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Improving Temporal Interpolation of Head and Body Pose using
Gaussian Process Regression in a Matrix Completion Setting
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ABSTRACT
This paper presents a model for head and body pose estimation
(HBPE) when labelled samples are highly sparse. The current state-
of-the-art multimodal approach to HBPE utilizes the matrix com-
pletion method in a transductive setting to predict pose labels for
unobserved samples. Based on this approach, the proposed method
tackles HBPE when manually annotated ground truth labels are
temporally sparse. We posit that the current state of the art ap-
proach oversimplifies the temporal sparsity assumption by using
Laplacian smoothing. Our final solution uses : i) Gaussian process
regression in place of Laplacian smoothing, ii) head and body cou-
pling, and iii) nuclear norm minimization in the matrix completion
setting. The model is applied to the challenging SALSA dataset
for benchmark against the state-of-the-art method. Our presented
formulation outperforms the state-of-the-art significantly in this
particular setting, e.g. at 5% ground truth labels as training data,
head pose accuracy and body pose accuracy is approximately 62%
and 70%, respectively. As well as fitting a more flexible model to
missing labels in time, we posit that our approach also loosens
the head and body coupling constraint, allowing for a more ex-
pressive model of the head and body pose typically seen during
conversational interaction in groups. This provides a new baseline
to improve upon for future integration of multimodal sensor data
for the purpose of HBPE.

CCS CONCEPTS
• Computing methodologies → Scene understanding; • The-
ory of computation → Semi-supervised learning;
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(a) (b) (c) (d)

Figure 1: Examples of HBPE challenges from the SALSA
dataset [1]. (a) Low resolution (b) Low visibility (c) back-
ground clutter (d) occlusion

1 BACKGROUND
Pose estimation has been a popular subject of interest within the
computer vision community. While deep learning based state-of-
the-art pose estimation methods [17, 30, 31, 33] have achieved
remarkable results in articulated pose estimation (i.e. detection and
prediction of the location of body parts and joints), pose estima-
tion remains challenging particularly for crowded scenes in the
surveillance setting. Hence, it is limited to only head and body pose
estimation (HBPE). Despite the seeming simplification of the task,
challenges of HBPE in this particular setting [20] include but are
not limited to low resolution, low light visibility, background clutter
and occlusions (see Figure 1 for example).

HBPE is traditionally a vision-only task. But to tackle these
challenges, researchers can leverage on a multi-view camera and
multi-sensor scenario [1]. The multi-view camera setting provides
multiple perspectives of people in the scene to acquire better HBPE.
More interestingly, wearable sensors such as microphones, infrared
or bluetooth proximity sensors, etc. have shown an ability to re-
cover HBPE independent from the videomodality [22]. Additionally,
they can provide more fine-grained information of the human sub-
jects that would not otherwise be available from video only. More
specifically, studying small group interactions in crowded space
can benefit from data of multiple modalities [15]. In combination
with video, these wearable sensors provide a multimodal platform
to study detailed and rich information about the human subjects by
complementing and enhancing HBPE, which is particularly crucial
to the analysis of group and crowd behavior.

Even though it would be ideal to combine multiple modalities,
wearable sensors such as microphones and infrared proximity sen-
sors which have previously been used in form of sociometers, are
less reliable and noisier compared to surveillance video footage
for the purpose of HBPE. Another problem is that malfunctions of
wearable sensors are more difficult to notice compared to those of
video cameras, especially during real-time data collection where
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camera functionality can be more easily confirmed visually. Due to
the difficulties of working with wearable sensors, the resulting data
can be either partial or entirely missing [19]. Given that working
with a patchwork of multimodal data can be hard, in this paper,
we exploit them as part of an initialization step and focus on the
problem of interpolating between sparse labels.

The setting of this study is that: i) there is a relatively small
number of head and body pose samples (∼ 102−103) for each subject,
ii) we want to predict pose labels for unobserved samples only
using a very small number (∼ 5%) of sparsely distributed ground
truth labels, and iii) we want to take advantage of the temporal
structure within the pose label data. A deep learning based method
that takes into account this setting will perform sub-optimally due
to small number of training samples, and also require extensive
computational power and hyperparameter tuning. On the other
hand, a matrix completion based transductive learning method
which is more explainable and less computationally expensive,
addresses the problem setting adequately. Inspired and building
upon previous work by Alameda-Pineda et al. [2], the contributions
of this study are: i) an enhanced temporal smoothing scheme based
on Gaussian process regression for label propagation, and ii) a more
interpretable person-wise pose label prediction implementation in
the transductive setting using matrix completion.

2 RELATEDWORK
Head pose estimation (HPE) and body pose estimation (BPE) have
primarily been studied by the computer vision community [27].
While impressive results can be achieved using end-to-end deep
learning architectures when using datasets capturing frontal face
[25] or the full body [11], HPE and BPE remain to be challenging
when dealing with wide angle surveillance, with low resolution,
heavy occlusions of targets, and cluttered backgrounds. The prob-
lem is often reduced to an 8-class classification problem (dividing
360◦ into eight sectors), though formulating HBPE as a regression
problem [32] or being able to reduce coarseness in estimations can
provide more meaningful information for higher level social tasks,
such as predicting direction of social attention [24] and person-
ality traits [29]. Pioneering work [3, 12, 28] in HPE and BPE saw
first successes of these tasks using methods based on probabilistic
frameworks (e.g. dynamic Bayesian networks, hidden Markov mod-
els, etc.). Taking advantage of the physical constraint of relative
head and body pose and a person’s direction of movement, one
line of work focuses on the joint estimation of head and body pose
to achieve improved results [12]. Overall, there is more previous
work on HPE compared to BPE in the surveillance and crowded
setting. In this particular setting, human heads can be more eas-
ily seen and therefore head poses are easier to predict. Typically,
HPE under this setting already provides rich enough information
for high level tasks [3]. On the other hand, human bodies can be
occluded when the camera view is from an elevated angle, which
makes body orientations more difficult to predict without side infor-
mation. In contrast, HBPE in other contexts such as AR/VR video
gaming, sports, etc. where full frontal body poses are available, is
much more well-studied and can be represented by a considerable
number of work (e.g. [11], [21]). Hasan et al. [18] have recently
proposed a noteworthy deep learning method based on Long Short

Figure 2: Overall work flow of this study. The focus of this
study is highlighted in yellow

Term Memory (LSTM) neural networks to jointly forecast trajecto-
ries and head poses. This work points to the possibility of utilizing
LSTM models to predict head and body pose sequences, which is
a more challenging but also more descriptive task, compared to
solving HPE and BPE in a classification setting using Convolutional
Neural Networks (CNN) [23]. For the specific setting of this paper
where annotations are sparsely available, the choice of using deep
learning models may not be suitable.

In this paper, we propose to use matrix completion for HBPE,
which was first proposed by Alameda-Pineda et al. [2]. This ap-
proach combines head and body visual features, inferred head ori-
entation labels from audio recordings, body orientation labels from
infrared proximity sensors, and manually annotated labels of some
but not all frames. To reduce the manual effort of annotating the
head and body poses, labels were only created every 3 seconds.
Alameda-Pineda et al. poses the estimation of head and body orien-
tations as a matrix completion problem where the visual features
and labels from either wearable sensors or manual annotations
are concatenated into a heterogeneous matrix, for head and body
respectively. Due to sparsity and noise in the data extracted from
the wearable sensors, the underlying challenge is to construct a
matrix that is temporally smooth; and that is consistent with the
manual annotations, the observed wearable sensor readings, and
the physical constraints that tend to couple the head and body
behaviour together.

3 OUR APPROACH
The scope of the study is to jointly predict head and body pose
labels as an 8-class classification problem (dividing 360◦ into eight
sectors) in a matrix completion transductive learning setting. Be-
fore performing HBPE, upstream processes such as multi-person
detection and tracking in videos, head and body localization, and
appearance-based visual feature extraction are carried out as out-
lined in Figure 2 [2, 12]. The construction of a matrix consisting
of visual features and manually annotated labels is illustrated in
Figure 3. Head pose features and labels are arranged into one such
matrix, and similarly for body pose features and labels. Head and
pose labels of each participant (independent of other participants)
are estimated by completing their head and body matrices jointly.
The technical core of constructing such matrices for HBPE and
jointly completing the head and body matrices using our formula-
tion is discussed in Section 4, followed by details on experimental
conditions pertaining to the upstream processes (see blue modules
in Figure 2) in Section 5.

4 METHODOLOGY
In the supervised learning setting for a linear classifier, the objective
is to learn the weight matrixW ∈ Rc×(d+1), which maps the d-
dimensional features spaceX ∈ Rd×T to the c-dimensional (number
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Figure 3: Graphical representation of the feature-label ma-
trix

of classes) output space Y ∈ Rc×T where T denotes the number of
samples in time, by minimizing the loss on a training set Ntrain as

argmin
W

∑
i ∈Ntrain

Loss
(
Yi ,W

[
Xi
1

] )
. (1)

When dealing with noisy features and fuzzy labels, previous re-
search by Bomma and Robertson [5], Cabral et al. [7] and Goldberg
et al. [16] have empirically shown the practicality of casting a classi-
fication problem into a transductive learning setting such as matrix
completion. To that purpose, borrowing from the linear classifier
setting, a heterogeneous matrix can be built by concatenating the
pose labels Y ∈ Rc×T , visual features X ∈ Rd×T , and a row of 1’s
(to model for bias) as

J =


Y
X
1

 , (2)

where J ∈ R(c+d+1)×T .
In theHBPE setting, the duration that we are interested in predict-

ing the pose estimations for is indicated byT and this is represented
by arranging samples column-wise for temporal consistency. Note
that in (2), Y is a vectorized one hot representation of pose labels.
Dividing 360◦ into eight sectors means that there are eight possible
classes and each pose belongs to one of the eight classes. For exam-
ple, a pose angle between 45◦ and 90◦ would be indicated by the
vector [0, 1, 0, 0, 0, 0, 0, 0]⊤ ∈ Rc×1. The head and body label matri-
ces are denoted by Yh ∈ Rc×T and Yb ∈ Rc×T respectively. The
feature matrices Xh ∈ Rdh×T and Xb ∈ Rdb×T contain the visual
features from head and body crops of each person, where dh and
db denote the respective feature dimensionality. Following the defi-
nition in (2), the heterogeneous matrices are Jh =

[
Y⊤
h ,X

⊤
h , 1

⊤
]⊤

and Jb =
[
Y⊤
b ,X

⊤
b , 1

⊤
]⊤ for head pose and body pose estimation

respectively. In addition, a projection matrix Ph = [Ic×c , 0c×(dh+1)]
is introduced to extract only the head pose labels from the het-
erogeneous matrix Jh . In a similar manner, a projection matrix
Pb = [Ic×c , 0c×(db+1)] is defined to extract body pose labels.

Matrix completion is a formulation that attempts to fill in missing
entries in a matrix, which in our context correspond to unobserved
pose labels. Matrix completion is often solved by iterative opti-
mization. For the purpose of the iterative scheme, the unobserved

pose labels can either be initialized by side information provided
by external sources, or simply set to zeros. In this study, we take
the first option by initializing the unobserved samples by sensor
data. The initial matrices for head and body poses are denoted by
J0,h and J0,b respectively. The label matrix in J0,h , denoted by Yh ,
is further divided into a training set Ytrain,h and a test set Ytest,h .
Similarly, the label matrix in J0,b , denoted by Yb , is divided into
Ytrain,b and Ytest,b . Each training set consists of observed labels,
while the test set consists of unobserved labels. The training set and
test set samples are interleaved, as shown in Figure 3. In this study,
training set labels are sampled frommanual annotations and test set
labels are initialized by sensor data, in the hope of achieving faster
convergence. For the sake of brevity, the subsequent discussion will
be explained for the head pose matrix. The body pose matrix and
its corresponding optimization formulation are analogous to those
of the head pose matrix.

The following discussion outlines the proposed matrix comple-
tion method based on the aforementioned setting. The proposed
method consists of three components: i) nuclear normminimization,
ii) temporal smoothing, and iii) head-body coupling.

4.1 Nuclear norm minimization
Following the linear classifier assumption from (2), Goldberg et al.
[16] have shown that the matrix J should be low rank. More con-
cretely, the objective is to recover the missing pose labels such
that the rank of the heterogeneous matrix J is minimized. Rank
minimization is a non-convex problem [16]. However, Candes and
Tao [10] showed that rank(J ) can be relaxed to its tightest convex
envelope which is the nuclear norm, ∥J ∥∗, i.e.

rank(J ) ≈ ∥J ∥∗. (3)

The optimization problem then becomes a minimization of the
nuclear norm of J .

4.2 Temporal smoothing
If samples in the heterogeneous matrix are temporally sorted, one
can take advantage of the temporal structure between the columns.
Pose labels are to a certain extent, temporally smooth, as poses
are not expected to change drastically within a short time period.
This can be seen as a column-wise regularization. Using the train-
ing set Ytrain, an interpolated time series of pose labels Ỹ can be
generated using an appropriate interpolation scheme to estimate
the unobserved pose labels entirely based on temporal considera-
tion. In the proposed method, Gaussian process regression (GPR) is
chosen as the interpolation scheme. Also known as Kriging, GPR
has the same objective as other regression methods, which is to
predict a value of a function at some point using a combination
of observed values at other points. Rather than curve fitting using
a polynomial function for instance, GPR assumes an underlying
random process, more specifically a Gaussian process distribution
[4], from which the observed values are sampled. A new posterior
distribution is computed based on the assumed (Gaussian process)
prior and Gaussian likelihood functions [34]. The Gaussian process
prior is characterized by a covariance function which measures
the similarity between data points; and thus the choice of a suit-
able covariance function is an essential component in GPR. For
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the purpose of this study, the covariance function is chosen to be
the popular Radial-Basis Function (RBF) kernel. More details of
Gaussian processes and Kriging can be found in [26].

Following this procedure, we denote YGP ∈ Rc×T as the label
matrix where the missing values are imputed by the prediction of
GPR. After acquiring the interpolated labels, a new matrix JGP is
defined as

JGP =


YGP
X
1

 . (4)

A squared loss term ∥P(J − JGP)∥
2
F is introduced into the nuclear

norm minimization problem for regularization to ensure that the
predicted labels do not deviate drastically from the labels obtained
as a result of temporal interpolation. The projection matrix P en-
sures that the loss is only considered over the pose labels.

Note that GPR is an example of a regression method that works
well in this setting. Alternative regression methods such Laplacian
smoothing [2], piece-wise linear interpolation and polynomial re-
gression can also be applied. Our justification of this choice follows
in the discussion section in Section 7.

4.3 Head and body coupling
So far the formulation details the manipulation of HPE and BPE
matrices separately. In this section we jointly consider the two
matrices as they are related. Previous research by Alameda-Pineda
et al. [2], Chen et al. [13] and Varadarajan et al. [32] has shown that
coupling HPE and BPE is advantageous for improving accuracy.
The proposed formulation also captures the physical constraints
between head and body poses. Since head and body pose are jointly
estimated, this relation fits in nicely as an additional regularization
to the optimization problem. It is reasonable to model that head and
body poses cannot be too different at any given time step. Though
hinge loss would probably be more appropriate, the relation can
also be captured by squared loss, for the ease of analytical derivation
and numerical optimization. The regularization term can therefore
be written as ∥Ph Jh − Pb Jb ∥

2
F .

4.4 Optimization problem
To summarize, the entire optimization problem, considering all the
regularizations and indicating terms associated with both head and
body (described in Section 4.1-4.3) is given by

Jh∗, Jb∗ = arg min
Jh, Jb

νh ∥Jh ∥∗ + νb ∥Jb ∥∗

+
λh
2
∥Ph (Jh − JGP,h )∥

2
F +

λb
2
∥Pb (Jb − JGP,b )∥

2
F

+
µ

2
∥Ph Jh − Pb Jb ∥

2
F ,

(5)

where νh , νb , λh , λb , and µ are weights that control the trade-off
between the different terms. The equation in (5) can be solved iter-
atively by an adapted Alternating Direction Method of Multipliers
(ADMM) proposed by Boyd et al. [6] and Alameda-Pineda et al.
[2] to jointly solve the minimization problem for the head and
body pose matrices. We adopt the aforementioned algorithm that
starts with the construction of the augmented Lagrangian, similar
to the classical ADMM [14]. The augmented Lagrangian of the

optimization problem in (5) is given by
L = νh ∥Jh ∥∗ + νb ∥Jb ∥∗

+
λh
2
∥Ph (Kh − JGP,h )∥

2
F +

λb
2
∥Pb (Kb − JGP,b )∥

2
F

+
µ

2
∥PhKh − PbKb ∥

2
F

+
ϕh
2
∥Kh − Jh ∥

2
F +

ϕb
2
∥Kb − Jb ∥

2
F

+ ⟨Mh , Jh −Kh⟩ + ⟨Mb , Jb −Kb ⟩,

(6)

where Kh and Kb are auxiliary variables that allow the decoupling
of the optimization of Jh and Jb ; and Mh and Mb are Lagrange
Multiplier matrices. The inner product of the two terms is denoted
by ⟨ · , · ⟩ . The update rules are similar to those of the ADMM with
scaled dual variables [6]. In this context, the update rules at the
k-th iteration are given by

(Jk+1h , Jk+1b ) = arg min
J kh , J

k
b

νh ∥J
k
h ∥∗ + νb ∥J

k
b ∥∗

+
ϕh
2
∥Kk

h − Jkh ∥
2
F +

ϕb
2
∥Kk

b − Jkb ∥
2
F

+ ⟨Mk
h , J

k
h −Kk

h ⟩ + ⟨Mk
b , J

k
b −Kk

b ⟩

(7)

(Kk+1
h ,Kk+1

b ) = arg min
K k
h ,K

k
b

λh
2
∥Ph (K

k
h − JGP,h )∥

2
F

+
λb
2
∥Pb (K

k
b − JGP,b )∥

2
F

+
µ

2
∥PhK

k
h − PbK

k
b ∥

2
F

+
ϕh
2
∥Kk

h − Jk+1h ∥2F

+
ϕb
2
∥Kk

b − Jk+1b ∥2F

+ ⟨Mk
h , J

k+1
h −Kk

h ⟩ + ⟨Mk
b , J

k+1
b −Kk

b ⟩

(8)

Mk+1
h = Mk

h + ϕh (J
k+1
h −Kk+1

h ) (9)

Mk+1
b = Mk

b + ϕb (J
k+1
b −Kk+1

b ) (10)
More derivation and implementation details can be found in Ap-
pendix A.

5 EXPERIMENTAL SETUP
This section provides a brief introduction of the SALSA dataset that
was used to obtain the experimental results, and an overview of
the experimental conditions.

5.1 SALSA Dataset
The SALSA dataset is captured at a social event that consists of
a poster presentation session and a mingling event afterwards,
involving 18 participants. It is a multimodal dataset that includes
video recordings from a multi-view surveillance camera (4 cameras)
network, binary proximity sensor data acquired from sociometric
badges worn by the participants, and audio recordings of each
participant acquired by a microphone embedded in the sociometric
badges. For this study, we only focus on the video recordings of the
poster presentation session. Ground truth labels of head and body
pose of each participant were manually annotated every 3 seconds.
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There are in total 645 ground truth annotations for each head and
body pose of each participant. The authors of [2] also inferred
head pose from microphone data and body pose from infrared
proximity sensor data, independent from the video modality. These
are considered as "soft" labels and further details of their extraction
can be found in [2] and are provided as part of the dataset.

5.2 Experimental Conditions
We used the provided Histogram of Gradients (HOG) visual fea-
tures for head and body crops of each participant from the SALSA
dataset poster session [2]. Similar to Alameda-Pineda et al. [2]’s
approach, visual features from the four cameras are concatenated
and PCA was performed to keep 90% of the variance. This results
in a 100 dimensional feature vector. Training data are the observed
labels and test data are the unobserved labels to be predicted. In a
transductive learning setting, it is conventional to have both the
training data and test data available during training. Because the
objective is to predict labels for the unobserved entries only and not
generalize to further unseen data, weights are not explicitly learned.
Training data and test data partitions are defined by a random pro-
jection mask to simulate random sampling over labels. Because of
this randomness, training and test data are interleaved and we take
advantage of this inherent structure in our formulation. Note that
because of the same reason, all our experiments are conducted 20
times and results are averaged to mediate the random projection
masks causing overestimation or underestimation of prediction
accuracies. Additionally, the sample diversity (i.e. class distribu-
tion) is different among participants. Hence, a randomly created
projection mask is rejected if it results in low sample diversity in
the training set. The hyper-parameters in (6) are optimized using
Bayesian optimization with 5-fold cross validation.

5.3 Implementation Details
Similar to the authors of [2], we assume visual features from each
participant are available at any given time step. Unlike in previ-
ous approach [2] where the inferred "soft" labels are used as part
of the training set, our experiments only use samples that were
manually annotated to construct the training set. It is unclear if the
experiments reported by Alameda-Pineda et al. [2] used additional
unlabeled samples along with the manual annotations and "soft"
labels in their model during training.

Since we were not able to clarify ambiguities in the description
of the experimental setup in the former formulation [2], we made
the following decisions regarding the experimental setting. In this
study, we construct the training and test sets from only samples
that are manually annotated in the SALSA dataset. Since the quality
of the "soft" labels was not quantitatively assessed by Alameda-
Pineda et al. [2], in our case, it also makes sense for us to avoid
training using "soft” labels so we can more clearly see the effect of
our proposed approach independently of the influence of training
with weak labels. In our experiments, although "soft" labels are
not considered as part of the observed samples, they are only used
as initializations of unobserved samples in order to reach faster
convergence. Note that columns of the matrix which are initially
populated with soft labels are subject to immediate changes after
being fed as inputs to the optimization problem.
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Figure 4: Test accuracy of HPE and BPE using MC-HBPE [2]
and the proposed method. Error bars indicate the standard
deviations of results for each fraction ofmanual annotation.

6 RESULTS
The heterogeneous matrix for head and body are initialized with the
same fraction of ground truth labels as training data, though their
respective random projection masks are different. Figure 4 shows
the test accuracy, which is the prediction accuracy over unobserved
labels, against different fractions of manual annotation used for
training. The proposed method is compared against the state-of-
the-art matrix completion based HBPE method by Alameda-Pineda
et al. [2]. As shown in Figure 4, the proposed method is drastically
superior compared to the state-of-the-art matrix completion by
Alameda-Pineda et al. [2], especially at very low fraction of manual
annotations.

The difference in performance of both methods is accredited
to a simple numerical phenomenon. One of the major differences
between the proposed method and the method by Alameda-Pineda
et al. [2] is the temporal smoothing scheme. In the latter, the authors
employed Laplacian smoothing to ensure temporal consistency over
the pose estimates. While it is a reasonable choice for smoothing
based on local information, GPR in contrast provides smoothing by
exploiting a more global context based on only a few data points.
By fitting sparse data points in the functional space, GPR is known
to better recover nonlinear patterns and longer timescale trends
compared to polynomial interpolation, and especially Laplacian
smoothing. As a result, it provides a good accuracy even when only
5% of the manual labels are available as training data. Additionally,
person-wise HBPE results for all 18 participants at 5% manual
annotation using the two methods is reported in Table 1.

During social events and in free-standing conversation groups,
we expect head pose to change more than body poses. Hence, it
is reasonable to conclude that head poses are harder to predict
compared to body poses; and it is reflected in the observation that
test accuracies for head pose estimates are lower than test accuracies
for body pose estimates from both the methods. This can be further
analyzed by computing the entropy to illustrate the distribution
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Manual
Annotation: 5% MC-HBPE[2] Proposed Labels diversity

(Entropy)

HPE mean (std) BPE mean (std) HPE mean (std) BPE mean (std) Head Body
Person 1 [119] 0 (0) 0 (0) 0.49 (3.2e-2) 0.56 (4.4e-2) 1.18 1.13
Person 2 [132] 0.06 (1.9e-3) 0 (0) 0.39 (1.0e-2) 0.84 (1.3e-2) 1.30 0.51
Person 3 [140] 0.63 (3.1e-2) 0.68 (3.3e-2) 0.77 (2.0e-2) 0.82 (2.7e-2) 1.48 1.28
Person 4 [169] 0.02 (1.7e-3) 0.01 (1.2e-3) 0.86 (2.7e-2) 0.87 (2.2e-2) 1.19 1.10
Person 5 [177] 0.13 (2.3e-3) 0.25 (2.4e-2) 0.57 (5.3e-2) 0.58 (6.4e-2) 1.78 1.74
Person 6 [180] 0.44 (2.1e-2) 0.39 (1.7e-2) 0.65 (3.5e-2) 0.75 (4.6e-2) 1.67 1.53
Person 7 [216] 0.17 (6.5e-2) 0.19 (2.7e-2) 0.57 (5.4e-2) 0.48 (7.2e-2) 1.72 1.84
Person 8 [238] 0.01 (9.1e-4) 2.5e-4 (5.9e-4) 0.82 (1.1e-2) 0.89 (1.9e-2) 0.63 0.41
Person 9 [241] 0.43 (4.1e-3) 0.57 (3.7e-3) 0.64 (6.4e-2) 0.70 (6.9e-2) 1.53 1.55
Person 10 [261] 0.09 (2.7e-3) 0.23 (2.5e-3) 0.69 (2.9e-2) 0.85 (3.5e-2) 1.37 1.20
Person 11 [262] 0.13 (2.0e-3) 0.01 (2.2e-3) 0.61 (3.5e-2) 0.70 (4.5e-2) 1.52 1.47
Person 12 [267] 0.13 (1.1e-3) 0.03 (1.1e-3) 0.82 (2.2e-2) 0.83 (2.0e-2) 1.01 0.96
Person 13 [286] 0 (0) 0 (0) 0.68 (2.9e-2) 0.76 (3.0e-2) 1.61 1.56
Person 14 [307] 0.09 (1.7e-2) 0.12 (3.7e-2) 0.39 (4.2e-2) 0.46 (6.8e-2) 1.82 1.74
Person 15 [313] 0 (0) 0 (0) 0.57 (7.0e-2) 0.65 (6.8e-2) 1.16 1.06
Person 16 [350] 0.03 (1.9e-3) 0.03 (2.9e-2) 0.69 (6.3e-2) 0.69 (6.1e-2) 1.22 1.22
Person 17 [351] 0.26 (4.1e-2) 0.29 (3.3e-2) 0.53 (3.5e-2) 0.52 (3.9e-2) 1.69 1.69
Person 18 [353] 0.13 (2.2e-2) 0.20 (1.1e-3) 0.56 (5.5e-2) 0.73 (6.0e-2) 1.39 1.11

∗ [·] indicates the person ID encoding provided in the SALSA dataset.
Table 1: Person-Wise HBPE results using MC-HBPE [2] and the proposed method. Difficulty of HBPE for each person is cap-
tured quantitatively in labels diversity measured by labels entropy.

of the ground truth labels used in this study. The equation for
calculating entropy is given by

H = −

c∑
i=1

Pi logPi , (11)

where H is the information entropy measure of a set of samples
and Pi is the proportion of ground truth labels in the ith class. For
an unbiased 8 class label distribution (i.e. uniform distribution),
the maximum entropy value is approximately 2.08. The entropy of
head pose labels averaged over all participants is 1.4. The entropy
of body pose labels averaged over all participants is 1.28. Therefore,
head pose diversity is slightly higher than that of the body pose
for 16/18 subjects in this dataset, which partially justifies the rea-
soning that head pose labels are more difficult to accurately predict
than body pose labels within this dataset. However, the GPR-based
proposed method still manages to achieve significantly higher test
accuracies for head pose estimates compared to the method by
Alameda-Pineda et al. [2].

It is worth noting that in this study, we sample training data
from manual labels, whereas in the experimental setup by Alameda-
Pineda et al. [2], "soft" labels acquired from wearable devices are
also used as part of training data. Experiments were also conducted
where the "soft" labels provided in the dataset are included as part of
the training data. However, no desirable results can be obtained. As
a reference, using the same approach as that of [2] at 50% training
data partition with 5% manual annotations and 95% "soft" labels,
we obtained 14% and 16% for HPE and BPE respectively, compared
to the reported 57% and 60% [2].

7 DISCUSSION
In our proposed method, GPR performs fitting over the head and
body pose estimates separately, which loosens the head and body
coupling constraint to a certain extent. Though there is still point
to point coupling between head pose and body pose at each time
step, the head poses and body poses are each separately governed
by their own trend which should be less sensitive to noise from
the other. Coupling that is too tight may artificially enforce head
and body pose to be the same which may not reflect the reality
when it comes to small group interactions. This implicit benefit
from recovering nonlinearities independently should provide rich
information to study human behavior in groups.

Since wearable sensors are known to provide noisy information,
not all "soft" labels can be seen to have the same quality as ground
truth labels. It would be ideal to add high quality "soft" labels to
training data and if they are as high quality as manual labels, they
can further benefit and improve HBPE in a multimodal setting, as
opposed to a single video modality. However, this prior knowledge
would need to be obtained beforehand. Because the proposed for-
mulation gives robust performance with small number of manual
annotations without the use of any "soft" labels, it provides a good
baseline and ground for comparison for further investigation of the
quality of labels derived from wearable sensors.

While the highlight of this formulation is to predict the clas-
sification of unobserved labels based on a very small number of
observed labels, the model does not extend to predicting further
unseen data since the weights are not explicitly recovered. When
an observed label becomes available to be included, the full model
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needs to be run again. One of the computational bottlenecks is
Gaussian process regression, which hasO(n3) time complexity that
makes it infeasible to scale up for large quantities of data. Another
computational bottleneck is the singular value decomposition (SVD)
in solving the optimization problem using ADMM (see Appendix
A).

8 CONCLUSION
This work focuses on estimating head and body poses in crowded
social scene scenario using Gaussian process regression and head
and body coupling as a regularization term in a matrix completion
setting. The model’s premise is to predict head and body pose
labels as an 8-class classification problem in a transductive learning
setting. The model is able to predict a relatively large percentage of
pose labels in large continuous time segment (average 20 samples
gap length, approximately 1 minute in real time) and implicitly
recover the nonlinearity within the data using only a small fraction
of samples as training data. The proposed model has shown to be
effective on the challenging SALSA dataset and achieved desirable
results of 62% accuracy on head pose estimation and 70% accuracy
on body pose estimation using only 5% of the samples as training
data, showing superior performance over the state-of-the-art.

Future work on improving HBPE includes integrating wearable
sensor data as regularization terms towards a truly multimodal
approach. Rather than using appearance based HOG features, visual
features could also be extracted using a CNN pre-trained on large
image databases and fine-tuned on the SALSA dataset. Additionally,
it would be interesting to assess the performance of the proposed
method on different, but equally challenging datasets, such as the
MatchNMingle dataset [8]. Further analysis of HBPE performance
with respect to participants’ role in the social scenarios in question
and their pose diversity may lend deeper insights to fine-grained
head and body movements in group interactions.
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A DERIVATIONS OF ADMM
To separate head and body expressions, at kth iteration, the opti-
mization problem (7) can be split into

Jk+1h = argmin
J kh

νh ∥J
k
h ∥∗ +

ϕh
2
∥Kk

h − Jkh ∥
2
F + ⟨Mk

h , J
k
h −Kk

h ⟩

(12)
and

Jk+1b = argmin
J kb

νb ∥J
k
b ∥∗ +

ϕb
2
∥Kk

b − Jkb ∥
2
F + ⟨Mk

b , J
k
b −Kk

b ⟩.

(13)
Simplifying and manipulating (12), we obtain

Jk+1h = argmin
J kh

νh ∥J
k
h ∥∗

+
ϕh
2
[⟨Kk
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+
1
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2ϕh

⟨Mk
h ,M
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h ⟩.

(14)

Equation (14) can be arranged as

Jk+1h = argmin
Jh

νh
ϕh

∥Jh ∥∗ +
1
2

 1
ϕh

Mk
h + Jh −Kk

h

2
F
−

1
2ϕh

⟨Mk
h ,M

k
h ⟩.

(15)
The last term in Equation (15) results in a scalar constant and does
not affect the nature of optimization. The solution to minimization
problem (15) was derived by Cai et al. [9] and Alameda-Pineda et al.
[2], and is given by

Jk+1h = UhS νh
ϕh

(Dh )V
⊤
h , (16)

where theUh , Dh , and Vh are obtained from singular value decom-
position (SVD) of matrix Kk

h − 1
ϕh

Mk
h

[Uh ,Dh ,Vh ] = SVD
(
Kk
h −

1
ϕh

Mk
h

)
(17)

and where the shrinkage operator is given by

Sλ(x) = max (x − λ, 0) (18)

and is applied element-wise to the diagonal matrix of singular
values Dh . The derivations can be similarly extended for body pose

estimation matrix and the solution is given by

Jk+1b = UbS νb
ϕb

(Db )V
⊤
b . (19)

For the second step in the optimization problem (8), we define
the row-vectorization form of the matrices Kh and Kb as kh =
vec(Kh ) and kb = vec(Kb ) respectively. The row vectorization
notation extends to other matrices in (8) similarly. Derivatives of
the objective function in (8) with respect to kh and kb are given by
∂L

∂kh
= λhPh (kh−jGP,h )+µP

⊤
h (Phkh−Pbkb )+ϕh (kh−j

k+1
h )−mk

h ,

(20)
and
∂L

∂kb
= λbPb (kb−jGP,b )+µP

⊤
b (Pbkb−Phkh )+ϕb (kb−j

k+1
b )−mk

b .

(21)
Equating this derivative to 0 results in a system of linear equations
for kk+1h and kk+1b given by

(λhPh +µP
⊤
h Ph +ϕh )k

k+1
h = λhPh jGP,h +µP

⊤
h Pbkb +ϕh j

k+1
h +mk

h
(22)

and

(λbPb +µP
⊤
b Pb +ϕb )k

k+1
b = λbPb jGP,b +µP

⊤
b Phkh+ϕb j

k+1
b +mk

b .

(23)
Hence, these two equations can be easily solved using standard
solvers based on LU decomposition or iterative solvers such as
conjugate gradient method to yield the minimizers kk+1h and kk+1b .
We can reshape the solved row vectors kk+1h and kk+1b back to
matrix forms denoted by Kk+1

h and Kk+1
b . Additionally, the system

of linear equations (22) and (23) can be further simplified to give
analytical solutions. For the sake of brevity, the reader is referred to
the derivation by Alameda-Pineda et al. [2] in their supplementary
material.
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