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StrainGE: a toolkit to track and characterize 
low‑abundance strains in complex microbial 
communities
Lucas R. van Dijk1,2†, Bruce J. Walker1,3†, Timothy J. Straub1,4, Colin J. Worby1, Alexandra Grote1, 
Henry L. Schreiber IV5,6, Christine Anyansi2, Amy J. Pickering7,8, Scott J. Hultgren5,6, Abigail L. Manson1, 
Thomas Abeel1,2 and Ashlee M. Earl1*  

Background
Human-associated microbial communities include complex mixtures of bacterial spe-
cies. Many of these species are renowned for their genomic and phenotypic plasticity. 
For example, strains of Escherichia coli share a core genome representing only about half 
of their genes [1] and cause distinct disease including diarrhea and urinary tract infec-
tions, or potentiate tumorigenesis, while other strains are able to co-exist with their host 
without causing overt illness [2–4]. Multiple distinct strains of the same species, often 
from genetically dissimilar phylogroups, frequently coexist within a single human gut 
community [5, 6], the implications of which are mostly underexplored due to the diffi-
culties of studying strain-level variation from complex community samples.

While culture-based approaches have been a workhorse for dissecting strain-level 
diversity, these approaches can be slow and unfaithful to the true representation of 
strains, due to culturing bottlenecks that limit observed diversity, as well as the potential 
for evolution during culture [7]. Whole metagenome shotgun sequencing approaches 

Abstract 

Human-associated microbial communities comprise not only complex mixtures of 
bacterial species, but also mixtures of conspecific strains, the implications of which are 
mostly unknown since strain level dynamics are underexplored due to the difficulties 
of studying them. We introduce the Strain Genome Explorer (StrainGE) toolkit, which 
deconvolves strain mixtures and characterizes component strains at the nucleotide 
level from short-read metagenomic sequencing with higher sensitivity and resolution 
than other tools. StrainGE is able to identify strains at 0.1x coverage and detect variants 
for multiple conspecific strains within a sample from coverages as low as 0.5x.
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offer less perturbed views of strain-level diversity, but require specialized computational 
tools. However, most current strain-level metagenomic data analytical tools (reviewed 
in Anyansi et al. [8]) were not designed to work at the low coverages typically found for 
many clinically relevant organisms in metagenomic samples, such as E. coli in the human 
gut [5]. Existing tools that aim to disentangle within-species strain mixtures include BIB 
[9], StrainEst [10], and DiTASiC [11], as well as the broader taxonomic profiling tools 
like Kraken2 [12] and GOTTCHA [13] when given an appropriate database. These tools 
rely upon a precomputed database of reference genomes, from which the best matches 
are reported for a sample (or set of samples). Thus, output from these tools is dependent 
upon database granularity and does not distinguish between distinct strains matching 
the same reference. Another class of tools characterizes and tracks strains based on sin-
gle nucleotide variant (SNV) profiles along a single reference or a set of marker genes, 
including MIDAS [14], StrainPhlan [15], and ConStrains [16]. In the case of strain mix-
tures, MIDAS and StrainPhlan do not untangle the SNVs coming from different strains, 
while ConStrains attempts to link SNVs with similar allele frequencies, though linking 
SNVs requires high strain coverage to be accurate [16, 17]. A third class of tools aims to 
recover strain-level variation after de novo metagenomic assembly, including DESMAN 
[17], inStrain [18], and STRONG [19]. Assembly approaches require higher sequence 
coverage than typically achieved for lower abundance members of a community. To our 
knowledge, none of these computational approaches work robustly at low coverages 
(< 10x), accurately disentangle mixtures of same-species strains, and distinguish similar 
strains at the nucleotide level.

In order to be able to disentangle mixtures of low-abundance, clinically important 
strains within metagenomic data, we developed the Strain Genome Explorer (StrainGE) 
toolkit. In an advance over related tools, StrainGE works at exceptionally low sequence 
coverages (from 0.1x) to identify strains in a sample, and allows the user to character-
ize and compare strains across samples at the nucleotide level, with high resolution. We 
have extensively benchmarked StrainGE on synthetic data and compared it against other 
state-of-the-art strain detection tools. We also applied StrainGE to multiple clinical 
human gut metagenomic datasets, demonstrating StrainGE’s ability to glean insights into 
biological systems that previous tools could not, including observing previously unde-
tected persistence of low-abundance strains across time. Herein, we applied StrainGE 
to analysis of clinically important strains of E. coli and Enterococcus, but StrainGE can 
be broadly applied to all community assemblages where same species bacterial strain 
dynamics are of interest.

Results
Strain Genome Explorer (StrainGE) toolkit

StrainGE is a toolkit for strain-level characterization and tracking of species (or gen-
era) of interest from short read metagenomic datasets, tuned specifically to capture 
low abundance strains where data are scant. StrainGE has two key components: Strain 
Genome Search Tool (StrainGST) and Strain Genome Recovery (StrainGR). StrainGST 
sensitively reports reference genome(s) from a database that are most similar to the 
strain(s) in a sample. StrainGR analyzes short read alignments to a reported reference 
genome(s) to identify single nucleotide variants (SNVs) and large deletions (i.e., gaps in 
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coverage) relative to the reference. Though StrainGST can be used as a standalone tool, 
the StrainGE tool suite, including StrainGR, enables sensitive nucleotide-level compari-
son and tracking of strains across multiple samples and provides insights into potential 
functional variation among individual strains.

In brief, StrainGST builds a database of high-quality reference genomes (e.g., Ref-
Seq assemblies) from a species or genus of interest (Fig. 1a), filtering them to remove 
highly similar genomes using a k-mer based clustering approach, with a tunable 
threshold (Additional file 1: Table S1). StrainGST’s default database clustering thresh-
old (0.9 Jaccard similarity) corresponds to an approximate ANI of ~ 99.8% [20], which 
determines the minimum distance between reference genomes. To identify a similar 
reference(s) to the strain(s) within a sample and to estimate its relative abundance, 

Fig. 1 StrainGE is a toolkit to track, characterize and compare low-abundance strains in metagenomic 
samples. a Overview of StrainGE pipeline. StrainGST uses a database of high quality reference genomes to 
select those most similar to strains present in a metagenomic sample. StrainGR further characterizes SNVs 
and gaps that differ between references selected by StrainGST and the actual strain present in the sample. 
b At each iteration, StrainGST scores each reference strain by comparing the k-mer profile of the reference 
to the sample k-mers, reporting the reference closest to the highest abundant strain in the sample. The 
k-mers in the reported reference are removed from the sample and the process is repeated to search for 
lower-abundance strains, until there are insufficient k-mers. c StrainGR uses a short read alignment-based 
approach to characterize variation (SNVs and gaps) between the reference(s) identified by StrainGST and 
the metagenomic sample. Regions shared between the concatenated genomes (gray shaded areas) are 
detected and excluded from variant calling. Alleles are classified as “strong” or “weak.” After applying rigorous 
QC metrics, positions in the reference are classified as (i) “reference confirmed” (light gray; a single strong 
reference allele), (ii) “SNV” (red; a single strong alternative allele), or (iii) “multi-allelic” (blue; multiple strong 
alleles present, e.g. the blue allele together with the reference allele in gray). The position with a strong 
reference allele and a weak alternative allele (green; an allele with only limited support in the reads) is 
classified as “reference confirmed” because only the reference allele is considered strong at that position. The 
“callable” genome is defined as all positions within the reference with at least one strong allele call
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StrainGST compares the k-mers in the sample to those of the database reference 
genomes (Fig. 1b) and iteratively ranks each reference using three key metrics, similar 
to QuantTB [21]: (1) the fraction of reference k-mers present in the sample, (2) the 
fraction of sample k-mer counts explained by a reference, and (3) the evenness of the 
distribution of shared k-mers along a reference. If the resulting score is above a tun-
able threshold, the reference strain is reported as present in the sample.

StrainGR was designed to complement StrainGST by providing a more detailed 
view of the nucleotide- and gene-level differences between a strain in a sample and 
its closest reference, which can be used to compare across samples having strains that 
match the same reference. StrainGR analyzes alignments of metagenomic sequenc-
ing data to each StrainGST predicted reference (Fig.  1c). To ensure accurate SNV 
calls while maintaining sensitivity at low coverage, StrainGR employs stringent qual-
ity thresholds and heuristics to filter spurious alignments and reduce the number of 
incorrect calls.

To separate SNVs belonging to different strains, StrainGR creates a concatenated 
set of reference genomes, containing all references predicted by StrainGST in a sam-
ple or set of samples. It uses this reference set to align metagenomic reads and call 
variants. While close reference genome(s) generally result in more accurate align-
ments and variant calls [22], StrainGR still provides meaningful relationships when 
the reference is more distant, as would be the case in a smaller constructed database 
or with less well-studied organisms (Additional file 1: Supplemental Results A; Figs. 
S1-S4). To prevent assigning alleles incorrectly, StrainGR only calls variants in regions 
unique to a single reference by filtering out ambiguously aligned reads. In cases where 
StrainGST has identified distinct but closely related strains across samples, StrainGR 
can perform another, coarser round of reference clustering prior to concatenation in 
order to increase the amount of unique sequence for variant calling.

Variant calls can then be used to compare strains across samples. StrainGR com-
pares positions within the “callable genome” or the set of positions with any reference 
or alternative allele supported by at least two good reads and > 10% of the alignment 
pileup (Fig. 1c). To perform a comparison, only “common callable” positions are con-
sidered, which represent the subset of the callable genome for a given reference that 
is shared by two samples. Strain relationships can be assessed using two key metrics: 
(i) the Average Callable Nucleotide Identity (ACNI), or the percentage of common 
callable positions where both samples have a single identical base call, and (ii) a “gap 
similarity” metric, as patterns of large deletions are often conserved between closely 
related strains, which can provide an orthogonal metric of strain similarity [23]. 
The ACNI and gap similarity values that define two samples as containing the same 
“strain” depend on the research question [7]. For the purposes of this manuscript, 
we consider two samples to contain the same strain if ACNI is ≥ 99.95%, which was 
based on our benchmarking of in silico E. coli spiked metagenomes. This threshold is 
stricter than our initial database clustering threshold of 99.8%, as samples matching 
the same reference in the database can contain different strains. As different stud-
ies may necessitate different strain definitions, we have intentionally made these 
thresholds easily tunable. With StrainGST able to accurately report close references 
to strains at coverages as low as 0.1x, and StrainGR able to track and characterize 
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strains from 0.5x coverage, StrainGE enables sensitive analysis of very low-abundance 
strains, such as typical E. coli relative abundances of < 0.1% within a 3G metagenomic 
sample.

Benchmarking StrainGE on Escherichia

StrainGE was designed to be broadly applicable across different bacterial genera and 
species, including less well-studied species lacking numerous high quality reference 
genomes (Additional file  1: Supplemental Results A). For benchmarking, we focused 
on E. coli, an evolutionarily and functionally diverse species. Despite their importance 
to human health, E. coli are typically found at low (< 1%) relative abundance in diverse 
strain mixtures in human guts [5].

We first used StrainGST to construct an Escherichia-specific reference database by 
downloading all available complete Escherichia assemblies from NCBI RefSeq (929 
assemblies, July 2019; Materials and methods; Additional file 2). Because plasmids read-
ily transfer between different genetic backgrounds of the same and/or different species 
(see Additional file  1: Supplementary Results A) [24], scaffolds labeled as plasmid, or 
those < 1 Mbp were removed. After using the default clustering threshold corresponding 
to ~ 99.8% ANI, the resulting StrainGST database contained 361 complete Escherichia 
chromosomes, comprising 341 E. coli and Shigella chromosomes representing all eight 
phylogroups [1], as well as 20 chromosomes from other Escherichia species.

StrainGE can accurately characterize strains and approximate ANI at coverages as low as 0.1x

To assess StrainGE’s ability to detect and characterize strains, we first benchmarked 
each of StrainGE’s components, StrainGST and StrainGR, individually. To benchmark 
StrainGST, we first used in silico constructed metagenomes that were spiked with 
sequences of known Escherichia strains at varying relative abundances. We compared 
StrainGST’s ability to identify the correct close reference to that of two similar tools that 
depend on reference databases, BIB [9] and StrainEst [10]. While the databases used for 
StrainGST and StrainEst were identical, BIB’s database construction method did not 
scale; thus, we used a smaller database with 20 genomes. StrainGST performed as well 
as, or better than, the other tools across all scenarios tested, including mixes of up to 3 
strains at unequal abundances or 4 strains of equal abundance and stood out strongly 
when strains were at very low abundance (Additional file 1: Supplementary Results B; 
Fig. S5).

To further benchmark these three tools on real sequencing data of known strain compo-
sition, we created and sequenced a mock community containing approximately 99% human 
DNA and 1% E. coli DNA, representing a mixture of four distinct, previously sequenced 
strains with fully finished genomes mixed in unequal (approximately 80:15:4.9:0.1) relative 
abundances (Materials and methods). StrainGST resolved the composition of this in vitro 
mock community without error (Table 1), while other tools reported two or more false 
positives (Additional file 1: Table S2).

To benchmark StrainGR’s ability to call variants (SNVs and large deletions, or gaps), we 
used another set of Escherichia-spiked metagenomes, with reads simulated from in silico 
mutated reference genomes (99.9% ANI to reference; 5,000 SNVs). StrainGR accurately 
called SNVs and large deletions, for both single strain and mixture samples, providing 
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key information to assess whether two samples shared a strain via the ACNI metric, 
StrainGR’s approximation of ANI, and gap similarity (Additional file  1: Supplementary 
Results C-D; Fig. S6). To assess the accuracy and robustness of ACNI, we generated 
spiked metagenomes similar to those described above, but we varied the number of SNVs 
introduced in silico (100–99.9% ANI to reference; 0–5,000 SNVs) and used different 
metagenomic background samples, some with other E. coli strains present (Additional 
file 1: Table S3). Identical strains in different samples had high ACNI and gap similarity 
(Fig. 2a) and StrainGR’s ACNI across all strain pairs correlated strongly with true ANI, 
even though ACNI is based on unique regions, and ANI is based on the entire genome 
(Fig. 2b). In this benchmark, the optimal ACNI threshold to classify two samples as hav-
ing the same strain was 99.98% (Additional file 1: Fig. S7), which is likely higher than the 
value we would expect from real data due to the artificially uniform distribution of SNVs 
in our synthetic benchmarks and that the references used in benchmarking were also pre-
sent in the StrainGST database. For analysis of real data in this manuscript, we chose a 
slightly lower value of 99.95%.

StrainGE was the most accurate at detecting shared strains at coverages as low as 0.5x

Having demonstrated that both StrainGST and StrainGR worked well, we aimed to 
assess StrainGE’s complete pipeline to track strains across samples, including in strain 
mixtures. We compared StrainGE’s ability to track strains to two recent, highly cited 
strain-tracking tools, MIDAS [14] and StrainPhlan [15]. Although MIDAS and Strain-
Phlan require high strain coverage to run to completion (5x and 10x, respectively), we 
were able to use manual tuning to allow these tools to accommodate our lower cover-
age benchmarks (Materials and methods). We excluded ConStrains [16] because of its 

Table 1 StrainGST was the only tool that correctly identified the known composition of a mock 
community

a A check mark indicates that the exact strain was present in our database and correctly identified. A strain name 
indicates that the exact reference was not in the reference database, but the closest available reference was 
correctly identified (along with its approximate ANI to the actual strain). A strain name with an “X” indicates a false 
positive strain identified by the tool that was not present in the mock community. Percentages near strain names 
indicate approximate ANI to the closest true strain. Relative abundances for each strain are listed in Additional file 1: 
Table S2

Predicted strains (approximate ANI to closest true strain)a

Actual strain 
in mock 
community 
(phylogroup)

StrainGST StrainEst BIB

E. coli SEC470 (A) ✓ ✓ E. coli K-12 GM4792, 99.24 %

E. coli UTI89 (B2) E. coli UM146, 99.95% E. coli UM146, 99.95% E. coli H105, 98.49%

E. coli Sakai (E) E. coli 149, 99.89% E. coli 149, 99.89% E. coli 108, 99.97%

E. coli 24377A (B1) ✓ ✓ E. coli S40, 99.01%

✘ E. coli APEC IMT5155, 99.51% ✘ S. flexneri G1663, 97.97%

✘ E. coli RM14721, 99.44% ✘ E. coli LHM10-1, 98.12%

✘ E. coli MSHS 133, 97.67%

✘ S. dysenteriae 80-547, 97.71%

✘ E. coli IMT16316, 97.39%

✘ S. dysenteriae ATCC 12039, 97.08%
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high coverage requirements which could not easily be tuned [16, 17]. To assess the sen-
sitivity of these tools to distinguish between similar strains, we generated pairs of spiked 
metagenomic samples, each containing one or more Escherichia strains at 0.1x-10x cov-
erage. Similar strain pairs were derived from the same reference genome, but with a dif-
ferent set of ~ 5000 random SNVs introduced in silico into each strain’s genome (Fig. 3a, 
b). This resulted in each strain having 99.9% ANI to the reference and each strain pair 
having 99.8% ANI to one another. This identity level should result in strain pairs match-
ing the same StrainGST reference but still distinguishable by StrainGR.

At 10x coverage, MIDAS and StrainPhlan performed comparably using tuned (Fig. 3) 
and default (Additional file 1: Fig. S8) settings. While StrainGE and MIDAS performed 
well across all scenarios at high coverage, StrainPhlan performed poorly on mixes 
because it only reported a single SNV profile for each sample. For lower coverage sce-
narios, StrainGE consistently outperformed the manually tuned versions of MIDAS 
and StrainPhlan (Fig.  3). For single strain samples, StrainGE perfectly matched strain 
pairs down to 0.1x coverage, with MIDAS performing comparably (Fig. 3c). StrainPhlan 
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Fig. 2 StrainGR discriminates between highly similar strains and reports ACNI which strongly correlates with 
true ANI. a For all synthetic sample pairs with the same StrainGST reference called, the Jaccard gap similarity 
index and pairwise ACNI are plotted. Circle size indicates the percentage of the reference genome that was 
callable across both strains being compared. Red circles indicate comparisons between identical strains. b 
For all pairs, the true ANI between spiked isolates is plotted against the ACNI, as estimated by StrainGR. The 
dashed line indicates parity between these metrics. Pairs of strains could have 0–10,000 SNV differences
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performed marginally at 1x coverage and still was unable to run to completion at cover-
ages lower than 1x. For simple mixtures (Fig. 3d), only StrainGE and MIDAS correctly 
matched most pairs, because StrainPhlan was unable to disentangle mixes. StrainGE 
was the only tool that was able to generate results across the whole range of coverages, 
scoring almost perfectly down to the lowest tested coverage of 0.1x. When we included 

Fig. 3 StrainGE is the only tool that can detect strain sharing at coverages as low as 0.5x. a Depiction of how 
synthetic Escherichia genomes were generated from randomly selected NCBI RefSeq genomes to create 
sets of closely related strains (e.g., A1/A2 and B1/B2) for spike in experiments. b Depiction of how spiked 
metagenomes were created using synthetic genomes from a. Each circle represents a spiked metagenome. 
The color of the circle indicates which synthetic strain was included: single color circles indicate spiked 
metagenomes containing a single synthetic strain, and two color circles indicate spiked metagenomes 
containing two synthetic strains mixed at equal proportions. c–e Precision-recall curves for each tool and 
coverage 0.1x–10x, when given the task to detect which sample pairs contain identical strains. The area 
under the curve (AUC) is depicted as a heatmap below. The “successful comparisons” bar plot indicates 
the percentage of sample pairs for which a comparison was possible (i.e., tools ran to completion for both 
samples). c Limiting to single-strain samples from distinct references. d Including samples with two strains, 
but limited to strains from distinct references. e Including samples with closely related strains
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samples containing very closely related pairs (Fig. 3e), StrainGE and MIDAS performed 
well down to 0.5x coverage, but StrainPhlan could not distinguish between closely 
related strains, even at 10x coverage, likely due to its reliance on marker genes which 
comprise only a small fraction of the genome. Whereas StrainGE relied on a mean call-
able genome of 74% ± 13% (at 10x coverage), StrainPhlan relied on marker genes which 
only covered on average 1.4% ± 0.3% of the references.

StrainGE achieved this high sensitivity with comparable runtime to MIDAS and 
StrainPhlan, and its memory usage was well within the range of modern cluster systems 
or powerful personal computers (Additional file  1: Fig. S9). Another key advantage of 
StrainGE over the other tools is its ability to link a strain in a sample to its specific close 
reference genome reported by StrainGST, which places an observed strain within the 
known phylogenetic structure of the reference database (Additional file 1: Fig. S10). In 
contrast, the SNV profiles outputted by StrainPhlan (based on marker genes) or MIDAS 
(compared to a single built in E. coli reference) do not offer convenient phylogenetic 
placement.

In real metagenomic data, StrainGE identifies low abundance strains and can track strains 

across samples, including in strain mixtures

StrainGE can identify lower abundance instances of persistent strains previously undetectable 

by other tools

In order to assess StrainGE’s utility to characterize strains from real world samples, we 
examined its performance, using default parameters with our Escherichia reference 
database, on a previously published metagenomic dataset of 27 longitudinally collected 
stool samples from a patient with Crohn’s disease, upon which MIDAS was run to delin-
eate E. coli strains [25]. MIDAS identified seven dominant “strain types” (“ST1” – “ST7”) 
that varied in abundance over time. Each of these belonged to a distinct multi-locus 
sequence type (MLST) and represented one of five E. coli phylogroups. StrainGE showed 
good concordance with results from MIDAS for all high abundance strains (> 10% 
abundance) (Table 2). For the two calls that disagreed, our StrainGST database lacked 

Table 2 The strains predicted by MIDAS match the dominant strains predicted by StrainGE

a Fang et al. [25]
b The actual strain corresponding to ST1 (3_2_53FAA) was whole‑genome sequenced by Fang et al. PA45B and 3_2_53FAA 
share 99.9% average nucleotide identity based on whole‑genome comparative genomics analysis
c MLST profile was not represented by any reference genome in the StrainGE database. StrainGST predicted the closest 
reference within the StrainGE database, which was within the same phylogroup

Strain (time points) MIDASa StrainGST

MLST E. coli 
phylogroup

MLST E. coli 
phylogroup

Most abundant strain

ST1 (1) 95 B2 95 B2 PA45Bb

ST2 (2) 1629c E 1011 E Santai

ST3 (3,4) 69 D 69 D 118UI

ST4 (11-18) 58 B1 58 B1 D5

ST5 (19-22, 27) 131 B2 131 B2 MVAST0167

ST6 (23,24) 409c A 1408 A AR_0061

ST7 (25,26) 1727 B1 1727 B1 2011C-3911
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representatives for the two MLSTs reported by MIDAS. However, StrainGE selected the 
next closest reference, which we confirmed by comparing the whole genome sequence 
from a cultured representative of ST1 [25] to our reference database.

StrainGST also identified seven distinct strains that were missed by MIDAS (Fig. 4a). 
While the majority of these were secondary strains found to coexist with a dominant 
strain predicted by MIDAS, StrainGST also predicted strains at time points where 
MIDAS called none (time points 6–10). In most of these cases, the strains were at ≤ 1% 
relative abundance and were also detected by MIDAS at higher abundance in other time 
points (e.g., ST3; dark green), lending credence to their existence in these samples and 

Fig. 4 StrainGE identified previously undetected low-abundance strains in longitudinal samples from an 
individual with Crohn’s disease. a Stacked barplot showing the relative abundances of StrainGST calls for each 
of 27 longitudinal stool metagenomes from Fang et al [25]. Circles indicate the strain detected in Fang et al., 
colored by its StrainGST counterpart and labeled using the ST designations (ST1-ST7) assigned by Fang et al. 
Small gray circles indicate samples where no strain was predicted in Fang et al.; these are labeled with “n.d.” 
b Single-copy core phylogeny of the 14 StrainGST reference genomes with close matches to strains across 
samples. Colors are based on the reference’s clade; see column “Clade”. “Collapsed” column indicates which 
reference was selected as a representative for subsequent StrainGR analysis, when two or more references 
shared more than ~ 99.2% ANI. c For all sample pairs matching the same collapsed reference, the Jaccard gap 
similarity index and pairwise ACNI are plotted. Circles indicate comparisons where the predicted reference 
was the same before collapsing, and diamonds indicate cases where the predicted reference before 
collapsing was different. Sizes of shapes indicate the percentage of the reference genome that was callable 
across both strains being compared. Filled in shapes indicate whether this strain instance was undetected by 
MIDAS. Dark green circles are labeled with the time points compared. d Zoomed in view of the upper right 
corner of c)
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suggesting that some strains were more persistent over time than previously predicted 
(Fig. 4a).

We ran StrainGR on all datasets using a concatenated reference including 10 out of 14 
total references reported by StrainGST to ensure each genome had at least 20% unique 
genome content (Materials and methods; Fig. 4b). SNV and gap patterns predicted by 
StrainGR showed that the majority of strains matching the same reference had strikingly 
high pairwise ACNI (> 99.96%) and gap similarity (> 0.97) (Fig. 4c, d), which were within 
the range of those of same-strain sample pairs in our simulations (Fig.  2a). However, 
StrainGR results from strains matching the E. coli 118UI (dark green) reference stood 
out. While 118UI-like strains from samples 3 and 4 had ACNI and gap similarity rela-
tionships that were on par with what we observed in same-strain simulations, all other 
comparisons fell outside of this range, suggesting that this individual carried a mixture 
of 118UI-like strains in their gut over time that were closely related, but not necessarily 
the same with respect to gene content and single nucleotide variation (Additional file 1: 
Fig. S11).

Fig. 5 StrainGE detected a long-term, persistent strain of E. coli in a woman with rUTI. a Relative abundances 
predicted by StrainGE are shown for all E. coli strains detected. b For all sample pairs containing a strain 
matching to E. coli 1190, plot shows pairwise ACNI and gap similarity scores. Size of the circle indicates the 
percentage of the common callable genome. c Zoom in on a region of the chromosome of E. coli 1190. Gray 
shaded areas indicate “callable” regions, where StrainGR had enough read data to make a strong allele call. 
Predicted gaps are shaded black. The blue line represents the number of SNVs per 1,000 bp, observed in at 
least 3 samples. d Further zoom-in representing a region where StrainGR identified a nonsynonymous SNV 
that was consistently detected across all 1190-like strains
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StrainGE accurately and sensitively identified a low‑abundance, persistent strain of E. coli 

in longitudinal stool samples from a woman with recurrent urinary tract infection

Although the results of StrainGE on the Fang et al. [25] dataset highlighted its ability to 
resolve strains present at low abundance, the overall E. coli relative abundances in these 
samples were significantly higher (median 7.9%; range 0.05–27%) than those typically 
seen in the human gut. Thus, we also tested StrainGE on 12 stool metagenomes hav-
ing more typical E. coli relative abundances (median 0.55%; range 0.006–17.4%), which 
originated from a single individual with a history of recurrent urinary tract infection 
(rUTI) over the span of a year. Given that the gut is a known important reservoir for 
UTI-causing E. coli [26], it was of interest to trace gut E. coli strain dynamics and their 
relationship with UTI.

StrainGST detected a total of five distinct strains of E. coli (Fig. 5a), including a recur-
rent strain detected in over half of samples. The persistent strain, an E. coli 1190-like 
strain from phylogroup D, had a median relative abundance of only 0.6% (range 0–1.2%) 
and was detected even in samples that were composed of multiple E. coli strains, includ-
ing at very low (20-fold less) abundance relative to another strain (Fig. 5a). Despite its 
low abundance, we were able to confirm that all E. coli 1190-like strains had extremely 
high ACNI (> 99.95%) and gap similarity (> 0.98) (Fig.  5b), in line with the identities 
observed for same-strain benchmarking (Fig.  3a), suggesting that this strain, also the 
causative agent of this individual’s rUTI, persisted long-term in their gut.

Further, StrainGR output enabled us to look closely at the locations and identities of 
SNVs and genes within gaps relative to the reference. For example, we consistently iden-
tified a large gap across all time points encoding a prophage found in the original ref-
erence, but apparently lacking in the E. coli 1190-like strain in this individual (Fig. 5c). 
Using StrainGR output that included both strong and weak variant calls (see Fig. 1c for 
strong vs. weak calls; Materials and methods), we were able to track 839 variant sites 
across samples, where the corresponding allele was strongly called in at least one sam-
ple, and weakly called in at least five samples (e.g., a nonsynonymous SNV in the gene 
cydC; Fig. 5d). At each of the 839 variant sites, the called allele was identical across all 
time points, except for three sites where another secondary weak allele was called, fur-
ther supporting the persistence of a single UTI-causing strain.

StrainGE accurately recapitulated known strain‑level diversity from metagenomes and traced 

strains from mother to child

To demonstrate StrainGE’s applicability to other bacterial genera, we selected a previ-
ously published dataset investigating the impact of mode of delivery on the infant gut 
microbiome, including transmission and carriage of opportunistic pathogens from the 
Enterococcus genus [27]. Shao et al. longitudinally followed 596 babies (and 175 moth-
ers) by collecting stool samples that were then whole metagenome shotgun sequenced 
and cultured for pathogens, including 451 enterococci that were then whole genome 
sequenced. This dataset allowed us to evaluate StrainGE’s ability to report on (i) the rela-
tionships between enterococcal strains predicted directly from metagenomes in com-
parison to those calculated from the genomes of cultured isolates and (ii) mother and 
child strain sharing. Furthermore, this dataset allowed us to evaluate StrainGE’s ability 
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to predict and compare strains across samples using a sparser database, as there were 
fewer than a third as many RefSeq complete Enterococcus genomes than for Escherichia.

We built a 163-member StrainGST database representing references from 80 E. fae-
cium, 39 E. faecalis and 44 other enterococcal species (Materials and methods; Addi-
tional file 2) and ran StrainGE on all 1,679 stool metagenomes. StrainGE identified strain 
relationships that were very similar to those Shao et al. obtained using bacterial isolate 
comparisons. For example, the species distributions were roughly similar (Additional 
file  1: Table  S4) and nearly half (42%) of references predicted by StrainGST belonged 
to one of the five major E. faecalis lineages previously identified (Fig. 6a). The pairwise 
ACNI distributions for strains matching these references mirrored the tree topology 

Fig. 6 StrainGE recapitulates strain-diversity among bacterial isolates using metagenomic data only. a 
Single-copy core phylogenetic tree of E. faecalis isolates from the UK Baby Biome Study (UK BBS) (n = 282) 
in the context of isolates from other public UK hospitals (n = 168), human gut microbiota (n = 28), or other 
environmental sources (n = 27). Five major lineages were identified, represented by ST16, ST179, ST30, ST191, 
and ST40. Tree republished with permission from Shao et al. [27]. b Scatterplot relating ANI between isolates 
(x-axis) to StrainGE’s computed ACNI between metagenomes from which the isolates were derived (y-axis). 
c Barplot showing StrainGST predicted references and their relative abundances (y-axis) for strains present 
in metagenomic samples from a mother and her child taken over several days (x-axis). Strains matching the 
same reference are shown in the same color. Lines connecting bars are labeled with StrainGR computed 
ACNI. d For all pairs of samples with a strain close to either E. faecium DMEA02 (yellow) or E. faecalis SF28073 
(blue), ACNI (y-axis) and gap similarity are plotted (x-axis). Circles with a black border represent pairs of 
samples from the same subject (or its mother). Size of the circle represents the percentage of common 
callable genome
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(Additional file  1: Fig. S12), and across the whole data set pairwise ACNI correlated 
strongly with ANI between corresponding isolates (Pearson’s r = 0.96; Fig. 6b; Materials 
and methods).

Shao et al. used StrainPhlan [15] to predict instances of mother-to-child strain shar-
ing, including 7 E. faecalis and 2 E. faecium transmission events. Though no direct com-
parison of transmission predictions could be made (sample names were not reported), 
we hypothesize that StrainGE’s predictions would be more accurate since StrainPhlan’s 
marker genes covered only 3.6% ± 1.7% of reported Enterococcus genomes, while 
StrainGE’s callable genome was on average 39% ± 33%. Using StrainGE, we identified 17 
mother-baby pairs for which StrainGST reported the same reference, of which six had 
sufficient common callable genome to calculate ACNI. Three pairs had ACNI < 99.7% 
and three had ACNI near 100%, including an example at 99.999% (Fig.  6c) suggesting 
that there were at least three instances of mother-baby strain sharing that we could 
confidently call based on our “same strain” ACNI threshold of 99.95%. Comparisons of 
strains matching the same reference from other mothers or babies revealed that they 
generally had considerably lower ACNI and gap similarity (Fig. 6d).

Discussion
The ability to discern strain-level variation from primary specimens—where the spe-
cies of interest may be at low abundance—can transform our understanding of species 
populations, ecologies, and transmission patterns. We have shown that our novel tool 
suite, StrainGE, is easy to use for ultra-sensitive detection of strains in primary speci-
men metagenomes. StrainGE uses both k-mer and alignment analysis to characterize 
sample strain genomes, including their (i) closest matching reference, which places them 
phylogenetically, (ii) relative abundance, and (iii) estimated ANI (ACNI) to other strains, 
which can be achieved even at very low coverage levels, with more detailed informa-
tion about specific variants and cross-sample comparisons becoming available as cover-
age increases. StrainGE can provide nucleotide level resolution for individual bacterial 
strains or strain mixes that are present at 0.1% relative abundance, e.g., 0.5x coverage for 
a 5 Mb genome within 3Gb of sequencing reads. StrainGE provides a substantial advance 
over previously published tools, which (i) were not designed to work at these low cover-
ages [16], (ii) report only overall consensus SNV profiles for a mixture [14, 15], or (iii) do 
not offer nucleotide-level resolution [9–11].

In addition to demonstrating good performance on an extensive array of benchmark-
ing samples, we showed that StrainGE provided insights into the strain-level dynamics 
of bacteria in three real-world sample sets. For a patient with Crohn’s disease, StrainGE 
identified co-existing strains and strains at time points missed by another popular 
strain-tracking tool. StrainGE similarly was used to identify the long-time gut carriage 
of a low abundant UTI-causing E. coli strain, which we could track via stereotypical 
gene absence and SNP patterns, reported by StrainGE, that could be discerned even 
when other strains were present. Finally, using metagenomic data from primary stool 
specimens, StrainGE was able to recapitulate relationships among E. faecalis previously 
observed using whole genome sequencing of isolates and phylogenetic reconstruction, 
as well as provide strong evidence for transmission of E. faecium strains from moth-
ers to their children. For this vignette, we used an ACNI threshold that we empirically 
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determined to represent the same strain from in silico experiments. However, the meas-
ures that define “same” versus “different” strains will depend upon the research question 
and the species being evaluated [7]. StrainGE provides a compendium of outputs for 
assessing relationships between strains in detail, which can be used to evaluate appropri-
ate thresholds for any system.

While we demonstrated StrainGE on a narrow set of bacterial species, StrainGE is 
designed to be broadly applicable to any genus or species, with a wide range of data-
base sizes. While a dense database is generally preferred because the accuracy of vari-
ant calls improves with genetically closer references [22], our benchmarking showcased 
that StrainGST and StrainGR combined can return accurate information about strain 
relationships, even when few reference genomes are available. Furthermore, the default 
database clustering threshold of 99.8% is tunable to adjust for the number of references 
StrainGST considers since, for example, a very dense database could cause StrainGST 
to report different, but closely related references for two samples containing the same 
strain. To balance these two factors, we included a tool “prepare-ref” in the StrainGE 
suite, which performs an additional coarser round of clustering of StrainGST-deter-
mined references for a set of samples in order to select a smaller set of representatives 
prior to running StrainGR. This step increases the total amount of unique content across 
references to be considered in ACNI calculations and enables direct comparisons of 
more strains with respect to their nucleotide and gap similarities.

While StrainGST and StrainGR were designed to work together, both tools can work 
in isolation and provide useful standalone output. StrainGST with a dense database 
can provide fast phylogenetic placement of strains. Though not shown here, this also 
works on whole genome sequence data from bacterial isolates, providing a quick snap-
shot of phylogenetic relationships without needing to perform reference alignments or 
other more time-consuming phylogenomic pipelines. StrainGR could be used without 
StrainGST when good quality assemblies are available for strains present within a mixed 
community dataset. For example, long read sequencing and assembly of isolates or even 
whole metagenomes from a select number of time points could provide high quality 
substrates for StrainGR evaluations of strains in short read time series data.

Though competitive and filling a niche left behind by other strain-tracking tools, 
StrainGE has several limitations. It evaluates the relationships between strains using only 
unique regions of reference genomes, is unable to detect new genes that occur in strain 
genomes that are not present in its closest matching reference, and currently only works 
with Illumina data. Furthermore, StrainGE is currently not designed to phase SNVs from 
multiple strains matching the same reference in the same sample. In this case, StrainGR 
will output evidence for multiple alleles, but the frequencies of which cannot be robustly 
compared to link alleles together at the coverages under which StrainGE was designed to 
operate.

Conclusions
Here, we present StrainGE, a novel suite of tools to characterize conspecific strains in 
complex microbial communities. We have demonstrated its accuracy using benchmarks 
and have shown that it represents a major advance over other published tools. Using 
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three clinical metagenomic time series, we demonstrated its ability to yield insights into 
biological systems that previous tools could not, including the persistence of low-abun-
dance strains across time. StrainGE’s sensitivity at very low coverages (0.1x and higher) 
will help to accelerate our understanding of the role of strain-level variation in shaping 
ecological and disease processes.

StrainGE is installable through bioconda and available at https:// github. com/ broad 
insti tute/ strai nge.

Materials and methods
Strain Genome Explorer toolkit algorithms

StrainGST: Strain Genome Search Tool

StrainGST is a k-mer based tool used to identify specific strain(s) of a species in a 
metagenomic sample. StrainGST computes a reference database of previously sequenced 
strains from this species and uses it to report close reference genomes to strains present 
in a metagenomic sample along with their relative abundances. The references reported 
by StrainGST can be used as input to StrainGR to further characterize genetic variation 
found within the metagenomic sample.

Creating a StrainGST database A StrainGST database is constructed from a set of 
high quality sequenced reference genomes for a single species or genus, such as all com-
plete reference genomes in NCBI RefSeq. From this set of genomes, StrainGST gener-
ates a database of k-mer profiles, using a sliding window (window size k) to traverse each 
genome and count the frequency of each k-mer. To reduce memory usage and compu-
tation time, a minhash technique (similarly to Mash [20]) is applied to keep 1% of the 
k-mers with the lowest hashes.

StrainGST next performs clustering to remove highly similar genomes from the ref-
erence set. In order to track and compare genomic variation across related samples, 
StrainGR must be able to align reads to a common reference genome across different 
sample sets. Therefore, the references reported by StrainGST should not be too closely 
related, or each sample could end up matching distinct yet closely related references, 
making comparisons difficult. StrainGST computes pairwise Jaccard similarities using 
each reference genome’s k-mer set, performing single linkage clustering using a Jaccard 
similarity threshold of τ, and picking a single representative genome for each cluster to 
include in the reference set. StrainGST selects the genome with the highest mean simi-
larity to all other genomes in that cluster. This process ensures that the k-mer similarities 
between remaining genomes in the database are all lower than τ. Additionally, to remove 
genomes from the database that are highly similar to another genome, but that may have 
lower Jaccard similarity due to the presence of large indels, StrainGST removes genomes 
where 99% or more k-mers overlapped with those from another genome.

Identifying strains present in a sample StrainGST uses this database to identify the 
closest reference genome(s) to the strain(s) present within a sample (Fig.  1). First, all 
reads in the sample are k-merized, resulting in the k-mer set Ksample. The algorithm then 
selects for k-mers from the species of interest by taking the intersection between the 

https://github.com/broadinstitute/strainge
https://github.com/broadinstitute/strainge
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sample k-mer set and that of the reference database for the species of interest (Fig. 1b), 
excluding k-mers not associated with the target species.

StrainGST then uses these k-mers to identify the reference genome(s) with the best 
k-mer matches to the sample using an iterative process. In each iteration, StrainGST 
scores each reference genome in the database against the remaining k-mers in Ksample 
in order to find the reference with the best score, which is reported to the user as the 
reference with the strongest evidence of being present. The scoring system is described 
in detail below. If no reference strain is identified that scores above a threshold θ (adjust-
able by a command line option), the algorithm is terminated. The default value for θ 
(0.02) was optimized to maximize sensitivity while minimizing false positives. In each 
iteration, k-mers corresponding to the reference selected are removed from the sample 
k-mer set in order to enable identification of secondary strains in the next iteration. This 
process continues until either no strain is reported or the maximum number of itera-
tions is reached (default of 5).

Scoring metric for selecting matching reference strains To determine which reference 
strain to report in each iteration, we calculate a score for each reference strain using a 
combination of three metrics based on (1) the fraction of matching k-mers in the ref-
erence, (2) the fraction sample k-mer counts that could be explained by this reference 
genome, and (3) the evenness of the distribution of matching k-mers across the genome.

1) Fraction of matching k-mers in the reference (ƒ)

This metric represents the fraction of distinct k-mers in reference j that is present in the 
sample and has a value between 0 and 1, where 1 would indicate all k-mers of this refer-
ence are present in this sample.

Ksample represents all k-mers in the sample, Kj represents all k-mers in reference j, and K′ 
represents the set of k-mers both present in the reference and in the sample.

2) Fraction of sample k-mer counts that could be explained by this reference (ɑ)

To give more weight to reference genomes that are similar to higher abundance strains 
in the sample, StrainGST calculates the fraction of database k-mers remaining in the 
sample that could be explained by the k-mers in this reference:

K ′ = Ksample ∩ Kj ,

f =
|K ′|
|Kj |

.

a =

∑

i∈K ′ ci
∑

i∈Ksample
ci
.
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ci represents the count of k-mer i in the sample. Note that we include k-mer counts, 
rather than using the fraction of distinct k-mers, which gives more weight to reference 
strains with high average depth of coverage. This metric has a value between 0 and 1.

3) Evenness (e)

To quantify whether the matching k-mers are evenly distributed across the reference 
genome, rather than being found predominantly in a small region (e.g., due to a hori-
zontal gene transfer event, or conserved regions attracting reads from different species), 
we defined the evenness score. First, we assumed that the coverage across the genome 
follows a Poisson distribution. The rate parameter λj of the Poisson distribution specifies 
the average depth of coverage across the whole genome:

Here, ci represents the count of k-mer i in the sample, and dij represents the count of 
k-mer i in reference strain j.

If X is the random variable that indicates how many reads cover a position, then using 
the Poisson distribution, the probability of observing x reads at a position is:

The probability of observing 0 reads at a position is then P(X = 0) = exp(−λj). The prob-
ability of observing at least one read at a position is [28]:

This probability also represents the expected fraction of the genome covered by at least 
one read given a certain average depth of coverage. The evenness score describes how 
well the observed fraction of the genome covered by at least one read (which is esti-
mated using the fraction of matching k-mers in the reference defined earlier) matches 
the expected fraction of the genome covered by at least one read when assuming a Pois-
son distribution for the depth of coverage:

This score will be close to 1 if the observed fraction of the genome with at least one read 
matches the expected value for a certain average depth of coverage (assuming a Pois-
son distribution). It will be closer to zero if only small portions of the genome are well 
covered. A value higher than 1 indicates that the observed fraction of the genome with 
at least one read is higher than the expected fraction of the genome with at least one 
read. To bound this score between 0 and 1, StrainGST uses the minimum of e and its 
reciprocal:

�j =
1

| Kj |

∑

i∈Kj

ci

dij

P(X = x) =
�
x
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(

−�j

)

x!

P(X > 0) = 1− P(X = 0) = 1− exp
(

−�j

)

e =
f

1− exp
(

−�j

)



Page 19 of 27van Dijk et al. Genome Biology           (2022) 23:74  

Finally, we combined these three metrics together in order to obtain the final score:

At each iteration, the reference strain with the highest score represents the best match to 
the highest abundant strain remaining in the sample and is reported to the user.

StrainGR: Strain Genome Recovery

The StrainGR pipeline consists of (1) building a concatenated reference based on refer-
ence strains reported by StrainGST, (2) aligning reads to the concatenated reference, (3) 
analyzing read alignments to call SNVs and large deletions, and (4) using these variant 
calls to analyze gene content or track strains across multiple samples.

Preparing a concatenated reference To analyze a set of related samples together, such 
as a longitudinal series, StrainGR concatenates a single, unified set of representative ref-
erences present across the whole dataset. This can facilitate comparisons of alignments 
or genomic variation across a set of samples, which may contain different strain mixes 
at different time points. Use of the concatenated reference allows reads with an allele 
unique to a particular strain to be aligned to the genome of the correct reference strain, 
thus helping disentangle reads from mixture samples. Genomes from the same species, 
however, will share conserved genomic regions (i.e., housekeeping and other core genes), 
where the aligner will be unable to place reads unambiguously within the concatenated 
reference. StrainGR detects and excludes these conserved regions from variant calling.

In order to minimize conserved regions where StrainGR is unable to call variants, it is 
important to select a set of reference strains that are not too closely related, which could 
result in a large fraction of the concatenated reference genome being marked as shared. 
To construct a concatenated set of references with an optimal degree of similarity, 
StrainGR includes a tool called prepare-ref that analyzes StrainGST output from a set 
of samples (e.g., a longitudinal set from a single patient) and generates a concatenated 
reference ready for use with StrainGR, optionally performing another round of cluster-
ing at a stricter threshold to prevent too-closely related genomes from being included. 
By default, the stricter clustering threshold is set to a Jaccard similarity of 0.7 (~ 99.2% 
estimated ANI).

Read alignment and filtering The reads from a metagenomic sample are then aligned 
to the concatenated reference using BWA-MEM [29], removing read pairs with (1) 
improper pairing, (2) clipped alignment, or (3) implied insert size smaller than the 
read length. In order to identify shared regions within the concatenated reference 
which should be excluded from variant calling, StrainGR tracks the number of “multi-
mappable” read alignments (those which map equally well at multiple locations) at 
each position in the reference. When the majority of aligned reads at a position are 

e′ = min

(

e,
1

e

)

score = f · a · e′2



Page 20 of 27van Dijk et al. Genome Biology           (2022) 23:74 

multi-mappable, StrainGR excludes this position from variant calling. We rely on BWA’s 
“XA” SAM tag to obtain a read’s alternative alignment locations, so aligners other than 
BWA are not currently supported by StrainGR.

In addition to excluding multi-mappable regions, StrainGR also excludes regions with 
abnormally high coverage (greater than threshold τ), likely due to genes highly con-
served across genera which attract nonspecific reads from other members of the micro-
bial community. τ was chosen such that the probability of observing a depth of cover-
age higher than τ  is 1 ×  10−7 assuming a Poisson distribution. This value results in a 
threshold of 10x coverage when the mean coverage depth across the genome is 1x, and a 
threshold of 20x when the mean is 5x.

SNV calling StrainGR analyzes read alignments to identify single-nucleotide variants 
(SNVs) between a specific strain within a metagenomic sample and its closest refer-
ence genome identified by StrainGST. To filter likely sequencing errors, bases with 
an Illumina Phred base quality score < 5 are ignored by default. An allele is consid-
ered strong if the sum of base quality scores supporting that allele is (i) higher than 
50 (roughly equivalent to having at least two high-quality supporting reads) and (ii) at 
least 10% of the total sum of base quality scores of all alleles at that genomic position. 
If an allele is present but doesn’t match these criteria, it is considered weak. StrainGR 
stores weak evidence for use when tracking a strain across multiple samples—if a par-
ticular strain is highly abundant in some samples, with many strong SNP calls, then 
weak calls can be useful to discern that allele in low abundance samples from the same 
sample set.

Based on the observed alleles, StrainGR classifies a genomic position as either “reference 
confirmed,” “SNV” or “multiple alleles.” If a position has a single strong allele call, and 
that allele is the same as the reference, the position is classified as “reference confirmed.” 
A position with a single strong allele call that is different from the reference is classified 
as a SNV. Any position with multiple strong allele calls (whether they match the refer-
ence or not) is classified as “multiple alleles.”

To estimate the overall degree of similarity between the strain in the sample and its clos-
est reference, StrainGR computes an estimate of average nucleotide identity (ANI) using 
StrainGR SNV calls: the average callable nucleotide identity (ACNI) is the percentage of 
positions marked as “reference confirmed” out of all positions with a single strong allele call.

Large deletion predictions StrainGR also analyzes the read alignments to identify large 
deletions present in a specific strain within a sample, as compared to its closest reference 
identified by StrainGST. Consecutive positions in the reference genome over a specified 
length (by default 5000 bp; ~ 2 genes) with no aligned reads could indicate a large dele-
tion. To account for situations with low coverage across the genome (< 1x), StrainGR 
employs a simple heuristic that exponentially scales the threshold for the length of such 
regions at lower coverages; thus, only longer gaps can be detected at lower coverages. If 
λ is the average depth of coverage along the genome, and φ is the unadjusted threshold, 
then the adjusted minimum size of a “gap” is:
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Large deletions are used to assess whether particular genes are absent from the strain in 
a sample. In addition, the overall pattern of deletions across the genome for the strain in 
a longitudinal sample set can be used as a strain “fingerprint” to track a particular strain 
across samples.

Strain comparisons across samples To assess whether the strains in two samples 
are the same (or very closely related), we compare both SNV calls (via pairwise 
ACNI) and patterns of large deletions. StrainGR calculates pairwise ACNI by 
dividing the number of positions where both samples have the same strong allele 
by the total number of positions where both samples have a single strong allele. 
To compare the pattern of predicted deletions between two samples, StrainGR 
calculates the Jaccard similarity: if G1 is the set of positions not marked as a large 
deletion in sample 1, and G2 is the set of positions not marked as a large deletion 
in sample 2, then the gap similarity l is defined as

Benchmarking StrainGE using simulated data and mock communities

Spiked metagenome generation

Unless otherwise noted, all synthetic metagenomes used for benchmarking were gener-
ated as follows: reads were simulated from the relevant genomes using ART [30] and 
merged with reads subsampled from a genuine metagenomic data set without detect-
able E. coli (accession SRS014613) as per MetaPhlan2 [31] and StrainGST, up to a fixed 
depth of 3 Gb. At this depth, strain coverages of 0.1x, 0.5x, 1x, and 10x corresponded to 
relative abundances of 0.016%, 0.083%, 0.16%, and 1.6%, respectively, assuming a 5 Mb 
E. coli genome.

StrainGST database for Escherichia

For construction of the Escherichia reference database, all complete Escherichia 
genomes available in NCBI RefSeq were downloaded in July 2019 (929 genomes total; 
Additional file 2). All tools required to construct the StrainGST database are included in 
the StrainGE suite (kmer counting, clustering, and database construction). The full data-
base with 361 Escherichia genomes uses 7.3 Gb of disk space.

In order to set StrainGST’s default clustering threshold, we benchmarked its ability 
to correctly identify single strain and two-strain mixes using the metagenomic spike-in 
methods described below, using synthetic reads generated from 200 randomly selected 
E. coli genomes spiked into subsets of real metagenomic samples devoid of E. coli, to a 
total of 3 Gb. For the single-strain benchmarks, 200 samples were generated with 10x, 
1x, 0.5x, and 0.1x coverage of each of the selected E. coli genomes (800 samples total). 

φ′ =
φ

1− exp (−�)

l =
| G1 ∩ G2 |

| G1 ∪ G2 |
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For the 2-strain mix benchmarks, 100 random 2-strain combinations from the set of 200 
selected E. coli genomes were spiked in at each combination of 10x, 1x, 0.5x, and 0.1x 
coverage (10 coverage combinations, 1000 samples total). The 1800 benchmark cases 
were run using database clustering thresholds of 0.95, 0.90, 0.85, and 0.80 Jaccard k-mer 
similarity, corresponding to Mash distance ANIs of 99.89%, 99.77%, 99.63%, and 99.49%, 
respectively. For each threshold, we measured precision, recall, and F1 score for strain 
identification, with true positives being only those cases in which StrainGST identified 
the closest reference strain to the true strain as measured by Jaccard k-mer similarity. 
The clustering threshold of 0.90 generated the best combined results in each of the three 
metrics (Additional file 1: Table S5).

Phylogenetics and MLST typing of genomes in the Escherichia reference database

A single copy core (SCC) phylogeny was generated for the entire database of reference 
genomes. In brief, SynerClust [32] was used to generate clusters of orthologous genes 
(orthogroups). A concatenated alignment was generated for all single-copy, core ortho-
groups using MUSCLE [33]. A phylogenetic tree was constructed using FastTree v2.1.8 
[34]. Phylogenetic trees were visualized using iTol [35].

MLST designations for each reference genome were predicted with the tool mlst 
(https:// github. com/ tseem ann/ mlst). Sequence types reported were based on the Acht-
man scheme. E. coli clade/phylogroup designation was determined using ClermonTyp-
ing (https:// github. com/A- BN/ Clerm onTyp ing). For cases when there were missing or 
conflicting results between predicted typing and MASH groups, the clade designation 
for a given genome was selected based on where it was located in the SCC phylogeny 
with respect to unambiguous genome to clade designations.

Creation of four‑strain E. coli mock community

Four phylogenetically distinct E. coli strains—H10407 (clade A), E24337A (clade B1), 
UTI89 (clade B2), and Sakai (clade E)—were cultured separately overnight at 37 °C in 
2 mL of liquid LB media shaking at 200 rpm. The bacterial number in each culture was 
estimated via optical density and then combined at a ratio of 80% H10407, 15% UTI89, 
4.9% Sakai, and 0.1% E24337A. Genomic DNA was then extracted from this mock com-
munity using the Qiagen MagAttract DNA Isolation Kit (Hilden, Germany), following 
manufacturer’s protocols. In two separate tubes, human genomic DNA was then added 
to the extracted E. coli DNA for final ratios of 99% human/1% E. coli (weight/weight). 
Sequencing data for this mock community has been submitted to NCBI’s Sequence Read 
Archive (SRA) under bioproject PRJNA685748 (biosample SAMN17091845).

Comparison of tools for tracking specific strains across samples using simulated sets of related 

samples

We compared the ability of StrainGE, StrainPhlan [15], and MIDAS [14] to track strains 
across samples. We performed strain tracking comparisons across ten sets of twelve 
spiked metagenomes, where each set of twelve was structured similarly in terms of strain 
content (Fig. 2a, b). For each set, we randomly picked two Escherichia reference genomes 
(A and B) from NCBI RefSeq complete and derived two different but closely related 

https://github.com/tseemann/mlst
https://github.com/A-BN/ClermonTyping
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synthetic strains from each reference by introducing ~ 5000 random SNVs (99.9% ANI) 
uniformly across the genome. We spiked reads generated from these synthetic genomes 
into a real metagenome to generate samples containing these strains in different combi-
nations (Fig. 2b), at 0.1x, 0.5x, 1x, and 10x coverage.

For each data set, we assessed strain similarity metrics calculated by each tool, to 
determine whether the tool could match (i) the identical strain found in different sam-
ples (i.e., strain A in sample 1 and 2; Fig. 2c), (ii) strains found either in mixtures or sin-
gle-isolate samples (i.e., strain A in sample 1, 2, 5, and 6; Fig. 2d), or (iii) closely related 
strains (i.e., the ability to distinguish strain A1 from strain A2; Fig. 2e). In each case, we 
compared the tools’ predictions to the known strain content of each sample to calculate 
true positives (TP), false positives (FP), and false negatives (FN). For each tool, we varied 
the threshold (discussed in detail below) for determining shared strains in order to plot 
precision-recall curves.

Detecting shared strains using StrainGE For each sample, we ran the complete StrainGE 
pipeline: StrainGST was run to identify the closest reference genomes, and StrainGR 
was run on a sample-specific concatenated reference to call genetic variation. To detect 
shared strains, we collected all samples predicted to match to the same StrainGST refer-
ence and computed a pairwise ACNI matrix for strain comparisons with at least a 0.5% 
callable genome. The similarity matrix was transformed to a distance matrix by com-
puting 1 − ACNI, and transformed to a genetic distance using the Jukes-Cantor model 
[36]. If a pair of samples did not share any predicted close reference genomes, we set the 
distance between those samples to the maximum integer value. To plot the precision-
recall curve, we varied the genetic distance threshold that determines when strains are 
considered the same.

Detecting shared strains with StrainPhlan We ran StrainPhlan on each sample, using 
the tool’s marker gene database v295 (Jan 2019). Using the marker gene SNV profiles for 
each sample, StrainPhlan computed the pairwise sample distance matrix using Kimura’s 
two parameter model [37] (as suggested in their user manual). To plot the precision-
recall curve, we varied the genetic distance threshold that determines when samples 
share a strain, as performed for StrainGE. To tune StrainPhlan for lower coverage levels, 
we ran it using --relaxed-parameters.

Detecting shared strains with MIDAS We ran MIDAS v1.3.2 (database version v1.2) 
with default parameters. MIDAS includes a strain tracking tool that is first “trained” 
by giving it a single sample from each patient in a cohort. This training step identifies 
unique SNV markers for each patient. For our benchmarking, we “trained” MIDAS on 
samples containing a single strain (sample 1 for strain A1, sample 3 for strain B1, sample 
7 for strain A2, and sample 9 for strain A2). (This likely helped the tool in benchmarking 
since, in a real world scenario, it is likely unknown whether a training sample contains a 
single strain.) Next, MIDAS compares these SNV markers to alleles in other samples and 
assesses how much they overlap. To plot precision-recall curves, we varied the percent-
age of overlapping markers between two samples that serves as a threshold to determine 
whether two samples share a strain. To tune MIDAS for lower coverage levels we ran its 
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merge_snvs.py script with --all_snvs --all_samples and its strain_tracking.py script with 
--min_reads 1.

Evaluating the ability of StrainGR to quantify strain sharing in distinct metagenomic 

backgrounds

In order to determine how well StrainGE metrics recapitulated genetic relationships 
between strains, we generated another set of spiked metagenomic samples, spiked 
with varying quantities of E. coli reads from real, previously sequenced isolates. Ten 
stool metagenomes were randomly selected from the Human Microbiome Project [5] 
(Additional file 1: Table S3). The randomly selected samples contained E. coli at relative 
abundances between 0.005% and 0.9%; no two samples contained the same E. coli strain 
based on StrainGST output. Ten complete genome sequences of E. coli isolates, distinct 
from those identified in the background metagenomes, were selected from NCBI RefSeq 
database. For each isolate, ten variants were created by generating random mutations, 
such that the ANI to the original reference ranged from 99.9% to 99.99% at increments 
of 0.01%. Each reference and variant (110 in total) were spiked into at least two randomly 
chosen distinct metagenomic backgrounds at coverage levels of 0.1x, 0.5x, 1x, 2x, or 5x. 
A total of 300 synthetic samples were generated, with 350 pairs containing an identi-
cal strain in a distinct background. All spiked samples were analyzed with StrainGE; 
all sample pairs with a matching StrainGST reference were compared using StrainGR. 
StrainGST hits corresponding to strains present in background samples were not con-
sidered further. The ACNI was calculated for every pair.

Evaluation of StrainGE on longitudinal, clinical metagenomic samples

Metagenomic time series from a patient with Crohn’s disease

We downloaded from the UCSD Qiita database (https:// qiita. ucsd. edu/; Additional 
file 3) 27 metagenomic data sets representing stool longitudinally collected from a sin-
gle individual with Crohn’s Disease [25]. We ran the full StrainGE pipeline on each 
sample, using our Escherichia database and default parameters, to identify and analyze 
E. coli strains. For StrainGR, to ensure each genome had sufficient unique content, 
we constructed a concatenated reference using StrainGE’s builtin prepare-ref tool, 
which performed another round of clustering of the StrainGST reported references at 
a default threshold of 99.2% ANI. The resulting reference contained 10 out of 14 total 
reported references (Fig. 4b; phylogroup G, B2 and A). For pairwise strain compari-
sons, we only included samples where the common callable percentage of the genome 
was > 0.5%.

Metagenomic sequencing of longitudinally collected stool

Twelve longitudinally collected stool samples were extracted with Chemagen Kit CMG-
1091 (Baesweiler, Germany). Libraries were generated with NexteraXT (Illumina, San 
Diego, CA, USA) and sequenced in paired-end mode on an Illumina HiSeq 2500 (101 bp 
length) and/or Illumina HiSeq X10 (151 bp length). Short-read sequencing data was sub-
mitted to the Sequence Read Archive (SRA) with Bioproject accession PRJNA 400628 

https://qiita.ucsd.edu/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA400628
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(Additional file 3). We ran the full StrainGE pipeline on each sample, using our Escheri-
chia database and default parameters, to identify and analyze E. coli strains. For pairwise 
strain comparisons, we only included samples where the common callable percentage of 
the genome was > 0.5%.

Characterization of Enterococcus strain diversity across a large cohort of babies

We downloaded data from by Shao et  al. [27] from ENA, including 1679 metagen-
omes (accession ERP115334) and all isolate samples tagged as Enterococcus (accession 
ERP024601). We ran StrainGE on each metagenomic sample, using our Enterococcus 
database. To compare StrainGE’s ACNI to true ANI between the corresponding iso-
late genomes, we ran StrainGST on the raw isolate reads to identify a close reference 
genome, aligned the isolate reads to this reference using BWA-MEM [29], and used Pilon 
[38] to call variants. To compute the ANI between each pair of isolates that matched the 
same reference, we compared reference and alternative alleles called by Pilon where both 
samples had a single base call. For pairwise strain comparisons using StrainGR in the 
corresponding metagenomic samples, we only included pairs with a common callable 
genome > 0.5%.
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