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Abstract: While the potential impact of climate change mitigation measures is well documented
in building sciences literature, there are only relatively sparse studies focusing on the efficiency of
adaptation strategies. This paper aims to contribute to this topic by evaluating the extent to which the
design of a typical nearly Zero Energy Buildling (nZEB) house in Wallonia (Belgium), and its current
operation, could provide summer thermal comfort in a changing climate. Based on calibrated whole
building energy simulations, and on the integration of future climate data directly derived from a
high-resolution climate model, this study evaluates the potential evolution of overheating risks in
the living room and in the main bedroom of the house. Discussing the compliance with existing
overheating criteria, the study shows that the passive strategies currently deployed in the house
might not be sufficient to guarantee summer thermal comfort especially in the bedroom, and that
other strategies might be necessary in the future to limit the use of active cooling systems and curb
their environmental impacts. This study concludes that considering the potential of these strategies
to guarantee summer thermal comfort in a changing climate should be a priority for the design of
nZEB houses (and their related policies) also in temperate oceanic climates.

Keywords: nearly Zero Energy Buildings; climate change; summer thermal comfort; overheating

1. Introduction

“Warming of the climate system is unequivocal and the effects of anthropogenic green-
house gas emissions, together with those of other anthropogenic drivers, are extremely
likely to have been the dominant cause of the observed warming since the mid-20th cen-
tury”, the Intergovernmental Panel on Climate Change (IPCC) writes in its Fifth Assessment
Report (AR5) in 2014 [1]. In this context, a drastic reduction of greenhouse gas emissions is
needed to mitigate climate change effects. For the building sector, Wallonia (southern part
of Belgium), like many other European regions, aims to reach a carbon neutral building
stock by 2050 [2]. This implies achieving nearly Zero Energy Buildings (nZEB) standards
for all buildings, including existing ones [3]. According to the definition provided in the
European Directive 2010/31/EU on the energy performance of buildings [4], nZEB implies
that “the very low amount of energy required is covered to a very significant extent by
energy from renewable sources”.

In a region such as Wallonia, characterized by a temperate oceanic climate with pre-
dominant heating energy use (more than 70% of the energy used in residential buildings [4]),
nZEB performance requirements aim first to drastically reduce heating energy needs of
buildings. Practically, measures to increase the insulation and airtightness of the thermal
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envelope, mechanized hygienic ventilation (with heat exchanger) and the search for a
favourable orientation have become essential for the design of nZEBs in Wallonia.

Nevertheless, while undoubtedly allowing for winter comfort conditions with lower
energy costs [5], these construction techniques entail other risks of discomfort, and might
even require some adaptation/understanding from the part of the occupants [6–8]. Many
studies have, for example, shown that such techniques (modifying the thermal behaviour of
the building) tend to keep the warmth inside and, therefore, increase the risk of overheating,
even under the current climate [9].

Furthermore, there is strong consensus that the frequency and intensity of heatwaves
will increase in the future [1]. As a consequence, global warming will have a worsening
impact on overheating risk [10] in buildings, potentially compromising comfort, well-being
and health, particularly for more sensitive occupants [11].

Today, simple strategies (such as the use of solar shading and the opening of windows)
are often seen as key to prevent and guarantee summer thermal comfort in nZEB residential
buildings within the considered climatic zone [12]. The use of these passive strategies
(as they “do not use or use only small amounts of external energy”, in opposition to
active strategies that “use electrical or mechanical systems” [13]) is encouraged by Walloon
building standards [3]. It allows, for example, to comply with a specific requirement of
nZEB dwellings by lowering an overheating risk indicator [14].

In this context, a question emerges today in the building sector: will the implemen-
tation of these passive strategies—which still appears quite limited in practice [15]—be
sufficient to avoid in the future a generalised use of active cooling systems, with their energy
consumption [16] and environmental impacts [17], in a country with no such tradition?

While the potential impact of climate change mitigation measures is now well doc-
umented in the literature of building sciences, studies focusing on the efficiency of these
adaptation strategies are only at their infancy for a number of reasons: slow knowledge
transfer from climate modelling to building engineering science; stochastic behaviours
and uncertainties associated with future climates that induce large datasets and specific
methods to deal with; substantial computational time needed; etc. [16]. These studies are,
however, crucial to define proper building energy standards that will effectively reduce
energy demands without compromising thermal comfort. This paper aims to provide a
contribution to answer this question. Based on a real case study, it evaluates the extent
to which the design of a typical nZEB house in Wallonia, and its current operation, could
guarantee summer thermal comfort in a changing climate.

2. Method
2.1. Case Study

The case study is a real detached single-family house (Figure 1). In Wallonia, detached
houses represent the most frequent type (39%) of single-family housing (approximately
80% of the total housing stock [18]). The house, constructed in 2011, is composed of 2 levels
of around 83 m2 (net floor area) each and is occupied by 2 adults and 3 children (1 baby).
The main thermal characteristics of its building envelope are presented in Table 1.
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Table 1. Characteristics of the calibrated thermal model.

Characteristics Units Value Source of
Value *

Instrumental
Uncertainties
Considered

Used
Uncertainty for

Calibration

Construction type [-] Masonry 1 n.a.** n.a.

Number of occupants [-] 5 (<12 y/o: 3) 2 n.a. n.a.

Presence during working hours [-] Yes 2 n.a. n.a.

Net heated floor
area Total [m2] 166 3 n.a. n.a.

Living room [m2] 42.3 3 n.a. n.a.
Main bedroom [m2] 14.2 3 n.a. n.a.

Window-to-floor
surface ratio Total [%] 19.9 3 n.a. n.a.

Living room [%] 29.2 3 n.a. n.a.
Main bedroom [%] 7.9 3 n.a. n.a.

Mean U-value (windows included) [W/m2 K] 0.31 3
(Walls: 1) [−20%; +20%] −7%

Air change rate at 50 Pa (n50) [1/h] 1.1 1 [−5%; +5%] −5%

Mechanical ventilation airflow (Air
change rate) [1/h] 0.25 1 [−6%; +6%] −6%

Efficiency of heat recovery [%] 85 1 [−6.2%; +6.2%] −2%

Solar Heat Gain Coefficient (SHGC)
(windows) [-] 0.63 3 [−5%; +5%] −5%

Main windows orientation
(living room and main bedroom) [-] E 1 n.a. n.a.

Living room total SHGC
(glazing + internal shading) [-] 0.35 2, 3 [−5%; +5%] +5%

Bedroom total SHGC
(glazing + internal shading) [-] 0.35

(usually not used) 2, 3 [−5%; +5%] +5%

Internal gains (electrical) [W/m2] 2.2 (mean value) 1 [−3%; +3%] −3%

Additional thermal capacity of
zones (furniture) [kJ/K.m2] 26.5 4 [−100%; +100%] +100%

Windows opening for summer
thermal control (living room) [Ach]

3
(Cross

ventilation)
2 [−100%; +100%] +30%

Windows opening for summer
thermal control (bedroom) [Ach]

0 (Not usual)
(One side

ventilation)
2 [0; +6] +0%

Heating needs [kWh/m2·y] 17.8 1 [−6%; +6%] −6%

Dry bulb outdoor temperature
(annual mean) [◦C] 10.8 [−0.3; +0.3] −0.3

Radiation (Global Horizontal) [kWh/m2·y] 1035 1 [−10%; +10%] +0%

Setpoint temperature
(mean value September to May)

Living Room
[◦C] 20.1 1 [−0.3; +0.3] +0.3

Main Bedroom [◦C] 19.1 1 [−0.3; +0.3] +0.3

Primary energy use
(Mainly heating and domestic hot

water —PV production)
[kWh/m2·y] 61 kWh/m2·y 3 n.a. n.a.

* 1 On-site verification/measurements; 2 Questionnaire-based interviews; 3 Belgian EPBD calculation; 4 Literature.
** n.a.: not applicable.
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In terms of thermal performances, the house complies with the current requirements
for nZEB in Wallonia [19] relying on the definition provided in the European Directive
2010/31/EU on the energy performance of buildings [20]. These requirements imply a
primary energy use of a maximum 85 kWh/m2·year (mainly including heating, domestic
hot water consumption as well as on site electricity production, here supplied by pho-
tovoltaics cells covering the roof). The nZEB standard also requires compliance with a
simplified overheating risk indicator based on a static thermal calculation under the current
climate [14].

Following an initial measurement of its main characteristics, the performance of the
house has been monitored during one full year (2016), including: air temperatures, elec-
tricity use (internal gains), heating demands, airflows induced by mechanical ventilation,
efficiency of the heat recovery system, U values of the walls and airtightness. Some weather
data have also been monitored on site (dry bulb temperature and relative humidity) and
complemented by data from the Royal Meteorological Institute of Belgium (RMI) (radia-
tion, cloud cover, etc.). The characteristics of the house presented in Table 1 derive, thus,
from on-site verifications, interviews with the occupants (e.g., about windows opening
behaviours) and calculations from the Walloon EPBD (Energy Performance of Buildings)
tool [19]. In the framework of this study, two main rooms were analysed: the living room
(Z1) and the main bedroom (Z7). A description of their spatial characteristics is included in
Table 1 and illustrated in Figures 1 and 2.
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Figure 2. Plans of the house with indication of the considered thermal zones (Z1: living room, Z7:
main bedroom). (a) Floor plan. (b) First floor.

Based on the behaviours reported by the occupants, the closure of the white internal
curtain to protect from solar radiation and the opening of windows to dissipate the heat in
the living room have been integrated in the thermal model (except during the periods of
absence of the occupants). According to the occupants, no such strategies were regularly
applied in the main bedroom and, therefore, they have not been integrated for this room
in the thermal model. Globally, no (severe) overheating problems have been measured
during the year 2016. The house complied with all the summer thermal comfort criteria
(see Section 2.4) defined by the Chartered Institution of Building Services Engineers (CIBSE)
(UK), even if the occupants perceived the bedroom temperature in summer as slightly too
hot. The methodologies implemented for interviews and data collection are described in
more detail in a previous publication [21].

The house is located in a suburban area of Namur (the capital city of Wallonia),
in the city of Erpent in the southern part of Belgium (50◦ North) (see Figure 3) and is
exposed to a temperate oceanic climate (Cfb zone according to the Köppen–Geiger climate
classification system [22]). Section 2.3 presents an overview of the current and potential
future characteristics of this climate.
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2.2. Calibrated Thermal Model

A whole building energy simulation of the house has been carried out (Figure 1)
using the TRNsys18 simulation engine [24]. In order to ensure a realistic evaluation of the
indoor summer thermal conditions, a calibration process of the model was performed. The
calibration consisted in two main steps. First, measured values (thermal properties, weather
data, etc.) (cf. Table 1) were introduced in the model (=base model). Then, a variation of
the entries data within the range of their estimated instrumental uncertainties (obtained
from manufacturers) was performed in order to minimise the deviation of simulated
temperatures (hourly values) from measured values according to the widely used (see for
example [25]) indicators defined by ASHRAE guideline 14 [26]. These indicators are based
on the Coefficient of Variation of the Root Mean-Square Error (CV-RMSE) and the Mean
Bias Error (MBE). This last calibration step was performed using an optimisation algorithm
(Particle Swarm Optimization (PSO) [27]) and has involved more than 900 simulations.
Table 2 presents the compliance of the final model with ASHRAE indicators. The last
column of Table 1 illustrates in detail the related entries data.

Table 2. Final model compliance with calibration criteria defined in ASHRAE guideline 14.

Living Room
Temperature

Bedroom
Temperature Calibration Criteria

NMBE [%] 0.64 0.68 ±10
CV-RMSE [%] 3.39 3.41 30

Figure 4 illustrates the capability of the calibrated model to estimate the time exceeding
25 ◦C in the living room and in the main bedroom compared to the values that were
measured in 2016. The year 2016 can be considered broadly in line with the average of the
last 30 years, both in terms of solar radiation and of temperatures [28] (for an overview of
climatic historical data, see Figure 5).
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Figure 5. Monthly mean dry bulb temperature evolution under historical, RCP2.6 (2071–2100) and
RCP8.5 (2071–2011) scenarios according to ALARO Model [29].

2.3. Climate Change Model

Data for future and historical (here intended as similar to current) climatic conditions
(temperature, humidity, radiation, wind speed and direction, etc.) have been directly
derived from high-resolution climate modelling. These models, dynamically downscaled
from Global Climate Models (GCMs), consider local climate variations and anomalies and
allow a detailed temporal and geographical resolution (horizontal grid spacing <4 km).
Compared to the classical use of morphed weather data [30], this method allows for
accounting the variability in occurrence and intensity of heatwaves phenomena throughout
the years. Today, these data based on the ALARO model are available in Belgium for
different representative concentration pathways (RCP) [29]. For the purpose of this paper,
two future climates scenarios—Representative Concentration Pathway (RCP) 2.6 and 8.5 —
for the period 2071–2100 were considered and compared to historical data (1976–2005) (also
derived from the same climate model) for the city of Uccle (the main meteorological station
of Belgium, located in the southern part of Brussels, about 50 km from Namur). These two
RCPs scenarios were chosen since they represent opposite (and extreme) perspectives with
respect to the deployment of mitigation strategies and, consequently, the severity of induced
climate change: a stringent mitigation scenario (RCP2.6) that would keep global warming
likely below 2 ◦C above pre-industrial temperatures, which is in line with the objectives
of the Paris agreement [31], and a very high Green House Gas (GHG) emissions scenario
(RCP 8.5), leading to an increase of global mean temperature comprised between 2.6 ◦C
to 4.8 ◦C (95% confidence interval) by the end of the 21st century (2081–2100) relative to
1986–2005 [1]. Figure 5 shows the monthly mean outdoor temperature evolution according



Energies 2022, 15, 2410 7 of 13

to these scenarios compared to the historical one (yearly global horizontal radiation remains
stable—around 1040 kWh/m2·year—under these different scenarios).

As mentioned in the introduction, there is wide consensus that these scenarios will
impact the frequency and the duration of heat waves [1]. In Belgium, heatwaves are
defined as a period of minimum 5 consecutive days with air temperature reaching at least
25 ◦C and more than 30 ◦C for at least 3 days [32]. Figure 6 presents the evolution of
the number of heat waves per year as well as the number of days reaching 25 ◦C and
30 ◦C according to RCP 2.6 and 8.5 for the end of the century (2071–2100) compared to
the historical period (1976–2005) for Uccle. A standard boxplot representation has been
used to illustrate the distribution (min, 25th percentile, median, 75th percentile, max) of the
encountered values for the considered period. Median values have also been specified to
increase the readability of these graphs. These sets of data, covering a period of 30 years
each, were directly introduced in the TRNsys simulation software with an hourly resolution
(using an IWEC format [33]) in order to provide a detailed overview of their implications
on the building indoor climate.
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Uccle (Belgium).

2.4. Summer Thermal Comfort Evaluation

The evaluation of summer thermal comfort has been conducted according to CIBSE
Technical Memoranda TM52 [34] and TM59 [35], as they offer a comprehensive and widely-
used method for overheating risk analysis in buildings (see for example [36]). The first
document (TM52) presents three criteria based on the frequency, duration and intensity of
the deviations of operative temperature from the EN15251 comfort categories [37]: Adaptive
hours of exceedance (Tmax + 1); Daily weighted exceedance (We) and Upper limit temperature
(Tupp) [34]. In the context of climate change scenarios, these criteria—based on the theory
of adaptive comfort—seem particularly appropriate as they already imply a physiological,
behavioural and psychological adaptive capacity of humans [38,39]. In homes, CIBSE
only imposes compliance with the first criterion (Adaptive hours of exceedance) for living
rooms, kitchens, and bedrooms [35]. Nevertheless, all these criteria have been considered
in this study with respect to the limit of the comfort Category II [37], recommended for new
buildings and major refurbishments in the absence of very sensitive and fragile persons [40].
For bedrooms, a criterion based on an absolute threshold of 26 ◦C was also considered as
suggested by TM59 [35]. This static criterion is based on the fact that thermal adaptation
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is considerably reduced during sleep [41]. Table 3 illustrates in detail the application of
these criteria. In accordance with TM59, occupied hours were considered to be from 7 am
to 10 pm for the living room and from 10 pm to 7 am for the bedroom [35].

Table 3. Criteria for summer thermal comfort evaluation.

Name Thresholds Benchmark
(Maximum) Source

Static hours
of exceedance Top > 26 ◦C

1% of annual occupied
hours (10 p.m.–7 a.m.)

(bedrooms only)
TM59, CIBSE 2017

Adaptive hours
of exceedance

Top − Tmax > 1 K
Tmax = EN15251 Cat II upp.

limit

3% of occupied hours
(May to September

inclusive)

TM52, CIBSE 2013
TM59, CIBSE 2017

Daily weighted
exceedance

We = ∑he × WF
WF = max (0; Top − Tmax)
he: corresponding time [h]

6 in any one day
during occupied hours TM52, CIBSE 2013

Upper limit
temperature Tupp = Tmax + 4 K

Absolute maximum
value during occupied

hours
TM52, CIBSE 2013

3. Results

Figures 7 and 8 present the summer thermal comfort evaluation under historical
(1976–2005), RCP2.6 (2071–2100) and RCP8.5 (2071–2100) scenarios resulting from the
application of the criteria presented in Table 3 for the living room (Figure 7) and for the
main bedroom (Figure 8) of the house.
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the bedroom.

For the living room, Figure 7 shows that the Adaptive hours of exceedance criteria (not
more than 3% of occupied hours where Top − Tmax > 1 K) is met under the three climatic
scenarios. The Daily weighted exceedance criterion is met for 75% of years between 1976 and
2005, but this result could drop under 50% of the years between 2071–2100 (38% under
RCP8.5 scenario). Moreover, this criterion is not met for more than 2 days per year for half
of the years between 2071 and 2100 under the RCP8.5, while it is only exceeded once per
year in 25% of the years between 1976 and 2005. The Upper limit temperature criteria is only
exceeded under the RCP8.5 scenario (three times and up to 6 K). For the main bedroom,
Figure 8 shows that the Static hours of exceedance criterion (max 1% of occupied hours per
year where Top > 26 ◦C) is only exceeded 25% of the years during the historical period.
The non-compliance with this criterion could, however, become systematic: 25 years are
exceeding this criterion over the period 2071–2100 under the RCP8.5 scenario. On the
contrary, the Adaptive hours of exceedance criterion (not more than 3% of occupied hours
where Top − Tmax > 1 K) is exceeded only one year out of four under this scenario (while it
is met under the other scenarios). The median value of the number of days exceeding the
Daily weighted exceedance reaches 4 between 2071–2100 (under RCP8.5 scenario), while it is 0
for the historical period. The Upper limit temperature criterion is not frequently exceeded but
it reaches higher frequencies per year under the RCP8.5 scenario (up to 39 times per year).

4. Discussion

As shown in Figure 6, days over 25 ◦C and heat waves will become quite common
in the future in Belgium: around 27 days reaching 25 ◦C and one heatwave (up to four)
on average per year should be excepted under the RCP8.5 scenario. Conversely, these
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phenomena were very exceptional in the historical data (only one year with heatwaves and
a mean value of less than 11 days per year reaching 25 ◦C).

The analysis of the historical period shows that the implementation of passive strate-
gies in the building (e.g., internal shading devices and natural cooling by windows opening
only practiced in the living room) generally allows compliance with the CIBSE overheating
criteria. It should also be remembered here that the configuration of the building analysed
for this study (east oriented, limited glazing area, suburban area, etc.) allowed to reduce
the occurrence of overheating phenomena.

The evolution of the climate could have, however, a clear impact on future indoor
climate conditions, as shown in Figures 7 and 8. The severity of this evolution depends
on the criterion and on the studied room. In this way, the results confirm the observation
made in a previous study [42].

More specifically, the CIBSE Daily weighted exceedance criterion appears to be difficult
to meet in the future (more than 50% of the years during the period 2071–2100 under
RCP2.6 do not comply with this criterion for both the living room and the bedroom). This
shows an increasing difficulty in dissipating the heat accumulated inside the building,
probably linked to higher external temperatures. The bedroom suffers particularly from
this phenomenon (median value of 4 days per year where the Daily weighted exceedance
criterion is reached under the RCP8.5 scenario, versus 2 for the living room). The Static
hours of exceedance (Top > 26 ◦C) criterion in the bedroom appears to be the most difficult to
comply with in the future (criterion exceeded more than 50% of the years during the period
2071–2100 under the RCP2.6 scenario, and more than 75% of the years under the RCP8.5).

The Adaptive hours of exceedance and Upper limit temperature criteria are, however, rarely
exceeded. These CIBSE criteria based on adaptive comfort appear, thus, easier to meet than
benchmarks based on a fixed static value. It has been already shown that these criteria,
based on a significant deviation from the comfort limits set by EN15251, are not very
restrictive for this type of building and are not always representative of the number of
complaints reported by the occupants [21]. It is, therefore, crucial to properly (re)consider
(this also probably depending on the room type) the applicability and the limits of adaptive
thermal comfort principles and strategies in residential buildings (EN15251 was originally
established from data collected in offices) [43,44].

More generally, the passive strategies currently deployed (internal solar shading and
natural cooling by windows opening in the living room only) might not be sufficient in
the future. The widespread use of window curtains (which could be replaced by external
solar shadings) and natural cooling by windows opening in all rooms (including bedrooms)
could certainly contribute to improve the summer thermal comfort of the house, and
probably limit the need of active cooling systems in the future. In this context, the potential
decrease of (night)ventilative cooling efficiency due to higher (night)temperatures induced
by climate evolution (as illustrated by Figure 5) should be explored in detail.

Further research focusing on the potential of such strategies in a global warming
context is, therefore, needed. A more thorough understanding appears crucial to limit the
potential global increase in cooling energy consumption [16] and to properly define policies
and standards aiming at a better resilience of the building stock to heat waves [45].

5. Conclusions

Based on a whole building energy simulation, this paper investigated the potential
evolution of summer thermal comfort in a typical nZEB house under different climate
evolution scenarios (RCP2.6 and RCP8.5).

The study, based on compliance with CIBSE TM52 and TM59 summer thermal comfort
criteria analyses, has shown that the passive strategies currently used in the selected case
study (internal solar shading and intensive natural ventilation in the living room only) will
not be sufficient in the future (especially in the bedroom) and that other strategies will be
necessary to guarantee summer thermal comfort.
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It has also been noticed that CIBSE criteria based on the theory of adaptive thermal
comfort are much less restrictive in a context of changing climate than criteria based on
a fixed static value. It is, therefore, crucial to verify the applicability of adaptive thermal
comfort defined in EN15251 to the residential sector and its limits in the context of a
changing climate.

More generally, the paper shows that considering summer thermal comfort, and its
possible evolution, should be a priority for the design of nZEB houses (and related standards
and policies) to avoid the generalised use of active cooling systems, with their induced
environmental impacts, in temperate oceanic climates. Therefore, the full potential of
passive design strategies to ensure summer thermal comfort under future climate scenarios
have to be analysed more in depth.
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