
 
 

Delft University of Technology

A bird's-eye view on infrasound
High-resolution methods to unravel the ambient microbarom wavefield
den Ouden, O.F.C.

DOI
10.4233/uuid:c44f8490-da62-4f7c-9945-3cdb6fe0a7a4
Publication date
2022
Document Version
Final published version
Citation (APA)
den Ouden, O. F. C. (2022). A bird's-eye view on infrasound: High-resolution methods to unravel the
ambient microbarom wavefield. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:c44f8490-da62-4f7c-9945-3cdb6fe0a7a4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:c44f8490-da62-4f7c-9945-3cdb6fe0a7a4
https://doi.org/10.4233/uuid:c44f8490-da62-4f7c-9945-3cdb6fe0a7a4


A bird’s-eye view on infrasound
High-resolution methods to unravel the ambient

microbarom wavefield





A bird’s-eye view on infrasound
High-resolution methods to unravel the ambient

microbarom wavefield

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Friday, 29 April 2022 at 12:30

by

Olivier Frederik Constantinus DEN OUDEN

Master of Science in Applied Geophysics, IDEA League
(TU Delft, ETH Zurich, RWTH Aachen)
born in Wythenshaw, Manchester, UK



This dissertation has been approved by the promotor.
promotor: Prof. dr. L.G. Evers
copromotor: Dr. ir. P. S.M. Smets

Composition of the doctoral committee:
Rector Magnificus chairman
Prof. dr. L.G. Evers Delft University of Technology
Dr. ir. P. S.M. Smets Delft University of Technology

Independent members:
Prof. dr. ir. C. P.A. Wapenaar Delft University of Technology
Prof. dr. M. van der Meijde University of Twente
Prof. dr. R.M. Waxler University of Mississippi, United States
Dr.D.N. Green AWE Blacknest, United Kingdom
Prof. dr. ir. E. C. Slob Delft University of Technology, reserve member

Other member:
Dr. J.D. Assink Royal Netherlands Meteorological Institute

Dr. J.D. Assink heeft als begeleider in belangrijke mate aan de totstandkoming van
het proefschrift bijgedragen.

Keywords: infrasound, microbaroms, sensor technology, array processing, soundsca-
pes

Cover illustration: Marilou Maas (Persoonlijk Proefschrift) i.s.m. Julia Aartsen

ISBN 978-94-6366-487-5

Copyright © 2022 by O.F.C. den Ouden.

All rights reserved. No part of the material protected by this copyright may be
reproduced, or utilised in any other form or by any means, electronic or mechanical,
including photocopying, recording or by any other information storage and retrieval
system, without the prior permission of the author.

Typesetting system: LATEX.
Printed by Ridderprint, Alblasserdam, The Netherlands.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Voor Julia
Aan Mama en Papa





Preface

“I am more and more convinced that our happiness depends more on the way we
meet the events of life than on the nature of those events themselves.”

Alexander von Humboldt

In front of you is my PhD dissertation, something of which I am excessively grateful
and proud but never intended to create. During my scientific career, I have met
brilliant people. Doing a PhD, not mentioning finishing, was initially not a realistic
perspective.

My scientific journey started in 2012 at the Delft University of Technology (TU
Delft) while doing the BSc. Applied Earth Science, or in Dutch: Mijnbouw. In
combination with my visit to the TU Vienna (AT), I discovered the joy of technology.
The MSc. of Applied Geophysics, hosted by the IDEA League, was an explainable
next step. The IDEA League is a joint master’s degree by three of the leading
technical universities in Europe. The first semester is in Delft, the second in Zürich
(CH), the third in Aachen (GE), and the final semester is hosted by one of these three
universities. My thesis was with the Royal Netherlands Meteorological Institute
(KNMI). Together with Dr.ir. Pieter Smets and Prof.dr. Läslo Evers (copromoter
and promoter, respectively, of my MSc and PhD dissertation), we intended to localise
deep ocean seismic noise sources.

During my MSc thesis, I met many exciting colleagues at the KNMI, particularly
Dr. Jelle Assink. Jelle is always up for an excellent scientific discussion and was
therefore also heavily involved in my MSc project. At the end of the MSc project,
after a colleague’s wedding, it was on the bike home to Utrecht when Jelle told me
about his bird project. Waving goodbye at the train station Jelle spoke the famous
last words; "Come work with me on birds and infrasound. Let’s put some sensors
on birds!"
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The idea for the bird project, the SeabirdSound project, arose in 2015 when two
scientific worlds got in contact. During the austral summer of 2015, biologists of
Liverpool University (Dr. Samantha Patrick) were studying the wildlife of Crozet
Islands, while physicists of the Comprehensive Nuclear-Test-Ban Treaty Organisa-
tion (CTBTO) (Dr. Mario Zampolli) were generating a new hydroacoustic array
near Crozet. The discussions between both worlds resulted in a research proposal.
SeabirdSound became an interdisciplinary project funded by the Young Researchers
grant of the Human Frontier Science Program (HFSP). The project address one of
the fundamental questions in biology: how species navigate in a featureless lands-
cape. The species of study is the Wandering Albatross, the largest seabird of the
Southern Ocean. Within this search, various navigational cues are discussed, espe-
cially the use of infrasound. To answer this question, the project is built up with
behavioural ecologists (Liverpool University, UK), statisticians (Florida University,
US), physiologists (Stellenbosch University, ZA), and physicists (KNMI/TU Delft,
NL). Projects like SeabirdSound are unique. It is not often that four different scien-
tific communities collaborate. The journey was bumpy, especially at the beginning.
We had to learn to communicate between disciplines to discover what was already
done, what needed to be done, and how it should have been done. Together we have
experienced the pure joy of technology and pushed each other into new and intently
impossible studies. We are currently at the end of our project, answering the main
question of our research; does the albatross use infrasound as a navigational cue?

As my father wrote in the preface of his dissertation: "Promoveren doe je niet
alleen" (accomplishing a doctoral dissertation is not an individual result). Therefore
I would like to thank those who have supported and helped me during this journey.
First of all, Julia, I could not have achieved this without you or your support.
Sorry for the endless noise of the 3D printer and to bother you with infrasound over
the years; at least you are (partly) an expert now! Recently, you graduated from
Tilburg University in the faculty of Social and Behavioural Sciences while combining
a semi-professional sailing career. I am proud of you and fortuitous to have you by
my side. Thanks for your understanding, helpful advice, and the magnificent cover
of my thesis. You helped to create an enjoyable representation of my dissertation
through your eyes. This dissertation is a team effort, and you are one of the critical
members.

Thank you, Mama, Papa, and Carleyn. You have always believed in me. Thanks
for everything, especially your eternal love. Thanks for the heated discussions at
the kitchen table, based on love, passion, and support. A special note to Oma Prik,
who has been strong and enjoys this journey with me. And a note to Opa & Oma
Beesd and Opa Prik, who have unfortunately passed away but would have been
excessively proud.
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Jelle, thank you for this journey! You gave me this life-changing opportunity
and have taught me everything about infrasound. Together we have experienced ups
and downs. We have been a great team, good colleagues, friends. Thanks for your
patience, unwavering support, and critical internal reviews (which were crueller than
the external reviews!). Together, we have addressed and solved the most complex
issues, but we wrote them down in an easy way! I would lie when I say this journey
was always fun. It was a learning process for both, and we have always attempted to
achieve the best. I dare to say we will have a lifetime ’in-build’ connection! Thank
you!

Many thanks to Läslo. Our meetings always started and ended with a smile.
I felt welcome and appreciated, which I am thankful for. Often you tell me; that
many things in the world are fascinating, but most of it is relative, so focus and
finish your tasks before moving on to the next!

Also, many thanks to Pieter. Together with Jelle, you are the very few people I
know with whom I can talk mathematical formulas. Discuss why a code on a specific
line is not working. Or how to tweak our WiFi home network to have the best access
in every corner of the house. Thank you for being my supervisor during my MSc
thesis, copromoter during my PhD, and colleague/friend! I am proud and happy we
worked together on the Multi-EAR. You truly improved the project enormously!

Many thanks to my colleagues at the KNMI and TU Delft. Especially Dr. Auke
Barnhoorn, thank you for your advice, help, and confidence! I am grateful to the
SeabirdSound project for making this dissertation possible. Thanks to Samatha
Patrick, Mathieu Basille, and Susanna Clusella-Trullas for hosting the HFSP mee-
tings and being Pi in the project. Thanks to my colleagues in the project; Tommy,
Lucia, Natasha, Rocio, and Jeff. Moreover, many thanks to Corné Oudshoorn, Jens
van den Berg and Dominique Filippi, who have taught me the world of electrical
engineering. Thanks for your patience and experience. Thank you, David Green,
David Fee, Roger Waxler, and Daniel Bowman, for the inspirational discussions
about infrasound and the highly valued reviews. And thank you, Machteld, Gerard,
and Bobbie, for letting me stay in Langweer to finish the dissertation.

Many thanks to my friends from Erasmus, the IDEA League, Delft, Hilversum,
and sailing. Without you, there were no adventures or stories. A special thanks
to Frans Ligui Lung and Coen de Vries, the paronyms of my dissertation. Frans,
you have been my friend since day one at the TU Delft. We share a passion for
technology, physics, nerd books, and surfing. You have been awarded as TU Delft’s
best graduate of the faculty of Civil Engineering and Geoscience in 2020 and were
granted a PhD project at the University of Melbourne (AU). Moments to be proud
of. Thank you and Floor for being my friend. Coen, we go back a long way. The
first picture of us together is (of course) in a sailing boot, made in 2009. We have
sailed against each other, with each other, and learned to the youth how beautiful
sailing is. We share some great stories. You have graduated cum laude at the TU
Delft Faculty of Architecture, with a 10 out of 10 as the final mark. Again, proud
moments - thank you that I could celebrate with you. Thank you and Jurriënne for
our friendship.
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This work was performed during the SeabirdSound project, which was founded
by the Young Scientist Award of the Human Frontier Science Program (RGY0072/2017).
Jelle Assink’s contribution is partly funded through the HFSP SeabirdSound grant.
The contributions of Läslo Evers, Shahar Shani-Kadmiel and Pieter Smets are fi-
nanced through a VIDI project from the Netherlands Organisation of Scientific
Research (NWO), project number 864.14.005. The Marie Curie Actions WAVES
funded Gil Averbuch’s contributions from the European Union with H2020, grant
number 641943.

The development of the Multi-EAR (Section 2.2) has been established by the
nomination for the ’Digitaliserings-fonds en Ontwikkeling’ research grand of the
Netherlands Ministry of Infrastructure and Water Management awarded by Gijs
van Schouwenburg and the ’Innovation’ grand by the Delft University of Technology
awarded by Auke Barnhoorn.

The CTBTO and station operators are thanked for guaranteeing the high quality
of the IMS data and products. The ECMWF ERA5 are thanked for assuring high-
quality atmospheric reanalyses data of the global climate. Most graphs in this thesis
have been made with the Generic Mapping Tools [Wessel et al., 2019].

Throughout this dissertation, various quotes are assigned to the different chap-
ters. These quotations are from Alexander von Humboldt (1769-1859) and Richard
P. Feynman (1918-1988). Both scientists have changed my vision of physics and
science while working on this dissertation. Alexander von Humboldt was the first
scientist to perform comparisons studies based on Europe and South American ob-
servations. His view of biological and physical phenomena has changed the scientific
community. Charles Darwin, one of the most famous natural scientists in history,
could perform his studies thanks to the ideas of Alexander von Humboldt. Richard
Feynman received the Nobel prize in physics thanks to his contributions to the de-
velopment of quantum electrodynamics. He was a theoretical physicist and known
for being a pioneer in quantum computing and introducing the concept of nano-
technology. He shared his passion for physics through various lectures and books,
affecting my vision on multiple topics.

Olivier den Ouden, 2022



Summary

A bird’s-eye view on infrasound: High-resolution method to unravel
the ambient microbarom wavefield

Infrasound is low-frequency inaudible sound (< 20 hertz (Hz)) which propagates
efficiently over long distances. The propagation path of infrasonic signals is influen-
ced by atmospheric conditions, while the attenuation is relatively small. Therefore
infrasound is used as a verification technique for the verification of the Comprehen-
sive Nuclear-Test-Ban Treaty (CTBT). The International Monitoring System (IMS)
globally monitors the infrasonic wavefield thanks to the sparse network of infrasound
monitoring arrays. Therefore, the IMS has played a central role in the characterisa-
tion of the global low-frequency wavefield and the localisation of infrasound sources
[Campus and Christie, 2010; Marty, 2019].

Deep oceanic ambient noise is globally the most omnipresent infrasound source.
The driving force of the ambient atmospheric noise (i.e., microbaroms) is the sea
state, which describes the energy of the travelling ocean surface waves. Non-linear
interaction of counter travelling ocean surface waves results in standing ocean wa-
ves, causing the radiation of acoustic energy and resonance within the water column
[Longuet-Higgins, 1950; Hasselmann, 1963]. At the upper interfaces of the water co-
lumn, acoustic energy is radiated into the atmosphere resulting in microbaroms
[Brekovskikh, 1973]. The spectral peak of microbaroms is typically found around
0.2 Hz, with a characteristic amplitude range of 55-110 decibel (dB) [Campus and
Christie, 2010]. Earlier studies have shown the dominance of microbarom signals
within the infrasonic wavefield [Donn and Rind, 1972; McKee et al., 2021]. Micro-
barom signals can, therefore, potentially mask other infrasonic signals of interest
(e.g., seismo-acoustic signals of explosions [Assink et al., 2018; Averbuch et al.,
2020], earthquakes [Shani-Kadmiel et al., 2018], and volcanoes [Green et al., 2012]).
Characterising microbaroms is essential for the understanding of the infrasonic wa-
vefield.
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The fundamental challenge within this dissertation is to create high-resolution
methods to characterise individual ambient infrasonic source contributions. In parti-
cular, the methods are applied to microbarom signals. Accomplishing this challenge
forms the basis of this thesis and can be subdivided into four objectives:

• The design, development, construction, and calibration of a mobile multidisci-
plinary sensor platform for monitoring geophysical parameters. The platform
is based on the latest sensor technology (i.e., cost-efficient MEMS sensors (Mi-
croelectromechanical systems)) and complements existing high-fidelity equip-
ment.

• The development of high-resolution array processing techniques. The infra-
sonic wavefield is complex. Various signals may interfere with each other or
mask other signals of interest. High-resolution data processing techniques are
required to resolve spatially distributed infrasound which are concurrently ac-
tive.

• The development of a reconstruction method for infrasonic soundscapes. The
method is modular and can, in principle, be used with any infrasonic source
and propagation model to resolve multiple spatially distributed infrasound
sources. In this dissertation, the method is applied to reconstruct microbarom
soundscapes in absolute numbers.

• The creation of a workflow for the reconstruction of infrasonic climatology
studies. The method helps to improve the knowledge of the global infrasonic
background noise by comparing microbarometer array observations with in-
frasonic soundscape simulations. This new knowledge contributes to a better
verification of the CTBT and better applicability of infrasound as a remote
sensing technique of the upper atmosphere, by enabling a better understanding
of the recorded infrasonic wavefield and its decomposition into contributions
from separate sources.

Within this thesis, two multidisciplinary sensor platforms (the INFRA- and
Multi-EAR) are introduced (Chapter 2). It is demonstrated how to design, de-
velop, and calibrate individual sensors to monitor geophysical parameters. Due to
the digital design, the sensor platforms can readily be integrated with existing ge-
ophysical data infrastructures and be embedded in geophysical data analysis. The
small dimensions and cost-efficient price per unit allow for unconventional, experi-
mental designs, for example, high-density spatial sampling or deployment on mo-
ving measurement platforms. Moreover, such deployments can complement existing
high-fidelity geophysical sensor networks.

In addition to developing the mobile infrasonic sensor platform, the dissertation
also addresses high-resolution array processing algorithms (Chapter 3). Conventio-
nal beamforming algorithms can only confidently detect the most dominant signal in
each processing window and cannot distinguish concurrent infrasound signals with
side lobes. This can hamper the detection and identification of infrasound sources
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in the vicinity of dominant noise sources, such as microbaroms. Various beam-
forming methods have been introduced in scientific literature to identify multiple
sources which are simultaneously active. This dissertation presents the CLEAN
beamforming algorithm for the enhanced detection of multiple infrasonic source sig-
nals within overlapping time and frequency segments. CLEAN is a post-processing
method applied to conventional frequency-wavenumber (f/k) beamform techniques
introduced by Bartlett and Capon. Sub-dominant sources can be identified because
contributions to the total f/k spectrum are iteratively removed in this procedure.
Moreover, a sharper f/k spectrum is obtained because the array response is decon-
volved in the process. The enhanced beamforming resolution of CLEAN improves
the capabilities of infrasound as a monitoring technique. This comes to the benefit
of infrasonic monitoring of nuclear tests and natural hazards, such as volcanoes,
earthquakes and hurricanes, because such signals may be masked when the ambient
noise levels are high.

The application of the INFRA-EAR as biologger, attached to the Wandering
Albatross (Diomedea exulans), has led to new insights into the ambient infraso-
nic wavefield. Thanks to the INFRA-EAR, a method has been introduced for the
reconstruction of microbarom soundscapes (Chapter 4). Within this dissertation,
soundscapes are defined as 4D infrasonic landscapes based on oceanic and atmos-
pheric reanalysis models. Soundscapes provide time and frequency dependent 2D
spatial insights into the various infrasonic source contributions. In particular, the
method accounts for multiple microbarom source contributions in an infrasonic sen-
sor’s vicinity (∼ 5000 km). It follows that the observations on the biologger can
be identified as evanescent and propagating microbaroms. While the latter corres-
ponds to the field typically observed at larger distances, the evanescent microbarom
can only be observed directly overhead the sea surface. The soundscape method
can generate synthetic spectra in absolute numbers, which agree with infrasound
recordings on the INFRA-EAR, deployed in the middle of the Southern Ocean and
the nearest IMS microbarometer array on Kerguelen Island (I23FR). The presented
soundscapes rely on several approximations related to (1) the source model and (2)
the assumptions made in the propagation modelling. However, the methodology is
modular and supports different microbarom models, ocean wave models, and propa-
gation models. The application of this reconstruction is essential in understanding
the infrasonic wavefield, the ambient noise field, and remote sensing of the atmosp-
here. The analysis leads to a better understanding of microbaroms contributions to
array recordings.

Using the methodologies that have been developed in this dissertation and buil-
ding on the knowledge from the other chapters, an infrasonic climatology study is
presented in the penultimate chapter (Chapter 5). This study analyses five years of
continuous data recorded at IMS microbarometer array I23FR (Kerguelen Islands).
The climatology analysis addresses the differences between microbarom soundscapes
and observations, which is essential for future detection algorithms and microbarom
studies. Moreover, the combination of observations and soundscape may enhance
the filtering of microbarom source contributions within the infrasonic wavefield.

In conclusion, this dissertation adds to new knowledge of monitoring, datapro-



viii Summary

cessing, and modelling of infrasound. This knowledge contributes to a better ve-
rification of the CTBT and better applicability of infrasound as a remote sensing
technique for the upper atmosphere [Donn and Rind, 1972; Smets, 2018]. The ana-
lysis is modular and can be applied to any infrasound station or place on earth.
Moreover, the analysis could play a role in the installation of future infrasound ar-
rays. The soundscapes provide insights into the expected microbarom exposure at
(future) infrasound arrays. In addition, the presented high-resolution tools can po-
tentially be used in concert to filter ambient noise contributions from the infrasonic
wavefield (Chapter 6).



Samenvatting

Een panoramisch overzicht over infrageluid: hoge-resolutie metho-
des om infrasone omgevingsruis in kaart te brengen

Infrageluid is laag-frequent geluid (< 20 hertz (Hz)) en onhoorbaar voor de mens.
De propagatiepaden van infrageluidgolven worden beïnvloed door atmosferische con-
dities. Door de lage frequenties kunnen infrageluidgolven effectief propageren over
grote afstanden en verliezen deze relatief langzaam hun energie. Mede door deze
eigenschappen wordt infrageluid gebruikt voor de verificatie van het kernstopver-
drag, Comprehensive Nuclear-Test-Ban Treaty (CTBT). Het internationaal moni-
toring systeem (IMS) is hiervoor opgezet, en in staat om over de gehele wereld
het infrageluidsveld te meten dankzij een sensornetwerk. Hierdoor heeft het IMS
een belangrijke rol gespeeld in het karakteriseren van het globale laag-frequente ge-
luidspectrum, en het lokaliseren van individuele infrageluidsbronnen [Campus and
Christie, 2010; Marty, 2019].

De diepe oceanen genereren ook infrageluid dat wordt gemeten door het IMS en
wordt geclassificeerd als ruis (omgevingsruis). Deze omgevingsruis, ook wel micro-
baromen genoemd, wordt gegenereerd door de energie in de oceanen. Non-lineaire
interacties tussen in tegenovergestelde richting reizende oceaangolven resulteren in
staande golven. Deze staande golven in de waterkolom resoneren tussen de oceaan-
bodem en het atmosferisch raakvlak met de oceaan [Longuet-Higgins, 1950; Hassel-
mann, 1963]. Op dit scheidingsvlak tussen oceaan en atmosfeer wordt laag-frequente
akoestische energie uitgestraald (microbaromen, Brekovskikh [1973]).

Microbaromen hebben een spectrale piek rond 0.2 Hz, met daarbij een karakte-
ristieke amplitude tussen 55-110 decibel (dB) [Campus and Christie, 2010]. In de
literatuur is bekend dat microbaromen dominant aanwezig zijn in het infrageluids-
pectrum en zo andere, relevante, infrageluidsbronnen kunnen maskeren [Donn and
Rind, 1972; McKee et al., 2021]. De karakterisering van microbaromen is daarom
essentieel voor een volledig begrip van het infrageluidspectrum, en zal zo ook bijdra-
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gen aan een betere verificatie van het kernstopverdrag en monitoring van relevante
natuurverschijnselen ( seismo-acoustic signalen van explosies [Assink et al., 2018;
Averbuch et al., 2020], aardbevingen [Shani-Kadmiel et al., 2018], en vulkaanerup-
ties [Green et al., 2012]).

De fundamentele uitdaging in dit proefschrift is om hoge-resolutie methodes te
onderzoeken en te ontwikkelen, om hiermee individuele componenten van de globale
infrasone omgeveningsruis te karakteriseren, in het bijzonder microbaromen. Dit
wordt gerealiseerd door deze uitdaging op te splitsen in vier doelstellingen:

• Het ontwerpen, ontwikkelen, construeren en kalibreren van een mobiel mul-
tidisciplinair sensor platform voor het monitoren van infrageluid en andere
geofysische variabelen. Het platform is ontwikkeld met de nieuwste sensor-
technologie: bestaande uit kostenefficiënte MEMS (Micro-elektromechanische
systemen) sensoren. Derhalve benodigen deze mobiele sensorplatformen geen
vaste infrastructuur. Gebieden buiten het bereik van het vaste netwerk kunnen
in kaart gebracht worden met deze sensorplatformen.

• Het ontwikkelen van hoge-resolutie dataverwerking-algoritmes. Het infrage-
luidsveld is complex: verscheidene infrageluidsignalen kunnen met elkaar in-
terfereren. Hoge-resolutie dataverwerking-algoritmes zijn nodig om ruimtelijk
gedistribueerde infrageluidsbronnen te kunnen onderscheiden die gelijktijdig
actief zijn.

• De ontwikkeling van infrageluidlandschapskaarten. Het microbaromenland-
schap wordt in kaart gebracht door de combinatie van een collectief van stu-
dies naar theoretische modellen van microbaromen en modellen van propa-
gatie over lange afstanden. Hierdoor worden via een theoretische benadering
verscheidene ruimtelijk gedistribueerde infrageluidsbronnen (microbaromen)
inzichtelijk gemaakt.

• Het genereren van een stappenplan voor het reconstrueren van een klimatolo-
giestudie van infrageluid. Deze klimatologiestudie zorgt voor een inzichtelijk
beeld van de verschillende infrageluidssignalen die gemeten kunnen worden
door een infrageluidssensor. Dit draagt bij aan de kennis over de globale in-
frasone omgevingsruis en wordt een vergelijking tussen geluidslandschappen
en observaties mogelijk.

In hoofdstuk 2 wordt het ontwerp, ontwikkeling en kalibratie van twee multidisci-
plinaire sensorplatformen beschreven: de INFRA-EAR en Multi-EAR. De INFRA-
EAR is in eerste instantie ontwikkeld als biologger voor de grote albatros (Diomedea
exulans). Omdat de gebruikte sensoren een digitale output genereren, is het moge-
lijk om de platforms te integreren in bestaande vaste sensornetwerken. De gebruikte
sensoren, en dus ook het platform, zijn klein en vereisen weinig vermogen. De kost-
prijs is laag waardoor de platforms uitgerust kunnen worden met meerdere sensoren.
Het is hierdoor mogelijk om onconventionele sensorplatforms te maken die voor spe-
cifieke doeleinden gebruikt kunnen worden (ruimtelijke hoge-resolutie metingen of
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metingen op bewegende platforms). Daarnaast vereisen deze platforms geen uitge-
breide infrastructuur, iets dat wel vereist is bij conventionele netwerken. Eveneens
zijn mobiele meetcampagnes mogelijk.

Naast het construeren van hardware en de inzet hiervan om data te generen,
om zo tot nieuwe modellen te komen, is er in dit proefschrift ook veel aandacht
voor hoge-resolutie array dataverwerkings-algoritmes. De gebruikelijke algoritmes
kunnen vaak enkel de meest dominante signaalbijdrage onderscheiden in een be-
paalde tijd en frequentieband. Eerdere studies hebben aangetoond dat een overlap
van signalen in tijd en frequentie mogelijk is. Dit is de reden dat in hoofdstuk 3
CLEAN-beamforming wordt geïntroduceerd. CLEAN is een nabewerkingsalgoritme
voor de conventionele algoritmes. Middels deconvolutie wordt het iteratief mogelijk
om meerdere bronnen in overlappende tijd en frequentie te kunnen onderscheiden.
CLEAN zorgt voor een verbeterde monitoring van infrageluid, en daarmee tot een
verbeterde monitoring van nucleaire testen en natuurverschijnselen, zoals vulkaan-
uitbarstingen, aardbevingen en stormen.

Van januari tot maart 2020 hebben 25 INFRA-EARs, bevestigd op albatrossen,
rondgevlogen over de Zuidelijke Oceaan: een van de meest afgelegen plekken op
aarde. In hoofdstuk 4 wordt de data die verkregen is tijdens deze meetcampagne
gebruikt om geluidslandschappen te genereren voor microbaromen. In deze disserta-
tie zijn geluidslandschappen gedefineerd als een 4D landschap van geluid, gebaseerd
op oceanische en atmosferische modellen. Geluidslandschappen brengen 2D ruim-
telijk in kaart hoe over tijd en frequentie verschillende geluidsbronnen bijdragen
aan het gemeten geluidsveld. In het bijzonder verschaffen de geluidslandschappen
verschaffen informatie over de toedracht van microbaromen op het gemeten infrage-
luidsveld. Deze landschappen omschrijven de contributie van zowel de vergankelijke
als de propagerende microbaromen in de infrageluidsmetingen van de infrageluids-
sensors. Voor zover bekend is, is de INFRA-EAR het eerste sensorplatform dat
naast propagerende ook vergankelijke microbaromen heeft gemeten. Voorheen zijn
vergankelijke signalen enkel theoretisch beschreven.

De aannames in de reconstructiemethode zijn te relateren aan (1) het initieel
gebruikte microbaromen-bronmodel, en (2) de propagatiemodellering. Het is echter
mogelijk om beide model variabelen te veranderen naar een andere gewenste input.

In de voorgestelde reconstructiemethode voor microbaromen-geluidslandschappen
worden zowel vergankelijke als propagerende infrageluid bijdragen beschouwd. De
geluidslandschappen worden gepresenteerd in absolute waardes, welke in overeen-
stemming zijn met de daadwerkelijke metingen van zowel de INFRA-EAR (direct
boven het zeeoppervlak) als een op afstand gelegen (vaste) IMS-array.

Hoofdstuk 5 beschrijft een klimatologische studie van het infrasone geluids-
veld rondom I23FR. De eerder beschreven hoge-resolutiemethodes van deze dis-
sertatie zijn toegepast op meteorologische en infrageluid data. Hierbij is gebruik
gemaakt van vijf jaar aan data. Daarnaast zijn er voor deze vijf jaar ook gesi-
muleerde microbaromen-geluidslandschappen gereconstrueerd en vergeleken met de
microbaromen-observaties. Deze vergelijking toont aan dat er een overeenkomst is in
richting en frequentie van de microbaromen tussen model en meting. De amplitude
wordt echter onderschat. Mede door deze studie wordt de bijdrage van microba-
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romen rondom I23FR inzichtelijk, en zijn verbeteringen voor model en observatie
duidelijk geworden.

De gepresenteerde hoge-resolutie methodes die in dit proefschrift zijn beschreven
zijn modulair en generiek. Zij kunnen worden toegepast op alle infrageluid arrays.
Zo kan de omgevingsruis van bestaande en nieuwe infrageluid-array locaties in kaart
gebracht worden. In hoofdstuk 6 wordt beschreven hoe de methodes effectief ge-
bruikt kunnen worden om relevant infrageluid te onderscheiden van ruis (filteren)
om zo tot een betere analyse van het geregistreerde infrageluid te kunnen komen.
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1
Introduction: from atmospheric
motion to infrasonic wavefield

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

Richard P. Feynmann

Sound waves in air are elastic waves that temporarily bring air particles locally
in motion while propagating at the speed of sound, i.e. approximately 334 m/s
at mean sea level temperature (∼ 15◦C). As a sound wave passes, air particles
oscillate from side to side around their resting positions and alternate between being
compressed or rarefied (thinned out), Figure 1.1-a. Acoustic propagation consists
of a continuous transfer of potential and kinetic energy, akin to the motion of a
pendulum. Potential energy is stored during air compression (analogous to a lifted
pendulum) and transferred to kinetic energy as the air particles move and the air
rarefies (analogous to the pendulum movement), Figure 1.1-b [Pain and Beyer, 1993;
Pierce, 2019]. The sound frequency quantifies the number of these oscillations per
second, and a Power Spectral Density (PSD) shows how the signal power varies
with frequency. The computation of the PSD involves a Fourier Transform. The
wavelength is defined as the distance between two crests or zero crossings. The
relationship between frequency (f), wavelength (λ) and speed of sound (c) is given
as:

λ · f = c (1.0.1)

Parts of this chapter have been published as part of: Assink & den Ouden, et al. 2021,
Infrasound as a cue for seabird navigation. Frontiers in Ecology and Evolution, Volume 9, DOI:
10.3389/fevo.2021.740027
Note that minor changes have been introduced to make the text consistent with the other chapters.
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The perturbations fully describe the acoustic field at any location in pressure p
(sound pressure; pascal or Pa) and particle speed v (m/s) as a function of frequency
(hertz or Hz). The sound level of an acoustic field in the air is commonly expressed
in decibel (dB), relative to the reference value of 20µPa.

Particle velocity defines the propagation direction of a passing sound wave, al-
though with 180-degree ambiguity, and is proportional to the spatial gradient of the
acoustic pressure. The sound intensity ~I quantifies the acoustic power and directiv-
ity per unit area, and is calculated as the product of sound pressure and particle
velocity [Pierce, 2019], i.e.,

~I = p · ~v (1.0.2)

Sound intensity is a vector that points away from the sound source. Multiple
pressure sensors must be positioned in an array to determine the direction to the
sound source in the free field. Alternatively, particle motion sensors can be utilised
to directly measure acoustic particle motion direction.

The intensity of the signal decreases with distance from the source and most
rapidly in the near-field (Figure 1.1-b). The total sound energy density is computed
as the sum of both acoustic kinetic and potential energy densities (note the loga-
rithmic scale in Figure 1.1-b). Note that while the kinetic energy dominates in the
near field, both are in equilibrium in the far-field.

+

+
-

-

a. b.

Figure 1.1: Infrasonic wave-field parameters (a) Depiction of an acoustic wave (black dots)
as alternating compressions and rarefactions, leading to perturbations in particle velocity
(red) and pressure (blue). (b) The decrease and partitioning of acoustic energy with range
and transition from near- to far-field for a spherical sound wave at 0.2 Hz with 1 Pa
amplitude. The total acoustic energy (dashed black) is composed of potential (blue) and
kinetic (red) energy, related to pressure and particle motion, respectively. While kinetic
energy dominates in the near field, both forms are in equilibrium in the far-field.
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The perturbation method

Small atmospheric perturbations like sound waves occur on top of the existing mov-
ing media of the atmosphere. In order to describe small pressure perturbations, the
perturbation method is applied [Gossard and Hooke, 1975; Wapenaar, 2014]. The
perturbation method divides the atmospheric field variables into two parts. The
first part is the basic state. It is assumed that the atmosphere is in a known basic
state (m). The second part is the perturbation part, which is a local deviation off
the field from the basic state (m′). This perturbation then is superposed on the
basic state, hence:

m = m+m
′

(1.0.3)
Within the perturbation method, two major assumptions are made. First, the

basic state variables must satisfy the conservation equations when the perturbations
are set to zero. Second, for linearisation of the perturbation, the quantities must be
small enough so that all terms in the conservation equations that involve products
of the perturbations can be neglected (Appendix A).

Given the simplified perturbation method concept (equation 1.0.3), the atmo-
spheric motions can be described similarly.

~v = ~v + ~v
′
, p = p+ p

′
, ρ = ρ+ ρ

′
(1.0.4)

where the over-line parameters represent the basic state variables, and the primed
represents the perturbation variables.

1.1 Sound wave properties

Wave motions in the atmosphere are harmonic oscillations that propagate over space
and time. One of the essential properties of linear harmonic oscillators is that the
period (i.e., the time required to execute a single oscillation) is independent of the
amplitude of the oscillation. The frequency of the wave generally depends on the
wavenumber (k) and the physical properties of the atmosphere. Therefore the phase
speed for a planar wave, the horizontal velocity, equals cp = 2πf/k (Figure 1.2-a).
Waves for which the phase speeds change by varying wavenumbers are dispersive
waves. Acoustic waves, which travel with the speed of sound, have phase speeds
independent of the wavenumber and are non-dispersive waves.

In terms of sound waves it is assumed that:

• (1) In theory, sound perturbations are adiabatic within a homogeneous and
lossless atmosphere, which means that internal friction between particles is
neglected. Physically, however, the atmosphere is not lossless and causes ab-
sorption and scattering of sound waves.

• (2) The gravitational acceleration constant g becomes relevant at frequencies
below 0.05 Hz. Above 0.05 Hz the effects can be neglected. The restoring
force between the acoustic cutoff frequency of 3.3 mHz and 0.05 Hz is both
pressure and gravity (acousto-gravity waves).
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Figure 1.2: Various wave types and their properties are visualised. (a) The frequency -
wavenumber and phase velocity relation. Infrasound ranges between the acoustic cut-off
frequency (fa ∼ 3.3 mHz) and 20 Hz, above which sound becomes audible for humans.
Gravity waves can propagate with periods between one day and the Brunt-Väisälä frequency
(fc). (b) The amplitude-frequency relation of infrasound sources (orange) and atmospheric
turbulences (blue). The solid orange line indicates an expected amplitude range of various
sources for short period. The dotted area shows the amplitude range over a longer period.
Note that the turbulence area is broad. Whenever the turbulence amplitude is above the
infrasonic amplitudes, the infrasound sources are masked by noise.
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1.2 Infrasound

The frequency range of atmospheric infrasound is typically defined between 3.3 mHz
to 20 Hz (Figure 1.2). Infrasonic waves with frequencies below 3.3 mHz do not fit
within the Earth’s atmosphere. Above 20 Hz, sound becomes audible to humans.

Infrasound can be produced across various frequencies by displacements of large
volumes of air (Figure 1.2-b), either from geophysical or anthropogenic sources.
Two main signal type categories are defined: (1) transient signals are considered to
have a finite, short-term duration, in contrast to (2) continuous signals. In practice,
signals may also share characteristics from both signal type categories.

Within the atmosphere, several infrasonic sources have been identified. Standing
ocean waves produce a near-continuous hum in a broad frequency range as micro-
baroms (0.1-1.0 Hz) in the open sea and interact with coastlines [Waxler et al.,
2007]. Microbarom source regions in the ocean can be quasi-stationary and tran-
sitory (e.g., when associated with marine storms). Surf can also be observed near
coastlines at higher frequencies, typically above 1.0 Hz [Park et al., 2008]. Transient
sources of infrasound that are routinely detected within the atmosphere include
severe weather, earthquakes, meteor explosions and volcanic eruptions. Notably,
infrasound can radiate from sources underwater, under certain conditions, sound
passes between water and air at low frequencies [Evers et al., 2013].

The observations on the global infrasound array network [Marty, 2019] have ad-
vanced knowledge of infrasound sources, atmospheric infrasound propagation, and
turbulence effects on detection. The global infrasound network is part of the Inter-
national Monitoring System (IMS), which is being installed for the verification of
the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Since the certification of the
first array in 2001, 54 out of the eventual 60 arrays have been installed. The IMS
infrasound arrays are distributed relatively uniformly over the globe.

Earlier studies have shown that the infrasound detection statistics vary signifi-
cantly between IMS arrays [Matoza et al., 2013; Assink et al., 2014; Ceranna et al.,
2019]. Each array has its characteristic background noise with specific infrasonic
sources that are routinely detected. Microbarom signals tend to be present at most
infrasound arrays. While some of the observed infrasound originates more locally
to the array, other signals originate from much further away: propagation can oc-
cur over thousands of kilometres. It can even be global for exceptionally powerful
signals, propagating various times around the world, such as the 1888 Krakatoa
eruption [Strachey, 1888] and the 2013 Chelyabinsk meteor airburst [Brown, 2013].
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1.3 Atmospheric propagation of infrasound waves

The infrasonic wavefield is complex and is composed of diverse source contributions
[Campus and Christie, 2010]. The atmospheric environment plays an essential role in
the detection of infrasound. The wind and temperature distribution throughout the
atmosphere determines along which paths infrasonic waves can propagate [Waxler
and Assink, 2019] the altitudes attained by these varying propagation paths controls
the along-path absorption [Sutherland and Bass, 2004]. Wind conditions near infra-
sound sensors determine local turbulence levels that are detected as (non-acoustic)
pressure variations, along with infrasound [Raspet et al., 2019].

Up to distances of a few kilometres, it can be assumed that the atmospheric
environment is homogeneous, implying that infrasound propagates along straight
paths. More generally, the atmosphere is an inhomogeneous medium that is pre-
dominantly vertically layered. Within the atmosphere, infrasound is refracted by
gradients in temperature and wind. It can efficiently propagate downwind in waveg-
uides that form between the Earth surface and the atmosphere aloft. Global strong
winds around the tropopause (the jetstream around 10-15 km), stratopause (the
circumpolar vortex around 50 km), and thermosphere (around 100 km) form the
upper limits of the tropospheric, stratospheric, and thermospheric waveguides, re-
spectively. The characteristic waveguide propagation paths arise because vertical
temperature and wind gradients within waveguides are such that upward refracted
sound waves are bend back down to a reflective Earth surface. In the upwind direc-
tion, propagation efficiency is less, and therefore infrasound propagation is highly
anisotropic [Waxler and Assink, 2019].

Detection statistics at infrasound arrays show seasonal patterns that correspond
to the stratospheric circumpolar vortex’s seasonal dynamics. Combined with en-
hanced propagation efficiency downwind, its time depend variation leads to sea-
sonal variations in long-range infrasound propagation conditions that affect the ob-
servations. These winds show a strong variation with latitude and are intimately
connected to the global atmospheric circulation [Smets, 2018].

The effective sound speed approximates the combined effect of wind and temper-
ature on infrasound propagation in a horizontally layered atmosphere (ceff), which
is defined as the sum of the absolute adiabatic sound speed (cT ) and the wind in
the direction of propagation [Drob, 2019].

cT =
√
γRdT cT,air ∼ 20.04

√
T m/s (1.3.1)

ceff = cT + wuv · n̂xy = cT + wa (1.3.2)

where γ indicates the adiabatic index (γadi=1.4, γiso=1), Rd the specific gas con-
stant for dry air, T the absolute temperature (Kelvin), and wuv · n̂xy the horizontal
wind in the direction of propagation. The horizontal wind can be divided into the
along-track wind, wa, and the cross-wind, wcross, as:(

wa
wcross

)
=
(
sin(φ) cos(φ)
cos(φ) −sin(φ)

)(
wu
wv

)
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While propagating, infrasound can be refracted by vertical variations in the
effective sound speed. The Earth surface also acts as a reflector. The effective speed
of sound ratio (ceff,ratio) is a practical measure to quantify favourable ground-to-
ground ducting conditions. An effective sound speed ratio near to or greater than
one is indicative of whether infrasound can refract back to the ground surface.

ceff,ratio = ceff(x, y, z)
ceff(x, y, 0) (1.3.3)

Propagating wavefronts can be described by rays, while Snell’s law describes
refraction (e.g., Pierce [2019]). The index of refraction corresponds to the effective
sound speed. The wave bends upward (downward) for negative (positive) gradients
ineffective sound speed (Figure 1.3 -a and -b). Realistic temperature and wind
profiles typically consist of these gradient types (Figure 1.4), leading to ground-
to-ground propagation paths through the air instead of along the surface (Figure
1.5).

e!ective
sound speed

al
tit

ud
e

range
sound speed

al
tit

ud
e

range

a. b.

Figure 1.3: Upward (a) and downward (b) refraction of acoustic waves due to gradients in
the effective sound speed. Figure adopted from Assink [2012].

Propagation losses are determined by geometrical spreading (the increase in area
the sound wave covers, Figure 1.1-b) and intrinsic absorption during propagation.
Close to the source, transmission loss is dominated by geometrical spreading (the
increase in the area the sound wave covers), as absorption rates are small [Suther-
land and Bass, 2004]. The absorption of energy while propagating is determined by
the absorption coefficient, proportional to the frequency of sound squared. Signals
with higher frequencies are only detectable over short ranges. Conversely, lower
frequencies can be resolved over larger distances. For signals with a broad spectral
content, the lower frequencies are less attenuated at more extensive propagation
ranges. The absorption coefficients are dependent on the temperature and air com-
position, including humidity near the surface [Sutherland and Bass, 2004].

Various methods have been developed to simulate infrasound in realistic atmo-
spheres accurately. This can either be done by raytracing [Waxler and Assink,
2019] or by applying empirical formulations of the atmosphere [Le Pichon et al.,
2012; Tailpied et al., 2016].
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Figure 1.4: Vertical profile based on the (solid) January and (dashed) July temperature and
zonal wind at 50◦S/70◦E from the climatology analysis of HWM14 and MSIS-00.
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1.4 Statement of research

The fundamental challenge within this dissertation is to unravel the infrasonic am-
bient noise field and characterise individual source contributions. The wavefield is
complex and often consists of interfering acoustic signals in overlapping frequency
bands in the presence of incoherent noise (i.e., wind). The acoustic signals take
the form of transients, (quasi-)continuous signals, or both. From the perspective
of an infrasound sensor, coherent noise sources (i.e., microbaroms) appear as inter-
fering signals that clutter the array detection bulletins and may obscure detections
from signals of interest (e.g., seismo-acoustic signals of explosions [Assink et al.,
2018; Averbuch et al., 2020], earthquakes [Shani-Kadmiel et al., 2018], and volca-
noes [Green et al., 2012]). Low-yield atmospheric and underground explosions are
likely to be masked by microbaroms [Bedard et al., 2000; Haak and Evers, 2002;
Golden et al., 2012]. Sparse infrasound sensor arrays and most infrasound pro-
cessing tools, which are often designed to detect the dominant acoustic signal in a
given time segment and frequency band, limit the ability to distinguish interfering
infrasound sources. Therefore, this dissertation aims to generate high-resolution
monitoring systems, processing techniques, and knowledge of how source mecha-
nisms and atmospheric propagation influence recorded signals.

To accomplish these challenges, the following objectives have been defined:

• The development of measurement techniques for atmospheric monitoring cam-
paigns based on the latest technology (i.e., digital MEMS). This includes de-
signing, developing, constructing, and calibrating a mobile multidisciplinary
sensor platform for monitoring geophysical parameters.

• The development of high-resolution array processing techniques. High-resolution
data-processing techniques are required to resolve spatially distributed infra-
sound signals that are concurrently active.

• The development of a reconstruction method for ambient infrasonic sound-
scapes. Combining collective studies on microbarom source region models to-
gether with long-range infrasound propagation will resolve multiple spatially
distributed infrasound sources.

• To investigate the infrasound noise field at sea over multiple years using new
monitoring devices, data processing techniques, and microbarom soundscapes
as developed in this thesis. This will improve knowledge of the global in-
frasonic background noise, and allow beter comparisons of infrasound array
observations and model outputs. This new knowledge contributes to a better
verification of the CTBT and better applicability of infrasound as a remote
sensing technique for the upper atmosphere.
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Figure 1.5: A schematic representation of the infrasonic wavefield. The ocean produces
continuous acoustic background noise (i.e., microbaroms and surf; depicted in blue). Mi-
crobaroms can propagate over long distances downwind (i.e., from east to west) in the
stratospheric waveguide. In the upwind direction, microbaroms are not guided and propa-
gate towards space. The wind direction changes seasonally. Surf infrasound is generated
near coastlines and does not propagate over long distances. Transient acoustic signals (red)
also occur in the marine environment, e.g., following an underwater earthquake. These vi-
brations can couple into the atmosphere. Besides the acoustic signals, the wavefield also
consists of turbulence, which may mask signals of interest. Array processing techniques can
be used to detect coherent acoustic waves in a turbulent atmosphere.
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1.5 Outline of this thesis

The dissertation is organised in the following way: chapter 2 describes two mobile
multidisciplinary sensor platforms; the INFRA- and Multi-EAR. Both platforms
measure concurrently various geophysical parameters, including; wind, barometric
pressure, differential pressure, temperature, humidity, accelerations, audible sound,
and GPS signals. The platforms are designed and developed with Dominique Fil-
ippi of Sextant Technology Inc. at Marton, New Zealand. The lab and field cal-
ibration/comparisons have been performed at the KNMI test facilities. Chapter
2 describes the electromechanical design of the platforms and the theoretical and
measurement responses of the sensors on the platforms.

Chapter 3 reviews various array processing techniques for the detection of co-
herent infrasound signals. This involves conventional sensor processing techniques,
conventional planar beamforming array processing techniques, and high-resolution
beamforming techniques (i.e., CLEAN beamforming). In addition to the theoretical
outline of these techniques, synthetic and IMS data are used to show the various
outcomes and enable comparisons. Furthermore, a statistical threshold has been
introduced to control the computational costs of the CLEAN algorithm.

Chapter 4 addresses a reconstruction method for the creation of infrasonic sound-
scapes. Within this dissertation, soundscapes are defined as 4D infrasonic land-
scapes based on oceanic and atmospheric reanalysis models. Soundscapes provide
time and frequency depending 2D spatial insights into the various infrasonic source
contributions. In particular, the method accounts for multiple microbarom source
contributions in an infrasonic sensor’s vicinity (∼ 5000 km). Moreover, chapter 4
addresses the implementation and explanation of the different contributions of the
microbarom field that are measured on the INFRA-EAR and IMS infrasound array
I23FR.

In chapter 5, an infrasonic climatology study is presented in which the method-
ologies described in chapters 3 and 4 are used in concert. Infrasound station I23FR,
located at the Kerguelen Islands, an island in the Southern Ocean, is often excluded
from scientific studies because of the extreme weather conditions around the ar-
ray. The reason for studying this array, however, are the challenging environment
and location in the southern ocean. Local turbulences often mask the infrasound
recordings. Within this chapter, meteorological and infrasonic climatology is pre-
sented, which includes the comparison between in-situ observations and modelled
infra-soundscapes.

Chapter 6 concludes by summarising the major findings described in this thesis.
Furthermore, potential future topics of research and new applications are reviewed.
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2
Atmospheric monitoring techniques

Study hard what interests you the most in the most undisciplined,
irreverent and original manner possible.

Richard P. Feynmann

Abstract Geophysical studies and real-time monitoring of natural hazards,
such as volcanic eruptions or severe weather events, benefit from the joint analy-
sis of multiple geophysical parameters. However, typical geophysical measurement
platforms still provide logging solutions for a single parameter, due to different
community standards and the higher cost rate per added sensor.

In this chapter, the ’Infrasound and Environmental Atmospheric data Recorder’
(INFRA-EAR, section 2.1) and the ’Multi Earth and Atmospheric data Recorder’
(Multi-EAR, section 2.2) are presented, which have been designed as low-cost mobile
multidisciplinary measurement platforms for geophysical monitoring. Both plat-
forms monitor in particular infrasound, but concurrently measures audible sounds,
barometric pressure, accelerations, wind flow, temperature, humidity and uses the
Global Positioning System (GPS) to position the platform. The INFRA-EAR is
especially designed as bio-logger for the Wandering Albatross. During the 2020
incubation time, 25 of these devices have collected various geophysical parameters
within the Southern Ocean near the Crozet Islands. The Multi-EAR is a research
proposal based on the findings of the INFRA-EAR. The proposal has been granted
by (1) the Netherland Ministry of Infrastructure and Water Management and (2)
Delft University of Technology. The project aims to develop, based on earlier recom-
mendations, a multidisciplinary mobile sensor platform to complement the existing
high-fidelity monitoring network.

Due to the digital design of both platforms they can readily be integrated with
existing geophysical data infrastructures and be embedded in geophysical data anal-
ysis. The small dimensions and low-cost price per unit allow for unconventional,
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experimental designs, for example, high-density spatial sampling or deployment on
moving measurement platforms. Moreover, such deployments can complement ex-
isting high-fidelity geophysical sensor networks. The platforms are designed by
using digital Micro-electromechanical Systems (MEMS) sensors embedded on a
Printed Circuit Board (PCB). The MEMS sensors on the PCB’s are a GPS, a
three-component accelerometer, a barometric pressure sensor, an anemometer, a
microphone, a temperate/humidity sensor and a differential pressure sensor. A pro-
grammable microcontroller unit controls the sampling frequency of the sensors and
data storage. Casings are used to protect the platforms against the weather. The
casings are either created with a stereolithography (SLA) Formlabs 3D printer, using
durable resin, or ordered polyethylene casings.

Thanks to low power consumption, both systems can be powered by a battery
or solar panel. Besides the description of the platform design, the calibration and
performance of the individual sensors is discussed.

2.1 The INFRA-EAR; a cost-efficient mobile multidisciplinary mea-
surement platform for monitoring geophysical parameters

2.1.1 Introduction

Real-time monitoring of natural hazards, such as volcanic eruptions or severe weather
events benefit from the joint analysis of multiple geophysical parameters. However,
geophysical measurement platforms are typically designed to measure a single pa-
rameter, due to different community standards and the higher cost rate per added
sensor. The quality and robustness of geophysical measuring equipment generally
scale with price, due to higher material costs and research and development (R&D)
expenses. In addition, the deployment of such equipment comes with complex de-
ployment and calibration procedures and requires the presence of a robust power
and data infrastructure.

Geophysical institutes often place multiple sensor platforms co-located. Mete-
orological institutes, for example, measure various meteorological parameters for
comparison, which improves the weather observations and weather forecast mod-
els. The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) performs
various geophysical measurements at its measurement sites where possible. The
International Monitoring System (IMS), which is in place for the verification of
the CTBT, performs continuous seismic, hydroacoustic, infrasonic and radionuclide
measurements [Marty, 2019]. In addition, the IMS infrasound arrays and radionu-
clide facilities host auxiliary meteorological equipment, as this data facilitates the
review of the primary IMS data streams. Besides its use for verifying the CTBT,
it has also been shown that a multi-instrumental observation observational network
such as the IMS can provide useful information on the vertical dynamic structure

Published as: den Ouden, et al. 2021, The INFRA-EAR; a low-cost mobile multidisci-
plinary measurement platform for monitoring geophysical parameters. Atmospheric Measurement
Techniques, Volume 14, DOI: 10.5194/amt-14-3301-2021.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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of the middle and upper atmosphere, in particular when paired with complemen-
tary upper atmospheric remote sensing techniques such as lidar [Blanc et al., 2018].
Other studies that involve the analysis of multiple geophysical parameters include
seismo-acoustic analyses of explosions [Assink et al., 2018; Averbuch et al., 2020],
earthquakes [Shani-Kadmiel et al., 2018], and volcanoes [Green et al., 2012].

National Weather Services, such as the Royal Netherlands Meteorological Insti-
tute (KNMI), have expressed an interest in measuring weather on a local scale to
inform citizens and warn in case of extreme weather. In addition, such measurements
allow for higher-resolution measurements of sub-grid scale atmospheric dynamics,
which will contribute to the improvement of short-term and now-casting weather
forecasts [Manobianco and Short, 2001; Lammel, 2015]. Therefore it became part of
a low-cost citizen weather station program, to increase the spatial resolution of con-
ventional numerical weather prediction models. In the Netherlands, over 300 of those
weather stations contribute to a global citizen science project, Weather Observations
Website (WOW) [Garcia-Marti et al., 2019; Cornes et al., 2020]. Nonetheless, due
to the required infrastructure of the equipment, many platforms are spatially static.
Having a low-cost multidisciplinary mobile sensor platform allows for high-resolution
spatial sampling and complement existing high-fidelity geophysical sensor networks
(e.g., buoys in the open ocean [Grimmett et al., 2019], and stratospheric balloons
[Poler et al., 2020]).

Various disciplines apply new sensor technology to obtain higher spatial and
temporal resolution [D’Alessandro et al., 2014] for geophysical hazard monitoring.
Micro-electromechanical systems (MEMS) are small single-chip sensors that com-
bine electrical and mechanical components and have low energy consumption. The
seismic community has created low-cost reliable MEMS accelerometers [Homeijer
et al., 2011; Milligan et al., 2011; Zou et al., 2014] to detect strong accelerations
that exceed values due to Earth’s gravity field [Speller and Yu, 2004; Laine and
Mougenot, 2007; Homeijer et al., 2014]. Moreover, the infrasound [Marcillo et al.,
2012; Anderson et al., 2018], as well as the meteorological community are integrat-
ing MEMS sensors into the existing sensor network [Huang et al., 2003; Fang et al.,
2010; Ma et al., 2011].

In this work, the INFRA-EAR is presented, which has been designed as a low-
cost mobile multidisciplinary measurement platform for geophysical monitoring, in
particular, infrasound. The platform uses various digital MEMS sensors embedded
on a Printed Circuit Board (PCB). A programmable microcontroller unit, as well
embedded on the PCB, controls the sensors’ sampling frequency and establishes
the energy supply for the sensors and the data-communication and storage. A
waterproof casing protects the mobile platform against the weather. The casing is
created with a stereo-lithography (SLA) Formlabs 3D printer, using durable resin.
Because of its low power consumption, the system can be powered by a battery or
solar panel.

Previous studies have presented similar mobile infrasound sensor designs [An-
derson et al., 2018; Marcillo et al., 2012; RBOOM, 2017], which have shown how
low-cost, miniature sensors can complement existing measurement networks (e.g.,
volcanic and earthquake monitoring). Those platforms differ from the INFRA-EAR
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by dimensions, multidisciplinary purpose, and digital design. All sensors of the
INFRA-EAR have a built-in Analog-Digital-Converter (ADC), which directly gen-
erates digital outputs. Therefore, the INFRA-EAR can be easily integrated into the
existing hardware and software sensor infrastructure. Furthermore, the casing de-
sign and development is based on the latest technology of 3D printing. Furthermore,
the platform design and purpose are adaptive to various monitoring campaigns.

The ability to detect infrasonic signals of interest depends on the signal’s strength
relative to the noise levels at the receiver side, the signal to noise ratio (SNR). The
signal strength depends on the transmission loss that a signal experiences propa-
gating from source to receiver. Infrasound measurements benefit from insights into
the atmospheric noise levels (e.g., wind conditions), the meteorological conditions
(e.g., barometric pressure, temperature, and humidity), as well as the movement
and positioning of the sensors (e.g., accelerations) [Evers, 2008].

While there are clear benefits associated with a MEMS-based mobile platform
(e.g., cheap and rapid deployments to (temporarily) increase coverage), MEMS sen-
sors are known to be less accurate than conventional high-fidelity equipment. Espe-
cially digital MEMS sensors, which have a built-in ADC, are known for their high
self-noise level. Nonetheless, they could be used near geophysical sources which
generate high SNR signals. Several geophysical measurements [Marcillo et al., 2012;
Grangeon and Lesage, 2019; Laine and Mougenot, 2007; D’Alessandro et al., 2014]
show the benefit of MEMS sensors, and how they complement the existing sensor
network.

In this section , the design and calibration of the INFRA-EAR is discussed. The
remainder of this chapter is organized as follows. Section 2.1.2 introduces the mo-
bile platform, its design and features. Section 2.1.3 describes the various sensors
embedded on the platform and the relative calibrations with high-fidelity reference
equipment. Firstly, a novel miniature digital infrasound sensor is introduced, and
its theoretical response is derived. Secondly, the barometric MEMS sensor is dis-
cussed. A wind sensor which relies on thermo-resistive elements is discussed next,
followed by a discussion of the on-board MEMS accelerometer. In section 2.1.4,
the platform’s overall performance and design are discussed and summarized, from
which the conclusions are drawn.

2.1.2 Mobile platform design

Circuit design

The mobile platform contains a PCB created to embed the MEMS sensors and
facilitate the electrical circuits. The PCB carries a Digital Low Voltage Range
(DLVR) differential pressure sensor, an anemometer, as well as an accelerometer and
barometric pressure sensor, in addition to a GPS for location and timing purposes
(Figure 2.1-a). The sensors are controlled by a MSP430 microcontroller, which is
integrated on the PCB, and are powered by an 1800 mAh lithium battery. Protecting
the PCB is done with a weather- and waterproof casing, which has been designed
(Figure 2.1-b) with the dimensions 110mm x 38mm x 15mm.

The communication between the microcontroller and MEMS sensor on the PCB
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is either done by Inter-Integrated Circuit (I2C) or Serial Peripheral Interface (SPI),
and depends on the sensor and personal preference. Both communication methods
are bus protocols and allow for serial data transfer. SPI is full-duplex communi-
cation, which is simultaneous communication between microcontroller and MEMS
sensor. I2C is half-duplex and does not allow simultanious communication. There-
fore, I2C has the option of clock stretching, and the communication is stopped
whenever the MEMS sensor cannot send data. Besides, I2C has built-in features
to verify the data communication (e.g., start/stop bit, acknowledgement of data).
Although the I2C protocol is favorable, it requires more power.

The microcontroller runs on self-made software, complementing the required
manufacturers electrical and communication protocols. The software allows deter-
mining the sample time, sample frequency, and data storage. The PCB includes
a 64 MB flash memory, which is used to store the data. The raw output of the
digital MEMS sensors are stored as bits, and the microcontroller performs no data
processing to save power consumption. To extract data, the platform needs to be
connected to a computer. There are no wireless communication possibilities.
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Figure 2.1: 3D CAD design of (a) the top of the PCB, (b) the casing, (c) the bottom of
the PCB with pressure dome, and (d) a picture of the actual platform. The PCB hosts;
a pressure dome (a-A/c-A), a barometric pressure sensor (a-B/c-B), a differential pres-
sure sensor (a-C/c-C), a PEEKsil Red series capillary (a-D), an accelerometer (a-F), an
anemometer (a-F) with the heating element (a-G), a microcontroller (a-H), a GPS (a-I),
and a lithium battery (a-J/c-J).



18 Atmospheric monitoring techniques

Casing design for pressure measurements

The mobile sensor platform is designed to measure atmospheric parameters. Hence,
a waterproof casing has been created, by a Formlabs SLA 3D printer [Formlabs, n.d.],
to protect the PCB. Because of the use of a durable resin, the casing is waterproof
and air-tight. At the bottom of the casing, a dome structure is integrated (Figure 1-
c), which acts as an inlet to both the absolute and differential pressure sensors. Note
that the dome is not connected to the inside of the casing. The inlets of both sensors
and a capillary are integrated within the dome designs and sealed with silicone glue,
avoiding water and air leakage. Moreover, a Gore-TEX air-vent sticker [Gore-TEX,
2020] is used to cover the dome, which allows airflow but restrains water and salt
in case of measurement near or above the ocean.

Air turbulence can generate dynamic pressure effects or stagnation pressure at
the pressure dome [Raspet et al., 2019], which results in higher wind speeds. At-
mospheric measurements at altitude might therefore be influenced by stagnation
pressure [Bowman and Lees, 2015; Smink et al., 2019; Krishnamoorthy et al., 2020].
The stagnation pressure increases with increasing wind speed (Bernoulli’s Equation).
So, as winds speeds increase exponentially with altitude, the stagnation pressure is
expected to increase [Raspet et al., 2008].

It has been suggested that the application of a so-called ’quad-disc’ might re-
move the stagnation pressure. Quad-disks are developed to cancel dynamic pressure
effects, and helps detect slower static pressure changes or acoustic perturbations.
Theoretical analysis of the quad-disk indicates that it should remove sufficient dy-
namic pressure to be useful for turbulence studies [Wyngaard and Kosovic, 1994].
However, recent studies have shown a minimum effect of quad-disks on infrasound
recordings [Krishnamoorthy et al., 2020]. The casing of the INFRA-EAR is de-
signed and developed for mobile and rapid deployments at remote places, adding
a quad-disk to the design will expand the dimensions of the casing. Moreover, the
pressure dome is positioned at the bottom of the casing, not orientated towards
the dominant wind direction, in order to minimise the stagnation pressure on the
pressure sensors.

Furthermore, within this design the casings volume acts as a backing volume
for the differential pressure sensor. One inlet of the differential pressure sensor is
attached to the outside (via the dome) while the casing encloses the other inlet.
A PEEKsil Red series capillary is attached to the outside of the casing, ensuring
pressure leakage between the backing volume and the atmosphere.

GPS

For measuring geophysical parameters on a high-resolution temporal scale, it is
crucial to know the position and time of the measurement at high precision. To
maintain knowledge regarding the position, a GNS2301 GPS is mounted on the
PCB [Texim-Europe, 2020]. The GPS has a spatial accuracy of ± 2.5 m, up to 20
km altitude.

Besides providing an accurate position, the GPS also prevents drifting of the
microcontroller’s internal clock under the influence of, for example, weather. The
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time root mean square jitter, the deviation between GPS and actual time, is ± 30
nanoseconds.

2.1.3 Infrasound sensor

The human audible sound spectrum is approximately between 20 to 20,000 Hz.
Frequencies below 20 Hz or above 20 kHz are referred to as infrasound and ul-
trasound, respectively. The movement of large air volumes generates infrasound
signals with amplitudes in millipascals’ range to tens of pascals. Examples of infra-
sound sources include earthquakes, lightning, meteors, nuclear explosions, interfer-
ing oceanic waves and surf [Campus and Christie, 2010]. Detection of infrasound
depends on the signal’s strength relative to the noise levels at a remote sensor
(array), i.e., the signal-to-noise ratio. The signal strength depends, in turn, on
the transmission loss that a signal experiences, while propagating from source to
receiver [Waxler and Assink, 2019]. Local wind noise conditions predominantly de-
termine the noise [Raspet et al., 2019], in addition to the sensor self-noise. Due to
the presence of atmospheric waveguides and low absorption at infrasonic frequency
[Sutherland and Bass, 2004], infrasonic signals can be detected at long distances
from an infrasonic source. Assumed that the source levels are sufficiently high so
that the long-range signal is above the ambient noise conditions on the receiver side,
and the sensor is sensitive enough to detect the signal.

The infrasonic wavefield is conventionally measured with pressure transducers
since such scalar measurements are relatively easy to perform. Those measurements
can either be performed by absolute or differential pressure sensors. An absolute
pressure sensor consists of a sealed aneroid and a measuring cavity connected to
the atmosphere. A pressure difference within the measuring cavity will deflect the
aneroid capsule. The mechanical deflection is converted to a voltage [Haak and
De Wilde, 1996]. The measurement principle of a differential infrasound sensor relies
on the deflection of a compliant diaphragm, which is mounted on a cavity inside the
sensor. The membrane deflects due to a pressure difference inside and outside the
microphone, which occurs when a sound wave passes. A pressure equalization vent
is part of the design to make the microphone insensitive to slowly varying pressure
differences originating from long-period changes in weather conditions [Ponceau and
Bosca, 2010].

Acoustic particle velocity sensors constitute a fundamentally different class of
sensors that measure the airflow over sets of heated wires. This information quan-
tifies the 3-D particle velocity at one location, since the measurement is carried out
in three directions [De Bree et al., 2003; Evers and Haak, 2000]. Although such
sensors’ design is more involved and the sensors are far more costly, these sensors
do allow for the measurement of sound directivity at one position, besides just the
loudness.

Various studies show sensor self-noise and sensitivity curves of infrasound sensors
[Ponceau and Bosca, 2010; Merchant, 2015; Slad and Merchant, 2016; Marty, 2019;
Nief et al., 2019]. The IMS specifications state that the sensor self-noise should
be at least 18 dB below the global low noise curves at 1 Hz [Brown et al., 2014],
generated from global infrasound measurements using the IMS. Typical infrasound
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sensor networks, such as the IMS, use analogue sensors connected to a separate
data logger to convert the measured voltage differences to a digital signal. The
sensor’s characteristic sensitivity determines the sensor resolution, i.e., the smallest
difference that the sensor can detect. The resolution of the built-in ADC and the
digitizing voltage range determine the datalogger’s resolution. Current state-of-the-
art data loggers have a 24-bit resolution. New infrasound sensor techniques involve
digital outputs since the ADC conversion is realized inside the sensor [Nief et al.,
2017, 2019].

Sensor design

In this section , the mobile digital infrasound sensor’s design is discussed, the KNMI
mini-microbarometer (mini-MB). The design of this instrument is based on the
following requirements. The sensor should have a flat, linear, response over a wide
infrasonic frequency band, e.g., 0.05 - 10 Hz. The sensor should be sensitive to
the range of pressure perturbations in this frequency band, which are in the range
of millipascals to tens of pascals. Moreover, the sensor and logging components’
self-noise should be below the ambient noise levels of the IMS [Brown et al., 2014].
In addition to the sensor capabilities, there are additional constraints regarding
dimensions and energy consumption as well as cost.

In this study, infrasound is measured with a differential pressure sensor. The
measurement principle relies on the deflection of a diaphragm, which is mounted
between two inlets. One inlet is connected to the atmosphere while the other is
connected to a cavity (Figure 2.2). The digital MEMS DLVR-F50D differential
pressure sensor from All Sensors Inc. [All-Sensors, 2019] is used as a sensing element
within the mini-MB. This sensor has a 16.5mm x 13.0mm x 7.3mm dimension and
has a linear response between ± 125 Pa with a maximum error band of ±0.7 Pa.
A Wheatstone bridge senses the diaphragm’s deflection by measuring the changes
in the piezo-resistive elements attached to the diaphragm. The sensor’s output is
an analogue voltage, which is subsequently digitized by the built-in 14-bit ADC,
offering a maximum resolution of 0.02 Pa/count.

Theoretical response

To measure differential pressure, the atmosphere is sampled through inlet A, which
has a low resistance (R1), and is connected to a small fore-volume (V1). Inlet B
is connected to a backing volume (V2), which is connected to the atmosphere by
capillary that acts as a high acoustic resistance (R2), which determines the low-
frequency cut off. Due to an external pressure wave, an observed pressure difference
between the two inlets occurs and causes a deflection of the membrane (Cd) (Figure
2.2-a).
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Figure 2.2: The KNMI mini-MB design with the DLVR sensor and the parameters as listed
in Table 2.1 (a) and the electrical circuit of the mini-MB (b). Panel (c) visualises the
DLVR sensor.
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A theoretical response, D(iω) for a differential pressure sensor, as function of
the angular frequency ω(= 2πf), has been derived by Mentink and Evers [2011]
following Burridge [1971]:

D(iω) = iωτ2
1 + iωτ2A+ (iω)2τ1τ2B

(2.1.1)

where,

A = 1 + τ1
τ2

+ R1

R2
+ Cd
C2
, B = 1 + Cd(

1
C1

+ 1
C2

) (2.1.2)

τj = RjCj , Cj = Vj
Patmγ

(2.1.3)

and Patm indicates the ambient barometric pressure, and γ is the thermal con-
duction of air. τj represent the time constants, and depend on R1, and R2, which
are the resistances of the inlet and capillary, and C1, and C2, the capacities of the
fore and backing volume.

KNMI mini-MB sensor specifications
Components

Inlet length l1 = 3x10−2m
Capillary length l2 = 5x10−2m
Inlet diameter a1 = 2x10−2m
Capillary diameter a2 = 1x10−4m
Diaphragm sensitivity Cd = 7.5x10−11m4s2kg−1

Conditions
Ambient pressure Patm = 101x103Pa
Isothermal gas constant γiso = 1
Adiabatic gas constant γadi = 1.403
Thermal conductivity κc = 2.5x10−2 W m−1 K−1

Heat capacity ρ cp = 1.1x103 J m−3 K−1

Parameters
Inlet resistance R1 = 8.7x103 kg m−4 s−1

Capillary resistance R2 = 2.3x1010 kg m−4 s−1

Fore volume V1 = 4.5x10−7 m 3

Backing volume V2 = 16.5x10−6 m 3

Size fore volume L1 = 2x10−4m
Size backing volume L2 = 4x10−4m

Table 2.1: KNMI mini-MB components, parameter values and standard conditions used in
the computations.



2.1 The INFRA-EAR; a cost-efficient mobile multidisciplinary measurement platform 23

Figure 2.2-a represents the sensor setup from an acoustical perspective, where
Figure 2.2-b represents the electrical analogues of the sensor. The acoustical pressure
difference (p′ = p′1−p′2) and volume flux (f ′) are interpreted as an electrical voltage
(U = U1 − U2) and current (I). The equivalent of the electrical resistance (R)
corresponds to the ratio between acoustical pressure and the volume flux, whereas
the capacitance (C) relates to the ratio of volume and ambient barometric pressure.
The diaphragm’s mechanical sensitivity (Cd) is the ratio of volume change and
pressure change [Zirpel et al., 1978].

From an analysis of Eq. 2.1.1, it follows that inlet A dominates in the high-
frequency limit. Hence, 1/2πτ1 indicates the high-frequency cut-off of the sensor:

lim
ω→+∞

D(iω) ∼ 1
iωτ1B

= 1
iωR1V1
Patm

(1 + Cd(PatmV1
+ Patm

V2
))

(2.1.4)

While at low frequencies it is obtained that frequencies much bigger than 1/τ2
are averaged out. Therefore the low-frequency limit can be determined as:

lim
ω→0

D(iω) ∼ iωR2V2

Patm
(2.1.5)

which is controlled by the characteristics of the capillary, R2, and the size of the
backing volume, V2. The acoustical resistance of the inlet R1 and the capillary R2
is described by using Poiseuille’s law [Washburn, 1921], which couples the resistance
of airflow through a pipe (i.e., an inlet or capillary) to its length lj and diameter aj ,
by:

Rj = 8ljη
πa4

j

(2.1.6)

Where η stands for the viscosity of air, which equals 18.27 µPa·s at 18◦C. Com-
bining Equations 2.1.5 and 2.1.6 results in the theoretical low-frequency cut-off:

fl ∼
Patm

2πR2V2
(2.1.7)

Besides the high and low ends of the response, it is of interest to determine the
sensor response behavior within the passband (τ−1

2 < ω < τ−1
1 ).

D(iω) ∼ (τ−1
2 < ω < τ−1

1 ) = 1
1 + τ1/τ2︸ ︷︷ ︸

1

+R1/R2︸ ︷︷ ︸
2

+Cd/C2︸ ︷︷ ︸
3

(2.1.8)

The three contributions in the denominator influence the passband behaviour of
the sensor:

[1] A broadband frequency response depends on a constant pressure within the
reference volume over the frequencies of interest (i.e., τ1 � τ2)

[2] The pressure difference at the diaphragm is determined by the relative acous-
tical resistances connected to the sensor. The stability of the sensor response
is assured by the capillary’s large resistance, because of which R1 � R2.
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[3] The sensor response depends on the ratio between the volumetric displacement
of the diaphragm (Cd) versus the reference volume (C2). For the mini-MB,
this term can be neglected.

Figure 2.3 shows the theoretical sensor frequency response for amplitude (Fig.
2.3-a) and phase (Fig. 2.3-b) for isothermal (red) and adiabatic (blue) behavior.
The transitional behaviour of the sensor response between isothermal and adiabatic
behaviour will be discussed in the next section.
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Figure 2.3: The theoretical sensor frequency response function for (a) amplitude and (b)
phase in the case of isothermal and adiabatic gas behaviour in blue and red, respectively.
The solid black line indicates the corrected sensor response by γ (c). The dotted and dashed
line indicate the high-frequency shifting cut-off due to Rgore.
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Adiabatic-Isothermal transition

Due to the presence of heat conduction within the sensor, air’s compressive be-
haviour is neither isothermal nor adiabatic. Instead, a transition from isothermal
to adiabatic behaviour is expected in the infrasonic frequency band [Richiardone,
1993; Mentink and Evers, 2011]. In the transition zone, the heat capacity ratio can
be effectively described by:

γ = Λγ (2.1.9)
where Λ indicates the correction factor, to heat capacity ratio γ. A difference in

Λ will influence the capacitance values of the fore and backing volumes (Eq. 2.1.3).
Whether a sound wave in an enclosure behaves isothermally or adiabatically

depends on the size of the thermal penetration depth δt relative to characteristic
length L of the enclosure. L is defined as the ratio between the enclosure’s volume
and surface, i.e. L = V

S . The thermal penetration depth is specified as the gas layer
thickness in which heat can diffuse through, during the time of one wave period
and is derived as δt =

√
2α
ω . Where α = κc

ρcp
indicates the thermal diffusivity,

defined as ratio of thermal conductivity (κc) and heat capacity per unit volume
(ρcp). Adiabatic gas behaviour is obtained when δt

L � 1, isothermal gas behaviour
when δt

L � 1. The correction factor Λ is a function of δt/L, and is thus frequency-
dependent, which can be derived as:

|Λ| =
√
X2 + Y 2, arg(Λ) = π

2 + arctan(X
Y

) (2.1.10)

where

X = x(γadi − 1)− γadi, Y = y(γadi − 1) (2.1.11)
x and y represent the real and imaginary components of a complex-valued function
Z( δtL ), which is dependent on the geometrical shape of the enclosure and the thermal
pentration depth. In between the adiabatic and isothermal limits, the correction
factor Λ describes the transition from an adiabatic heat ratio (i.e., γ = 1.4) to an
isothermal heat ratio (i.e., γ = 1). The transition frequency f̄ defines the point
where the maximum correction of Λ occurs, i.e., for which Lδt ≈ 1, from which
follows that f̄ = α

πL2 .
In the case of the mini-MB, the fore and backing volume have different shapes and

sizes. The backing volume can be described as a long cylinder, L2, whereas the fore
volume has a rectangular shape, L1. According to those geometries, the transition
frequency f of the fore and backing volume are 0.5 and 2.2 Hz, respectively. Since
f1 · τ1 � 1 and f2 · τ2 � 1 the sensor response above τ−1

1 is adiabatic, while the
response below τ−1

2 is isothermal. Therefore, the thermal conduction correction’s
main effect is found to be in the passband region (Eq. 2.1.8).

The mini-MB has been designed to have a broadband response, therefore only
the third term of the denominator is influenced by the correction factor. The effect
of thermal conduction to the response is due to ratio Cd

C2
, which means that the

correction factor is characterized by the geometric component of the backing volume.
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Z(δt
L

) = xz + iyz = 1− 2J1(ζ)
ζJ0(ζ) (2.1.12)

here Z indicates the characteristic correction assuming a long cylinder [Mentink
and Evers, 2011]. ζ =

√
−2i Lδt indicates the ratio of L to δt, while J0 and J1 are

zeroth and first order Bessel functions of the first kind.
The corrected theoretical sensor response is obtained by substituting Cj = Cj

Λ .
Figure 2.3-c shows the value of γ in the transaction zone between isothermal and
adiabatic gas behaviour. The black line in Figure 2.3-a and b indicates the corrected
theoretical sensor response.

In the case of the mini-MB the isothermal-to-adiabatic transition results in an
effect on the amplitude of ∆|D| = (γ − 1)Cd

C2
= 2.8% and on the phase of less than

a degree. Note that Cd
C2
� 1 implies that the backing volume is relatively large such

that the change in gas behaviour does not influence the sensitivity of the diaphragm.

Gore-Tex air-vent

As discussed in section 2.1.2., the high and low-frequency cut-off are controlled by
the resistivity of the inlet and backing volume, respectively. A Gore-Tex V9 sticker
is added to the opening of the casing’s pressure dome, which changes the resistiv-
ity of the inlets. The Gore-Tex V9 vent allows an airflow of 2x10−8 m3 s−1 m−2.
Poiseuille’s second law, Equation 2.1.6, describes the airflow resistivity caused by
an open pipe, and can be re-written as;

Rj = ∆p
qv

(2.1.13)

where ∆p indicates the pressure difference between both sides of the pipe, and
qv the volumetric airflow.

For the differential pressures that the mini-MB sensor is able to sense, rang-
ing from 0.02 to 125 Pa, the equivalent resistivity Rgore ranges from 5x105 to
3.125x108 kg m−4 s−1, with a Gore-Tex air-vent area of 5x10−2 m2. Comparing
the resistivity of the air-vent with the resistivity values of the capillary and the inlet
of the sensor, it follows that the air-vent will only influence the inlet’s resistivity
(Table 2.1). Assuming the vent behaves linearly, the high-frequency cut-off of the
sensor decreases to a value of around 15 Hz. Figure 2.3 shows the theoretical trans-
fer function for the mini-MB with a Gore-Tex air-vent attached to the inlet. The
high-frequency cut-off varies between the dotted line and the dashed line, due to
varying values of Rgore.

Experimental response

The theoretical sensor response describes the high and low-frequency cut-off. From
Equation 2.1.7 and the parameters listed in Table 2.1, a theoretical low-frequency
cut-off value of 0.042 Hz can be calculated. This value can be estimated experi-
mentally by application of a sudden over or under pressure (i.e., impulse response)
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to the sensor [Evers and Haak, 2000]. The impulse forces the diaphragm out of
equilibrium. The capillary and the size of the backing volume control the time to
return into equilibrium again. The time it takes for the diaphragm to reach equi-
librium again corresponds to a characteristic relaxation time proportional to the
low-frequency cut-off.

The outcome of the experimental low-frequency cut-off was determined to be
0.044±0.0025Hz. The theoretical low-frequency cut-off falls within the error margins
of the experimental cut-off frequency. The small difference between both is assumed
to be due to experimental errors in timing the relaxation time as well as small
imperfections in the used capillary [Evers, 2008]. It follows from Eq. 2.1.6 that the
low-frequency cut-off is inversely proportional to the radius to the fourth power.
Hence, a one per cent deviation in the capillary radius will lead to a four per cent
deviation in low-frequency cut-off.

Sensor self-noise

The resolution, the smallest change detectable by a sensor, depends on the sensor
measurement range and the number of ADC bits. Having a linear response over a
pressure range of ± 125 Pa and a 14-bit built-in ADC results in a 0.02 Pa/count
resolution. The accuracy of the measurement depends, besides the ADC resolution,
on the sensor self-noise. The self-noise corresponds to the diaphragm’s deformation
caused by the mass of the diaphragm plus the electrical noise from the digitiser. As
it is a digital sensor, it is impossible to follow the conventional methods to determine
self-noise [Sleeman et al., 2006]. Therefore the self-noise is determined by opening
both inlets to a closed pressure chamber, ensuring no pressure difference between
them. From this experiment, it follows that the self-noise falls within the sensor’s
maximum error band, ±0.7 Pa [All-Sensors, 2019]. Since no backing volume is used,
and the cavities at both sides of the diaphragm are small, the relation Cd

C2
changes

(Eq. 2.1.8). Due to this, it is necessary to correct the sensor response for the
adiabatic to isothermal transition.

The self-noise consistency is determined by calculating the Power Spectral Den-
sity (PSD) curves for each hour over a test period of 24 hours [Merchant and Hart,
2011]. Figure 2.4-a shows in black the average 90 percentile confidence interval of
the self-noise. Note that the instrumental self-noise exceeds the global low noise
model [Brown et al., 2014] at frequencies above 0.4 Hz. Compared to high-fidelity
equipment that typically falls entirely below the global low noise models, such self-
noise levels are relatively high, yet comparable to levels attained by similar sensor
designs [Marcillo et al., 2012]. Furthermore, note that the self-noise follows the dy-
namic range of a 12-bit ADC, as indicated by the gray dotted line [Sleeman et al.,
2006]. The sensor has a maximum ’no missing code’ of 12-bits, the effective number
of bits [All-Sensors, 2019].
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Figure 2.4: PPSD of pressure spectra recorded with the mini-MB (a) and the Hyperion sensor
(b) for a week of continuous recording in dB re. 20−6 Pa2/Hz. The dashed lines indicate
the infrasonic high and low ambient noise levels [Brown et al., 2014]. Panel (a) shows the
PSD of the 24hr self-noise recording of the mini-MB in black, and the theoretical self-noise
for a 12-, 13-, and 14-bit ADC as the gray dashed lines. Panels (c) and (d) visualise the
absolute difference T in amplitude and phase between the mini-MB and the Hyperion as a
function of frequency. Panel (e) displays the differences in sound pressure level measured
by the mini-MB and the Hyperion sensor for the various frequencies.
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Sensor comparison

A comparison between the mini-MB and a Hyperion IFS-5111 sensor [Merchant,
2015] is made to assess the mini-MB performance relative to the reference Hyperion
sensor. Both sensors have been placed inside a cabin next to the outside sensor
test facility at the leading author’s institute. There is a connection to the outside
pressure field through air holes in the wall of the cabin. The Hyperion sensor has
been configured with a high-frequency shroud. Figure 2.4-a and b show the PPSD
[Merchant and Hart, 2011] of the data recorded by the mini-MB and the Hyperion
sensor, respectively. Both sensors resolve the characteristic microbarom peak around
0.2Hz [Christie and Campus, 2010]. The spectral peaks above 10 Hz correspond to
resonances that exist inside the measurement shelter.

A direct comparison of the pressure recordings are shown in Figures 2.4-c, -d,
and -e. Figure 2.2-c shows the absolute difference in amplitude over frequency,
where panel d indicates the phase difference between both sensors. Panel e shows
the relative difference between the mini-MB and the Hyperion sensor. The sensors
are in good agreement over the passband frequencies. A larger deviation is shown
for the low end (f < 0.07 Hz) and high end frequencies(f > 8 Hz). At frequencies
between 0.1 and 0.5 Hz, the pressure values are positively biased by 5 ± 1 dB,
which equals a measurement error by the KNMI mini-MB of ± 0.005 Pa (Figure
2.4-e). Above 1 Hz, the pressure values are biased by 10 ± 5 dB, which equals a
measurement error of ± 0.02 Pa.

The high-frequency deviation is due to the relatively high noise level of the mini-
MB. For the higher frequencies, the mini-MB PPSD follows the 12-bit dynamic
range. Only in case of significant events or loud ambient noise, the sensor can sense
pressure perturbations in the high-frequency range. Nonetheless, the mini-MB falls
within a 30 dB error range over the entire frequency band compared to the Hyperion
IFS-5111 sensor.

2.1.4 Barometric pressure sensor

The detectability of infrasound is directly linked to wind noise conditions and the
atmosphere’s stability in the infrasound sensor’s surrounding since noise levels are
increased when turbulence levels are high. Therefore, it is beneficial to have simul-
taneous measurements of the basic meteorological parameters, i.e., pressure, wind
and temperature.

The barometric pressure is sensed by the LPS33HW sensor [STMicroelectronics,
2020a], which is part of the pressure dome. Similarly to the differential pressure
sensor, piezo-resistive crystals measure the barometric pressure.

Calibration tests are performed within a pressure chamber, in which a cycle of
static pressures between 960 and 1070 hPa can be produced. Besides the MEMS
sensor, the chamber is equipped with a reference sensor. This procedure results in
a calibration curve, which describes the pressure-dependent systematic bias. After
correcting for the bias, the LPS sensor has an accuracy of ± 0.1 hPa, i.e., the
LPS sensors measure values within ± 0.1 hPa of the value measured by the KNMI
reference sensor. Furthermore, the LPS sensor has been field-tested (Figure 2.5-a),
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along with a Paroscientific Digiquartz 1015A barometer, which has an accuracy of
0.05 hPa. From the distribution of observations, it can be estimated that the LPS
sensor has a precision of ±0.1 hPa for 93% of the time (Figure 2.5-b). For the
remainder, the maximum deviation was ±0.15 hPa.
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Figure 2.5: A comparison between the Barometric MEMS sensor (red) and a KNMI reference
barometer (black). Panel (a) shows five days of barometric pressure recordings using both
sensors, while panel (b) displays the difference in measured barometric pressure by the
MEMS and the reference sensor.

2.1.5 Wind sensor

The pressure field at infrasonic frequencies consists, in addition to coherent acous-
tic signals, to a large degree of pressure perturbations due to wind and turbulence
[Walker and Hedlin, 2010]. This turbulent energy is present over the complete infra-
sonic frequency range with a typical noise amplitude level decrease with increasing
frequencies, following a f−5/3 slope [Raspet et al., 2019].

To reduce wind turbulence interference with the acoustic perturbations, a Wind-
Noise-Reduction-System (WNRS) can be put in place [Walker and Hedlin, 2010;
Raspet et al., 2019]. Most WNRS filters consist of a non-porous pipe rosette, with
low impedance inlets at each pipe’s end. All pipes are connected to four main pipes,
which connect to the microbarometer. Doing so, the atmosphere is sampled over a
larger area. The non-acoustic pressure perturbations are not coherent over this area
in contrast to acoustic waves. Hence, the non-acoustic perturbations are filtered
out.

The sensor presented in this chapter is designed for mobile sampling campaigns.
In such cases, the application of similar WNRS filters cannot be attained. The SNR
may decrease due to wind turbulences. Nonetheless, implementing the wind mea-
surements of the anemometer provides insight into the wind conditions. Therefore,
a simultaneous measurement of wind and infrasound provides better insight into the
infrasonic SNR conditions.
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Sensor design

A 2D omnidirectional heat mass flow sensor has been designed to measure the wind
conditions, which is a robust and passive anemometer (Figure 2.6-a). The sensor
is built with a central heating element, which heats to approximately 80◦C, and is
circularly surrounded by six TDK thermistors [TDK, 2018]. Depending on the wind
direction and speed, the temperature field around the center element is modified.
The wind speed and direction can be estimated from the 2D temperature gradient,
i.e., from its absolute value and direction.

Theoretical response

The six sensing elements are placed within a distance of one centimeter from the
heating element, while two thermistors and the heating element are at a spatial
angle of 60◦. The thermistors measure the temperature gradient caused by the
wind flow since the resistance is strongly sensitive to temperature. The thermistors
are made of semiconductor material and have a negative temperature coefficient.
The resistance decreases non-linearly with increasing temperature. The Steinhart-
Hart equation approximately describes the temperature T as a function of resistance
value RΩ [Steinhart and Hart, 1968]:

1
T

= CΩ1 + CΩ2 ln(RΩ) + CΩ3 ln(RΩ)3 (2.1.14)

where CΩ1 , CΩ2 , and CΩ3 are the thermistor constants according to the man-
ufacturer [TDK, 2018]. However, they can as well be determined by taking three
calibration measurements, for which the temperature and resistance are known, after
which a linear system of equations can be solved simultaneously. Figure 2.6-b shows
the sensitivity curve for the TDK thermistor. The thermistor has a relative value of
1Ω at 25◦C, and a precision of ±4%/◦C, which leads to a 0.05◦C error. This error
value is placed in context by modeling the expected temperature difference under
representative meteorological conditions in the next section .

Numerical sensor response

The heating element needs to transfer a minimum temperature difference around the
sensing elements (i.e., the sensing elements error). A numerical model has been built
in ANSYS [ANSYS, n.d.] to define the amount of temperature difference around
the sensing elements under different meteorological circumstances. The model is a
first approximation of the sensitivity and is based on homogeneous laminar airflow
passing by the sensor. Turbulent flow, along the anemometer, caused by the sensor
design or casing, generates uncertainties within the measurements.

This first approximation of sensitivity follows a numerical forward modeling tech-
nique to approximate the heat probe’s shape and intensity at a sensing element. The
model was run at stable meteorological parameters (i.e., 8◦C air temperature, 50%
humidity, and 10 m/s wind speed). The outcome shows that under those circum-
stances, the sensing element experiences a temperature difference of around 4◦C.
Together with the outcome of the thermistors’ sensitivity curve, it is concluded that
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the designed sensor can resolve this airflow and is used to estimate wind speed and
direction.

Conversion of sensor output into atmospheric parameters

To convert the measured resistivity into atmospheric parameters, a 2D planar tem-
perature gradient has been estimated numerically from the discrete set of mea-
surements. The measurement resistivities have been transformed into temperature
measurements following Eq. 2.1.14. Based on those temperatures, a 2D numeri-
cal temperature gradient has been reconstructed. The problem is analogous to the
estimation of the wave-front directivity from travel time differences [Szuberla and
Olson, 2004].

In the present case, there are N = 6 discrete sample points, each with an
rj = (xj , yj) coordinate and a temperature value Tj . The total differential of the
temperature describes the variation of temperature T (x, y) as a function of x and
y:

dT = ∂T

∂x
dx+ ∂T

∂y
dy. (2.1.15)

From equation 2.1.15, it follows that we can determine the two dimensional gra-
dient ∇T = (∂T∂x ,

∂T
∂y ) by setting up a system of N equations. In this case, the

number of unknowns is two, and thus the gradient could be estimated by two mea-
surements. However, in practice, errors are introduced due to measurement errors.
Therefore the set of equations becomes inconsistent, which leads to nonsensical so-
lutions. The unknown set of parameters is solved by over-determining the system
in a least-squares sense to overcome this problem. Equation 2.1.15 can be rewritten
in terms of a matrix-vector system:

y = Xp + ε (2.1.16)
where y represents the temperature difference between two measurement points,
matrix X represents the M = N(N−1)

2 pair-wise separations and p represents the
temperature gradient ∇T . It is assumed that the measurement errors ε can be
described by a normal distribution, i.e. a random variable with mean E(ε) = 0 and
variance V ar(ε) = σ2. It can be been shown that the least-squares estimate of p,
here labeled p̂, can be obtained by solving the following equation:

p̂ = (X†X)−1X†y (2.1.17)

px = p̂x
p̂2
x + p̂2

y
,py = p̂y

p̂2
x + p̂2

y

(2.1.18)

where † represents the transpose operator, the solution satisfies equation 2.1.16
with the constraint that the sum of squared errors is minimized. The matrix X and
the error term ε determine the solution’s accuracy. If a Gaussian distribution can
represent the measurement errors, it can be shown that the least-squares solution is
unbiased.
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Based on the 2D reconstruction of the temperature gradient (Equation 2.1.18),
the wind direction and speed is resolved, with an estimated accuracy. Furthermore,
this method allows determining the uncertainty based on geometric sensor set-up
[Szuberla and Olson, 2004]. Figure 2.6-c shows the least-squares error analyses of
the sensor design (Figure 2.6-a). It stands out that the uncertainty increases when
one element is positioned close to the wind flow (i.e., at 60◦).

Reference calibration

Experimental calibration of the anemometer has been performed at KNMI’s cal-
ibration lab. The calibration lab features a wind tunnel, which generates a lam-
inar airflow ranging between 0 - 20 m/s. Within the wind-tunnel, two mechani-
cal anemometers are installed, which serve as reference sensors. With its MEMS
anemometer, the mobile platform is installed right below one of the reference sensors
to ensure that the mobile platform does not obstruct the laminar flow in the tunnel.

The calibration procedure consists of multiple independent calibration tests that
will be described next. First, the sensor is placed inside the wind tunnel while
there is no airflow. This way, the relative difference between the sensing elements is
determined, the so-called zero-measurement. The sensor is corrected for the internal
bias by correcting for the relative difference, which varies around ± 25 ohm. After
correcting the sensor bias, the sensor is placed within the horizontal plane (i.e., with
a pitch angle of 0◦) at different angles concerning the airflow. For every angle, the
flow speed is varied between 0 to 20 m/s.

The calibration shows that the measured resistance of the thermistors increases
with increasing wind speeds. High wind speeds increasingly cool down the ther-
mistors, resulting in higher resistances. Figure 2.6-d shows the six thermistors’
measured resistance over the actual wind speed.

The wind direction and the accuracy of the anemometers have been determined
according to Eq. 2.1.17. Three different sensor set-ups show the accuracy and
precision over increasing wind speeds as a function of directivity. The outcome of
calibration set-ups 1 (270◦), 2 (90◦), and 3 (60◦) are shown respectively in Figure 2.6-
c. The mean direction over all wind speeds, for the three set-ups, is 272◦, 89◦, and
57◦. The standard deviation shows that the sensor’s accuracy is ±5◦. Furthermore,
it is shown that the precision of the wind direction increases with increasing wind
speeds. The resolved wind speeds by the anemometer and the difference with the
correct wind speed are shown in Figure 2.6-e. The colors indicate the difference
between resolved wind speed and correct wind speed within the wind tunnel. The
mean deviation between resolved and correct wind speed is ±2 m/s. Again, it is
shown that the accuracy increases with increasing wind speeds.
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a. b. c.

d. e.

Figure 2.6: Analyses of the anemometer. Panel a shows the top view of the sensor design,
with the central heating element. Panel b indicates the resistivity of the thermistors over
temperature. The geometric sensitivity for the anemometer is shown in panel c. The
thermistors’ measured resistance for calibration set-up 2 (90◦), the colors are in agreement
with the sensor design (a), are shown in panel d. Panel e indicates the resolved wind
direction and wind speed compared with the actual direction (dotted lines) and correct wind
speed of set-ups 1 (270◦), 2 (90◦), and 3 (60◦). The gray shaded area indicates the ±5◦
accuracy interval.
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2.1.6 Accelerometer

The sensing element of the infrasound sensor on this platform is a sensitive di-
aphragm. Strong accelerations of the platform will cause a deflection of the di-
aphragm and may obscure infrasonic signal levels. In addition, such accelerations
may be misinterpreted as infrasound if no independent accelerometer information
is available. To be able to separate the mechanical response of the sensor from ac-
tual signals of interest, the platform measures accelerations for which the LSM303,
a 6-axis inertial measurement unit (IMU), is deployed [STMicroelectronics, 2020b].
The LSM303 consists of a 3-axis accelerometer and 3-axis magnetometer. The mea-
surement range of the accelerometer varies between approximately 2-16 g. The
magnetometer is out of the scope of this study and therefore neglected for the re-
mainder.

Accelerometers measure differential movement between the gravitational field
vector and its reference frame. In the absence of linear acceleration, the sensor
measures the rotated gravitational field vector, which can be used to calibrate the
sensor. A rotational movement of the sensor will result in acceleration. The IMU is
a digital sensor with a built-in 16-bits ADC and has a resolution of 0.06 mg when
choosing the lowest measurement range.

A comparison test has been carried out in the seismic pavilion of the author’s
institute. Inside this pavilion, the LSM is compared to a Streckeisen STS-2 seis-
mometer connected to a Quanterra Q330, as a reference sensor [KNMI, 1993]. Both
sensors are installed on pillars, to ensure a good coupling between the subsurface
and the sensor. The comparison test, which consist of 24 hours of recording, shows
that the accuracy of the LSM303 3-axis accelerometer is ±1.5 mg (1.5 cm/s2). Fig-
ure 2.7 shows the PPSDs of the comparison test between the MEMS and STS-2
sensors. While the sensors are deployed on the same seismic pillar and are thus
subject to similar seismic noise conditions, the MEMS sensor could not measure
ambient seismic noise [Peterson, 1993; McNamara and Buland, 2004] due to its high
self-noise level. The LSM accelerometer exceeds both the U.S. Geological Survey
New High Noise Model (NHNM) [Peterson, 1993] and the STS-2 reference sensor
by at least 35 dB.

It is therefore unlikely to use this IMU for monitoring purposes of ambient seis-
mic noise or teleseismic events. Previous studies drew similar conclusions concerning
the performance of MEMS accelerometers. Various calibration set-ups are consid-
ered while comparing MEMS accelerometers with conventional accelerometers of
geophones [Hons et al., 2008; Albarbar et al., 2009; Anthony et al., 2019], each
concluding that the accuracy of the MEMS is not sufficient for recording ambient
seismic noise. However, the MEMS sensor will resolve seismic signals of strong local
events or boisterous environments.
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Figure 2.7: PPSD’s of the LSM IMU accelerometer (a) and the Streckeisen STS-2 connected
to a Quanterra Q330 (b) for 24 hours of continuous recording in dB re. m2s−4Hz−1. The
dotted lines indicate the seismic high and low ambient noise levels [Peterson, 1993].
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2.1.7 Discussion and Conclusion

In this study, the constructional efforts and calibration protocols of the INFRA-
EAR are presented. The INFRA-EAR is a low-cost mobile multidisciplinary sensor
platform for the monitoring of geophysical quantities. It includes sensors for the
measurement of infrasound, acceleration, as well as barometric pressure and wind.

The platform uses the newest sensor technology, i.e., digital MEMS, which have
a built-in ADC. The MSP430 programmable microcontroller unit controls the sam-
pling of the ADCs and the storage of the data samples. A MEMS GPS is embedded
as well, to determine the positioning and to prevent clock-drift. Due to the small
dimension of MEMS, and their low energy consumption, the "infrasound-logger" is a
pocket-size measurement platform, powered by an 1800 mAh lithium battery. The
platform does not require any infrastructure (e.g., data connection, power supply
and specific mounting) like commonly used for the deployment of high-fidelity sys-
tems, which makes it mobile and allows rapid deployments and measurements at
remote places.

The INFRA-EAR is specifically designed to measure infrasound. The platform
hosts the KNMI mini-MB, a novel design with a pressure dome as inlet, the casing as
backing-volume with a PEEKsil capillary, and the DLVR-F50D as sensing element.
The low-frequency cut-off of mini-MB depends on the size of the backing volume,
and the capillary characteristics. The high-frequency cut-off depends on the mini-
MB inlet parameters, which is partly controlled by a Gore-Tex air-vent (section
2.1.4). The INFRA-EAR has a low-frequency cut-off frequency of 0.044 ± 0.0025
Hz, while the high-frequency cut-off varies between 15 and 90 Hz.

A comparison between the mini-MB and a Hyperion infrasound sensor [Mer-
chant, 2015] have shown the differences in amplitude and phase (Figure 2.4). The
mini-MB has an amplitude difference of 30 dB for the passband frequencies band
compared to the Hyperion sensor. The sensors are in good agreement for the lower
frequencies, and both sensors resolved the characteristic microbarom peak around
0.2 Hz [Christie and Campus, 2010]. However, the higher frequencies show small
deviations, which is due to the relatively high noise band of the mini-MB. From
8 Hz onward, the mini-MB PPSD follows the 12-bit dynamic range of the ADC.
Nonetheless, the mini-MB can resolve the infrasonic ambient noise field up to ± 8
Hz. Only in case of significant events or boisterous conditions, the sensor can sense
pressure perturbations in the higher frequency range.

When the wind-noise levels are high, infrasound signals can be masked and
remain undetected. Therefore, the sensor platform presents a passive anemometer to
give insights into the wind conditions during infrasonic measurements. The MEMS
anemometer is built up as an omnidirectional sensor. Numerical tests indicate that
the temperature difference caused by a wind flow around the thermistors should be
significant to be sensed. For validation, the anemometer has been calibrated inside
a wind tunnel. Figure 2.6 shows the outcome of the calibration tests. Based on this
outcome, one can conclude that the anemometer can determine wind direction and
wind speed, given that the sensor is calibrated. The sensor measures a difference in
resistance, which is converted into a temperature measurement. The temperature
measurements are used to reconstruct a 2D planar temperature gradient, which is
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used to determine the wind speed and direction. Based on the calibration tests
within the windtunnel, it is shown that the anemometer has a directional accuracy
of ±5◦, and a wind speed accuracy of ±2 m/s. Nonetheless, it is shown in Figure
2.6-c that the anemometer has geometrical uncertainties, due to it design. Future
2D hot-wire anemometers, should consider a minimum of 8 thermistors to exclude
geometric uncertainties [Szuberla and Olson, 2004].

Besides an anemometer and infrasound sensor, the platform also hosts a baro-
metric pressure sensor, an accelerometer, and GPS. Each sensor has been calibrated
and compared with a reference sensor. It was shown that the accelerometer has a
relatively high self-noise, which restricts the sensors ability to determine the ambi-
ent seismic noise [Peterson, 1993; McNamara and Buland, 2004]. Nonetheless, the
sensor will most likely resolve local transient events, which could possibly influence
the mini-MB’s sensitivity and its ability to resolve infrasonic sources. The baro-
metric sensor shows good agreement with a reference sensor (Figure 2.5). Absolute
pressure perturbations due to the weather are resolved. After calibration, the sen-
sor has a precision of ±0.1 hPa for 93% of the time. For the remainder maximum
deviation, compared to the reference sensor, was ±0.15 hPa.

Calibration tests, performed in this study, show that the MEMS sensors perform
less well than the commonly used high-fidelity sensors. These results are in line with
results from earlier studies (REF). The self-noise of the sensors is a critical prob-
lem. Furthermore, the MEMS sensors manufacturers highlight a significant change
of measurement drift [All-Sensors, 2019; TDK, 2018; STMicroelectronics, 2020a,b].
Hence, regular calibration is needed. Nonetheless, the MEMS sensor techniques are
continuously developing [Jacob et al., 2014; Johari, 2003]. The INFRA-EAR design
is such that the platform can be adjusted and improved by adding or swapping
sensors. Mobile sensor platforms, built up using PCB’s and digital MEMS sensors,
are therefore scalable, flexible, and ready for various geophysical measurements.

In addition, a low-cost mobile multidisciplinary sensor platform can comple-
ment existing high-fidelity geophysical sensor networks. This study shows that, as
long as the MEMS are well-calibrated, they complement existing sensor networks.
Therefore, mobile platforms such as the INFRA-EAR could contribute significantly
to providing observations during remote or rapid deployments (e.g., meteorological
towers, weather balloons, and scientific balloons). Although the sensor data does
not fully satisfy the measurement requirements, the application of low-cost MEMS
sensor enables measurements at much higher spatial resolution. Such deployments
allow for increasing the SNR. This can be realized by stacking the output of various
sensor platforms or adding more sensors to the same sensor platform and averaging
the output [Nishimura et al., 2019]. Stacking improves the signal-to-noise ratio by
1/
√
N , where N is the number of observations.
Initially, the INFRA-EAR has been designed as a biologger for the monitoring

of atmospheric parameters. In total 25 INFRA-EAR’s are produced and used dur-
ing the 2020 field campaign at Crozet Island in the Southern Ocean. The loggers
have been fitted to the Southern Ocean’s largest seabirds, the Wandering Albatross
(Diomedea exulans). The Southern Hemisphere has very little in situ measurements,
due to limited shore areas. The use of INFRA-EAR in such areas is ideal for mon-
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itoring geophysical parameters, comparing in situ measurements, and comparing
INFRA-EAR data with model data (chapter 4).
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2.2 The Multi-EAR; to complement the existing high-fidelity mon-
itoring network

2.2.1 Introduction

Within this section , the Multi Earth and Atmospheric data Recorder (Multi-EAR)
is introduced. The Multi-EAR is a mobile, low-cost multidisciplinary sensor plat-
form for scientific monitoring of the earth and atmosphere. The platform can com-
plement existing high-quality, sensor networks. This platform is designed using
digital MEMS sensors embedded on a PCB. Due to the low power consumption of
MEMS, the system can be powered by a battery or solar panel.

The Multi-EAR is a further development of the INFRA-EAR (section 2.1), which
was designed as biologger designed to fit a Wandering Albatross. Such requirements,
and thus dimensional restrictions, were not applicable in the design and development
of the Multi-EAR. This project aims to develop, based on earlier recommendations,
a multidisciplinary mobile sensor platform to complement the existing high-fidelity
monitoring network. Due to its digital design, the sensor platform can readily
be integrated with existing geophysical data infrastructures and be embedded in
geophysical data analysis. To include the Multi-EAR within existing monitoring
networks, a Technology Readiness Level (TRL) of 8 is needed (Figure 2.8, [NASA,
2021]).

This section is the technical report of the Multi-EAR. The subsections will de-
scribe the sensor platform. Section 2.2.2 discusses the sensors on the board, their
response functions and the accuracy/tolerance. Section 2.2.3 describes the design
of the casings. Two different casings are designed. The smaller casings are for
rapid deployment, whereas the larger casings are entirely autonomous and serve re-
mote places. The calibration and comparison study of the Multi-EAR is highlighted
within section 2.2.4. The conclusion and discussion are discussed in section 2.2.5.
The outlook and next steps of this project are summarised in section 2.2.6.

The project description, goals, applications, and news can be found on the Multi-EAR website
(www.multi-ear.org). The complete description, codes, firmware, software, and STEP files of
the Multi-EAR are available on the GitHub page (https://github.com/Multi-EAR). The GitHub
repository will be an up-to-date database for information regarding the Multi-EAR.
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Figure 2.8: Technology Readiness Levels (TRL) are a measure to assess the maturity level
of a particular technology. There are nine technology readiness levels, TRL 1 is the lowest
and TRL 9 is the highest. The figure and definitions are adopted from NASA [NASA,
2021].
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2.2.2 Mobile platform design

Circuit design

The platform of the Multi-EAR uses various digital MEMS embedded on a PCB.
A programmable microcontroller unit, embedded on the PCB, controls the sensor’s
sampling frequency, establishes the energy supply for the sensors, the data commu-
nication, and data storage.

The MEMS on the PCB are; two differential pressure sensors (to monitor infra-
sound), a 6-axis accelerometer/gyroscope, a 6-axis accelerometer/magnetometer, a
barometric pressure sensor, a temperature/humidity sensor, microphones (to moni-
tor audible sound), a GPS for location and timing purposes, and LoRa telecommu-
nication for data exchange.
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Figure 2.9: 3D CAD design of the Multi-EAR. (a) The top view of the PCB, and (b) the
3D STEP file. The PCB hosts: a Superior Sensor SP210 differential pressure sensor (A),
an All-Sensor DLVR-F50D differential pressure sensor (B), a ST Electronics LSM303 6-
axis accelerometer/magnetometer (C), a LIS3DH 6-axis accelerometer/gyroscope (D), a
ST Electronics LPS33HW barometric pressure sensor (E), a Sensirion SHT8x temperature
and humidity sensor (F), three ICS microphones (G), a Texim GNS2301 (H-i) and LoRa
telecommunication (I-i) connected to LINX passive antennas (H-ii/I-ii), and a MSP430
Texas instruments microcontroller (J). The platform can either be powered over the GPIO
pins (K) or via mini-USB (M). The data can be stored on the microcontroller’s flash
memory, locally on a micro-SD card (L), or using an external device connected using the
GPIO interface.
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Firmware

The communication between the microcontroller and MEMS on the PCB is similar
to the INFRA-EAR (section 2.1.2). It is either done by I2C or SPi and depends
on the sensor, the available ports on the microcontroller, and personal preference.
The microcontroller runs, also similar to the INFRA-EAR, on self-made software,
complementing the required manufacturers electrical and communication protocols.
The software allows determining the sample time, sample frequency, and data stor-
age of selected MEMS. The raw output of the digital MEMS sensors are stored as
bits, and the microcontroller performs no data processing to save power consump-
tion. The firmware, and thus the data acquisition, can be changed by updating the
microcontroller.

Raspberry Pi - an external data logger

The microcontroller communicates in two ways with the MEMS. After sampling,
the MEMS send their data back to the microcontroller. The data can be stored
locally on the PCB, using a micro-SD card, or can be recorded by a Raspberry
Pi (RPi) [Raspberry-Pi, 2018] through the Universal Asynchronous Receiver Trans-
mitter (UART). The UART communication is facilitated by the General-Purpose
Input/Output (GPIO) pins that are embedded on the PCB. The RPi can therefore
act as a small datalogger. The RPi receives on a pre-specified baud-rate the data
in bytes.

The metadata of the Multi-EAR can be found within the XML files. Within these
files, the response functions of the sensors are stored, as well as the transformation
constants to convert the bytes/floats into actual geophysical units.

The RPi is a useful datalogger for this type of sensor platform, because it is a
small single-board computer and has all the usual connections (i.e., HDMI, USB,
Micro-USB, Ethernet). The operating system on the RPi’s of the Multi-EAR is
’raspbian-lite’ and can connect with WiFi. The data can be accessed directly on the
RPi or be transferred towards an external device. Data can be retrieved over the
(wireless) network interface, using standard protocols such as SSH.

LoRa Telecommunication

Besides transferring data via the RPi and WiFi, the data can also be transferred
by LoRa Telecommunication [RF-LoRa, 2021]. LoRa is a type of wireless telecom-
munication protocol designed to allow long-range communications at a low bit rate
between nodes. The low power consumption, low bit rate and intended use distin-
guishes this type of network protocol from a wireless wide area network (WAN),
which is designed to connect more users and carry more data, using more power.
The LoRa data rate ranges from 0.3 kbit/s to 50 kbit/s per channel. LoRa may be
used to create a private wireless sensor network but may also be a service or infras-
tructure offered by a third party, allowing the owners of sensors to deploy them in
the field without investing in gateway technology.
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2.2.3 Sound sensors

Audible sound

For the monitoring of the audible sound spectrum, three omnidirectional ICS-40300
microphones are embedded on the PCB [TDK, 2021]. These microphones can record
between 6 Hz - 20kHz, while having a flat instrument response between 50 − 2500
Hz (Figure 2.10). The A-weighted noise floor of the frequency band between 20 Hz -
20kHz is −108 dB. The maximum Sound-Pressure-Level (SPL) before the overload
is reached is 130 dB for these microphones. The intention of combining audible and
infrasound sensors is to broaden the acoustic frequency range that can be measured.

b.a.a. b.

Figure 2.10: The response curves of the embedded ICS-40300 microphones. Panel (a) shows
the amplitude response over the frequency range. Panel (b) the phase response.

Infrasound

The infrasound sensors aboard the Multi-EAR are the KNMI mini-MB (section
2.1.3) and the Superior Sensor Technology SP210 differential pressure sensor [SuperiorSensor-
Technology, 2021]. The KNMI mini-MB is also embedded on the INFRA-EAR, its
details and theoretical response are discussed in section 2.1.3.

The SP210 has similarly to the mini-MB two pressure inlets of which one is
connected to the atmosphere and the other to a backing volume. The difference
between both sensors is the sensing mechanism. The infrasound measurements of
the mini-MB are based on the deflection of a diaphragm, which cause a pressure
difference in the piezo-resistive crystals attached to the diaphragm’s corners. The
SP210 does not have a diaphragm. The inlets are separated by a piezo-resistive
chip, which measures the difference in applied pressure between both sides. The
sensor is temperature compensated, has a dynamic pressure range from ±250 Pa to
±40 kPa, and has selectable bandwidth filters from 25 to 250 Hz. The sensor has a
digital output by its 16 bit built-in ADC. The accuracy, resolution, and total error of
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the measurement linearly increases with the selected measurement range. However,
the theoretical response of this sensor is unknown and can not be determined by
following section 2.1.3. In addition, before the sensor can be used, an empirical
response function needs to be determined, for example by following the method of
Marcillo et al. [2012]. The further study of this sensor is deferred to future studies.

2.2.4 Meteorological sensors

Infrasound detectability is directly linked to local noise conditions and the atmo-
sphere’s stability in the infrasound sensor’s surroundings since noise levels are in-
creased when turbulence levels are high. Therefore, it is beneficial to have simulta-
neous measurements of the basic meteorological parameters, i.e., pressure, humidity
and temperature. The sub-sections below describe the different meteorological mea-
surements contained on the sensor platform.

Barometer

The barometric pressure is sensed by the LPS33HW sensor (section 2.1.4, [STMi-
croelectronics, 2020a]). Section 2.1 stated that after calibration, the sensor has an
accuracy of ±0.1 hPa.

Temperature/Humidity

The SHT8x sensor measures the temperature and humidity at the PCB [Sensirion,
2021]. The SHT8x is a temperature and humidity sensor with a pin-type connector.
This connector allows easy integration and replacement of the sensor. Furthermore,
it allows for the best possible thermal coupling to the environment and decoupling
from potential heat sources on the PCB. The sensing is done by the SHT3x sensor,
which is part of the SHT8x set-up. The SHT8x has a built-in 16-bit ADC.

The humidity is sensed over the range of 0− 100%. The SHT3x has a resolution
of 0.01%, with a relative error of 1.5%. The absolute error needs to be determined by
lab calibration. This calibration is based on a controlled environment (e.g., climate
chamber), which enables either to generate constant humidity level or sweep over
a range. Besides the Multi-EAR, a certified reference sensor is included within the
climate chamber, which allows to determine the absolute error of the SHT3x.

The operating range of the temperature sensor is between −40 and 105◦ C. The
resolution is 0.01◦ C, with a relative error of 0.3◦ C.
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b.a.
a. b.

Figure 2.11: Sensitivity curves of the SHT3x MEMS sensor. Panel (a) shows the expected
tolerance of the humidity sensor over the measurement range. Panel (b) shows the tolerance
of the temperature sensor.

2.2.5 Inertial measurement units

The Multi-EAR measures accelerations by using a MEMS Inertial Measurement
Unit (IMU). On the platform the LSM303 [STMicroelectronics, 2020b], a 6-axis
IMU, and LIS3DH [STElectronics, 2021], as well a 6-axis IMU, are embedded. The
LSM303 (section 2.1.6) consists of a 3-axis accelerometer and a 3-axis magnetometer.
The LIS3DH is the successor of the LSM, and consists of a 3-axis accelerometer and
3-axis gyroscope. The measurement range of both accelerometers varies between
2-16 g, while having a built-in 16-bit ADC, which results in a resolution of 0.06 mg
when choosing the lowest measurement range.
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2.2.6 Casings

The protection of the PCB is done with a weather- and waterproof casing. The RPi
and Multi-EAR PCB are connected by the GPIO pins, and by four screws on the
corners for extra stability. The casing exists of a pre-ordered polythene case with a
self-designed 3D-printed inlet dome on top. The RPi is mounted to the casing, by
a 3D-printed ground-plate, for direct coupling.

Inlet dome

An inlet dome is placed on top of the casing, fastened with screws and glue. The
dome allows air to flow in and out of the casing, which is essential for the atmospheric
measurements, but avoids water entering. Figure 2.12 shows the 3D CAD design of
the dome. Air can flow into the dome via the inlets on the side and top of the dome.
This way, the dome enables airflow inside the casing but obstructs water. Whenever
moisture becomes a problem, GoreTex air vents may be considered. These air-vents
should be placed on the inlet of the dome. Furthermore, the design of the dome
reduce the effects of stagnation pressure, which can easily mask the differential
pressure perturbations off interest [Raspet et al., 2019].

a.

b.

c.

d.

e.

f.

Figure 2.12: 3D CAD design of the dome. (a) and (b) show the solid outline of the dome,
(c) and (d) the transparant outline, (e) and (f) the cross sections.

Casing designs

Two different casings are designed and developed for the Multi-EAR. The smaller
casing [Schneider, 2021] has a dimension of 130 x 85 x 115 mm (Figure 2.13). The
dome is placed on top of the transparent lid of the casing, while two antennas are
mounted to the side, as well as the external power supply plug. The smaller casings
are not autonomous, it does not function without connection to an external power
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supply. Whenever powered, the Multi-EAR starts recording and collecting data, as
pre-defined in the firmware.

a. b. c.

Figure 2.13: CAD-drawings of the small casing design for the Multi-EAR. The dimensions
of this casing are; 130 x 85 x 115 mm.

The larger casings have a dimension of 240 x 191 x 130 mm [FIBOX, 2021] and
includes an external solar panel. These casings are designed to create a completely
autonomous sensor platform. Again a polyethylene case with the atmospheric dome
on top is used. The GPS and LoRa antenna are connected to the outside of the
casing, as well as the external power plug.

Figure 2.14: CAD-drawings of the large casing design for the Multi-EAR. The dimensions
of this casing are; 240 x 191 x 130 mm.
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Antennae

The LoRa and GPS on the PCB are both connected to external antennas. The
antennae are passive LinX antennae [Linx-Technologies, 2021]. The frequency range
of the antenna is between 617MHz - 5 GHz. For optimal signal coverage, a high-
blade positioning is suggested (i.e., with the antenna pointing up-wards).

The polarization of the antennae is linear, and the radiation of signals omnidi-
rectional. The receiver that is used for timing and location is a GNSS receiver that
is compatible with GPS (global system), GLONASS (Russian navigational system),
Beidou (Chinese navigational system), Galileo (European navigational system).

The antennae are mounted to the outside of the casings and connected to the
MEMS of the GPS and LoRa by SubMiniature version A (SMA) extension cables
[Emerson, 2021], which is a coaxial RF connector cable.

External power supply

The sensor platform and RPi require a minimal power supply of 5 Volt (V). This
is attained by a standard micro-USB connector. However, to ensure complete pro-
tection and enclosure of the casing the cable has been modified. The power supply
cable has been divided into two parts. One part of the modified cable consist of a
220 V to 5 V adapter, and the male part of the 3-pin Amphenol connector. The
other part is fixed and remains untouched inside the casing. This part consist of the
micro-USB, which is connected to the RPi, and a female Amphenol 3-pin connector,
which is attached to the casing. The use of a 3-pin Amphenol connector ensures
complete enclosure of the casing, while using an external power supply. Moreover,
it allows to break the electrical circuit apart, which is ideal for transport.

Figure 2.15: Amphenol connector. Panel (a) shows the front view of the pin assignment.
Pin 1 is the power supply, Pin 2 the ground, while Pin 3 remains available. Panel (b)
shows the side view of the connected male and female connector.
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2.2.7 Autonomous system

The large casings are equipped with a solar panel [Voltaic, 2020a] and battery pack
[Voltaic, 2020b]. These platforms can either be powered by an external power supply
or by a battery pack. The battery pack is a V75 battery and is placed within the
casing. It has an ’always-on mode’; it can power, charge, and pass-through while
charging. The capacity is 19.200 mAh (71 Watt-Hours), and has a 5V output.

The external solar panel charges the V75 battery pack, and is positioned on the
lid of the casing. The angle of solar panel may be modified to optimize for the
(variable) angle of the sun with the horizon. The panel is waterproof and has a 9
Watt, 6 V output.

To determine whether the autonomous system can monitor continuously, an
energy analysis is performed. The energy analysis is divided into (1) the energy
consumption by the PCB and RPi during concurrently continuous monitoring and
the (2) power supply by the solar panel and battery capacity to survive the evenings
as a function of month for mid-latitudes (52 degrees N).

Power consumption Multi-EAR

The energy consumption of the sensor platform can be divided into the consumption
by the RPi and the PCB/MEMS. Assuming continuous measurements, the RPi will
approximately use 1 Watt hour (Wh), which adds to a maximum of 24 Wh per day.

The consumption by the PCB depends on the low-energy MEMS sensors, which
is marginal compared to other monitoring devices. The power consumption is esti-
mated at around 5 Wh per day.

The total power consumption of the entire monitoring system is estimated to be
approximately 29 Wh per day.

Power supply

The V75 battery pack has a maximum capacity of 71 Wh. Without charging the
battery pack, the monitoring system can therefore be active for approximately 70
hours. During summer, the time between sunset and sunlight is approximately 6
hours. Therefore it can be expected that the system will ’survive’ the summer
evenings. In winter, the nights are longer and it is not always sunny, and therefore
the re-charging time of the battery is shorter. The monitoring system is expected
to run out of power during the winter periods.

With day-light, the battery pack will be charged and if it holds sufficient charge,
power up the Multi-EAR. An analysis on solar power has been performed to deter-
mine the expected charging energy of the solar panel. For the analysis, the solar
panel has positioned at the Campus of the TU Delft (51.6◦ N, 4.22◦ E). Based on
the technical specifications of the 9 Watt solar panel, and the expected sunlight at
the Campus, the energy analysis is calculated [EUSCIENCE-HUB, 2021].

Figure 2.16 shows the average energy output of the solar panel in Wh per day.
Note that from March until September, the Solar panel provides more power than
needed by the Multi-EAR. During these periods, the battery will be charged during
the day. During the winter months, however, the solar panel does not provide enough
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power to charge the battery. Therefore, it can be expected that after a while the
battery will run out of power. The battery and solar panel will not provide sufficient
power for continuous and concurrent monitoring during the winter period.

Figure 2.16: Performance of the 9Watt, 6Volt, solar panel. The red dots indicate the average
daily power provided by the solar panel per day. The dotted line shows the required power
per day by the monitoring system. When the provided power is larger than the required
power the battery will be charged.
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2.2.8 Laboratory sensor calibration and comparison

The sensor calibration and comparison have been performed according to the KNMI-
calibration standards within the KNMI calibration lab.

Barometric pressure

The INFRA- and Multi-EAR are using the same barometric pressure sensor. Within
section 2.1.4, the controlled laboratory calibration of the LPS sensor is described.
Although the inlet domes of both platforms differ, the calibration outcome is similar.
After correcting for the sensor bias, the LPS sensor has an accuracy of ± 0.1 hPa,
i.e., the LPS sensors measures values within ± 0.1 hPa of the value measured by
the KNMI reference sensor.

Temperature/Humidity

The calibration tests on the temperature and humidity sensor are performed within
the climate chamber. The climate chamber is a certified calibration tool, which can
generate temperatures between −30 till 50◦C and a relative humidity level (depend-
ing on the temperature) between 10− 90%. Within the chamber, various reference
sensors are placed. Again, the calibration results in a calibration curve, which de-
scribes the temperature/humidity dependent bias. After the bias correction, the
temperature sensor has an accuracy of ±0.3◦, whereas the humidity sensor has an
accuracy of ±1%.

2.2.9 Field sensor calibration and comparison

Besides lab calibrations, the sensor platform has also been placed on the KNMI test
field, enabling a comparison of the platform with high-fidelity equipment. The field
test has been performed within building K of the KNMI. This building is placed
at the border of the KNMI test field, and provides power supply for the Multi-
EAR. The building is located at a distance of approximately 50 to 100 meter from
the reference meteorological equipment that is compared to. Ideally, comparisons
would be carried out by co-locating the sensors.

Meteorological observations

The LPS sensor has been field-tested along with a Paroscientific Digiquartz 1015A
barometer, which has an accuracy of 0.05 hPa. Figure 2.17 shows the comparison
between the Multi-EAR (red line) and the barometric reference sensor (black line).
It can be concluded that both sensors resolve the changing barometric pressure.
From the distribution of observations, it has been estimated that the LPS sensor
has a precision of ±0.1 hPa for 87% of the time. For the remainder, the maximum
deviation was ±0.2 hPa.

Figure 2.18-a presents the comparison between the Multi-EAR’s temperature
sensor (red) with the reference sensor (black). The maximum temperature is often
correctly resolved by the Multi-EAR. The minimum temperatures that typically
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Figure 2.17: Barometric pressure comparison between the Multi-EAR (red line) and the
KNMI sensor (black line) at the KNMI test field.

occur during the night, are not correctly measured. This is due to the monitoring
circumstances, building K conserves the heat that has built up throughout the day.

The same issue occurs with the humidity sensor (Figure 2.18-b). The humidity
within building K is continuously below the actual meteorological humidity. There-
fore an actual comparison between the Multi-EAR’s humidity sensor and the KNMI
reference sensor can not be performed. Future comparison studies should be carried
out outside, as close as possible to the reference sensors.

a.

b.

Figure 2.18: Temperature and humidity measurements by the Multi-EAR (red) compared
to the KNMI reference sensor (black). The measurements are obtained within building K,
therefore a correct comparison between the Multi-EAR and KNMI sensors is not possible.
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Infrasound observations

The infrasonic wavefield is monitored by the KNMI mini-MB (section 2.1.3). Figure
2.19 -a shows the PSDs calculated from the KNMI mini-MB recordings. Panel b
shows the PSDs calculated from the infrasonic reference sensor at the KNMI test
field, a Hyperion IFS-5100. The grey dotted lines indicate the global high and
low noise curves [Brown et al., 2014]. Based on a visual comparison between both
sensors, it can be noted that the KNMI mini-MB is able to resolve the characteristic
microbarom peak around 0.2 Hz. Microbaroms are known to be one of the most
omnipresent ambient noise sources within the infrasonic wavefield. Moreover, it
can be noted that the KNMI mini-MB is suffering from self-noise within the higher
frequencies.

Although the KNMI mini-MB does not resolve the complete ambient noise field,
the sensor is able to resolve most of it. Transient infrasonic events (e.g., explosions,
earthquakes, volcanic eruptions) have a higher amplitude level compared to the
ambient noise. Therefore, any infrasonic explosion will most likely be detected by
the KNMI mini-MB.

a. b.

Figure 2.19: Infrasonic wavefield measurement by the KNMI mini-MB (panel a) and a
Hyperion IFS-5100 (panel b). The gray dotted lines indicate the global high and low noise
curves [Brown et al., 2014]. Note that both sensors resolve the characteristic microbarom
peak around 0.2 Hz. At the higher frequencies, the self noise levels of the KNMI mini-MB
dominate the measurements.
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Movement observations

Within section 2.1.6, the comparison test between MEMS and a Streckeisen STS-2
seismometer is discussed. Although the sensors are deployed on the same seismic pil-
lar and are thus subject to similar seismic noise conditions, the MEMS sensor could
not measure ambient seismic noise [Peterson, 1993; McNamara and Buland, 2004]
due to its high self-noise level. For the comparison between the two accelerometers
on the Multi-EAR a similar test set-up has been established. The full recordings
of the z-component are divided into hourly recordings, which are used to calculate
PSD’s. The reference sensor in the seismic pavilion confirms no major seismic activ-
ity has been recorded (blue PSD’s in Figure 2.20). Therefore, only ambient seismic
noise is expected within the recordings.

Figure 2.20 shows the stacked PSD’s for the LSM (panel a) and LIS (panel b)
MEMS sensors. The solid grey lines indicate the high and low ambient seismic noise
curves [Peterson, 1993; McNamara and Buland, 2004]. The MEMS don’t resolve
ambient noise signals, due to their high self-noise. However, note that the self-noise
levels of the different MEMS sensors is not similar. The LIS has a lower self-noise
compared to the LSM (i.e., 15 dB difference), while the ADC has the same amount
of bits [Sleeman et al., 2006]. Sometimes ADC’s are suffering a ’loss of bits’ due
to power supply. The LIS sensor includes an accelerometer and gyroscope, whereas
the LSM includes an accelerometer and magnetometer. The combination of various
sensors within one MEMS may influence the efficiency of power towards the ADC,
explaining the difference in self-noise.

Based on Figure 2.20 it can be concluded that the MEMS will not resolve ambi-
ent seismic noise signal. However, the MEMS will resolve signals with an amplitude
above the self-noise levels. The dotted black lines within both panels of the figure
indicate the expected amplitude levels of earthquakes with an approximate distance
of 10 km (nearby transient sources) [RaspberryShake, 2021]. Those theoretical am-
plitude curves lie above the self-noise levels of both MEMS.

The MEMS accelerometers of the Multi-EAR are not for monitoring purposes
of ambient seismic noise or teleseismic events. Previous studies drew similar con-
clusions concerning the performance of MEMS accelerometers. Various calibration
set-ups are considered while comparing MEMS accelerometers with conventional
accelerometers of geophones [Hons et al., 2008; Albarbar et al., 2009; Anthony et
al., 2019], each concluding that the accuracy of the MEMS is not sufficient for
recording ambient seismic noise. However, for strong local events or boisterous en-
vironments the MEMS sensor will resolve those seismic signals. Alternatively for
seismic ambient noise monitoring, an ADC can be placed on the sensor platform
to connect external geophones. The relative performance of external geophone /
MEMS accelerometer is shown in Anthony et al. [2019].
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Figure 2.20: Power Spectral Density curves, hourly calculated for the LSM (red lines, panel
a), the LIS (red lines, panel b), and the reference sensor (blue lines in both panels). The
solid gray lines indicate the global high and low ambient seismic noise curves [Peterson,
1993; McNamara and Buland, 2004]. The dotted lines indicate the theoretical amplitude
levels of a nearby transient event.
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2.2.10 Discussion and conclusion

Within this section, the Multi-EAR has been introduced, which is the successor
of the INFRA-EAR (section 2.1). It has been shown that the coinciding sensors
of the INFRA- and Multi-EAR perform similarly although the platforms have dif-
ferent casings. Besides the identical sensors of the INFRA-EAR, the Multi-EAR
also has additional sensor types aboard. The Multi-EAR can measure concurrently
the barometric pressure, infrasound, audible sound, accelerations, temperature and
humidity, and GPS time and positioning. The sensors are controlled by a micro-
controller, and a RPi is used as datalogger. Furthermore, the Multi-EAR has LoRa
telecommunication, which has the potential to enable low-range data communication
between various platforms.

The innovative character and scientific quality of the Multi-EAR:
• Research-grade mobile geophysical platform that allows for the selection of

specific sensors and sample rates.

• Ability to sample multidisciplinary data on one platform.

• Ability to install sensors at strategic locations to better assess specific events,
like aftershocks of an earthquake or severe weather.

• Low energy consumption, which facilitates deployment at a wide variety of
locations as well as on drones and high-altitude balloons.

• The design of the mobile platform uses the latest trends in miniature sensor
technology, and 3D print technology.

• The calibration of the sensor follows high quality standards that have been
developed at the KNMI.

The Multi-EAR reaches for some sensors a TRL of 7/8. However, the application
of the audible sensor requires attention. More sensor knowledge is needed before it
can be used within scientific studies or for monitoring purposes. Proper laboratory
and field tests need to be performed. Moreover, for future deployments of the
Multi-EAR it is recommended to investigate the SP210 differential pressure sensor.
This sensor shows great potential thanks to the ability to shift measurement range
and bandwidth filters. However, this sensor technology is novel and for correct
interpretation more knowledge is required (e.g., an empirical instrument response).

2.2.11 Outlook

It is proposed to integrate the Multi-EAR within the KNMI/TU-Delft sensor net-
work. A low-cost mobile platform will complement the existing network, and allows
higher spatial resolution data.

Having a low-cost mobile platform enables:
• High spatial-temporal sampling of multiple geophysical parameters, which can be

used for validation of high-resolution weather models such as the high-resolution
HARMONIE model that is used operationally within KNMI.
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• Quality measurements on unique and/or remote locations where the network is rela-
tively sparse (on sea or at land/sea transitions, on volcanoes on the Dutch Caribbean
islands, drones, balloons, the Cabauw tower).

• Allows measurement of meteorological circumstances that can be very local (fog,
thunderstorms, sleet). This could contribute to the further refinement of weather
alarms from the province to the zip code level.

• Rapid deployments in predicted code orange/red scenarios for which there is interest
to collect more field data.

• The observations provide information of natural hazards on much higher time- and
spatial-scales; allowing for meso-scale and local scale observations in natural hazards
research (convective storms, volcano monitoring)

Examples of possible future projects

The Multi-EAR is interesting to use as monitoring platform for various studies. One study
could focus on deployment near the Cabauw Tower, which is a 213 meter high meteorologi-
cal tower that is part of the Ruisdael observatory. The tower consists of various geophysical
sensors, including an infrasound array [Smink et al., 2019] and an internationally renowned
meteorological reference site.

Furthermore, the sensor platform can be used on hot-air - and weather/scientific bal-
loon observations in collaboration with KNMI [De Bruijn et al., 2020]. Such balloons fly at
a constant altitude. Besides balloons, the sensor platform can be attached to a radiosonde,
which samples at many different altitudes and rise up fairly monotonously. Those observa-
tions give insights in changing of various geophysical parameters with altitude and can be
used to determine lightning, severe weather development (outflow), as well as sea breeze
fronts.

Moreover, the Multi-EAR can be used as TU-Delft campus array. Currently, the
Delft tech-campus is not equipped with a seismo-acoustic array. However, there are plans
for a geothermal well on campus. Therefore it is important to perform seismo-acoustic
measurements to characterise the vibrations, caused by the drill activity.

Finally, the Multi-EAR has the ability to become an educational platform. It can be
used for education at primary and secondary schools, introducing children with technology
and physics. Furthermore, the platform can be used by university under-grad students
during fieldwork courses. Using the MULTI-EAR, students could design a measurement
campaign, including the acquisition, processing and interpretation of data.
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High-resolution infrasound array
processing

Our imagination is struck only by what is great;
but the lover of natural philosophy should reflect equally on little things.

Alexander von Humboldt

Abstract The detection and characterization of signals of interest in the presence of
(in)coherent ambient noise is central to the analysis of infrasound array data. Microbaroms
have an extended source region and a dynamical character. From the perspective of an
infrasound array, these coherent noise sources appear as interfering signals which conven-
tional beamform methods may not correctly resolve. This limits the ability of an infrasound
array to dissect the incoming wavefield into individual components. In this chapter, this
problem will be addressed by proposing a high-resolution beamform technique in combi-
nation with the CLEAN algorithm. CLEAN iteratively selects the maximum of the f/k
spectrum (i.e., following the Bartlett or Capon method) and removes a percentage of the
corresponding signal from the cross-spectral density matrix. In this procedure, the array
response is deconvolved from the f/k spectral density function. The spectral peaks are
retained in a ’clean’ spectrum. A data-driven stopping criterion for CLEAN is proposed
that relies on the framework of Fisher statistics. This allows the construction of an auto-
mated algorithm that continuously extracts coherent energy until the point is reached that
only incoherent noise is left in the data. CLEAN is tested on a synthetic data-set and is
applied to data from multiple IMS infrasound arrays. The results show that the proposed
method allows for the identification of multiple microbarom source regions in the Northern
Atlantic, that would have remained unidentified if conventional methods had been applied.

Published as: den Ouden, et al. 2020, CLEAN beamforming for the enhanced de-
tection of multiple infrasonic sources, Geophysical Journal International, Volume 221, DOI:
10.1093/gji/ggaa010
Note that minor changes have been introduced to make the text consistent with the other chapters,
and that the Sections 3.2 and 3.4 are extended with non peer-reviewed content.
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3.1 Introduction

Sensor arrays are used in various geophysical disciplines for a detailed study of signals that
are part of a complex wavefield. The use of arrays allows for an enhanced detection of
signals in the presence of incoherent noise, as the SNR is improved by summation across
the array elements. In addition, arrays can be used to estimate the directivity of incoming
wavefronts, and therefore can be used as spatial filters by steering the array towards the
direction of interest. This has led to applications in the fields of seismology [Harjes and
Henger, 1973; Husebye and Ruud, 1989; Schweitzer et al., 2002], acoustics [Billingsley and
Kinns, 1976; Michel et al., 2006] and astronomy [Jansky, 1932; Garrett, 2013].

In this chapter, array detection of inaudible low-frequency sound, or infrasound, is
discussed. The detection of infrasonic sources over long distances depends on the spectral
content of the source, the atmospheric propagation conditions along the source-receiver
path, as well as the local noise conditions near the array. The vertical temperature and wind
structures determine the propagation paths while absorption affects the amplitude and
frequency contents of the received signal [Waxler and Assink, 2019]. Because attenuation
is strongly dependent on the acoustic frequency, lower frequency signals can propagate
over significantly longer distances when compared to higher frequencies [Sutherland and
Bass, 2004]. The local noise conditions are determined by the turbulent motions in the
atmospheric boundary layer, near the array [Smink et al., 2019].

The IMS is in place for the verification of the CTBT and monitors the atmosphere
globally for infrasonic signals from nuclear tests, using microbarometer arrays. Currently,
51 out of 60 microbarometer arrays provide real-time infrasound recordings from around
the world. The IMS has played a central role in the characterization of the global infrasonic
wavefield and the localization of infrasound sources, which include earthquakes, lightning,
meteors, (nuclear) explosions, colliding ocean wave-wave and surf [Campus and Christie,
2010]. The infrasonic wavefield is complex and often consists of interfering acoustic signals
in overlapping frequency bands, in the presence of incoherent noise. The acoustic signals
take the form of transients, (quasi-)continuous signals or a combination of both. From the
perspective of an array, coherent noise sources appear as interfering signals that clutter
the array detection bulletins and may obscure detections from signals of interest.

Most infrasound processing routines, including those that are used for real-time pro-
cessing of the IMS infrasound arrays, are designed to only detect the dominant acoustic
signal in a given time segment and frequency band. However, various beamform tech-
niques exist in the literature that allow for the detection of signals from multiple spatially
distributed sources [Viberg and Krim, 1997; Rost and Thomas, 2002]. The capability of
detecting and classifying interfering sources relies on the beamform resolution as quantified
by the array response, which is determined by the beamform technique and the array lay-
out. A low beamform resolution could lead to the dominant source masking sub-dominant
sources.

In this chapter, the CLEAN algorithm [Högbom, 1974] is applied for high-resolution
array processing of infrasound data. CLEAN is a post-processing method that iteratively
selects the main contribution in the f/k spectrum and removes a percentage of the corre-
sponding signal from the cross-spectral density matrix. In this procedure, the array re-
sponse is deconvolved from the resolved f/k spectral density function. The spectral peaks
are retained in a ’clean’ spectrum. This iterative process continues until a stopping crite-
rion is reached. The beamform techniques proposed by Bartlett [1948] and Capon [1969]
can be used to compute the f/k spectrum. Previous studies [Clark, 1980; Sijtsma, 2007;
Gal et al., 2016], have shown that the application of CLEAN provides a superior beamform
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resolution. Moreover, it has been shown that the performance critically depends on the set-
ting of two parameters: the percentage of removal and the stopping criterion. In this work,
the use of Fisher statistics is proposed and applied as stopping criterion for the iterative
CLEAN procedure. This statistical framework has been established for significance testing
of multivariate data [Fisher, 1948], and has applications in geophysical signal processing
[Melton and Bailey, 1957; Shumway, 1971; Smart and Flinn, 1971].

The remainder of this chapter is organized as follows. Section 3.2 introduces various
beamform techniques, CLEAN as post-processing method and the proposed CLEAN pa-
rameterization. This parameterization and the evaluation of the performance of CLEAN,
as tested using synthetic data, is presented in section 3.3, and is an addition to the beam-
forming review of the earlier section. In section 3.4, CLEAN is applied to IMS infrasound
array data and it demonstrates that multiple microbarom source regions can be resolved
in the Northern Atlantic. Finally, the results are discussed and summarized in section 3.5.

3.2 Description of beamforming
Consider an array of N omnidirectional receivers, with N ≥ 3 (Figure 3.1 and 3.3). Each
array element has position rm,...,N = (xm, ym, zm), of which the absolute value is the
distance between the element and a reference distance, e.g., the geometrical center of
the array. Often an array consists of elements close to the geometrical center to resolve
the high frequencies of the wavefront, and elements which lie further away to resolve
the low frequencies [Christie and Campus, 2010]. In the case of interest, it is assumed
that the array is situated in the far-field. Therefore, the wavefield can be represented as
a superposition of three-dimensional planar wavefronts, propagating with phase speed c.
Figure 3.1 illustrates an inclined planar wavefront that impinged a ground-based infrasonic
microbarometer array. The array elements record the wavefront at times τ1, τ2, and τ3
(Figure 3.2). The goal is to estimate the three-dimensional wavefront parameters as a
function of time t and frequency f . For this purpose, it is useful to consider a plane-
wave decomposition of the incoming wavefield, in terms of a frequency-wavenumber (f/k)
spectral density G(f,~k):

G(f,~k) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(f, ~r)ei(~k·~r)dx dy dz (3.2.1)

here, ~k = (kx, ky, kz) and G(f, ~r) represents the three-dimensional wavenumber vector
and the Fourier transformed array recordings, respectively. Beamforming can be used to
separate the coherent and incoherent parts of G(f,~k).

Most infrasound arrays are ground-based planar arrays [Edwards and Green, 2012], in
which case the integral in Equation 3.2.1 can be reduced to a two-dimensional integral
over x and y. This also implies that only the horizontal component of ~k can be directly
estimated in the beamforming process. The vertical component, kz, is typically inferred
through the dispersion relation, |~k| = 2πf

c
and an estimate of the phase speed c, i.e.,

the speed of sound near the array. The wavenumber vector ~k can be expressed in terms
of a slowness vector ~p by scaling with the angular frequency, ω = 2πf . The horizontal
component of ~p can be related to the apparent velocity capp and back azimuth θ as follows:

capp = 1
|~px,y|

θb = arctan px
py

.
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Figure 3.1: An inclined three-dimensional planar wavefront τ traveling over an array of three
microbarometers located in the xy-plane, i.e., the earth’s surface. The wavefront propagates
with an effective sound speed ceff normal to the wavefront. The inclination angle with the
Earth surface is φt, and the propagating direction relative to the array is indicated by θb.
The apparent velocity of the wavefront (capp) is the velocity with which the wavefront is
measured by the array, where capp ≥ceff. Figure is adapted from Smets [2018].
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The apparent velocity corresponds to the horizontal propagation speed of a wavefront,
i.e. as would be measured by the ground-based array. The back azimuth relates to the
horizontal incidence angle, with respect to the north.

τ1τ2 τ3

Figure 3.2: Theoretical recording of the three-dimensional wavefront (Figure 3.1) by a three
element microbarometer array. τi indicates the time of recording by receiver ri.

To beamform the array data, a cross-spectral density matrix C(f) is to be estimated:

C(f) = 1
L

L∑
l=1

Gl(f, ~r)G∗l (f, ~r) (3.2.2)

here, ∗ denotes the conjugate transpose. The off-diagonal elements of matrix C(f) contain
the phase delays between each sensor pair, while the diagonal elements contain the power
spectral density of each element. It is common to estimate the cross-spectral density matrix
C(f) by averaging over L snapshots within one single time window of waveform data,
Gl(f, ~r). The averaging using snapshots is crucial for the application of Capon’s method
[Capon, 1969], as the beamform weights rely on the matrix inverse of C(f). To ensure that
the inverse exists, C(f) must be full-rank and therefore L needs to be sufficiently large, i.e.,
L ≥ N [Viberg and Krim, 1997]. Assuming that the mathematical representation of the
signal of interest and noise are statistically independent, the cross-spectral density matrix
can be factored into a signal and noise co-variance matrix:

C(f) = E{GG∗} = E{GsG∗s}+ E{GnG∗n} (3.2.3)
where E{} indicates the statistical expectation, E{GsG∗s} indicates the signal co-variance
matrix and E{GnG∗n} the noise co-variance matrix. Noise has a common variance σ2 and
is assumed to be uncorrelated between all sensors. This decomposition is useful in the
development of the CLEAN stopping criterion as will be discussed in section 3.3.

With the definition of C(f), the f/k spectrum P (f,~k) can be computed by multiplying
with beamform weight factor w(~k):

P (f,~k) = w∗(f,~k)C(f)w( ~f, k) (3.2.4)
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Figure 3.3: Array locations and layouts of I18DE, I26GE, I42PT, I43RU and I48TN.
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This formulation allows for the comparison of various beamform weights. In this chapter,
the Bartlett and Capon weights and corresponding f/k spectra are compared.

3.2.1 Bartlett beamforming
The ’classical’ frequency beamforming analysis is based on the f/k spectrum obtained from
the Bartlett method [Bartlett, 1948]. The signal power in P (f,~k) is maximized by summing
the phase-aligned spectral values. The Bartlett weight wB(~k) has been derived as:

wB(~k) = a(~k)√
a∗(~k)a(~k)

(3.2.5)

where a(~k) = e−i(
~k·~r) represents the steering vector. The calculation of the f/k spectra

occurs over a vector space spanned by those steering vectors, which is dependent on the
used slowness grid. Figure 3.4 shows the design of the slowness grid, which consists of a
360◦ ring grid plus a rectangular grid. The ring grid is a linear grid in back azimuth and
apparent velocity, ranging from 0◦ to 360◦ and 285 to 500 m/s with steps of 1◦ and 1 m/s,
respectively. This ring grid is, however, non-linear in the slowness domain.The rectangular
grid consists of linearly spaced values between -0.005 s/m and 0.005 s/m. This grid is
added to ensure that energy from outside the ring grid does not clutter on its boundaries,
which would result in biased outcomes.
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Figure 3.4: The applied slowness grid, consisting of a 360◦ ring grid (between 275 and 475
m/s with steps of 1 m/s every 1◦), and a 2500 points equidistant squared grid (between 200
and 10000 m/s).
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3.2.2 Capon beamforming
Capon’s method is derived as a maximum likelihood filter [Capon, 1969]. The filter design
is determined by the inverse of cross spectral density matrix C(f) and steering vector a(~k).
With this design, the noise in the power spectrum is optimally suppressed while keeping
a constant gain in the direction of interest. For Capon’s method, wC(~k) has been derived
as:

wC(~k) = C−1(f)a(~k)
a∗(~k)C−1(f)a(~k)

(3.2.6)

3.2.3 MUSIC beamforming
The MUltiple SIgnal Classification technique, MUSIC [Schmidt, 1986], exploits the eigen
structure of the cross-spectral density matrix to estimate a f/k power spectral density. It
is assumed that the NxN cross-spectral density matrix is separable in a signal and noise
subspaces. The signal subspace is positive semidefinite. The smallest eigenvalues of C
correspond to the noise subspace.

The MUSIC beam relies on the orthogonality between the steering vectors a(~k) and
the eigenvectors of the noise subspace (V ). The orthogonality minimizes the denominator
which leads to to peaks in the P (f,~k) function;

PMUSIC(f,~k) = 1
a∗(f,~k)V (f)V (f)∗a(f,~k)

(3.2.7)

where PMUSIC is not a true measure of the f/k power, it exhibits peaks in the vicinity of
the true direction of arrivals. To compute PMUSIC, an estimation of the number of sources
DMUSIC is needed in order to split the cross spectral density matrix C into a noise and
a signal subspaces. In addition, MUSIC is known to fail when resolving closely spaced
signals in small samples and at low SNR [Viberg and Krim, 1997].

Estimating the number of sources is not an easy process since one does not simply have
this information. A threshold is needed to separate the noise from signal subspaces. This
threshold can be estimated using the SORTE method, an eigenvalue-based approach [Han
et al., 2015]. The SORTE method is a statistical-based anomaly detection method, which
determines a gap (or jump) within the eigenvalues of the cross-spectral density matrix.
Based on the difference between consecutive eigenvalues of the matrix, the gap variance is
determined:

DMUSIC(d) =


var(∇λi)

N−1
i=d+1

var(∇λi)
N−1
i=d

, var(∇λi)N−1
i=d 6= 0.

+∞, var(∇λi)N−1
i=d = 0.

(3.2.8)

Where d = 1, . . . N − 1, ∇λi = λi − λi+1

var(∇λi)N−1
i=d = 1

N − d

d−1∑
i=d

(
∇λi −

1
N − d

N−1∑
j=d

∇λj
)2

(3.2.9)

The estimated number of sources is given by;

D̃MUSIC = arg mind(DMUSIC(d)) (3.2.10)
This source number will be used to split the cross-spectral density matrix into a noise

and signal subspaces. Note that the MUSIC algorithm can only resolve N − 1 sources.
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Since the cross-spectral density matrix is formed by N array elements, this implies that
the number of sources that MUSIC can resolve is limited by the number of array elements.
For example, in the case of a four-element array, only three sources can simultaneously be
resolved in theory.

3.2.4 Array responses of various beamforming methods
To study the spectral properties of these beamform techniques, it is instructive to evaluate
the array response [Evers, 2008]. Ideally the array response characterised by a delta pulse.
However, due to summation of multiple array elements the delta pulse becomes a main lobe
with various side lobes. The sample rate of the array elements determines the temporal
resolution of the measurements (i.e., Nyquist frequency), and the array response indicates
the spatial resolution.

Figure 3.5 shows the Bartlett and Capon array responses for IMS Infrasound array
I48TN, for a monochromatic wave with f0 = 0.3 Hz and k0 = 0 m−1. The array layout
of I48TN is shown in Figure 3.3. Capon’s array response has a much sharper main lobe
when compared to Bartlett’s response, which reflects its well-known high spatial resolution
property. Moreover, it can be noted that the side lobes in Capon’s spectrum are signifi-
cantly reduced, when compared to Bartlett’s response. This gain in resolution comes at
a computational cost, because of the matrix inversion of C(f). In addition, some tempo-
ral resolution (e.g., transient signals) is lost because of the necessary averaging process.
When using Bartlett it is harder to distinguish between two closely located sources in
the f/k spectrum, due to resolution. This favours the use of Bartlett’s method for the
analysis of transient signals, as it merits higher temporal resolution analyses. Whereas
Capon’s method is more suited for the analysis of (quasi-)continuous signals with longer
time windows, such as microbaroms.

3.2.5 Neele and Snieder beamforming
Figure 3.5 shows how different beamforming techniques influence the array response reso-
lution. Ideally the array response approaches a delta function. Besides the beamforming
technique, the array response resolution is critically influenced by the array layout. [Evers,
2008] describes how array lay-out and aperture influence the array response. Although
theory provides guidelines for the installation of arrays, it is in practice often difficult to
obtain an ideal response for the frequency range of interest. This can for example be
related to availability of land, or the presence of topography [Edwards and Green, 2012].
Nonetheless, [Neele and Snieder, 1991] describes a weighting technique, which implies the
optimization of the array response towards a delta function.

The array elements are weighted such that the array response is closest to a delta
function (δ(f,~k0)). Those weighting factors are found by minimizing

JNeele =
∫∫
|p|≤pmax

[
P (f,~k0)− δ(f,~k0)

]2
d2p+ ε|~qN |2 (3.2.11)

where ε is a trade-off between resolution (deltaness of the array response) versus vari-
ance (error in the result). The optimum value of ε can be estimated by calculating the
variance and resolution of JNeele as a function of ε and frequency [Backus et al., 1964; Aki
and Richards, 2002].
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Figure 3.5: Array response of infrasound array I48TN at 0.3 Hz, following the Bartlett (a)
and Capon (d) beams. The array response improves after applying the Fisher statistics for
Bartlett (b) as well Capon (e). The side spectra (c, f) show the improvement of the Fisher
ratio (red curve) with respect to the array response in terms of normalized power (black
curve) at py = 0.
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Minimising Equation 3.2.11 results in the optimum array element weights:

qNi(~k ) =
∑
j

(aa† + εI)−1
ij aj( ~k0 ) (3.2.12)

where aa† is defined as;

aa†ij =
∫∫
|~p |≤pmax

eiω~p (ri−rj)d2p (3.2.13)

Resulting in the optimum weights qN (~k ) for all the array elements per frequency

Gl(f,~k) = qN (~k )†Gl(f,~k) (3.2.14)

Figure 3.6 shows the improvement in array response of IMS array I48TN in Tunisia after
applying the optimum weight to the outcome of the Bartlett and Capon beamforming array
response. For both Bartlett and Capon (Figure 3.5), the main lobe is modified towards
a delta function. Nonetheless, due to applying those weights, the amount of side lobes
as well as the power increases significantly, which may be deducted by applying CLEAN
(section 3.3).

3.2.6 Fisher detection
The Fisher detection is commonly used in analyzing the variance within measurements
[Fisher, 1948]. Melton and Bailey [1957] introduced the F-ratio in combination with ar-
ray processing, when after multiple studies implemented it. The detector aims to detect
coherent signals impinging the microbarometer array. The algorithm uses the analysis
of variance within a recording, which included both noise and signal [Fisher, 1948]. The
F-ratio, the outcome of the algorithm, is a measure of SNR, and expresses the coherency
between the recordings of the array elements for a specific slowness value. The maximum
F-ratio can than be linked to the specific parameters concerning the dominant arriving
wavefront impinging the array [Evers, 2008]. In the frequency-domain the Fisher detection
is based on the outcome of the f/k spectra of the used beamform technique [Smart and
Flinn, 1971]. Pt(f) represents the total f/k spectral power as a normalised sum of the
diagonal elements of the cross-spectral density matrix:

Pt(f) = 1
N

N∑
n=1

Cnn(f) (3.2.15)

Assuming that the signal is identical over all array elements while the noise can be
modeled as uncorrelated Gaussian white noise, [Smart and Flinn, 1971] have shown that
the F-ratio in the frequency domain can be defined using the following estimates of signal
power on the beam Pmax, and total power Pt:

F (f,~k) = Pmax(f,~k)
Pt(f)− Pmax(f,~k)

(N − 1) (3.2.16)

The relation between the F-ratio and the SNR has been derived by Melton and Bailey
[1957].

F = N · SNR2 + 1 (3.2.17)
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Figure 3.6: Array response of infrasound array I48TN at 0.3 Hz, following the Bartlett (a)
and Capon (d) beams. The array response improves after applying the frequency dependent
weighting values following [Neele and Snieder, 1990] for Bartlett (b) as well Capon (e).
The side spectra (c, f) show the improvement (red curve) with respect to the array response
in terms of normalized power (black curve) at py = 0.
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3.3 CLEAN beamforming
In the processing of real data, the f/k spectrum often consists of multiple maxima with
varying amplitude. In such a convoluted spectrum, it can be difficult to distinguish in-
terfering sources and identify concurrent, sub-dominant sources from the side lobe of a
dominant source. It is the objective here, to design a method that can unravel the f/k
spectrum in terms of individual contributions to the f/k spectrum, while being able to
distinguish between main lobe and side lobes. For this purpose, the CLEAN method can
be applied.

CLEAN [Högbom, 1974] is a post-processing method that can be applied to conven-
tional beamform methods, e.g., Bartlett and Capon as introduced in the previous subsec-
tion. CLEAN iteratively removes phase and amplitude information associated with the
strongest contribution in the f/k spectrum, Pmax, from the cross-spectral density matrix
[Sijtsma, 2007; Gal et al., 2016]. A partly cleaned cross-spectral density matrix, Cclean, is
obtained:

Cj+1
clean(f) = Cjclean(f)− φP jmaxwmaxw

∗
max (3.3.1)

with wmax = w(kmax) the beamform weight for which Pmax, with wavenumber kmax,
was resolved, Cjclean the cross-spectral density matrix at jth iteration and φ the parameter
that determines the fraction of removed power. Note that the subtraction in Equation
3.3.1 involves a convolution of the array response function with Pmax. This ensures that
the array response pattern is suppressed in the (j+1)th beamform iteration. It is precisely
this deconvolution operation that allows for the identification of sub-dominant f/k spectral
density peaks. Such peaks could otherwise have been masked due to spatial aliasing of the
dominant source in the beamforming process.

The CLEAN algorithm has a relatively high computational cost because of the poten-
tially large number of beamform iterations in lieu of one single beamforming run. The
number of iterations is controlled by the φ value. A small value will result in resolving
more sub-dominant sources at the cost of a larger number of iterations and therefore a
higher computational load, while a larger value leads to a faster algorithm but may be less
accurate in resolving sub-dominant sources. Gal et al. [2016] stated that the optimal value
for φ depends on the combination of array layout, frequency range of beamforming and
the SNR. In general, a small φ value is recommended when processing data from arrays
with a small number of elements and/or data with low SNR values.

In this study, the number of iterations is not predefined but depends on a stopping
criteria. CLEAN beamforming with φ values between 5 and 15% provided similar results.
Since this study deals with a low number of array elements and a low SNR, a φ value of
10% has been chosen (following Gal et al. [2016]).

For each processed frequency f , the maximum of the f/k spectral density as well as the
corresponding wavenumber vector ~kj is stored in a CLEAN power spectrum:

Pclean(f,~k) =
Q∑
j

φP jmax(f,~kj) (3.3.2)

Q is the total number of CLEAN iterations. The CLEAN process continues until reaching
a stopping criterion. Because the array response function is deconvolved, the smearing of
energy in the original f/k power spectrum P (f,~k) has been reduced. As a result, Pclean(f,~k)
has a sharper and cleaner appearance, which is useful in obtaining an enhanced insight in
the diversity of acoustic sources around the array.
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The individual contributions P jmax(f,~kj) in Pclean(f,~k) are characterized by a new and
clean, Gaussian point spread function (PSF) [Sijtsma, 2007]. Every PSF has a standard
deviation of three times the spatial f/k spectral resolution. Hence, sources are distinct if
the the distance between the maxima of two PSF’s is greater than two standard deviations.

3.3.1 Fisher Statistics as CLEAN stopping criterion
As CLEAN is an iterative beamforming procedure, a maximum number of iterations is
to be defined after which the procedure stops. Hitherto, setting of this parameter has
been user-defined [Clark, 1980; Sijtsma, 2007; Gal et al., 2016], which is impractical for
application to large datasets, for which the number of iterations may be strongly dependent
on the analysis window. Here, the use of Fisher statistics and the F-ratio as a test statistic
[Fisher, 1948] is proposed for the definition of a data-driven stopping criterion.

The processing of data from a ground-based infrasound array corresponds to a bi-
variate analysis problem where the pressure fluctuations are modeled as a random process.
Within each analysis window, the variance of the (phase-shifted) pressure signals between
the array elements is compared with the variance of the pressure values at each individual
element [Melton and Bailey, 1957]. The F-ratio compares both measures of variance. In
the associated statistical test, the null hypothesis is tested that these variances are not
significantly different. In other words: the null hypothesis corresponds to the case that no
coherent signal is present. The F-ratio deviates from unity if the variances are not equal,
which corresponds to a probability that a coherent signal is present in the data. Fisher’s
test statistic is evaluated for every steering vector that is considered in the beamforming
procedure. This procedure allows an evaluation of the significance of detection on each
steering vector of interest.

The probability density of the F-ratio is described by a F-distribution. The particular
shape of the distribution is dependent on the statistics of the data samples as well as the
degrees of freedom of the dataset. In the beamform application, the degrees of freedom are
a function of the number of samples points Ts and array elements N . If the samples points
follow the statistical distribution of Gaussian white noise, the resulting F-ratio statistic
follows a central F-distribution FFisher(ν1, ν2). The degrees of freedom in the time-domain
Fisher analysis, ν1 and ν2, are given by: ν1 = Tst−1 and ν2 = Tst(N−1) [Evers, 2008]. In
the frequency-domain, the degrees of freedom are given by: ν1 = 2Tsf and ν2 = 2Tsf (N−1)
[Shumway, 1971]. The mean of the central distribution is FFisher = 1. The F-ratio statistic
follows a non-central F-distribution FFisher(ν1, ν2, λnc) in the case where a signal with a
certain SNR is present. The non-centrality parameter λnc is determined by the SNR of
the signal as: λnc = ν1 · SNR2 [Shumway, 1971].

The statistical properties of the F-ratio allow for the estimation of the missed event
and false alarm probabilities, given a specified confidence level. Likewise, a probability
of detection can also be quantified. Therefore, the Fisher’s test statistic is a robust and
efficient method for the detection of coherent signals in the presence of incoherent noise.
Besides, representing the spectra in terms of the F-ratio sharpens the main lobes, as can
also be seen in Figure 3.5.

By evaluating the Fisher ratio at every CLEAN iteration, the probability of detection
and the SNR of the detected signal can be estimated. Moreover, this framework allows
to determine a CLEAN stopping criterion from a statistical perspective. Indeed, as the
Fisher ratio approaches unity, the likelihood of a false alarm increases and the iterative
procedure can be stopped, as no coherent signal is likely to be left in the cross-spectral
density matrix. The effectiveness of this method will be demonstrated using synthetic data
in the following section.
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3.4 Synthetic data

Three different synthetic waveform tests are discussed in this section. The tests have been
designed to (1) evaluate the use of Fisher statistics as a CLEAN stopping criterion, (2)
compare the Bartlett and Capon beamform techniques, and (3) evaluate the performance of
the proposed CLEAN algorithm in the processing of infrasound array data. The synthetic
waveforms are generated given the array element locations of infrasound array I48TN
(Figure 3.3). The temporal sample rate of the waveforms is 20 Hz, which corresponds to
the actual sample rate of this IMS array.

3.4.1 Fisher threshold testing using uncorrelated Gaussian white noise

To demonstrate the use of Fisher statistics in the determination of a CLEAN stopping
criterion, a Monte Carlo simulation is performed. The Monte Carlo simulation consists of
500 Capon beamform runs on synthetic waveform data that consists of uniform Gaussian
white noise. The beam forming analysis is carried out in the frequency band ranging from
0.1 to 0.3 Hz. Smoothing is applied by averaging power estimates for Z adjacent frequencies
around a frequency of interest, which is defined by the amount of steps within the frequency
band. To satisfy the degrees of freedom in the time domain and the frequency domain,
smoothing should avoid overlapping frequencies. For each run, each with a duration of
1000s, data is beamformed. The Fisher ratio is computed for every beam. Figure 3.7a
shows an example f/k spectrum.

The resulting distribution of calculated Fisher ratios is plotted in Figure 3.7b as a
histogram. The histogram distribution follows a central F-distribution, which would be
expected as the data samples follow the statistical distribution of Gaussian white noise.
The F-distribution is characterised by the degrees of freedom which are specified by N = 7
and Tsf = Z + L = 10 + 40 = 50, which indicates the number of sample points that are
used, depending on the smoothing and the number of snapshots, L, within one window.
The distribution is plotted with a solid black line in Figure 3.7b. The 95 percentile is
found at FFisher = 1.28 and is indicated by the dotted line. For this particular choice
of processing parameters, the Fisher threshold should be set to 1.28 in order to have a
95% confidence for avoiding false-alarms. More generally, this test demonstrates the use
of Fisher statistics in the estimation of a CLEAN stopping criterion.

3.4.2 Slowness estimates for multiple, interfering sources

CLEAN beamforming as postprocessing algorithm

Two additional synthetic datasets are constructed in order to test the ability to accurately
discriminate between interfering sources within one analysis window. The synthetic wave-
forms are generated for each of the array elements, by adding Gaussian white noise with a
specified amplitude as described in Table 3.1. The synthetic waveforms for each element
are coherent, but shifted in time with respect to one another, according to the array layout
and the imposed directivity of signal m. Each source is continuous, to represent ambi-
ent noise. Table 3.1 shows the characteristics of dataset A. The applied band-pass filter
has corner frequencies of 0.1 and 0.3 Hz. Note that the three sources are continuously
interfering throughout the record.



74 High-resolution infrasound array processing

−4

−2

0

2

4

py
 [s

/k
m

]

−4 −2 0 2 4

px [s/km]

a

0.0 0.5 1.0 1.5

Fisher ratio

0.5

1.0

1.5

2.0

2.5

PD
F

0.0 0.5 1.0 1.5 2.0

Fisher ratio

b F0.95

Figure 3.7: Outcome of the Monte Carlo runs on randomly generated data. (a) F/k beam-
forming result of a random generated dataset. (b) Histogram F-ratio outcome of 500 Monte
Carlo runs. The grey line indicates the central F-distribution. The dotted line is the 95
percentile,F0.95 = 1.28.

The time shift for each array element is computed using the steering vector a(~km) and
wavenumber vector parameters:

kx,m = 2πf
capp,m

sin(θm) ky,m = 2πf
capp,m

cos(θm)

The individual signal contributions are added up per element, thereby generating a
complex signal that is composed of several individual signals. Finally, uncorrelated Gaus-
sian white noise with amplitude 0.5 Pa is added to each of the array element waveforms,
individually. As this signal is incoherent between the array elements, it represents the noise
level. Hence, a theoretical SNR and Fisher ratio can be estimated from Equation (3.2.17).

Input Output Bartlett Output Capon
θm capp,m sm Exp. FFisher θm capp FFisher θm capp FFisher

300 340 1.0 29 294 335 28 300 339 27
90 340 0.8 19 93 330 14 90 340 20
280 340 0.6 11 277 324 7 280 338 7

Table 3.1: Input source parameters for dataset A and its estimated parameters using the
CLEAN algorithm, following Bartlett’s and Capon’s method. The amplitude of the added
incoherent white noise is 0.5 Pa. The expected F-ratio is computed using Equation (3.2.17).
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Figure 3.8: Beamform results of I48TN between 0.1-0.3 Hz on synthetic dataset A (Table
3.1). Figures (a) and (b) show the results of the Bartlett beamformer before and after
CLEAN has been applied. (c) and (d) are the results when Capon has been applied. The
circles indicate where sources are expected in the f/k spectrum. The red ring indicates the
apparent velocity, capp = 340m/s. Note that the apparent sources in frame (b) correspond
to side-lobes due to Bartlett’s method.
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Figure 3.8 shows the initial f/k spectra before and after application of CLEAN. Three
features should be noted. First, CLEAN improves the resolution of both spectra, as can
be seen in the sharpening of the main lobes. This enables to resolve two closely located
sources within the f/k spectrum. The highest resolution is obtained by combining Capon
and CLEAN. Gal et al. [2016] earlier stated that a high-resolution initial f/k spectrum
with a sharp main lobe is beneficial to the performance of CLEAN. Second, with Capon
the sources are better identified than with Bartlett, as can be seen from the coincidence of
the lobes with the circles, which have their center-points at the expected source locations
and a radius of ±1.5◦. This is a consequence of the lower resolution of Bartlett. Last, the
low spatial resolution of Bartlett leads to various spurious peaks in the f/k spectrum, after
application of CLEAN.

The θm and capp parameters that correspond to the maxima of the resolved f/k spectral
densities after CLEAN has been applied are tabulated in Table 3.1. In case of Capon
in combination with CLEAN, a close agreement between the source parameters and the
resolved values is noted. This is not the case when applying Bartlett’s method, due to the
low resolution of the initial f/k spectra.

While a particularly good agreement is noted for the back azimuth and the resolved
apparent velocity in case of Capon and CLEAN, the resolved Fisher ratio is biased low
compared to the theoretical Fisher ratio, which will be further explained in the discussion.

Based on the comparative performance of the beamform techniques, the future syn-
thetic tests are performed with Capon’s method only.

Comparison between CLEAN and MUSIC beamforming

Besides CLEAN beamforming, MUSIC beamforming can also be applied to resolve mul-
tiple spatially distributed sources within overlapping frequencies and time windows. The
algorithm is based on splitting the cross-spectral density matrix into a signal and noise
subspace. The splitting, however, brings two significant limitations. First, the number of
sources that the algorithm can resolve depends on the number of array elements. Second,
in practice, the exact number of interfering sources is unknown. An incorrect number of
expected sources results in a biased f/k spectrum with various sidelobes. Moreover, MUSIC
does not represents a true spectrum, it exhibits peaks in the vicinity of the true direction of
arrival. In addition, there are known issues for signals with low SNR and short integration
times (Figure 3.9, Viberg and Krim [1997]).

The SORTE algorithm has been introduced as a threshold measure for the unknown
number of sources within this chapter. SORTE is a gap measure between values and is
therefore used as a threshold for separating the noise and signal subspaces.

Figure 3.9 shows the f/k spectra obtained from the MUSIC algorithm while analysing
the synthetic waveforms from dataset A, which contains three sources. The panels represent
the algorithm’s outcome for 1, 2, 3 and 4 pre-defined sources. Note how the beamform
resolution increases when the MUSIC algorithm approaches the number of sources and
how an incorrect number of expected sources biases the resolution. The figure shows that
an exact expected number of sources is critical for a correct f/k analysis. For this example,
the SORTE threshold correctly indicated three expected sources (panel c).

Although the threshold function agrees with the dataset, the f/k resolution of MUSIC is
low compared to the CLEAN spectra of Figure 3.8. Furthermore, the presence of sidelobes
in the MUSIC spectrum further complicates interpretation of the results. Therefore the
CLEAN algorithm is favorable compared to the MUSIC algorithm. CLEAN iteratively
filters the coherent signals from the f/k spectra while applying a deconvolution of the
array response.
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a b

c d

Figure 3.9: Outcome of the MUSIC beamforming algorithm on the synthetic waveforms of
dataset A. (a) The f/k spectrum for the MUSIC algorithm with one expect source. Panels
(b), (c), and (d) show the spectra for 2, 3, and 4 expected number of sources, respectively.

.
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3.4.3 Performance of the CLEAN algorithm in the processing of infra-
sound array data.

The parameters used in the construction of dataset B are summarized in Table 3.2. Dataset
B represents the case of an increasing number of interfering, continuous sources with time.
The synthesis of the signals is otherwise equal to the method described earlier in this
section. Figure 3.10 shows the f/k spectra and the resulting θm and capp as function of
time. The circles indicate the expected source positions and the color rings indicates the
expected apparent velocity of the signals. Again, a close agreement between the source
parameters and the resolved values is noted. The numerical values are summarized in
Table 3.2.

Input Output
θm capp[m/s] sm[Pa] Exp. FFisher Time [s] θm capp[m/s] FFisher

300 360 1.0 29 100-4000 300 359 28
90 320 0.8 19 1100-4000 89.8 319 17
280 280 0.6 11 2100-4000 279.6 278 9

Table 3.2: Similar as Table 3.1, but now for dataset B, which features three different sources
that are active during different time intervals. In this case, the CLEAN method is used
with Capon’s method, only.

Since the input and output of both datasets are in good agreement, we conclude that
the proposed Fisher ratio as a stopping criterion and the PSF in combination with the
two standard deviation distribution are robust parameters. Both enable CLEAN to be
data-driven and reliable.

3.4.4 Monte-Carlo run on synthetic infrasound data.
To determine the consistency of the results for the Capon method in combination with
CLEAN (Table 3.2), a second Monte Carlo run was performed. This Monte Carlo run
consists of 500 runs for which each run a new dataset is created with the input of Table
3.2. The results are again in line with earlier results. A good agreement is noted for the
back azimuth and apparent velocity.

In the estimation of SNR levels, it has been found that the resolved Fisher ratio is
not always in agreement with the theoretical value that would be expected from the SNR
conditions and the degrees of freedom in the dataset. This is further outlined in Figure
3.11, which shows the theoretical central and non-central Fisher distributions for datasets
A. The solid gray lines indicate the theoretical non-central Fisher distributions for each
source, the dotted lines are the resolved mean Fisher ratios. One of the three resolved
sources is in agreement with the theoretical distribution, the other sources show a slight
deviation. The bias is attributed to the fact that the noise cannot longer be considered as
uncorrelated Gaussian white noise when multiple coherent signals are present in the array
recordings. Further research is needed to understand the noted bias between theoretical
and resolved Fisher ratio, in the case of multiple sources.
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Figure 3.10: Result of Capon beamforming with CLEAN on waveforms of dataset B, Table
3.2. F/k spectra of window 1 (a), window 2 (b) and window 3 (c) after CLEAN has been
applied. The circles indicate where sources are expected, and the colored rings indicates the
apparent velocity capp (green; capp = 360m/s, blue; capp = 320m/s, and red; capp = 280m/s.
(d-e) are the CLEAN results plotted as a function of time, for the three windows considered.
The lines indicate expected results regarding back azimuth and apparent velocity, color of
the dots indicate the Fisher ratio.
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Figure 3.11: The theoretical central and non-central F-distribution based on synthetic dataset
A (Table 3.1). The red curve indicates the central distribution, the gray curves the theoret-
ical non-central distribution for each source. The dotted lines are the resolved mean Fisher
ratio’s, while the orange histograms determine the outcome of the Monte Carlo runs. The
observed differences between histograms and theoretical distributions can be explained by
the coherence of the background noise.
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3.5 Real data example

The proposed CLEAN method is applied to infrasound measurements recorded on 17
January 2011 on the IMS infrasound arrays I48TN (Tunisia), I42PT (Açores), I26GE
(Germany), I43RU (Russia) and I18DE (Greenland).

This analysis builds on an earlier study by Assink et al. [2014] in which two simultane-
ous infrasound sources were identified in the microbarom frequency band using a beamform
technique using Bartlett’s method and Fisher statistics. It was hypothesised that the de-
tections corresponded to microbarom activity in the Northern Atlantic and Mediterranean
Sea.

The two sources had an overlapping frequency content around 0.2 Hz, but the Mediter-
ranean microbaroms were found to be coherent up to 0.6 Hz while the North Atlantic
microbaroms are coherent up to 0.3 Hz.

Figure 3.12 shows the f/k spectra of the IMS arrays for the first 2000 seconds of
data on 17 January 2011, before and after CLEAN has been applied and by using the 95
percentile Fisher threshold. In these spectra, multiple sources are resolved in the 0.1-0.3
Hz frequency band. It should be noted that sub-dominant sources can be identified, which
would have been obscured in traditional infrasound processing schemes that only report on
the dominant source. Figures 3.13 shows the processing results of I48TN for the entire day.
Figures 3.13a and 3.13b show the dominant source per time-window, using Bartlett’s and
Capon’s method, respectively. Figure 3.13c list all the resolved sources by using Capon
in combination with CLEAN. The conventional beamforming methods detect two sources
intermittently, while CLEAN continuously resolves three sources.

Furthermore, the frequency band of processing can highlight different sources, which
is illustrated in Figure 3.14. Figure 3.14 shows that the microbaroms from the Atlantic
Ocean have a lower center frequency than those of the Mediterranean Sea. The Atlantic
Ocean microbaroms are most coherent to the north-west in the frequency range of 0.1-0.3
Hz, those from the Mediterranean Sea appear from the east between 0.3-0.6 Hz. This is
consistent with the earlier analysis by Assink et al. [2014].

Microbarom source regions are identified by cross-bearing localization, in which the
detections at multiple IMS arrays are combined. In this procedure, it is assumed that there
is an atmospheric duct in all directions, and that the propagation of microbarom signals
is not strongly influenced by cross-winds or other along-path meteorological conditions
[Smets and Evers, 2014b]. The source locations are compared with microbarom source
regions that have been predicted using the microbarom source model described by Waxler
et al. [2007], following the implementation described in Smets [2018]. As an input for
this model, the two-dimensional wave spectra (2DFD) obtained from the European Centre
for Medium-Range Weather Forecast (ECMWF) deterministic high-resolution ocean wave
model Cycle 36r1 (HRES-WAM) analysis [ECMWF, 2008, 2016] have been used.

Figure 3.15a and b show the results of this approach for the frequency ranges of 0.1-
0.3 Hz and 0.3-0.6 Hz. For both frequency bands CLEAN resolved several sub-dominant
sources, which could have been missed when applying conventional beamforming methods.
Because of this, the same microbarom sources are resolved at different IMS stations, re-
sulting in better microbarom source localization based on IMS observations. In case of the
lower frequency band more microbarom sources are resolved in the region of the Atlantic
ocean, the higher frequency band highlights two sources towards the Mediterranean sea.
For both ranges of frequency, the resolved microbarom source regions are in a particularly
good agreement with the microbarom prediction model.
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Figure 3.12: F/k spectra of I18DE (a-b), I26GE (c-d), I42PT (e-f) and I48TN (g-h) before
and after CLEAN, between 0.1-0.3 Hz for the first 2000 sec of data on 17 January 2011.
The blue ring indicates the speed of sound at standard sea level (15◦C and 1.225 kg/m3),
capp = 340m/s.



3.5 Real data example 83

0

90

180

270

360

Ba
ck

 a
zi

m
ut

h 
[d

eg
.]

0 4 8 12 16 20 24

Time [hrs on 17 Jan 2011]

c
0

5

10

15

20

25

30

35

Fi
sh

er
 ra

tio

0

90

180

270

360 b

0

90

180

270

360 a

Figure 3.13: Infrasound detections on 17 January 2011 in the 0.1-0.3 Hz frequency band.
(a) shows the maximum contribution of the Bartlett f/k spectrum without CLEAN. (b)
the maximum contribution of the Capon f/k spectrum without CLEAN and (c) reveals the
outcome after application of the proposed CLEAN algorithm on the Capon f/k spectra.
The dotted lines indicate the mean back azimuths that are associated with the observed
microbaroms throughout the day. The dots are coloured coded by the Fisher ratio.
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Figure 3.14: CLEAN f/k spectra of I48TN between (a) 0.1-0.3 Hz and (b) 0.3-0.6 Hz for
the first 2000 sec of data on 17 January 2011.
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3.6 Discussion and conclusion

In this study, a CLEAN array processing algorithm is presented that has been inspired
by earlier work [Sijtsma, 2007; Gal et al., 2016]. CLEAN is a post-processing method
that can be applied to conventional beamform techniques, such as Bartlett and Capon.
Because contributions to the total f/k spectrum are iteratively removed in this procedure,
sub-dominant sources can be identified. Moreover, a more peaked f/k spectrum is obtained
because the array response is deconvolved in the process. The performance of CLEAN is
found to be dependent on the beamform resolution, which is in line with earlier work by
Gal et al. [2016].

Moreover, the use of Fisher statistics for signal detection and the determination of
a CLEAN stopping criterion is proposed. This stopping criterion has been identified in
earlier work as a critical parameter for the performance of CLEAN [Clark, 1980; Sijtsma,
2007; Gal et al., 2016]. The efficiency of the method is demonstrated using a Monte Carlo
simulation with uniform Gaussian white noise. From this test, it can be concluded that the
central F-distribution can be used as guidance to estimate a CLEAN stopping criterion.
The probability of false alarms can be estimated when it is assumed that the remainder
of the cross-spectral density matrix consists of (incoherent) white noise after beamform
iterations.

Furthermore, synthetic tests have been performed to simulate the detectability of mul-
tiple continuous infrasound sources surrounding an array. The tests show that the back
azimuth and the apparent velocity are accurately resolved. Based on this, it is concluded
that that the PSF in combination with the two standard deviations distribution is adequate
for distinguishing multiple sources. The Capon method has been found to provide more
accurate results when compared to the Bartlett method, which is related to the higher
spectral resolution of the former method.

It has been shown that the properties of Fisher statistics can be used to discriminate
between coherent and incoherent signals. As a result, the Fisher ratio shall be used as the
CLEAN stopping criterion. Nonetheless, in the estimation of SNR levels, it has been found
that the resolved Fisher ratio is not always in agreement with the theoretical value that
would be expected from the SNR conditions and the degrees of freedom in the dataset. The
bias is attributed to the fact that the noise cannot longer be considered as uncorrelated
Gaussian white noise when multiple coherent signals are present in the array recordings.
Further research is needed to understand the noted bias between the theoretical and the
resolved Fisher ratio, in the case of multiple sources.

CLEAN has been applied to infrasound data recorded on multiple IMS arrays that are
located around the Northern Atlantic. The results show that multiple microbarom sources
can be resolved, including regions that would would have been obscured if conventional
processing methods would have been used. Microbarom source locations are obtained by
cross-bearing localization and are in agreement with simulated microbarom source regions.
It should be noted that the effect of propagation conditions are neglected in the current
approach which, in combination with the dynamic nature of the microbaroms, explain
some variation in back azimuth with time. Such effects could be accounted for by back
projecting using a ray theoretical approach [Smets and Evers, 2014b].

Although the use of CLEAN beamforming allows for the detection of concurrent sources
around an infrasound array, the method is computationally expensive compared to methods
in which only the dominant source is to be detected. Moreover, the performance of CLEAN
depends on the setting of various parameters that require careful tuning. This includes
the choice of the beamforming weights and the setting of the φ value, the percentage of
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source removal per iteration. The setting of φ depends on the combination of array layout,
processing frequency and the SNR. Therefore, it is important to analyse the sensitivity of
the beamforming results to the choice of processing parameters.

Conventional beamforming algorithms can only confidently detect the most dominant
source in each processing window and cannot confidently distinguish other concurrent
sources from side lobes. The CLEAN implementation by Gal et al. [2016] iteratively
resolves more sources. However, without a statistical framework, the number of iterations,
which is predefined, is arbitrary and there is no certainty in the process with regard to true
or false sources. In the presented implementation, a Fisher statistics framework is used to
define a stopping criterion so that there is statistical certainty that the resolved sources
are real. In the case of I42PT the initial f/k spectrum is ’smeared’ over almost 360◦. This
is because I42PT is located on an island with sources all around it, including perhaps local
and weaker sources that are not resolved in the microbarom model. The model averages
microbarom source activity over a period of six hours. Therefore sources that are active
for only a small fraction of that period are suppressed. However, a processing window of
2000 seconds with CLEAN can resolve such local, short duration sources. Additionally,
I42PT is located relatively close to North-Atlantic microbarom source regions highlighted
in the model (Figure 3.15). Thus, it can separate the source region into more sub-sources
that are two standard deviations apart in the f/k spectrum.

Previous studies have discussed other beamforming algorithms to identify multiple
sources within the same frequency band (e.g., MUSIC [Schmidt, 1986]). Within sec-
tion 3.4.2 the CLEAN and MUSIC algorithms are compared and discusses the benefits
of CLEAN over MUSIC. CLEAN does not require source knowledge while the MUSIC
algorithm needs the user to define the number of sources. If this number is incorrect, the
outcome of the algorithm is incorrect. Furthermore, MUSIC can only resolve as many
sources as array elements.

The enhanced beamforming resolution of CLEAN improves the capabilities of infra-
sound as a monitoring technique. This comes to the benefit of infrasonic monitoring of
nuclear tests as well as natural hazards, such as volcanoes, earthquakes and hurricanes.
In addition, high resolution microbarom observations can be useful in the assessment of
microbarom source models [Waxler et al., 2007] as well as in the remote sensing of the
middle and upper atmosphere, for which microbarom signals have been used in previous
research [Donn and Rind, 1972; Smets, 2018]. Besides the application to infrasound arrays,
the algorithm can be applied to improve on the limited f/k spectral resolution of arrays
with a low number of elements, such as the IMS hydro-acoustic triplet arrays that are
deployed in the world’s oceans.
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Figure 3.15: Microbarom source region predictions for frequencies between 0.1- 0.3 Hz (a)
and between 0.3-0.6 Hz (b) from 17 January 2011 00:00 UTC till 00:30 UTC [Waxler
and Gilbert, 2006; Smets, 2018]. I48TN, I42PT, I26GE, I43RU and I18DE are indicated
by blue diamonds. Back azimuth projection of all resolved sources are indicated by solid
arrows(Figure 3.12), the black solid arrow indicates the dominant source. Transparent
circles indicate possible source location found by cross bearing.
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4
Modelling of microbarom soundscapes

Statistical projections which speak to the senses without fatiguing the mind,
possess the advantage of fixing the attention on a great number of important facts.

Alexander von Humboldt

Abstract Within this chapter a method is introduced to reconstruct microbarom
soundscapes in absolute values. The soundscapes are compared to remote infrasound
recordings from infrasound array I23FR (Kerguelen Island) and in-situ recordings by the
INFRA-EAR, a biologger deployed near the Crozet Islands. The reconstruction method
accounts for all-acoustic contributions, divided into evanescent microbaroms (detectable
directly above the source) and propagating microbaroms (detectable over long ranges).
It is computed by integrating acoustic intensities over the ocean surface, convolved with
the transfer function quantifying the propagation losses and propagation time. The re-
constructed soundscapes are found within 2.7 dB for 85% of the measurements in the
microbarom band of 0.1-0.3 Hz. Infrasonic soundscapes are essential for understanding
the ambient infrasonic noise field and are a basic need for applications such as atmo-
spheric remote sensing, natural hazard monitoring, and verification of the Comprehensive
Nuclear-Test-Ban Treaty.

Published as: den Ouden, et al. 2021, A bird’s-eye view on ambient infrasonic soundscapes,
Geophysical Research Letter Volume 48, DOI: 10.1029/2021GL094555
Note that minor changes have been introduced to make the text consistent with the other chapters,
and that Section 4.4 is extended with non peer-reviewed content.
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4.1 Introduction
The Southern hemisphere is characterized by its sparsity of in-situ atmospheric observations
due to large ocean volumes and consequently limited landmass. Meteo-France maintains
and operates meteorological measurement facilities at some of the French Sub Antarctic
and Antarctic lands. The Southern Oceans weather forecasts benefits from those in-situ
facilities in combination with remote satellite data [Levy and Brown, 1991; ECMWF, 2017].
This study discusses the measurement of atmospheric pressure perturbations and their
variations. Those observations have shown to be valuable for studying both infrasound
and gravity waves [Blanc et al., 2018; Marlton et al., 2019; Hupe, 2019]. Such observations
can be retrieved from microbarometer arrays that are part of the global IMS. The IMS is
in place to verify the CTBT [Marty, 2019], and globally monitors the infrasonic wavefield.

Deep oceanic ambient noise is globally the most omnipresent seismic and infrasound
source. The sea state describes the energy of the ocean surface and is the driving force
for four different seismo-acoustic wave contributions (Figure 4.1-a). (1) Evanescent micro-
baroms at the ocean-air interface are a direct product of travelling ocean surface waves,
unregarded the water depth nor bathymetry, and decays vertically [Waxler and Gilbert,
2006; Hetzer et al., 2010]. (2) The primary microseisms are related to a travelling ocean
waves as well; however, these are only generated at the seafloor whenever the surface wave
is in phase with the ocean bathymetry [Ardhuin et al., 2015]. Non-linear interaction of
counter travelling ocean surface waves results in standing ocean waves, causing the radi-
ation of acoustic energy and resonance within the water column [Longuet-Higgins, 1950;
Hasselmann, 1963]. At the interfaces of the water column, acoustic energy is radiated into
the atmosphere as (3) propagating microbaroms [Brekovskikh, 1973] and down into solid
seafloor as (4) secondary microseisms [Longuet-Higgins, 1950].

Propagating microbaroms are often received at distant infrasound arrays and typically
peak around 0.2 Hz [Campus and Christie, 2010]. Various studies have focused on com-
paring microbarom simulations and distant IMS array observations [Landes et al., 2012;
De Carlo et al., 2020b; Vorobeva et al., 2020]. Such studies are hampered by the relatively
large distance of the arrays to the microbarom source regions, which is often largely spread
out (∼ 10.000 km2). Typically, array processing techniques are applied to detect the dom-
inant acoustic signal and direction-of-arrival in a given time segment and frequency band.
Therefore, only the resolved direction and amplitude of this most dominant microbarom
observation is compared with microbarom models. However, Assink et al. [2014] and Smets
and Evers [2014a] showed that multiple spatially distributed sources within the same time
segment and frequency could occur (see also chapter 3 of this thesis).

In this chapter, atmospheric in-situ and remote measurements of microbaroms within
the Southern Ocean are obtained by, respectively, the INFRA-EAR (chapter 2) and IMS
array I23FR (Kerguelen Island). The INFRA-EAR is a multidisciplinary sensor platform
for the monitoring of geophysical parameters. It has been fitted to the Southern Ocean’s
largest seabirds, the Wandering Albatross (Diomedea exulans). During foraging trips,
an albatross can fly thousands of kilometres away from its nest. Throughout the 2020
foraging trips, 25 INFRA-EARs have flown over the Southern Ocean to collect geophysical
data. Furthermore, the INFRA-EARs are used to investigate the extent of infrasound and
weather patterns in the navigation decisions by Wandering Albatrosses [Clay et al., 2020;
Zeyl et al., 2020]. The INFRA-EARs have collected a total of 115 hours of absolute and
differential pressure data while travelling over 42,184 km.
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Figure 4.1: (a) A schematic overview of deep oceanic ambient noise. The blue signatures
highlight the sea state and its products (travelling and standing ocean waves). The gray
arrows indicate the generation of the acoustic components and the coupling to the interfaces.
The black half-spheres show the radiation within the atmosphere and solid earth, from where
a simplistic atmospheric propagation path is described. (b) The trip of the INFRA-EAR
over the Southern Ocean. The triangles show IMS infrasound array locations. The circles
indicate the start and end position of the trip. (c) and (d) show the spectrogram of the
recording by the INFRA-EAR and IMS array I23FR, respectively.
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High-resolution array processing techniques to resolve spatially distributed infrasound
sources, e.g., CLEAN beamforming (chapter 3), cannot be applied to the INFRA-EAR
observations. This is because the individual INFRA-EAR’s exist beyond the required
aperture for beamforming [Evers, 2008]. Instead, a method is developed to derive the
different contributions of the microbarom field that are measured by the INFRA-EAR and
I23FR array.

4.2 Microbarom observations near Crozet Islands

4.2.1 The INFRA-EAR: in-situ infrasound measurements
The INFRA-EAR is a multidisciplinary sensor platform for monitoring geophysical pa-
rameters (chapter 2). The platform uses digital MEMS and monitors concurrently various
geophysical parameters, such as differential and absolute pressure. The battery lifetime
depends on the sensors power consumption. Therefore, the sensors are not continuously
recording during a trip, as the battery lifetime is limited. The differential pressure sensor
(KNMI mini-MB) is activated in bursts of five minutes, each hour, with a sampling fre-
quency of 10 Hz to measure the small pressure perturbations. Section 2.1 stated that the
KNMI mini-MB measures on the order of 10−2 Pa and is biased by 2±1 dB at frequencies
below 1 Hz. The logger provides a GPS timestamp per sample point and a position every
15 minutes.

The INFRA-EAR is fitted to wandering albatrosses at the Crozet Islands. The average
trip takes approximately 15 days while travelling thousands of kilometres. The recordings
of the INFRA-EAR occur directly above the sea surface, ∼ 5 m [Richardson et al., 2018].

4.2.2 IMS array I23FR: remote infrasound observations
Infrasound array I23FR is located at Kerguelen Island, ±1500 km from the INFRA-EAR
recordings. Due to the INFRA-EAR’s proximity to I23FR, it is reasonable to assume
that the differential pressure recordings show similar characteristics. The I23FR array
has an aperture of ±1700 m and is divided into five triplets of MB 2005 microbarometers
[Ponceau and Bosca, 2010] with an inter spacing of ±100 m. This array, however, is often
excluded from scientific studies due to adverse weather conditions and strong westerly
winds [Brown et al., 2014]. The array continuously measures small pressure perturbations
with a sampling frequency of 20 Hz.

4.2.3 Comparison between the microbarom measurements
The in-situ recordings of the INFRA-EAR are compared with remote observations at
I23FR. Both are analysed in the frequency domain by means of spectra and interpreted as
coherent infrasound and incoherent pressure fluctuations due to the wind and turbulence
[Raspet et al., 2019]. The INFRA-EARs recordings are transferred into a PSD [Welch,
1967], which are combined in a spectrogram. The I23FR recordings are zero-delayed pro-
cessed, and as well transferred into a PSD and combined in a spectrogram.

Within this study, recordings of one INFRA-EAR’s trip have been compared with
I23FR observations (Figure 4.1-c and -d, respectively). While significant overlap is noted,
the INFRA-EAR spectra include low frequencies that do not appear to be measured by
I23FR. This discrepancy can be understood when reconstructing the microbarom infra-
soundscape, as will be done in the next section.
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Figure 4.2: The reconstruction of the synthetic microbarom source model integrated between
0.1-0.3 Hz for illustration. (a) The stereographic polar grid, where the star indicates the
origin and so the GPS position of the INFRA-EAR on 2020-01-19T14:00 UTC. (b) The
reconstructed acoustic power per area in the surrounding of the INFRA-EAR. (c) The
microbarom source model according Waxler et al. [2007], implemented by Smets and Evers
[2014a] using the ERA5 HRES 2DFD reanalysis. (d) The transmission loss, following
Le Pichon et al. [2012] and Tailpied et al. [2016], from every grid cell towards the sensors
GPS position, using the ERA5 HRES reanalysis. The vectors indicate the wind direction
and speed. The triangle indicates the location of I23FR at Kerguelen Islands. Similar
analysis has been performed for I23FR, by positioning the infrasound array as origin of the
sterographic polar grid.
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4.3 Microbarom infra-soundscape reconstruction
The most omnipresent infrasound sources are deep oceanic microbaroms, for which several
source models have been published in literature [Brekovskikh, 1973; Waxler et al., 2007;
De Carlo et al., 2020a]. From the order expansion of the equations of fluid mechanics
[Waxler and Gilbert, 2006], it follows that the acoustic response of microbaroms can be
described with an evanescent and propagating component.

These components are derived from the sea state (ξ(x, t) at position x at time t),
describing the excitement and energy within the ocean due to surface winds. The sea state
is expressed as a slowly varying two-dimensional stochastic wave variance spectrum Fw:

ξ(r, t) = Fw(fw, φw) (4.3.1)

where fw indicates the ocean wave frequency, and φw the direction, Fw describes the
distribution of the wave variance for a steady-state by superposition of linear waves over
different frequencies and directions. The Hasselman integral [Hasselmann, 1963] is related
to this spectrum and is defined by the superposition of linear waves to the statistical density
spectrum of ideal counter-propagating ocean surface waves by:

H(fw) =
∫ 2π

0
F (fw, φw)F (fw, φw − π)dφw (4.3.2)

This vibrating interface acts as a membrane, causing a velocity potential inducing a
pressure oscillation near this interface. Acoustic energy is radiated into the ocean, propa-
gating through the water column and outwards into the atmosphere. Interference between
the downward and upward propagation of signals within the water column may lead to
resonance. The resonance terms within the water column for the finite ocean depths are
described by the coefficients A, B, and C:

A = R2cos2(φw) + sin2(φw)
B = cos2(φw) +R2sin2(φw)
C = (1−R2)sin(φw)cos(φw)

.

with R = (ρwcw)/(ρbcb), which is reflection coefficient obtained from the continuity
of pressure between water (w) and the solid sea floor (b). ρ and c are the density and
speed of sound within the ocean (w) and bedrock (b). Whenever R = 1, such that the
resonance terms become A/B = 1 and C = 0, the microbarom source model assumes an
infinitely deep ocean. The water column’s resonance depends on the acoustic wavelength
λw and the ocean depth Dbath (bathymetry), assuming microbaroms radiate on a direct
path between the surface and solid seafloor without spreading. The amount of interference
patterns depends on the phase difference φw = 2πDbath/λw between the signals. Vertical
resonance occurs when Dbath/λw = 1/4 + n/2 for any integer n [Smets, 2018].

The evanescent microbaroms directly correspond to a travelling ocean surface wave.
Indifferent of the ocean depth nor bathymetry. This evanescent component does not ra-
diate and decays vertically [Waxler and Gilbert, 2006; Hetzer et al., 2010], and can only
be resolved directly above the source area. The propagating microbaroms are a result
of the standing surface wave [Longuet-Higgins, 1950; Hasselmann, 1963] and depends on
the ocean depth and bathymetry [Brekovskikh, 1973; Waxler et al., 2007]. This propagat-
ing component does radiate, propagates over large distances, and is measured at distant
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ground-based infrasound arrays. The monitored microbarom spectrum by the IMS typi-
cally peak around 0.2 Hz [Campus and Christie, 2010], which are the propagating micro-
baroms. The sea state producing these signals peaks at 0.1 Hz [Waxler and Gilbert, 2006],
as the evanescent component.

For the construction of both microbarom signals, the ECMWF ERA5 HRES ocean wave
model has been used (2DFD), consisting of 30 steps for frequency and 24 for direction,
respectively. This 2DFD reanalysis is coupled to the atmosphere model, which allows
interaction between the ocean waves and the surface winds [Haiden et al., 2018]. This
2DFD reanalysis has an hourly output, with a spatial resolution of 0.36◦.

4.3.1 Integrating microbarom source power

Evanescent microbaroms are detectable directly above the source, whereas the propagating
microbaroms are detectable over long ranges. The total acoustic power is a summation of
all-acoustic contributions. It is computed by integrating the computed acoustic intensities
over the ocean surface [Pierce, 2019], convolved with the transfer function quantifying the
propagation losses and propagation time.

Pav(f, tobs, xr) =
∑
i

Pav,i(f, tobs, xr)

=
∫∫

Sr

P1(f, tobs, xr)dSr︸ ︷︷ ︸
Evanescent microbaroms

+
∑
i

∫∫
Si

P2(f, t0(τ), xs)×Gp(f, tobs − τ, xs, xr)dSi︸ ︷︷ ︸
Propagating microbaroms

(4.3.3)

In Equation 4.3.3, Pav is the average acoustic power over frequency f received at tobs
and receiver position xr, which has radiated from the area Si, which encloses the ith
sound source. Pav can be subdivided into an evanescent (P1) and propagating component
(P2). The source area of the evanescent component (Sr) is derived within section 4.1. The
propagation factor of the second-order component is presented by Gp, which describes the
attenuation function and the propagation time (τ) between source (t0, xs) and receiver
(tobs, xr). This integration holds when the total surface S encloses the entire collection
of individual surfaces from sources Si. Note that the value of Pav,i is construed to be
dependent on the strength of other nearby sources. These assumptions apply if the source
is multiple wavelengths apart from the other sources within Si [Pierce, 2019].

4.3.2 Evanescent microbaroms

It has been theorized that the evanescent microbaroms are detectable by measurements
just above the source region. Such measurements are limited [Bowman and Lees, 2018],
and do not mention nor adjudge evanescent microbaroms. The amplitude of the received
evanescent microbaroms depends on the initial amplitude and the vertical decay between
source and receiver.
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Source model

The acoustic power of the evanescent microbaroms has been derived by Waxler and Gilbert
[2006] as:

P1(fa) ∼ ρac2a
2πf2

p0

kp0ca

2πf0Fw(fw)
ca

(4.3.4)

where a and w represents the media of propagation (i.e., the atmosphere (a) and
water(w)). Fw is the integral of Fw over all direction, resulting in the sea mean energy
spectrum. kp0 represents the wavenumber at the peak frequency fp0 of the spectrum.

Vertical decay

The energy of evanescent microbaroms decays vertically [Waxler and Gilbert, 2006]. There-
fore this acoustic component is negligible outside its source region. The attenuation is
rather simple and can be expressed as:

A(xr, z) = e−kz ·z (4.3.5)

where z indicates the receiver’s altitude, and kz the corresponding vertical wave num-
ber.

4.3.3 Propagating microbaroms

As outlined in Equation 4.3.3, the integration of the propagating microbaroms is more com-
plex since the attenuation due to long-range propagation of distant source has to be taken
into account. This is numerically implemented by spanning a local polar stereographic
grid, with the sensor as the polar position (Figure 4.2-a). The computation of acoustic
power, with accounted propagation effects, has been interpolated over this stereographic
grid. It has been weighted for the variable surface area dS, as this grows with increasing
distance as a function of azimuth. Figure 4.2-b shows the corrected and interpolated mi-
crobarom source regions around the INFRA-EAR (50◦E, 45◦S) at 2020-01-19T14:00 UTC.
This figure defines the acoustic power per area, which potentially has been recorded by the
INFRA-EAR.

Source model

The propagated microbarom source model is described by Waxler et al. [2007] and imple-
mented and verified by Smets and Evers [2014a]. This source strength model is based on
the work by Longuet-Higgins [1950], Brekovskikh [1973] and Waxler and Gilbert [2006].
Waxler et al. [2007] describes the source regions as an isotropic source above an ocean with
finite depth:

P2(fa) = 4g2π4f3
aH(fw)ρ

2
a

c2a
( 9g2

4π2c2af2
a

+ c2a
c2w

A

B
+ 3g

2πcwfa
C

B
) (4.3.6)

where fa(= 2fw) is the acoustic frequency. H indicates the Hasselman integral [Has-
selmann, 1963], which describes the standing wave density spectrum. A, B, and C are the
describing resonance terms within the water column for the finite ocean depths. Figure
4.2-c shows the microbarom source regions for 2020-01-19T14:00 UTC.
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Long-range propagation

Infrasound can propagate over large distances facilitated by acoustic waveguides, formed
between the Earth surface and atmospheric layers (Figure 4.1-a). These waveguides change
with time and location. The effective sound speed approximates the combined effect of
wind and temperature on infrasound propagation in a horizontally layered atmosphere
(ceff), which is defined as the sum of the adiabatic sound speed (cT ) and the wind in
the direction of propagation [Drob, 2019]. The effective speed of sound ratio (ceff,ratio)
is a practical measure to quantify favourable ground-to-ground ducting conditions. An
effective sound speed ratio near to or greater than one is indicative of whether infrasound
can refract back to the Earth surface.

Various methods have been developed to accurately simulate infrasound in realistic
atmospheres [Waxler and Assink, 2019], such as Parabolic Equation (PE) methods. Within
this study, the empirical formation by Tailpied et al. [2016] is used, which extends the
original methodology by Le Pichon et al. [2012] for a range-dependent atmosphere. The
empirical relation according Le Pichon et al. [2012] represents the average of a large number
of representative PE runs and is formulated as:

A(xr, xs) = 1
r

10
α(f)r

20 + rβ(f,ceff,ratio)

1 + 10
δ−r
σ(f)

(4.3.7)

where α, β, δ, and σ are the dissipation of the direct wave, the geometrical spreading and
dissipation of both the stratospheric and thermospheric paths, the width of the shadow
zone, and is a scaling distance controlling the strength of the attenuation in the shadow
zone. Equation 4.3.7 includes both the classical and relaxation losses, which are frequency-
dependent and modelled using vertical profiles of temperature, density, and the concen-
tration of atmospheric gasses [Sutherland and Bass, 2004]. The empirical relation, which
account for lateral heterogeneity [Tailpied et al., 2016] between receiver position xr and
source xs at a reference distance of 1 km, is formulated as:

A(xr, xs) =
∏
i

Ai+1
xr,i+1,xs

Ai+1
xr,i,xs

(4.3.8)

Figure 4.2-d shows the transmission loss for propagation from each grid cell towards the
INFRA-EAR’s GPS position at 2020-01-19T14:00 UTC, integrated between 0.1-0.3 Hz for
illustration. This highlights the potential source regions that can be recorded and the
associated attenuation along the source-reciever path. In addition, it is shown that the
propagation is effective downwind, as is illustrated by the stratospheric wind direction
(vectors).

The source contributions of the microbarom model have been compensated for the
attenuation along its propagation path towards the INFRA-EAR at the time of record-
ing. However, this only describes the attenuation along the propagation path. In order
to account for significant propagation times between source region and receiver, each grid
cell is evaluated at the model time tm that is nearest to the observation time tobs minus
the propagation time τ , i.e. tm = qm(tobs − τ), where qm represents the rounding to
the nearest model time. The simulated soundscape consists of microbarom source regions
that exist throughout different hours of the day. The stratospheric propagation has been
characterised by a celerity range of 0.25 to 0.31 km/s, which is directly correlated to the
Ceff, ratio. Whenever the stratospheric propagation is not feasible, thermospheric propaga-
tion is assumed with a range of 0.21 to 0.25 km/s [Evers and Haak, 2007; Assink et al.,
2012; Vergoz et al., 2019].
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a.

b.

Figure 4.3: The comparison between the synthetic microbarom spectra (a) and the recorded
infrasound by the INFRA-EAR (b). Overlaying the recorded spectrograms by contour lines
of the synthetics in (b) allows a visual comparison. (i) and (ii) show the PSD of the
synthetic (blue) and observations (red) for a specific time. The gray lines indicate the high
and low global IMS noise levels [Brown et al., 2014], whereas the dotted line highlights the
f−5/3 slope expected for turbulence [Chunchuzov and Kulichkov, 2019].
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a.

b.

Figure 4.4: The comparison between the synthetic microbarom spectra (a) and the recorded
infrasound by I23FR (b). Overlaying the recorded spectrograms by contour lines of the
synthetics in (b) allows a visual comparison. (iii), and (iv) show the PSD of the synthetic
(blue) and observations (red) for a specific time. The gray lines indicate the high and low
global IMS noise levels [Brown et al., 2014], whereas the dotted line highlights the f−5/3

slope expected for turbulence [Chunchuzov and Kulichkov, 2019].
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4.4 Comparison of in-situ observations and soundscapes
The route of the INFRA-EAR, as mounted on an albatross, has been simulated using
the method outlined in section 4.3 to compare model and observations. The measure-
ment of the INFRA-EAR occurs directly above the sea surface (∼ 5 m [Richardson et
al., 2018]). Therefore, a synthetic sound spectrum has been created to obtain a spec-
trogram for each frequency within the evanescent and propagating microbarom model.
Figure 4.3-a shows the synthetic spectrogram for the INFRA-EAR, while 4.3-b shows the
recorded spectrogram by the INFRA-EAR. For the same period, the analysis has been
performed on I23FR, a distant (∼ 1500 km) ground-based infrasound array (e.g.,Green et
al. [2012], Figure 4.4-a and -b). The synthetic spectrograms’ contour lines are plotted over
the recorded spectrograms for comparison. The panels below the spectrograms highlight
specific recording periods and directly compare the observed (red) and synthetic spectra
(blue). The microbarom spectral information of recordings and observations are found to
be in close agreement. The structure of the overlayed contour lines in panel 4.3-b and
4.4-b are in agreement with the recorded data. It should be reminded that I23FR is a
ground-based array and thus only records propagating microbaroms. The INFRA-EAR,
however, can observe both the evanescent and the propagating microbaroms, explaining
the low-frequency contents down to 0.1 Hz.

Figure 4.5-a and 4.6-a show the integrated acoustic power summation (eq. 4.3.3) be-
tween 0.1-0.3 Hz for the INFRA-EAR’s and I23FR’s synthetic and recorded spectra. The
integrated amplitudes of the observations (red) align with the integrated total acoustic
power summation of the synthetic microbarom model (black). Based on the mean abso-
lute error (MAE) and bias between the model and observations, the relative frequency
(RF) for which the bias is below the MAE, is 2.7 dB for 85% of the INFRA-EAR record-
ing. The computation shows that the near- evanescent component needs to be taken into
account for the INFRA-EAR and not for I23FR.

Figure 4.5-b and 4.6-b shows the statistical reconstruction of the total acoustic power
summation over the stereographic polar grid. The percentile of total power has been de-
termined as a function of distance away from the INFRA-EAR and I23FR, respectively.
Furthermore, it suggests that 95% of the microbarom source field contributes up to 2000
km from the INFRA-EAR’s recording. Source contributions from outside this region are
minimal. Since the reconstruction around an infrasound sensor depends critically on the
characteristics of the microbarom source model and propagation conditions, it is expected
that the size of the contributing source region will vary as a function of geographical lo-
cation and time. For example, array-specific cumulative probability distributions could be
constructed for global IMS infrasound arrays to quantify the array’s microbarom exposure
and hence the noise levels.

4.4.1 The influence of flight-height on the evanescent contribution
The contribution of the evanescent microbaroms is computed by following section 4.3.2.
This study assumes that the INFRA-EAR’s observations occur at a constant altitude (z)
of 1 meter above the sea surface. The scaling of the evanescent source region is done by
assuming a cone structure beneath the INFRA-EAR, a three-dimensional geometric shape.
Thanks to a pre-determined flight height and a constant receiving angle (15◦), the cone
presents a two-dimensional circle at the air-ocean interface. This projected circle is used
to scale the evanescent source region. Moreover, the flight height influences the decay of
the evanescent wave field. As a result, the vertical decay of the evanescent microbaroms is
exponential.
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a.

b.

Figure 4.5: (a) The total acoustic power summation of the reconstructed microbarom source
model (black) integrated between 0.1-0.3 Hz and the measured infrasound by the INFRA-
EAR (a, red). The total power can be divided into an evanescent (grey line) and propagating
(brown line) microbarom contribution. The grey areas indicate periods when the recorded
power spectra follow the f−5/3 slope. (b) The cumulative probability of the percentile SPL
per distance from the receiver.
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a.

b.

Figure 4.6: (a) The total acoustic power summation of the reconstructed microbarom source
model (black) integrated between 0.1-0.3 Hz and the measured infrasound by I23FR (a, red).
The grey areas indicate periods when the recorded power spectra follow the f−5/3 slope. (b)
The cumulative probability of the percentile SPL per distance from the receiver.
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4.4.2 The INFRA-EAR measuring the evanescent and propagating micro-
baroms

Without prior knowledge, one would expect that a double-peaked spectrum, indicating
evanescent and propagating microbaroms, would be visible in the INFRA-EAR PSD. The
evanescent and propagating microbaroms occur concurrently and have overlapping fre-
quency ranges. Naming and handling both within the analysis and paper are essential for
the understanding of the infrasonic wavefield. The albatrosses fly one meter above the
sea surface. Therefore the evanescent component is most dominant and partially masks
the propagating microbaroms, particularly near the low-frequency end (0.2 Hz and be-
low). Whenever the bird increases its altitude relative to the sea surface, the dominance
of the evanescent microbaroms decreases and the propagating microbaroms become more
dominant/visible.

An analysis has been performed by comparing the modeled evanescent and propagating
spectra with the recordings. Figure 4.7 shows this PSD analysis. From this figure, it
becomes clear that both microbarom contributions have overlap within the range of 0.1-
0.3 Hz. Below 0.2 Hz, the evanescent microbarom component is dominant when after the
propagating microbarom component takes over.

A statistical comparison has been made between both modeled components of the
microbarom wavefield and the observed SPL. This detailed comparison further supports
our claim that the INFRA-EAR detects both fields in partly overlapping frequency bands.
In line with Figure 4.5, the INFRA-EAR recordings have been integrated between 0.05-
0.15 Hz, 0.1-0.2 Hz, and 0.2-0.3 Hz compared to the same frequency range of the modeled
SPL. Figure 4.8-a shows in grey the outcome of the evanescent SPL between 0.05-0.15 Hz.
The red line shows the integrated INFRA-EAR SPL over the same frequency range. Panel
(b) shows the comparison between integrated SPL of 0.1-0.2 Hz, which is a combination
of evanescent (grey line) and propagating (brown line) microbaroms. At the same time,
panel (c) shows the comparison between INFRA-EAR (red) and propagating microbaroms
(brown), integrated between 0.2-0.3 Hz.

Note within Figure 4.8 the close agreement between the modeled and actual SPL from
the INFRA-EAR recordings. The SPL difference between modelled microbaroms and the
INFRA-EAR recordings is 3 dB for 80%, 85%, and 79% of the time, for the frequency
bands considered in panels (a), (b) and (c). In addition, note that the SPL levels of the
INFRA-EAR, as well the modelled SPL, decreases with increasing frequency range.

Although one would expect a double-peaked spectrum, the PSDs from the INFRA-EAR
recordings show overlapping energy. The evanescent microbaroms are the most dominant
contribution. However, the modelled PSDs (of the combined total acoustic power) also
show a broad PSD instead of a double-peaked spectrum (Figure 4.7-e). Thanks to this
analysis, and the statistical comparison between modelled microbarom contributions and
the INFRA-EAR, it can be concluded that the INFRA-EAR indeed records both micro-
barom contributions.
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a. b.

e.

d.c.

Figure 4.7: The PSD’s of the INFRA-EAR recordings (a) in red, and the global ambient
high and low noise curves in gray [Brown et al., 2014]. (b) shows in blue the evanescent
microbaroms’ contribution on a constant fly height of 1m above the sea surface (section
4.3.2). The blue dotted lines indicate the expected SPL for flight heights off 0.01m and
5m Richardson et al. [2018]. (c) shows the contributions of the propagating microbaroms
(section 4.3.3). (d) shows both components compared to the INFRA-EAR recordings. (e)
shows the total acoustic synthetic power summation of both the evanescent and propagating
microbaroms in black.
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a.

b.

c.

Figure 4.8: Statistical comparison between modelled and recorded infrasonic wavefield. (a)
shows in grey the outcome of the evanescent SPL between 0.05-0.15 Hz. The red line shows
the integrated INFRA-EAR SPL over the same frequency range. Panel (b) shows the com-
parison between integrated SPL of 0.1-0.2 Hz, which is a combination of evanescent (grey
line) and propagating (brown line) microbaroms. At the same time, panel (c) shows the
comparison between INFRA-EAR (red) and propagating microbaroms (brown), integrated
between 0.2-0.3 Hz.
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4.4.3 Comparison of initial microbarom source model
The reconstruction of soundscapes (section 4.3) is modular. Equation 4.3.3 shows that
any microbarom source region model, or propagation model, can be implemented within
the proposed methodology. The results that have been presented so far have been based
on the microbarom source region model as derived by Waxler et al. [2007]. This source
strength model is based on the work by Longuet-Higgins [1950], Brekovskikh [1973] and
Waxler and Gilbert [2006]. Waxler et al. [2007] describes the source regions as an isotropic
source above an ocean with finite depth (Equation 4.3.6), whereas other source models
assume an infinite ocean depth [Waxler and Gilbert, 2006; De Carlo et al., 2020a].

Previous studies have addressed the usage of bathymetry features within the derivation
of the initial propagating microbarom source region model [Waxler et al., 2007; Smets and
Evers, 2014a; De Carlo et al., 2020a]. A recent study by De Carlo has demonstrated that the
influence of bathymetry on microbarom source strength depends on the acoustic radiation
angle. In particular, it was shown that the influence strongly increases with increasing
angle. For near-horizontal radiation angles that are relevant for long-range waveguide
propagation, the effects of bathymetry can be neglected [De Carlo et al., 2020a].

Figure 4.9 shows the spectral and integrated comparison of the reconstructed propagat-
ing microbaroms by implementingWaxler and Gilbert [2006] andWaxler et al. [2007] during
the period of recording by the INFRA-EAR (Figure 4.1). Also, the effects of bathymetry
do not play any role in the theoretical model of evanescent microbaroms. From a visual
comparison, it stands out that the spectrograms are similar. However, the spectrogram
by Waxler et al. [2007] shows that the spectral content is broader and the SPL levels are
slightly higher. In particular, a peak around 0.15 Hz around 30 January 2020 can be
noted. Panel (c) shows the SPL of the integrated spectrograms between 0.2-0.35 Hz. The
integrated SPLs make it clear that the difference between both microbarom source region
models is ±2dB.

A similar comparison has been performed for I23FR. Figure 4.10 shows the comparison
between both source models for I23FR. Contrary to Figure 4.9, both source models do not
show a change in spectral content. The statistical difference of the integrated spectra
between 0.2-0.35 Hz is ±0.22dB.
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a.

c.

b.

Figure 4.9: Spectral comparison between the microbarom soundscape spectra with the initial
source model as derived by Waxler and Gilbert [2006] (a) and Waxler et al. [2007] (b).
(c) The total acoustic power summation of the reconstructed microbarom source model
integrated between 0.2-0.35 Hz. The blue line indicates the integration of panel (a), the
brown line the integration of panel (b), the recorded propagated microbarom component by
the INFRA-EAR (red line) is added for visual comparison.
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a.

c.

b.

Figure 4.10: Spectral comparison between the microbarom soundscape spectra with the initial
source model as derived by Waxler and Gilbert [2006] (a) and Waxler et al. [2007] (b).
(c) The total acoustic power summation of the reconstructed microbarom source model
integrated between 0.2-0.35 Hz. The blue line indicates the integration of panel (a), the
brown line the integration of panel (b), the recorded propagated microbarom component by
the I23FR (red line) is added for visual comparison.
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4.4.4 Spatial frequency analysis
The reconstructed soundscapes are generated from an initial 2DFD file that contains 30
frequency steps. The soundscapes can therefore be used for spectral analysis of the source
regions. From Figures 4.9 it was shown that there is a frequency and amplitude difference
when implementing Waxler and Gilbert [2006] (infinite ocean depth) or Waxler et al. [2007]
(finite ocean depth, including bathymetric features).

Figure 4.11 shows the spatial frequency and SPL analysis of the reconstructed sound-
scapes from the perspective of the INFRA-EAR on 30-01-2020. Both soundscapes are
reconstructed by applying Waxler and Gilbert [2006] and Waxler et al. [2007]. Panels (a)
and (b) show the spatial frequency analysis. Within both panels, the bathymetry features
[GEBCO, 2020] are highlighted by the gray contour lines. Note in panel (b) that the
center frequencies of the microbarom source are clustered around those bathymetric fea-
tures. Panels (c) and (d) highlight the corresponding sound pressure levels, respectively,
to the panels (a) and (b). It stands out that the microbarom source regions cluster around
bathymetry. Furthermore, there is an amplitude increase around these features.

A similar analysis has been performed from the perspective of I23FR (Figure 4.12). The
center frequencies of the soundscapes are again clustered around bathymetric features. In
addition, it is shown that the SPL is as well clustering around bathymetry. Nevertheless,
I23FR is a distant infrasound array, which causes a negligible difference in SPL around the
bathymetry source regions, which explains the spectrograms of Figure 4.10.

Although the spectral and integrated comparison for I23FR (Figure 4.10) show minor
differences between both microbarom source region models, the variance between both
reconstruction models for the INFRA-EAR is notable (Figure 4.9). Such observations are
expected and in agreement with the conclusions by De Carlo et al. [2020a]. The spatial
comparison of the reconstructed soundscapes with different source models, however, shows
remarkable differences (Figure 4.11 and 4.12). The source intensities appear to cluster
around bathymetry features. Soundscapes enable to analyse the omnidirectional source
intensities in the vicinity of an infrasound sensor. Such an analysis includes a spatial
interpretation of the potential microbarom source regions.

The input for the initial microbarom source region model [Waxler and Gilbert, 2006;
Waxler et al., 2007; De Carlo et al., 2020a] is the 2D wave-direction spectrum (2DFD)
that is forecasted by ECMWF’s Wave Action Model. The 2DFD describes the sea-state
as a function of direction and frequency. Although it has been mentioned explicitly that
Waxler et al. [2007] assumes a finite ocean depth in the calculation of the microbarom
source regions, other models assume this as well unintentionally. The ocean wave model
(WAM) describes the sea-state of the ocean. The bathymetry directly influences the ocean
in the generating of swell and travelling surface waves. The WAM output therefore depends
on bathymetry, which clarifies the overlap between microbarom source regions between
both models. Assuming a finite ocean in calculating resonances within the water column
(Equation 4.3.6) highlights and intensifies the SPLs around bathymetry features.
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c. d.
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Figure 4.11: The spatial frequency analysis based on the initial source models of Waxler and
Gilbert [2006] (a) and Waxler et al. [2007] (b) from the perspective of the INFRA-EAR
(star). (c) and (d) indicate the corresponding SPL analysis of both models, respectively.
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Figure 4.12: The spatial frequency analysis based on the initial source models of Waxler and
Gilbert [2006] (a) and Waxler et al. [2007] (b) from the perspective of I23FR (triangle).
(c) and (d) indicate the corresponding SPL analysis of both models, respectively.



112 Modelling of microbarom soundscapes

4.5 Discussion and conclusion

In this chapter, a method has been introduced for the reconstruction of microbarom sound-
scapes. This method accounts for evanescent and propagating microbaroms of multiple
source contributions in an infrasound sensor’s vicinity. The method generates synthetic
spectra in absolute numbers, which agree with infrasound recordings by a mobile logger
deployed in the middle of the Southern Ocean and a distant IMS infrasound array. The
presented soundscapes rely on several approximations related to (1) the source model and
(2) the assumptions made in the propagation modelling. However, the methodology is
modular and allows plugging in different microbarom models, ocean wave models, and
propagation models.

The microbaroms source region model, evanescent and propagating microbaroms, as
described by Waxler and Gilbert [2006]; Waxler et al. [2007] has been used within this
study as source intensity input for the reconstructed soundscapes and has been computed
using the ERA5 WAM model of the ECMWF. Recently, De Carlo et al. [2020a] have
studied the propagating microbarom source radiation pattern. This work concluded that
including finite-depth ocean effects in the model is especially relevant for near-vertical
propagation [Brekovskikh, 1973]. Here, synthetic soundscapes are compared with in-situ
measurements of the INFRA-EAR, which record both the evanescent and propagating
microbaroms. It is therefore relevant to account for the near-vertical propagation of the
propagating microbaroms (Figure 4.9). The source model by Waxler et al. [2007] includes
these effects and is therefore used within this study. The effect of near-vertical propagation
does not apply to distant ground-based IMS arrays (Figure 4.10). Nevertheless, the spatial
interpretation of the potential microbarom source regions (Figure 4.11 and 4.12) show that
both the center frequencies and SPL are clustering around bathymetry features.

Furthermore, the assumptions made in the propagation model influence the sound-
scapes. The empirical formulation of sound propagation by Tailpied et al. [2016], and
Le Pichon et al. [2012], is modelled along the great circle path from source to the receiver
only, neglecting out-of-plane propagation effects. This model can be used to approximate
propagation losses in atmospheres with a dual (stratospheric-thermospheric) duct and ne-
glects tropospheric ducting. A different approach could involve using a 3-D ray-theory
model cast in spherical coordinates [Smets, 2018; Blom, 2019], to quantify propagation
losses. The use of formal propagation models requires atmospheric specifications from the
ground to the upper atmosphere. As upper atmospheric specifications are typically limited
to climatologies, this has implications for the accuracy of thermospheric returns [Assink et
al., 2012; Drob, 2019].

Although various assumptions have been made, the close agreement between the model
and observations shown in Figures 4.3, 4.4, 4.5 and 4.6 show that the proposed methodology
can be used to reconstruct the microbarom soundscape around an infrasound sensor. Both
comparisons, integrated and spectral, between soundscapes and recordings show a near-
perfect agreement for frequency and amplitude. For example, the agreement between the
integrated soundscapes and recordings is 2.7 dB for 85% off the time (Figure 4.5). Despite
the agreement, some significant differences between model and observations stand out.
The measured power is sometimes higher than predicted by the soundscape. It should be
recalled that the synthetic soundscapes describe the radiated microbarom power that is
predicted from the modelled ocean wave spectra. It is conceivable that local noise from
wind and turbulence could have affected the measurements at intervals, which cause a
discrepancy between model and observation, due to higher noise levels at the receiver
[Marty, 2019; Raspet et al., 2019]. When comparing Figure 4.5-a with the barometric
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pressure measurements (Figure 4.13), it is shown there is a strong barometric pressure
gradient whenever a difference occurs between the microbarom model and observation.
Barometric pressure gradients are often associated to higher winds and local turbulence,
i.e., higher noise conditions. Figure 4.3-i shows the INFRA-EAR’s acoustic power spectra
compared to the synthetic power spectra around 2020-01-21. The dotted line in the figure
indicates the f−5/3 slope, which is typical for turbulence in the atmospheric boundary layer
[Gossard and Hooke, 1975; Bacmeister et al., 1996; Chunchuzov and Kulichkov, 2019]. Note
that the power spectra of the INFRA-EAR follow this slope from 0.2 - 1 Hz. The grey
areas in Figure 4.5-a and -b indicate the periods when the recorded power spectra follow
the f−5/3 slope. When the incoherent noise levels are high due to wind, acoustic signals
can be masked and remain undetected.
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Figure 4.13: The comparison between measured barometric pressure by the INRA-EAR (red)
and the ERA5 HRES model (black) during the INFRA-EAR’s trip (Figure 4.1-b).

The presented soundscapes give insight into how much various source regions contribute
to the total acoustic power measured in the microbarom band. Earlier studies have been
limited to analysing normalised microbarom amplitudes, i.e. no absolute microbarom
power values. Furthermore, earlier work focused on the maximum contribution of a specific
region rather than considering the field to distribute multiple source contributions based
on directional data processing. Nonetheless, Assink et al. [2014] showed that multiple
spatially distributed sources within the same time segment and frequency could occur.
Those can be resolved by applying high-resolution data-processing techniques (chapter 3).
However, the entire microbarom source field contributes and influences the total acoustic
power. The application of this reconstruction is essential in understanding the infrasonic
wavefield, the ambient noise field, and for remote sensing of the atmosphere. The analysis
shown in Figure 4.3 and 4.4 leads to a better understanding of microbaroms’ contributions
to array recordings. In conclusion, the reconstruction of microbarom spectra with absolute
numbers, instead of normalised values, improves the knowledge in the global infrasonic
background noise and compares infrasound array observations with model outputs. This
new knowledge contributes to a better verification of the CTBT and a better applicability
of infrasound as a remote sensing technique for the upper atmosphere. Moreover, only
a few studies have considered evanescent microbaroms. The recordings, analysis, and
comparison of the evanescent microbarom component within this study is a direct product
of the sea-state and can be used by oceanographers for monitoring purposes.
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5
A climatology of microbarom
detections at the Kerguelen Islands

Nobody ever figures out what life is all about, and it doesn’t matter. Explore the world.
Nearly everything is really interesting if you go into it deeply enough.

Richard P. Feynman

Abstract The ambient infrasonic noise field is complex due to the interference of spa-
tially distributed infrasound sources. Microbaroms are one of the most dominant om-
nipresent infrasonic sources within this wavefield. These microbaroms are generated by
non-linear ocean surface wave interactions, and have a characteristic and continuous sig-
nature within the infrasound spectrum. Under noisy conditions, microbaroms can mask
infrasonic signals of interest, such as infrasound from volcanoes or explosions, which limits
detection and identification of such sources. This study performs an infrasonic climatology
for infrasound array I23FR, using five years of data between 2015-2020. The array is located
on the Kerguelen Islands, within the Southern Ocean, and is part of the International Mon-
itoring System (IMS) for the verification of the Comprehensive Nuclear-Test-Ban Treaty
(CTBT). The climatology analysis addresses the expected ambient noise levels, propaga-
tion paths, and potential sources within the vicinity of an infrasound sensor. Time and
frequency domain beamforming methods have been applied to analyse the infrasonic wave-
field from the I23FR observations. A recently introduced method is applied to compute
so-called soundscapes, to be compared with beamform results. Although the comparison
indicates a disagreement in amplitude, there is a good agreement in directionality and
frequency between both.

Published as: den Ouden, et al. 2022, A climatology of microbarom detections at the
Kerguelen Islands: unravelling the ambient noise wavefield. Geophysical Journal International,
Volume 229, DOI: 10.1093/gji/ggab535
Note that minor changes have been introduced to make the text consistent with the other chapters.
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5.1 Introduction
The atmosphere, earth and ocean are globally monitored by the International Monitoring
System (IMS) for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT).
The infrasound component of the IMS monitors the infrasonic wavefield. IMS microbarom-
eter arrays provide real-time infrasound recordings from around the world. Therefore, the
IMS has played a central role in the characterization of the global low-frequency wavefield
(i.e. frequencies lower than 20 Hz) and the localization of sound sources [Campus and
Christie, 2010; Marty, 2019].

Infrasound station I23FR is one of the IMS microbarometer arrays and provides real-
time monitoring. The array is located at the Kerguelen Islands, which is part of the French
Sub-antarctic and Antarctic lands (Figure 5.1). The microbarometer array is located on
the east side of the main island and consists of 15 microbarometers, which is the largest
number of elements within the IMS infrasound network [Marty, 2019]. Although I23FR
continuously monitors the infrasonic wavefield on the boundary of the Indian and South-
ern Ocean, the array is often excluded from scientific studies due to the environmental
conditions [Brown et al., 2014]. The islands experience strong surface winds and severe
weather conditions. Local noise conditions (e.g. wind turbulence) may mask infrasonic sig-
nals off interest [Raspet et al., 2019]. Nonetheless, the IMS infrasound station density at
mid-latitudes is lower for the Southern Hemisphere compared to the Northern Hemisphere.
Hence, understanding the infrasonic wavefield surrounding I23FR will be important if there
was ever a suspected test within the Southern Hemisphere.

I23FR is located on the Kerguelen Plateau near the Indian and Southern Ocean inter-
section, where various ocean currents meet. Deep oceanic ambient noise is globally the most
omnipresent infrasound source. The driving force of the ambient atmospheric noise (i.e.
microbaroms) is the sea state, which describes the energy of the ocean travelling surface
waves. Nonlinear interaction of counter travelling ocean surface waves results in standing
ocean waves, causing the radiation of acoustic energy and resonance within the water col-
umn [Longuet-Higgins, 1950; Hasselmann, 1963]. At the interfaces of the water column,
acoustic energy is radiated into the atmosphere resulting in microbaroms [Brekovskikh,
1973]. Microbaroms typically peak around 0.2 Hz, with a characteristic amplitude range
of 55-110 dB with respect to 20 micro-pascals [Campus and Christie, 2010]. Earlier studies
have shown that the microbarom signal can be a dominant background noise signal [Donn
and Rind, 1972] that can obscure signals of interest, for example volcanic eruptions [McKee
et al., 2021]. Microbarom signals can, therefore, potentially mask other infrasonic signals
of interest. Characterizing microbaroms is essential for the understanding of the infrasonic
wavefield. Knowledge regarding frequency, amplitude and propagation of the microbaroms
could help assess the microbarom source contributions to the infrasonic wavefield, which
adds to a better understanding of the IMS’s verification capability and infrasound as a
remote sensing technique for the upper atmosphere [Donn and Rind, 1972; Smets, 2018].

This study performs an infrasonic climatology for infrasound array I23FR, using five
years of data between 2015-2020. Within this climatology study, various tools are com-
bined. The analysis addresses the expected noise levels, propagation paths, and potential
sources within the vicinity of the infrasound array. The analysis gives insights into the
performance of an infrasound array and the ability to resolve infrasonic sources. Previ-
ous studies have introduced and applied various methods to unravel and characterize the
wavefield into individual components [Landes et al., 2012; Matoza et al., 2013; De Carlo
et al., 2020a].
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Figure 5.1: (a) An overview of Infrasound IMS arrays in the Southern Hemisphere. The
solid red dot highlight the location of I23FR at the Kerguelen Islands. (b) The main island
of the Kerguelen Islands and location of the infrasound array. (c) Positions of the 15
microbarometer elements (triangles) of the I23FR array, divided into five triplets. (d)
and (e) show the array response of I23FR, based on Bartlett [1948] and Capon [1969],
respectively, for the frequency ranges 0.05-0.55 Hz. (f) and (g) represent the responses for
the frequency range 0.75-1.55 Hz.
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The climatology study outlined within this paper is based on in-situ observations of
I23FR and model data. Therefore the analysis allows for a comparison and validation
of the model, which determines the reliability as a measure for the infrasonic wavefield.
The in-situ observations depend on the array layout and system response of the array
elements. Moreover, meteorological phenomena may influence the detection capability of
an infrasound array. Meteorological data are used to determine the local noise conditions at
the ground and the propagation conditions of infrasound with altitude. These observations
highlight expected noise conditions and seasonality of the infrasound conditions at an array.

The in-situ infrasound observations include microbarometer array recordings to eval-
uate the noise levels and apply data processing techniques for separating the wavefield
into a coherent and incoherent part. The model analysis covers omnidirectional infra-
soundscapes, reconstructed from the perspective of the array (chapter 4). Such sound-
scapes provide the infrasonic sound levels in the vicinity of the array from a theoretical
and model perspective. A comparison is performed to indicate the agreement between
in-situ observations and model data.

The chapter is organized as follows. Section 5.2 discusses the array layout, array
responses and the system response. The meteorological conditions influencing the local
noise conditions and propagation conditions are reviewed in section 5.3. Within section 5.4,
the infrasound observations are analysed by applying data processing techniques. Section
5.5 addresses the reconstruction of infrasonic soundscapes and the interpretation of these.
The comparison between the soundscapes and the observations is described in section 5.6.
The outcome of this climatology study is summarized and discussed in the final section.

5.2 Microbarometer array I23FR, Kerguelen Islands
Microbarometer arrays are used to study the infrasonic wavefield. The use of arrays allows
for enhanced detection of signals in the presence of incoherent noise, as the signal-to-
noise ratio (SNR) is improved by summation across the array elements. In addition, array
processing enables to resolve the direction, apparent velocity and frequency content of
the impinging wave front. Localization and characterization of the source depend on the
source-receiver distance. Nearby sources can be distinguished as spherical wave fronts
and localized by single arrays [Szuberla et al., 2009; Stettner, 2018]. Distant sources,
however, can be characterized by planar waves. Localization of distant sources is possible
by combining various array detections through the process of cross-bearing the resolved
backazimuths [Evers [2008], chapter 3].

The I23FR microbarometer array is divided into five identical triplets of ∼ 100 m
aperture (Figure 5.1-c). The inter distance between the triplets is ∼ 500m, while the
total aperture is ∼ 1750 m. The closely spaced triplet elements enhance the detection
and parameter estimation at higher frequencies which may be less coherent over the entire
array [Campus and Christie, 2010]. The lower frequencies of the wavefield are resolved by
combining elements of the various triplets.

Atmospheric noise limits the ability to detect signals of interest due to the influence
of near-surface wind close to the microbarometer. Therefore, each microbarometer array
has a different detection threshold for monitoring, which varies significantly due to those
local wind conditions. A vital consequence of this is that the background noise between
arrays and array elements is different. This has implications for infrasound array processing
[Walker and Hedlin, 2010].

The array elements at I23FR consist of (1) MB2005 microbarometers and a (2) wind
noise reduction system (Figure 5.2-a) to establish theoretically similar noise conditions.
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The absolute microbarometers provide a flat-to-pressure response across (and beyond)
the 0.02-4 Hz passband required by the IMS specifications (Figure 5.2-b and -c). The
WNRS is a 108-inlet, 36 m diameter, hexagonal pipe rosette (see Table 1 for specifications).
Moreover, all inlets are covered with gravel to reduce the wind noise. The amplitude
and phase responses of the I23FR WNRS were calculated, following the methodology of
Gabrielson [2011] (brown lines within Figure 5.2-b and -c). The resonance peak of the
WNRS is expected to be around 6.6 Hz according to citealcoverro2005design.

One of the main assumptions for data processing of the infrasonic wavefield is similar
conditions at each array element [Shumway, 1971; Brachet et al., 2010]. This includes
a coherent sound wave front impinging the array, while each element encounters similar
Gaussian-white-noise conditions. The installation of identical measurement systems the-
oretically secures this assumption. In reality, however, the array elements are not always
similar nor experience similar noise conditions. Defects in the WNRS or different locations
of array elements cause a difference in local noise conditions, which leads to variances in
the outcome of the data processing techniques.

5.2.1 Microbarometer response
The infrasonic wavefield is conventionally measured with pressure transducers. Those
measurements can either be performed by absolute or differential pressure sensors [Mentink
and Evers [2011]; Nief et al. [2019]; chapter 2]. An absolute pressure sensor consists of a
sealed aneroid and a measuring cavity connected to the atmosphere. A pressure difference
within the measuring cavity will deflect the aneroid capsule. The mechanical deflection is
converted to a voltage [Haak and De Wilde, 1996].

The IMS specifications for microbarometers state that the sensor self-noise should be
at least 18 dB below the global low-noise curves at 1 Hz [Brown et al., 2014], generated
from global micropressure measurements using the IMS [Marty, 2019]. Typical infrasound
sensor networks use analogue sensors connected to a separate data logger to convert the
measured voltage differences to a digital signal. The sensor’s characteristic sensitivity
determines the sensor resolution, i.e., the smallest difference that the sensor can detect.
The resolution of the built-in ADC converters and the digitizing voltage range determine
the data logger’s resolution. Current state-of-the-art data loggers have a 24-bit resolution.
Advances in sensor techniques now also allow for digital outputs since the ADC conversion
is realized inside the sensor [Nief et al. [2019]; chapter 2].

Furthermore, the IMS requires a flat-to-pressure response in the IMS passband span-
ning from 0.02 - 4 Hz [Marty, 2019]. The use of sensors with the flat-to-pressure-derivative
response could, for example, allow better matching of typical infrasound background noise
levels in the IMS frequency band. It is commonly interpreted as flat in amplitude within
3 dB with no specific requirement for the phase.

The microbarometer array elements at I23FR are MB2005 microbarometers, which are
IMS certified microbarometers. The MB2005 is an absolute pressure sensor that complies
with the specified IMS infrasound sensor requirements. The solid grey lines in Figure 5.2-b
and -c show the amplitude and phase response of the MB2005 [Slad and Merchant, 2016].

5.2.2 Wind Noise Reduction System response
A wind noise reduction system (WNRS) is applied to each element to reduce the wind noise
and to establish similar conditions at each array element. The applied WNRS is a pipe
construction and exists of multiple low-impedance air inlets, which are distributed over a
spatial area, and linked to the microbarometer by a network of pipes and manifolds [Marty,
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2019]. Besides pipe arrays, there are various other types of windscreens, which include
porous hoses and domes [Raspet et al., 2019]. All WNRS filters have a characteristic
response that must be considered in the design of the infrasound array. The filter response
can be theoretically evaluated and is ideally flat and stable over the passband of the sensor.

The array elements of I23FR are attached to a 108-inlet, 36-meter diameter, hexagonal
pipe WNRS. Moreover, all inlets are covered with gravel to reduce the wind noise. Various
theoretical acoustic response models exist for the calculation of the WNRS response [Marty
et al., 2017]. The theoretical models derived by Alcoverro and Le Pichon [2005] and
Gabrielson [2011] have a similar outcome, with a different approach. It was shown that
both models could confidently be used to estimate the acoustic response of pipe arrays in
the infrasound frequency band.

The specifications of the I23FR WNRS are listed in Table 5.1. The total amplitude and
phase response of the applied WNRS on I23FR is calculated following Gabrielson [2011]
and indicated by the solid brown lines in Figure 5.2-b and -c. The WNRS diameter and the
volume of the summation cavities influence the frequency position of the first resonance
peak. In contrast, the number of inlets and pipe diameter influences the amplitude of the
resonance peak. The frequency position fWNRS of the first resonance peak is inversely
proportional to the average diameter, Dm, of the WNRS and depends on the speed of
sound (c) [Alcoverro and Le Pichon, 2005]:

fWNRS = 0.7 ∗ c

Dm
(5.2.1)

Given the WNRS parameters listed in Table 5.1, the first resonance peak of the WNRS
is expected to be around 6.6 Hz.

WNRS I23FR
Length pipe1 l1 = 10.27 m Diameter pipe1 a1 = 15 mm
Length pipe2 l2 = 5.13 m Diameter pipe2,3 a2,3 = 8 mm
Length pipe3 l3 = 2.56 m Summation cavity volume a2 = 1e−3 m
Length pipe to sensor ls = 3 m Length pipe to sensor as = 8 mm

Table 5.1: Specifications of the WNRS system applied to I23FR.
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Figure 5.2: (a) A model of the WNRS featuring 18 pipe rosettes, which is applied to all
microbarometers (centre) of the I23FR array. (b) and (c) the amplitude and phase response
of one array element (solid black line), which is based on the response of the microbarometer
equipment (solid grey line) and the response of the WNRS (solid brown line). The red dotted
lines indicate the monitoring passband for the CTBT [Marty, 2019]. The black dotted lines
indicate the Nyquist frequency (fn) of I23FR, and the grey dotted lines indicate the limit
above which the data should not be utilised due to the effects of the analogue-to-digital
converter filters ([Sleeman et al. 2006, fFIR).
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5.3 Meteorological conditions
The pressure spectrum of turbulence has been described statistically to decay with a slope
of f−5/3 [Gossard and Hooke, 1975]. This implies that the effect of wind noise increases
towards lower frequencies [Raspet et al., 2019]. Wind typically masks the background
acoustic noise when turbulent processes in the lower atmosphere prevail at infrasonic fre-
quencies. Various methods can be applied to reduce this wind-noise at infrasound arrays
[Walker and Hedlin, 2010; Raspet et al., 2019].

The meteorological conditions around an array give a first impression of the expected
noise levels. The first element of the I23FR array includes a meteorological instrumentation
to measure the horizontal wind, barometric pressure and temperature. The meteorological
instruments are installed 2 m above the ground and sample at 1 Hz.

Meteo France operates and maintains a weather observation facility at a ∼ 1000 m
distance from I2301. This facility measures the same meteorological parameters, as hourly
synoptic observations (SYNOPS). The meteorological station of Meteo France is part of
the Global Telecommunication System (GTS) of the World Meteorological Organization
(WMO) [Panel, 2005] and provides near real-time weather information. The meteorological
observations are therefore WMO certified, meaning the measurements are performed at an
elevation of 10 m above the ground.

Since the Meteo France and IMS facilities are not located at the exact same geological
position, and measure at different heights, a a direct comparison is not correct. However,
since the IMS and Meteo France measure similar weather parameters, a comparison to
conclude on the use of the IMS observations is useful. Especially since the IMS’s sample
rate (1 Hz) is favorable compared to hourly SYNOPS observations by Meteo France.

Besides in-situ meteorological measurements, ECMWF ERA5 atmospheric reanalysis
data are used in this study. ERA5 offers a high-resolution realization (HRES) and a
reduced resolution ten-member ensemble (EDA). The ERA5-HRES is available per hour
and has a spatial resolution of 0.36◦. The ERA5-EDA has a spatial resolution of 0.5◦ and a
temporal resolution of 3 hr. The Southern and Indian Oceans surround Kerguelen Island.
Therefore, rapid changes in atmospheric variables are expected. The ERA5 EDA is applied
within this study to exclude outliers from individual ECMWF members [ECMWF, 2017].

5.3.1 Analysis of Meteorological ground observations
In this section, a comparison between the three different meteorological data sets for Ker-
guelen Island is made over five years of data (2015-2020).

The left-hand column of Figure 5.3 shows the comparison between ERA5 and in-situ
observations at I23FR. For this comparison, daily means of the meteorological data have
been determined for both data sets. The middle column compares the in-situ observations
measured at the Meteo France and I23FR meteorological stations. Here, hourly means
have been used for comparison. The right-hand column indicates the monthly averages of
the I23FR meteorological observations. The differences and standard deviations are shown
in Figure 5.3 and listed in absolute values within Table 2. It stands out that there is a
good agreement between the in-situ data measured by Meteo France and I23FR.
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Figure 5.3: Meteorological observation and comparison at Kerguelen Island. The left-hand
panels (a), (d), (g) and (j) compare 3-hr meteorological observations at I23FR with ERA5
EDA data. The middle panels (b), (e), (h) and (k) show hourly comparisons between
between I23FR data and MeteoFrance. Overlayed on the data points the normalized dis-
tribution is shown. The right-hand panels show the monthly average with a 95 percentile
error bar from 2015 until 2020.
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Figure 5.4: Vertical atmospheric profiles above I23FR derived from ERA5 data. As a func-
tion of time and geopotential height are shown: (a) temperature (K), (b) zonal wind (m
s-1), (c) meridional wind (m s-1) and (d) adiabatic sound speed (m s-1). The black dotted
lines indicate the tropopause ∼ 10 km, and stratopause ∼ 50 km.
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ERA5, 2m MeteoFrance, 10m
Barometric pressure: −0.75± 0.68 hPa Barometric pressure: 0.38± 0.69 hPa
Wind direction: −7.21± 4.01◦ Wind direction: −3.87± 1.57◦

Wind speed: 1.65± 1.38 m/s Wind speed: −0.85± 0.07 m/s
Temperature: −0.01± 0.19◦C Temperature: 0.72± 0.01◦C

Table 5.2: Comparison of meteorological in-situ data of I23FR (2 m instrument height) and
ECMWF ERA5 atmospheric reanalysis data (2 m height, left column), and in-situ obser-
vations from MeteoFrance (10 m height, right panel). Note that negative values indicate an
underestimation by I23FR compared to ERA5/MeteoFrance, and positive values indicate
an overestimation.

5.3.2 Analysis of vertical ECMWF profiles above Kerguelen Island
Besides local noise conditions, vertical profiles give insight into the atmospheric propagation
conditions of infrasonic signals. Infrasound can propagate over large distances facilitated
by acoustic waveguides, that can form between the Earth surface and various altitudes
throughout the atmosphere, depending on the temperature and horizontal wind conditions.
These waveguides change with time and location. The effective speed of sound ratio is a
practical measure to quantify favourable ducting conditions. As the interest in this study is
with ground-based sources, ground-to-ground ducting conditions are considered. For this,
the effective sound speed ratio is normalized to the sound speed at the ground surface. An
effective sound speed ratio near or greater than one indicates that infrasound can propagate
efficiently in a waveguide.

The effective sound speed approximates the combined effect of wind, temperature (T ),
and the specific gas constant (Rair = 287J kg−1 K−1) on infrasound propagation. The
effective sound speed (Ceff) is defined as the sum of the adiabatic sound speed (Ct =√
γRairT ) and the wind in the direction of propagation [Drob, 2019; Assink et al., 2019]

for a fixed horizontal position and time:

ceff(z, θ) = cT (z) + Wxy(z) · n̂xy(θ) (5.3.1)
where Wxy(z)·n̂xy(θ) indicates the horizontal winds at altitude z in sound propagation

direction θ. The vertical variation in Ceff, ratio indicates the refractivity of the atmosphere
and is defined as the ratio of the effective speed of sound at an altitude z and at the ground,
equal time and location:

ceff, ratio(z, θ) = ceff(z, θ)
ceff(0, θ) (5.3.2)

Figure 5.4 shows the climatology of the meteorological parameters that are relevant
for infrasound propagation, derived from the ERA5-EDA. From this figure, the various
waveguides within the atmosphere become clear. ERA5 resolves atmospheric model data
up to 80 km altitude. The tropopause (∼ 10 km), stratopause (∼ 50 km) are visible within
this figure. The mesosphere and lower thermosphere is not resolved by the ECMWF model.
However, these regions make up the upper layers of the thermospheric waveguide. This
duct always exists due to the strong temperature gradient around the mesopause region
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[Drob et al., 2003; Waxler and Assink, 2019], but is less efficient for long-range propagation
because of the increase in acoustic attenuation at these altitudes [Sutherland and Bass,
2004]. Nonetheless, from the figure, it stands out that the stratospheric duct is dominant.

Figure 5.5 shows the effective sound speed profiles at I23FR for four different periods
and back azimuths. The summer, autumn, winter and spring profiles are represented by
ECMWF ERAmodels for the first day of January, May, July and October 2015 respectively.
The blue lines indicate the effective sound speed profiles, whereas the grey areas indicate
whenever a specific angle has a Ceff, ratio greater than one. From this figure, it stands out
that during the austral summer (January), an easterly stratospheric duct occurs within the
atmosphere. Infrasonic signals will most likely be propagated from the east to the west.
In contrast, during the austral winter (July), a westerly stratospheric duct occurs in the
atmosphere, signals will most likely propagate from the west to the east.

The thermospheric propagation conditions are causing a continuously effective speed of
sound ratio greater than one (Figure 5.4 and 5.5), and thus a favourable ground-to-ground
ducting condition. However, compared to stratospheric propagation the thermospheric
propagation is less effective due to the high thermo-viscous absorption [Sutherland and
Bass, 2004].

5.4 Infrasound observations

5.4.1 Ambient local noise
The meteorological conditions near the array provide insight into the infrasonic noise con-
ditions Figure 5.3). From those observations, it can be stated that I23FR experiences
winds stronger than 5 m s-1 all year round. Such harsh conditions may reduce the array’s
ability to detect coherent infrasound and estimate the parameters of interest as the in-
frasonic signals are masked by incoherent pressure perturbations from wind noise [Walker
and Hedlin, 2010].

Within this study, hourly power spectral densities (PSDs) are computed for each array
element. The PSDs are aggregated into probabilistic power spectral density (PPSD) dis-
tributions that give insight into noise distribution as a function of frequency. Figure 5.6-a
shows the PPSD of I23FR for 2015 until 2020 (excluding elements 12 and 14, which were
unavailable during that period). The PPSD distribution shows that the noise conditions
around I23FR are relatively high over the entire infrasonic frequency band, compared to
the global high and low noise curves [Brown et al., 2014]. These observations are in line
with earlier observations by Brown et al. [2014] and chapter 4.

Besides the high noise levels, the resonance peak around 6.6 Hz stands out due to the
system response function (Figure 5.2). This feature can be suppressed from the spectra
by deconvolving the system response from the spectra [Bracewell and Bracewell, 1986], as
shown in Figure 5.6-b.



5.4 Infrasound observations 127

360° 300° 240° 180° 120° 60°

Ja
nu

ar
y

M
ay

Ju
ly

O
ct

ob
er

Al
tit

ud
e 

[k
m

]

Figure 5.5: Effective sound speed profiles at Kerguelen Island for different periods and back
azimuth directions. The gray areas indicate when the effective sound speed is above one.
The gray dotted lines indicate the tropopause ∼ 10km, and stratopause ∼ 50 km.
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5.4.2 Triplet noise
Algorithms used to process infrasonic array data typically rely on the assumption that the
background noise can be modelled as Gaussian stationary white noise with equal noise
levels at all array elements. Moreover, the signal of interest is typically considered to
be perfectly correlated over the array’s aperture. To assess the detection capability of
an infrasonic array, it can therefore be helpful to analyse the PSDs at each array element
[Brachet et al., 2010; Green, 2015]. PSDs of individual elements are compared to determine
the difference in noise conditions per array element. For each hour, the residual PSD is
determined and plotted against the average wind direction and speed over that particular
hour from the CTBT data (section 5.3).
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Figure 5.6: PPSDs computed for five years of I23FR data. PPSDs are computed for I23FR
sensor data (except elements 12 and 14, which were unavailable during that period) (a)
without and (b) with correcting for the WNRS response (Figure 5.2). Panels (c) and
(d) show the power difference between individual array elements of I23FR under varying
meteorological conditions (wind speed and direction) for 0.1-0.5 and 1-2 Hz, respectively.
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The residual PSD is determined as:

σPSD(f, t) =

√√√√ 1
N

N∑
i

(PSDi(f, t)− µPSD(f, t))2 (5.4.1)

where PSDi is the PSD of element i, N the number of elements, and µPSD indicates the
average PSD over the entire array.

The average residual has been calculated over the array recordings between 2015 and
2020 with a 99.9 percentile Gaussian distribution (Figs 6c and d). Note that the dominant
wind direction is westerly (Figure 5.3), which results in more data within that quadrant.
It stands out that the omnidirectional residual between the elements PSDs is ∼ 1 dB.
Although the array experiences harsh weather conditions and the PSD noise levels are
relatively high (Figure 5.6-b), the difference in PSD between array elements is constant
over various wind directions and speeds. The local noise conditions over the array elements
are determined to be similar.

This remark, however, does not express anything about the ability to resolve infrasonic
signals. However, it does state the differences in local noise conditions over the array. It is
a measure for local noise over an array, which is an important observation before applying
data processing techniques.

5.4.3 Beamforming methods

Array processing techniques (e.g. beamforming) can separate the coherent parts of the
infrasonic array recordings. The ability to detect and estimate the incident direction of the
microbarom wavefield relies on the beamform resolution as quantified by the array response.
The array response is determined by the beamform technique, frequency of interest and
the array layout. Ideally, the array response function approximates a delta function that
is unity for the slowness ~p0 of interest (typically chosen ~p0 = 0 s/m. However, because
a limited number of array elements are used in practice, the array response function is
described by a main lobe of a finite width and multiple side lobes [Evers, 2008].

Often the Bartlett [Bartlett, 1948] and Capon [Capon, 1969] beamforming algorithms
are applied. For the Bartlett, known as the ’classical analysis’, the signal power is max-
imized by summing the phase-aligned spectral values. Capon’s method is derived as a
maximum-likelihood filter. Due to the filter design, the noise in the power spectrum is
optimally suppressed while keeping a constant gain in the direction of interest. The array
responses for I23FR while applying Bartlett and Capon are shown in the bottom panels of
Figure 5.1, for a vertically incident wave with f0 = 0.05-0.55 Hz and 0.75-1.55 Hz. Capon’s
responses (panels d and f) have a sharper main lobe compared to the Bartlett responses
(panels e and g). Moreover, the amount and amplitude of the side lobes when applying
Capon’s method are significantly reduced (chapter 3).

Within this study, time- and frequency-domain array processing techniques (i.e. beam-
forming) are applied and compared. The microbarometer elements at I23FR continuously
acquire infrasound measurements at a rate of 20 samples per second. To detect possible
events of interest, beamforming can be performed in the time or the frequency domain,
searching for correlated signals. The time-domain beamforming is performed by using
the time-domain Fisher detector [Melton and Bailey, 1957; Evers, 2008], which enables to
determine the dominant source contribution. The frequency-domain beamforming within
this study is performed by Capon [1969] beamforming, which is used to calculate a f/k
spectrum. A comparison between Capon and Bartlett array responses illustrates that
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the Capon method is a higher-resolution method than the Bartlett beamformer [Viberg
and Krim, 1997]. As a post-processing method on the initial Capon spectrum, CLEAN
beamforming has been applied (Capon-CLEAN, Högbom [1974]). CLEAN allows for the
identification of multiple infrasound signals within the same time and frequency window
(chapter 3).

Both beamforming methods are applied in the passband of 0.05-0.55 Hz. The window
size of both methods is 2000 seconds, with 90 percent overlap. The calculation of the
f/k spectra occurs over a vector space spanned by steering vectors, which is formed by the
slowness grid. The design of the slowness grid consists of a 360◦ ring grid plus a rectangular
grid. The ring grid is a linear grid in backazimuth and apparent velocity, ranging from 0◦
to 360◦ and 285 to 500 ms−1 with steps of 2◦ and 1 ms−1, respectively. This ring grid is
nonlinear in the slowness domain. The rectangular grid consists of linearly spaced values
between −0.005 and 0.005 sm−1. This grid is added to ensure that energy from outside
the ring grid does not clutter on its boundaries, which would result in biased outcomes.
Within this study a Fisher detection threshold is used as a confidence interval for avoiding
false alarms [Shumway, 1971]. The threshold depends on the array layout, frequency range
and beamforming window size. The Fisher threshold is set to 1.19 in order to have a 95%
confidence on the resolved sources to be an actual signal instead of a false alarm.

5.4.4 Microbarom observations
Microbaroms are the most dominant infrasound sources detected worldwide and are the
atmospheric counterpart of microseisms. The spectral peak of these signals is typically
found around 0.2 Hz, but more generally, microbarom energy is detected in the 0.1-1.0 Hz
band [Campus and Christie, 2010; Landes et al., 2012; Hupe, 2019]. Both beamforming
methods have been applied on the frequency band 0.05-0.55 Hz. The resolved infrasound
signals within this frequency band are classified as propagating microbaroms, in contrast
to evanescent microbaroms that are only present above the source (chapter 4).

Figure 5.7 shows the outcome of the time-domain Fisher detector (a and b) and the
frequency-domain Capon-CLEAN algorithm (c-e). The results show the expected season-
ality in direction and apparent velocity. Note that both detectors have similar results.
However, the CLEAN outcome contains more spatial information of the infrasonic sources
since the CLEAN algorithm detects multiple spatially distributed sources within overlap-
ping frequencies and time windows. Moreover, CLEAN gives insight into the frequency
content of the resolved infrasound signals (panel e).

The beamforming outcomes show that the dominant infrasound signals in the austral
summer are resolved from the east and in the austral winter from the west. Besides the
seasonal change in the directivity of infrasound signals, the apparent velocity also changes
with the seasons. The apparent velocities are higher in the austral winter than in the austral
summer periods (Figure 5.5). Furthermore, a frequency shift of the infrasonic wave front
is revealed within the results. During the austral winter, microbaroms are observed over
a wider frequency band, that also include lower frequencies (0.1-0.5 Hz) when compared
to the summer (0.15-0.3 Hz). In addition, the amplitudes of the resolved microbarom
signals change seasonally. During the austral winter the sound pressure level (SPL) of
the microbarom is higher compared to the austral summer. This is due to the initial
source power of the microbaroms, during winter the initial source power is higher, but also
due to the propagation conditions during winter, which are favourable and therefore the
microbarom signals will attenuate less during propagation towards the array.
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Figure 5.7: The outcome of the time-domain Fisher (panels a and b) and the frequency-
domain CLEAN beamforming analysis (panels c-e).
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5.5 Simulating microbarom soundscapes
Chapter 4 presented a method for the reconstruction of microbarom soundscapes. Such
soundscapes account for all omnidirectional propagating microbarom source contributions
and present microbarom spectra in absolute values. The computed acoustic intensities are
integrated over the ocean surface, based on a microbarom source model [Waxler et al.,
2007], and accounts for long-range propagation [Tailpied et al., 2016].

In the literature, there are various studies that compare infrasonic microbarom obser-
vations and microbarom source region models [Landes et al., 2012; De Carlo et al., 2020a;
Vorobeva et al., 2020; Šindelářová et al., 2021]. Typically, array processing techniques are
applied to detect the dominant microbarom signal and direction in a given time segment
and frequency band. Therefore, only the resolved direction and amplitude of this dom-
inant microbarom observation is compared with microbarom models. However, Assink
et al. [2014], Smets and Evers [2014a], and chapter 3 have shown that multiple spatially
distributed sources within the same time segment and frequency often occur.

For the computation of soundscapes, the microbarom source model is calculated with
the use of the 2-D wave spectra (2DFD) that are computed by the ECMWF ERA5 Wave
Action Model (WAM). The 2DFD field is available at 30 oceanic wave frequencies spaced
exponentially between 0.035 and 0.5476 Hz and 24 wave directions, linearly spaced over
360°. This 2DFD reanalysis is coupled to the atmosphere model, which allows interaction
between the ocean waves and the surface winds [Haiden et al., 2018]. The reanalysis has an
hourly output, with a spatial resolution of 0.36◦. The transmission loss from each position
in the grid to the infrasound array location at Kerguelen island is computed using the
empirical relation proposed by Tailpied et al. [2016]. This relation extends the original
methodology by Le Pichon et al. [2012] for range-dependent atmospheres. This class of
empirical propagation loss functions is derived as a functional fit to transmission loss curves
computed using the Parabolic Equation (PE) method [Le Pichon et al., 2012].

An example of a soundscape analysis for the four different seasons considered in this
study is shown in Figure 5.8. The panels on the top row show the initial microbarom source
region model as derived by Waxler et al. [2007] and implemented by Smets [2018] for sum-
mer (left-hand column), autumn (middle-left column), winter (middle-right column) and
spring (right-hand column). The middle row panels indicate the long-range propagation
conditions within the atmosphere, where the vectors describe the strength and direction of
the stratospheric winds (Figure 5.4). The panels on the bottom row show the interpolated
microbarom soundscapes from the perspective of I23FR, integrated between 0.05-0.55 Hz.
The microbarom soundscapes illustrate the source regions that potentially have been de-
tected at the array. Note that the microbarom soundscapes change significantly with the
seasons. While the sources are centred around the island for the May and October cases,
there is a strong directional difference of microbarom source regions between January and
July due to the propagation conditions (Figure 5.5). During the austral summer and winter
a strong easterly and westerly stratospheric propagation duct is expected. These propa-
gation ducts weaken during the autumn and spring, when the middle atmospheric winds
reduce as the circumpolar vortex reverses direction. This results in an omnidirectional
spread of microbarom source regions that can be sensed by I23FR.
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Figure 5.8: Synthetic soundscape reconstruction of the infrasonic wavefield around I23FR,
integrated between 0.05-0.55 Hz. The top panels (a), (d), (g) and (j) show the initial micro-
barom source region model for summer (left-hand column), autumn (middle-left column),
winter (middle-right column) and spring (right-hand column) conditions. The middle pan-
els (b), (e), (h) and (k) indicate the long-range propagation conditions within the atmo-
sphere, where the vectors describe the magnitude and direction of the stratospheric winds
(∼ 30 km altitude). The bottom panels show the interpolated microbarom soundscapes.
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5.5.1 Spectral analysis
The soundscapes can be used to create omnidirectional PSDs of the spatial distribution of
microbarom source regions around I23FR:

PSDsynth(f, t) =
θ∑
θi

S∑
Si

SPLSynth(f, t, θi, Si) (5.5.1)

where f represents the frequency, t the time period, θi the directional angle and Si the
distance within the stereo-graphic polar grid .

Synthetic PPSDs indicate the expected SPL contributions of microbaroms from a model
perspective. The PSDs are calculated with a time resolution of one hour, over the entire
frequency range (0.069-1.095 Hz) of the soundscapes, aggregated and displayed as PPSDs.

95%

5% 

median

Figure 5.9: Synthetic PPSD of the soundscapes for I23FR. The grey solid lines indicate
the global high and low noise curves [Brown et al., 2014]. The grey and black dotted lines
present the 5 and 95 percentile and the median curve of the observed PPSD levels at I23FR
(Figure 5.6).

Figure 5.9 shows the synthetic PPSD for I23FR, using five years of data between 2015-
2020. The grey solid lines indicate the global high and low noise curves [Brown et al., 2014].
By comparing this synthetic PPSD with the PPSD obtained from the in-situ measurements,
Figure 5.6-b, it becomes clear that there is a difference in spectral power. Note that I23FR
experiences extreme meteorological conditions (section 5.3). Therefore, in the comparison
of these spectra the synthetic soundscapes only account for remote microbarom contribu-
tions. Local coherent and incoherent noise around the array are neglected. In particular
the 95% PPSD is likely determined to a great extent by local turbulence in the vicinity
of the array and not by microbarom noise levels. Therefore, the 95 percentile PPSD of
the recordings can not be directly compared with the synthetic PPSD. The median level
PPSD of the I23FR observations (Figure 5.6-b) shows a better agreement, especially for
the higher frequencies (∼ 0.3− 0.8 Hz). Nevertheless, the typical 0.2 Hz microbarom peak
is moderately visible due to the lower SNR values compared to microbarom spectra that
are typically observed at (IMS) infrasound stations [Marty, 2019]. This is most likely due
to the high noise conditions experienced within the recordings of I23FR compared to the
other IMS arrays (section 5.3). In the synthetic PPSD, this wind noise contribution is not
taken into account. The 5th percentile PPSD level corresponds to periods of low noise
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conditions. Therefore, this curve can be used to compare against the synthetic PPSD.
Both show similar SPL’s while resolving the characteristic microbarom amplitude signa-
ture around 0.2 Hz [Campus and Christie, 2010]. The wind-noise effects on microbarom
recordings decrease at increasing frequencies [Gossard and Hooke, 1975].

5.5.2 Seasonal effects
The seasonal effects on microbarom signal propagation depend on the atmospheric condi-
tions (Figure 5.4 and 5.5). The detectability of the most dominant microbarom source is
highly influenced by these conditions (Figure 5.8). A similar analysis as time-domain Fisher
beamforming can be performed using microbarom soundscapes. Figure 5.10-a shows the
characteristics of the most dominant sources within the microbarom soundscapes. Those
soundscapes are calculated for each hour of model output and created between 2015-2020
from the perspective of I23FR. From this outcome, it becomes clear that the most dominant
source contribution from the soundscapes changes with the seasons. During the austral
summer (January), the east is the dominant source direction, while during the austral
winter (July), the sources propagate from the west.

a.

b.

c.

Figure 5.10: Seasonal SPL analysis of the synthetic soundscapes. Panels (a) shows the
characteristics of the most dominant sources within the microbarom soundscapes. Panel
(a) indicates the resolved backazimuth. Panels (b) and (c) show the outcome of the omni-
directional analysis of the soundscapes. The soundscapes have been divided into 10◦ cones,
for which the SPL has been determined. Whenever the SPL is above 5% of total SPL, it
has been included within the figure. Panel (b) indicates the directionality, and panel (c) the
frequency content.
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Besides resolving the most dominant source contribution, an analysis similar to CLEAN
beamforming can be performed. For each soundscape, the total SPL has been determined.
Based on the total SPL, a directivity and frequency study has been performed. From the
perspective of I23FR, the total soundscape field is divided up by direction. The cones
that describe the directions are described by a Gaussian distribution, centered around a
mean direction and a standard deviation of 10◦. Each cone has an overlap of 5%. For
each cone, the SPL is determined. A threshold of 5% of total SPL has been used. Figure
5.10-b and -c show the outcome of this analysis. The outcome presented in panel (b) shows
a similar season pattern as in panel (a). However, accumulating multiple source contri-
butions results in a more insight into the spatial microbarom contributions. Microbarom
source regions are often dynamic and largely spread out (∼ 10000 km2). The most dom-
inant microbarom contribution, therefore does not always correctly represent the actual
infrasonic wavefield. Besides the directional analysis of microbarom source regions from
the soundscapes, frequency analysis can be performed. Panel (c) shows a spectrogram
of the accumulative microbarom source region contribution from panel (b). This analysis
shows that the microbarom source contributions during the austral winter (July) have a
lower frequency content than the austral summer (January). Moreover, the distribution of
frequencies is wider during the austral winter.

5.5.3 I23FR microbarom exposure
Besides directional and frequency information of microbarom source regions, the sound-
scapes also enable the construction of cumulative probability distributions to quantify the
exposure of the array to microbarom source energy. The smallest area that encloses 95
percent of SPL generation has been determined for each soundscape, and is parametrized
by the largest distance to the boundary of this area (Figure 5.11-a, black dots). The most
dominant source contribution is always located considerably closer to the array (aat ∼ 250
km distance, Figure 5.11-a, red line). From this analysis, it is concluded that the SPL
contributions by microbaroms at I23FR are from source regions within an area that has
an approximate radius of 2000 km.

Nevertheless, the SPL percentile analysis is relative. During the austral winter the
propagation conditions and the microbarom source areas are favourable for higher SPL
levels (Figure 5.7 and 5.10). Figure 5.11-b shows the omnidirectional SPL contribution
of the microbaroms over distance in absolute numbers. From this panel it becomes clear
that the exposure of microbaroms around the array is changing with the seasons. While
the 95 percentile distance is of the same order of magnitude, I23FR is exposed to higher
microbarom levels during the austral winter.
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a.

b.

Figure 5.11: (a) The cumulative probability distribution of I23FR, which quantifies the ex-
posure of microbaroms around the array. The black dots indicate the radius of the area
which encloses the 95 percentile of the resolved SPL. The red dots correspond with the ra-
dius of the area of the most dominant source contribution within the soundscapes. (b) The
microbarom SPL distribution at I23FR over radius.

5.5.4 Comparing f/k analysis to soundscapes
In this study, a climatology of the infrasonic wavefield around Kerguelen has been studied
by using (1) in-situ infrasound data from array I23FR and (2) synthetic infra-soundscapes.
Two beamforming methods, that is, time-domain Fisher and frequency-domain Capon-
CLEAN, have been used to estimate the directivity, frequency content and amplitude
spectra of coherent infrasound between 0.05-0.5 Hz.

Figure 5.12 shows a comparison between beamforming results and the synthetic sound-
scape for 2015 October 01 at 00 UTC. Panels (a) and (b) show the f/k spectra of the
initial Capon beamforming result and after applying CLEAN, respectively. Panels (c)
and (d) show a similar analysis based on Bartlett beamforming. Below the f/k spectra,
the corresponding soundscape for the same period is plotted. Within the soundscapes,
the direction of the dominant source contribution from the beamforming observations is
plotted (black arrow) and the CLEAN results (grey cones). The resolved dominant source
direction by Capon-CLEAN points towards the dominant source contribution of the sound-
scape. Moreover, note that the initial f/k spectrum of Capon beamforming is of a higher
resolution than the Bartlett spectrum, which results in a more accurate outcome of the
CLEAN algorithm (chapter 3). The Capon-CLEAN beamforming results are in general
agreement with the derived soundscapes outcome.
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5.6 Climatology comparison
In section 5.5, it was shown that the beamforming results are in general agreement with the
soundscape simulations. The comparison over time between observations and model has
been divided into two analyses. The first comparison is between soundscapes and the time-
domain Fisher results, based on the most dominant source signal. The second comparison is
between the soundscapes and frequency-domain CLEAN beamforming results and accounts
for surrounding microbarom sources.

The outcome of the first comparison (Figure
Nevertheless, this first comparison is not complete. Various studies have made the

comparison between the dominant infrasonic observations and model outputs [Landes et
al., 2012; Vorobeva et al., 2020]. However, microbaroms source regions are dynamic, fast-
changing, and often extended areas from the perspective of a distant array. Therefore all
sound contributions should be taken into account, instead of only the most dominant con-
tribution. The second comparison, therefore, is based on the CLEAN beamforming results
and the omnidirectional soundscapes. Both methods account for the omnidirectionality of
infrasonic sources, which can be divided into directional Gaussian cones. The cones span
a range of 10◦ while having a 50% overlap. The resolved power within each cone can be
assigned to the coherent part of the infrasonic wavefield.

Figures 5.14 and 5.15 show the ’cone’ comparison between the soundscapes and CLEAN
observations. The direction of the sources in the modelled soundscapes and array process-
ing (CLEAN) results are in good agreement, and both approaches resolve seasonal vari-
ations (Figure 5.14-a and -b). However, the SPL differs ∼ 5 dB. Panel (c) indicates the
difference in SPL between soundscapes and CLEAN related to backazimuth. Note that
incoherent noise has not been taken into account while reconstructing the soundscapes.
The CLEAN beamforming results do contain effects of incoherent noise and are therefore
slightly biased. However, these incoherent noise effects are minimal for higher amplitude
signals. The synthetic soundscapes are derived from model data, which are a smooth
and unvarying representation of the reality. Rapid changes and local differences are not
resolved within these models. Comparisons between model and observations will enable
improvements to be made to the models.

Figure 5.15 shows a similar analysis based on the frequency content resolved from
both methods. Again a good agreement between soundscapes (a) and CLEAN output
(b) is noted. The frequency content of the resolved infrasound sources between both
is complementary. Both show a broad frequency distribution during the austral winter
(July), including the finding of lower frequencies. The frequency distribution during the
austral summer (January) is more narrow.
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Figure 5.12: A comparison between beamforming results and synthetic soundscape for 2015
October 01 at 0 UTC. (a) and (b) show the f/k spectra of the initial Capon beamforming
result and the result after applying CLEAN. (c) and (d) show a similar analysis based on
Bartlett beamforming. (e) and (f) present the corresponding soundscape. The direction of
the dominant source contribution from beamforming (black arrow), and the CLEAN results
(grey cones) are highlighted within the soundscapes.

Figure 5.13: Comparison plot between the most dominant back azimuth direction resolved by
the time-domain Fisher analysis (Figure 5.7) and the soundscape reconstructions (Figure
5.10). During the austral winter, there is a good agreement between model and observation.
During the equinox and austral summer, the agreement decreases.
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a.

b.

c.

Figure 5.14: Comparison between directional synthetic soundscapes (a) and CLEAN ob-
servations (b). The panels show the SPL and back azimuth direction resolved from the
soundscapes and CLEAN beamforming, where panel (c) shows a direct comparison between
both in SPL.

a.
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c.

Figure 5.15: Comparison between the frequency content resolved from the synthetic sound-
scapes (a) and the CLEAN beamforming (b). Panel (c) shows a direct comparison between
frequency content of both expressed in SPL.
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5.7 Discussion and Conclusion

In this study, a climatology analysis of I23FR has been performed. This array is one of the
microbarometer arrays of the IMS and provides real-time monitoring of the atmosphere
[Marty, 2019]. The array is located at the Kerguelen Islands, positioned around the Indian
and Southern ocean boundaries. Since the array experiences high ambient noise levels
[Brown et al., 2014], it is often excluded from scientific studies. The climatology analysis
presented in this study improves the general knowledge regarding the infrasonic wavefield
received by the array. Various methods have been introduced and applied to unravel and
characterize the wavefield into its individual components. The performed analysis is essen-
tial for the understanding of the infrasonic wavefield. The dominant source contribution is
characterized as microbaroms, thanks to the frequency and amplitude signature [Campus
and Christie, 2010]. Microbarom source regions are large areas from the perspective of dis-
tant arrays. The microbarom source component within the infrasonic wavefield has been
analysed using observations and synthetic soundscapes. Microbaroms are often classified
as ambient noise and may mask infrasonic signals of interest. A further understanding of
the ambient noise field therefore comes to the benefit of infrasonic monitoring of nuclear
tests and natural hazards.

Microbarom observations are analysed over five years using I23FR infrasound data by
I23FR (2015-2020). Insight into the statistical distribution of microbarometer pressure
spectra in terms of PPSDs is discussed in section 5.4. These PPSDs contain both coherent
infrasound as well as wind noise spectra. The microbarom peak can clearly be distin-
guished. The local noise conditions are high, relative to the global high and low noise
curves [Brown et al., 2014]. However, the difference in local noise conditions between the
array elements is similar regardless of the wind direction and strength (Figure 5.4). This
analysis does not express anything about the ability to resolve infrasonic signals but can
measure local noise consistency over the array. Similar noise conditions between array ele-
ments are essential when applying array processing routines, which typically rely on similar
ambient noise conditions on the various array elements and a highly correlated infrasound
signal.

Moreover, the infrasonic wavefield has been separated into coherent and incoherent
parts by applying beamforming. Two beamforming methods (i.e. time-domain Fisher de-
tection and frequency-domain CLEAN beamforming), have been applied to estimate the
directivity and speed of the incoming coherent infrasonic wave front. Although the micro-
barom source regions seem close to the array (Figure 5.8 and 5.12), the sources can still be
considered to be in the acoustic far field and therefore can be described by a superposition
of plane waves. As a consequence, the CLEAN methodology as described by chapter 3
is still appropriate. CLEAN beamforming is a post-processing method on conventional
data processing techniques (i.e. Capon beamforming). CLEAN iteratively deconvolves the
array response of the most dominant source contribution from the data. The ability to
resolve multiple microbarom sources therefore depends on the array response (Figure 5.1)).
CLEAN divides the ’diffuse’ Capon spectrum (Figure 5.12-a) into multiple point sources in
the slowness domain (Figure 5.12-b, i.e. parametrized by azimuth and apparent velocity).
In the case of microbarom processing, these point sources represent ’pseudo-microbarom
point sources’. The point sources follow a Gaussian point spread function (PSF) described
in Gal et al. [2016] and chapter 3. The diffuse Capon spectrum is therefore divided into
microbarom source contributions. The width of the PSFs is user-defined and the func-
tions serve merely as a tool to represent the separated source contributions in the slowness
space. Whenever the initial f/k spectrum has a lower resolution, CLEAN will not separate
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the various microbarom contributions into these PSFs. Nevertheless, the representation
of microbarom source regions as pseudo-microbarom point sources is merely an approxi-
mation, since microbarom sources are in reality spread out source regions. Microbarom
classification as point sources suggests there is no correlation between two neighbouring
sources (especially since the source region is relatively close to the array). Within section
5.6, the first initiation of a non-point source microbarom analysis has been presented by
dividing the CLEAN outcome into directional cones.

Besides the analysis of microbarom observations, the climatology involves the recon-
struction of omnidirectional soundscapes from the perspective of I23FR (chapter 4). Sec-
tion 5.5 describes the soundscapes and how to interpret results obtained from them. From
the soundscapes, it stands out that the most dominant microbarom source regions are
relatively close to the island (Figures 5.8 and 5.11), which may be the reason that the
microbaroms are resolved clearly despite the very high wind noise levels. The microbarom
signals are therefore significantly less affected by atmospheric propagation effects. A di-
rect comparison between the dominant source contributions from soundscape simulations
and observations is presented in section 5.6. Within this section, a comparison method
between soundscapes and CLEAN observations have been introduced and presented (Fig-
ure 5.14 and 5.15). The ’cone’ partition transforms the resolved microbarom point source
contributions of the beamforming detectors into microbarom source regions.

Although the comparison shows similarities in direction and frequency content, there
is a notable SPL difference between observations and soundscapes. Within this study, the
soundscapes only account for the theoretical contribution of microbaroms between 0.069-
1.095 Hz. Additional source contributions within this frequency range are not taken into
account. Furthermore, the beamforming outcome is affected due to the effects of incoherent
noise within the recordings.

Moreover, within the reconstruction of the soundscapes, the transmission loss from
each position in the grid to the infrasound array location at Kerguelen island is computed
using an empirical relation [Le Pichon et al., 2012; Tailpied et al., 2016]. This class of em-
pirical propagation loss functions is derived as a functional fit to transmission loss curves
computed using the PE method. This model can be used to approximate the losses due to
propagation in a stratospheric duct, but is inappropriate to quantify losses due to tropo-
spheric and thermospheric ducting. Furthermore, cross-winds are not taken into account
by applying this propagation model. These winds influence the propagation conditions
[Smets and Evers, 2014a; Assink et al., 2018; Blixt et al., 2019], which may explain the
differences in dominant source angle between observations and soundscapes (Figure 5.13).
The use of formal propagation models requires atmospheric specifications from the ground
to the upper atmosphere. As upper atmospheric specifications are typically limited to cli-
matologies, this has implications for the accuracy of thermospheric returns [Assink et al.,
2012; Drob, 2019].

Nonetheless, the comparison between soundscapes and observations is promising. The
soundscapes are generated from an initial 2DFD file that contains 30 frequency steps
(0.0345-0.5476 Hz), which results in a soundscape reconstruction for propagating micro-
baroms ranging between 0.069-1.095 Hz. Based on the comparisons, it can be concluded
that soundscapes give a good insight into the contribution of microbaroms within the in-
frasonic wavefield. Moreover, soundscapes can also be used for spectral analysis of the
source regions. From the frequency analysis of both the soundscapes and observations, it
follows that the microbarom signals are contained in a broad frequency range spanning
from 0.1 to 0.5 Hz during the austral winter. Figure 5.16 shows the central frequency con-
tent of the various microbarom source regions extracted from the soundscapes during one
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day of the austral summer and winter. The dominant microbarom source direction for the
different periods (Figure 5.6, 2015 January 01 and 2015 July 01) is highlighted as a cone,
whereas the remaining source regions are made transparent. The initial microbarom source
model of the soundscapes is based on Waxler et al. [2007], which account for the effects
of bathymetry. Therefore, the bathymetry features [GEBCO, 2020] are highlighted within
the figure by the grey contour lines. Spectral analyses of the microbarom source regions
provide insights into the frequency signature of the global ambient noise field [Campus and
Christie, 2010; Marty, 2019]. The microbarom source peak is typically estimated to be
at 0.2 Hz. However, within this study it has been shown that the microbarom frequency
range is shifting seasonally. Knowing the frequency signature of the microbarom source
regions enables to distinguish between different source regions, and specifically characterize
and identify these. Implementing the operational 2DFD model of the ECMWF, with 36
frequency steps (0.0345-0.9695 Hz) and 36 directions, will provided additional insight into
the higher frequency signature (0.069-1.939 Hz).

The climatology analysis has addressed the differences between soundscapes and obser-
vations, which is essential for future improvements of the detection algorithms and sound-
scape reconstructions. Moreover, the combination of observations and soundscapes may
enhance the filtering of microbarom source contributions within the infrasonic wavefield.
In conclusion, this new knowledge contributes to a better verification of the CTBT and
better applicability of infrasound as a remote sensing technique for the upper atmosphere
[Donn and Rind, 1972; Smets, 2018]. The climatology analysis as performed within this
paper can act as guidance. The analysis is modular and can be applied to any infrasound
station or place on earth. Moreover, the analysis could play a role in the installation of
future infrasound arrays. The soundscapes provide insights into the expected microbarom
exposure at (future) infrasound arrays.
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Figure 5.16: Spatial frequency analysis of two synthetic soundscapes during austral summer
(a, 2015 January 01) and winter (b, 2015 July 01). The grey overlayed contour lines
within the panels indicate the bathymetry from GEBCO 2020 [GEBCO, 2020]. The cone
indicates the dominant microbarom source direction at 2015 January 01 and 2015 July 01,
respectively.



6
Conclusions and recommendations

Religion is a culture of faith; science is a culture of doubt.

Richard P. Feynman

In this final chapter, the conclusions of the previous chapters will be summarised, and
recommendations will be given for future research.

6.1 Conclusions
This dissertation contributes to developing methods to characterise and identify the ambi-
ent infrasonic noise field (i.e., microbaroms) by presenting novel methods for: measuring,
processing and modelling infrasound. Knowledge regarding the infrasonic wavefield is of
great interest for a better verification of the CTBT and applicability of infrasound as a
remote sensing technique for the upper atmosphere. Understanding the ambient noise field
is needed to identify sources of interest like nuclear-test explosions. The signals of such
sources can be hidden by ambient noise or masked by other, more dominant, noise signals.
Especially low-yield atmospheric and underground explosions are likely to be masked by
microbaroms [Bedard et al., 2000; Haak and Evers, 2002; Golden et al., 2012]. Sparse
infrasound sensor arrays and most infrasound processing tools limit the ability to dis-
tinguish interfering infrasound sources. In this dissertation, it has been shown how the
infrasonic wavefield can be unravelled into contributions of noise and several sources. As
such, sources like nuclear-test explosions can be enhanced and extracted from the complex
wavefield. The ambient infrasonic noise field has been unravelled in four consecutive stages.

Firstly, a new approach for monitoring the infrasonic wavefield, and concurrently mea-
suring the influence of the atmosphere has been addressed. Cost-efficient sensor technology
has been implemented and applied to complement existing sensor networks. The use of
such sensor platforms enables to increase the number of stations in an economical way.
Moreover, it allows an increase of spatial resolution and mobile deployments. The applied
sensor technology within this thesis is known to be less accurate than existing high-fidelity
equipment. However, rapid innovation processes will lead to an increase of sensor resolu-
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tion, which is beneficial for the spatial resolution and accuracy of a measurement. Chapter
2 shows how MEMS accelerometers have improved over two years of research and develop-
ment. Platforms, as described within this dissertation, complement scientific studies and
will lead to the application of interdisciplinary studies. Chapter 4 demonstrates how cost-
efficient sensor platforms, the INFRA-EAR, have provided new insights in the microbarom
wavefield within the Southern Ocean, which has lead to the reconstruction of microbarom
soundscapes.

Secondly, this thesis presents various data processing techniques, which have been ap-
plied on infrasonic data. Within chapter 3, CLEAN beamforming has been introduced.
The CLEAN algorithm iteratively removes the most dominant source contribution from
the f/k spectrum by including the array response and deconvolving the f/k spectrum with
it. Therefore, this algorithm distinguishes multiple source contributions within overlapping
time and frequency segments besides the most dominant source. This way of data pro-
cessing enables to charaterize the incoming wavefield and decompose it into various source
contributions (i.e., divide signals based on apparent velocity, frequency, back azimuth).

Thirdly, a method has been introduced for the reconstruction of ambient synthetic infra-
soundscapes. The soundscapes account for all omnidirectional microbarom source regions
in the vicinity (∼ 5000 km) of an infrasound sensor. The initial input is any 2DFD ocean-
wave model for the calculation of the microbarom source regions. Long-range propagation is
accounted for by applying a range and time-dependent atmospheric and propagation model
based on PE [Le Pichon et al., 2012; Tailpied et al., 2016]. The reconstructed soundscapes
are directly compared with in-situ (the INFRA-EAR, chapter 2) and remote microbarom
observations (I23FR Kerguelen Island, chapter 5). From the comparison, it has been
concluded that the soundscapes are in agreement with these observations. Previously, only
a few studies have considered evanescent microbaroms, which are only detectable directly
above the microbarom source regions. Within this study, the evanescent microbarom
component has been recorded for the first time by the INFRA-EAR. The theoretical and
observed evanescent microbarom component has been analysed and compared with the
synthetic reconstructed evanescent contribution.

Fourthly, a climatology study has been performed in which the methodologies described
in chapters 3 and 4 are used in concert. The study presents a comparison between the
infrasonic model and observational data. The outcome states that the soundscapes (chap-
ter 4) are a valuable first approach. There is a good agreement between observed and
modelled source back azimuth and frequency. However, the amplitude difference between
model and observations suffers due to the lack of vertical resolution within the long-range
propagation model, and uncertainties within the microbarom source model (e.g., limited
ocean-wave model resolution). Moreover, it has been shown that a comparison between
microbarom observations and soundscapes have to be performed omnidirectionally. The
entire microbarom source field contributes and influences the total acoustic power of the
infrasonic wavefield, which consists of multiple sources.
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Conclusions from chapter 2 on Atmospheric monitoring techniques

The monitoring principle of atmospheric pressure perturbations, infrasonic waves, is ex-
plained in chapter 2. Within this chapter, the INFRA- and Multi-EAR are introduced,
two cost-efficient multidisciplinary sensor platforms. Both platforms concurrently mea-
sure various geophysical parameters (i.e., barometric pressure, infrasound, accelerations,
GPS, wind, temperature, humidity). Within chapter 2, the design, development and cali-
bration of the platforms are explained. The applied sensor technology is based on digital
Micro-electromechanical systems (MEMS). These MEMS are small single-chip sensors that
combine electrical and mechanical components and have low energy consumption. More-
over, there is rapid development and improvement on these sensors in terms of sensitivity,
resolution, accuracy and robustness while being cost-efficient.

Although the MEMS are not as accurate as high-fidelity equipment, the provided sensor
platforms complement existing high-fidelity geophysical sensor networks. This study shows
that, as long as the MEMS are well-calibrated, they perform in agreement with the reference
sensors. Therefore, they can provide observations during remote or rapid deployments (e.g.,
albatrosses, weather towers and balloons).

Conclusions from chapter 3 on Data processing techniques

Beamforming can be applied as a data processing technique to separate the coherent and
incoherent parts of the infrasonic wavefield. In addition, beamforming enables resolving
the wavefront amplitude, back azimuth, frequency, and apparent velocity while impinging
an infrasound array. Within chapter 3, various beamforming methods are introduced and
theoretically derived. The chapter includes synthetic and real data examples to present
the outcome and performances of the methods. A selection of high-resolution beamform-
ing methods have been compared, with particular attention to the classical beamforming
methods of Bartlett, Capon and MUSIC.

Besides the general introduction to beamforming, the chapter addresses CLEAN beam-
forming. CLEAN is a post-processing method to resolve multiple spatial distributed sources
within overlapping time and frequency segments. Other beamforming algorithms often only
identify the most dominant source. However, the ability to resolve and distinguish between
multiple sources is crucial for fully unravelling the infrasonic wavefield.

The enhanced beamforming resolution of CLEAN improves the ability to resolve multi-
ple microbarom sources. In addition, decomposed microbarom observations can be helpful
in the assessment of microbarom source models [Waxler et al. [2007]; chapter 4; chapter
5] as well as in the remote sensing of the middle and upper atmosphere for which micro-
barom signals have been used in previous research [Donn and Rind, 1972; Smets, 2018].
Besides the application to infrasound arrays, the algorithm can improve the detection ratio
of arrays with unfavorable array responses because of a limited number of sensors.

Conclusions from chapter 4 on infrasonic soundscapes

In chapter 4, a reconstruction method for infrasonic soundscapes has been presented. These
soundscapes use as initial source model the deterministic microbarom source model by
Waxler et al. [2007]. The empirical propagation model of Le Pichon et al. [2012] and
Tailpied et al. [2016] is used to accounted for long-range propagation. Both model inputs
(ERA5 HRES 2DFD reanalysis ocean-wave model and ERA5 HRES atmospheric reanalysis
model) have been interpolated over a stereographic polar grid, with an infrasound sensor
as polar position. Soundscapes have been generated and are compared within this chapter
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with in-situ infrasound observations by the INFRA-EAR (chapter 2) and remote infrasound
observations by I23FR (chapter 5). Soundscapes give insight into how much various source
regions contribute to the total acoustic power measured in the microbarom band. Earlier
studies have been limited to analysing normalised microbarom amplitudes, i.e. no absolute
microbarom power values. Furthermore, earlier work focused on the maximum contribution
of a specific region. However, all omnidirectional source contributions within the ambient
noise field contribute to infrasound observations and thus need to be considered within
the synthetic soundscape reconstruction. Previously, only a few studies have considered
evanescent microbaroms, which are only detectable directly above the microbarom source
regions. Within this study, the evanescent microbarom component has been recorded for
the first time by the INFRA-EAR. The theoretical and observed evanescent microbarom
component has been analysed and compared with the synthetic reconstructed evanescent
contribution.

Furthermore, this chapter addresses the comparison of soundscapes while using different
initial microbarom source models (i.e., Waxler and Gilbert [2006] and Waxler et al. [2007],
which assume a finite and infinite ocean depth, respectively). The integrated SPL has been
determined for the frequency range of 0.2-0.35 Hz for both infrasound observation and
ambient soundscape. The in-situ measurements of the INFRA-EAR occur directly above
the microbarom source region. According to De Carlo et al. [2020a] it is therefore relevant
to account for the near-vertical propagation of the propagating microbaroms [Waxler et
al., 2007; De Carlo et al., 2020a]. Near-vertical propagation of propagating microbaroms,
however, is not applicable to distant ground-based IMS arrays, because these are not
refracted in the atmosphere and not observed at long ranges. Therefore there is no need
to include finite-depth ocean effects within these soundscapes [De Carlo et al., 2020a].

In addition, spatial and frequency analyses of the ambient soundscapes are performed,
which shows that the microbarom source regions cluster around bathymetry. Moreover,
there is an amplitude increase around these features. Nonetheless, the observations by
the INFRA-EAR include overlap of evanescent and propagating microbaroms within the
frequency range of 0.1-0.3 Hz. For a sufficient comparison between soundscapes and ob-
servations, and the effect of near-vertical propagation effects, the observations should not
include the evanescent microbarom component (i.e., stratospheric scientific balloon mea-
surements [Bowman et al., 2015])

Conclusions from chapter 5 on the climatology study
In this study, a climatology of microbarom signals at I23FR has been performed over five
years of data (2015 - 2020). This array is one of the microbarometer arrays of the IMS
and provides real-time measurements of the infrasonic wavefield as well as basic meteoro-
logical parameters [Marty, 2019]. The array is located at the Kerguelen Islands, an island
within the Southern Ocean, and is part of the IMS for the verification of the CTBT. The
climatology analysis addresses the expected ambient noise levels, propagation paths, and
potential sources within the vicinity of an infrasound sensor (∼ 5000+ km). Time and
frequency domain beamforming methods (chapter 3) have been applied to analyse the in-
frasonic wavefield from the I23FR observations. Soundscapes (chapter 4) are computed
and compared with beamform results.

The climatology analysis addresses the differences between soundscapes and observa-
tions, which is essential for future detection algorithms and soundscape reconstructions.
Understanding the full wavefield allows for extracting the different sources like continuous
ambient noise and deterministic transient signals like those from, e.g., nuclear tests and
volcanos. In conclusion, this new knowledge contributes to a better verification of the
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CTBT and better applicability off infrasound as a remote sensing technique for the upper
atmosphere [Donn and Rind, 1972; Smets, 2018]. The analysis as performed within this
chapter should be repeated for all IMS arrays and other operational microbarometer ar-
rays in order to map the background infrasonic wavefield. Doing so, deterministic transient
signals of sources of interest can be uniquely identified even if hidden in the noise (i.e., at
SNR < 1).

6.2 Recommendations and outlook
As shown within this dissertation, various infrasound sources occur within overlapping
frequency and time segments. Often the most dominant source contribution is resolved by
conventional array processing techniques for the detection and characterization of infrasonic
events. The infrasound sensors and models, however, contain more information. It is
therefore of importance to consider consider all (noise) sources contributing the observed
complex wavefield.

Cost-efficient modernisation of sensor networks

The famous Dutch proverb "Meten is weten" (to measure is to know) was once coined by
Dutch Nobel laureate Kamerlingh Onnes and is still a famous saying today. To advance
our understanding of the infrasonic wavefield, increasing the spatial sampling of both in-
frasound and the ambient meteorological conditions is essential. Chapter 2 introduces
cost-efficient multidisciplinary sensor platforms, which concurrently measure infrasound,
accelerations, and meteorological conditions. Typical geophysical measurement platforms
still provide logging solutions for a single parameter due to different community standards
and the higher cost rate per added sensor. The joint analysis of multiple geophysical
parameters benefits studies and real-time monitoring of natural hazards.

The INFRA-EAR was designed, and has been used, as biologger for the Wandering Al-
batross. Chapter 4 describes how the data has been used to create a reconstruction method
for infrasonic soundscapes. The Multi-EAR is partly ready for integration within field
campaigns, or existing monitoring network. E-Surfmar is the first collaborative partners
of the Multi-EAR. E-Surfmar is part of EUMETNET (European Meteorological Service
Network) and led by Marijn de Haij (KNMI-RDWD). Within the E-Surfmar a barome-
ter comparison has been performed. Pressure is the most important parameter measured
at sea for Numerical Weather Prediction. National Meteorological Services (NMS) such
as KNMI are used to equip voluntary observing ships with high level standard barome-
ters, with a low uncertainty and drift. However, the sources of uncertainties on pressure
measurements on a ship are numerous (e.g., changing height of barometer, wind effects,
waves, air conditioning). Barometer prices vary between tens to several thousands of euros.
Therefore it is worth wile to test, and compare, various barometers in a calibration lab, as
well as in real conditions. Inter-comparison will show the measurement quality, robustness,
and cost/benefit ratio over longer periods of deployment. The study will focus on digital
barometers that can easily be integrated in the TurboWin+ software, on which Automatic
Pressure Report solutions are already available for some NMS.

Although the MEMS sensors are not as accurate as high-fidelity equipment, it has
been shown that this sensor technology can be used within scientific monitoring cam-
paigns. Moreover, MEMS technology is improving rapidly. Therefore, it is expected that
these sensors will improve significantly over the coming years [D’Alessandro et al., 2014].
Furthermore, MEMS are cost-efficient. The application of sensor arrays on one platform
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will allow for output summation, which improves the SNR. In addition, one high-cost
high-fidelity sensor can be complemented with a large number cost-efficient sensors. The
high-fidelity sensor can then be used for calibration while the large number of cost-efficient
sensors contributes into higher resolution in the spatial and temporal domain. As such, the
absolute value measured by the cost-efficient sensor is not of interest, but its relative value.
The deployment of cost-efficient sensor platforms can therefore lead to higher temporal
and spatial resolution monitoring of the infrasonic wavefield.

Moreover, the presented sensor platforms require low-voltage and are relatively small
in dimension. Mobile measurement campaigns are enabled thanks to such platforms. The
power supply can either be provided by an external power supply or a solar panel. Therefore
the possible implementations of mobile, cost-efficient sensor platforms are many. Equipped
scientific balloons and drones will enable atmospheric altitude measurements or infrasonic
measurements directly above the sources (e.g., volcanos, earthquakes, oceans, waterfalls).
Marine buoys with sensor platforms will provide insights into the infrasonic wavefield in
the middle of the ocean (as shown in chapter 4), and can be used by oceanographers for
monitoring the sea-state. The existing meteorological sensor network may increase its
spatial resolution by the implementation of cost-efficient sensor technology, which will lead
to a better comparison (and later validation) of the weather models. In general, current
high-fidelity sensor and sensor network often suffer from under sampling parameters or
vector fields in the spatial and temporal domain. The addition of cost-efficient sensors can
strongly increase both the spatial and temporal resolution and as such the characterisation
of wavefields and scalar parameters.

Application of soundscapes
The use of mobile sensor platforms, and the ability to resolve multiple infrasonic sources
within overlapping time and frequency segments, have enabled new insights into infrasonic
ambient noise. Based on microbarom observations, a reconstruction method has been
developed for microbarom soundscapes based on an initial microbarom source model and
an empirical atmospheric propagation model.

There is a good agreement between source back azimuth and frequency content. The
amplitude, however, between soundscapes and observations differ. The empirical formula-
tion of sound propagation by Le Pichon et al. [2012] and Tailpied et al. [2016] is modelled
along the great circle path from source to the receiver only, neglecting out-of-plane propa-
gation effects. This model can be used to approximate propagation losses in atmospheres
with a dual (stratospheric-thermospheric) duct and neglects tropospheric ducting. A dif-
ferent approach could involve using a 3-D ray-theory model cast in spherical coordinates
[Smets, 2018; Blom, 2019] to quantify propagation losses, a normal modes model, or a
full-wave propagation model. The use of formal propagation models requires atmospheric
specifications from the ground to the upper atmosphere. As upper atmospheric speci-
fications are typically limited to climatologies, this has implications for the accuracy of
thermospheric returns [Assink, 2012; Drob, 2019]. Therefore, it is recommended to inves-
tigate a follow-up on the PE propagation model by Tailpied et al. [2016], which solves the
long-range propagation assumptions, before addressing significant changes in the initial
microbarom source model.

Nevertheless, it has been shown within chapter 5 that the soundscapes provide insight
into the microbarom source contributions around an infrasound array. It is recommended
that this analysis is carried out for infrasound arrays worldwide, including those within the
IMS infrasound network, to understand the microbarom contributions to the observations
better. Moreover, within this dissertation, the soundscapes are generated for microbarom
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signals. The infrasonic wavefield, however, consists of more source signals. It is therefore
recommended to investigate the reconstruction of soundscapes based on other infrasonic
sources.

Beamforming uncertainties
Within chapter 3 of this dissertation, various data processing techniques are introduced
and implemented. Most infrasound processing routines are designed to only detect the
dominant infrasonic signal in a given time segment and frequency band. Nevertheless, var-
ious beamform techniques exist in the literature that allow for the detection of signals from
multiple spatially distributed sources [Viberg and Krim, 1997; Rost and Thomas, 2002].
The ability to detect and classify interfering sources relies on the beamform resolution as
quantified by the array response, determined by the beamform technique and the array
layout. Ideally, the array response consists of one lobe, the main lobe. The peak of the
main lobe determines the resolution and is favourably a delta function. The shape of the
main lobe determines a main circular lobe corresponds to an isotropic response in which
the array is equally sensitive to all directions. A low beamform resolution could make the
array incapable of estimating wavefront parameters accurately in situations where there
are either one or multiple sources in the vicinity of the array.

The enhanced beamforming resolution of CLEAN improves the capabilities of infra-
sound as a monitoring technique. This benefits from infrasonic monitoring of nuclear tests
and natural hazards, such as volcanoes, earthquakes, and hurricanes.

Nevertheless, such deconvolution method for array response optimization are not always
taken into account. The main lobe’s sharpness and shape have not been compensated
within beamforming algorithms. Neele and Snieder [1991] and Dost [1987] have introduced
and implemented a data-driven and manual correction factor to shape the array response
towards delta function, respectively. However, the application of such correcting factors
biases the remainder of the f/k spectrum, resulting in more dominant side lobes. It is
therefore recommended to investigate an algorithm that accounts for the artefacts caused
by the array design. Such a correction algorithm depends on the parameters of the signals
of interest (e.g., back azimuth, apparent velocity, frequency) and the array design. Such
an optimisation algorithm should result in a dynamic and changing algorithm over various
source contribution within different time segments. The array response will be optimised
towards a delta function shaped response without generating side lobes.

Moreover, the Fourier transform applied to the data (frequency-domain beamforming)
can possibly smear the infrasonic source contributions within the time-domain record-
ings. Averbuch [2021] stated that the short-time Fourier-transform (STFT), often used as
the basis for advanced signal processing techniques, can present the time-domain record-
ings into a smeared frequency spectrum, due to the inexact phase information in some
time-frequency elements. Therefore, an STFT may bias the data processing before the
application of any beamforming technique. Averbuch [2021] re-introduces the reassigned
spectrogram (RS) to compromise the artefacts made by the STFT. It was shown that the
RS can provide a more exact time-frequency representation of deterministic signals and
significantly improves beamforming results. Nonetheless, the RS is not robust, like the
STFT. The application of the RS is therefore not always favourable. It is recommended
to investigate the use of STFT and RS, to generate a robust Fourier transform without
smearing the frequency spectrum.

Furthermore, the introduced beamforming techniques in chapter 3 do not present sta-
tistical uncertainties. Olson and Szuberla [2004] introduced a method to determine the
statistical confidence in estimates of the direction and velocity of signals impinging infra-
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sound arrays. However, this method does not present multi-paths and multiple spatially
distributed source effects within the infrasonic wavefield. An extension of the method
proposed by Olson and Szuberla [2004] for CLEAN beamforming is recommended.

In addition, beamforming methods resolve sources contributions and represent the fre-
quency, apparent velocity, and back azimuth content of this source as a point source from
the perspective of an array. Although CLEAN beamforming enables to resolve multiple
source contributions, these are still represented as point sources with a Gaussian distri-
bution. Whenever CLEAN resolves a contribution outside an earlier classified source, a
new source contribution is added. Microbarom source regions are known to be large and
dynamic areas (chapter 4). It is, therefore, reasonable to state that the CLEAN algorithm
may classify various point sources that originate from the same microbarom source region.

Figure 6.1 represents a theoretical case study. In this case, the CLEAN algorithm
resolves and classifies multiple source contributions (Figure 6.1-a). The Gaussian source
distribution determined using the CLEAN algorithm is symbolized by the orange circles,
where the red cross represents the centre. The yellow contour lines symbolize the initial
source area. From where the microbarom signals have propagated, the source area is
characterized within (Figure 6.1-b). This source region is dynamic and large and has
higher and lower intensity areas. Although the CLEAN algorithm classifies multiple point
sources (black crosses) into three Gaussian distributed point sources, in practice, all the
resolved contributions add to one source area with varying source intensities (Figure 6.1-c).

Within section 5.5, a post-processing method has been applied to the CLEAN beam-
forming results. Here the beamforming outcomes are clustered within 10◦ Gaussian cones.
The classification of a microbarom source within the CLEAN algorithm, as proposed in
chapter 3, is based on a Gaussian distribution. When the algorithm resolves a source sig-
nal, it is compared to earlier resolved sources and added a new source signal if it does not
match earlier source content. However, due to this approach, microbaroms are classified as
’point sources’. These point sources may correspond to the same microbarom source region.
It is therefore recommended to apply a post-processing analysis to the CLEAN outcome,
in order to define source regions instead of source points. This can either be done by the
use of a gap measure (e.g., SORTE, section 3.3.2) or an image-processing technique (e.g.,
the Hough transform [Averbuch et al., 2018]). Such applications indicate the correlation
between the resolved point-sources, and therefore may distinguish the various microbarom
source regions.
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Figure 6.1: A schematic overview of distinguishing various parts of a microbarom source re-
gion from the perspective of an infrasound array (red triangle). (a) The theoretical outcome
of the CLEAN beamforming algorithm (chapter 3). The grey circles indicate the applied
slowness grid of the beamforming algorithm. The yellow area is the initial outcome of the
Capon/Bartlett beamformer. The orange circles indicate the Gaussian source distribution
of the resolved point sources (red crosses). (b) Shows the conceptional corresponding mi-
crobarom source region within a soundscape. The yellow, orange, and red contour lines
indicate the source intensities within the area. The grey crosses are the iterative sources
resolved by the CLEAN algorithm. Whereas the dotted circles indicate the pseudo point
sources. (c) The analysis of the source region in perspective of amplitude and position.
The resolved CLEAN sources are highlighted within this figure.
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Decomposing of microbarom source contributions
As follow-up, the application of the various presented high-resolution tools in concert can
potentially be used to decompose ambient noise contributions from the infrasonic wavefield.
Synthetic microbarom soundscapes provide information regarding the expected source
contributions of microbaroms within the wavefield. Adopting the temporal and spatial
information from the soundscapes enables characterising individual components from the
CLEAN beamforming analysis. A deconvolution function can be generated based on the in-
put of both model and observations. A pre-defined deconvolution of the microbarom source
contributions from the data will suppress the microbarom source contributions within the
wavefield and increase the SNR of the signals of interest. As such, the decomposing of
microbarom source contributions is based on both frequency and wavenumber (f/k).

As a case study, a synthetic data example has been created. A meteor from outer
space has been simulated to enter the atmosphere at 50◦E/50◦S on 22-04-2019 around
2200UTC. The most nearby positioned IMS infrasound array is I23FR. This dissertation
has shown that I23FR experiences extreme local noise conditions while resolving micro-
barom signals. Synthetic soundscapes (Figure 6.2-a) indicate the dominant microbarom
source direction, amplitude, and frequency content over two days around the synthetic
event has been obtained. These parameters are used to generate synthetic waveforms for
the elements of I23FR (Figure 6.2)-b). The waveforms include continuous microbarom
source signals (∼ 300◦ BAZ) and a transient meteor event (∼ 250◦ BAZ). Figure 6.2-c
shows the integrated spatial microbarom soundscape for I23FR (triangle) during the me-
teor arrival (star). Panel (d) indicates the outcome of the CLEAN analysis on the synthetic
waveforms. The algorithm has resolved both the microbarom and transient source.

Combining the soundscapes and the CLEAN analysis generates double-sided informa-
tion regarding the microbaroms used to characterise them. Such information allows for the
estimation of an expected array response of the microbarom source component. Decon-
volution of this microbarom response from the data (Equation 3.4.1) will generate a first
approximation of spatial decomposition of microbaroms. Panel (e) presents the outcome
of the CLEAN algorithm after the microbarom source component has been characterised
and decomposed from the data.

It is recommended that such applications of decomposing techniques are further in-
vestigated in future studies. Nevertheless, fundamental improvements to the analysis can
already be highlighted. Although there is a good agreement in the resolved directionality
of the microbaroms between model and observations, the model is less accurate due to
the empirical propagation model. Future steps will need to compute a propagation model
that includes the tropospheric propagation paths and out-of-plane propagation. Such a
model may improve the agreement in directionality and amplitude between soundscapes
and observations.

Moreover, the apparent velocity of the infrasonic signal at an infrasound array is not
resolved from the soundscapes. The comparison between model and observations is there-
fore limited to frequency, amplitude, and back azimuth. The apparent velocity is strongly
dependent on ducting conditions within the propagation path between source and receiver.
Therefore this can be estimated if the direction is known.
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Figure 6.2: Decomposing microbarom source contributions from the infrasonic wavefield. (a)
Spectrogram of the microbarom source contribution as a function of time and back azimuth.
(b) A synthetic waveform, consisting of microbarom signals with the signature obtained
from panel (a) and a transient source at 14 min after the start of the trace. (c) The syn-
thetic microbarom soundscape at the time of the transient event. The triangle indicates the
infrasound array location, and the star the source location of the transient. The transpar-
ent cone indicates the microbarom source region, as shown in panel (a). (d) The CLEAN
beamforming outcome of the transient event. The microbarom signal is resolved at 300
degrees back azimuth. The transient is resolved from 11 until 17 minutes of the trace due
to the window size of the beamformer. (e) Shows the CLEAN result after the microbarom
signals are decomposed from the data. The decomposing of microbarom signals is based on
the information of the synthetic soundscapes combined with the CLEAN outputs.
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A
Derivation of the infrasonic wave
equation

The derivation of the acoustic wave equation follows the fundamental equations of fluid
dynamics: the conservation of mass, conservation of momentum, in addition to a con-
stitution relation or equation of state. From these equations, the linear equation of the
perturbation method will be derived [Brekovskikh, 1973; Gossard and Hooke, 1975; Wape-
naar, 2014; Pierce, 2019]. Subdividing the linear perturbation method will lead to the
derivation of the linear wave equation, which is computationally efficient to resolve small
perturbations. Large perturbations, however, can not be solved by the linear perturbation
method. Within this appendix, the fundamental conservation laws and the perturbation
method are introduced and elementary derived. A thorough derivation can be found within
literature (e.g., Brekovskikh [1973]; Gossard and Hooke [1975]; Assink [2012]; Wapenaar
[2014]; Pierce [2019]).

A.1 Conservation of Mass
For the derivation of the conservation of mass, consider a fluid in motion with particles
moving in space (~r(x, y, z)) at a specific time (t) with a dependent velocity (~v(~r, t)). The
volume density of the mass is assumed to be depended on space and time (ρ(~r, t)). A fixed
volume (V ) inside the fluid is enclosed a surface (S) with an outward pointing normal
vector (~n) [Welty et al., 2020].

The law of conservation states that the time rate of change of mass in V is equal to
the incoming mass flux through S, increased with the time rate of mass injection:

∂

∂t

∫
V

ρ dV = −
∮
S

ρ~v · ~n dS + ∂

∂t

∫
V

im dV (A.1.1)

where im(~r, t) represents the volume density of mass injection. Applying the theorem of
Gauss to equation A.1.1 results in:∫

V

∂ρ

∂t
dV = −

∫
V

∇ · (ρ~v) dV +
∫
V

∂im
∂t

dV (A.1.2)
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Since this holds for any volume (V ), the non-linear equation of continuity can be
written:

∂ρ

∂t
+∇ · (ρ~v) = ∂im

∂t
(A.1.3)

A.2 Conservation of Momentum
When deriving the conservation of momentum, the same volume (V ) with an enclosed
surface (S) and field variables are considered. This law states that the rate of change
of momentum of the particles in V is equal to the incoming momentum flux through S,
increased with the resultant force acting on the particles in V (Newton’s second law):

∂

∂t

∫
V

ρ~v dV = −
∮
S

(ρ~v)~v · ~n dS + ~F (V ) (A.2.1)

where

F (V ) = −
∮
S

p~n dS +
∫
V

~f dV (A.2.2)

here p(~r, t) denotes pressure and ~f(~r, t) the volume density of the external forces.
Applying the theorem of Gauss to Eq. A.2.1 results in:

∫
V

∂(ρ~v)
∂t

dV = −
∫
V

[
~v∇ · (ρ~v) + (ρ~v · ∇)~v

]
dV −

∫
V

∇p dV +
∫
V

~f dV (A.2.3)

Again this holds for any given volumes, and thus Eq. A.2.3 can be re-written as the
non-linear equation of motion

∂(ρ~v)
∂t

+ ~v∇ · (ρ~v) + (ρ~v · ∇)~v = −∇p+ ~f (A.2.4)

A.3 Equation of State
In addition to the conservation of mass and momentum, an equation of state is needed
that relates the various physical quantities.

Consider the fluid volume as an ideal gas. The pressure p, volume density ρ, and
temperature T are mutually dependent. By combining the three fundamental gas laws
(Charles law, Boyle’s law, Gay-Lussac’s law), the air volume can be described by the ideal
gas law:

pV = MRT (A.3.1)
where M is the molar mass of a given gas, R = R∗/M represents the specific gas constant,
with R∗ = 8.314J kg−1mol−1 being the ideal gas constant.

Commonly the pressure and density of an atmospheric air volume is scaled to dry air
in the ideal gas law by a virtual temperature. The equation of state expresses that the
pressure, density, and temperature of a fluid are mutually dependent. The most general,
and non-linear, representation of the equation of state is:

X(p, ρ, T ) = 0 (A.3.2)
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Assuming that the compression and rarefaction (Figure 1.1-a) of a wave motion occurs
adiabatic, and thus heat exchanges are neglected, the adiabatic speed of sound cT at
constant entropy Es can be expressed by the equation of state as [Zemansky, 1968]:

c2T =
(
∂P

∂ρ

)
Es

(A.3.3)

Equation A.3.3 relates the propagation speed to the medium’s compressibility and
density, which can be related to the isentropic bulk modulus or stiffness coefficient K ≤ 0.
For an ideal gas the bulk modulus can be expressed as:

K = γP (A.3.4)

where γ = Cp/Cv represents the ratio of heat capacity at constant pressure to the heat
capacity at constant volume. Expressing equation A.3.3 in terms of the isentropic bulk
modulus, the equation of state becomes:

c2T = K

ρ
(A.3.5)

which is known as the Newton-Laplace equation. Substituting equation A.3.4 into
A.3.5 yields the adiabatic speed of sound for an ideal gas, as formulated in section 1.3.

A.4 Perturbation method
Applying the assumptions of the perturbation method (Chapter 1, equation 1.0.4) on the
basic conservation laws will result in the linear equations of state:

p
(

1 + p
′

p

)
ρ−γ
(

1 + ρ
′

ρ

)−γ
= pρ−γ (A.4.1)

In general the wave velocity ~v(~r, t) represents the actual traveling velocity superimposed
by the constant flow of the basic state. Within the linearisation of the basic consevration
laws, it is assumed that the only the particle velocity of the travelling waves are represented
by the velocity vector. Therefore the linear equation of the conservation of mas becomes:

1
p

∂p
′

∂t
+∇ · ~v = 1

p

∂im
∂t

(A.4.2)

Similarly, the linear equation of motion can be derived:

ρ
∂~v

∂t
+∇p

′
= ~f (A.4.3)

Combining the perturbation method and the linear equation of motion results in a
subdivision of various classes of wave motions [Gossard and Hooke, 1975]:

ρ

( (1)

∂~v
′

∂t
+

(2)

~v · ∇~v
′
)

+
(3)

∇p
′
−

(4)

ρ
′
g +

(5)

2ρΩ× ~v
′

= 0 (A.4.4)

This gives a convenient overview of the theoretical perturbation equation. Table A.1 list the
various atmospheric oscillations and the corresponding terms of importance corresponding
to equation A.4.4.
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1 2 3 4 5
x x x Sound waves

x x x x Lee waves
x x Rossby waves

Table A.1: Various atmospheric oscillations and the corresponding terms of importance
corresponding to equation A4.4.

A.5 Sound waves
Using the assumptions for acoustic waves (chapter 1), and keeping only first-order terms,
the equation of motion (equation A.4.4) can be expressed as:

d~v
′

dt
+
(
~v
′
· ∇
)
~v = −1

ρ
∇p
′

(A.5.1)

where d/dt(= ∂/∂t + ~v · ∇) is the material derivative, and (~v′ · ∇)~v(= v
′
zd~v/dx) is the

wind-shear term.
Since adiabatic processes and a lossless atmosphere is assumed, the entropy is stated to

be constant (equation A.3.3). An increment of the entropy can be expressed by following
Wilson [1957]:

dEs = Cp
dT

T
−Rdp

p
(A.5.2)

Integrating this expression with the combination of equations A.3.3 and A.3.5 results
in the equation of state for acoustic waves:( ∂

∂t
+ ~v · ∇

)
p = c2

( ∂
∂t

+ ~v · ∇
)
ρ = 0 (A.5.3)

Combining this equation of state (equation A.5.3) with the equation of motion (equa-
tion A.5.1) yields:

1
c2

( ∂
∂t

+ ~v · ∇
)
p+ ρ∇ · ~v = 0 (A.5.4)

By keeping the first order terms, and adapting that (v · ∇)p = 0, this becomes:

1
c2
dp
′

dt
+ ρ∇ · ~v

′
= 0 (A.5.5)

By assuming a layered medium with flow, and combining the divergence of equation
A.5.1, the material derivative of equation A.5.5, and subtracting these from eachother
result into:

d

dt

( 1
ρc2

dp
′

dt

)
+ d

dt
∇ · ~v

′
−∇ · d~v

′

dt
− dvz

dz
· ∇v

′
z −∇ ·

(1
ρ
∇p
′
)

= 0 (A.5.6)

It can be shown that:

d

dt
∇ · ~v

′
−∇ · d~v

′

dt
= −dvz

dz
· (A.5.7)

which results that equation A.5.6 can be re-written as:
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d

dt

( 1
ρc2

dp
′

dt

)
− 2dvz

dz
· ∇~v

′
−∇ ·

(1
ρ
∇p
′)

= 0 (A.5.8)

By taking the material derivative and express dv′z/dt using equation A.5.1. The acoustic
wave equation in a moving layered medium can be expressed as:

d

dt

[
d

dt

( 1
ρc2

dp
′

dt

)
−∇ ·

(1
ρ
∇p
′)]

+ 2
(dvz
dz
· ∇
)(1
ρ

∂p
′

∂z

)
= 0 (A.5.9)

where dvz/dz represents the effects of wind-shear on the propagation of acoustic waves.
However, for infrasonic frequencies the wind-shear is neglatible. Therefore the acoustic
wave equation for infrasonic waves in a moving layered medium becomes:

1
c2
d2p
′

dt2
− ρ∇ ·

(1
ρ
∇p
′)

= 0 (A.5.10)

This is a homogeneous derivation, followed from Brekhovskikh and Godin [1999]. It
has neglected the presence of acoustic sources, which are represented at the right side
of the equation. The acoustic wave equation in a moving layer (equation A.5.10) can
be simplified by assuming an effective sound speed [Assink, 2012], which simplifies the
following operator:

1
c

(
∂

∂t
+ ~vz · ∇

)2
(A.5.11)

By assuming harmonic time behavior an horizontal plane waves, this can be re-written
as:

1
c2

(
− iω + i~kz · ~vz

)2
(A.5.12)

For small angles and in-plane propagation, ~kz ≈ ω
c
k̂z. Applying this approximation,

equation A.5.12 becomes:

ω

c

[
1− ~vz · k̂z

c

]
≈ ω

c+ ~vz · k̂z
≡ ω

ceff
(A.5.13)

where ~vz · k̂z represents the wind in the direction of propagation, and ~vz
c

the Mach number.
By neglecting the Mach term, the Helmholtz equation for effective sound approximation
becomes: [

∇2
z + ρ

∂

∂z

1
ρ

∂

∂z
+ ω2

c2eff

]
p̂′(r, z) = 0 (A.5.14)

where p̂′ is related to p
′ through the Fourier transform. Within equation A.5.14, the

adiabatic speed of sound is assumes small propagation angles, in-plane propagation, low
Mach numbers, and accounts for refractive wind effects. Infrasound propagation does
not exceed 15 degrees propagation angles, the cross-wind effects are negligible, and the
infrasound Mach numbers are low. Therefore, the assumptions for equation A.5.14 hold
for infrasound.
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List of symbols and abbreviations

Symbols
The principal symbols used are alphabetically listed. Symbols formed by adding overbars,
primes or indices are not listed separately. An overhead arrow indicates vector quantities.

Symbol Description Units

A(x) Acoustic attenuation dB
ai Diameter m
~a Steering vector -
α Thermal diffusivity m2/s
c Speed of sound m/s
capp Apparent velocity m/s
ceff The effective sound speed m/s
ceff,ratio The effective sound speed ratio -
cT Adiabatic sound speed m/s
C Cross-spectral density matrix -
Cd Diaphragm sensitivity KNMI mini-MB m4s2kg−1

Cp Heat capacity at constant pressure J/K
Cv Heat capacity at constant volume J/K
Cj Corrected capacity KNMI mini-MB V/Pa
CΩj Thermistor constants Farad
δt Thermal penetration depth m
D Theoretical response Pa - degree
Dbath Ocean depth (Bathymetry) m
Dm Average diameter WNRS m
DMUSIC Number of sources -
E Statistical expectation -



176 List of symbols and abbreviations

Symbol Description Units

Es Entropy J/K
ε Array resolution vs error variance -
η Air viscosity µPa s
f Frequency Hz
~f Volume density of external forces Newton
f̄ Transition frequency gas constant Hz
f
′ Volume flux m3/s/m2

f0 Monochromatic wave frequency Hz
fa Acoustic cut-off frequency 3.3 mHz
fl Low-frequency cut-off Hz
fw Ocean wave frequency Hz
fWNRS First resonance peak WNRS Hz
~F External forces Newton
FFisher Fisher ratio -
Fw Distribution of wave variance Hz
Fw Integral of sea mean energy spectrum
g Gravitational force m/s2

G Fourier transformed recording Pa
Gp Propagation factor -
γiso Isothermal gas constant 1
γadi Adiabatic gas constant 1.4
γ̄ Transition value gas constant -
H Hasselmann integral -
im Volume density of mass injection ρ

I Electrical current Ampere
li Length m
~I Sound intensity W/m2

Jj jth order Bessel function -
k Wavenumber -
K Bulk modulus GPa
κc Thermal conductivity Wm[ − 3K−1

λ Wavelength m
λnc The non-centrality parameter SNR - F
λw Accoustic wavelength m
Λ Heat capacity correction factor -
M Molar mass -
~n Normal vector -
N Number of array elements -
ω Angular frequency Hz
Ω Coriolis force g
p Sound pressure Pa
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Symbol Description Units

p
′ Acoustic pressure difference Pa
~p Slowness vector s/m
Patm Atmospheric pressure Pa
P1 Evanescent acoustic power Pa
P2 Propagatting acoustic power Pa
Pav Average Acoustic power Pa
φ Fraction of removed power %
φt Inclination angle degree
φw Ocean wave direction degree
L Number of snapshots within one sample window -
Lj Length m
qm Rounding factor -
qN Optimum array element weight Neele and Snieder -
qv Volumetric airflow m3/s
r Position in space m
R Specific gas constant J kg−1 mol−1

R∗ Ideal gas constant 8.314J kg−1 mol−1

Rd Specific gas constant for dry air
Rj Electrical resistance KNMI mini-MB kgm−4s−1

RΩ Thermistor Resistance valeu Ohm
R Reflection coefficient -
ρ Density kgm[ − 3
S Surface of Volume V m
t Time sec
tm model time seconds
T Temperature ◦C

Ts Number of Sample points -
τj Time constants s
θ Back azimuth degree
U Electrical voltage Volt
v Particle speed m/s
V Volume m3

V (f) MUSIC noise subspace -
Vj Volume KNMI mini-MB m3

w Beamform weight factor -
wcross Cross wind m/s
wuv Wind speed in direction of propagation m/s
xi Sea state SWH - m
Z Number of adjacent frequencies –
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Abbreviations

2DFD Two-dimensional wave spectra
4D-Var Four-dimensional variational data assimilation
ADC Analog-Digital-Converter
Beidou Chinese navigational system
CAD Computer aided design
CTBT Comprehensive Nuclear-Test-Ban Treaty
CTBTO Comprehensive Nuclear-Test-Ban Treaty Organization
dB Decibel
DLVR Digital Low Voltage Range differential pressure sensor
ECMWF European Centre for Medium-Range Weather Forecasts
EDA Ten-member ensemble atmosphere model
ERA5 ECMWF reanalysis model
FIR Finite impulse response
Galileo European navigational system
GLONASS Russian navigational system
GMT Generic Mapping Tools
GPIO General-Purpose Input/Output
GPS Global Positioning System
GTS Global Telecommunication System
HRES High-resolution atmosphere model
HRES-WAM High-resolution ocean wave model
Hz Hertz
I2C Inter-Integrated Circuit
IMS International Monitoring System
IMU Inertial measurement unit
INFRA-EAR Infrasound and Environmental Atmospheric data Recorder
KNMI Royal Netherlands Meteorological Institute
MAE Mean absolute error
MB Mega bytes
MEMS Micro-electromechanical Systems
Mini-MB KNMI mini-microbarometer
Multi-EAR Multi Earth and Atmospheric data Recorder
NHNM New High Noise Model
PCB Printed Circuit Board
PE Parabolic Equation
PPSD Probabilistic Power Spectral Density
PSD Power Spectral Density
PSF Point spread function
R&D Research and development
RF Relative frequency
RPi Raspberry Pi
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RS Reassigned spectrogram
SFTF Short-time Fourier-transform
SLA Stereolithography 3D printing
SMA SubMiniature version A
SNR Signal to noise ratio
SPI Serial Peripheral Interface
SPL Sound pressure level
SWH Significant Wave Height
TRL Technology Readiness Level
UART Universal Asynchronous Receiver Transmitter
UTC Universal Time Coordinated
WNRS Wind Noise Reduction System response
WAN Wireless wide area network
WMO World Meteorological Organization
WOW Weather Observations Website
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