (L) and transverse (T) directions. The subfigures in other columns show the estimated 
conductivity maps, which are obtained using different methods, including SCFA1 using one heart beat and SCFA2 using five heart beats given uniform electrode 
distribution and non-uniform electrode distribution. 
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The plots in Figs. 12 and 13 give two examples of the estimated 
activation time maps, the conductivity maps, and the real and the 
reconstructed electrograms of two patients obtained using five heart 
beat segments for parameter estimation. Figs. 12 (a) and 13 (a) show the 
estimated activation time maps obtained by the steepest descent method 
and Figs. 12 (b) and 13 (b) show the estimated activation time maps 
obtained by the proposed method, from which we can see some differ-
ences between the estimated activation time obtained by the two 
methods. Subfigures (c) and (d) in Figs. 12 and 13 show estimated 
conductivity maps in the longitudinal direction and the transverse di-
rection obtained by the SCFA2 method, respectively. Figs. 12 (e) and 13 
(e) show examples of the real epicardial electrograms and the recon-
structed epicardial electrograms obtained with the parameters esti-
mated by the proposed method using different number of heart beats, 
respectively. From Figs. 12 (e) and Fig. 13 (e) we observe that in most 
cases the reconstructed electrograms match better the real electrograms 
when increasing the number of heart beats. As shown in Fig. 12 (e), the 
electrogram segments with a single deflection can be reconstructed quite 
well. From the EGM examples measured at the electrode positions ‘E3’ 

and ‘E4’ in Fig. 13 (e), we see that using multiple heart beats helps to 
reconstruct the electrograms having double potentials. However, at the 
electrode position ‘E1’ in 13 (e), increasing the number of heart beat 
does not obviously improve the reconstruction. This may be, because the 
EGM segments of different heart beats are too similar. 

6. Computational complexity analysis 

The optimization of the proposed method is computational complex 
due to the large number of unknown parameters. According to the two 
identifiability conditions in Section 3.2, the total number of knowns due 
to Φ̂y(k, l) for ∀k ∈ Sf, ∀l ∈ Sl is |Sl‖Sf|M2 and the total number of un-
knowns due to σ, α, τn, n = 1, …, N − 1 for ∀l ∈ Sl, and Φ̂u(k, l) for ∀k ∈ Sf, 
∀l ∈ Sl to be estimated is n = 2 N + |Sl|(N − 1) + |Sf‖Sl|M. The opti-
mization problem includes four inequality constraints on the power 
spectral density of the sensor self noise, i.e., qm(k, l) ≥ 0, m = 1, 2, …, M 
for ∀k ∈ Sf, ∀l ∈ Sl, on the anisotropy ratio, i.e., 0 ≤ α ≤ αupper, on the 
conductivity, i.e., 0 ≤ σ ≤ σupper, and on the activation time of the cells 
except the reference cell, i.e., τlow ≤ τn(l) ≤ τupper, n = 1, …, N − 1 for ∀l 
∈ Sl, and two linear equality constraints on the activation time of the 
reference cell, i.e., τ0(l) = 0 for ∀l ∈ Sl and on the power spectral density 

Fig. 9. Epicardial electrogram examples before (a) and after (b) canceling 
ventricular activity and heart beat segmentation example. The red triangle 
marks the presence of ventricular activity. The orange and purple boxes mark 
the heart beat segments. 

Fig. 10. Reconstruction errors of electrograms from eight patients using 
different number of heart beats for parameter estimation. 

Fig. 11. Reconstruction errors of the electrograms from eight patients using 
CMM, SCFA1, and SCFA2 for parameter estimation. (a) Box plots of the 
reconstruction errors of the eight patients. (b) The reconstruction error of the 
electrograms for each patient. 
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Fig. 12. Example of estimated conductivity 
maps, the real epicardial electrogram (EGM) 
and the reconstructed EGM obtained with the 
parameters estimated by the proposed method 
using different number of heart beats of pa-
tient 5. (a) and (b) show the estimated acti-
vation time maps for obtained by the steepest 
descent method and the SCFA2 method, 
respectively. (c) and (d) show estimated con-
ductivity maps in the longitudinal direction 
and the transverse direction obtained by the 
SCFA2 method, respectively. (e) shows the 
real EGMs (red) and the reconstructed EGMs 
(blue) measured at the electrode positions 
(marked by the blue points) in (c), 
respectively.   
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Fig. 13. Example of estimated conductivity 
maps, the real epicardial electrogram (EGM) 
and the reconstructed EGM obtained with the 
parameters estimated by the proposed method 
using different number of heart beats of pa-
tient 6. (a) and (b) show the estimated acti-
vation time maps obtained by the steepest 
descent method and the SCFA2 method, 
respectively. (c) and (d) show estimated con-
ductivity maps in the longitudinal direction 
and the transverse direction obtained by the 
SCFA2 method, respectively. (e) shows the real 
EGMs (red) and the reconstructed EGMs (blue) 
measured at the electrode positions (marked 
by the blue points) in (c), respectively.   
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of the reference cell, i.e., φ(k, l) = φ̃(k, l) for ∀k ∈ Sf, ∀l ∈ Sl. The opti-
mization problem is computational complex and solved by the ‘fmincon 
Interior Point Algorithm’ using the optimization toolbox in Matlab. The 
first reasonably efficient Interior Point algorithm was proposed by 
Karamark in 1984 and the overall complexity of this algorithm is O 
(n3.5L2), with n the number of variables and L the binary encoding length 
of the input data [31]. Usually the constraints can lead to a speed up in 
the solution process. Therefore the upper bound of the complexity of the 
optimization problem would be O(n3.5L2). 

To give an idea of the complexity, we also provide the computational 
time of different algorithms for comparison. The algorithms are imple-
mented using MATLAB on an office laptop with 2.9 GHz Intel Core i5 
processor and 8 GB RAM memory. Table 4 shows the computational 
time for different methods averaged per heart beat. Note that different 
methods have been proposed to estimate different parameters. 
Compared to the reference methods, the SCFA2 method proposed in this 
work estimates much more parameters and therefore its computational 
time is higher. However, the proposed method also clearly leads to 
improvements. This implies future work is needed to further lower the 
complexity of the proposed method while still having the same 
performance. 

7. Conclusions and discussions 

In this work, we proposed a novel algorithm to jointly estimate tissue 
properties using the cross power spectrum model of microelectrode 
array data in combination with confirmatory factor analysis (CFA). 
Based on the reasonable assumption that the conductivity and anisot-
ropy ratio parameters are similar among multiple heart beats and fre-
quencies, we proposed to estimate these parameters using multiple heart 
beats and frequencies with the simultaneous CFA (SCFA). The activation 
time of cells are also estimated jointly with these parameters but will be 
different across heart beats. With the SCFA algorithm, we are able to 
determine the resolution that can be obtained with a given amount of 
data. Compared to the previously published SCFA for conductivity 
estimation in [12], the proposed SCFA in this work makes use of mul-
tiple heart beats which “illuminate” the tissue from different directions 
and can therefore better estimate the tissue properties. Experiments on 
simulated data and clinical data demonstrate that the proposed SCFA 
method obtains good estimation of the tissue conductivity and re-
constructs realistic electrograms that match the clinical data well. 

This work provides an efficient tool to estimate the hidden param-
eters of diseased tissue, which is helpful in the understanding and 
diagnosis of the disease. Intended applications of this work can be 
automated detection of the atrial areas of bad conduction and finding 
the relation between the alternations of atrial conduction and the 
initiation and perpetuation of cardiac arrhythmias in order to guide 
therapy methods like cardiac ablation. 

Although conduction velocity, which looks at the propagation of the 
action potential, has been commonly used to determine the areas of 
conduction block, the findings are realization dependent, since the ab-
normalities are determined based on the output realizations of the sys-
tem, i.e., on the wave propagation. Moreover, looking at (pairs of) 
electrodes, not all spatial correlations between the different measure-
ments are taken into account. This is unlike the proposed method, which 
considers the heart as the system, where each cell or area of cells has 
certain properties that are important to understand the arrhythmias like 
atrial fibrillation. With the proposed method, we can determine the 
parameters that describe the underlying system, such as the conduc-
tivity, anisotropy ratio, etc. Knowing the system (or its parameters) that 
can generate the realizations that we measure as electrograms is the 
ultimate goal. 

Although the proposed method has its advantages on jointly esti-
mating the parameters of cardiac tissue, it still needs to be improved by 
taking into account more realistic electrophysiological conditions in real 
tissue. For example, the assumption of a common stereotype action 

potential waveform for all cells reduces the computational cost for 
estimation, but ignores the heterogeneities in atrial tissue and reduces 
the accuracy of the model. The assumption that conductivity tensors are 
aligned along the axes ignores the heterogeneous tissue micro-structure 
and the two-dimensional assumption of tissue makes the application 
limited to only thin-walled tissues. Although the proposed method 
works well for the SR data, for more complicated situations in a large 
dataset, the model needs to be further improved. In the near future, we 
would like to take into account more realistic conditions, such as multi- 
layers of tissue, orientation of the fibers, etc, to improve the model. To 
do so, there are more parameters needed to describe the structure of the 
tissue, which will in turn increase the computational complexity of 
estimating the model parameters. However, a critical issue in this area is 
reducing complexity of the model to make it possible to solve compli-
cated inverse problems for tissue parameter estimation. Therefore, we 
will take into account both the accuracy of the model and the compu-
tational complexity of parameter estimation in future work. Since there 
are various ways to construct the discrete models of tissue geometry, we 
would also like to investigate the impact of the discrete representations 
of tissue geometry on the parameter estimation. The standard spatial 
models of tissue geometry include both 2D and 3D tissue segments. It is 
common to construct a regular mesh with uniform elements to 
approximate the tissue surface, such as the square lattice that we used in 
this work, or an irregular mesh with uniform elements. Although 
irregular meshes can improve the representation of a curved surface, 
such mesh generation is more difficult and the numerical methods 
associated with irregular meshes require a higher computational cost, as 
discussed in [6]. It still remains challenge to construct meshes that 
accurately represent the complicated 3D tissue geometry, although 
mesh generation tools have been developed in other engineering fields 
[6]. It is also an interesting topic we would like to explore in the future 
work. 
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Table 4 
Computational time of different methods.  

Methods Estimated 
parameters 

Number of 
estimated 
parameters 

Run time 
per heart 
beat 

Estimation error 
of conductivity 

CV cv 1 0.1 s – 
CMM σ 225 due to σ 158.3 s 0.0455 
SCFA1 σ, α, Φu 225 due to σ 2148.5 s 0.0418 

225 due to α 
2500 due to Φu 

SCFA2 σ, α, Φu, 
τn(n = 1, …, 
N − 1) 

225 due to σ 3357.0 s 0.0295 
225 due to α 
2500 × 4 due to 
Φu 

224 × 4 due to τn 

1. Notation: cv: conduction velocity; σ: conductivity; α: anisotropy ratio; Φu: 
noise PSDM; τn(n = 1, …, N − 1): activation time. 
2. The desired spatial resolution for the estimation is 15 × 15 = 225, the number 
of electrodes M is 25, and the number of frequency bands |Sf| is 100. 
3. In this comparison, four heart beats are used for parameter estimation. 
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