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A B S T R A C T

Weigh-in-motion (WIM) systems help to collect data such as vehicular loads, individual axle loads, vehicle type,
and number of axles. This is relevant in engineering because traffic load performs an essential function in the
design of new bridges and in the reliability assessment of existing ones, in traffic analysis and other areas of
engineering. Therefore, when WIM data is not available, computing synthetic WIM observations that adequately
approximate the statistical dependence between variables is important. In this paper, WIM measurements from
the Netherlands and Brazil were analysed, and a set of non-parametric Bayesian Networks (NPBNs) is presented.
This paper significantly improves on previous results by allowing observations of inter-axial distance to be
generated, by allowing several sources of data to be used in the modelling and by making software available
to researchers and practitioners interested for generating synthetic observations based on the distribution of
vehicle type. In particular, statistical models to describe the weight and length of different vehicle types are
derived. Three NPBNs were quantified using data from: (i) six WIM locations of the motorway network of the
Netherlands, (ii) one WIM location in one city route of Rotterdam, The Netherlands, and (iii) one WIM location
of one highway in Araranguá city located in the south of Brazil. Additionally, a Graphical User Interface (GUI)
for the six Dutch WIM motorways locations was developed. To illustrate a possible use of the model when WIM
data is not available. The GUI was used to compute synthetic WIM observations using data collected through
traffic counters gathered in Toluca city in central Mexico, as input. This paper shows that the methodology
here presented is widely applicable and depends only on the assessment of vehicle type configuration.
1. Introduction

Vehicle load investigation is essential for the reliability assessment
of existing road infrastructure because the exceedance of legal weight
limits may cause serious threats to road transport operation and road
infrastructure. For example, by increasing the risk of deterioration
of pavements and bridges. One approach for describing the traffic
flow characteristics is data gathered through Weigh-in-Motion (WIM)
systems. WIM is a technology that allows measuring vehicle attributes
while the vehicle is travelling at full highway speed. Hence, significant
amounts of data such as axle loads, vehicle type and inter-axle distance
are collected.

Applications of the data gathered by the Weigh-in-Motion system
include reliability assessment of bridges, pavements and, monitoring
of overloaded traffic. Consequently, WIM systems are widely used
around the world. For instance, countries such as Slovenia, Ireland,
and England, operate 216 WIM sites installed in their national road
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networks (Kreslin et al., 2016). However, WIM systems are expensive
in terms of initial capital costs and life cycle maintenance costs. As a
result, a large number of countries or regions around the world do not
operate any WIM system at present. They are mostly using common
techniques such as pneumatic road tubes, some disadvantages of this
technique include inaccurate axle counting when trucks volumes are
high and absence of vehicle weighing (Crespo-Minguillón and Casas,
1997).

Therefore, computing good artificial WIM data is relevant in road
infrastructure safety assessment because an accurate model enhances
the reliability estimation. To accurately simulate WIM observations,
statistical correlations between the variables need to be modelled.
Generally, this can be carried out through empirical factors, linear
correlations, and copulas (Crespo-Minguillón and Casas, 1997; Federal
Highway Administration’s Intelligent Transportation Systems Program
Office, 2007; S. et al., 2006; Kim and Song, 2019). Nevertheless, these
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studies are focused only on axle loads or provide fixed inter-axle
distances.

The aim of this research is to construct a WIM data model of
heavy vehicles (total weight above 34 kN) from data obtained in the
available WIM stations. In order to generate synthetic data statistically
representative of the real observations. The model is based on a type
of Bayesian Network (BN) called non-parametric Bayesian Network
(NPBN). Unlike previous studies, it provides data that describes all the
main variables of a WIM data set i.e. vehicle type, gross vehicle weight,
individual axle loads, total vehicle length, and inter-axle distances.
Furthermore, to make use of the model more convenient, we developed
a graphical user interface (GUI) of the Dutch available motorway WIM
locations.

In Section 2, the main definitions and concepts of NPBNs used in the
work are presented. In Section 3, we present the framework for gener-
ating synthetic WIM data. Observations of six Dutch WIM locations by
clustering the vehicle types by vehicle configuration are used. Section 4
present the main results and the validation of the NPBN models. Next,
in Section 5, two case studies of the framework are presented: an NPBN
quantified with WIM observations collected in Rotterdam city in the
Netherlands by classifying vehicle types according to the number of
axles, and an NPBN quantified with data collected in Araranguá city
in Brazil by clustering vehicle types by classification WIM codes. As
will be seen later, the validation of the methodology is performed with
the Dutch case (Section 3.1) while the cases in Section 5 are presented
as examples of the use of the methodology. Section 6 presents the
developed GUI together with one possible application of the model
when WIM data is not available. Finally, the conclusions are drawn in
Section 7.

2. Non-parametric Bayesian networks

When modelling multivariate probability distributions, Bayesian
Networks (BNs) are considered effective tools (Pearl, 1988). BNs are
directed acyclic graphs (DAG), consisting of nodes and arcs. The nodes
of BNs represent random variables and the arcs represent the prob-
abilistic relations between these variables (Neil et al., 2000). A BN
encodes the probability density or mass function on a set of variables
𝑿 =

{

𝑋1,… , 𝑋𝑛
}

by specifying a set of conditional independence
tatements in the DAG associated with a set of conditional probability
unctions (Oswaldo and M., 2015). A major overview of applications
f BNs may be found in Marcot (2017), Marcot and Penman (2019)
nd Weber et al. (2012).

One type of BN which has the advantage of managing hundreds of
ariables in a rapid manner is the non-parametric Bayesian network
NPBN). The NPBN methodology proposes a technique for dealing with
ny one-dimensional marginal distribution (as long as it is invertible)
hile inducing the dependence structure given by the DAG of the
N using one parameter copulas for which zero correlation entails

ndependence (Hanea et al., 2015). The theory of NPBNs introduced
n Kurowicka and Cooke (2005) is based around bivariate copulas.
istributions are assigned to the nodes and one (conditional) param-
ter copulas to the arcs of the DAG (Joe, 1997). Copulas are a class
f bivariate distributions whose marginals are uniform (Genest and
acKay, 1986). The copula of two continuous random variables 𝑋𝑖

nd 𝑋𝑗 with 𝑖 ≠ 𝑗 is the function 𝐶 such that their joint distribution
can be written according to Eq. (1) (Oswaldo and M., 2015). For
one parameter copula families, the vector of parameters 𝜽 in Eq. (1)
provides a relationship between the copula and measures of association
namely rank correlation (𝑟) which assess the strength of the monotonic
relationship between variables.

𝐹𝑋𝑖 ,𝑋𝑗
(𝑋𝑖, 𝑋𝑗 ) = 𝐶𝜃

[

𝐹𝑋𝑖
(𝑋𝑖), 𝐹𝑋𝑗

(𝑋𝑗 )
]

(1)

In an NPBN, different bivariate copulas parameterized by rank
correlation so that zero correlation implies independence, can in prin-
2

ciple be used for different arcs. For large models, the usage of the
Gaussian copula grants computational advantages. In fact, this is the
main advantage of the choice of Gaussian copulas in our framework.
In Morales-Nápoles and Steenbergen (2014) the authors have provided
evidence for accepting the Gaussian copula as a valid underlying model
for WIM data when compared with the Gumbel and Clayton copulas.
As will be seen later in Section 4, the choice of the Gaussian copula still
renders valid results for applications of the proposed model. Hence,
to simplify and reduce the joint distribution sampling, the Gaussian
copula is assumed. The Gaussian copula, with 𝜌 as a parameter is given
by Eq. (2). Where 𝛷𝜌 is the bivariate standard normal cumulative distri-
bution function with product-moment correlation 𝜌 and 𝛷−1 the inverse
f the one dimensional (1D) standard normal distribution function. A
orrelation equal to 0 implies independence for the Gaussian copula.

𝜌(𝑢, 𝑣) = 𝛷𝜌[𝛷−1(𝑢), 𝛷−1(𝑣)]; (𝑢, 𝑣) ∈ [0,1]2 (2)

The dependence measure of interest is the conditional rank corre-
ation due to its relationship with conditional copulas. The conditional
ank correlations of 𝑋𝑖 and 𝑋𝑗 given 𝑋𝑘 = 𝑥𝑘,… , 𝑋𝑧 = 𝑥𝑧 are (Oswaldo

and M., 2015):

𝑟(𝑋𝑖, 𝑋𝑗 ∣ 𝑋𝑘 = 𝑥𝑘,… , 𝑋𝑧 = 𝑥𝑧) = 𝑟(𝑋𝑖, 𝑋𝑗 ) (3)

where 𝑋𝑖 and 𝑋𝑗 have the conditional distribution of 𝑋𝑖, 𝑋𝑗 ∣ 𝑋𝑘 =
𝑘,… , 𝑋𝑧 = 𝑥𝑧. Mathematical details can be found in Hanea et al.
2006).

The relationship between the parameter 𝜌 and the Gaussian copula
orrelation 𝑟 is given by Eq. (4) (Pearson, 1907). Partial correlations
an be computed from correlations with the recursive Eq. (5) (Yule
nd Kendall, 1951). Partial correlations are equal to conditional cor-
elations for the joint normal distribution. To compute the correlation
atrix of the standard normal transformation of 𝐗 by using Eq. (5) and

he conditional independence statements of the BN. Rank correlation
ould be converted to partial correlations with Eq. (4).

(𝑋, 𝑌 ) = 2𝑠𝑖𝑛
(𝜋

6 𝑟(𝑋, 𝑌 )
)

(4)

𝜌1,2;3,…,𝑚 =
𝜌1,2;4,…,𝑚 − (𝜌1,3;4,…,𝑚)(𝜌2,3;4,…,𝑚)
√

(1 − 𝜌2
1,3;4,…,𝑚)(1 − 𝜌2

2,3;4,…,𝑚)
(5)

In an NPBN, the immediate precursor of a node 𝑋𝑖 are called
arents denoted by 𝑝𝑎(𝑋𝑖). For each variable 𝑋𝑖 with 𝑚-parents, 𝑋1 =
𝑎1(𝑋𝑖),… , 𝑋𝑘 = 𝑝𝑎𝑚(𝑋𝑖), associate the arc 𝑝𝑎𝑗 (𝑋𝑖) → 𝑋𝑖 with the rank
orrelation. The assignment is empty if 𝑝𝑎(𝑋𝑖) = ∅.

[𝑋𝑖, 𝑝𝑎𝑗 (𝑋𝑖)], 𝑗 = 1
[𝑋𝑖, 𝑝𝑎𝑗 (𝑋𝑖)|𝑝𝑎1(𝑋𝑖),… , 𝑝𝑎𝑗−1(𝑋𝑖)], 𝑗 = 2,… , 𝑚

(6)

In general, Hanea et al. (2015) show that given: (i) a DAG with 𝑚
odes specifying conditional independence relationships in an NPBN;
ii) 𝑚 random variables 𝑋1,… , 𝑋𝑚, assigned to the nodes, with invert-
ble distribution functions 𝐹1,… , 𝐹𝑚; (iii) the (non-unique) specifica-
ion Eq. (6) of conditional rank correlations on the arcs of the NPBN;
iv) a copula realizing all correlations ∈ (−1,1) for which correlation

entails independence; the joint distribution of the 𝑚 variables is
niquely determined. The joint distribution satisfies the characteristic
actorization Eq. (7) and the conditional rank correlations in Eq. (6) are
lgebraically independent.

(𝑋𝑖,… , 𝑋𝑚) =
𝑛
∏

𝑖=1
𝑓𝑋𝑖|𝑝𝑎(𝑋𝑖) (7)

The following criterion are established in order to read conditional
ndependence statements of the graph: (i) 𝑋1 is not marginally inde-
endent of 𝑋3 (𝑋1 ̸⟂ 𝑋3) i.e. 𝑋1 → 𝑋2 → 𝑋3 , (ii) 𝑋1 and 𝑋3 are
onditionally independent given 𝑋2 (𝑋1 ⟂ 𝑋3 ∣ 𝑋2) i.e. 𝑋1 ← 𝑋2 →

𝑋3 and (iii) 𝑋1 and 𝑋3 are not conditionally independent given 𝑋2

(𝑋 ̸⟂ 𝑋 ∣ 𝑋 ) i.e 𝑋 → 𝑋 ← 𝑋 . In Pearl (1988), Hanea et al.
1 3 2 1 2 3
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Fig. 1. Framework for build the NPBN and generate WIM samples.
(2006) more details and a complete discussion of the semantics of a
BN is presented.

In order to find a given conditional distribution, the conditional
distribution on the standard normal transformation of 𝐗 is calcu-
lated. Then, by using the inverse distribution function of each one-
dimensional (1-D) margin, the margins are transformed back to their
original units. For a complete treatment of the NPBN framework the
reader is referred to Hanea et al. (2015) and references therein. Now
that the concepts of the NPBN used in this work have been introduced,
the steps for building the network of interest will be presented.

3. Framework for generating synthetic WIM data

In this section, the methodology to generate synthetic WIM data
through Non-parametric Bayesian Networks is presented. Fig. 1 shows
the whole framework divided into four categories: WIM data, One-
dimensional marginal distributions, dependence structure and NPBN
output and validation.

First, a period of WIM observations is obtained. The data collected
through WIM system includes type of vehicle, road and direction,
vehicle length [cm], total vehicular weight [kN], one observation per
axle load [kN], distance from vehicle front to first axle [cm], and
one observation per inter-axle distance [cm]. Filters are applied to the
data in order to detect and exclude unreasonable measurements or
possible errors of the WIM system’s vehicle classification algorithm.
Then, vehicle types are created either by clustering vehicles based
on the number of axles, body configuration (trailer, semi-trailer, bus,
single unit, etc.) or vehicle classification according to the classification
code of the WIM system (this will be further discussed in Section 3.1).
A 1-D probability distribution is fitted for each axle load and inter-axle
distances of the created vehicle types (Section 3.2). Next, the depen-
dence structure of the WIM data is modelled through a NPBN in which
the nodes represent the individual axle loads and individual inter-
axle distances and the arcs represent probabilistic dependence between
connected nodes (Section 3.3). Once the model has been adequately
quantified, a sample of a size similar to the WIM observations in the
analysed period is generated by the model. Then, filters are applied to
the samples to leave out non-heavy vehicles and unreasonable values.
Finally, the outcome is compared statistically with respect to the WIM
data (Section 4). Each step within the framework is detailed next.
3

3.1. Weigh In Motion data

According to Vrouwenvelder and Waarts (1993), a measurement
period of about one month outside public holidays in the Netherlands
is representative of the traffic load distribution in highways. Thus,
WIM data corresponding to April 2013 for three Dutch locations in
both the right (-R) and the left (-L) driving directions, were used. The
measurements were taken in highways A12 (km 42) Woerden, A15 (km
92) Gorinchem and A16 (km 41) Gravendeel. Thus, in this paper, when
referring for example to data from the A15 in the right direction we will
write A15-R and similarly for all other data sources.

The number of observations available ranged from 124 347 in the
A15-L to 220 840 in the A16-L. Moreover, previous research shows that
WIM observations have an amount of incorrect measurements (Gill-
mann, 1992; Kentucky Trasportation Center, 2013; Quinley, 2010). In
this paper, twenty seven filter criteria were applied as presented in
Table A.1, described in Kreslin et al. (2016) and And and Vervuurt
(2015). Furthermore, Table 1 shows an overview of the number of WIM
registrations that were removed based on the filtering criteria.

Once the filtering procedure is completed, a total of 264 different
vehicle codes were observed in the April 2013 WIM data with five
main body configurations: Buses (B), Tractor–Semitrailer–Trailer (R),
Tractor–Semitrailer (T), Single-unit multi-axle vehicle and/or Single
unit multi-axle vehicle–Semitrailer (V) and Others vehicles (O). Fig. A.1
shows an overview of the vehicle codes observed in the WIM mea-
surements. The codes used in the WIM system consist of letters and
digits that define the sequence of axle groups. For example, a seven
axle vehicle with the configuration Tractor–Semitrailer with one axle
at the front of the cabin and two at the rear and the rear semitrailer
with a quad is coded as T12O4. Notice that the letter O in the T12O4
code represent the semitrailer unit (oplegger in Dutch). Because of the
database size, it is not feasible to investigate the complete configuration
of axle loads for each vehicle. Therefore, 26 vehicle types were created.
These are presented in Table 2, grouped per vehicle configuration
and number of axles. Letters represent the vehicle configuration and
digits correspond to the number of axles. The complete table with all
vehicles categories in the WIM system is presented in Table A.2. It
may be observed that in the data corresponding to the A12-L highway
all vehicle types are present. However, for the other data sets, two
categories were excluded. This is the case of category O6 (according
to the notation in the second column of Table 2), for data sets A12-R,
A16-L, and A16-L and category O11 for data sets A15-L, A15-R, and
A16-R. Also, the resulting filtered data does not include vehicles with
more than eleven axles.
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Table 1
Percentage of filtered vehicles.

A12-L A12-R A15-L A15-R A16-L A16-R

Vehicles in the database 165 373 161 589 124 449 124 789 220 920 203 598
Vehicles after filter criteria 161 519 152 537 120 216 121 179 215 530 199 751
% of filtered vehicles 2,3% 5,6% 3,4% 2,9% 2,4% 1,9%
Table 2
Created vehicle types from most observed WIM observations.
Vehicle (𝑖) Type No. axles (𝑛𝑖) Code

1 B2 2 B11
2 B3 3 B111 B12
3 O3 3 O3
4 O4 4 O4
5 O5 5 O5
6 O6 6 O6
7 O8 8 O8
8 O9 9 O9
9 O10 10 O:
10 O11 11 O>
11 R5 5 R11111
12 R6 6 R111111 R11112 R11211 R1122
13 R7 7 R111121 R11113 R11221 R1123 R1222
14 R8 8 R112121 R12221 R1223
15 R9 9 R121221
16 T3 3 T11O1
17 T4 4 T11O4 T11O11 T12O1
18 T5 5 T11O3 T11O21 T11O111 T12O2 T12O11 T21O11
19 T6 6 T11O4 T11O1111 T12O3 T12O21 T12O111
20 T7 7 T12O4 T12O1111
21 V2 2 V11
22 V3 3 V11A1 V12 V21 V111
23 V4 4 V11A2 V11A11 V13 V22 V211 V1111
24 V5 5 V11A12 V12A2 V12A11
25 V6 6 V12A12 V22A2 V22V11
26 V7 7 V22A12
3.2. One-dimensional marginal distributions for individual axle load

Once the data are filtered and the vehicle types are created, for each
axle load, a one-dimensional marginal distribution is approximated
with a Gaussian Mixture (GM) (McNicholas and Murphy, 2008). Gaus-
sian Mixture distribution has been used in previous studies (Kim and
Song, 2019; Enright and O’Brien, 2013; Kim and Song, 2021) because of
its ability to approximate multi-modal distributions. These are typical
for individual axle loads in WIM data. A GM is a weighted sum of 𝐺

aussian densities (each one referred to as a component) expressed as
ollows:

(𝑥) =
𝐺
∑

𝑔=1
𝜋𝑔𝜙

(

𝑥 ∣ 𝜇𝑔 , 𝜎𝑔
)

(8)

here 𝑔 = 1,… , 𝐺, ∑𝑔 𝜋𝑔 = 1 are the mixture weights and 𝜙
(

𝑥 ∣ 𝜇𝑔 , 𝜎𝑔
)

are components of Gaussian densities with parameters 𝜇𝑔 and 𝜎𝑔 .
The expectation maximization (EM) algorithm (McLachlan, G. J.

and Peel, 2000) is used to fit the Gaussian Mixtures to the individual
axle load data per vehicle type. The relative goodness-of-fit Akaike
information criterion (AIC) (Akaike, 1974) is used to choose the best-
fitting Gaussian mixture distribution that describes individual axle
loads per vehicle type. The AIC score rewards models with high log-
likelihood while accounting for the number of parameters to prevent
over-fitting. The model with the lower AIC score is expected to have a
balance between its ability to fit the data and avoid over-fitting. As a
result, the number of components of the fitted distributions ranged from
four to seven. As observed in And and Vervuurt (2015), by adding more
components, the tail of the fitted distribution function is increasingly
dominated by individual observations in the tail of the distribution
which would result in overestimation of individual axle loads. A total
of 837 distributions were fitted for all locations. As an example, Fig. 2
shows the fitted GM distribution function for the vehicle type B3 in
4

highway A15-L and its parameters are presented in Table 3.
Although fitting a GM distribution to axle loads is an appropriate
approach, this is not the case for the inter-axle distances because, dif-
ferently to axle loads, there are a finite number of or vehicle lengths ac-
cording to vehicle category. Therefore, for each inter-axle distance and
vehicle length, we use the empirical cumulative distribution function
(ECDF) defined as:

𝐹𝑛(𝑥) =
1

𝑁 + 1

𝑁
∑

𝑖=1
𝐈
{

𝑋𝑖 ≤ 𝑥
}

(9)

where 𝐈 is the indicator function, namely 𝐈
{

𝑋𝑖 ≤ 𝑥
}

is one if 𝑋𝑖 ≤ 𝑥 and
zero otherwise. Now that the data to be used in our framework and the
1-D marginal distributions have been described, the characterization of
probabilistic dependence is presented.

3.3. Dependence: WIM NPBN

After the 1-D marginal distributions for the random variables were
selected, the dependence structure of the WIM observations was mod-
elled with a non-parametric Bayesian Network. A total of 26 submodels,
that correspond to each vehicle type are built from each of the six WIM
databases. Let 𝑖 = {1,2,3,… ,26} be a set of indices corresponding
to the 26 vehicle types, previously presented in Table 2, and 𝑛 a set
whose elements represent the number of axles of each vehicle type (see
Table 2). We use, 𝑋𝑖,𝑗 to denote the random variable representing the
𝑗th axle load. Notice that 𝑗 = {1,… , 𝑛𝑖} according to the 𝑖th vehicle
type. 𝑋𝑖,𝑛𝑖+1 denotes total vehicle length. Inter-axle distance per vehicle
type 𝑖 is denoted as 𝑋𝑖,𝑛𝑖+1+𝑗 . The first inter-axle distance per vehicle
type 𝑋𝑖,𝑛𝑖+2 corresponds to the distance between the front of the vehicle
and the first axle. Our data does not report the distance between the
last axle and the end of the vehicle and hence it is not modelled.

Notice that the model assumes that within axle load and inter-axle
distance nodes 𝑋𝑖,𝑗 ⟂ 𝑋𝑖,𝑗−2|𝑋𝑖,𝑗−1 for ∀𝑗, where 𝐴 ⟂ 𝐵|𝐶 means

that A and B are conditionally independent given C. This assumption
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Fig. 2. Gaussian mixture of 4 components fitted distribution function for vehicle type B3 in highway A15-L: (a) Axle 1 load [kN]; (b) Axle 2 load [kN]; (c) Axle 3 load [kN].
Table 3
Gausian mixture components for vehicle type B3 in highway A15-L.

Axle 1 load [kN] Axle 2 load [kN] Axle 3 load [kN]

Component 𝜇 𝜎 𝜋 Component 𝜇 𝜎 𝜋 Component 𝜇 𝜎 𝜋

1 52.40 5.89 0.506 1 98.67 8.52 0.400 1 51.25 15.47 0.197
2 66.13 16.76 0.115 2 70.51 2.92 0.074 2 42.08 5.90 0.358
3 68.37 7.01 0.347 3 82.98 3.92 0.260 3 50.66 7.67 0.441
4 39.79 12.26 0.032 4 95.89 21.78 0.266 4 99.61 2.45 0.003
indicates, for example, that for a particular intermediate axle (or inter-
mediate inter-axle distance), if the values of the loads (or distances) of
two axles adjacent to it were known, knowing the value of any other
axle load (or inter-axle distance) not adjacent to it would not update
the distribution of the particular intermediate axle load (or inter-axle
distance).

The total vehicle weight per vehicle type (𝑊𝑖) is given by Eq. (10).
The total vehicle length of the vehicle type 𝑖 is 𝐿𝑖 = 𝑋𝑖,𝑛𝑖+1. Notice that
𝑊𝑖 and 𝐿𝑖 are deterministic functions of vehicle type 𝑖. For example,
if 𝑖 = 2 (vehicle type B3 according to Table 2), then the total vehicle
weight of B3 is the sum of its individual axle loads, i.e. 𝑊2 = 𝑋2,1 +
𝑋2,2+𝑋2,3 and its total length is 𝐿2 = 𝑋2,4. Therefore, 𝑊 is the random
variable representing vehicle weight regardless of vehicle type. The
distribution of total vehicle weight is often used when investigating
bridge reliability for certain elements of the bridge. Similarly as for 𝑊 ,
𝐿 is a random variable representing vehicle length regardless of the
vehicle type. If the distance between the last axle and the end of the
vehicle were to be required, this could be computed per vehicle type
as: 𝑋𝑖,𝑛𝑖+1 −

∑

𝑖 𝑋𝑖,𝑛𝑖+1+𝑗 .

𝑊𝑖 =
𝑛𝑖
∑

𝑗=1
𝑋𝑖,𝑗 (10)

As an example, a representation of the NPBN for highway A15-L is
shown in Fig. 3. In this case, 𝑖 = {1,2,3,… ,25}. The model consists in
301 nodes and 436 arcs. The arcs represent correlations between axle
loads, between axle loads and total vehicle length and between inter
axle distance per vehicle type. The NPBN is implemented in MATLAB
2019b with the toolbox BANSHEE (Paprotny et al., 2020).
5

The unconditional rank correlations 𝑟(𝑋𝑖,𝑗 , 𝑋𝑖,𝑗−1), for all 𝑖 and for
𝑗 > 1, between individual axle loads and inter-axle distances per vehicle
type for the NPBN A15-L model can be found in Tables B.1 and B.2.
Notice that the correlation of the last axle load (𝑋𝑖,𝑛𝑖 ) to total vehicle
length (𝑋𝑖,𝑛𝑖+1 ) is also presented. No clear pattern regarding its size or
direction is observed across vehicle types. For example, as can be seen
in Table B.1, the correlation ranges between (roughly) −0.3 and 0.79.
A possible reason for this dependence is the design length of the vehicle
according to its purpose. For example longer vehicles might be able to
carry heavier loads in the last axle which could explain a correlation
as high as 0.79. As mentioned earlier this pattern is not clear across
vehicles types. Further investigation of this dependence could be a way
to improve the model here presented.

The corresponding conditional rank correlations matrices between
the random variables, as colour maps, for the six WIM locations can be
found in Figs. B.1 to B.3. After the detailing of three categories of the
framework, in the successive section, the results and validation of the
NPBN will be presented

4. Results

4.1. NPBN model output

The output of the model is a data set, similar to the WIM mea-
surements, with 26 columns. The first column corresponds to vehicle
type according to the notation in the second column of Table 2. The
second corresponds to total vehicle weight (𝑊 ) in kN. Columns 3 to
13 to individual axle loads (𝐴) in kN. The 14th column to total vehicle
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Fig. 3. BN model for A15-L highway of the WIM system in the Netherlands. The left side of the network represents the 𝑋𝑖,𝑗 axle loads. The right side represents the vehicle length
𝑋𝑖,𝑛𝑖+1

and the inter-axle distances 𝑋𝑖,𝑛𝑖+1+𝑗
.

Table 4
BN model data set output (1st to 13th column).

Type W A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

V5 303.97 64.74 93.89 48.20 43.53 53.60 NaN NaN NaN NaN NaN NaN
T4 222.66 58.27 59.71 51.35 53.33 NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
T3 176.42 59.62 51.29 65.51 NaN NaN NaN NaN NaN NaN NaN NaN
T6 283.02 58.14 57.4 50.20 35.99 43.29 38.01 NaN NaN NaN NaN NaN
Table 5
Table 4 (continued, 14th to last column).

L D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

18.95 1.73 5.21 1.37 6.51 1.42 NaN NaN NaN NaN NaN NaN
13.19 12.80 30.40 52.20 1.44 NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ...
16.77 20.40 43.50 68.30 NaN NaN NaN NaN NaN NaN NaN NaN
17.16 16.80 32.10 14.10 5.96 1.36 1.39 NaN NaN NaN NaN NaN
length (𝐿) in m, the 15th to the distance from vehicle front to the first
axle (𝐷1) in m and columns 16 to 25 to individual inter-axle distance
in m, i.e. distance from axle 1 to axle 2 (𝐷2), distance from axle 2 to
axle 3 (𝐷3) and so on. Not a number (NaN) strings are placed in fields
where no data is computed. An example of the output table is presented
in Tables 4 and 5. Note that the total vehicle weight is the sum of the
individual axle load observations.

4.2. Validation

To validate the model, one month period of random samples per
WIM location were generated from the corresponding NPBN model.
As an example, the observed and simulated 𝑊 and 𝐿 for the A15-L
highway (165 000 random samples) are presented in Fig. 4. Selected test
statistics, the Nash–Sutcliffe model Efficiency Coefficient (NSE) (Mc-
Cuen et al., 2006) and the Mean Absolute Error (MAE) (Willmott and
Matsuura, 2005) are summarized in Table 6. The NSE takes values in
(−∞,1], where 1 indicates a perfect fit while the MAE takes values
within [0,∞), where zero indicates a perfect fit.

To graphically assess if the generated synthetic data represent the
real WIM observations we use the scatter plot presented in Fig. 4.
The scatter plot was created by plotting the sorted WIM observations
against the sorted synthetic observations for a single simulation. If both
datasets are the same, one would expect to see the points lying in a
straight line. As can be seen, Fig. 4(a) shows that the model slightly un-
derestimates 𝑊 (for this particular realization) in the interval between
900 kN and 1100 kN and Fig. 4(b) shows a slight overestimation of 𝐿
6

Table 6
Test statistics of the model for different WIM locations on The
Netherlands.

Highway Total vehicle weight Total vehicle length

NSE MAE NSE MAE

A12-L 0.99 0.30 0.98 0.24
A12-R 0.99 0.37 0.98 0.25
A15-L 0.99 0.46 0.96 0.35
A15-R 0.99 0.48 0.97 0.30
A16-L 0.99 0.25 0.97 0.26
A16-R 0.99 0.32 0.97 0.25

in the interval between 12 m to 17 m. In general, as expected, for axle
loads, more deviations with respect to the original data are observed
in the tail of the distribution of total weight. Nevertheless, the model
provides an overall good fit for the data. This can also be observed in
the results of Table 6, where the values of NSE and MAE for 𝑊 and 𝐿
are close to 1 and 0 respectively. For example, for the A15-L highway,
the NSE and MAE values for 𝑊 are 0.99 and 0.46 respectively, while
for 𝐿 the corresponding values are 0.96 and 0.35.

Additionally, Figs. 5 and 6 shows the correlation matrix plot of
axle loads and inter-axle distances for both, the observed and simu-
lated data. The figures show the results of the most observed vehicle
type (T5) at the A15-L highway. Notice that, the correlations of the
simulated data between each axle load and the correlation between
each inter-axle distance differ slightly compared to the WIM data.



Transportation Research Interdisciplinary Perspectives 13 (2022) 100552M.A. Mendoza-Lugo et al.
Fig. 4. Observed and simulated: (a) total vehicle weight and total vehicle length (b) with a one month period.
Fig. 5. Comparison between axle loads generated by the NPBN model and the WIM data of the T5 vehicle type in highway A15-L: (a) Correlation matrix for the empirical data
standard transformed; (b) Correlation matrix for the synthetic data standard transformed.
Fig. 6. Comparison between inter axle distances generated by the NPBN model and the WIM data of the T5 vehicle type in highway A15-L: (a) Correlation matrix for the empirical
data standard transformed; (b) Correlation matrix for the synthetic data standard transformed.
This means that the NPBN model, under the assumption of the nor-
mal copula, correctly approximates the dependence structure of the
empirical data. Furthermore, Fig. 7 shows the exceedance probability
plots comparison of the observed and simulated variables, total vehicle
weight, and total vehicle length at the A15-L. As can be seen in Fig. 7,
the synthetic data shows similar behaviour as the observed data at the
tail of the distributions. Figs. B.4 to B.6 show same comparisons plots
for the other locations under study. Notice that this corresponds to a
single realization of our NPBN. Perfect agreement between the observed
data and every simulation is neither expected nor desired. Rather,
approximating the general traffic configuration is the aim of the model
especially for later use in investigation of infrastructure reliability.

Diverse engineering applications are often interested in determining
the extremes observations of the phenomena. Thus, accurate synthetic
data should be able to approximate them. Table 7 shows the load
7

corresponding to the heaviest (Max 𝑊 ) and longest vehicles (Max 𝐿) in
the original data. It shows their corresponding exceedance probability
and the value observed in one simulation of the NPBN for the same
probability of exceedance 𝑃 (𝑋 > 𝑥) = 1 − 𝑃 (𝑋 ≤ 𝑥). This is shown
for the six locations under investigation. For example, the heaviest
vehicle observed at A15-L has a total weight of 1085.89 kN with a
probability of exceedance of 𝑃 (𝑋 > 𝑥) ≈ 8.52𝐸−06 (as can be seen in
Fig. 7(a)). The total vehicle weight in the simulation with probability of
exceedance of 8.52𝐸−06 has a total weight of 1067.94 kN. This means
that the difference between observed and simulated Max 𝑊 at A15-L
is around 1.62%. Similarly, the longest vehicle observed at A15-L has a
total length of 27.58 m with 𝑃 (𝑋 > 𝑥) ≈ 8.52𝐸−06 (see Fig. 7(b)). The
total vehicle length in the simulation with probability of exceedance
of 8.52𝐸−06 has a total length of 27.57 m. The resulting difference
between observed and simulated Max 𝐿 at A15-L is around 0.4%.
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Fig. 7. Exceedance probability plots comparison between variables of interest (𝑊 and 𝐿) generated by the NPBN model and the WIM data in highway A15-L: (a) Total vehicle
weigh distribution [kN] for original data and data generated with NPBN model. (b) Total vehicle length distribution [m] for original data and data generated with NPBN model.
Table 7
Comparison of the simulated heaviest and largest vehicles.

Highway 𝑃 (𝑋 > 𝑥) Observed Simulated Difference % Observed Simulated Difference %

Max W [kN] Max W [kN] Max L [m] Max L [m]

A12-L 6.19E−06 1080.50 1090.01 0.88 29.62 29.05 1.92
A12-R 6.54E−06 1096.87 1068.43 2.59 29.36 28.31 3.58
A15-L 8.52E−06 1085.50 1067.94 1.62 27.58 27.57 0.04
A15-R 8.34E−06 1085.89 1075.20 0.98 29.11 28.93 0.62
A16-L 4.67E−06 1016.26 1007.44 0.87 28.36 28.26 0.35
A16-R 5.03E−06 1044.21 1044.80 0.06 27.23 27.47 0.88
T
C

l
m
e
c
N
c
q
m
d
F
t
p

p
f
c
𝑖
s
t
a
g
m
6
t
t

5

ccording to Table 7, highway A12-R has the biggest difference for
ax 𝑊 and Max 𝐿 with 2.59% and 3.58%, respectively. The smallest

ifference can be found in highway A16-R with 0.06% for Max 𝑊 and
.88% for Max 𝐿. Overall, the differences between the estimations from
he observed and simulated data are minor for all study locations. This
hows that the performance of the method and NPBN models can be
onsidered effective. In order to further investigate model validity we
erform split-sample analysis. In Appendix B we present a comparison
etween synthetic data generated by the model quantified with the
raining data set (80%) and the observations of the test data set (20%).
his is a commonly used split fraction in traffic analysis (see Rutherford
nd McNeill, 2011; Ravilla et al., 2021; Shahid et al., 2021, for exam-
le). The observations correspond to the A16-R highway. From these
esults, it is clear that the performance of the model is in agreement
ith the results of the NPBN model quantified with the unsplit data

et. In order to profit from all data available, further all our analysis is
erformed with models quantified with the full data set.

Next, to show the adaptability of the framework, two case studies
re presented in Section 5: (i) a NPBN quantified using data of a Dutch
ity road by classifying vehicle types according to the number of axles,
nd (ii) a NPBN using data of a Brazilian highway, classifying vehicle
ypes according to the automatically generated WIM vehicle codes.

. Case studies

.1. NPBN from Rotterdam city WIM data

One WIM station in the municipality of Rotterdam (South Holland,
he Netherlands) is considered for this case study. The WIM system
as located in the bridge Beukelsbrug in the S115 city route. The
bservations correspond to May 2013. In total, 14 different heavy
ehicle codes were observed in the S115 WIM data set. The WIM
ecorded vehicle codes are only numbers that define the sequence of
xle groups. These codes differ from the ones found in the WIM system
f the Dutch motorways described in Section 3.1. Hence, a similar
lassification as the one presented in Table 2 is not possible.

Moreover, Fig. 8 shows a comparison of the exceedance probability
lots of 𝑊 and 𝐿 between the Dutch WIM locations (A16-L with the
8

p

able 8
reated vehicle types WIM vehicle codes grouped by number of axles.
Vehicle (𝑖) Type No. axles (𝑛𝑖) Codes

1 2 axles vehicle 2 2 11
2 3 axles vehicle 3 12 21 111
3 4 axles vehicle 4 22 31 211 1111
4 5 axles vehicle 5 212 221 311 1211 2111

owest heavier 𝑊 observation and A12-R with the highest heavier 𝑊
easurement) and the S115 location. As can be seen in Fig. 8, as

xpected, heavier and longer vehicles circulate on the Dutch motorways
ompared to those circulating on regional roads. Consequently, the
PBN purposed in Section 3.2 does not meet the requirements to
ompute similar S115 city route WIM observations. Hence as a conse-
uence, a new model has to be quantified with data from Rotterdam. By
odifying the vehicle classification and then applying the framework
escribed in Section 3, the synthetic WIM data can be generated.
or this case study, vehicle types were created grouping them by
he number of axles. Therefore, four vehicle types were generated as
resented in Table 8.

A total of 14 Gaussian Mixtures (9 Gaussian mixtures of 4 com-
onents, 3 GM of 5 components and 2 GM of 6 components) were
itted to the axle loads choosing the best fit according to the AIC
riterion. Fig. 9 shows the NPBN model for the S115 WIM location with
= {1,2,… ,4}. The DAG consists of 34 nodes and 46 arcs. A random
ample with a size similar to the WIM observations was generated from
he NPBN model. The comparison between the S115 location WIM data
nd that generated by the model is presented in Fig. 10. The figure was
enerated with 6000 samples. As can be seen, Fig. 10(a) shows that the
odel slightly underestimates 𝑊 in the interval between 400 kN to
00 kN. In Fig. 10(b) no important deviations are presented. Overall,
he model approximates well the measured total vehicle weight and
otal vehicle length.

.2. NPBN from Araranguá, Brazil WIM data

For this case study, we analysed WIM data provided by the Trans-
ort and Logistics Laboratory (LabTrans) of the Santa Catarina Federal
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Fig. 8. Exceedance probability plots of: (a) Total vehicle weight [kN] and (b) Total vehicle length [m] for the locations: A12-R, A16-R, and S115.
Fig. 9. NPBN model for S115 road WIM location. The left side of the network represents the 𝑋𝑖,𝑗 axle loads. The right side represents the vehicle length 𝑋𝑖,𝑛𝑖+1
and the inter axle

distances 𝑋𝑖,𝑛𝑖+1+𝑗
.

Fig. 10. Comparison between variables of interest generated by the NPBN model and the WIM data in S115 location: (a) Total vehicle weigh distribution [kN] for original data
and data generated with the NPBN model, (b) Total vehicle length distribution [m] for original data and data generated with the NPBN model.
University (UFSC for its acronym in Portuguese). We use the automat-
ically determined WIM codes to assign vehicle types. The data was
gathered at the Federal Highway route BR-101 km 418, located in the
city of Araranguá in the South of Brazil. The measurements were taken
in April 2014. The data set has a total of 66 820 vehicles with total
vehicle weight above 34 kN.

Following the framework for generating WIM synthetic data, de-
scribed in Section 3, the WIM database is analysed. About 6.2% of the
observations were excluded and 45 different classification codes were
found with vehicles from 2 up to 8 axles. The codes were automatically
determined by the WIM system according to the Brazilian National
Department of Transport Infrastructure (DNIT for its acronym in Por-
tuguese) (Departamento Nacional De Infra-Estrutura De Transportes,
2012). As stated in Departamento Nacional De Infra-Estrutura De Trans-
portes (2012), the numbers in the code corresponding to the number
9

of axles and the letters to vehicle classification. To name a few: C is a
Tractor–Trailer, S a Tractor–Semitrailer, and I is a Trailer–Semitrailer
with an inter-axle distance of more than 2.4 m. Letter D corresponds
to a tandem (group of 2 axles), 𝑇 to a tridem (group of 3 axles), and Q
to a quad (group of 4 axles). For example, a 2C2 vehicle represents a
Tractor with 2 axles plus a 2 axles Trailer. The 45 classification codes
(or vehicle types) are presented in Table 9.

A total of 230 Gaussian Mixtures were fitted to one-dimensional
axle loads choosing the best fit according to the AIC criterion. Next,
the dependence structure can be constructed. Fig. 11 shows the NPBN
model for the BR-101 highway with 𝑖 = {1,2,… ,45}. The network
consists of 507 nodes and 735 arcs. Finally, a random sample with a size
similar to the WIM observations was generated from the NPBN model.
The comparison between the BR-101 WIM data and that generated by
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Table 9
Registered vehicle classification codes in the WIM data set of BR-101 highway. April 2014.
Vehicle (𝑖) Type No. axles (𝑛𝑖) Vehicle (𝑖) Type No. axles (𝑛𝑖) Vehicle (𝑖) Type No. axles (𝑛𝑖)

1 2C 2 16 3C 3 31 3S2 5
2 2C2 4 17 3C2 5 32 3S3 6
3 2CB 2 18 3C3 6 33 3T4 7
4 2D4 6 19 3D4 7 34 3V5 8
5 2DL 4 20 3DB 3 35 4C 4
6 2I1 5 21 3DL 5 36 4CD 4
7 2I2 4 22 3I1 6 37 4DB 4
8 2I3 5 23 3I2 5 38 4DT 7
9 2LD 5 24 3I3 6 39 4R2 6
10 2N3 5 25 3JD 6 40 Unknown 3 axles 3
11 2N4 6 26 3LD 6 41 Unknown 4 axles 4
12 2S1 3 27 3N3 6 42 Unknown 5 axles 5
13 2S2 4 28 3P5 8 43 Unknown 6 axles 6
14 2S3 5 29 3QD 7 44 Unknown 7 axles 7
15 3BC 3 30 3S1 4 45 Unknown 8 axles 8
Fig. 11. NPBN model for the 45 vehicle types of the WIM system in BR-101 highway located in Araranguá, Brazil. The left side of the network represents the 𝑋𝑖,𝑗 axle loads.
The right side represents the vehicle length 𝑋𝑖,𝑛𝑖+1

and the inter axle distances 𝑋𝑖,𝑛𝑖+1+𝑗
.

Fig. 12. Comparison between variables of interest generated by the NPBN model and the WIM data in BR-101 highway: (a) Total vehicle weight distribution [kN] for original
data and data generated with the NPBN model; (b) Total vehicle length distribution [m] for original data and data generated with the NPBN model.
the BN model is presented in Fig. 12. The figure was generated with
71 000 samples as described in Section 3.3.

As can be seen in Fig. 12(a), the exceedance probability computed
with synthetic observations shows a deviation in the interval of 750 kN
to 850 kN with respect to the one computed with WIM measurements.
Nevertheless, the model still approximates the maximum values of the
empirical distribution. The computed values for 𝐿 are quite similar
to the observed ones (see Fig. 12(b)). As has been noted, in this
case, the methodology for computing synthetic WIM observations also
approximates the data. The results are consistent for all studied WIM
locations. In the following section, a Graphical User Interface (GUI) for
10
the six Dutch WIM motorways locations will be presented. The GUI
illustrates a possible use of the model when WIM data is not available.
The GUI is used to compute synthetic WIM observations using data
collected through (for example) traffic counters as input.

6. Graphical User Interface application

When WIM data is not available due to the scarcity or absence
of proper equipment, the most utilized devices to collect traffic data
are the pneumatic road tubes. The change in air pressure within the
tube is measured as the vehicle’s wheels pass over the tube (Beyer,
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Table 10
Selected corresponding vehicle types.
SCT WIM NPBN No. vehicles Proportion

B2 B2 11 041 0.68000
C2 V2 3 576 0.22020
C3 V3 887 0.05462
C4 V4 2 0.00012
T2S2 T4 7 0.00043
T3S2 T5 523 0.03220
T3S3 T6 184 0.01133
T2S1R2 R5 2 0.00012
T2S2R2 R6 10 0.00062
T3S2R2 R7 3 0.00018
O9 O9 5 0.00031

Total 16 240 1

2015). Pneumatic road tubes are mainly used for vehicle classifications,
estimation of average daily traffic and estimation of direction of travel.
Consequently, the information regarding axle loads and inter-axle dis-
tances cannot be collected. Therefore, to have an insight over possible
axle loads and axle inter-distances we can use the NPBN described
in Section 3 with data obtained from pneumatic road tubes as input
i.e. vehicle classification and proportion of vehicle types.

We developed a simple stand-alone Graphical User Interface (GUI)
of the six Dutch motorways WIM locations model described in Sec-
tions 3.1 to 3.3. The GUI was implemented in Python, using the PyQt5
package for the Windows operative system. Notice that no fitting or
goodness of fit procedures are implemented in the GUI. Rather, the
results from the fitting and goodness-of-fit procedures and the created
vehicles types introduced in Section 3.2 are the core of the engine for
generating synthetic observations using the GUI.

To exemplify the use of the GUI, we use data from pneumatic road
tubes gathered in the low-speed lane of the Paseo Tollocan avenue
(Mexican federal highway 15) located in the city of Toluca Mexico.
The data was obtained in the last week of August 2014. The infor-
mation was provided by the Autonomous University of the State of
Mexico (UAEMex). Table 10 shows the number of observed vehicles
per vehicle type according to the vehicle classification of the Ministry
of Communications and Transport (SCT for its acronym in Spanish) of
Mexico (SCT, 2008). Table 10 shows also the NPBN equivalent vehicle
types (matched with the Mexican types according to their silhouette)
and the proportions of the registered vehicles by the pneumatic road
tubes .

Now, it is possible to enter the information in Table 10 into the GUI
(see Fig. 13) to compute the axle loads and inter-axle distances together
with total vehicle weight and total vehicle length. Thus, the information
obtained by the pneumatic road tubes is extended. The output of
the GUI are histograms (Fig. 14(a)) and exceedance cumulative plots
(Fig. 14(b)) of 𝑊 and 𝐿. Additionally, the computed observations can
be stored in a comma-separated value (CSV) file. For this example, to
compute the observations, we use the so-called ‘‘Hypothetical highway"
which is the mixture of the six available highways in the GUI. This
means that each computed observation comes from one randomly
selected NPBN Dutch motorway model. A quick user guide for the
NPBN WIM graphical user interface can be found in Appendix C.

As can be seen in Fig. 14, the maximum 𝑊 is around 600 kN and
the maximum 𝐿 is approximately 25m. The most frequent vehicles are
the ones with 100 kN to 150 kN and those with a total length of 11m
to 12.5m. Which correspond to Buses (B2) and single-unit two-axle
vehicles (V2) representing around 90% of the total observed vehicles.
Information to download the Graphical User Interface executable ap-
plication can be found in the supplementary material related to this
article.
11
Fig. 13. GUI Main window.

7. Conclusions

In this paper, we presented an improved methodology to compute
synthetic WIM observations of heavy vehicles through Non-parametric
Bayesian Networks (NPBNs). The model provides data that describes:
vehicle type, total (gross) vehicle weight, individual axle loads, total
vehicle length, and inter-axle distances. In total eight high dimensional
NPBNs with up to 507 nodes and 735 arcs were quantified. The first six
NPBNs were quantified with data corresponding to six WIM locations
of the motorway network of the Netherlands. 26 vehicle types were
created grouping the registered vehicles in the WIM data set per vehicle
configuration and per number of axles. The seventh NPBN was quanti-
fied using WIM observations collected in a city route in Rotterdam city,
The Netherlands. 4 vehicle types were created classifying vehicle types
by the number of axles. Data collected in Araranguá city in Brazil were
used to quantify the last NPBN. For this model, 45 vehicle types were
created according to the vehicle classification WIM codes.

The NPBN models properly simulate the dependence structure of
the empirical data. The correlations of the simulated data between axle
loads and inter-axle distances slightly deviate from the ones computed
with the WIM observations. Small differences in the exceedance prob-
abilities of the empirical and simulated data can be observed for the
total vehicle weight (𝑊 ) in the range of 800 kN to 1000 kN. For the
total vehicle length (𝐿), the models show a minor overestimation of the
exceedance probabilities of lengths in the interval between 12 m and
17 m. Nevertheless, the models provide a good fit for the data. Values of
NSE for 𝑊 and 𝐿 are in the interval of 0.97 to 0.99 and, while for MAE
are in the range of 0.24 to 0.48. The difference between the estimation
of the tail of the distributions, i.e., the heaviest vehicle (𝑀𝑎𝑥𝑊 ) and
longest vehicle(𝑀𝑎𝑥𝐿) for the same probability of exceedance 𝑃 (𝑋 >
𝑥) are around 0.04% and 3.6%. In general, it can be noted that all
presented NPBN models correctly approximate the WIM observations.
Additionally, to make use of the NPBN model more convenient, we
developed a Graphical User Interface (GUI) for the models of the six
Dutch WIM motorways. A potential application of the model when
WIM data is not available was presented by using the GUI to compute
synthetic WIM observations. We used data collected through traffic
counters, gathered in Toluca city in central Mexico, as input.

The framework for computing synthetic WIM observations here
presented can be applied in any WIM location, using site-specific WIM
records and site-specific vehicle types. The key aspect of the method-
ology is a good assessment of the vehicle types when constructing
the model. Usually, previous studies have constructed vehicle types
by grouping per number of axles. This vehicle classification works.
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Fig. 14. NPBN WIM GUI output: (a) 𝑊 and 𝐿 histograms. (b) 𝑊 and 𝐿 exceedance probability plots.
Table A.1
Filtered criteria described in Kreslin et al. (2016) and And and Vervuurt (2015).

Filter

1 Wheelbase length less than 1 m.
2 Wheelbase less than 30 m and first or last spacing above 10 m.
3 Wheelbase larger than 40 m.
4 Trucks with axle load below or equal to 0 tons.
5 Any axle weight larger than 40 tons.
6 Any axle weight larger than 15 tons and above 85% of gross vehicle weight.
7 Trucks with gross weight below or equal to 0 tons.
8 Sum of axle loads not within 50 kg of gross vehicle weight.
9 Truck with closely spaced, i.e. less or equal to 2 m first two axles,

one of which is larger than 10 tons and over 2.5 times heavier than other axle.
10 First spacing larger than 15 m.
11 Any spacing less than 0,4 m.
12 Miss match between number of axle spacings and number of axle loads.
13 Sum of axle spacings not within 50 mm of wheelbase.
14 Number of axles below or equal to 1.
15 First axle spacing in the interval of 10 m–15 m.
16 Each spacing in range of 0,4 m–0,7 m.
17 Each spacing in range of 0,7 m–1,0 m.
18 Each axle load in the interval of 25 tons–40 tons.
19 Each axle load below 0,5 tons.
20 Vehicles with same WIM identification number (ID).
21 Vehicles with a gross vehicle weight below 3,56 tons.
22 Vehicles with a gross vehicle weight above 112 tons.
23 Vehicles with a speed greater than 120 km/h.
24 The vehicles with gross vehicle weight larger than 71.3 tons and or

length bumper-to-bumper above than 25,5 m and axle spacing
above 12,5 m (data related to a combination of two vehicles).

25 Vehicles with inter axle distances less than 75 cm.
26 Duplicate records.
Fig. A.1. Most observed vehicle codes in the Dutch WIM measurements (April 2013).
12
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Table A.2
Created vehicle types from all observed Dutch WIM codes (April 2013).

Item Class Code

1 B2 B11 B2
2 B3 B111 B12 B3
3 O3 O3
4 O4 O4
5 O5 O5
6 O6 O6
7 O8 O8
8 O9 O9
9 O10 O=
10 O11 O>
11 R5 R11111 R1112 R1211 R122

12 R6 R111111 R11112 R11121 R1113 R11211 R1122 R12111
R1212 R123 R1311 R132

13 R7

R1111111 R111112 R111121 R11113 R111211 R11122 R112111
R124 R13111 R133 R2221 R223 R11311 R1123
R1132 R115 R121111 R12112 R1213 R12211 R1222
R11212 R11221

14 R8

R11111111 R1111112 R1111121 R111113 R111122 R1112111 R111212 R111221 R11123 R1121111 R112112 R112121
R11213 R112211 R11222 R1124 R113111 R11312 R11321 R1133 R1211111 R121112 R121121 R12113
R121211 R12122 R1214 R122111 R12212 R12221 R1223 R12311 R1232 R125 R131111 R1313
R13211 R1322 R134 R2123 R2213 R2222 R224

15 R9

R1112121 R1112211 R11124 R1121121 R112113 R1122111 R112221 R11223 R1125 R1134 R12111111 R1211112
R1211121 R121113 R1212111 R121212 R121221 R12123 R1221111 R122112 R122121 R12213 R1224 R123111
R12321 R1233 R126 R1314 R132111 R13221 R1323 R1332 R1341 R135 R1413 R144
R2214 R2223 R225 R234 R3312 R54

16 T3 T11O1
17 T4 T111O1 T11O11 T11O2 T12O1 T21O1 T2O2

18 T5 T111O11 T111O2 T11O111 T11O12 T11O21 T11O3
T12O11 T12O2 T21O11 T21O2 T2O21 T2O3 T3O2

19 T6 T111O111 T111O12 T111O21 T111O3 T11O1111 T11O112 T11O121 T11O13 T11O211 T11O22 T11O31 T11O4
T12O111 T12O12 T12O21 T12O3 T21O111 T21O12 T21O21 T21O3 T2O22 T2O4 T3O3

20 T7 T111O112 T111O121 T111O13 T111O22 T111O31 T111O4 T12O1111 T12O112 T12O121 T12O13 T12O211 T12O22
T12O31 T12O4 T21O211 T21O22 T21O4 T3O4

21 V2 V11
22 V3 V111 V11A1 V12 V21 V3
23 V4 V1111 V112 V11A11 V11A2 V121 V13 V211 V22 V4
24 V5 V111A11 V111A2 V11A111 V11A12 V12A11 V12A2 V21A11 V21A2

25 V6 V1111A11 V1111A2 V111A111 V111A12 V112A11 V112A2 V121A11 V12A111 V12A12 V12A21 V12A3 V13A11
V13A2 V211A11 V211A2 V21A12 V22A11 V22A2

26 V7 V1111A111 V1111A12 V1111A3 V112A111 V112A12 V112A21 V112A3 V121A111 V121A12 V121A3 V13A111 V13A12
V13A21 V13A3 V211A12 V211A3 V22A111 V22A12 V22A21 V22A3 V4A12
Table B.1
Rank correlation per vehicle type between axles A15-L location.

Vehicle (𝑖) Type No axles (𝑛𝑖) 𝑋𝑖,1 , 𝑋𝑖,2 𝑋𝑖,2 , 𝑋𝑖,3 𝑋𝑖,3 , 𝑋𝑖,4 𝑋𝑖,4 , 𝑋𝑖,5 𝑋𝑖,5 , 𝑋𝑖,6 𝑋𝑖,6 , 𝑋𝑖,7 𝑋𝑖,7 , 𝑋𝑖,8 𝑋𝑖,8 , 𝑋𝑖,9 𝑋𝑖,9 , 𝑋𝑖,10 𝑋𝑖,10 , 𝑋𝑖,11 𝑋𝑖,𝑛𝑖 , 𝑋𝑖,𝑛𝑖+1

1 B2 2 0.87 0.2
2 B3 3 0.81 0.85 0.31
3 O3 3 0.62 −0.1 0.09
4 O4 4 0.61 0.03 0.73 0.26
5 O5 5 0.64 0.06 0.66 0.73 0.04
6 O6 6 0.32 0.08 0.95 0.63 0.99 −0.28
7 O8 8 0.75 0.81 0.79 0.65 0.95 0.93 0.97 −0.19
8 O9 9 0.75 0.61 0.85 0.49 0.83 0.99 0.99 0.98 0.27
9 O10 10 0.73 0.4 0.49 0.71 0.71 0.98 0.99 0.99 0.98 −0.79
10 R5 5 0.7 0.22 0.6 0.92 −0.04
11 R6 6 0.01 0.16 0.94 0.47 0.96 0.43
12 R7 7 0.42 0.12 0.89 0.84 0.89 0.99 0.08
13 R8 8 0.48 0.41 0.66 0.76 0.8 0.87 0.94 −0.06
14 R9 9 0.48 0.66 0.62 0.37 0.98 0.85 0.99 0.99 −0.16
15 T3 3 0.45 0.54 0.36
16 T4 4 0.58 0.74 0.96 0.4
17 T5 5 0.77 0.82 0.99 0.98 0.05
18 T6 6 0.44 0.28 0.65 0.99 0.99 −0.2
19 T7 7 0.51 0.51 0.63 0.95 0.96 0.93 −0.21
20 V2 2 0.81 0.54
21 V3 3 0.59 0.6 −0.21
22 V4 4 0.42 0.42 0.9 −0.1
23 V5 5 0.56 0.59 0.59 0.93 0.12
24 V6 6 0.57 0.45 0.55 0.72 0.95 −0.05
25 V7 7 0.49 0.36 0.7 0.46 0.83 0.99 −0.15
13
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Table B.2
Rank correlation per vehicle type between inter axle distances for A15-L location.

Vehicle
(𝑖)

Type No axles
(𝑛𝑖)

𝑋𝑖,𝑛𝑖+1
,

𝑋𝑖,𝑛𝑖+1+1

𝑋𝑖,𝑛𝑖+1+1
,

𝑋𝑖,𝑛𝑖+1+2

𝑋𝑖,𝑛𝑖+1+2
,

𝑋𝑖,𝑛𝑖+1+3

𝑋𝑖,𝑛𝑖+1+3
,

𝑋𝑖,𝑛𝑖+1+4

𝑋𝑖,𝑛𝑖+1+4
,

𝑋𝑖,𝑛𝑖+1+5

𝑋𝑖,𝑛𝑖+1+5
,

𝑋𝑖,𝑛𝑖+1+6

𝑋𝑖,𝑛𝑖+1+6
,

𝑋𝑖,𝑛𝑖+1+7

𝑋𝑖,𝑛𝑖+1+7
,

𝑋𝑖,𝑛𝑖+1+8

𝑋𝑖,𝑛𝑖+1+8
,

𝑋𝑖,𝑛𝑖+1+9

𝑋𝑖,𝑛𝑖+1+9
,

𝑋𝑖,𝑛𝑖+1+10

1 B2 2 0.63 0.11
2 B3 3 0.28 −0.03 0.03
3 O3 3 0.04 0.11 −0.33
4 O4 4 0.06 0.15 0.37 0.13
5 O5 5 0.16 0.34 0.54 −0.39 −0.22
6 O6 6 0.48 0.18 −0.09 −0.28 −0.42 0.01
7 O8 8 0.09 0.14 −0.84 −0.49 −0.82 −0.39 −0.52 −0.23
8 O9 9 0.44 0.27 −0.77 −0.79 −0.82 −0.39 −0.28 −0.05 0.73
9 O10 10 0.6 0.77 0.18 0.32 −0.64 −0.58 −0.22 0.46 0.35 0.01
10 R5 5 0.15 −0.07 0.51 0.19 0.05
11 R6 6 −0.1 −0.23 −0.27 −0.31 −0.07 0.07
12 R7 7 0.16 0.03 −0.11 −0.68 −0.09 −0.75 0.33
13 R8 8 0.15 0 0.07 −0.54 −0.19 −0.71 −0.68 0.25
14 R9 9 0.23 0.18 −0.35 −0.49 −0.64 −0.49 −0.55 −0.41 0.32
15 T3 3 0.22 −0.16 −0.06
16 T4 4 0.27 −0.13 0.02 −0.25
17 T5 5 0.28 −0.21 −0.07 −0.18 0.25
18 T6 6 0.21 0.15 0.15 −0.22 −0.27 0.59
19 T7 7 −0.08 −0.16 0.41 −0.16 −0.26 −0.27 −0.06
20 V2 2 0.52 0.31
21 V3 3 0.18 0.07 −0.21
22 V4 4 0.28 0.17 0.75 −0.1
23 V5 5 0.41 0.15 −0.25 −0.39 −0.38
24 V6 6 0.29 0.03 −0.48 −0.41 −0.22 −0.15
25 V7 7 0.08 0.07 −0.71 −0.04 −0.06 −0.41 −0.19
Fig. B.1. Bayesian Network rank correlation matrix corresponding to the Dutch A12 highway. (a) left lane and (b) right lane.
Fig. B.2. Bayesian Network rank correlation matrix corresponding to the Dutch A15 highway. (a) left lane and (b) right lane.
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Fig. B.3. Bayesian Network rank correlation matrix corresponding to the Dutch A16 highway. (a) left lane and (b) right lane.

Fig. B.4. Comparison between variables of interest generated by the BN model and the WIM data in highway A15: (a) Total vehicle weight [kg] comparison right lane; (b) Total
vehicle length [cm] comparison right lane.

Fig. B.5. Comparison between variables of interest generated by the BN model and the WIM data in both driving directions of highway A12: (a) Total vehicle weight [t] comparison
left lane; (b) Total vehicle length [m] comparison left lane; (c) Total vehicle weight [t] comparison right lane; (d) Total vehicle length [m] comparison right lane.
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Fig. B.6. Comparison between variables of interest generated by the BN model and the WIM data in both driving directions of highway A16: (a) Total vehicle weight [t] comparison
left lane; (b) Total vehicle length [m] comparison left lane; (c) Total vehicle weight [t] comparison right lane; (d) Total vehicle length [t] comparison right lane.
Fig. B.7. Comparison between data generated by the trained model and test data set for (a) total vehicle weight and (b) total vehicle length (all vehicle types).
However, often more insight into the different vehicle types is required.
In these cases, a better classification can be performed, for example, by
using the WIM automatically generated codes or grouping vehicles by
body configuration. Our methodology allows the use of these classifi-
cations. Thus, more accurate data can be simulated. The next steps in
our research correspond to the application of the models here presented
in risk and reliability of individual infrastructure (bridges for example)
and road networks including multiple infrastructures.
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Fig. B.8. Comparison between data generated by the trained model and test data set: (a) total vehicle weight, (b) and (c) axle loads, (d) total vehicle length and (e) and (f)
inter-axle distances of the vehicle type B2.

Fig. C.1. Available vehicle types.
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Fig. C.2. GUI main window.

Appendix A. Traffic data

See Tables A.1 and A.2 and Fig. A.1.

Appendix B. NPBN model

Table B.1 shows the unconditional rank correlations 𝑟(𝑋𝑖,𝑗 , 𝑋𝑖,𝑗−1),
for all 𝑖 and 𝑗 > 1 (according to the notation in Section 3.3), between
individual axle loads per vehicle type for the NPBN A15-L model. The
first two columns indicate the vehicle type 𝑖 and the name, the third
column, the corresponding number of axles (𝑛𝑖). Every entry in the
next 10 columns indicates the rank correlations between the first and
second axle (𝑋𝑖,1, 𝑋𝑖,2), second and third (𝑋𝑖,2, 𝑋𝑖,3), and so on until
the 10th and 11th axle (𝑋𝑖,10, 𝑋𝑖,11) per vehicle type. The last column
indicates the rank correlations between the last vehicle axle and the
total vehicle length (𝑋𝑖,𝑛𝑖 , 𝑋𝑖,𝑛𝑖+1 ). As the number of axles increases, the
correlations are stronger in the axles close to the end of the vehicle. In
contrast, the correlation between 𝑋𝑖,𝑛𝑖 and 𝑋𝑖,𝑛𝑖+1 and, as is expected,
is low.

Similarly, Table B.2 shows the rank correlations between indi-
vidual inter-axle distances per vehicle type. The first two columns
indicate the vehicle type (𝑖) and the corresponding name, the third
column, the number of axles per vehicle type (𝑛𝑖). The fourth col-
umn indicates the rank correlation between the total vehicle length
and the first axle distance (𝑋𝑖,𝑛𝑖+1 , 𝑋𝑖,𝑛𝑖+1+1 ). The next 10 columns
indicate the rank correlations between the first and second axle dis-
tance (𝑋𝑖,𝑛𝑖+1+1 , 𝑋𝑖,𝑛𝑖+1+2 ), second and third (𝑋𝑖,𝑛𝑖+1+2 , 𝑋𝑖,𝑛𝑖+1+3 ), and so
on until the 10th and 11th axle (𝑋𝑖,𝑛𝑖+1+10 , 𝑋𝑖,𝑛𝑖+1+11 ) per vehicle type.
Notice that the correlations almost zero is observed in some cases.
The corresponding rank correlations matrices between the random
variables, as colour maps, for the six WIM locations can be found in
Figs. B.1 to B.3. After the detailing of three categories of the framework,
in the successive section the results and validation of the NPBN will be
discussed.

Figs. B.1 to B.3 shows the corresponding rank correlations matrices
between the random variables, as colour maps, for the six studied dutch
WIM locations described in Section 3.1.

Split data analysis
To further investigate model validity, we split the data set into an

80:20 ratio (80% of the data set goes into the training set and 20%
of the data set goes into the testing set). Fig. B.7 shows a compari-
son between synthetic data generated by the model quantified with
18
the training data set and the observations of the test data set. The
observations correspond to the A16-R highway. Additionally, Fig. B.8
shows the same comparison for the two-axle vehicle B2 of total vehicle
weight, total vehicle length, axle loads and inter-axle distances. As
can be seen in Figs. B.7 and B.8 the model is able to represent the
data points in the training data set to a good degree. Same type of
analysis was performed with data corresponding to other highways and
vehicle types in our database. The patterns are similar to those briefly
presented here. The model captures the main complexities of the data
set.

Appendix C. GUI quick user guide

The Graphical User Interface NPBN WIM computes synthetic WIM
data. The observations correspond to April 2013 for three Dutch lo-
cations in both the right (R) and the left (L) driving directions. The
measurements were taken in highways A12 (km 42) Woerden, A15
(km 92) Gorinchem, and A16 (km 41) Gravendeel. Additionally, a
hypothetical highway was created which is a combination of all six
available WIM locations in the model. Thus, each simulated vehicle
randomly chooses one of the locations to compute the synthetic data.
The 26 codes (vehicle types) used in the GUI WIM consist of a letter
and a number that define the number of axles. The letter represents
the vehicle configurations: Buses (B), Tractor–Semitrailer–Trailer (R),
Tractor–Semitrailer (T), Single-unit multi-axle vehicle and/or Single
unit multi-axle vehicle–Semitrailer (V) and Others vehicles (O). For ex-
ample, a seven-axle vehicle with the configuration Tractor–Semitrailer
is coded as T7. The vehicle types and the silhouette are presented in
Fig. C.1.

To compute the desired amount of WIM observations, in the main
window of the GUI (see Fig. C.2), the user can choose between the
26 vehicle types and the seven locations (A12-L, A12-R, A15-L, A15-R,
A16-L, A16-R, and Hypothetical). The option for choosing the desired
units is also available. Additionally, there are three main checkboxes:
(i) vehicle type subset, (ii) correlation matrix plot, and (iii) Bayesian
network plot. Which actions are described next:

(i) If the ‘‘Vehicle Type Subset" check box is selected. The user
needs to select at least 4 of the available 26 vehicle types and
provide their corresponding proportions. Otherwise, 26 vehicle
types will be used to generate synthetic observations.

(ii) If the ‘‘Correlation Matrix Plot" check box is selected. The rank
correlation matrix plot will be shown as colour map (Fig. C.3(a))

(iii) If the ‘‘Bayesian Network Plot" check box is selected. The Non-
Parametric Bayesian Network (NPBN) direct acyclic graph will
be shown (Fig. C.3(b)).

If the user chooses a Hypothetical highway no rank correlation
matrix plot nor NPBN direct acyclic graph will be shown. Once all the
values are set, by pressing the button ‘‘Compute’’ the synthetic WIM
observations will be generated. Plots of histograms and exceedance
probability plots of total weight (𝑊 ) and total vehicle length (𝐿) will
be generated automatically (see Fig. C.4). Finally, the computed data
can be stored into a comma-separated values (CSV) file by pressing the
button ‘‘Save CSV’’.

Appendix D. Graphical user interface executable application

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.trip.2022.100552.

https://doi.org/10.1016/j.trip.2022.100552
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Fig. C.3. (a) Rank correlation matrix colour map and (b) NPBN direct acyclic graph.
Fig. C.4. (a) Computed 𝑊 and 𝐿 histograms (b) Computed 𝑊 and 𝐿 exceedance probability plots.
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