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A Hierarchical Approach for Associating Body-Worn
Sensors to Video Regions in Crowded

Mingling Scenarios
Laura Cabrera-Quiros and Hayley Hung, Member, IEEE

Abstract—We address the complex problem of associating
several wearable devices with the spatio-temporal region of their
wearers in video during crowded mingling events using only
acceleration and proximity. This is a particularly important first
step for multisensor behavior analysis using video and wearable
technologies, where the privacy of the participants must be
maintained. Most state-of-the-art works using these two modalities
perform their association manually, which becomes practically
unfeasible as the number of people in the scene increases. We
proposed an automatic association method based on a hierarchical
linear assignment optimization, which exploits the spatial context
of the scene. Moreover, we present extensive experiments on
matching from 2 to more than 69 acceleration and video streams,
showing significant improvements over a random baseline in a real-
world crowded mingling scenario. We also show the effectiveness of
our method for incomplete or missing streams (up to a certain limit)
and analyze the tradeoff between length of the streams and number
of participants. Finally, we provide an analysis of failure cases,
showing that deep understanding of the social actions within the
context of the event is necessary to further improve performance
on this intriguing task.

Index Terms—Mingling, wearable sensor, acceleration,
computer vision, association.

I. INTRODUCTION

SOCIAL gatherings such as parties, drinks receptions or net-
working events, provide an interesting study case to analyze

group dynamics. Due to their ecological validity and social con-
text these scenarios, which are commonly referred to as min-
gling events, have received increasing interest in recent years
from the multimedia, computer vision, and ubiquitous comput-
ing communities [1]–[5], as example cases for automated human
behavior analysis.
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Previous works in human behavior analysis have focused on
smaller gatherings of people, such as meetings [6]–[10]. But
unlike small group meetings, mingle scenarios have a higher
number of people involved and a high number of social inter-
actions dynamically occurring at the same time, which makes
them more challenging for fined-grained group behavior analy-
sis. In addition, people are not restricted to a predefined position
or to follow a task or script, but rather can move and change
conversational groups following their own affects.

Past efforts in human behavior analysis have proved that fus-
ing modalities (e.g. video and audio or video and wearable sen-
sors) increases the performance of recognition and classification
of a wide variety of tasks, such as dominance [8], leadership [7]
or cohesion [10]. Thus, each modality contributes to a different
element of the event and acts as a complementary source of in-
formation. In addition, the use of multiple modalities had shown
to be a suitable alternative to deal with challenging scenarios,
including group gatherings [11], [12]. For instance, Alameda-
Pineda et al. [5] showed improvements in the detection of head
and body orientation and, consequently, in the analysis of free-
standing conversational groups by leveraging the use of video,
audio and wearable IR (Infra-Red).

Wearable devices are a modality that has been used consider-
ably in mingle scenarios, due to its versatility. Works using this
modality have presented encouraging results in human behavior
understanding by analyzing people’s movement as they interact
[4], [13]. Thus, by leveraging video and wearable sensors one
could analyze human behavior within these environments with-
out interfering with the natural behavior of the people involved.

Nonetheless, although the use of wearable sensors as a com-
plementary source of information has many advantages, man-
ually associating a specific device to a particular region of the
video (corresponding to the person using the device) quickly
becomes a challenging practical issue as the number of streams
to associate per modality increases, making the correct associa-
tions harder to discriminate.

In fact, when using other modalities along with video, the
majority of works either i) manually associate video to the other
modalities [5], [13], or ii) avoid the problem entirely by using
only one source in the other modalities (e.g. only one wearable
device or microphone) [7], [12].

In this paper, we present a solution to tackle this problem by
associating the time series signals from wearable accelerometers
to the acceleration streams extracted from video flows. Thus, we
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aim to associate each device with the spatio-temporal region of
video of its wearer. This association is particularly challenging
for mingle scenarios, as people’s social behavior in these events
(unlike simple actions like walking or running) do not tend to
have a predictable and easily distinguishable pattern; and as the
number of people increases.

A preliminary version of this work was presented in [14].
There, we introduced a more simple version of our method to
hierarchically associate wearable devices to the spatio-temporal
region in video of the person wearing the corresponding device.
To do so, we leveraged the use of proximity information ob-
tained from the wearable devices and video as a spatial prior
to the association process. Thus, we could applied a divide and
conquer strategy, by associating the streams within all possible
group combinations from different modalities, and then select-
ing the optimal group-to-group association (see Section IV-C3
for an overview of our method and its changes between works).

In this previous version, for groups with unequal instances
of the modalities (e.g. more devices than people in video) the
streams remaining after the group-to-group association were
discarded. Also, the method could not handle missing data (e.g.
person leaving the field of view of the cameras and then re-
turning). In addition, all experiments were done with a limited
number of participants (19). All the above resulted in a rather
limited evaluation.

In contrast, in this paper we improve over the aforementioned
aspects and present several novel contributions:

� We modify our method to account for unequal groups of
streams and streams with missing data. Thus, our method
is now optimized to handle any combination of streams,
dynamically accounting for uneven numbers of streams
both globally and in the group-to-group associations.

� We increase the number of streams to be associated to 69
participants in each modality. In addition, these streams
have also missing data in different proportions (given the
behavior of each person), which makes them a more suit-
able example of cases in real scenarios.

� We include a more comprehensive evaluation of our
method. We address issues related with understanding the
association process such as evaluating the impact of the
number of participants and the period over which observa-
tions are accumulated on the accuracy of the association,
the effects and errors introduced by the group-to-group
matching and assess the impact on the association perfor-
mance of missing streams, either partially (missing data)
or completely (missing streams).

� We further analyze qualitatively if shared social actions
(e.g. shared gestures or laughter) have any impact on the as-
sociation process, as we hypothesized that due to mimicry
these could become failure cases for our method.

The rest of the paper is arranged as follows. The work related
to our own is described in Section II. The data used for our
experiments is presented in III and our approach is described in
Section IV. Section V presents the experimental procedure and
Section VI shows our results. Section VII their discussion. Our
conclusions are summarized in Section VIII.

II. RELATED WORK

Several works have used information from video and wear-
able sensors for a wide range of tasks such as human ac-
tion/activity classification [11], [12] or group detection [5],
among many others. However, very few have addressed the
challenging task of automatically associating the video pixels
or regions with the additional sensor modalities, such wearable
sensors. Although many works exists on video-to-audio associ-
ation [15]–[17], which is generally called speaker diarization,
we will only refer to works about association of video with
wearable devices, as other modalities are outside the scope of
this paper. For more details in audio-video association, see [17].

When associating wearable acceleration with video, previous
works can be divided in 2 main approaches: 1) pixels-to-device
association and 2) region-to-device association. In the former,
each device is associated to the set of more similar pixels in
terms of a given similarity measurement (e.g. Euclidean dis-
tance). As they have several more streams in one modality, such
as the pixel trajectories of all people moving, these approaches
tend to use 3D and orientation measurements in both modalities,
which allows them to be more discriminative. In a region-to-
device association, the set of pixels is previously clustered by a
defined technique such as manual annotation, image-based seg-
mentation or object tracking, among others. Then, each region
of interest is associated with their corresponding device. Our
work is an example of the latter.

Rofouei et al. [18] and Wilson and Benko [19] are examples of
works using a pixels-to-device association. They proposed sim-
ilar methods to match the 3D acceleration of a smartphone (also
using its gyroscope) to the set of pixels with the higher similarity
in a video recorded with a Kinect, which also recorded depth
information. Thus, constructing the real 3D world coordinates
from the Kinect and knowing its position w.r.t the real world,
they mapped all the devices to these real world coordinates. To
measure the similarity, their methods are based on an euclidean
distance minimization between both streams. Bahle et al. [11]
proposed a similar association of pixels-to-device, but limiting
the pixels to those regions on the joints detected by the Kinect.
They also used a 3D reconstruction of the real world and the
Dynamic Time Warping (DTW) distance as similarity measure.

Although these methods essentially match acceleration
streams like ours, their solutions are oriented to the interac-
tion with a display using mobile phones. Hence, they do not
consider a high number on devices and the implications that
this could have in the association process with video. In addi-
tion, they reported problems with fast movements and during
moments when the device was not moving.

For region-to-device association, the closest works to our
own is Texeira et al. [20]. They presented an approach based on
Hidden Markov Models to identify and localize moving smart
phones (by their accelerometers and magnetometers) in a cam-
era network. To do so, they modeled the association as a missing
data problem where a person’s behavior is observed twice, once
by the camera and once by the wearable device, but the link
between the 2 modalities is unknown. They proposed a solution
that could ultimately work for more than one device, but in their
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experiments have one single person walking under the network
of cameras. This unique stream is later divide into 5 and each
is treated as a different participant. This solution seems to be a
suitable option to ‘generate’ more participants, but they do not
address the challenges of occlusion resulting from a crowded
scene making their solution infeasible for mingling groups. In
addition, unlike in our case, the streams that they generate do not
have any interaction between each other in real life, which makes
the dataset they used not a nice representation of a mingle sce-
nario, with its possible consequences in the matching process.

Other works in region-to-device association include Shigeta
et al. [21], Plotz et al. [22] and Nguyen et al. [23]. The methods
proposed by Shigeta et al. and Plotz et al. first detected the
moving areas in the video and associate these to a corresponding
device within a set of 5 and 3 devices, respectively. As their
acceleration signal are not synchronized in time, unlike our case,
they used the peaks in the Normalized Cross Correlation (NCC)
between the acceleration signal and the region in the video to
detect the proper alignment between the signals. Thus, once the
peaks are found they choose the matches between devices and
video using a greedy assignment.

These methods are feasible for a small number of devices
but when this number increases the discrimination between the
streams is harder to perform in a greedy manner, as we will prove
later in this work (see Section VI-B), and the NCC starts to fail
while providing the correct alignment. Also, both methods, are
limited to moving objects.

Compared to these works (including Texeira’s), our approach
proposes a considerable increase in the number of accelerome-
ters to be associated, where we show improvements in perfor-
mance over the state-of-the-art methods even when matching
over 60 video and wearable acceleration streams using a hierar-
chical grouping approach.

To the best of our knowledge, we are the first to consider the
association of video with multiple wearable devices in such large
and crowded scenarios, considering miss streams and streams
with incomplete data. In addition, we propose to solve the as-
sociation problem in a much more challenging context where
people’s behavior can not be as easily characterized as simple
actions like standing and walking and it is harder to discriminate
between people’s movements.

III. DATA

A. Real Mingling Scenario Dataset

For our experiments, we use the MatchNMingle dataset [24],
where it was collected video and wearable acceleration for 92
participants during 3 separated group gatherings. This data was
collected in a real mingling scenario after a speed date event,
where people were encouraged to socialize. Due to hardware
malfunctioning, 23 of the devices did not record data during
the event leaving 69 functioning devices. Each person wore a
custom-made wearable device, as the one seen in Fig. 1(a),
hung around the neck which recorded triaxial acceleration at
20 Hz. This wearing method emulates a smart badge, mak-
ing it feasible for speed dates, conferences or other type min-
gling social events. These devices also have a binary proximity

Fig. 1. (a) One of our custom-made wearable devices (smart badge).
(b) Snapshot of one camera from our mingle event.

Fig. 2. Changes in appearance of 2 of our participants through the mingle
event.

Fig. 3. Participants visibility status. Black = participant missing.

detector based on beacon communication with other devices.
Thus, each device emits its own ID to all other devices around
it. This beacon broadcasting allows the devices to synchronize
every second and detect each other from 2-3 meters away. The
detection of a device is considered as a proximity detection
(binary signal). Overhead video was captured using 5 different
GoPro Hero 3+ cameras that covered the whole mingling area
with some overlap. A snapshots of our mingle event (from one
of the cameras) is shown in Fig. 1(b).

Finally, 8 different social actions (Walking, Stepping, Drink-
ing, Speaking, Hand Gesture, Head Gesture, Laugh and Hair
Touching) were annotated for each participant (when visible)
every second from video using the Vatic annotation tool [25].
These annotations were done by 6 different annotators, for which
2 minute intervals from the videos were given at random.

1) Complexity of Our Dataset: Since our event was recorded
during a real mingle event, all the participants had the liberty
to move around and leave the mingle area at will. They were
recorded by different cameras, with different light conditions
and strong appearance changes given their position w.r.t. the
camera. For example, Fig. 2 shows the changes in appearance
of 2 of our participants.

Moreover, Fig. 3 shows the visibility status of the 69 par-
ticipants, under the 2 cameras with the higher concentration of
people, for an interval of 10 minutes chosen randomly from the
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TABLE I
NUMBER OF PARTICIPANTS VISIBLE FOR AT LEAST AN X AMOUNT OF TIME

Fig. 4. Overview of our approach.

mingle segment. This is the same 10 minute interval that will be
used later in our experiments. Notice that the visible times are
not necessarily consecutive and that, in fact, some were missing
for the entire interval.

From the entire 69 participants, 22 are visible for the entire
10 minutes while there is not video data for 14 people. The
rest of participants are visible for a variable proportion of the
time during the 10 minutes. Table I summarizes the number of
participants visible for at least a given amount of time (X). Here,
the subset were all people are under the FoV for the entire time
(last column) will be our ideal subset, while the set with all 69
participants is our entire set. Thus, only a 31.9% of the streams
are complete for our entire set while 20% of the streams are
entirely missing.

IV. OUR APPROACH

Our approach is summarized in Fig. 4 and detailed below.

A. Feature Extraction

1) Wearable Devices: For the wearable devices, a single ac-
celeration stream for each device is obtained using the mag-
nitude of the 3 axes. Using magnitudes, instead of the 3 axes
separated, allow us to compare the device’s acceleration to the
video without knowing the orientation reference between the
two modalities in the real world. To eliminate the influence of
gravity, each axis is first normalized using its mean and variance
over the entire observation time.

2) Video: Each device stream must be assigned to a specific
person in the video. As stated before, in this work we do not
intend to perform a pixel-to-device association, but rather as-
sociate each device with a region containing a person. Hence,
all those regions of interest (or bounding boxes), which include
a person with a device, are first extracted. Then, we concate-
nate the bounding boxes over time for each person, to gener-
ate a track or tube (area of interest over time) for that person
(see Fig. 5).

The Vatic tool [25] for video annotation was used to extract
the bounding boxes. While this is a manual labeling tool, we
found that using the SPOT tracker [26] gave us similar results,
with a mean overlapping ratio between participants of 0.9006

Fig. 5. Feature extraction from video for 3 example tracks (subjects). Output:
speed stream for each participant for interval of length T .

(1 equals the highest) and a deviation of 0.0632 for 10 partic-
ipants randomly selected in the 10 minute segment. However,
as with all trackers, SPOT has a level of tracking noise. While
heavy occlusion, tracking drifts and false detections are rele-
vant problems in the tracking domain, this work focuses on the
already challenging problem of associating large numbers of
streams with relatively short observation times and not in track-
ing. We leave the investigation of this phenomena in relation to
the association problem to future studies.

Once the areas are annotated and concatenated to form the
position tubes for each person, we proceed to treat each tube as
follows. First, we extract dense optical flow for the entire video.
Then for a given bounding box, which belongs to a tube, we take
the magnitude of all the flow vectors and then compute the mean
for those with a magnitude greater than zero. In this way, we
obtain a vector of mean flow magnitudes for a given tube over
the entire video of length T (where T is the number of frames
in the video interval). This is used to represent the velocity
of movement for that person between two consecutive frames.
This approach allows us to consider the influence of fine grained
movements such as gestures or laughter as well as movement
of the entire body. Fig. 5 shows a graphical representation of
this process. Finally, we compute the acceleration vector from
the speed using finite difference approximation to obtain a mea-
surement comparable to the acceleration in the devices.

After we extract the acceleration streams from the video and
wearable accelerometers, we proceed to treat each stream (video
and device) as follows. First, we normalize the maximum value
of all streams to one, so a comparison between video and wear-
able acceleration can be made. Next, we apply a sliding window
calculating the variance over each stream. Using this instead
of the raw acceleration will give us a better representation of
the activity levels of the people [27]. Additionally, it has been
proved in activity recognition using wearable acceleration that
working with raw acceleration values can present difficulties
due to recording noise, among others factors [28].

B. Similarity Metrics

Both video and acceleration streams are noisy because they
capture only partially the behavior of a person. Since the device
is hung around the neck, movements from the torso are strongly
captured by this modalitiy. However, energetic gesturing in the
video will not necessarily be directly translated into similarly
energetic movement in the body. Therefore, we need measure-
ments to assess how similar 2 streams are and not if they are
equal. Different metrics are compared to quantify the affinity

Authorized licensed use limited to: TU Delft Library. Downloaded on April 08,2022 at 06:30:35 UTC from IEEE Xplore.  Restrictions apply. 



CABRERA-QUIROS AND HUNG: HIERARCHICAL APPROACH FOR ASSOCIATING BODY-WORN SENSORS TO VIDEO REGIONS 1871

between the acceleration streams from video and the devices:
covariance (COV), Dynamic Time Warping Distance (DTW)
and Mutual Information (MI). These metrics are widely used to
assess affinity between streams [29].

Notice that in our previous work [14], the similarity metrics
needed complete streams. Here, we have improved our method,
which can now handle streams with missing data. Now, the
similarity metrics only consider those sections where there is
information for both modalities. Hence, for the covariance and
the mutual information, intervals with missing data in one or
both modalities are ignored, and weighted given the length of
the complete stream. For the Dynamic Time Warping distance,
all sections of complete data are treated as separate streams and
the overall distance is calculated by taking the mean distance of
all segments weighted by their length.

C. Assignment Methods

We consider the matching process to be an assignment prob-
lem, where m elements of a set M (device streams, in our case)
need to be associated with n elements of a set N (video streams),
by fulfilling a given function or constraint. The distances matrix
Dij , of size m × n, is formed by the pairwise distances be-
tween all possible combinations of m acceleration and n video
streams, where

Dij = d(i, j), i ∈ {1 · · ·m} and j ∈ {1 · · ·n} (1)

and d is one of the similarity metrics in Section IV-B.
1) Winner-Takes-All (Greedy) Association: State-of-the-art

methods ([18], [19], [21]) use a greedy approach where the
element in Dij that has the highest value determines the assign-
ment. The corresponding column and row are removed from
Dij and the assignment process is repeated. This relies on a
strong correlation between the sensor data for a given device
and its corresponding video stream. This is the baseline that we
compare our proposed method with.

2) Hungarian Method: Although the winner-takes-all
method is a reasonable baseline, it does not consider that there
is likely to be noise in both sensor streams. Hence, it may not be
able to distinguish one possible assignment from the other. This
is particularly problematic as the number of streams increases. In
this case, trying to optimize the assignments globally may help.

The Hungarian method [30] computes a solution for the linear
assignment problem by optimally matching the elements m and
n, based on a global optimization of Dij . For this assignment
problem, given the matrix of distances Dij , the aim is to find
the global cost c that minimizes

min
m∑

i=1

n∑

j=1

d(i, j) ∗ w(i, j)

s.t.
m∑

i=1

w(i, j) = 1, j = 1, 2, . . . , n

n∑

j=1

w(i, j) = 1, i = 1, 2, . . . ,m

w(i, j) = 0, 1 (2)

where w(i, j) is the binary weight for matrix W ∈ {0, 1}m×n

for the element (i, j). Thus, w(i, j) = 1 if the two pairs are
associated, the method will choose the pairs of elements with
the lowest total pairing cost and the elements of sets M and N
can only be paired once. Several solutions exist to solve this
problem [31]. Notice that Eq. (2) is defined such that it holds for
those cases where m �= n. Thus, our association is not limited
to an equal number of streams on each modality.

3) Hierarchical Hungarian Method: As the number of
streams to be associated increases there is a higher probabil-
ity of finding 2 or more people with similar streams. Hence, the
observation period needs to be longer to increase the chances of
discriminating between them. Computationally speaking, how-
ever, it is desirable for a potential real-time application of this
work, to be able to rely on shorter time intervals to make the
association. Although, if the streams are too short, we will not
have enough observable behavior for the distance metric to be
discriminative enough.

By initially sub-dividing the problem based on the local spa-
tial neighborhood in each sensor, we hypothetically could im-
prove the numbers of correctly associated streams. Therefore,
we propose an extension to the original Hungarian method by
performing the assignment procedure in a hierarchical manner
using a divide-and-conquer strategy where all the streams are
subdivided into groups in each modality. This reduces the prob-
lem initially to a smaller size represented by the number of
groups in each modality. We propose to generate the groups
by clustering based on their proximity over a particular time
interval (described later in Section IV-D). This further reduces
the assignment problem from a global to local assignment prob-
lem, which exploits the local-spatial and social context of the
mingling gathering.

So, for this new assignment methods, the n video and m
accelerometer streams are clustered into p groups for the ac-
celeration and q groups for the video streams. Then, p × q
different distance matrices are generated; one for each possi-
ble group combination (e, f) where indices e ∈ {1 · · · p} and
f ∈ {1 · · · q}. For each of these matrices, the corresponding
stream assignment is calculated. So, within each group-to-group
matching, the possible stream combinations are now reduced to
n′

e × m′
f , where n′

e and m′
f are the number of elements in the

eth and f th device and video groupings, respectively.
The cost c(e, f) of each group-to-group assignment is then

obtained by Eq. (2). These costs are allocated in a new ma-
trix C, which represents the costs of assigning the elements
within each possible group combination e and f . Note that
each cost c(e, f) must be normalized by dividing by the
number of total costs that were used in each assignment so
C(e, f) = c(e, f)/min(m′

f , n′
e). For example, when compar-

ing a group of 3 streams against a group of 2, only 2 costs from
the 3 × 2 matrix are used for the final assignment, whereas com-
paring 2 groups of 3 streams we will have a summation of 3 costs
from the 3 × 3 matrix.

Finally, the Hungarian algorithm is applied to matrix C to
find the optimal group-to-group assignment. The stream assign-
ment for that specific group-to-group pairing is then chosen. An
example of our Hierarchical Hungarian assignment procedure
is illustrated in Fig. 6.
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Fig. 6. Example of assignment method. (a) Devices and Video streams rep-
resentations. The dotted circles show the group detection. (b) Our proposed
Hierarchical Hungarian method using the streams and clusters from (a).

Notice that due to a mismatch in the number of streams in each
modality (e.g. missing people or incorrectly matched groups),
some streams can be left without associating. To account for
these cases, we modify our original method (presented in [14]).

First, all similarity metrics used in the assignment already
account for missing data, as explained in Section IV-B. Sec-
ondly, from our previous submission we noticed that when the
groups are wrongly matched some streams are left unassigned
even when one or more streams are left over in each modality.
Thus, in this paper we improve our previous method and make it
resilient against incorrectly matched groups or incorrect group
detections in either modality, as the proximity prior is noisy and
imperfect. To do so, when there is one or more streams in both
modalities, we performed a final assignment with the remaining
streams, without grouping, treating all the streams as singletons
(group of one person). Those streams remaining without associ-
ation after this final step are treated as missing people in one of
the modalities (m �= n in Eq. (1)). Thus, the improved method
in this paper can also handle uneven number of streams.

D. Group Detection

For group detection we use the method proposed by Hung and
Kröse [1]. In this approach, the group detection is performed
independently per sensor type using mainly the same clustering
algorithm based in maximal cliques, treating the proximities of
the participants as graphs. The difference between the 2 modal-
ities lies in the process to create such graph. For each sensor
type, this process and the clustering is described below.

The reason for using Hung and Kröse’s approach [1] is that
their method allows orientation to be implicitly represented
based on the relative position of the people. This has a good
analog to the wearable sensor data which, while being sensitive

to detecting badges at certain orientations, also does not record
precise orientation information either. In contrast, other methods
for detecting groups ([3], [32]) generally required the orienta-
tion information explicitly, which we do not have. Also, [1]
provides an accurate approximation for conversational groups,
following the same scheme as the behavior presented by people
during group forming.

1) Clustering Video Streams: To create the graph for cluster
the video streams, we use the tracks extracted for each of the
participants, focusing in the position of the center of the track
in each frame of the video. Thus, for each frame, an affinity
matrixA is created, which defines a symmetric distance between
person i and j

Aij = −e
d i j

2 σ 2 (3)

where dij is the Euclidean distance in the image plane between
the centroids of the bounding boxes for person i and j and σ
is the width of the Gaussian kernel. In our experiments, σ was
set to 150 pixels, as this was an approximate value for group
distance given the image size and resolution of the camera. This
threshold was selected by learning the mean area of coverage of
all our participants in video for the entire dataset.

Then, we apply the group detection algorithm that extracts
clusters as maximal cliques in edge-weighted graphs [1]. This is
an iterative procedure that optimizes the group clustering based
on the notion of a dominant set. If we have a graph G with each
node representing the centroid of a person’s bounding box and
the affinity between people to be the edges, we can consider
a representation of the closeness of a subset S of the graph as
follows. We define a measure called the average weighted degree
of a vertex i ∈ S with respect to set S as kS (i) = 1

|S |
∑

j∈S aij .
The relative affinity between node j /∈ S and i is defined as
φS (i, j) = aij − kS (i), and the weight of each i with respect to
a set S = R ∪ {i} is defined recursively as

wS (i) =
{

1 if|S| = 1∑
j∈R φR (j, i)wR (j) otherwise

(4)

wS (i) measures the overall relative affinity between i and the
rest of the vertices in S, weighted by the overall affinity of the
vertices in R. Therefore to find the cliques in the graph wS (i) >
0,∀i ∈ S. For every graph, only one maximal clique can be
identified at a time and a peeling strategy is employed where
the same conditions are repeatedly applied to the remaining
sub-graph until no more cliques remain.

Finally, the cliques selected per frame are combined into a
single set of groupings q for the entire video segment using
majority voting. Thus, groups with the same set of participants
are counted for the entire segment of recordings and the ones
with the exclusive majority are selected.

Luckily, in a mingle scenario the people tend to stay in the
same group for long intervals of time, making this selection
method feasible. For example, for our event 17% of the partic-
ipants stayed in the same group for the entire 10 minutes, 20%
joined only 2 groups, 11% joined 3 and 17% joined 4 groups
(total of 65%). Only 17% joined 6 or more groups. Notice that
these statistics includes merging groups and excludes singletons
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TABLE II
SIZE DISTRIBUTION OF THE GROUPS FOR OUR MINGLE SCENARIO

(people alone). Thus, 2 groups of 2 people joining counts as 2
groups joined, even if they stayed with a same person during the
entire event.

During the entire event (30 minutes), we had the total group
size distribution presented in Table II. This distribution shows
the different conditions in which our method would be able
to perform regarding group sizes. Note that these groups over-
lapped, merged and split at different moments over time, and
involved the same people in some cases. So, the sum of groups
in Table II is not equal to the total number of people.

In practice, if the groups vary more frequently over time it
would be rather straightforward to compute groups over short
sliding windows, thus performing the association dynamically
in time (see Section VI-B for an analysis on window lengths for
our method).

2) Clustering Devices: As stated in Section III, each of the
wearable devices outputs a dynamic binary proximity graph,
which is later refined to eliminate false neighbor detections using
the method proposed by Martella et al. [33]. Thus, for each time
sample which is recorded at the same sample rate as the video
(20 Hz against 20 fps) a proximity graph is created between the
participants. To refined false neighbor detections, they apply
a density-based clustering to group all the neighbor detections
in time, by comparing the graphs of consecutive times. This
method leverages the bursty nature of the proximity graphs,
meaning that the correct neighbor detections tend to appear
sequentially together in time and the false detections tend to be
isolated (see [33] for more details).

Finally, the maximal cliques are identify from the proximity
graphs, to obtain p sets of fully connected nodes, using the same
maximal clique methods as with video. Here, dij in the affinity
matrix A from Eq. (3) is created with the binary values from
the proximity graphs.

V. EXPERIMENTAL PROCEDURE

A. Extraction of Acceleration Streams

For our experiments, we selected a 10 minute interval chosen
randomly in the middle of the mingle event. For all 69 people
with functioning devices, we extracted our wearable acceler-
ation streams (see Section IV-A1) using a sliding window of
50 samples with a shift of one sample for which we calculated
the variance. This window length (equals to 2.5 seconds) gives
enough time for an human action to fully develop.

As explained in Section III, not all participants were present
under the FoV of the cameras for the entire interval. So, the
video acceleration streams were extracted for these 69 partici-
pants were video data was available. If their video data was in-
complete, the acceleration stream was set to zero for those times
only. This is done for purposes of a further comparison with our
old method (see Section VI-D). Nonetheless, as explained in

TABLE III
ASSOCIATION ACCURACY WITHOUT GROUPING FOR THE IDEAL SUBSET (22

PARTICIPANTS) AND THE ENTIRE SET (69 PARTICIPANTS)

Section IV-B, these sections are not taken into account for the
creation of our distance matrix with our new approach.

B. Accuracy Metrics

In general, we will treat as true positives (TP) all the pairs
of streams that were associated correctly. Thus, our association
accuracy will be number of true positives over the total num-
ber of streams to associate in the modality with less streams,
or acc = T P

min(m,n) . Notice that, as well as Eq. (2), this consid-
ers a different number of streams on each modality. Also, in
those cases with K-folds (e.g. leave out experiments), the mean
accuracy will be the equal to accf old/K.

For the association including grouping (see Section IV-C3),
the accuracy will be equal to the number of true positives that
were correctly associate within a group matching that was also
correctly associated. Also, TPgroup will be used to denote those
groups that were correctly matched and accgroup(e, f) as the
association accuracy within a given group pair (e, f).

VI. EXPERIMENTAL RESULTS

A. Comparing Between Distance Metrics (Without Grouping)

First, we compare the metrics in Section IV-B. Our intention
is to assess the impact of each metric on the original linear
assignment problem without applying our hierarchical approach
just yet. To do so, we used our ideal subset (22 people, as seen
Table I) where there is not missing data which represents an
ideal scenario and our entire set of 69 participants. For both
sets we used the entire segment of 10 minutes. Also, for the
participants with missing video the acceleration streams from
video were set to zero.

Table III summarizes the results for the association of both
sets. For both sets, all similarity metrics (using greedy or Hun-
garian) outperform the random baseline. Using the covariance
(COV) as a similarity metric gives the best association perfor-
mance for either the greedy or the Hungarian assignment. The
DTW seems to work well when combined with the Hungar-
ian assignment, suggesting that this metric generates similarity
values which are close together while the COV gives more dis-
criminative values. Hence, a global optimization is necessary
for the DTW but not for the COV. We will discuss more about
the difference between the methods and metrics in Section VII.

We also found a significant difference in the association accu-
racy between our ideal subset (22 people with only clean data)
and our entire set (69 people with missing data). This difference
could be explained by one of 3 factors (or a combination of
them): 1) different number of participants, 2) quality of the data
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Fig. 7. Mean association accuracy without grouping for the different number
of participants using the ideal set as base (10 minutes). Figure best seen in color.

(clean versus missing) or 3) an social aspect within the obser-
vations. These 3 aspects will be further developed in the next
subsections.

B. Effects of the Number of Streams and the Interval Length
on the Association Process

In this section we analyze the impact on the association ac-
curacy of the number of participants to be associated and the
observation length when extracting the acceleration streams.
To do so, we use only our ideal set as base to maintain clean
conditions (e.g. no missing data).

First, for the analysis of the impact of the number of partic-
ipants on the performance, we run associations with different
number of participants. On each run, were N ∈ {2, . . . , 22}
participants (ideal set has a total of 22 streams), we leave out
k different participants iteratively (k = 22 − N ) considering all
possible K tuples. We then calculated the mean accuracy ob-
tained by each association with N streams. Fig. 7 summarizes
these results.

We can see how there is only an accuracy difference of about
13% between the sets of 22 and 2 participants, even when the
number of participants was increased by a factor of 10. This was
possibly due to the long interval (10 minutes) that was used for
the association and supports our finding in [14] regarding the
strong trade-off between streams to associate (participants) and
observation time when the association is done without group-
ing. Given that shorter observation intervals are preferred and
supported by the results in the last rows of the Fig. 7, we opted
for a group-to-group assignment (Section VI-D).

Now, to analyze the impact of the length of the observation
time, we gradually decrease this interval for the extraction the
acceleration streams and calculated the association accuracy.
Given that different parts of the interval can have different ac-
tions/events, we calculated the association using a sliding win-
dow of length L and shift it by L/2 and then report the mean
value with its deviation over all the intervals. Fig. 8 shows these
results. Here, at least an observation time of 5 minutes is needed
to accurately associate more than 80% of the 22 streams. A
similar result was found in [14].

Fig. 8. Association accuracy without grouping for the different length inter-
vals using the ideal set (22 participants). Figure best seen in color.

Fig. 9. Association accuracy without grouping for the different subsets of
participants in Table I (10 minutes interval). Figure best seen in color.

C. Impact of Missing People in Video

As seen in Table I, the 69 participants in our dataset stayed
under the field of view of the cameras for different intervals of
time. This implies that some acceleration streams from video
will be partially or totally missing. Nevertheless, our method
can also work in such cases, as can be seen in the formulation in
Equation 2. The following is the empirical proof of this claim.
Our experiments only consider missing video streams, but the
insights found will also applied for missing streams from the
wearable devices.

For each subset of participants in Table I (number of peo-
ple under the field of view of the cameras for at least a given
amount of time X), we applied the greedy and Hungarian asso-
ciation assignments without grouping. Those streams with less
information than 10 minutes, for all subsets, were filled with
zeros for the missing parts for practical purposes. Nonetheless,
as explained in Section IV-B, our method will ignore these parts
of the streams. Fig. 9 summarizes the association accuracy for
these subsets. The first and last value of the plots are equal to
those in Table III.
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Fig. 10. Accuracy of stream association for our proposed method (Hierarchical), the state-of-the-art (Hungarian and Greedy) and the random baseline using
(a) MI, (b) COV and (c) DTW as similarity metrics.

TABLE IV
ASSOCIATION ACCURACY AND NUMBER OF CORRECTLY ASSOCIATED GROUPS USING THE HIERARCHICAL HUNGARIAN METHOD FOR THE DIFFERENT SUBSETS OF

PARTICIPANTS IN TABLE I(10 MINUTES INTERVAL)

*Results using the ground true groups and their correct matching (all manually annotated).
**A singleton is also treated as a group if output by the group detection as such.

Similar to the results on Table III, the combination of the
COV as similarity metric and the Hungarian assignment has the
best performance. Notice how the overall association accuracy
decreases as the data becomes more incomplete and the number
of participants increases.

Although there is an influence of the number of participants
on the accuracy decrease, we believe this is strongly related
to the missing data in the sets used as we gave a rather long
observation interval. Nonetheless, for a subset of 51 people only
present under the FoV of the cameras for 4 minutes (from the
total 10 minutes), the normal hungarian method is still capable
of matching correctly 60% of the streams. This can be further
improved using our hierarchical method, as we see in the next
subsection.

D. Evaluation of Group-to-Group Assignment

After analyzing the different components that can influence
the association, we now introduce our Hierarchical Hungarian
method which applies grouping.

Table IV summarizes the results for the association accuracies
using this method. As well as in Fig. 9, for these associations we
selected those participants that were under the field of view of the
cameras for at least a given amount of time X, an calculated the
association accuracy for these different subsets. This table also

includes the total number of groups involved in the association.
The last 3 columns of Table IV represents the accuracy with
an ideal grouping. This means that the group formation of the
participants (both in video and in the devices) are used and
the correct group-to-group assignments {(e = 1, f = 1), (e =
2, f = 2), (e = 3, f = 3)} are known. Thus, the the overall
accuracy will be the mean accuracy for all accgroup(e, f).

In addition, Fig. 10 show the association accuracy against the
number of participants (as in Table I) for the 3 different metrics
and the random baseline. Notice that both Table IV and Fig. 10
have sets with missing data.

Overall, all approaches are better than a random baseline (see
Fig. 10). Furthermore, our Hierarchical method over-performs
all other approaches when using the covariance as metric. More-
over, when analyzing the TPgroup (groups correctly matched)
of each association one can see that the association errors come
from incorrectly matched groups in different modalities. For ex-
ample, in the second row of Table IV we see that from 25 groups
(in each modality, 50 in total) our method correctly matched 19,
resulting in an accuracy of 81.82%. If all groups were correctly
associated (ideal case), we can obtained a 100% accuracy using
this metric, as seen in the second to last row. This implies that
better algorithms to detect and match groups will improve our
method. However, the correct group detection in each modality
is not the main goal of this paper. Nonetheless, we proved that
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TABLE V
COMPARISON OF OUR IMPROVED HIERARCHICAL METHOD TO OUR PREVIOUS

VERSION PRESENTED IN [14] USING THE COVARIANCE (COV) AS METRIC

using group detection as a prior, even when defective, increases
the association performance.

Comparison with previous work: To further evaluate the
difference between our 2 implementations, we proceed to
compare the results here presented to those obtained using the
method presented in [14]. As explained in Sections IV-B and
IV-C3, our method was optimized to account for missing data,
either completely (missing streams) or partially (streams with
missing data).

Table V summarizes the results for both methods using the
covariance (COV) as metric, as this gave us the best results for
both methods. Here, the sections with missing data in the streams
were set to zero in order to use our old method. Nonetheless,
our improved method account for this sections differently as
was explained in Section IV-B.

The results for the complete set (22 people with no missing
data) are rather similar with each other, and to what was pre-
sented in [14]. Here, as there is no missing data, the matrices for
both methods are the same, which leads to the same result for the
no grouping assignment (see Table III). The difference between
the two is due to unmatched singletons, which remained af-
ter choosing an uneven group-to-group matching (each modal-
ity grouped the streams differently) and were omitted by our
previous method. The improved method compensated for this
issue.

In contrast, the results between both methods differ signifi-
cantly as more missing data is introduced. These differences are
due to 1) the way the values in the similarity matrices are calcu-
lated, and 2) the singletons omitted (and so unmatched) after an
imperfect group-to-group association in our previous method.
For example, for the case where only 60% of the streams are
guaranteed (46 participants), 22 streams have complete data
while the rest have different proportions of missing segments.
While these segments are omitted when calculating the similar-
ity matrices by our new method, they remained as zeros for [14]
resulting in different values in the similarity matrices D, and
subsequently generating different values in the matrix of costs
C. Moreover, the latter can even result in a different group-
to-group assignment. Nonetheless, as seen by these results, the
improvements made to our hierarchical method account for such
cases and maintain the functionality of our method for missing
data.

E. Association vs. Social Context

The results obtained so far show that, although the length of
the interval, the number of participants and amount of missing
data have a significant impact on the accuracy, there are some

Fig. 11. Analysis of impact the impact of social actions in the association
(better seen in color). (a) Matching accuracies for selected 6 participants under
different lenght intervals at different times. (b) Normalized density of hand
gestures for all participants (1 equals all participants gesturing). (c) Normalized
density of speaking for all participants (1 equals all participants speaking).

confusions that cannot be totally explained by the aforemen-
tioned and detailedly described parameters.

We hypothesize that such confusions are due to the role of
social context and in this section we intend to analyze this aspect
further. To do so, we used social actions annotations provided
with the MatchNMingle dataset [24] and specify on Section III.
From all 8 social actions provided, we focus in hand gestures
and speaking which are more related to conversational aspects
of the context.

Fig. 11(a) shows the percentage of correct associations over
time for 3 pairs of participants (6 people). These person stayed
together for over an 90% of the 10 minute interval, so they have
a high number of shared social actions. We selected 6 people
as this is within the higher number of people interacting in the
same group.

To obtain this figure, we took into consideration different
interval lengths over time, so we can see the association perfor-
mance for these 6 people for different times and observations
lengths. Thus, the block in the far bottom right represents the
accuracy percentage for the last interval of 0.5 minutes (600
samples) within our 10 minutes. Similarly, the top block rep-
resents the accuracy performance using the entire 10 minutes.
Moreover, Figs. 11(b) and 11(c) represent the normalized den-
sity over time of the actions of hand gestures and speaking,
respectively. With these figures, one can see graphically the
correlation between social actions and the percentage of mis-
matches.

It can be seen from Fig. 11, specifically at the right side of all
figures, that when there is a higher density of hand gestures and
speaking (which are inherently associated with body movement
[34]) the short intervals (bottom blocks of Fig. 11(a)) present
a consistent lower association percentages compared to those
where the occurrence of social actions is relatively low. This
implies that shorter intervals with a high concentration shared
of social actions become a failure case for our method. This
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also relates with the trade-off between observation time and
number of participants discussed in Section VI-B. Nonetheless,
Fig. 11(a) also shows that even these cases can be compen-
sated with longer observation intervals, to allow the method to
properly discriminate between people interacting.

Furthermore, when analyzing the mismatches per individual
we found that most mistakes are due to people talking to each
other. So, for 2 people interacting actively (e.g. speaking and
gesturing), our method switch their assignment, even within
the same group. This also might explain why our hierarchical
method is better than a normal Hungarian, as people moving at
the same time but in different groups are not considered for an
association.

VII. DISCUSSION

As it was seen through Sections VI-A, VI-B, and VI-C; when
applying our method without grouping, the performances of the
association vary significantly with the metric and assignment
used. Mainly, the Mutual Information (MI) performed poorly
regardless of the assignment method, the Dynamic Time Warp-
ing distance (DTW) was competitive when using the Hungarian
approach only, and using the covariance (COV) as metric gave us
the best results for both assignment methods (greedy and Hun-
garian). This summary is better seen in Table III and Figs. 7, 8,
and 9.

We hypothesize that the difference between the DTW and the
COV lies on the local and global nature of the computation for
each metric, respectively. The goal of the DTW is to warp one
stream to the other optimally in time. Thus, the comparison be-
tween the streams is done locally up to some degree. In contrast,
the COV takes into account the streams globally, computing im-
plicitly the expected values of each entire stream separate and
jointly.1 From Fig. 8 we can see that the separation between
the DTW and COV becomes smaller as the interval length for
the observation reduces. For such cases, as the number of sam-
ples on each streams reduce, the two metrics start measuring
similar distances. This also supports this global versus local
hypothesis.

This analysis shows that not only the assignment with a global
optimization is important. Also, a metric that computes the dis-
tances in a global manner is a better option for computing the
distance matrices, specially for longer intervals of time. This
might also explain why the DTW works only for the Hungarian
method (a global optimization) but fails when using the greedy
association (local).

A particularly interesting result is the low accuracy achieved
when using the Mutual Information (MI) as similarity metric,
as it is generally used for synchrony between streams. Even for
a real scenario where the signals are more noisy (such as in
our entire subset) the covariance and DTW distance are able
to cope with the noise up to limit whereas the MI cannot.
We hypothesis that this relates to what the MI is measuring in
essence. This metric is more complex than just a measurement

1COV(X,Y)=E[XY]-E[X]E[Y], where X and Y are the 2 streams.

of similarity and, unlike the covariance and DTW distance, it
is designed to also account for those moments of inverse syn-
chrony. Hence, it might not be adequate for the association of the
streams.

Another insight worth discussing is the difference between
the methods’ performances for different number of people to
associate. We can see in Fig. 7 that the difference between the
accuracy for 2 participants and 22 for complete streams (no
missing data) is 12.9% for the Hungarian using the covariance,
19.7% for the Hungarian using DTW and 29.5% for the Greedy
assignment with COV. These are our 3 best performing methods
without using grouping yet.

We hypothesize that the difference comes with the global
optimization performed by the Hungarian algorithm. Unlike
other activities (e.g. walking, running), the actions performed
during a conversation tend to be less discriminative and prone
to missmatches even within a group, as seen in Section VI-E.
This discrimination between streams becomes harder as the
number of participants increases. Thus, a method that can op-
timize globally is preferred to handle this close nature of the
interactions. This global optimization also applies for the met-
ric used, as it was discussed at the beginning of this section.
This might explain why the covariance by itself is perform-
ing acceptably with the greedy approach. Nonetheless, our
divide-and-conquer approach analyzed in Section VI-D has
proven to be a good alternative when the number of people
increases.

VIII. CONCLUSION AND FUTURE WORK

In this paper we showed a novel method for associating wear-
able devices to the person in the video wearing the device, using
the acceleration and proximity data in both modalities. Our
association method can handle missing data, either partially
(incomplete streams) or completely (missing streams). This is
fundamental as this method is intended for real crowded mingle
scenarios where people can leave the scene at will (e.g. go to
the bathroom) or the devices can fail.

Compared to previous efforts, we have significantly increased
the number of devices used and regions in the video to associate.
We also presented experiments to better understand the nature
of this novel and relevant problem, focusing on the number of
subjects to associate, length of the streams (time series) and
proportion of missing data within the streams. These showed
us that there is a strong relation between the number of peo-
ple to associate and the length of the observations, in order to
have enough information to make a discriminative assignment.
Nonetheless, we have also found that using the spatial proximity
as a prior for the associations significantly benefits the perfor-
mance, even while associating rather short streams for several
people. This is valid even when the group detection is imperfect
in both modalities.

In our worst case scenario, where only a 31.9% of the streams
in one of the modalities were complete and a 20% was entirely
missing, our Hierarchical method manage to associate correctly
58% of the participants.
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Our analysis of the mistakes made by our hierarchical Hun-
garian assignment showed us that these are due to the mismatch
in the group-to-group assignment. Moreover, if the group-to-
group were to be perfect (ground truth) the association accuracy
will have increased significantly. Thus, future work should fo-
cus on methods for a better group detection in both modalities,
and more efficient group-to-group matching. Perhaps a graph-
to-graph matching will be a better option to the latter problem,
adding structure to the group-to-group assignment.

Finally, we presented an analysis of the failure cases for our
method, and how these are influenced by the social actions
within a group. Thus, people sharing social actions (e.g. speak-
ing or gesturing together) tend to be confused by the association
method as their movement streams synchronize during their
conversation.

APPENDIX A
LOCATION OF CAMERAS IN THE VENUE

Fig. 12 shows the location of the cameras in the venue, while
collecting the MatchNMingle dataset. For the purposes of this
work, we only focus on the mingle area.

Fig. 12. Location of the cameras in the venue.
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