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S U M M A RY

Microfluidics is the study of fluid motion with small volumes (from 1 millilitre
down to 1 nanolitre) such as fluid collected with a nasal swab. The small-scale size
of the micro-device allows small sample volumes, cost-effective and low-risk
analysis for multiple purposes. Portable devices performing laboratory tasks,
detecting samples, and chemical/biological research on a small scale is referred to
as lab-on-a-chip. Various micro-devices have been widely investigated and
developed for applications in several fields, stretching from inkjet printing to cell
isolation in medical diagnostics to the drug delivery/discovery industry.

Most micro-devices have a fixed design tailored to carry out a specific task or
manipulation activity. However, the fundamental ability of the microfluidic devices
revolve around trapping, separating, sorting, and assembling particles or cells.
Particle manipulation is done in microfluidics with various contact techniques,
using micro-channel geometry, and non-contact techniques using laser fields,
magnetic fields, acoustic forces, electrical fields, artificial cilia, and hydrodynamic
forces.

The non-hydrodynamic methods, such as magnetic fields, acoustic forces, and
electric fields, have complex control mechanisms. These control mechanisms rely
on closely coupled interactions between physical fields like fluid flow field
interaction with the particle properties such as electrical properties, chemical
composition, acoustic properties, or refractive index of the particles. Hence, using
only hydrodynamic forcing for manipulating and trapping micro-particles is an
attractive alternative for non-contact trapping particles.

The goal of the thesis is to design a microfluidic device that has no real channels
with physical walls, such as Y-junction or T-junction devices, instead have "virtual
channels". These virtual channels are dynamic, flexible and can be used as
multi-purpose channels on a single device to integrate various operations into one
single chip. In this work, "virtual channels" are generated using hydrodynamic
manipulation only. This approach can significantly improve the functionality of a
single device by transporting the particle or cell to the desired locations.

Our device uses uniform flow in the flow chamber and three inlets
perpendicular to the flow chamber to manipulate particles. These three inlets can
inject or extract fluid in the flow chamber to deviate the streamlines. Since the
depth-averaged velocity over the channel in a Hele-Shaw cell is irrotational, we use
potential flow theory to predict the flow field for manipulating particles. The
linearity of the potential flow theory is ideally suited to the fast computation times
required by our application. The optimized particle trajectory that has small flow
rate bounds and the least variation in the flow rate from the pump is determined a
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priori using an optimization routine. This optimization routine is called as a priori
particle manipulation algorithm. Our flow device benefits from the particle path
prediction that provides the user an opportunity to integrate multiple
functionalities such as trapping, separation, or sorting onto a single device. This
approach is also beneficial for rapid prototyping in the early design stage. It allows
to explore different micro-channel geometries and determines which one is best
suited to a given application.

However, a priori particle manipulation algorithm is currently limited as it does
not consider aspects such as surface roughness, particle density, and off-center
particle position along the channel height. This would lead to errors in the particle
trajectory that will accumulate over time, leading to a complete failure of the
experiment. Therefore, it is essential to use feedback control schemes and mitigate
aspects of the experiment uncertainty to achieve robust and repeatable experiment
results for various experiments. With a feedback loop in an experiment, the error
in the particle position can be determined with respect to the a priori optimized
trajectory, and additional flow rates can be given to correct for the error. For this
purpose, the performance of a Proportion-Integral-Derivative-based (PID)
controller is investigated. The initial PID controller parameters for various
experiments are determined using non-linear optimization.

This thesis demonstrates that a flow device with "virtual channels" can be
fabricated and employed for diverse applications. Multiple pivotal experiment test
cases such as sorting, trapping, separating, joining, and mixing are performed in
the microfluidic device to support this claim. The success of these test cases shows
the capability of the device for various applications in the field of microfluidics.
The PID controller results show that the experimentally determined particle
positions are in close agreement with the a priori optimized trajectory. The
maximum error is on the order of one particle diameter at the end of the
manipulation.

In the future, combining hydrodynamic forcing with acoustic/magnetic/electric
fields or optical tweezers can make the flow device more versatile. In addition, the
microfluidic device can be made smaller, making it more interesting for biological
applications such as cell trapping and chemical applications such as droplet
coalescence study. Also, adding more inlets would make the system more
redundant for two-particle manipulation. Having more inlets will help to establish
more stable streamlines. Moreover, a separate optimization can be done to find the
optimum location of the inlets and configuration to facilitate the desired particle
trajectories.
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S A M E N VAT T I N G

Microfluïdica is de studie van vloeistofdynamica van kleine volumes (vanaf 1

nanoliter tot 1 milliliter) zoals vloeistof opgevangen met een neusuitstrijkje. De
kleinschaligheid van de micro-apparaat maakt het mogelijk om kleine
monstervolumes kosteneffectieve en risicoarme analyse uit te voeren voor
meerdere doeleinden. Draagbare apparaten die laboratoriumtaken uitvoeren,
monsters detecteren, en chemisch/biologisch onderzoek op kleine schaal
verrichten worden lab-on-a-chip genoemd. Zulke micro-apparaten zijn ontwikkeld
voor toepassingen op verschillende gebieden, van inkjetprinten tot cel isolatie in
medische diagnostiek, medicijn toediening en onderzoek industrie.

De meeste micro-apparaten hebben een vast ontwerp dat is afgestemd op het
uitvoeren van een specifieke taak of manipulatie activiteit. Echter, het
fundamentele vermogen van een microfluïdische apparaat draait om het
opvangen, scheiden, sorteren en samenvoegen van deeltjes of cellen.
Deeltjesmanipulatie wordt gedaan in microfluïdica door verschillende contact
technieken, zoals microkanaal geometrie en contactloze technieken zoals
laservelden, magnetische velden, akoestische krachten, elektrische velden,
kunstmatige trilhaartjes en hydrodynamische krachten.

De niet-hydrodynamische methoden, zoals magnetische velden, akoestische
krachten en elektrische velden, hebben complexe controlemechanismen. Deze
controlemechanismen zijn afhankelijk van nauw gekoppelde interacties tussen
fysieke velden zoals vloeistofstroming interactie met de deeltjeseigenschappen
zoals elektrische eigenschappen, chemische samenstelling, akoestische
eigenschappen of de brekingsindex van de deeltjes. Daarom is het gebruik van
hydrodynamische forcering voor het manipuleren en vangen van microdeeltjes een
aantrekkelijke alternatief voor contactloze deeltjes opvang.

In dit proefschrift wordt het ontwerp van een microfluïdisch apparaat
beschreven, die geen kanalen met fysieke muren heeft, zoals Y-junction of
T-junction apparaten, maar in plaats daarvan "virtuele kanalen". Deze virtuele
kanalen zijn dynamisch, flexibel en kunnen worden gebruikt als multifunctionele
kanalen op een enkel apparaat om verschillende bewerkingen in één enkele chip te
integreren. In deze studie, worden "virtuele kanalen" gegenereerd door alleen
gebruik van hydrodynamische manipulatie. Deze aanpak kan de functionaliteit
van een enkel apparaat aanzienlijk verbeteren door het deeltje of cel te
transporteren naar de gewenste locaties.

Ons apparaat maakt gebruik van een uniforme stroom in de vloeistofkamer met
drie loodrecht op de kamer gesitueerde inlaten om deeltjes te manipuleren. Door
deze drie inlaten kunnen vloeistof worden geinjecteerd of geextraheerd uit de
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vloeistofkamer om de stroomlijnen om te buigen. Aangezien de gemiddelde
snelheid in de diepte over het kanaal in een Hele-Shaw-cel is rotatievrij, gebruiken
we potentiële stromingstheorie om het stromingsveld voor het manipuleren van
deeltjes te voorspellen. De lineairiteit van de potentiaalstromingstheorie is bij
uitstek geschikt voor de snelle rekentijden die onze applicatie vereist.De
geoptimaliseerde deeltjestraject met kleine stroomsnelheidsgrenzen en de minste
variatie in de stroomsnelheid van de pomp wordt a priori bepaald met behulp van
een optimalisatieroutine. Deze optimalisatie routine wordt een a priori algoritme
voor deeltjesmanipulatie genoemd. Onze stroomapparaat geniet van de voordelen
van de a priori deeltjespad voorspelling en biedt de gebruiker de mogelijkheid om
meerdere functionaliteiten te integreren zoals opvangen, scheiden of sorteren op
één apparaat. Deze aanpak is ook gunstig voor rapid prototyping in de vroege
ontwerpfase. Het staat toe om verschillende microkanaalgeometrieën te verkennen
en te bepalen welke het meest geschikt is tot een bepaalde toepassing.

Het a priori algoritme voor deeltjesmanipulatie is momenteel echter beperkt
doordat er nog geen rekening wordt gehouden houden met aspecten zoals
oppervlakteruwheid, deeltjesdichtheid en excentrische deeltjes positie langs de
kanaalhoogte. Dit zou kunnen leiden tot fouten in het traject van de deeltjes die
zich in de loop van de tijd zal ophopen, wat kan leiden tot een volledige
mislukking van het experiment. Daarom is het essentieel om feedback
controlemechanismen te gebruiken om zodoende onzekerheid in herhaalbare
experimentresultaten te verminderen en de robustheid van de experimenten te
verhogen. Met een feedback lus in de experiment, kan de fout in deeltje positie
worden bepaald in relatie tot het a priori geoptimaliseerde traject, en additionele
stroomsnelheden kunnen worden ingesteld om de fout te corrigeren. Voor dit doel
is de prestatie van een Proportion-Integral-Derivative-based (PID) controller
onderzocht. De initiële parameters van de PID-regelaar voor verschillende
experimenten worden bepaald met behulp van niet-lineaire optimalisatie.

Dit proefschrift laat zien dat een stromingsapparaat met "virtuele kanalen" kan
worden gefabriceerd en ingezet voor diverse toepassingen. Meerdere cruciale
experimenttestgevallen zoals sorteren, vangen, scheiden, samenvoegen en mengen
worden uitgevoerd in de microfluïdische apparaat om deze bewering te
ondersteunen. Het succes van deze testgevallen toont het vermogen van de
apparaat voor diverse toepassingen op het gebied van microfluïdica. De resultaten
van de PID-regelaar laten zien dat de experimenteel bepaalde deeltjesposities
nauw overeenkomen met het a priori geoptimaliseerde traject. De maximale fout is
in de orde grootte van één deeltje diameter aan het einde van de manipulatie.

In de toekomst, kan het micro-apparaat veelzijdiger worden door
hydrodynamische forcering te combineren met akoestisch/magnetisch/elektrisch
velden of optische pincetten. Tevens kan het micro-apparaat nog kleiner worden
gemaakt, waardoor het interessanter wordt voor biologische toepassingen zoals cel
opvang en chemische toepassingen zoals samenvloeiende druppel studie.Ook zou
het toevoegen van meer inlaten het systeem meer redundant maken voor
manipulatie van twee deeltjes. Het hebben van meer inlaten zal helpen om het
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stromingsveld te stabiliseren. Bovendien kan een aparte optimalisatie worden
gedaan om het optimum te vinden van de locatie van de inlaten en configuratie
om de gewenste deeltjestrajecten te verkrijgen.
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B A C K G R O U N D

1.1 microfluidics at a glance

Microfluidics is the study of fluid motion with small volumes (from, 1 millilitre
down to 1 nanolitre) compared to large volumes (e.g. 1 litre) in a full-scale
laboratory. Portable devices performing laboratory tasks, detecting samples, and
chemical/biological analysis on a small scale are referred to as lab-on-a-chip.
Microfluidics play an important role in platforms such as lab-on-a-chip for fast and
accurate results compared to its full-scale laboratory counterpart. For example, the
rapid antibody self-test for COVID-19 is classified as lab-on-a-chip. In recent years,
various micro-devices have been widely investigated and developed for their
applications in several fields, stretching from inkjet printing to cell isolation in
medical diagnostics to drug delivery/discovery industry [1]. Advancements in
micro-fabrication technologies such as 3D printing and laser cutting have also
fueled rapid fabrication and the ease of implementation of micro-devices. The
small-scale size of the micro-device allows small sample volumes, cost-effective
and low-risk analysis for multiple purposes.

In the medical industry, particle manipulation is important in study related to
particle synthesis [2, 3], bio-synthesis [4], cell-biophysics [5, 6], cell-drug
response [7, 8], cell-cell interaction [9, 10], and tumor cell analysis in blood [11, 12].
In the oil and gas industry, research related to predicting the stability of emulsions
through droplet coalescence [13], characterization of crude oil contents in
samples [14], gas-oil equilibrium ratio measurement [15], and interfacial properties
of crude-oil brine [16] are used in the field. The elementary tasks performed in all
of these examples consist either of a single task or a combination of identification,
trapping, separation, focusing, filtering, and sorting for cells, droplets, or particles.
As the development and knowledge in particle and droplet manipulation
continues, new control mechanisms are being developed for biological and
physical processes to improve our understanding of particle dynamics, cell
separation, coalescence, and mixing.
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1.2 flow control techniques

Generally, micro-devices have a fixed design tailored to carry out a specific task or
manipulation activity. As discussed above, the fundamental ability of the
microfluidic device revolves around trapping, separating, sorting, and assembling
particles or cells. Particle manipulation is done in microfluidics with various
contact techniques, using micro-channel geometry, and non-contact techniques
using laser fields, magnetic fields, acoustic forces, electrical fields, artificial cilia,
and hydrodynamic forces [17–21]. Microfluidic-based particle and droplet
manipulation techniques can be broadly divided into passive and active
techniques. Passive techniques rely on the geometry and topology of the
micro-channel to carry the manipulation activity. In contrast, the active
manipulation technique relyies on the physical properties of the specimen to be
manipulated.

1.2.1 passive flow control techniques

The passive method relies on channel geometry and the flow field to manipulate
particles. The design of the channels varies depending on the application. In
passive techniques, the manipulation is performed using the drag force generated
by different geometries and topologies in the microchannels. Various passive
methods used in practice are:

a) Deterministic lateral displacement: In this case, the particles are manipulated
into different streamlines [22]. Such techniques have been used to isolate the cancer
cells [23] and to separate parasites from human blood [24] by introducing specific
arrangements of geometric features such as a network of micro-pillars.

b) Pinched flow fractionation: Introduction of a pinch segment, such as a
contraction or expansion location in the micro-channel with a laminar flow profile,
particles can be manipulated to follow a specific streamline. The particles are
separated perpendicularly to the flow direction based on their sizes inside the
micro-channel. This technique is used for continuous particle separation [25, 26].

c) Inertial microfluidics: At Reynolds number higher than 1, inertia becomes
significant, and the particle experiences two types of inertial lift forces. One lift
force is due to shear and acts towards the wall for a parabolic flow profile. The
other lift force is originated from the wall-induced lift, which acts away from the
wall. Due to the interaction of these forces, the particle reaches an equilibrium
position in the channel cross-section. It is used for particle separation [27],
focusing [28] and sorting [29].

1.2.2 active flow control techniques

In active manipulation techniques, the manipulation is carried out by applying
external forces. Commonly used methods are:



C
h

a
p
t
e
r

1

1.2 flow control techniques 3

a) Magnetic methods: The magnetic manipulation technique uses an external
magnetic field generated by permanent magnets or electromagnets [30]. The
gradient of the magnetic field is exerted on the particle-based on its size and
magnetic properties. Applications such as the capture of tumor cell [31] and the
removal of malaria-infected RBCs [32] have been reported using this technique.

b) Electrical methods: An electric field can be used for electro-osmotic flow,
electrophoresis, and dielectrophoresis [33]. Electro-osmotic flow is the motion of
the electrolyte solution under the influence of electrodes placed at the end of each
micro-channel. A surplus of positively charged ions is formed near the channel
walls because most channel materials such as glass and polydimethylsiloxane
(PDMS) are negatively charged. This is called Electric Double Layer (EDL). Under
the influence of an electric potential drop along the micro-channel, the excess
positive charges in the EDL moves toward the negative electrode due to the
electrostatic forces. Because of the viscosity dominated flow, the bulk liquid is
propagated by the mobile layer of EDL. An application of electro-osmotic flow is in
the removal of contaminants from underground water resources [34].
Electrophoresis and electro-osmotic flow are both caused by the electrostatic forces
on the wall and EDL. For electro-osmotic flows, the fluid moves relative to a
stationary charged surface whereas for electrophoresis, the charged surface of a
particle moves relative to a stationary liquid. The migration rate of the particles
depends on the electrical properties of the particle in the presence of an electrical
field. An extensively used application of electrophoresis is the extraction of DNA
fragments according to their size [35]. Dielectrophoresis uses a non-uniform
electric field to exert force on the dielectric particles. For manipulation utilizing
this technique, the particle need not to be a charged particle. The magnitude of the
force exerted on the dielectric particle depends on the type of the working fluid,
shape, size, and electrical properties of the particles. Dielectrophoresis has been
widely used for trapping [36] and sorting [37].

c) Optical methods: An optical tweezer uses a focused laser beam. The laser beam
generates a net force on the object that is oriented towards the center of the beam
due to the gradient forces due to optical radiation pressure and traps the object
close to the focal point. This technique was pioneered by Ashkin et. al. [38]. It has
very high precision and has been used for single-cell manipulation [39], sorting [40]
and to measure flow around cilia [41].

d) Acoustics methods: This method can be applied to any suspended particles
with acoustic properties that differ from the fluid properties in which the particles
are suspended. It relies on forming a standing acoustic wave between two parallel
walls of the channel, where one wall is an ultrasonic transmitter, and the other
wall is a reflector. This creates a pressure distribution in the fluid and the particle
gets trapped in the velocity antinodes of the standing-wave acoustic field. Such
techniques have been used to concentrate bacteria [42] and for size-based cell
separation [43].

e) Artificial cilia: Cilia are hairlike projections present on the surface of certain
cells and are primarily used for locomotion and feeding. For example, the network
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of cilia in the respiratory tract helps in sweeping away particles and fluids. Similarly,
artificial cilia are nature-inspired and use the asymmetric motion of the cilia to
induce strong local flow that leads to hydrodynamic forces on particles [44]. This
technique has been employed to transport water droplets [45] and for self-cleaning
applications [46].

f) Hydrodynamic methods: Hydrodynamic traps are used to trap particles at the
stagnation point of the fluid. A stagnation point is a point in a fluid flow field
where the local fluid velocity is zero. This offers high-resolution trapping of single
microscale and nanoscale particles [47]. Also, particles can be manipulated along the
streamlines of the fluid. A streamline is a curve that is instantaneously tangent to the
velocity vector of the fluid flow field. In unsteady flows, i.e. when the flow changes
with time, the streamline pattern changes with time. Recently, further work has
been done on using the streamlines of the flow to manipulate the particles [48–51].
This will be discussed in detail hereafter.

1.3 hydrodynamic methods

Generally, non-hydrodynamic methods, such as those using magnetic fields,
acoustic forces, and electric fields, have complex control mechanisms. These
control mechanisms rely on closely coupled interactions between physical fields
like fluid flow field interaction with the particle properties such as particle
electrical properties, chemical composition, acoustic properties, or refractive index.
Therefore, using only hydrodynamic forcing for manipulating and trapping
micro-particles is an attractive alternative for non-contact trapping particles [47]. In
1934, one of the pioneers, G.I Taylor trapped a drop at the center of the
macroscopic scale four-roll mill. He invented this apparatus to investigate the
deformation of a drop of one fluid in another fluid of the same density [52]. The
diameter and the height of the cylindrical rollers were 3.81 cm and 2.39 cm,
respectively. The drop was unstable along the extensional flow axis in the
horizontal direction, and it would move arbitrarily along the horizontal direction.
The position of the droplet was controlled by varying the roller speed of the right
or left set of rollers. Controlling the position of the droplet by varying the roller
speed was a complex task. In 1986, Bentley and Leal [53] improved the four-roll
mill system to be controlled using a computer. This method keeps the droplet at
the stagnation point, at the center between the four-roll mill. Recently, Schroeder
and co-workers have extensively worked with hydrodynamic methods for particle
trapping and manipulation. This work has led to the development of an automated
four-channel cross-slot device to confine single particles in the device [54, 57–59].

Theoretical work has demonstrated that a sequential assembly algorithm can
sequentially join particles and trap them in a seven-channel device. Using this
technique, particles are arranged in the form of all the letters of the Latin alphabet
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Figure 1.1: Starting from the left side (clockwise) in chronological order: (A) Schematic of the
four-roll mill system developed by G.I. Taylor, used to trap objects with a fluidic stagnation
point that opened up a new field of study aimed at characterizing polymers and cells by
using stagnation point [52]. (B) Schematic of a computer-controlled four-roll mill (2.54 cm
gap between rolls) to investigate the dynamics of a single viscous drop in another immiscible
fluid. The computer control device tracks the disturbance of the trapped particle using a
camera, which is transferred to a feedback system to counter such instabilities by adjusting
the speed of the rolls independently [53]. (C) Schematic showing forces acting on particles
at different positions within the vicinity stagnation point flow. In the compressional axis,
the particle experiences an attractive force towards the stagnation point and a repulsive
force in the extensional axis. The particle positioned at the stagnation point has a zero net
force [54]. (D) A numerical sequential assembly algorithm was demonstrated to sequentially
join particles trapped in a seven-slot channel microfluidic device to arrange particles in the
form of Latin alphabet "I" in 2-D [55]. (E) Schematic of the six-channel cross-slot with relative
magnitude and direction of the flow rates for generating the streamline topologies where
two stagnation points are visible. Snapshots demonstrate the manipulation of the paths of
two 2.2 mm beads to trace the letter "I". The yellow line is showing the spatial history of
both particles [56]. (F) Time history of a 250µm bead during an experiment in a Hele-Shaw
cell, where the flow was manipulated by controlling the flow rate of two ports (marked in
green color) out of four ports and a uniform flow directed from bottom to top direction of the
page [48]. (G) Schematic design of the microfluidic device similar to Stokes trap. However,
this device uses the streamlines for particle manipulation instead of the stagnation point. The
two stagnation points (magenta and orange triangles) are visible along with the streamlines
in the figure. The image demonstrates manipulating a single particle by moving the particle
along the streamlines to trace the letter "N" using the six inlets at the circumference of the
device. The purple dashed line shows the spatial and time history of the particle [49]. (H) The
device uses multiple inflection points to allow the virtual channel to manipulate the liquid
stream (in blue ink) to specific regions of the flow cell [51].



6 background

C
h

a
p
t
e
r

1

in a 2D device [55]. In this approach, the time-dependent velocity field must satisfy
mass conservation (equation 1.1) and the Stokes equation (equation 1.2).

∇ · u = 0 (1.1)

−∇p + µ∇2u + ρb = 0 (1.2)

R(x)ẋ = M(x) ·Q + F (1.3)

where u is the flow field, p is the pressure , µ is the fluid viscosity , ρ is the fluid
density, b is the volumetric force, x = [x1, x2, ...xN ] is the position of N particles,
Q represents the flow rates of M inlets, F corresponds to the non-hydrodynamic
interaction between particles, Mjk = Kj(x1, x2, ...xN ; ξk), j denotes the particle for

manipulation, ξk is the location of the M inlets (k = 1, 2, 3, ....M), R and Kj depend
on the geometry of the flow cell [60].

Using the linearity of the Stokes equation, the velocity of the particles in the flow
domain varies linearly with the flow rates (equation 1.3) [55]. To calculate the flow
rates for a given desired particle trajectory, the matrix M must be invertible. Thus,
for M to be invertible, the number of independently controlled parameters must be
greater than the number of degrees of freedom of the particle. For a 2D domain,
this implies that at least 2N+1 inlets are required for N particles. Shenoy et. al. [56]
introduced a novel method for trapping particles in the stagnation point of the
fluid flow field, known as the Stokes trap. Using the Stokes trap, they were able to
trap two particles, each in a stagnation point simultaneously, and manipulate their
path using a model predictive control [50], and particle orientation of anisotropic
particles [61]. Recently, Taylor et. al. [51] presented a concept to guide the flow of a
reagent inside a microfluidic flow cell along a reconfigurable trajectory and coined
them as "virtual channels1".

Meanwhile, our previous work has included particle manipulation in a
macroscopic Hele-Shaw cell (300×100×0.5 mm) [48], a circular device (10×0.36

mm) [49] and particle manipulation algorithm [62, 63] to manipulate particle
trajectories using streamlines. In addition, our work has provided insight into a
device that uses hydrodynamic forcing to move the particle in the desired
trajectory.

1.4 objective and scope of the research

The goal of the thesis is to design a microfluidic device that has no real channels
with physical walls, such as Y-junction or T-junction devices, but instead have
"virtual channels". These virtual channels are dynamic, flexible and can be used as
multi-purpose channels on a single device to integrate various operations into one

1 In the meantime, at a conference talk at the American Physical Society (APS) 2018, I coined the exact
phrase in my abstract and the conference talk [62].
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single chip. This approach can significantly improve the functionality of a single
device by transporting the particle or cell to the desired locations. In this work,
hydrodynamic manipulation is used to create such virtual channels. Such a device
benefits from a priori particle path prediction that provides the user an opportunity
to integrate multiple functionalities such as trapping, separation, or sorting onto a
single device. This approach is also beneficial for rapid prototyping in the early
design stage, as it allows to explore different micro-channel geometries and
determine which one is best suited to a given application. In this work, "virtual
channels" are generated using hydrodynamic manipulation only. Our technique
uses an a priori estimation of the particle trajectory to optimize the particle
trajectory with stable streamlines using an optimization routine. For accuracy and
precision during the experiments of particles following the a priori optimized path,
feedback control is implemented using Proportional Integral Derivative (PID)
control. A PID controller is used to reduce the particle positional error between
experimentally measured and pre-computed particle location by modifying the
flow rate. The current work is restricted to particles in the absence of Brownian
motion. The particles used for manipulation in this work have particle diameters
of tens of micrometers and use water as the working fluid. Furthermore, the
potential flow theory is used to model Hele-Shaw flow and predict the flow field
for manipulating particles. The reasons for this are discussed in the next section.

1.5 hele-shaw flow cell - an introduction

The Hele-Shaw flow cell is named after its inventor Henry Selby Hele-Shaw
(1854–1941), who was an English mechanical and automobile engineer. He
developed several important inventions such as variable-pitch propeller, streamline
filters, and the Hele-Shaw flow cell [64]. Hele-Shaw flow is a laminar flow between
two parallel plates. The two plates of length l and width w are separated by a
distance h along the z-direction (see Figure 1.2). The Hele-Shaw condition only
applies when the in-plane dimension l is much greater than the channel height h
i.e. l � h. The Hele-Shaw condition becomes valid at an in-plane distance of ∼ h
from the boundary of the flow domain. The velocity profile is parabolic in the
z-direction due to the pressure gradient in the (x,y) plane:

u = − 1
2µ

(h− z)z∇p with: 0 ≤ z ≤ h, (1.4)

where u is the velocity field in the (x, y)- direction, h the channel height, z the
coordinate along the wall-normal direction, µ the viscosity and ∇p the pressure
gradient. From equation 2.1, the velocity field u can be fully determined from the
depth-averaged velocity field. A simplified notation is used here, and we refer to u
= (u,v) as the two-dimensional depth-average velocity field in the (x,y)-plane. For
a Hele-Shaw cell, the depth-averaged velocity field u is a potential flow, and the
velocity potential can be identified as the pressure field; see equation 1.4. Assuming
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Figure 1.2: Schematic of a Hele-Shaw cell with the length l, width w, and height h. The flow is
uniform in the x-direction and has a parabolic distribution over the height in the z-direction.
The depth-averaged velocity in the x-direction is denoted as u.

the depth-averaged velocity field to be a potential flow, one can further deduce the
depth-averaged velocity field from the direction field as the velocity field.

In the past, the Hele-Shaw flow cells have been extensively used to visualize
flow patterns using dye injection and hydrogen bubbles around a cylinder or an
airfoil. It has been an essential tool in providing qualitative insight, establishing
flow models as a basis for mathematical models, and explaining fluid motion. In
this thesis, the flow cell is designed such that the length of the flow cell is larger
than the width of the flow cell. Moreover, the width of the flow cell is an order of
magnitude larger than the channel height. Thus, the Hele-Shaw approximation of
the flow field is valid. Hence, this thesis uses the Hele-Shaw approximation to
develop a mathematical model that uses time-varying streamline patterns for
various applications such as trapping, sorting, and separating particles. A
cautionary note: the parabolic flow profile obtained from the Hele-Shaw
approximation is valid in a stationary flow. The Womersley number (defined as
Wo = h

√
2π/νT, where h is the channel height, ν is the kinematic viscosity, and T

is the time scale of the oscillation) is used to determine the time scales below
which the flow has not fully developed into a parabolic flow profile. A parabolic
flow profile can be assumed for time scale T such that Wo � 1. Given the channel
heights and the fluids used in this thesis, the parabolic profile is distorted for time
scales ≈ 0.8 seconds. For laminar flow, L = 0.05 · Re · h, where L is the entrance
length, Re = uh/ν is the Reynolds number and u is the flow velocity in x- or
y-direction, so for the Re (≈ 0.03) used in the experiments described in the thesis,
L is negligible.

1.6 outline of the thesis

The following four chapters of this thesis are divided as follows. In Chapter 2, a new
measurement technique, Psi-PIV, is introduced. It was developed to mitigate certain
problems related to the measurement of unsteady flow in microfluidic devices. The
algorithm is explained and validated by comparing it with the simulated PIV data.
The velocity field corresponding to the flow around a cylinder and a developing
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Rankine half-body (i.e. superposition of uniform flow and source flow in a potential
flow) are studied and assessed using the Psi-PIV and PIV algorithms.

The development of the a priori particle manipulation algorithm and the
experiments are detailed in Chapter 3. The device is a Hele-Shaw cell with
multiple ports which are used to inject or extract small volumes of the working
liquid. First, the device design is validated by comparing the location of stagnation
point of the Rankine half-body obtained from the experimentally measured data
with the location obtained from COMSOL simulations and from a potential flow
solver. Secondly, the characteristics of the particle manipulation algorithm are
assessed numerically. Furthermore, experiments are performed with particles in
the microfluidic device for different test cases such as single-particle deflection,
single-particle trapping, moving two-particles away from each other, bringing two
particles close to each other and switching two particles.

In Chapter 4, a Proportional–Integral–Derivative (PID) control loop is
introduced to improve the repeatability and accuracy of the above-mentioned
manipulations. The device design and the a priori use of a particle manipulation
algorithm remains unchanged. The PID controller is used to correct the spatial
error between the particle position that is determined from the a priori particle
manipulation algorithm and the experimental particle position. The PID controller
is tuned by an optimization routine where the cost function finds an optimal value
of PID controller constants that are valid for all the desired manipulations. The
benefit of a feedback loop is assessed for single-particle experiments by comparing
with the particle position error from the no-feedback test cases. Moreover, an
additional investigation with pollen grain is done, where a pollen grain is
randomly selected and trapped for a pre-defined duration.

The work is concluded in Chapter 5, where the conclusions from the thesis are
presented, and an outlook on possible future research in the field of hydrodynamic
flow manipulation is discussed.





C
h

a
p
t
e
r

2

2
P S I ( Ψ ) - P I V: A N O V E L F R A M E W O R K T O S T U D Y U N S T E A D Y
M I C R O F L U I D I C F L O W S

In microscopic particle image velocimetry (micro-PIV), correlation averaging over multiple
frames is often required, leading to a loss in temporal resolution, therefore limiting the
measurement accuracy for unsteady flows. Here, a new PIV method is presented that is
suitable to study steady and unsteady laminar flows between parallel plates (i.e. Hele-Shaw
flow), which is a standard flow configuration in microfluidic applications. Our method
reduces the effective seeding density and yields similar if not higher signal-to-noise-ratio
(SNR) compared to conventional micro-PIV. This algorithm is termed as Ψ-PIV. Ψ-PIV
requires a much smaller number of frames to reach the same SNR compared to the widely
used correlation averaging method. This leads to a significant improvement of the temporal
resolution. The Ψ-PIV algorithm is used in an experimental investigation of steady and
unsteady flows in a Hele-Shaw cell. Our experiment shows that Ψ-PIV reduces the number
of required frames by 8 times and 30 times compared to the frames required by conventional
PIV for steady and unsteady laminar flow. In this study, PIV and Ψ-PIV use a single-pass
cross-correlation to present the underlying difference between the two approaches.

This chapter is based on: A. Kislaya, A. Deka, P. Veenstra, D. S. W. Tam and J. Westerweel. Psi-PIV: a
novel framework to study unsteady microfluidic flow. Exp Fluids 61, 20 (2020).

11
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2.1 introduction

Microscopic particle image velocimetry (micro-PIV) differs from conventional PIV
in two main aspects [65–67]: (i) the image density is usually much lower, NI ≤ 1

and (ii) the entire measurement volume is illuminated, rather than a thin light
sheet. The low image density is usually compensated by performing
correlation-averaging [68], i.e. the spatial correlation for a given interrogation
domain over several image pairs. Typically, the correlation-averaging over 10-20

frame pairs is required to reach a sufficient effective image density of around 10

[68, 69]. In addition, the use of volume illumination also increases the number of
frames NF required. In correlation-averaging, NF helps in building up the spatial
correlation by the superimposition of the correlation data from the image density
of each pair multiplied by the number of frames in the recording sequence. A
volume illumination implies that the measurement domain is limited by either the
depth-of-correlation (DOC) [70] or the physical edges of the measurement section.
When the depth-of-correlation is small with respect to the depth of the flow

(a) Uniform flow (b) Poiseuille flow

Figure 2.1: Correlation average over the channel height h for 50 frames for uniform flow
and Poiseuille flow. The synthetic images are created with particle image size, dτ = 3 pixels,
maximum in-plane displacement ∆Xm = 8 pixels.

domain, there is a little variation in the velocity of the tracer particles (other than
the variation due to Brownian motion). However, when the depth-of-correlation is
not small with respect to the depth of the flow domain, or even exceeds the
dimension of the flow domain, there is a substantial variation of the tracer
velocities [71]. Such is the case for the flow in a Hele-Shaw cell, for which the
distance between the two flat plates h is smaller than the depth-of-correlation. In
this case, the displacement-correlation peak (see Figure 1) is substantially
broadened because of the Poiseuille flow profile between the plates. In the figure,
displacements ∆X are normalized by the maximum centerline displacement ∆Xm.
In addition, the detection of the displacement peak leads to a bias in the measured
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velocity [71]. As a consequence, a much larger number of frame pairs is needed to
obtain a sufficient signal-to-noise-ratio to detect the displacement-correlation peak.
In the case of a Hele-Shaw flow cell where the measurement volume includes the
full height of the cell and the variation of the velocity spans the full parabolic
velocity profile, it is necessary to use much more than 100 frame pairs for the
correlation-averaging [72]. This makes it very difficult to apply micro-PIV to
unsteady microfluidic flows.

In conventional micro-channels the channel width is on the order of the channel
height, but in this work, the focus is on microfluidic flows where the width of the
channel is much larger than the channel height. In these cases the Hele-Shaw
condition applies. Such test cases are of interest when studying particle
manipulation in a microfluidic chip [56, 73], density-driven flows [72, 74–77], flow
behavior of power-law fluids [78], magnetic-field-driven instabilities [79],
Marangoni effects [80, 81] and flow around a cell [82, 83]. In practice, for
micro-PIV measurements with a large field-of-view, the DOC is also large [71]. For
small DOC, only the particles in the thin measurement plane are in focus and
hence more image frames are required to get an effective image density of 10-20

particles. In this chapter, a novel approach is presented that makes it possible to
obtain reliable results for the estimation of the flow field in a Hele-Shaw cell-like
geometry, for which the velocity of the tracers varies significantly over the depth of
the measurement domain.

It was theoretically shown by Ho and Leal [84] that the particles migrate to an
equilibrium position at a migration length, X = 36πh(h/a)3/Re and Re = uh/ν,
where h is the channel height, a is the particle radius, u is the velocity in
length-wise direction and ν is the kinematic viscosity. For a generic microfluidic
condition: h = 100 µm, a = 10 µm, Re = 1, the migration length required for the
particles to reach equilibrium is approximately 11 m. This makes it challenging to
manipulate the particles into their equilibrium position. The Ψ-PIV method
requires less than 10 frame pairs, even considering the effect of uniform particle
concentration in the Poiseuille flow. The method is explained in section 2.2, while
in section 2.3 the method is validated using synthetic data. In section 2.4, an
experimental validation of Ψ-PIV is presented for the flow around a 2D cylinder in
a Hele-Shaw cell. Section 2.5 details the experimental setup and results from an
investigation of unsteady flow around a developing Rankine half-body. The
advantages and limitations of our method are discussed in section 2.6.

2.2 Ψ-piv principle & work-flow

A laminar flow is considered between two parallel plates, i.e. a Hele-Shaw flow. The
two plates of length l and width w are separated by a distance h along the z-direction
(see Fig. 2.2). The Hele-Shaw condition only applies when the in-plane dimension l
is much greater than the channel height h i.e. l � h. Hele-Shaw condition becomes
valid at a in-plane distance of ∼ h from the boundary of the flow domain. The
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uniform in the x-direction and has a parabolic distribution over the height in the z-direction.
The depth-averaged velocity in the x-direction is denoted as u.

velocity profile is parabolic in the z-direction due to the pressure gradient in the
(x,y) plane.

u = − 1
2µ

(h− z)z∇p with: 0 ≤ z ≤ h (2.1)

where u is the velocity in the x, y- direction, h the channel height, z the
wall-normal location in the channel, µ the viscosity and ∇p the pressure gradient.
From equation 2.1, the velocity field u can be fully determined from the
depth-averaged velocity field. A simplified notation is used to refer to u = (u,v) as
the two dimensional depth-average velocity field in the (x,y)-plane.

Our approach is based on the observation that for a Hele-Shaw flow, the flow
direction can be established from fewer frames than the averaged flow magnitude.
This is because the flow in Hele-Shaw flow is two dimensional and at a given (x,y)
location, the direction of the velocity of a particle is independent of its location along
the z-axis; see equation 2.1. The flow direction can be estimated at each interrogation
position to construct the direction field of the velocity field and in turn, used to
reconstruct the instantaneous streamlines. For a Hele-Shaw cell, the depth-averaged
velocity field u is a potential flow and the velocity potential can be identified as the
pressure field; see equation 2.1. Assuming the depth-averaged velocity field to be
a potential flow, one can further deduce the depth-averaged velocity field from the
direction field as the velocity field.

In the following, the work-flow used to reconstruct the depth-averaged velocity
field using the Ψ-PIV algorithm is described. Fig. 2.3 represents the flow chart
associated with Ψ-PIV and is compared to conventional micro-PIV. Similar to
conventional PIV, single frames are divided into interrogation sections and image
pairs are used to compute the cross-correlation function over each interrogation
window. Unlike conventional PIV, the correlation map is not used to find the
displacement-correlation peak but instead to find a direction-correlation peak. For
the directional-correlation map, single frames of PIV images are divided into
interrogation sections as shown in Fig. 2.3 and the image pairs are used to
compute the ensemble correlation averaging [68] of fewer frames. Next, for each
angle, all the values of the averaged-correlation map are summed up along a line
with its origin fixed at the center of the correlation map. The length of the line is



C
h

a
p
t
e
r

2

2.2 Ψ-piv principle & work-flow 15

Figure 2.3: The principal difference between the micro-PIV and Ψ-PIV algorithms. In micro-
PIV, correlation-averaging of a large number of frames is taken to estimate the velocity field
which is shown by solid arrows. In Ψ-PIV, the local direction Θ of the flow is estimated
from fewer frames. The direction of the flow is shown as the unit length arrows for each
interrogation window. The red lines show streamlines that are determined by advecting
virtual particles along the measured directions. The stream function values are obtained by
nearest neighbor interpolation of streamlines and are assigned to the center location of each
interrogation area (marked as black circular symbols). The velocity marked as solid arrows
is calculated from the spatial differentiation of the stream function values with respect to the
distance between two consecutive interrogation areas.

identical to the half-length of the correlation map. It is done by retrieving the
intensity values of pixels from the correlation-averaged map along the line. The
summed-up value along the line is calculated for every angle Θ from -180

◦ to 180
◦.

The pixel intensity value along the line for each angle is calculated by interpolation
from the nearest pixel values of the correlation-average map. The angle
corresponding to the highest peak of the directional correlation gives the most
plausible direction of the flow in that interrogation window. The measured flow
direction field is used to deduce the depth-averaged velocity field. When the
velocity becomes zero, the correlation will have a single peak at the origin of the
correlation, and it is no longer possible to determine an unambiguous flow
direction. In our correlation analysis this situation is detected and labeled
accordingly. In practice this is mitigated by the fact that a zero velocity is only
encountered on stagnation points or separation points, where streamlines end (or
would originate). These are limited to small areas in the flow and can be identified
from the surrounding streamlines. It is noticed that the ambiguity in the
determination of flow direction is least if the average particle image in-plane
displacement is around 1/4th of the interrogation window size. Previous studies
have shown the particle displacement gradient to reduce the amplitude of the
correlation peak and broadens its width. At low effective image density Neff, the
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broadened correlation peak splits into a series of multiple aligned peaks, which is
beneficial for our method as the sum of pixel values of more peaks increases the
probability of finding the true flow direction. First, instantaneous streamlines are
computed from the direction field using a 4th order Runge-Kutta integration
scheme. Here the flow at the inlet is considered to be uniform, and determine the
directional stream function. The value of the stream function at the center point of
each interrogation window can be deduced from the (instantaneous) streamline
pattern. Assuming a uniform flow at the inlet u = (U,0), the values of the stream
function are determined for each streamline at the inlet. To assign the inlet stream
function values to each point in the image domain, the streamlines at the inflow
side of the image should preferably be parallel to each other i.e. uniform flow. In
that case it is trivial to assign a value to each of the streamlines. In the case of a
non-uniform inflow it would generally be possible to determine an appropriate
stream function. For example, the flow velocity and the stream function from a
source enclosed by the walls can be computed using a panel method. In general,
this does not represent a significant complication, because, in most practical
microfluidic application of Hele-Shaw flows, the inflow is generally uniform. The
stream function (Ψ) in the rest of the domain is calculated at the center of each
interrogation window by interpolation from the nearest streamline value. Finally,
the velocity components in x- and y-direction are deduced from the stream
function:

u =

(
∂Ψ
∂y

)
, v = −

(
∂Ψ
∂x

)
(2.2)

It is expected that this method will reduce the data acquisition time required to
measure the displacement field with the desired accuracy. This approach is
validated with simulations using synthetic images and implement Ψ-PIV
algorithm for velocity measurements in an experimental study of unsteady
Hele-Shaw flows.

2.3 proof of concept using synthetic data

2.3.1 generation of synthetic data

Synthetic images were generated in order to validate the Ψ-PIV algorithm described
in the previous section. Image sequences represent a uniform flow at the inlet, along
the span-wise y-direction, and a parabolic Poiseuille flow along the z-direction. The
main objective is to assess the reliability of Ψ-PIV to estimate the velocity field.
In the synthetic data, the Brownian motion of the particles and the background
noise from the image sensor are not take into account. The effectiveness of the Ψ-
PIV algorithm is demonstrated in the Poiseuille flow with a uniform distribution
of tracer particles. The tracer particles are uniformly scattered in the channel across
the channel height and inserted at random positions at the inlet in order to keep the
image density constant across all frames. The defocusing effect in size and intensity
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of the particle images are not modeled in the synthetic data because the focus is on
the measurements where the DOC is larger than the channel height. All images are
generated with an image size of 1024×1024 pixels with 8-bit grey level quantization.
The particles in the synthetic images are well resolved and have a mean particle
image diameter of 3 pixels. The center-line displacement for the Poiseuille flow
profile was kept at 8 pixels. The seeding density NI was kept as 6 particles on
an average in a 32×32 pixel interrogation window. Synthetic images are processed
using a single-pass FFT cross-correlation with 32×32 pixel interrogation windows
and without overlap.

The flow is considered uniform at the inlet and in the x-direction. Fig. 2.4
represents the contour plot of the cross-correlation function and for a particular
interrogation window the corresponding correlation function and
directional-correlation function. Fig. 2.4a,d,g,j represent the correlation function for
the same interrogation window computed using a decreasing number of frames.
Using 1000 frames, the correlation map displays low noise and presents a single
strong signal peak; see Fig. 2.4a. The location of the maximum peak corresponds to
the depth-averaged flow velocity because of the convolution of particle image size
with the sampled velocity probability density function. As mentioned in the
previous section, this correlation peak is broadened because of the displacement
gradient effects; see Fig. 2.4b. Fig. 2.4c shows the directional-correlation of the
correlation map for correlation-averaging of 1000 frames. In this case, the highest
peak is at 0

◦ because of the strong signal peak in the correlation map (see Fig. 2.4a).
The directional-correlation peak is not broadened because the former only
determines the direction and is not affected by the displacement gradient of the
flow. As discussed before, a higher image density NI is achieved in micro-PIV by
correlation-averaging of several image frames NF. Hence, the noise level (ratio of
second highest peak to the highest peak of the correlation map) increases with a
decrease in NF. In this case, the SNR in the correlation map decreases because of
erroneous correlation-averaging between the moving particles and particles
attached to the wall. The correlation map clearly shows that the noise due to
random correlations increases monotonically as the number of frames reduces
from 1000 frames (Fig. 2.4a) to 50 frames (Fig. 2.4d), 10 frames (Fig. 2.4g) and 5

frames (Fig. 2.4j). For a larger number of frames, superposition of the
spatial-correlation from each frame is large enough to determine the
depth-averaged particle image displacement as shown in Fig. 2.4b. For less than 50

frames (Fig. 2.4e), the peak splits into a chain of multiple aligned peaks, see
Fig. 2.4d and 2.4g, leading to the erroneous measurement of the displacement. This
happens when the particle image diameter dτ is smaller than the amplitude of the
displacement gradient in the flow. For 10 and 5 frames, no clear peak is
determined because of the strong measured random correlations as shown in
Fig. 2.4h and Fig. 2.4k, respectively. Since directional-correlation is determined by
integrating the correlation map values at each angle Θ from -180

◦ < Θ ≤ 180
◦, it

can be robustly computed for a correlation map with higher random noise. For 50

frames (see Fig. 2.4d) and 10 frames (see Fig. 2.4g), all the small peaks within the
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Figure 2.4: Contour plot, corresponding correlation-averaging and the directional-correlation
over frames: 1000 (a,b,c), 50 (d,e,f), 10 (g,h,i), 5 (j,k,l); dashed gray line in (e,h,k) shows
the correlation function of well resolved result for 1000 frames for qualitative comparison.
The normalized cross-correlation magnitude is denoted by R(s)/Rmax. For cross-correlation
functions, the data within the range of -20 pixels to 20 pixels is only shown for better
visualization.
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Figure 2.5: Valid detection probability for the displacement correlation peak as a function of
the mean number of the particles within an interrogation window and compared with the
result of uniform displacement.

chain of aligned peaks contribute to the peak in the directional-correlation, which
can be clearly identified, see Fig. 2.4f and 2.4i. For fewer frames than 10, Fig. 2.4l
shows that the directional-correlation peak can no longer be determined because
of the strong measured random correlations.

2.3.2 valid detection probability

Next, the valid detection probability φ is computed for varying effective seeding
density, and compare Ψ-PIV to other PIV approaches reported in the literature, see
Fig. 2.5. The valid detection probability is defined as the probability of the highest
correlation peak which corresponds to the true mean displacement. [85]
demonstrated that the probability of determining the true displacement peak
improves as the average number of particle pairs in the interrogation area
increases. This average number of particles within the interrogation area is
represented by NI FI FO where NI is the image density for a single image pair, FI is
the in-plane displacement of particles in an image pair and FO is the out-of-plane
motion of the particles. For uniform flow, conventional PIV requires a value of
NI FI FO ≈ 8-10 particles to reach a valid detection probability greater than 95%
[86],[67]. However, in our case, NI FI FO is not an accurate measure of the effective
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image density Neff because the flow in the channel is two dimensional and volume
illumination is used. Therefore, the loss of correlation is not due to the
out-of-plane component and FO= 1. Rather, it is due to the strong velocity gradient
along the z-direction of the Poiseuille flow, and the loss of correlation is better
represented by the in-plane displacement gradient F∆ [87]. In addition, NF, defined
as number of frames is used to average the correlation data from each image pair,
to improve the spatial correlation. Therefore, Neff = NF NI FI F∆ is used as the
effective seeding density to characterize the valid detection probability. Fig. 2.5
represents the valid detection probability for the synthetic data with different
methods. Ehyaei et. al. [72] reported a similar figure for their method using 2

frames from a sequence of images (NF = 2). Therefore, NF = 2 is kept in Fig. 2.5 for
consistency in the comparison between methods. For a uniform flow with a
uniform flow profile along z-direction (i.e. F∆ = 1), the probability of finding the
true displacement-correlation peak approaches 0.95 for NI FI F∆ ≈ 8. For a
parabolic velocity profile along the z-axis, a much higher effective image density is
required to reach a valid detection probability of 0.95 . In Fig. 2.5, the valid
detection probability of the maximum in-plane displacement ∆Xm for a parabolic
profile, shows poor performance. This is due to the particle size biasing effect,
where the maximum peak is located at 1 pixel less than the true displacement
value. Ehyaei et. al. [72] showed that a higher valid detection probability can be
reached. This however comes at a price of decreasing the spatial resolution. They
[72] considered peaks at the locations of the true maximum displacement (∆Xm), 1

pixel less than the maximum displacement (∆Xm − 1) and 2 pixels less than the
maximum displacement (∆Xm − 2) to compute the signal-to-noise ratio. Using this
methodology, they reached a valid detection probability of approximately 0.94 at
NI FI F∆ equal to 100, see Fig. 2.5. This result was obtained in their investigation
using synthetic data (∆Xm = 15 pixels, dτ = 4 pixels) for a flow profile along the
channel height. The algorithm developed by Ehyaei et. al. [72] is applied to our
synthetic images and computed the associated φ. Similar values for φ are reached
in our synthetic data; see Fig. 2.5. In our case, the valid detection probability curve
is slightly higher reaching 0.95 for Neff = 30. This is because the displacement
gradient in our synthetic data was not as high as compared with the algorithm
developed by Ehyaei et. al. [72]. Finally, Ψ-PIV is applied where the valid detection
probability approaches 1 for a much lower effective seeding density (Neff of 20

particle image pairs) because only the direction of the flow needs to be determined.
The valid detection probability of 0.95 is reached with Neff = 17; see Fig. 2.5.

The performance of Ψ-PIV is further characterized as a function of the
interrogation area and the number of frames. Since the interrogation window size
was kept constant at 32×32 pixels throughout the analysis done in Fig. 2.5, the
valid detection probability of Ψ-PIV as a function of the interrogation area for the
same synthetic data is studied; see Fig. 2.6. As expected, the valid detection
probability exceeds 0.95 when there are at least 22 particle image pairs in the
interrogation area. The number of frames NF was equal to 2 in the analysis shown
in Fig. 2.5. Hence, the minimum number of frames is determined that is required



C
h

a
p
t
e
r

2

2.4 steady flow around a 2d cylinder 21

1
6
x1

6

3
2
x3

2

4
8
x4

8

6
4
x6

4

9
6
x9

6

1
2
8
x1

2
8

0

0.2

0.4

0.6

0.8

1

Interrogation window (pixels)

va
lid

de
te

ct
io

n
pr

ob
ab

ili
ty

(φ
)

PIV:uniform displacement
Ψ-PIV: parabolic displacement

Figure 2.6: Valid detection probability as a
function of interrogation area for synthetic
data with NI = 6. The solid line represents
uniform flow result from [86].
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Figure 2.7: Valid detection probability as
a function of the number of frames for
synthetic data with NI = 1. The solid line
represents uniform flow result from [86].

to reach a valid detection probability of 0.95 by Ψ-PIV. The valid detection
probability was calculated for synthetic images with similar properties as used
before, but with lower seeding density (less than about 1 particle image on average
in a 32×32 interrogation window). This would mimic severe particle loss in the
flow domain because of particle clogging at the inlet or particles getting attached
to the channel wall. Fig. 2.7 shows that if the interrogation area is 32×32 pixels
then a minimum of 50 image frames are required to have a valid detection
probability of 0.95. This translates here to approximately 50 particle images in an
interrogation area. In this case, the higher image density requirement could be the
result of having less than about 1 particle image on average in an interrogation
window.

The performance of the Ψ-PIV algorithm is characterized with separate
experimental setups investigating two different flow cases, namely the flow
around 2D cylinder and a Rankine half-body. The details of the experiments are
described below.
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Figure 2.8: Experimental test setup with
all the required components. On the top
right corner the schematic of the Hele-
Shaw cell (l = 300 mm, w = 100 mm,
h = 500 µm) is shown with the location of
the cylinder (g = 180 mm) and the inflow
direction from three inlet holes to yield
an depth-averaged uniform flow u along
the transverse direction of the cell. The
diameter of the 2D cylinder is 60 mm. The
velocity at the surface of the 2D cylinder
along the x-axis is denoted as ux.

2.4 steady flow around a 2d cylinder

2.4.1 experimental setup

In the first measurement, the Hele-Shaw cell is built from two PMMA plates of
length l = 300 mm and width w = 100 mm, see Fig. 3.1. The two plates are
separated by spacers height of h = 500 µm and are clamped on the edges to keep h
constant throughout the channel length. A cylinder with radius rcyl = 30 mm and
thickness h = 500 µm is placed at the center of the channel at a distance
g- = 180 mm from the inlet; see Fig. 3.1. Syringe pumps (Cetoni neMESYS) were
used to generate a pressure-driven flow with a centerline velocity of u = (0.06

mm/s, 0) which yields a gap based Reynolds number Re = 0.034. The working
fluid was water, seeded with polystyrene microspheres with a mean particle
diameter of 180-200 µm (Cospheric). Images were recorded with a CCD camera
(LaVision Imager Intense) with a 1376×1040 pixel image format, 6.45 µm pixel
pitch, and 12-bit grey level dynamic range. The camera was equipped with a
Nikon objective with a 35 mm focal length and a magnification factor of 0.20. An
f-stop of 8 was chosen in order to have a depth-of-field of 1 mm, which ensures
that all particles within the channel are in focus. A depth-of-correlation DOC of 10

mm is chosen such that the DOC is larger than the channel height. This also
ensures that all tracer particles are in focus and contribute to the correlation
averaging. A camera exposure time of 2 ms was chosen to allow enough light to
enter the image sensor for clear identification of the particle images. The active
sensor size was cropped to 992×992 pixels to coincide with the flow region. An
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(a) Correlation map: 50 frames
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(b) Directional correlation: 50 frames

(c) Correlation map: 9 frames
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(d) Directional correlation: 9 frames

Figure 2.9: Ensemble cross-correlation for 32x32 pixels interrogation window where the flow
direction was calculated as -43

◦ for 50 averaged images and 9 averaged images. For cross-
correlation maps, the data is shown within a range of -8 pixels to 8 pixels for better qualitative
representation. The directional-correlation in both cases shows the determined flow direction
as -43

◦.

acquisition frequency of 2 Hz was used to capture the average in-plane
displacement of about 1 pixel between two consecutive recordings. To get the
maximum particle image displacement without correlation loss due to excessive
in-plane displacement, a common practice is to keep the particle image
displacement smaller than one-quarter of the interrogation window size [85].
Hence, for the interrogation analysis 8 frames were skipped to increase the velocity
dynamic range (defined as the ratio of maximum to minimum resolvable velocity)
of the recorded data. PIV images were pre-processed to remove the images of the
particles, which were attached to the wall. A moving average filter in time over 9

frames is used to find the local minimum intensity value. This was subtracted from
each frame, which effectively removes the background.
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Figure 2.10: Results of flow around a 2D cylinder in a Hele-Shaw cell. The velocity direction
is from left to right. (a), (b) corresponds to PIV results from correlation-averaging of 217

frames and 9 frames respectively. (c) shows the result Ψ-PIV for the correlation-averaging of
9 frames. The red rectangular domain in (a) is the area which is considerd in Fig. 2.11 and
Fig. 2.12 for quantitative comparison between PIV and Ψ-PIV measurements.

2.4.2 directional-correlation peak identification

The proposed Ψ-PIV approach is robust regardless of the direction of the flow. For
instance, an interrogation window with an arbitrarily chosen flow direction of -
43
◦ from the experimental data of flow around a 2D cylinder in a Hele-Shaw cell

(described in section 2.4.1) was considered for the directional analysis. Fig. 2.9a
represents the correlation map for 50 averaged images, where the broadened peak
is at an angle of -43

◦ with respect to the x-axis. The corresponding normalized
directional-correlation function is shown in Fig. 2.9b. For the same interrogation
window, the top view of the correlation averaged map over 9 images is shown in
Fig. 2.9c. In this case, multiple strong peaks are present in the direction of the flow
i.e -43

◦. The corresponding normalized directional-correlation function is shown in
Fig. 2.9d. For every interrogation window in the image domain, the flow direction
is determined in a similar fashion.

2.4.3 experimental results

Fig. 2.10a,b shows the velocity field obtained from the same experiment by using a
conventional PIV algorithm with correlation-averaging over 217 frames and 9

frames respectively. In both cases, the interrogation windows had a size of 32×32

pixel with 0% overlap. Using 9 frames, the conventional PIV yields an estimate of
the flow velocity that is significantly lower than the actual velocity. The velocity
vectors are not adequately resolved, because the effective image density is
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Figure 2.11: Measured velocity
distribution (marked as the rectangular
domain in Fig. 2.10) from PIV, Ψ-PIV
next to the cylinder and compared
with the theoretical distribution which is
calculated assuming ideal flow conditions.
The yellow band represents the region
where the Hele-Shaw approximation is
not valid (l ≈ h).

insufficient for correlation-averaging. On the central lower side of the 2D cylinder
(see Fig. 2.10b) the flow does not increase and the measurement is inaccurate as a
result of cross-correlation among non-corresponding particle-image pairs. This is a
typical problem with micro-PIV measurements at insufficient image density.
Fig. 2.10c presents the velocity field constructed from the same measurement data
and using our Ψ-PIV algorithm with 9 frames. The measurements are in close
agreement with the PIV results obtained from a correlation-average over 217

frame-pairs (Fig. 2.10a). The velocity field measurement can be compared with the
analytical solution for the flow around a cylinder expected from potential flow
theory. Fig. 2.11 reports the theoretical velocity field in the x-direction at increasing
distance from the cylinder surface along the y-axis and the corresponding
measured data using PIV and Ψ-PIV. The theoretical solution imposes a
no-penetration boundary condition at the surface of the cylinder and allows for a
slip velocity. The velocity on the surface of the cylinder along the x-axis (see
Fig. 3.1) increases to a velocity ux = 2U at the equator of the cylinder. The PIV
result for correlation-averaging over 217 frames shows that the velocity field is in
close agreement with the analytical solution except near the surface of the cylinder.
Close to the surface, the velocity decreases because the Hele-Shaw condition is no
longer appropriate near the wall and the potential flow solution does not hold
because of the no-slip boundary condition. The PIV result for
correlation-averaging over 9 frames clearly under-predicts the flow field due to the
low effective image density. It should be noted that the measured free stream
velocity for PIV with 9 frames is less compared to PIV data with 217 frames. This
is because, with fewer frames, particles that are attached to the wall significantly
contribute to the underestimation of the velocity field. Near the surface of the
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Figure 2.12: Comparison
between the PIV and Ψ-PIV
algorithms with RMS error
as a function of number
of frames (marked as the
rectangular domain in Fig. 2.10).
A solid line of PIV results
for 217 frames is also shown
to characterize the minimum
measurement error with respect
to the reference velocity. The
reference velocity is computed
analytically using potential flow
theory.

cylinder, the velocity measured from conventional PIV with correlation-averaging
over 9 frames is largely erroneous with a difference of up to 37%, owing to the
large in-plane displacement and displacement gradient. The Ψ-PIV result for
correlation-averaging over 9 frames is in agreement with the PIV result for 217

frames. For Ψ-PIV, the difference in measured velocity with respect to the reference
velocity is of approximately 8% throughout the velocity distribution. Ψ-PIV
substantially reduces the requirement in the number of frames necessary for the
correlation-averaging to reach the desired accuracy. The accuracy of Ψ-PIV is
reported in Fig. 2.12 which displays the root-mean square error (RMS error) of the
measured velocity data using PIV and Ψ-PIV in the x-direction at increasing
distance from the cylinder surface along the y-axis (marked as the rectangular
domain in Fig. 2.10). For a particle displacement of 8-10 pixels, PIV with 217

frames has a measurement error of 0.05 pixels or 0.5% of the measured
displacement. The RMS error for PIV reaches 0.05 pixels for the correlation
averaging of 70 frames and remains constant thereafter. With fewer frames, the
RMS error of Ψ-PIV is small compared to PIV, because the flow direction can be
determined from the ensemble correlation averaging of fewer frames. The Ψ-PIV
algorithm reaches a RMS error of 0.05 pixels for the correlation-averaging of 9

frames and subsequently remains stable. Thus, for the same PIV dataset, the
results from the Ψ-PIV algorithm converges with fewer frames (8 times fewer
frames in this experiment) compared to the PIV algorithm. Both the algorithms use
a single-pass cross-correlation to present the underlying difference between the
two approaches.
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2.5 unsteady flow around a developing rankine

half-body

2.5.1 experimental setup

The performance of the Ψ-PIV algorithm is characterized for unsteady flow in a
Hele-Shaw cell. In this second experiment, the Hele-Shaw cell has dimension l = 60

mm and w = 15 mm. The height of the channel h = 350 µm. The flow channel was
made of PDMS using standard microfabrication techniques [88], and the PDMS
layer was bonded to a glass cover-slip using plasma oxidation. The pressure
pumps (Fluigent) were used to generate a uniform inflow with a centerline velocity
u = (0.2 mm/s, 0). A Rankine half-body is generated in the channel through an
additional inlet located at the middle of the channel; see Fig. 2.13. Standard PTFE
Teflon tubing with 1/16" outer diameter and 1/32" inner diameter were used to
connect the Hele-Shaw cell and the pressure pump reservoir. Polystyrene
microspheres with a mean diameter of 20-27 µm (Cospheric) were used as tracer
particles. Images were recorded with a CCD camera with similar specifications as
mentioned in section 2.4.1. The camera was equipped with a Nikon objective with
a 200 mm focal length, a magnification factor of 0.80 and an f-stop of 8. The
computed depth-of-field was 0.8 mm, which ensured that all particles within the
channel were in focus. The depth-of-correlation DOC is 1.7 mm. The acquisition
frequency was 9.8 Hz corresponding to an average in-plane displacement of 2-3
pixels between two consecutive recordings. An unsteady flow is generated in the
channel, that corresponds to the following sequence: (1) a uniform flow from t = 0

seconds to t = 74.4 seconds, (2) a developing Rankine half-body from t = 74.5
seconds to t = 77.6 seconds due to an increasing volumetric flow rate through inlet
1, (3) the flow around a developed Rankine half-body generated by a volumetric
flow rate Q1 = 0.4 ml/min at the inlet 1 from t = 77.7 seconds to t = 240 seconds.
The time interval between t = 66 seconds and t = 80.5 seconds is focused on. This is
the time interval where the flow gradually develops from uniform flow to a fully
developed Rankine half-body. The image processing was done using interrogation
windows of 32×32 pixel with 0% overlap.A moving average filter in time over 9

frames is used to find the local minimum intensity value. This was subtracted from
each frame, which effectively removes the background.

2.5.2 experimental result

Fig. 2.14 compares the streamlines obtained for the same experimental recording
and using the velocity field obtained (1) from PIV using correlation-averaging over
100 frames (Fig. 2.14a,b,c), (2) from PIV using correlation-averaging over 3 frames
(Fig. 2.14d,e,f) and (3) from Ψ-PIV using correlation-averaging over 3 frames
(Fig. 2.14g,h,i). Fig. 2.15 compares the unsteady velocity measured at a given point
using conventional PIV and Ψ-PIV. The experimental results are compared with
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Figure 2.13: Experimental test setup with all
the crucial components. On the bottom left
corner, the schematic of the Hele-Shaw cell (l =
60 mm, w = 15 mm, h = 350 µm) is shown. The
schematic shows the inflow from the inlet hole
with volumetric flow rate Q to yield a uniform
flow along the transverse direction of the cell
and volumetric flow rate Q1 shows the inflow
in the longitudinal axis. The two additional
inlet holes marked as inlet 1 and 2 can be used
to generate a source or a sink.

the analytical solution at the location marked as ‚x‚ in the flow domain (Fig. 2.14).
From potential flow theory, the velocity was calculated using a superposition of
uniform flow and a single source. Similar to the experimental data, the analytical
solution (see dashed line curve in Fig. 2.15) was kept as a uniform flow for the first
74.4 seconds (i.e. frames 1-80). The Rankine half-body was developed by increasing
the strength of the source from t= 74.5 seconds to 77.6 seconds (i.e. frames 81 - 110),
and thereafter the source strength remains constant until the end of the
measurement at t= 80.5 seconds (i.e. frames 111 - 140). At time t = 66 seconds
(frame 1), the uniform flow is captured well by PIV with correlation-averaging over
100 frames (Fig. 2.14a). At t = 75.5 seconds (frame 90), although the streamlines are
continuous, they do not correspond to the true flow behavior. This is because the
temporal resolution is lost due to large number of frames required for the
correlation-averaging. In our experiments, a full Rankine half-body develops in 3

seconds, but the PIV results shown in Fig. 2.14b take the temporal information of
10.2 seconds to have enough effective seeding density to find the velocity vectors.
Here the PIV result is similar to the PIV result of a fully developed Rankine
half-body (see, Fig. 2.14c) because the PIV, in this case, takes particle image
information starting from 75.5 seconds (frame 90) to 83.7 seconds (frame 171). This
means the correlation-averaging also takes 70% of the particle image information
from the fully developed Rankine half-body. At t = 78.5 seconds (frame 120),
Fig. 2.14c shows a fully developed Rankine half-body that also corresponds to the
actual flow because the flow around the developed Rankine half-body is steady for
the entire experiment. The velocity field measurement for correlation-averaging
over 100 frames have low random error but this leads to a notable loss of temporal
information and thus PIV is not able to capture the gradual change in the flow rate
as the Rankine half-body is developing in the flow field. This can be distinctly seen
in Fig. 2.15 from the significant deviation between the PIV measurements and the
theoretical solution. Fig. 2.14d,e,f show the streamlines using PIV velocity fields
computed from correlation-averaging over 3 frames. These streamlines are
discontinuous and in some cases break mid-way. This shows that the velocity
vectors are erroneous due to lower effective image density. The development of the
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Figure 2.14: Images of flow around the development of Rankine half-body: (a), (b), (c)
corresponds to PIV results from correlation-averaging of 100 frames at the measurement
time of 66, 75.5 and 78.5 seconds respectively. (d), (e), (f) corresponds to the results from
correlation-averaging of 3 frames using conventional PIV. (g), (h), (i) shows the result Ψ-PIV
for the correlation-averaging of 3 frames at the measurement time mentioned above. The
‚x‚ mark in (a), (b) and (c) depicts the arbitrarily chosen position which would be used in
Fig. 2.15 for quantitative analysis. The velocity direction is from left to right. The flow appears
to separate along the boundary of the downstream hole. This obstruction is caused by the
tubing, which touched the bottom surface of the Hele-Shaw cell.

Rankine half-body becomes visible from the streamlines in Fig. 2.14e, even though
the measured velocity field is inaccurate. For Ψ-PIV with correlation-averaging
over 3 frames, the streamlines before (at t= 66 s; frame 1) and after (at t= 78.5 s;
frame 120) the fully developed Rankine (see Fig. 2.14g,h) are in agreement with the
streamline results of PIV with correlation-averaging over 100 frames (see
Fig. 2.14a,c). At t= 75.5 seconds (frame 90), the on-set of the Rankine half-body is
clearly visible from the streamlines in Fig. 2.14h. In this case, Ψ-PIV has a temporal
resolution of 0.3 seconds with enough effective seeding density to capture the
gradual change in the flow field. The velocity estimated using Ψ-PIV are in close
agreement with the theoretical solution as the Rankine half-body develops i.e. from
frames 81 - 110; see Fig. 2.15. For Ψ-PIV, the velocity slightly overshoots the
theoretical velocity value for frames 111-130. This may be either due to the control
response of the flow rate sensor for the pressure pump or due to a spurious
direction vector from the Ψ-PIV algorithm or a combination of both. From frame
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Figure 2.15: Velocity measured at the ‚x‚ mark
shown in the previous figure. The figure
shows the time history of flow as uniform flow
(at t = 66 seconds: frame 1) transitioning into a
fully developed Rankine half-body (at t = 77.6
seconds: frame 110). PIV and Ψ-PIV results are
compared with the theoretical solution which
is calculated assuming ideal flow conditions.

131 onward, the results from Ψ-PIV are again in agreement with the theoretical
result.

2.6 discussion

The valid detection probability φ of synthetic data as a function of effective image
density Neff shows that a higher signal-to-noise ratio SNR can be achieved by
Ψ-PIV compared to conventional PIV. Ψ-PIV attains φ = 0.95 at Neff = 15; see
Fig. 2.5. For φ ≥ 95%, the minimum effective image density represented by the
Ψ-PIV algorithm is less than half compared to the valid detection probability
analysis of tracer particles spread uniformly across the channel height using PIV
as shown by Ehyaei et. al. [72]. Fig. 2.11 displays a comparison between PIV and
Ψ-PIV result for the experiment of flow around a 2D cylinder in a Hele-Shaw cell.
The Ψ-PIV result for correlation-averaging over 9 frames is in close agreement with
the PIV result for correlation-averaging over 217 frames. Thus, the temporal
resolution of Ψ-PIV increases by a factor of 25 compared to conventional PIV.
Fig. 2.15 shows that for an unsteady flow, conventional PIV is unable to measure
the velocity accurately because correlation-averaging is required over a large
number of frames corresponding to a time interval greater than the time scale of
the flow. This makes it very challenging to measure the flow field using
conventional PIV for unsteady flows. For such flows, Ψ-PIV can obtain higher
temporal information compared to conventional PIV for the same number of
frames; see Fig. 2.15. Although Ψ-PIV is an improvement over the current
correlation-averaging technique, it still requires an effective image density of
around 20 particle image pairs. This means that the average effective seeding
density needs to be around 20 particle image pairs in 32×32 pixels interrogation
window to deduce the velocity field from the directional-correlation over two
consecutive frames. If the image density NI is lower than 20, then the
correlation-averaging over a few frames is required to reach effective image
density (Neff = NF NI FI F∆) of 20.
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2.7 conclusion

This chapter describes a new algorithm to determine the velocity fields in a
Hele-Shaw cell. This method reduces the minimum required effective image
density (Neff = NF NI FI F∆) compared to the conventional micro-PIV technique
using correlation-averaging. This increases the temporal resolution that can be
achieved by Ψ-PIV compared to conventional PIV. Ψ-PIV is therefore attractive to
measure unsteady flows for microfluidic applications. The major difference lies in
the fact that Ψ-PIV requires a lower image density to determine the flow direction
for each interrogation window compared to the conventional method. Once the
flow direction is determined, the two dimensional stream function is used to
extract and reconstruct the magnitude of the velocity field. Synthetic image
evaluation for uniform particle concentration shows that an effective image density
of 20 particle image pair is satisfactory to measure the velocity field. This is 5 times
lower compared to the required image density in the measurement of the velocity
gradient within the correlation-depth [72]. For steady measurement case of the
flow around a 2D cylinder in a Hele-Shaw cell, the Ψ-PIV algorithm using
correlation-averaging over 9 frames, yields similar results as the PIV algorithm
using over 70 frames for the single cross-correlation approach. Moreover,
experiment results of a developing Rankine half-body for Ψ-PIV can reach
significantly higher temporal resolution. This reduction in the number of frames
for the correlation-averaging in Ψ-PIV would enable a substantial improvement of
the temporal resolution in case of time-varying microfluidic flows. In addition, the
minimum image density required to determine the direction field could be further
improved with the use of advanced PIV processing steps such as multi-grid and
iterative windows approach [89].
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PA RT I C L E M A N I P U L AT I O N

The manipulation of particles and droplets has applications in diverse fields of engineering.
Generally, manipulation activities are realized in microdevices which have a fixed design
tailored to a specific task, making multiple analyses of a wide range of specimen- from
biological to chemical specimens unfeasible on a single device. We designed a Hele-Shaw
flow cell with "virtual channels" to address this issue. In our device, uniform flow in the
flow chamber and three inlets perpendicular to the flow chamber are used to manipulate
particle. These three inlets can inject or extract fluid in the flow cell to deviate the
streamlines. This device allows us to integrate multiple functionalities such as particle
trapping and separation onto a single device. Since the depth-averaged velocity over the
channel in a Hele-Shaw cell is irrotational, we use potential flow theory to predict the flow
field for manipulating particles. The linearity of potential flow theory is ideally suited to the
fast computation times required by our application. In this chapter, a Hele-Shaw cell is
characterized for particle manipulation applications. An optimized particle trajectory is
determined a priori using an optimization routine which calculates a particle trajectory
that has small flow rate bounds and least variation in the flow rate from the pump. This
optimization routine is called as a priori particle manipulation algorithm. The results in
this chapter show that the experimentally determined particle trajectories in this device are
in close agreement with the trajectories computed with the a priori particle manipulation
algorithm, which relies on the potential flow simulations.

This chapter is part of the manuscript to be submitted

33
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3.1 introduction

A microfluidic device functionality relies on elementary microfluidic
manipulations, such as identification, selection, separation, and mixing of particles,
biological or chemical specimens. These manipulations of particles have been
achieved in microfluidics by developing various passive techniques such as
micro-channel geometry and active techniques using laser fields, magnetic fields,
acoustic forces, electrical fields, artificial cilia, and hydrodynamic forces, as
discussed previously in section 1.3.

A significant challenge in particle manipulation activity is to develop a versatile
device that has a generic, simple design and is capable of carrying out various
tasks. Such a device could benefit from a priori particle manipulation algorithm that
provides a user the ability to integrate multiple functionalities such as trapping,
separation, or sorting onto a single device. In the early prototyping design phase,
such a device is beneficial to see which type of micro-channel geometry is best
suited for the desired application.

Our previous work in particle manipulation in a macroscopic Hele-Shaw cell
(300×100×0.5 mm) [48] and in a circular device (10×0.36 mm) [49] to manipulate
particle trajectories using streamlines were a starting point to develop further a
microfluidic device that uses the hydrodynamic streamlines to manipulate particles
under the influence of uniform flow using sources (inject fluid) and sinks (extract
fluid).

In this chapter, a Hele-Shaw flow cell is designed that has "virtual channels". The
"virtual channels" are generated with a uniform flow in the flow chamber and
three inlets1 perpendicular to the flow chamber. An a priori particle manipulation
algorithm is developed to determine the optimized particle trajectories while
confining the flow rate bounds and the variation in the flow rate of the
inlets/outlets. In the present device, three inlets are used to either inject or extract
fluid in the flow cell to modify the streamlines in the device. Since the
depth-averaged velocity over the channel in a Hele-Shaw cell is irrotational, the
potential flow theory is used to predict the flow field for manipulating particles.
Different test cases demonstrate the potential of the device: single-particle
trapping, single-particle trajectory deflection, separation of a particle pair, two
particles coming close to each other, and interchanging the position of two
particles. These test cases demonstrate the ability of this device to perform
elementary microfluidic manipulations. The results show that the experimentally
determined particle trajectories and flow rates agree with the corresponding
pre-computed values using the a priroi particle manipulation algorithm.

The design and validation of the flow cell and essential components of the
experimental setup are explained in section 3.2. In section 3.3, the flow rate input
and the time response of the pump for the device are characterized, which helps to

1Please note that in this thesis, the word ’inlet’ is used to refer the aperture of the microfluidic device.
The word ’inlet’ is used interchangeably for both inlet and outlet, where the outlet is defined as an inlet
with a negative flow rate.
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mitigate the bias error from the pump response time. The particle manipulation
algorithm is detailed in section 3.4. In section 3.5, the results from the experiments
for various test cases are presented and compared to the experimentally measured
particle trajectories from the optimized particle trajectories. The performance and
limitations of using pre-computed optimized particle trajectories and the potential
benefits of implementing a feedback loop to calculate the flow rate corrections
based on particle position are discussed in section 3.6.

3.2 experiment overview and flow cell design

validation

3.2.1 experimental setup

A schematic of all the essential components for the experiment is displayed in
Fig. 3.1B. The setup consists of a pressure pump that regulates the pressure in 5

pressure ports. A pressure pump (Fluigent MFCS-EZ) generates the desired flow
rate. These ports are connected to 5 reservoirs that contain the working fluid. The
working fluid used in all the experiments is deionized (DI) water. These five
reservoirs are connected to a flow sensor that measures the volumetric flow rates,
Qi, where i corresponds to the inlets as shown in Fig. 3.1B. For reservoir 4, an
additional reservoir 4

∗ is connected to the device further downstream of the flow
sensor. This is done to avoid any contamination and clogging of the capillaries in
the flow sensor from the particles to be manipulated. Polystyrene fluorescent
microspheres (density: 1gm/cc) with a mean diameter of 212 µm (Cospheric) were
used as the target particles. At the final outlet corresponding to the fifth reservoir,
a back pressure of 25 mbars was imposed to allow net-negative flow. The
Hele-Shaw cell (l= 40 mm, w= 12 mm, and h= 350 µm) in Fig. 3.1D was 3D printed
from clear resin using a FORM 3 3D printer. Images were recorded with a sCMOS
camera (PCO) with a pixel pitch of 6.5 µm. The camera was mounted on a
microscope (Nikon Eclipse Ti) with a 1x objective. The acquisition frequency was 5

Hz corresponding to an average in-plane displacement of 4-6 pixels between two
consecutive recordings. The coordinates of the particles during the experiment are
acquired using an in-house developed LabVIEW program which is used to acquire
the images.

Simultaneous manipulation of N particles requires a minimum of 2N+1 inlets,
where N is the number of particles (2N for movement in x- and y-position and an
additional channel satisfying mass conservation [55]). Thus, for n=2, at least five
(5) ports are required. A schematic of the microfluidic device, which has an inlet
for continuous uniform flow, three holes to inject/extract fluid, and an outlet is
illustrated in Fig. 3.1C. We consider the laminar flow, u, between the two parallel
plates, i.e., a Hele-Shaw flow [90]. The details of the Hele-Shaw flow are discussed
in detail in section 1.5.
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Figure 3.1: (A) Experimental setup with all the required components. (B) Schematic of the
experimental setup shows the microfluidic device connected with reservoirs connected to a
flow rate sensor. A pressure pump drives the fluid through the reservoir using pressurized
air. Reservoir 1, 2, and 3 correspond to inlet 1, 2, and 3, respectively. Reservoir 4 is connected
to an addition reservoir 4

∗ containing particle solution. Reservoir 4
∗ is connected to the

uniform flow inlet. Reservoir 5 is attached to the outlet of the microfluidic device. The flow is
regulated using an in-house developed LabVIEW program. (C) Schematic of the microfluidic
device with the channel length l, width w and height h. The uniform flow is denoted as u. The
flow is parabolic over the channel height in the z-direction. The circles represents uniform
flow inlet (•), inlet 1 (•), inlet 2 (•) and inlet 3 (•). The region of interest, where particle
manipulation is performed, is a square region denoted by lc. (D) The actual 3D printed
microfluidic device is filled with methylene blue-water solution for better visualization of
the flow channel.
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The Hele-Shaw condition is valid when the in-plane length of the flow domain l
is much larger than the channel height h, i.e., l � h. The velocity profile is parabolic
in the wall-normal direction (z-direction), and is proportional to the pressure field
p satisfying Laplace’s equation [91]. The two in-plane velocity components u = (u,v)
in the (X, Y) plane can be described as a potential flow except near the obstacles
where the distance to the object becomes of the order of the plate distance h. The
no-slip boundary condition is imposed at the surface of the obstacle instead of the
tangential-flow slip condition for an ideal flow. As the Laplace equation is linear,
the superposition of any known potential flow solutions provides another valid
solution. Hence, complicated flow patterns can be represented by the superposition
of basic flow patterns.

3.2.2 non-dimensionalization of the flow cell

All length scales are non-dimensionalized using the region of interest characteristic
length scale, lc = 12 mm as shown in Fig. 3.1C. The characteristic time scale tc is
calculated from the characteristic uniform flow uc = (uc,0) and the characteristic
length scale lc i.e tc = lc/ uc. A non-dimensional uniform flow u∗ = (u∗,0) is defined
by the user. The non-dimensional parameters are defined as follows:

X∗ =
X
lc

, Y∗ =
Y
lc

, Z∗ =
Z
lc

(3.1)

l∗ =
l
lc

, h∗ =
h
lc

, w∗ =
w
lc

, Q∗ =
Q
l2
c
· u∗

uc
(3.2)

Here, X, Y and Z are dimensional axes, X∗, Y∗ and Z∗ are non-dimensional axes, l,
w and h are dimensional length, width and height of the flow cell respectively. l∗,
w∗ and h∗ are non-dimensional length, width and height of the flow cell
respectively. Q= [Q1, Q2, Q3] are dimensional flow rates corresponding to inlet 1,
2 and 3 respectively. Q∗= [Q∗1 , Q∗2 , Q∗3 ] are non-dimensional flow rates
corresponding to inlet 1, 2 and 3 respectively. The non-dimesionalized parameters
of the flow cell is used extensively in the calculation of the optimized particle
trajectory using the a priori particle manipulation algorithm discussed in
section 3.4.

3.2.3 source-based panel method

The aft-part of the microfluidic device is modeled using a discrete source-based
panel method [92] to compute the approximate solution for the resultant pressure
forces acting at the surface of the device. The panel method is a well-known
potential flow solver mainly used to analyze flow fields for geometries, such as the
flow around an airfoil or the flow around a cylinder. As the potential flow satisfies
the Laplace equation, ∇2Φ = 0, where Φ is the potential function, the solution can
be constructed as the linear superposition of flow elements such as an irrotational
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vortex, a doublet, a source or a sink to create more complex flows. This method is
used to determine the flow around an arbitrarily shaped body in a two- or
three-dimensional domain with a no-penetration boundary condition on the
surface. The no-penetration boundary condition is imposed at locations on the
surface called the collocation points. The panel method reconstructs the solution as
a superposition of the flow element distributed on the boundary of the domain.
The panel method is a numerical approximation based on dividing the object into
several finite segments called panels. A flow element such as a vortex, doublet,
source or sink is prescribed to the panels. The boundary condition can only be
solved for the collocation point of each panel as long as the panels are made to be
reasonably small.

In the current work, a 2D discrete source-based panel method [92] is used to solve
the potential flow equation that determines the flow pattern in the aft-part of the
flow cell. The flow cell wall is divided into panels, and a collocation point is located
at the center of each panel. The source points with unknown strength σ are located
outside the flow cell wall at a unit length offset from the location of the collocation
point as shown in Fig. 3.2. In potential flow theory, the complex potential, w(z), due
to a single source is given by:

w = Φ + Ψi (3.3)

where z is a complex variable,
z = x + yi (3.4)

such that the velocity induced due to the source element can be written in complex
form as:

dw
dz

= U − iV (3.5)

Here, Φ is the potential function defined as Φ = σ
2π ln

√
x2 + y2, Ψ is the stream

function defiend as Ψ = σ tan−1 y
x , σ represents the source strength or the flow rate

per unit depth, and (x,y) is the field point of interest.
The influence coefficient aij is defined as the self-induced velocity component

normal to the surface of a unit strength source j (σj=1) at each collocation point i.
At collocation point i = 1, it can be written as:

a1j = (U, V)1j · n1 (3.6)

The no-penetration boundary condition on the velocity component normal to the
surface of the panel at each collocation point is imposed as zero velocity. In this
case, the known components are a uniform flow coming from left to right, three
inlets, and an outlet as marked in Fig.3.2. The known components are transferred
to the right-hand side RHS of the equation as shown below:

RHSi = −((u∗, 0) · ni +
3

∑
k=1

(Uk, Vk)ij · ni + (Uoutlet, Voutlet)ij · ni) (3.7)
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Figure 3.2: The aft part of the flow cell walls is divided into panels. A collocation point
marked as x is located at the midpoint of each panel with normal vector, n. On the outer
periphery of the wall, sources σ are located corresponding to each collocation points. The
circles on the microfluidic device represents inlet 1 (•), inlet 2 (•), inlet 3 (•) and outlet (•).
The uniform flow, u∗, direction is from left to right.

Here, i and j represent collocation point and source point locations respectively.
Influence coefficient and RHS can be written for each of the collocation points using
equation 3.6 and equation 3.7 and a set of algebraic equations are obtained:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann




σ1

σ2
...

σn

 =


RHS1

RHS2
...

RHSn

 (3.8)

The unknown source strengths σ in equation 3.8 are calculated by using standard
techniques of linear algebra. Thus at each panel, the calculated source strength
enforces zero velocity at the collocation point normal to the panel.

Figure 3.3: The flow fields in the non-dimensional state are computed from the panel method
where all the flow components are zero except (A) uniform flow, (B) inlet 1, (C) inlet 2, and
(D) inlet 3. All the flow components in the test cases mentioned above have a unit input. The
measurement domain is marked by the black square box.

The performance of the numerical approach is evaluated by computing four
elementary flows within the flow cell, see Figure 3.3. The four elementary flows
are the uniform flow velocity over the flow cell and the flow injection (a source)
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through inlet 1, 2, and 3. Since all the flows to be controlled are linear
combinations of these four flows, pre-computing these four elementary flows and
superposing them makes the computations faster. Test case 1 shows the flow field
(u0 = (u0, v0)) with contribution to all the three inlets as zero except the uniform
flow u∗ [Fig.3.3A]. Test case 2 shows the flow field (u1 = (u1, v1)) where the
uniform flow u∗ is zero, inlet 1 acts as a source, and zero flow in inlet 2 and inlet 3

[Fig.3.3B]. Test case 3 shows the flow field (u2 = (u2, v2)) where the uniform flow
u∗ is zero, inlet 2 is a source, and no flow comes through inlet 1 and the inlet 3

[Fig.3.3C]. Test case 4 shows the flow field (u3 = (u3, v3)) where the uniform flow
u∗ is zero, inlet 3 is a source, and no flow comes through inlet 1 and the inlet 2

[Fig.3.3D]. It is noteworthy that, because of the linearity of the governing equation,
all the flow fields relevant in this flow cell can be written as a linear combination
of these four elementary flow fields. With these four test cases any complex flow
field (unew = (unew, vnew)) can be created by super-positioning the flow fields as
long as the flow cell geometry is not changed.

unew = u∗ · h∗ · w∗ · u0 + Q∗1 · u1 + Q∗2 · u2 + Q∗3 · u3 (3.9)

where u∗, Q∗1 , Q∗2 and Q∗3 are the imposed non-dimensional uniform flow, flow
rates at inlet 1, 2 and 3 respectively. During experiments, the upstream uniform
flow is kept constant, and only Q∗1 , Q∗2 and Q∗3 are used to modulate the flow field,
and in turn, to manipulate the particle.

A simple investigation is carried out for a steady-state test case to verify that
the velocity flow field computed directly from the panel method solver is equal
to the flow field computed using the superposition of the elementary solutions.
Ideally, the computed flow field from the former and the latter method should be
identical. A flow field is generated using a panel method solver with arbitrarily
chosen non-dimensional values of uniform flow, u∗= 1. The inlet 1, 2 and 3 have
arbitrary flow rate value as Q∗1= 0.05, Q∗2= -0.02, Q∗3= 0.03 respectively as shown in
Fig.3.4a. Another flow field shown in Fig.3.4b is generated using the superposition
of elementary solution, using the equation 3.9 where the above-mentioned arbitrary
values are multiplied to their respective reference flow field. Qualitatively both the
flow fields in Fig.3.4 look identical, and quantitatively their difference is zero as
expected. Using equation 3.9 for computing the flow field during the optimization
process makes the a priori particle manipulation algorithm (discussed in section 3.4)
faster, as it does not have to recalculate the flow field every time in the intermediate
step of the algorithm. Instead, a simple linear calculation determines the flow field.

3.2.4 comsol simulation

A 3D viscous flow solver, COMSOL, is used to compare the panel method solution
(based on 2D inviscid potential flow) in section 3.2.5 with experimental data. In this
section, the numerical characteristics of the COMSOL simulations are discussed.
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(a) Panel method solution with arbitrary
input of 1, 0.05, -0.02, and 0.03 for
uniform flow, inlets 1, 2, and 3,
respectively. This solution is obtained by
solving the equation 3.8.

(b) The flow field is created by multiplying flow field with
unit input [refer Fig. 3.3] and the arbitrary value of 1,
0.05, -0.02, and 0.03 for uniform flow, inlets 1, 2, and 3,
respectively. The result is obtained from equation 3.9.

Figure 3.4: Potential flow solution using the superposition principle.

The 3D flow inside the flow cell was simulated using the "Laminar Flow" module of
COMSOL. The flow cell was oriented with the channel height along the positive z-
direction as shown in Fig. 3.5A. A flow rate, Quniform flow = 20 µl/min at the uniform
flow inlet was imposed through the boundary SS’ as shown in Fig. 3.5A, such that
when the channel width w is constant, the uniform flow at the center-line along the
z-direction of the flow cell corresponds to u = (80,0) µm/s. At inlet 2, a flow rate
Q2 = 110 µl/min is imposed through the boundary SS’. The outlet is used to draw
out the fluid such that the mass conservation is maintained. A no-slip boundary
condition on all the internal surfaces is imposed. The flow field with streamlines
for the scenario with the above-mentioned flow rates is shown in Fig. 3.5B. In the
COMSOL simulation, the flow cell geometry is meshed using a “physics-controlled”
mesh. The mesh is refined to improve the stagnation point location accuracy and
the numerical convergence of the analysis. The mesh independence study is carried
out for four different mesh sizes to determine the position of the stagnation point.
By taking the stagnation point location as the reference variable, see Fig. 3.5C, the
difference between the last two results is less than 3%. Thus, the third mesh size,
which corresponds to the element size option of “finer” in COMSOL, was used for
further analysis to minimize computational cost. It results in a maximum element
size of 2.56 mm and a minimum element size of 0.19 mm based on the flow cell
geometry.

3.2.5 flow model validation

To validate the source-based potential flow model, the flow fields computed with
the panel method are compared with the flow field computed with COMSOL

1 Psi-PIV is described in Chapter 2
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Figure 3.5: (A) Side view of the CAED design flow cell. The flow rate is imposed over the
inlet at the top of the flow cell, marked as the SS’ line. (B) COMSOL result: Velocity contour
plot with streamlines (in blue) when the flow rate at uniform flow inlet, Quniform flow = 20

µl/min and the flow rate at inlet 2, Q2 = 110 µl/min. An upstream location on the flow cell
is zoomed in to show that the Hele-Shaw condition does not apply close to the walls of the
cell. The velocity contour plot is re-scaled to show the velocity field near the wall clearly. The
Hele-Shaw condition is violated at an in-plane distance of h from the boundary of the flow
domain. (C) Mesh independence study concerning the stagnation point location.

simulations. The two numerically calculated flow fields are further compared with
the flow fields measured experimentally. The potential flow model is validated by
comparing the position of a stagnation point induced by a single source in a
uniform flow. We chose to measure the spatial location of the stagnation point in
the flow chamber because stagnation points are inherently unstable, and their
location can notably differ based on the interaction of the fluid with the walls of
the flow cell and inlet locations. Suppose the stagnation point from the panel
method does not deviate when compared to COMSOL simulations and
experiments. In that case, it shows that the flow field computed by the panel
method is a reasonably accurate representation of the actual flow field. The
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Figure 3.6: (A) Comparing the source-based panel method, COMSOL simulations, and
experiments to characterize the device by comparing the stagnation point of the Rankine half-
body. The Rankine half-body strength was regulated by keeping the uniform flow constant
and gradually increasing the flow rate through inlet 2 (marked as a red circle). (B) and (C)
shows a test case, where the flow rate at the upstream inlet is 20 µl/min and at inlet 2

is 50 µl/min from experiment and source-based panel method, respectively. The scale bar
represents 4 mm.

stagnation point from the experimental data set is determined using Psi-PIV1. The
experimentally determined stagnation point is a statistical average of 500 images
for a good estimation. A good agreement between the panel method, COMSOL
results, and the experiments for the spatial location of stagnation point as a
function of increasing source strength is shown in Fig. 3.6A. This indicates that the
panel method is a reliable option to predict the Hele-Shaw flow in the device. The
panel method is computationally inexpensive compared to COMSOL simulations
because the former is strictly based on potential flow theory, whereas the latter
solves the Navier-Stokes equations.

3.3 modeling the response time of the pump

The particle manipulation approach relies on the input of time-depending flow rates
to manipulate the streamline pattern in real-time and control the particle trajectories.
This approach requires that the flow rates imposed in the device closely follow the
pre-defined value imposed. It can be achieved by characterizing the time response
of the pump. The pre-defined flow rates are transmitted to the pressure pump as
discrete input points. However, the volumetric flow rate imposed by the pump does
not give the desired flow rate values instantaneously because the pump responds
with a time delay. In order to take into account this systematic error from the pump,
the pump response time is calculated. An experiment is performed in the flow cell
where the flow rate is 0 µl/min in all the inlets except inlet 2. In the inlet 2, a
constant flow rate of 10 µl/min is maintained with a constant uniform flow of u=
(80,0) mm/s. Once the flow rate reaches a stable value of 10 µl/min, the flow rate
at inlet 2 is increased to 11 µl/min, and the pump response time is deduced for
the variation of 1µl/min in the flow rate. The time that the pump requires to reach
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the pre-defined output value is deduced from the data logging file of the pump
software that has a 20 ms sampling frequency. Similarly, the pump response time
data is logged for multiple flow rate variations cases as shown in Fig. 3.7a.

The flow rate from the pump are recorded and fitted with the step response of
the first-order system [93] that can be written as follows:

b(t) = −e−(
t
T )a(t) (3.10)

Here, b(t) is the response to a unit step, t represents the time, T is the response time
and a(t) is a unit step signal. From the pump response time [Fig. 3.7a], the pump
response behaves as a first-order system because it fits a simple exponential curve.
The value of pump response time T is obtained from the equation 3.10. The average
value of T from all the test cases is obtained to be 2.5 s.

Based on the first-order system, the input flow rate that will be transmitted to the
pump r1(t) can be calculated from the pre-defined flow rate c(t) and the response
time T. The Laplace transform of the first-order system equation is given as:

R1(S) = (sT + 1) · C(s) (3.11)

Here, C(s) is the Laplace transform of the output flow rate c(t), R1(s) is the
Laplace transform of the modified input flow rate r1(t) and T is the response time.
In the above equation, using the time constant, T = 2.5 seconds, the modified input
flow rate R1(s) is calculated in the frequency domain. The flow rate that will be
transmitted to the pump, r1(t), is transformed from frequency domain to time
domain using inverse Laplace transform of R1(s).

Using the transfer function from equation 3.11, the flow rates required for the
experimental setup are calculated. The desired pre-defined output for uniform
flow inlet, inlet 1,2 and 3 is shown in Fig.3.8A. When the pre-defined flow rates are
transmitted to the pump without considering the pump response time, a
significant deviation between the measured flow rates of the pump (dotted line)
and the pre-defined flow rates (solid lines) can be observed, see Fig.3.8B. The
step-like response in the experimental data is because the input value in the pump
is updated at discrete time steps, and the pump has a first-order response. The
value of the flow rate given to the pump is updated at a discrete-time step of 2.5
seconds corresponding to the minimum time the pump takes to reach the next
desired value [Fig.3.7]. When the pump input is modified to take into account the
response time of the pump, the flow rates imposed by the pump (dotted line)
closely agree with the pre-defined output (solid line) as shown in Fig.3.8C. In this
case, the input value of the pump is updated at discrete time steps of 2.5 seconds.
Thus, in all the experiments hereafter, the pre-computed flow rates determined
from the a priori particle manipulation algorithm are modified to take into account
the response time of the pump.
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(a) Flow rate variations as a function of time where
the flow rate is kept constant 10 µl/min from 0 to 5

secs for all the test cases. At t = 5 secs, a new input
value is transmitted to the pump. The experiment is
repeated for multiple flow rate variations.

(b) Pump response time for different flow
rate variations, ∆Q

Figure 3.7: Characterization of the response time of the flow rate sensor of the pressure pump

Figure 3.8: Flow rate as a function of time for the uniform flow inlet (•), inlet 1 (•), inlet 2

(•) and inlet 3 (•).(A) pre-defined output (B) pre-defined output (solid lines); experimentally
measured flow rates from the pump without modeling the pump response time to the input
flow rate (dotted lines). (C) pre-defined output (solid lines); experimentally measured flow
rates from the pump for the modified input where the input is modeled with the pump
response time (dotted lines).

3.4 a priori particle manipulation algorithm

In the following, the workflow of the a priori particle manipulation algorithm is
described that computes the time dependant flow rates Q which allows the
algorithm to find the optimum particle trajectory between initial particle position
XPi(t0) and final particle position XPi(t f ). Here, i is the index of the particle to be
manipulated, t0 and t f represent the time where the particle is at the initial
position and the final position, respectively. In addition, the a priori particle
manipulation algorithm is designed to find the flow rate (Q) with the lowest

possible magnitude and also the lowest possible flow rate variations
(

dQ
dt

)
. It is

desirable to have simple inputs to the pump for better control over the flow rates
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during the experiments. In this approach, we assume that the particles are
sufficiently large (dp ≈ h) such that their motion is not affected by Brownian
motion. Hence the particle is advected at the local fluid velocity u(XPi), such that
XPi(t) = η·u(XPi), where XPi(t) is particle position in x- and y-direction at time t, i
is the index of the particle to be manipulated, η is a proportionality constant that
depends on the particle shape and ratio of particle size and channel height [60].
Throughout this thesis, the particles used for experiments are spherical and have a
particle diameter-to-channel height ratio of 0.6.

Here, all the parameters are non-dimensional as discussed previously in
section 3.2.2. To decrease the complexity of the optimization problem, we optimize
the flow rates as a function of time Q∗1(t), Q∗2(t), Q∗3(t), instead of optimizing for a
discrete set of values of the flow rates. The flow rates as a function of time are
projected on a finite base of the orthogonal polynomials, and the coefficients of
those orthogonal expansions are used as design variables. The total time duration
for optimization, t∗ is defined over a range [a,b] that obeys the orthogonality
relation. A time interval t∗ = [-1, 1] is chosen because most of the orthogonal
polynomials relevant to this study have their orthogonality relation in the range
[-1, 1].

The solution of the above-described optimization problem is found by using a
two-step solution. The first optimization step finds a feasible solution, and the
second optimization step finds a solution that minimizes the magnitude of the
flow rate limits and the time variation of the flow rate. The performance of
different bases of orthogonal polynomials is analyzed further in section 3.4.3.

3.4.1 first optimization step : unconstrained optimization

The input parameters for the first optimization step are the initial particle position
XPi(t∗0), the pre-defined final particle position XPi(t∗f ) and the non-dimensional
uniform flow u∗ = (u∗,0). The optimization algorithm utilizes the coefficients of
orthogonal expansions to compute the flow rates that gives an optimized particle
trajectory between pre-defined initial and final particle position. A quasi-Newton
method [94] based unconstrained optimization is used to minimize the objective
function J1, i.e. the norm of the distance between the particle position at the final
time step XPi(t∗k ) and the pre-defined final position XPi(t∗f ):

min
Q∗

J1 = ||XPi(t∗k )− XPi(t∗f )|| (3.12)

3.4.2 second optimization step : constrained optimization

The Q∗ and the particle trajectory acquired from the first optimization step are
used as the input parameter for the second optimization step. The second
optimization step uses a gradient descent based constrained optimization, where
the objective function J2 to be minimized consists of flow rate variations dQ∗

dt∗ and
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Figure 3.9: (A) Overview of the a priori particle manipulation algorithm. (B) and (E) illustrate
two trajectories showing particle separation where the two particles are made to travel from
the initial position to their final desired positions. XP1(t0) and XP1(t f ) denote pre-defined
initial and final particle location for particle 1 respectively. Similarly, XP2(t0) and XP2(t f )
are for particle 2. To achieve the non-optimized trajectory (B) high flow rates with flow rate
fluctuations are required (C) compared to the flow rate required (D) for the optimized particle
trajectory (E). The scale bar represents 4 mm.

the absolute value of the flow rates Q∗. The objective function J2 is minimized
subject to the constraint that the distance between the particle position at the final
time step XPi(t∗k ) and the pre-defined final position XPi(t∗f ) should be minimal:

min
Q∗, dQ∗

dt∗

J2 = α ·
∫ t∗=1

t∗=−1

∂|Q∗|
∂t∗

dt∗ + β ·
∫ t∗=1

t∗=−1
|Q∗|dt∗ (3.13)

such that the following constraint is imposed:

||XPi(t∗k )− XPi(t∗f )|| = 0 (3.14)

Here, α and β are arbitrary weights that can be tuned based on the flow rates,
Q∗, with either small-time variations (when α is comparatively higher) or small
absolute values (when β is higher). Constant values of 1 and 10−3 are used for α and
β respectively. These values are used because higher priority was given to minimize
the flow rate variations. The integrals in equation 3.13 are numerically estimated
using the trapezoidal rule. The dimensions are added to the non-dimensional flow
rates Q∗ using the characteristic length scale lc and the characteristic uniform flow
uc, see section 3.2.2. The dimensional flow rate is denoted as Q = [Q1,Q2,Q3] for
inlets 1, 2 and 3 respectively.

Numerically, the a priori particle manipulation algorithm is first assessed on an
arbitrary test case. In this test case, two particles that are initially traveling on the
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Figure 3.10: Optimized particle trajectories showing particles coming closer to each other for
( : particle 1, : particle 2) for (A) Legendre Polynomials (B) Chebyshev Polynomials
(C) Hermite Polynomials. XP1(t0) and XP1(t f ) denotes pre-defined initial and final particle
location for particle 1 respectively. Similarly, XP2(t0) and XP2(t f ) are for particle 2. The black
square box marks the measurement domain. The blue shaded area marks the manipulation
region. The time-varying flow rates as a function of time are plotted for (D) Legendre
Polynomials (E) Chebyshev Polynomials and (F) Hermite Polynomials.

same streamline are separated based on the imposed final position for which the
two particles are on separate streamlines. Fig. 3.9B shows the particle trajectory of
a particle pair when forced to travel on a pre-defined particle trajectory without
first and second optimization step. Fig. 3.9E shows the particle trajectories
calculated using the a priori particle manipulation algorithm which is a two-step
optimization routine. Fig. 3.9C-D indicates that if two particles are travelling on a
certain pre-defined particle trajectory, the required flow rates can be almost 15

times larger compared to the flow rates calculated from the a priori particle
manipulation algorithm. Moreover, the a priori particle manipulation algorithm
eliminates the sharp variations in the flow rate, which are seen in the flow rates of
the non-optimized solution. A similar effect of the particle optimization routine
was noticed by Schneider et al.[55].

3.4.3 effect of the choice of polynomial base on the particle

manipulation algorithm

The a priori particle manipulation algorithm discussed in the section 3.4 uses a
linear combination of the coefficients of the orthogonal polynomials. A parametric
study is carried out to investigate which orthogonal polynomial is relevant for this
study. Polynomials such as Legendre polynomials, Chebyshev polynomials of the
first kind, and Hermite polynomials are investigated. Legendre and Chebyshev
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Figure 3.11: Optimized particle trajectories showing particles switching their position as
they move downstream ( : particle 1, : particle 2) for (A) Legendre Polynomials (B)
Chebyshev Polynomials (C) Hermite Polynomials. XP1(t0) and XP1(t f ) denotes pre-defined
initial and final particle location for particle 1 respectively. Similarly, XP2(t0) and XP2(t f ) are
for particle 2. The black square box marks the measurement domain. The blue shaded area
marks the manipulation region. The time-varying flow rates as a function of time are plotted
for (D) Legendre Polynomials (E) Chebyshev Polynomials and (F) Hermite Polynomials. Note
that the flow rate bound for Hermite polynomials is an order of magnitude higher.

polynomials form an orthogonal basis for polynomials in the interval [-1,1] with
weight functions w(t∗) 1 and (1 − t∗

2
)−1/2 respectively. Hermite polynomials are

orthogonal in interval [-∞, ∞] with weight e−t∗2
. The argument t∗ represents

non-dimensional time. The coefficients of the orthogonal polynomials did not
show a significant effect on the solution beyond the fourth-order of the orthogonal
polynomials. Hence, throughout this work, a fourth-order orthogonal polynomial
is used to represent the flow rates as a function of time.

Two particles (marked as red and green in Fig. 3.10) at initial particle positions
XP1(t0) and XP2(t0) are brought close to each other at final particle positions
XP1(t f ) and XP2(t f ). Based on the input, the a priori particle manipulation
algorithm determines the optimized particle trajectories and the corresponding
time-varying flow rates using different polynomial bases to represent the flow
rates. It is observed that the optimized particle trajectories are very similar for all
three polynomials basis as illustrated in Fig. 3.10A, B, C. However, the differences
in their corresponding flow rate are evident. Although the flow rate in all three
cases has a similar magnitude, the flow rate variations of Legendre polynomials
are the lowest, followed by Chebyshev polynomials as shown in Fig. 3.10D, E, F.
Similarly, another test case of particle switching their positions as they move
downstream is analyzed, see Fig. 3.11. Legendre and Chebyshev polynomial
performance are identical in terms of optimized particle trajectories, and
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time-varying flow rate variations are indicated in Fig. 3.11A, B, C, D. The
performance of Hermite polynomials significantly differs from the other two
polynomials. The flow rate variations are small, but the flow rate magnitude is an
order of magnitude higher, see Fig. 3.11E, F.

The choice of orthogonal polynomials is a mathematical choice and not a physics-
based choice, because all three sets of polynomials give an optimum solution. The
convergence of Hermite polynomial to the optimum solution is slower compared
to Legendre and Chebyshev polynomials. The performance of the Legendre and
Chebyshev polynomials are very similar in their optimized particle trajectories and
flow rate bounds. Nevertheless, Legendre polynomials are selected as a suitable
candidate for the a priori particle manipulation algorithm, because in practice they
showed the lowest flow rate variations.

3.5 results

The coordinates of the particles are acquired during the experiment from the
in-house developed image acquisition LabVIEW program. The initial X pi(t0) and
final X pi(t f ) particle locations are used as input parameters for the particle
manipulation algorithm written in MATLAB. The program computes the
optimized flow rate for given particle manipulation, which is further transmitted
to the LabVIEW program to deliver the required flow rates into the flow cell. The
maximum deviation, ε(XP), between the optimized particle trajectories and
experimentally measured trajectories is calculated as the percentage change of the
linear dimension of the measurement domain (12 mm). Hereafter, the results are
presented for various test cases using the above-mentioned approach.

3.5.1 single particle deflection

This experiment shows that a particle can travel along the pre-computed
optimized particle trajectory with minor deviations during the experiment based
on the real-time selection of initial particle position XP1(t0) and final particle
position XP1(t f ). Throughout the experiment, a constant uniform flow of 80 µm/s
is imposed, corresponding to the flow rate of 20 µl/min. The particle approaches
the measurement domain due to uniform flow in the x-direction as shown in
Fig. 3.12A. Based on the pre-defined XP1(t0) and XP1(t f ), the a priori particle
manipulation algorithm computes the optimized particle trajectory (solid green
line in Fig. 3.12A) and corresponding flow rates are transmitted into the pump.
Once the particle reaches the starting point of the manipulation, the pre-computed
flow rates start to be imposed based on the prescribed pre-computed flow rates.
Thus, leading to a time-dependent change in the streamline pattern of the flow cell.
As a result, the particle gets advected along the streamlines and moves toward the
pre-defined final location, XP1(t f ). The dashed line indicates the experimental
trajectory. A good agreement between the simulated and the experimental
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Figure 3.12: (A) Particle trajectory
showing particle deflection for ( )
optimized particle trajectory and ( )
experimentally measured particle trajectory.
XP1(t0) and XP1(t f ) denotes pre-defined
initial and final particle location for
particle 1 respectively. A black square box
marks the measurement domain. The blue
shaded area indicates the region where
manipulation was applied. (B) Imposed
and experimentally measured flow rates.
The streamlines are obtained from the
experimental flow rate data at different
time instants during the manipulation
process: (C) t = 6 s (D) t = 36 s and (E) t =
84 s. The scale bar represents 4 mm. Movie
3.1 shows the experimental video of this
test case.

trajectory is observed. It is achieved because there is a good agreement between
the simulated and the actual flow rates shown in Fig. 3.12B. The maximum error in
particle location is 0.8% of the linear dimension of the measurement domain (12 x
12 mm2).

Next, the experimental flow patterns are analyzed. This helps to visualize the
streamlines during the manipulation event. Here, the streamlines during the
manipulation time of, t = 6 s, 36 s, and 84 s are plotted corresponding to Fig. 3.12C,
D, and E, respectively. Throughout the manipulation event, the streamline pattern
does not change significantly. Initially, the flow field changes considerably, and the
streamlines move towards inlet 3 as the inlet 1 has a high source strength
[Fig. 3.12C]. The particle advects with the streamlines as the streamline continues
to move towards inlet 3 as inlet 2 and 3 continue to act as sinks; meanwhile, the
source strength of inlet 1 decreases [Fig. 3.12D]. Finally, the particle descends for a
short duration and move towards the final location [Fig. 3.12E]. From the literature
[55], it is known that only three inlets are sufficient to manipulate a single particle.
However, with five inlets, the imposed flow rate variations are small because
additional inlets give more flexibility in controlling the particle.

Movie 3.13.5.2 single particle trapping

Movie 3.2

In the single-particle trapping, a flow rate of 20 µl/min is imposed upstream and
yields a uniform flow, u = (80, 0) µm/s. The particle approaches the measurement
domain from the centerline along the width of the device. The particle is trapped
in the control area (red-shaded region) as shown in Fig. 3.13A. Based on the initial
particle position XP1(t0) and trapping location, the particle manipulation

https://drive.google.com/file/d/1OTTYXIaB5mRamLK1VMPAdfCySY4m7bon/view?usp=sharing
https://drive.google.com/file/d/1zwIB9i03bOSUnpTjWeLABy5qV2JCFCne/view?usp=sharing
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Figure 3.13: (A) Particle trajectories showing
particle trapping for ( ) optimized particle
trajectory and ( •) experimentally measured
particle position data. XP1(t0) and XP1(t f )
denotes pre-defined initial and final particle
location for particle 1 respectively. A black
square box marks the measurement domain.
The blue shaded area indicates the region
where manipulation was applied. Red shaded
area indicates trap location. (B) Imposed
and experimentally measured flow rates. The
streamlines obtained from the experimental
flow rate data at different time instants
during the manipulation process: (C) t = 20 s
(D) t = 60 s and (E) t = 160 s. The scale
bar represents 4 mm. Movie 3.2 shows the
experimental video of this test case.

Figure 3.14: The dashed lines shows optimized particle trajectory and dotted line shows
experimentally measured position for a particle that is trapped and released. The red shaded
region shows the pre-defined particle trap duration. (A) Particle displacement in x-direction
as a function of time. (B) Particle displacement in y-direction as a function of time.

algorithm calculates the optimized particle trajectory and the corresponding flow
rates that are transmitted into the pump. As the particle enters the manipulation
area, the pre-computed flow rates are imposed. The green dots in Fig. 3.13A
indicates the experimentally measured particle position, which shows that the
particle significantly slows down in the trapping area. The imposed and the
experimentally measured flow rates are in close agreement, see Fig. 3.13B. The
maximum deviation, ε(XP), in particle location is 1%. Next, the flow pattern is
deduced from the experimentally measured flow rates during the manipulation at
the time, t = 20 s, 60 s, and 160 s corresponding to Fig. 3.13C, D, and E,
respectively. The particle starts to slow down as the inlets 1, 2, and 3 act as sinks
[Fig. 3.13C]. The particle substantially slowed down but did not get completely
trapped in the stagnation point, and the flow rates in inlets 1, 2, and 3 remain at
constant sink strength for a manipulation period from 60 s to 90 s. As the
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Figure 3.15: Separating two particles: (A)
Particle trajectories showing particle
separation for optimized particle
trajectories ( : particle 1, : particle
2) and experimentally measured ( :
particle 1, : particle 2) data. XP1(t0)
and XP1(t f ) denotes pre-defined initial
and final particle location for particle
1 respectively. Similarly, XP2(t0) and
XP2(t f ) are for particle 2. A black square
box marks the measurement domain. The
blue shaded area indicates the region
where manipulation was applied. (B)
Imposed and experimentally measured
flow rates. The streamlines are obtained
from the experimental flow rate data
at different time instants during the
manipulation process: (C) t = 9 s (D) t = 45

s and (E) t = 72 s. The scale bar represents
4 mm. Movie 3.3 shows the experimental
video of this test case.

stagnation point is inherently unstable, in this case, the particles move slightly
away from the optimized particle trajectory [Fig. 3.13D]. Eventually, the particle
resumes advecting downstream after the trapping time ends [Fig. 3.13E].

In the trapping duration of 60 seconds, in Fig. 3.14A, the particle translates in
x-direction by 410µm i.e. equivalent to approximately twice the diameter of the
particle. In y-direction, the experimentally measured particle position had no
significant deviation compared to the optimized particle trajectory, see Fig. 3.14B.

3.5.3 separating two particles

Movie 3.3

In a subsequent test, the functionality of the micro-device is demonstrated for
particle separation. This test case simulates a Y-channel where each particle flows
in either of the two branches of the channel. Throughout the experiment, a
constant uniform flow, u = (80,0) µm/s is imposed. Optimized particle trajectories
are computed based on the pre-defined final position, XP1(t f ) and XP2(t f ) for
particle 1 and particle 2 respectively and their potential start point, XP1(t0) and
XP2(t0), where the particle pair would enter the square domain. The optimized
particle trajectories are indicated as solid green and red lines in Fig. 3.15A. When
the particles reach the starting points of the manipulation, the pump begins to
impose the pre-computed flow rates based on the optimized particle trajectories.
The particles are manipulated due to the change in the flow rates in the flow cell in
the manipulation area (blue shaded region). The experimentally measured
trajectories are depicted by dashed lines in Fig. 3.15A. The maximum deviation,

https://drive.google.com/file/d/1hklKTNz6KwJt1_ZrFcJj-eNtjDifmpkA/view?usp=sharing
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Figure 3.16: Joining two particles: (A) Particle
trajectories showing particles approaching
each other for optimized particle trajectories
( : particle 1, : particle 2) and
experimentally measured ( : particle
1, : particle 2) data. XP1(t0) and
XP1(t f ) denotes pre-defined initial and final
particle location for particle 1 respectively.
Similarly, XP2(t0) and XP2(t f ) are for
particle 2. A black square box marks the
measurement domain. The blue shaded
area indicates the manipulation region. (B)
Imposed and experimentally measured flow
rates. The streamlines are obtained from the
experimental flow rate data at different time
instants during the manipulation process: (C)
t = 10.5 s (D) t = 20 s and (E) t = 45 s. The
scale bar represents 4 mm. Movie 3.4 shows
the experimental video of this test case.

ε(XP), in particle location is 3.3%. A good agreement between the imposed flow
rates and the experimentally measured flow rates is shown in Fig.3.15B.

Further, streamline patterns are analyzed using the measured flow rates
determined from the experiments during the manipulation at the time, t= 9 s, 45 s,
and 72 s corresponding to Fig. 3.15C, D, and E, respectively. The particle pair
moves downstream without any significant change in their trajectories [Fig. 3.15C].
The particles accelerate as the streamlines get squeezed in between the widths of
the two Rankine half-bodies originating from inlets 1 and 3 [Fig. 3.15D]. As the
particles travel towards inlet 2, the source strength of inlet 2 increases substantially
to separate the two particles and move them closer to the pre-defined positions
[Fig. 3.15E].

3.5.4 joining two particles

Movie 3.4

The joining of two particles was done to demonstrate the functionality of our flow
cell for studies related to coalescence, particle assembly, and adhesion. A constant
uniform flow, u = (80,0) µm/s is imposed throughout the experiment. The solid
green and red lines show the computed optimized particle trajectories based on
the pre-defined initial location (XP1(t0) and XP2(t0)) and final locations (XP1(t f )
and XP2(t f )) for particle 1 and 2, respectively, as shown in Fig. 3.16A. The dashed
green and red lines show the experimentally measured particle trajectories for
particles 1 and 2, respectively. Due to the constant uniform flow, the particles
translate in the x-direction as they approach the manipulation area. In the
manipulation area, the particle-pair approach each other based on the optimized

https://drive.google.com/file/d/161aonP4y0b6JS4MXBQWUbmP6020U-5WI/view?usp=sharing
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trajectories, followed by the particle pair traveling downstream due to the uniform
flow as illustrated in Fig. 3.16A. The maximum error, ε(XP), in particle location is
16.6%. The deviation between the imposed flow rates and the experimentally
measured flow rates is shown in Fig.3.16B. The actual flow rates deviate from the
calculated flow rates between the manipulation time of 30 s and 45 s. This
deviation can be due to the inability of the pump to effectively deliver the flow
rates under high flow rate variations, which is simultaneously varying for inlets 1,
2, and 3, or the particle was not exactly at the center-line across the channel height
or particle coagulation in the system.

Furthermore, the streamline patterns are investigated using the experimentally
measured flow rates during the manipulation at the time, t= 10.5 s, 20 s, and 45 s
corresponding to Fig. 3.16C, D, and E, respectively. First, the particles deflect
towards inlet 1 under the influence of the sink and source from inlets 1 and 3,
respectively [Fig. 3.16C]. Then, the particles begin to move towards inlet 3 as inlet 1

acts as a source instead of a sink at the beginning of the manipulation period
[Fig. 3.16D]. Finally, as the particles travel towards inlet 2, the slope of the
streamline on which the second particle is advecting is higher. Thus, it comes close
to the first particle as they move towards the pre-defined final positions
[Fig. 3.16E].

3.5.5 virtual mixing channel

Further, the mixing of particles in a rectangular channel is demonstrated. Mixing is
mostly required for sample dilution, chemical reactions, or DNA extraction [95].
Based on the application, achieving sufficient mixing is difficult in a microfluidic
device due to the laminar flows. Throughout the experiment, there is a constant
uniform flow, u = (40,0) µm/s which corresponds to a flow rate of 10 µl/min. As a
particle pair approaches the measurement domain, the particles are manipulated
to switch their positions downstream of the flow cell using a priori particle
manipulation algorithm. The optimized particle trajectories (solid green and red
lines) are indicated in Fig. 3.17A. The dashed green and red line show the
experimentally measured particle trajectories for particles 1 and 2, respectively.
The maximum error, ε(XP), in particle location is 8%. A good agreement between
the imposed and the experimentally measured flow rates is shown in Fig.3.17B.

The streamline patterns derived from the experiment flow rates for the
manipulation at the time, t= 50 s, 100 s, and 150 s are shown Fig. 3.17C, D, and E,
respectively. In the beginning, particle 1 is upstream and closer to inlet 1 with
respect to particle 2. They come close to each other near inlet 1, which acts as a
sink [Fig. 3.17C]. As both the particles get deflected towards inlet 3; particle 1

begins to overtake particle 2. This is because particle 1 follows a streamline that is
more influenced by the sink strength of inlet 3 compared to the streamline that is
followed by particle 2 [Fig. 3.17D]. Towards the end of the manipulation period,
particle 1 is downstream and closer to inlet 3 with respect to particle 2 [Fig. 3.17E].

Movie 3.5

https://drive.google.com/file/d/1Lym0odUJwl9YvrFY2xt8JcjOc8mHHlyt/view?usp=sharing
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Figure 3.17: Virtual mixing channel: (A)
Particle trajectories showing particle
mixing for optimized particle trajectories
( : particle 1, : particle 2) and
experimentally measured ( : particle 1,

: particle 2) data. XP1(t0) and XP1(t f )
denotes pre-defined initial and final particle
location for particle 1 respectively. Similarly,
XP2(t0) and XP2(t f ) are for particle 2. A
black square box marks the measurement
domain. The blue shaded area indicates
the region where manipulation was
applied. (B) Imposed and experimentally
measured flow rates. The streamlines are
obtained from the experimental flow rate
data at different time instants during the
manipulation process: (C) t = 50 s (D) t
= 100 s and (E) t = 150 s. The scale bar
represents 4 mm. Movie 3.5 shows the
experimental video of this test case.

3.6 discussion and conclusion

This chapter describes a method to create "virtual channels" in a Hele-Shaw cell
using hydrodynamic forcing only. First, the flow model is validated by comparing
the position of a stagnation point induced by a single source in a uniform flow. The
flow model for the bulk fluid velocity and the particle velocity is based on assuming
that the depth-averaged flow in the Hele-Shaw cell behaves as a potential flow. This
allows us to take a linear superposition of 2D point sources and a uniform flow
to represent and compute the flow patterns. Fig.3.6 shows that the spatial position
of the stagnation point induced by varying the source strength predicted by the
source-based panel method and COMSOL simulations are in agreement with the
experimental data. The advantage of using the panel method is that it is based on
potential flow theory, and the computational cost is significantly lower compared to
COMSOL simulations, which makes it suitable for real-time applications.

Secondly, a novel a priori particle manipulation algorithm is introduced to
determine optimal particle trajectories a priori, based on the pre-defined initial and
final particle location. The optimized particle trajectory is determined while
minimizing the magnitude of the flow rates and the flow rate variations. The a
priori particle manipulation algorithm can be scaled to different Hele-Shaw cells
based on their physical dimensions. It is possible since the entire optimization
calculations are performed on non-dimensional terms that are scaled by the length
scale of the region of interest, channel height, and the uniform flow velocity. The
five inlets in the current flow cell are the minimum number of inlets required to
manipulate two particles simultaneously. These five inlets are designed to have an
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inlet for uniform flow, three inlets to inject or extract liquid, and an outlet to
maintain mass conservation.

Thirdly, experiments are presented to show that the device is capable of
elementary microfluidic manipulations such as sorting (see Fig. 3.12), trapping (see
Fig. 3.13), separating (see Fig. 3.15), joining (see Fig. 3.16) and interchanging the
position of two particles (see Fig. 3.17). All these processes can be done on a single
microfluidic device instead of having multiple separate devices.

A key observation was that if the imposed flow rates are stable, the experimental
particle trajectories match the a priori optimized particle trajectories determined
using the potential flow. However, this is not always the case as shown in
Fig. 3.15, 3.16, 3.17. This happens because certain aspects are not included in the a
priori computations, such as particle density and off-center particle position along
with the channel height. Hence, to improve the repeatability of the experiments, a
feedback loop is necessary. This can be achieved by implementing a PID control
and using the pre-computed optimized particle trajectories from the a priori
particle manipulation algorithm.
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4
PA RT I C L E M A N I P U L AT I O N W I T H A F E E D B A C K L O O P

Manipulation of particles within the flow device using the a priori particle manipulation
algorithm allows the user to perform various elementary microfluidic processes such as
sorting, trapping, separation, selection, and mixing (see section 3.5). These processes can be
done on a single flow cell instead of multiple devices and performed using only
hydrodynamic forcing. However, a priori particle manipulation algorithm is currently
limited by not considering aspects such as surface roughness, particle density, and
off-center particle position along the channel height. This would lead to errors in the
particle trajectory that will accumulate over time, leading to a complete failure of the
experiment. Therefore, it is essential to use feedback control schemes and mitigate aspects of
the experiment uncertainty to achieve robust and repeatable experiment results for various
experiments. With a feedback loop in an experiment, the error in particle position can be
determined with respect to the a priori optimized trajectory, and additional flow rates can
be given to correct for the error. In this chapter, the performance of a
Proportion-Integral-Derivative-based (PID) controller is investigated. Nonlinear
optimization determines the PID control parameters, which are used as initial control
parameter for various experiments. Also, the controller architecture during the
experimental run is explained in detail. The results show that the experimentally
determined particle positions are in close agreement with the optimized trajectory. The
maximum error is on the order of one particle diameter at the end of the manipulation.

This chapter is part of the manuscript to be submitted. Ir. Aniket Ashwin Samant significantly helped in
the discussion and the implementation of the PID control system.
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4.1 introduction

The a priori manipulation algorithm1 leverages the linearity of potential flow
theory to find the optimized particle trajectory strategy in a fast, straightforward
and efficient manner. However, the a priori particle manipulation algorithm has a
few limitations. Effects such as surface roughness and off-center particle position
in the channel are not modeled. In this chapter, the a priori particle manipulation
algorithm is coupled with closed-loop control, which allows better control of the
particle in an experiment. In general, a closed-loop control system is a system of
hardware and software that can automatically adjust variations in a process to a
set point with pre-defined limits without human interaction. The
Proportional-Integral-Derivative (PID) control gives corrective flow rates to the
inlets based on the position error of the particles. The particle position error is
defined as the difference between the particle location from the a priori
manipulation algorithm and the experimentally measured particle location. In this
chapter, the closed-loop approach is compared to the open-loop approach on the
same manipulations discussed in section 3.5 i.e. single-particle trajectory deflection,
single-particle trapping, separating a particle pair, joining two particles, and
interchanging particle pair position.

As an application for the flow cell, the real-time selection of an arbitrary pollen
grain (diameter = 70 µm) and its trapping within a control area is demonstrated.
The experimental setup and modification in setup for the pollen grain experiment
are discussed in section 4.2. The architecture of the PID control scheme during an
experiment and the tuning of the controller are described in section 4.3. In
section 4.4, results are shown for various test cases where particle trajectories are
corrected during an experiment. Concluding remarks on the control scheme and
potential improvements in the flow cells and the control approach are discussed in
section 4.5.

4.2 experimental setup

For the pollen grain experiment, the experimental setup used is similar to the
experimental setup discussed previously in Section 3.2.1. An image of the actual
experimental test setup is shown in Fig. 4.1A. A schematic representing all the
essential components of the setup is depicted in Fig. 4.1B. The setup consists of a
pressure pump with five pressure ports, namely, a uniform flow inlet, an outlet,
and three inlets for carrying out the manipulation activities. The working fluid is
water in all the reservoirs except reservoir 4∗, which contains a water-pollen
mixture at a low concentration. The reservoirs are connected to a flow sensor
which measures the volumetric flow rates Qi, where i represents the index of the
reservoir. Reservoir 4 is connected to reservoir 4

∗ via the flow rate sensor to avoid
contamination of the flow sensor with pollen grains. An additional sCMOS camera

1 The a priroi particle manipulation algorithm is discussed in Section 3.4
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Figure 4.1: (A) Experimental test setup with all the required components except the second
camera attached to the microscope (not visible in this picture). (B) The experiment setup
schematic shows the microfluidic device with reservoirs connected to the flow rate sensor.
The circles on the inlets of the microfluidic device represents uniform flow inlet (•), inlet
1 (•), inlet 2 (•) and inlet 3 (•). A pressure pump drives the fluid through the reservoir
using pressurized air. Reservoirs 1, 2, and 3 are connected via the flow rate sensor to inlet
1, 2, and 3 of the microfluidic device, respectively. Reservoir 4 is connected to reservoir 4∗, a
water-pollen mixture at low concentration. Reservoir 4∗ and 5 are connected to the uniform
flow inlet and outlet, respectively. Camera 1 is mounted on the top of the device with the 3x
telescopic lens, and the Camera 2 is mounted on the side of the inverted microscope with the
1x objective to view the entire field of view, 12 × 12 (mm).

(Imager) is required for high magnification visualization of the pollen grain.
Camera 1 with a 3x telescopic lens is mounted on the top of the device to capture a
high magnification image of the pollen at an acquisition frequency of 15 Hz.
Camera 2 was mounted to the Nikon Eclipse Ti inverted microscope, with a 1x
objective to view the entire field of view, 12 × 12 (mm), and facilitate the PID
control algorithm. The acquisition frequency of camera 2 was 5 Hz, leading to an
average in-plane displacement of 4-6 pixels between two consecutive recordings.
Cameras 1 and 2 have an exposure time of 50 ms and 100 ms, respectively, to allow
enough light to enter the image sensors and accurately identify the pollen grain on
the images.

4.3 feedback loop : pid control

A feedback system is implemented to correct for particle drift and minimize the
deviation of the particles during an experiment. In the feedback loop, the flow rate
output is corrected based on the real-time measurements of the deviation of particles
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Start
Load precomputed
flow rates, desired

trajectory

Record initial positions of
particles in the cell domain

Start pump flow as per
precomputed rates and

timestamps

t < Tfinal

 Tfinal =  Last timestep

Stop
No

Optical tracking of
particles

Current particle
positions, deviation

from desired positions

Feedback
controller

Flow rate
corrections

Add to precomputed flow
rates Yes

Figure 4.2: High-level flowchart illustrating the steps involved in the experiment with a
feedback controller included.

from their optimized trajectories - that is, the control loop is closed using a feedback
controller. Furthermore, considering the nature of the uncertainties (i.e., difficulty
in modelling them mathematically) and the slow response time of the pump, a
PID controller is implemented. The PID controller makes additive corrections to
the pre-computed flow rates depending on the deviation of the particles from their
optimized trajectories. Fig. 4.2 illustrates the experimental steps broadly with the
feedback controller included.

4.3.1 controller modelling and architecture

A feedback controller is used when a measured output (setpoint) of a process needs
to be maintained at a particular pre-defined value. Since the process is prone to
external disturbances, the controller is a function that calculates the process input(s)
that would produce the output at a pre-defined value despite the disturbances. The
goal of a feedback controller is to reduce the error between the pre-defined (desired)
and experimental (measured) output values; ideally, it should minimize the error.

A PID controller is a type of feedback controller that considers the immediate
error, the trend of errors over time, and the rate of change of error to calculate the
process input at that time step. Hence, the error values for the subsequent time
steps are reduced or maintained within a set of limits. A general block diagram
representation of a PID controller is shown in 4.3. The proportional (P) block
calculates the input to the process based on the immediate error measured at the
process output. The integral (I) block takes into consideration the change
(accumulation) in error values over time, and the differential (D) block considers
the immediate rate of change of error values. Finally, the sum of the output values
from the three blocks is taken as the input to be provided to the process.

The primary advantage of a PID controller is that it relies only on the process
response (the measured output values) to calculate input values without having an
underlying model of the process. Hence, in this case, a PID control can be
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Kp e(t)

Kd de(t)/dt

Process
-

+ +

+
+

i(t) o(t)r(t) e(t)        t
             Ki ∫ e(x) dx

       0

Controller block

Figure 4.3: A block diagram representing a conventional PID controller. At a given time step
t, the output of the process block o(t) should be close to the reference signal, r(t). The input
to the process i(t) is calculated so as to reduce the error e(t) (i.e. the difference between the
reference and process output values) for the subsequent time steps. Kp, Ki, Kd represent the
proportional, integral, and derivative gain values respectively. [96]

implemented as long as the deviation of particles from their pre-defined
trajectories can be observed, the details of shape and size of the particles, the
pump used and the working fluid medium need not be known.

In this setup, the optimized trajectories of particles and imposed flow rates for
the pumps at different time steps are computed beforehand using a priori particle
manipulation algorithm. The ideal outcome is that the particles follow these
pre-defined trajectories exactly during the experiments. However, due to various
experimental factors (such as particles not being centered along the channel height
of the device, variations in particle density, etc.) the particles deviate from these
trajectories - that is, an error is observed for each time step. Hence, a feedback
controller becomes necessary to make corrections to the imposed flow rate values
in order to reduce the error values, thereby keeping the particles close to their
pre-defined optimized trajectories.

Hence, the feedback controller should make corrections to each inlet such that
the positional error for the next time step is reduced. Thus, the controller takes
a positional error as its input and calculates corrections to the imposed flow rate
values as its output. Though there is a direct relation between particle position
XP(t) and the imposed flow rate values, there may be deviations in particles from
their analytically calculated positions due to the non-ideality of experiments. This
motivates the usage of a PID controller since the response of the process can be
measured (the positional error), and the corresponding inputs can be accordingly
calculated (corrections to imposed flow rate values).

In general, a PID controller is used to periodically calculate the inputs for a
process based on the error measured at the output. Hence, the output of the
controller block is the input for the process. However, in this case, the PID
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controller is used as a function to make periodic corrections to the pre-computed
process inputs (imposed flow rate values) to reduce the positional error of the
particles instead of calculating the actual input values.

The key assumption here is that the PID controller is only used to reduce the
positional error at a time step by correcting the (pre-computed) imposed flow rate
values. Therefore, this approach is not suitable to compute the flow rate values
directly.

A live camera feed is used to obtain the current view of the region of interest in
the flow cell domain within which the feedback action is applied. Before imposing
the pre-computed flow rate values, the initial positions of the particles XPi(t0) are
given as feature points for tracking. Here, the Lukas-Kanade algorithm is used [97]
to track the motion of the particles during the experiments. Time stamp values are
recorded with the obtained position values to get the trajectories of the particles,
and these trajectories are provided as inputs to the PID controller.

Based on the system constraints, such as the spatial arrangements of the inlets
and the possible differences in mobility along the X and Y axes, the PID controller
is structured as a combination of multiple PID controllers. For each particle to be
controlled, two PID controllers are used (for positional errors along the X and Y
axes). The overall flow rate correction is calculated as the sum of corrections from
each PID controller (henceforth referred to as sub-controllers). Since this system
involves controlling two particles, there is a total of 4 sub-controllers.

It is assumed that the magnitude of the correction to be made to a given inlet at
a time step is proportional to the magnitude of the imposed flow rate value at that
time step. The direction of the correction (i.e. whether to add or subtract the
controller output for a given inlet) depends on the position of the particle and the
direction in which it has deviated from its desired position (the details of which
are covered in Section 4.3.2). Each sub-controller has a block for calculating the
magnitude of corrections and a block for determining the direction of the
corrections; such an arrangement is necessary because three inlets influence the
trajectory of each particle and the effect of changing the flow rates depends on the
immediate position of the particle. This architecture is illustrated in Fig. 4.4.

For a given particle, the PID sub-controller for a given direction is modelled
mathematically as follows:

κ =


∣∣Kp · lt + Ki ·∑t

k=1 lk + Kd · (lt − lt−1)
∣∣ , if |lt| > dp

0, otherwise
(4.1)

In this equation, Kp, Ki, Kd are the proportional, integral, and derivative gain
values respectively. Since the controller output (κ) is dimensionless, the units of the
individual control parameters are as per the value they are multiplied with (i.e. Kp:
m−1, Ki: m−1s−1, Kd: m−1s). The PID controller is essentially a transfer function so
the control parameters are scaled according to the chosen inputs values [98]. lt is
the positional error at time step t, i.e. lt = Xopt(t) − Xexp(t), where Xopt(t) and
Xexp(t) are the desired (optimized) and actual (experimental) positions of the
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N

Y axis sign
calculator

X axis controller
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Y axis controller
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Qf (t)
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1-D array
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Scalar product operator

Hadamard product operator

Element-wise addition of 2-D array rowsMultiplex/demultiplex array
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·

Figure 4.4: Controller architecture illustrating flow corrections at time step t for N particles.
The positional errors and position coordinates of each particle are provided as inputs to the
overall controller block. ∆XPi(t) and ∆YPi(t) are positional error values for particle i at t
in the X and Y directions respectively, XPi(t) is the current position (a set (XPi(t), YPi(t)))
of particle i at t, Q(t) is the array of imposed flow rate values at t, and Q f (t) is the array
of corrected flow rates the pump needs to provide. Each particle has an X- and a Y-axis
controller for computing the correction factor values (κi,x(t), κi,y(t) respectively for particle i
at t) and their corresponding sign calculator blocks. A legend indicating the various symbols
is provided below the diagram.

particle respectively along a given direction at time step t. The terms multiplied
with Kp, Ki, and Kd represent the instentaneous error, the trend of errors
accumulating over time steps, and rate of change of errors respectively. ∑t

k=1 lk
denotes the accumulation of positon error from the start of the PID controller (k=
1) to the positon error at the current time step (k = t).

κ is the "correction factor" - an abstract quantity by which the imposed flow rate
input are scaled at time step t. The flow rate inputs values are multiplied with this
factor and yields the magnitude of flow rate corrections to be made at that time
step. It is assumed that the diameter of a particle (dp) is the threshold for applying
corrective actions - and thus κ can be negligible for a time step if the positional error
in a given direction is too low.
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This architecture of the controller is different from the conventional architecture,
and therefore an optimization routine is implemented to calculate the controller
gain values. It is explained in detail in Section 4.3.4.

Using equation 4.1, the correction factors for a single particle for the two
coordinate axes can be expanded as:

κx =



∣∣∣∣∣∣∣∣∣[Kpx Kix Kdx ] ·


∆Xt

∑t
k=1 ∆Xk

∆Xt − ∆Xt−1


∣∣∣∣∣∣∣∣∣ , if |∆Xt| > dp

0, otherwise

(4.2)

and

κy =



∣∣∣∣∣∣∣∣∣[Kpy Kiy Kdy ] ·


∆Yt

∑t
k=1 ∆Yk

∆Yt − ∆Yt−1


∣∣∣∣∣∣∣∣∣ , if |∆Yt| > dp

0, otherwise

(4.3)

κx and κy are the correction factors in the x- and y-directions respectively.
Kpx Kix Kdx are the proportional, integral, and derivative gain values for the
positional error in the x-direction respectively. Similarly Kpy Kiy Kdy are the
controller gains for the positional error in the y-direction. ∆Xt and ∆Yt denote
particle position deviation from the pre-computed path in the x- and y-directions
respectively at time step k, i.e. ∆Xt = Xopt(t)− Xexp(t), where Xopt(t) and Xexp(t)
are the desired (optimized) and actual (experimental) positions of the particle
respectively along the x-direction. Correspondingly, ∆Yt = Yopt(t)− Yexp(t), where
Yopt(t) and Yexp(t) are the optimized and actual (experimental) positions of the
particle respectively along the y-direction.

The particles to be manipulated may not have the same value of error along the
two coordinate (x- and y-) directions. Hence, two sub-controllers per particle are
used - one for each direction, so that corrections to be made corresponds to the
errors in their respective directions. However, the flow rate inlets are not directional
i.e. the flow from one inlet does not necessarily affect the movement of the particles
only in one direction. Thus, the flow rate corrections are calculated by adding the
corrections from each direction. Considering inlet 1 as an example, for a given time
step, these are given by:

∆Q1,x = κx ·Q1, and ∆Q1,y = κy ·Q1 (4.4)

where ∆Q1,x and ∆Q1,y are the magnitudes of flow corrections to be made to inlet
1 based on deviations along the x- and y-directions respectively. κx and κy are the
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(a) Division of the cell domain into zones to
determine the signs of flow rate corrections
from the feedback controller. The green
line segments are used to demarcate zones
boundaries, and the red line segments
represent the bounds within which the
corrective feedback action is applied. The
convention for the coordinate axes follows the
convention of the image feed from the camera
used in the experiments. The origin of the
coordinate system is marked on the image.
Note that the upstream inlet, responsible for
the uniform flow component, is not shown in
the figure above.

(b) An example illustrating the numerically
determined desired trajectory (solid blue) and
the experimentally observed actual trajectory
(dotted blue) for a particle and the deviation
between the ideal position (Xopt) and the actual
position (Xexp) at a given time step denoted by
the set (∆X, ∆Y) representing deviations along
the two coordinate axes.

Figure 4.5: Illustration of PID zones and deviation of a particle

correction factors calculated along the x- and y-directions respectively, and, Q1 is
the imposed flow rate value for inlet 1.

Following the same process for all inlets, the corrections from both directions are
scaled to the appropriate magnitudes based on the imposed flow rates. However,
note that the values calculated are only the magnitudes of correction; the signs of
the corrections depend on additional factors that are discussed in Section 4.3.2.

There are important considerations for the PID controller used here. First, the
flow rate correction values must be sufficiently small. In the chosen system
architecture, the primary purpose of the PID controller is only to minimize
deviations from the a priori optimized trajectory. That is, the pre-computed flow
rates would yield the expected trajectory in an ideal scenario - and the PID
controller is a correcting mechanism added in experiments to further decrease the
error. It is unlike the use of a conventional PID controller, involving reference
tracking or disturbance rejection [99]. Here, the PID controller plays an auxiliary
role of keeping the deviation to a minimum. Thus, if the PID output is of a
considerably high magnitude, adding it to the pre-computed flow rates may cause
the corrected flow rates to manipulate the trajectories of the particles in an
undesired manner, thereby defeating the purpose of the controller. Secondly,
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another consideration is that the system is conventionally slow (the time between
two intervals is ~2 seconds), and hence the integral and derivative terms do not
play as significant a role as the proportional term. That is, the error accumulation
over time may not be substantial, and the system may not need a quick response
from the PID controller, given that the pre-computed flow rates account for most
of the particle movement. Thus, Ki and Kd have low magnitudes.

4.3.2 cell domain partitioning

The magnitude of the corrections made to the imposed flow rate values at a given
time step are calculated based on a standard PID controller equation as illustrated
in equation 4.1. However, this equation is not sufficient to determine whether the
corrections for the individual inlets should be additive or subtractive. It is because
the direction of the flow from the inlet at a given time step is determined using
offline optimization routines (i.e. a priori particle manipulation algorithm), which
takes into account the superposition of flow rates from all the inlets. Hence, during
the experiment, particles can get influenced by sudden variations in the flow rate
of an individual inlet, particle density or particle position along the channel height.
This necessitates using the spatial information of the particles during the
experiments to determine whether to add or subtract the corrections, viz. the
current position of the particle in the domain of the cell and the sign of the
positional error in that direction based on a pre-determined convention.

To illustrate this, configuration represented in Fig. 4.5b is considered. At a given
time step, the particle ideally needs to be at position Xopt but is experimentally
observed to be at position Xexp. Based on a physical understanding of the system,
to reduce the deviation values ∆X and ∆Y:

• inlets 1 (in blue) and 3 (in yellow) need to have an additive inward flow to pull
the particle towards its ideal position along the x-direction. Accordingly, inlet
2 (in red) needs an additive outward flow to push the particle.

• the upstream inlet (not shown in the figure) responsible for the uniform flow
needs an inward flow correction to reduce uniform flow in the x-direction.

• inlets 1 and 2 need to provide an outward flow rate correction, and inlet 3

needs to provide an inward flow rate correction to reduce the deviation in the
y-direction.

This information is used to determine the signs of the flow corrections. The same
sign convention is used previously in the description of the experimental setup:
outward flow corrections carry a positive sign, and inward flow corrections carry a
negative sign.

This example illustrates how the flow rates can be adjusted based on the
positional error of the particle. The direction of corrections throughout the region
of interest is determined according to the physical understanding of the effect of
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inflow and outflow from the inlets on the particle. It is based on the possible
combinations of particle location and signs of positional errors. The flow cell is
virtually partitioned into zones delineated by the inlet locations as illustrated in
Fig. 4.5a. For each of these zones, the signs of the corrections for each inlet are
determined through rules based on the signs of the positional errors. These rules
are created according to the effect of flow directions from the various inlets. This
information is used to construct lookup tables (one for each direction) as shown in
Table 4.1. The final corrections to be applied to the individual flow rates are
calculated by taking the sum of the corrections determined for each particle
positional errors along each of the two coordinate axes.

Mathematically, the correction for inlet j for one particle at a given time step can
be stated as:

∆Qj = (dj,x)∆Qj,x + (dj,y)∆Qj,y (4.5)

where ∆Qj is the final correction value to be added to the pre-computed rate for
inlets j. (dj,x) and (dj,y) are the signs of the corrections for the x- and y-directions
respectively, obtained from Table 4.1. ∆Qj,x and ∆Qj,y are the flow correction
magnitudes for the x- and y-directions respectively for inlet j (given by equation
4.4).

It is noteworthy that the flow corrections provided by the x- and y-direction
controllers for a given inlet may have opposing signs, depending on the location of
the particles and the signs of their positional errors. To illustrate this point,
consider the case shown in Fig. 4.5b - the particle is in Zone 1 - and both ∆X and
∆Y are positive quantities. The x- and y-direction controllers provide different
signs (d1,x and d1,y) based on the controller lookup tables. Hence, following
equation 4.5, the final ∆Q1 value can be a positive or a negative quantity
depending on the magnitudes of the corrections ∆Q1,x and ∆Q1,y. It can thus be
seen that the nature of the flow corrections heavily depends on conditions
determined by the spatial arrangement of the inlets and positional errors.

4.3.3 mobility of particles

From experiments with multiple particles, it is observed that all particles have
different mobility and move at different speeds for the same uniform flow rate. It
could be because of differences in their relative position along the channel height
or differences in their particle density [100]. Thus, we assign a weights to each
particle, and adjust the controller outputs accordingly. This step is purely
motivated by our experimental observations. The particle weights are determined
based on the relative mobility of the particles, observed through their response to
the uniform flow.
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∆X sign Zone d1,x d2,x d3,x duniform,x

+ 1 or 4 + - + +

+ 2 or 3 - - - +

- 1 or 4 - + - -

- 2 or 3 + + + -

(a) Determining the signs for the flow
corrections based on the deviation in the
x-direction. dj,x = sign of correction for the
inlet j. Note that all four inlets are influenced
by deviations in the x-direction.

∆Y sign Zone d1,y d2,y d3,y

+ 3 or 4 - + +

+ 1 or 2 - - +

- 3 or 4 + - -

- 1 or 2 + + -

(b) Determining the signs for the flow
corrections based on the deviation in the
y-direction. dj,y = sign of correction for the
inlet j. Note that the y-direction controller has
no influence on the uniform flow component
(given by duniform,x in Table 4.1a) - thus,
duniform,y = 0.

Table 4.1: Lookup tables for determining the signs of the flow corrections based on the
current position (zone) and direction of deviation (∆X, ∆Y) of a particle. These tables are
constructed based on a physical understanding of the effect of inward or outward flows
from the inlets on the movement of the particles in the cell domain - and accordingly, how
increasing or decreasing flow rates would affect the trajectories of particles depending on
the situation.

After considering all factors, the final flow correction at a given time step k for
inlet 1 is given by the following equation:

∆Q1,k =
N

∑
i=1

Γi · ∆Q1,k,i (4.6)

where N is the number of particles. ∆Q1,k is the final value to be added to the
imposed flow rate value for inlet 1 at time step k. Γi = Wi/(∑N

j=1 Wj) is the
normalized weight of particle i, Wi being the user-assigned weight. ∆Q1,k,i is the
correction for flow inlet 1 at time step k based on particle i’s positional errors - this
is calculated using equation 4.5.

The input to be provided to inlet 1 at a given time step is thus:

Qf,1,k = Q1,k + ∆Q1,k (4.7)

where for time step k, Qf,1,k is the final flow rate through inlet 1, Q1,k is the
imposed flow rate at inlet 1, and ∆Q1,k the correction calculated following
equation 4.6.

This process is repeated for all the inlets, thus yielding the final flow rates to be
provided as input. In its implementation, the process is performed using vectors, as
illustrated in Fig. 4.4. In summary, the flow corrections at a given time step in the
experiment are eventually determined, considering the particle mobility differences
and the deviation values in each direction. Hence, each particle can be manipulated
to travel along its desired trajectory.
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Figure 4.6: Flow rate as a function of time for uniform flow inlet (•), inlet 1 (•), inlet 2 (•)
and inlet 3 (•). The desired output are marked as solid lines. The experiment data output is
shown as dotted lines. The amplitude of random noise considered in the PID controller is
shown as a error band (marked as gray area).

4.3.4 controller tuning

In any process that is controlled using a feedback controller, being able to control
the value of a process output with desired specifications requires to tune. Hence,
the parameters have to be appropriate values in order to ensure that the output
specifications are met. For PID controllers, tuning involves setting the gain values
Kp, Ki, and Kd appropriately. In this case, adding a PID controller in the loop would
not necessarily lead to a better result (i.e. reduced positional errors) if the controller
is not tuned.

The flow cell system needs to be controlled with the same controller gain values
(Kp, Ki, Kd) for all test cases. Thus, the controller cannot be tuned using
conventional techniques available in the literature [101–104] in which the process
model is approximately known. The controller gain values are therefore calculated
using alternative means.

A nonlinear optimization routine is used to determine the neighborhood of the
controller gain values, as illustrated through a flowchart in Fig. 4.7. An
appropriately-sized vector of random noise is added to the pre-computed flow
rates to simulate the presence of uncertainties in the experimental setup (See
Fig. 4.6). Accordingly, the resulting trajectories may deviate from the a priori
optimized trajectories when a feedback controller is not present, as illustrated in
Fig. 4.5b.
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Compute flow rates
and desired
trajectories

Q*j (flow rates),  
[x, y, t]i (trajectory)

Add Gaussian noise to
flow rates ( low

magnitude)

Initialize PID controller
with Kp Ki Kd = [0, 0, 0]

Qj (flow rates with
disturbances)

Simulate advection
based on Qj values at

timestep t

ΔXi, ΔYi  
Deviations from ideal

positions

Feedback controller

t < TFinal

ΔQj,x , ΔQj,y 
Flow rate corrections

Qj := Qj +  ΔQj 
Update flow rates with

correction 

Mean Squared
Error (MSE) over trajectory 

Objective: to minimize 
Mean Squared

Error (MSE)
Parameters:
[ Kp Ki Kd ]

Minima?Optimal [ Kp Ki Kd ]
Yes

No

No

Yes

Simulation for Mean Squared Error (MSE) calculation

Non-linear optimization

Calculate deviation in
particle positions from

ideal values

Figure 4.7: High-level flowchart illustrating how optimal PID controller parameters are
computed using a non-linear optimization approach. The random noise added to the pre-
computed flow rates is limited to a maximum of 5 µl/min. Additionally, the controller gain
values (Kp, Ki, Kd) are also direction-specific (for instance, Kpx and Kpy ) but this is omitted in
the diagram for simplicity.

A figure of merit for quantifying the controller response is the mean squared
error (MSE) of the deviation of the particles from their desired trajectories - lower
values indicating better corrective action from the controller. For a given particle,
the MSE is calculated as:

MSE =
1
T

T

∑
t=1

[
(Xop(t)− Xu(t))2 + (Yop(t)− Xu(t))2

]
(4.8)

where Xop(t) and Yop(t) represents the optimized (a priori) x- and y-coordinate
of the particle at time step t respectively. Xu(t) and Yu(t) represent the x- and y-
coordinate with uncertainty at time step t respectively. T is the total number of time
steps over which the MSE value is calculated.

A nonlinear optimization problem is thus formulated. The controller gains are
initialized (Kp = 0, Ki = 0, Kd = 0). An appropriately-sized random noise vector
(with a fixed set of bounds) is added to the pre-computed flow rates to simulate
experimental uncertainty and the deviation of the particles (∆Xt, ∆Yt) from their
desired trajectories is calculated for each time step. Based on the value of this
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Figure 4.8: Particle trajectories showing
particle deflection ( : optimized trajectory)
and ( : experimenttally measured
trajectory) data for (A) without PID control
and (B) with PID control. The blue shaded
area is the manipulation region. The scale
bar represents 4 mm. (C) Positional error as
a function of time for the experiment time
history. The green shaded area represents the
particle mean diameter of 212 µm, which is
considered as an acceptable threshold.

deviation, the locations of particles, and their weights, the controller computes the
correction to be applied to the flow rates, as given by equation 4.6. The corrective
action is added to the flow values, and the resulting trajectory of the particle is
computed accordingly through the 4th order Runge-Kutta integration scheme for
the entire run. After the final time step, the MSE for the entire run is calculated as
the sum of the MSE for each particle given by equation 4.8. The objective function
is to minimize the total MSE value considering the PID gain values as the
parameters to optimize.

Experimental data (as shown in Fig. 4.6) suggest that the addition of random
noise to pre-computed flow rates provides a realistic approximation for the
variations observed in the experimentally determined flow rates. However, due to
the variations between experimental runs, the optimized gain parameters are
considered indicative values. Therefore, they need to be adjusted manually during
the experiments based on observations of particle trajectories and flow rate
corrections. For instance, if a particle lags considerably behind its expected
trajectory after every time step, it means that the current value of Kp needs to be
increased to provide a more aggressive immediate correction.

Following this procedure, Kp, Ki, and Kd values are obtained in the
neighbourhood of 0.5, 0.1, and 0.1 respectively. In this work, the same gain values
are used for both directions (i.e. Kpx = Kpy , Kix = Kiy , Kdx = Kdy ). It is possible
though, for the user to set the gains to different values in the two directions
depending on direction-specific experimental conditions.

4.4 results

4.4.1 importance of pid control loop

The performance of the PID controller is demonstrated by performing
single-particle manipulations, namely particle deflection, and particle trapping.
The optimized trajectory and the corresponding flow rates are computed using the
a priori particle manipulation algorithm for the pre-defined initial XP1(t0) and final
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Figure 4.9: (A) Particle trajectories showing
particle trapping ( : optimized trajectory)
and ( •: experimentally measured particle
position) data for (A) without PID control
and (B) with PID control. The blue shaded
area is the manipulation region. The scale
bar represents 4 mm. (C) Positional error as
a function of time for the experiment time
history. The green shaded area represents the
particle mean diameter of 212 µm, which is
consider as an acceptable threshold.

particle XP1(t f ) position. For the same optimized particle trajectory, the
experiments are carried out with and without the PID control loop, and the results
are compared based on their respective position error. The position error is
calculated as the mean squared error (MSE) of the particle deviation between the
experimentally determined particle trajectory and the optimized particle trajectory.
A value for the MSE comparable to the particle diameter is considered as the
acceptable threshold. The experimental trajectory of particle deflection without
PID control is shown in Fig. 4.8A. In this case, the particle does not follow the
optimized path. This may be due to the particle not being exactly at the center-line
across the channel height, leading to lower particle velocity for a given flow rate.
As the a priori particle manipulation algorithm considers particle location at the
center-line across the channel, such deviations are expected. In this case, the MSE
gets accumulated throughout the experiment and gives a position error of 2 mm at
the end of the manipulation time. Following this first experiment, the same particle
was brought back to the same initial particle position XP1(t0). The experiment was
then repeated using the PID controller, where the flow rate corrections are
calculated in real-time to correct for the particle position error (Fig. 4.8B). During
the experiment, the position error increases and then gradually decreases to below
the acceptable threshold level based on the flow rate corrections, see Fig. 4.8C.

Similarly, an experiment with single-particle trapping without PID control is
performed. In this case, the particle does not get trapped (see Fig. 4.9A) because
the stagnation point is inherently unstable, and here the particle tends to follow a
streamline near the stagnation point and ends up in different locations. Thus, the
particle moves towards inlet 3 (yellow) as it moves downstream, as shown in
Fig. 4.9A. Without the PID controller, the position error first increases and
decreases for a short duration because the particle lags in the flow. Then, as the
particle comes to the trap location, the error first decreases, before increasing again
as the particle does not get trapped. The PID controller can significantly reduce the
inconsistent effect of the stagnation point by correcting the flow rates while
keeping the particle stationary, as demonstrated in Fig. 4.9B. With the PID
controller, although the position error is prominent at the start of the manipulation,
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Figure 4.10: (A) Particle trajectory showing
particle deflection for : optimized particle
trajectory and : experimentally measured
particle trajectory. XP1(t0) and XP1(t f )
denotes pre-defined initial and final particle
location for particle 1 respectively. The
black square box marks the measurement
domain. The blue shaded area indicates the
region where manipulation took place. (B)
Imposed and experimentally measured flow
rates. (Inset) Flow rate corrections by PID
controller during the experiment to minimize
the particle positional error. (C) Positional
error as a function of time. The green shaded
area represents the mean particle diameter,
212 µm, which is considered an acceptable
threshold. The particle tracks are computed
from the streamlines. The streamlines are
computed from the flow rates recorded
during the experiment at different time
instants: (D) t = 16 s (E) t = 55 s and (F) t
= 75 s. The scale bar represents 4 mm.

the PID controller helps lower the position error by giving additional flow rates
correction. Thus, forcing the particle to follow the a priori optimized trajectory.

4.4.2 single particle deflection

[Fig. 4.10D].

Movie 4.1

The experiment here is similar to the open-loop single-particle
deflection discussed in section 3.5.1. Here, a constant flow, u = (80,0) µm/s
(Quniform flow =20 µl/min) is maintained throughout the experiment. The
optimized trajectory and the corresponding flow rates are computed using the a
priori particle manipulation algorithm. The solid and dashed line indicate the
optimized particle trajectory and experimentally measured particle trajectory,
respectively, as shown in Fig. 4.10A. The PID controller makes additive corrections
to the pre-computed flow rates to minimize the particle deviation from the
optimized particle trajectory. The flow rate corrections shown in the inset of
Fig. 4.10B are based on the particle position error. With small flow rate corrections,
a good agreement between the optimized and the experimental particle trajectory
is observed. The particle position error is initially larger than the acceptable error
threshold but gradually decreases as shown in Fig. 4.10C. The acceptable threshold
here is the mean diameter of the particle to be manipulated i.e. 212 µm.

Movie 4.2

Next, the
flow patterns are analyzed using the experimentally measured flow rates. This
provides insight into the streamlines during the manipulation event. Here, the
streamlines are plotted for the manipulation at the time, t=16 s, 55 s, and 75 s

https://drive.google.com/file/d/1DMCv9x0X0BgHh9iclHz_JMgzKTE-FPub/view?usp=sharing
https://drive.google.com/file/d/1GdvrLxnApfAWxkSYQuvat42n7eoJTwBl/view?usp=sharing
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Figure 4.11: (A) Particle trajectories showing
particle trapping for : optimized particle
trajectory and •: experimentally measured
particle trajectory. XP1(t0) and XP1(t f )
denotes pre-defined initial and final particle
location for particle 1 respectively. The
black square box marks the measurement
domain. The blue shaded area indicates
the manipulation region. The red shaded
area shows the particle trapping location.
(B) Imposed and experimentally measured
flow rates. (Inset) Flow rate corrections by
PID controller to minimize the particle’s
positional error. (C) Positional error as
a function of time. The green shaded
area represents the mean particle diameter,
212 µm, considered as the acceptable
threshold. The streamlines are computed
from the flow rates recorded during the
experiment at different time instants: (C) t=
100 s (D) t= 150 s and (E) t= 200 s. The scale
bar represents 4 mm.

corresponding to Fig. 4.10D, E, and F, respectively. Throughout the manipulation
event, the streamline pattern does not change significantly. The particle starts from
XP1(t0) and move towards inlet 3 as the inlet 1 has a large source strength. The
particle continues to move towards inlet 3 as inlets 2 and 3 continue to act as sinks,
while the source strength of inlet 1 decreases [Fig. 4.10E]. Finally, the particle
begins to move straight in the downstream towards the final particle location
XP1(t f ) [Fig. 4.10F]. See Movie 4.1 and Movie 4.2 for the experimental video for
the single-particle deflection and the corresponding streamline visualization
respectively.

4.4.3 single particle trapping

Similar to the open-loop single particle trapping discussed in section 3.5.2, here, a
single particle trapping is demonstrated in a closed-loop. The scatter points in
Fig. 4.11A indicate the experimentally measured particle position, which shows
that the particle significantly slows down and eventually gets trapped in the
trapping area (red-shaded region). During the experiment, as the particle
positional error increases between t = 0 s to 120 s [Fig. 4.11C], the flow rate
corrections reduce the error [Fig. 4.11B (inset)]. The flow rate corrections modulate
the pre-computed flow rate components such that the error is again within the
threshold. Next, the streamlines are analyzed using the flow rates measured
experimentally at the time, t= 100 s, 150 s, and 200 s corresponding to Figs. 4.11D,
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Figure 4.12: The dashed lines shows optimized particle trajectory and dotted line shows
experimentally measured position for a particle that is trapped and released. The red shaded
region shows the pre-defined particle trap duration. (A) Particle displacement in x-direction
as a function of time. (B) Particle displacement in y-direction as a function of time.

E, and F, respectively. The particle starts to slow down as inlets 1 and 3 act as sinks,
and inlet 2 acts as a source [Fig. 4.11D] until the particle becomes trapped at the
stagnation point. As the stagnation point is inherently unstable, the flow rates are
adjusted to maintain the particle trapped in a position by giving small corrections
to the flow rates [Fig. 4.11E]. Eventually, the particle resumes the downstream
motion after the trapping time has passed [Fig. 4.11F]. See Movie 4.3 and Movie
4.4 for the experimental video for the single-particle trapping and the
corresponding streamline visualization respectively.

In the trapping duration of 60 seconds, in Fig. 4.12A, the experimentally
determined particle position translates in x-direction by 390 µm between t= 50 s to
78 s. From t= 78 s to 110 s, the particle is stagnant at the x-position of 6.40 mm.
Throughout the experiment in the y-direction, experimentally measured particle
position had no significant deviation compared to the optimized particle trajectory,
see Fig. 4.12B.

Movie 4.34.4.4 separating particle pair

We now focus on separating a particle pair similar to the manipulation discussed
in section 3.5.3.

Movie 4.4

Based on the pre-defined final position, XP1(t f ) and XP2(t f ) for
particles 1 and 2 respectively and their potential start point, XP1(t0) and XP2(t0),
where the particle pair would enter the square domain, optimized particle
trajectories are computed using a priori particle manipulation algorithm. The
optimized particle trajectories (solid green and red lines) and experimentally
measured particle trajectories (dashed green and red lines) are indicated in
Fig. 4.13A. During the experiment, the feedback loop system computes the
experimentally measured particle positional errors for the optimized trajectories
and provides flow rate corrections accordingly. A good agreement between the
imposed and the experimentally measured flow rates is shown in Fig.4.13B.

https://drive.google.com/file/d/1lAeSdCAoYC7sX7CnALEyDGq2na3Db_-h/view?usp=sharing
https://drive.google.com/file/d/1B5EWNM4nY85bEypTZicWRHXLJDcaltxb/view?usp=sharing
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Figure 4.13: Separating particle pair: (A)
Particle trajectories showing particle
separation for optimized particle trajectories
( : particle 1, : particle 2) and
experimentally measured ( : particle 1,

: particle 2) data. XP1(t0) and XP1(t f )
denotes pre-defined initial and final particle
location for particle 1 respectively. Similarly,
XP2(t0) and XP2(t f ) are for particle 2.
The measurement domain is marked by
the black square box. The blue shaded
area marks the manipulation region (B)
Imposed and experimentally measured flow
rates. (Inset) Flow rate corrections by PID
controller during the experiment to minimize
particles positional error. (C) Positional error
as a function of time for particle 1 ( )
and particle 2 ( ). The green shaded
area indicates the mean particle diameter,
212 µm, which is considered as an acceptable
threshold. The streamlines are computed
from the flow rates recorded during the
experiment at different time instants: (D) t =
10 s (E) t = 72 s and (F) t = 104 s. The scale bar
represents 4 mm.

Considerably lower flow rate corrections were required in this test case [Fig.4.13B
(inset)]. The particle positional error trend of particle 1 is within the threshold for
the entire duration of the experiment, as shown in Fig. 4.13C. The particle
positional error trend of particle 2, is outside the threshold for the majority of the
manipulation duration. It might be due to the off-center particle position along the
channel height. During the experiment, when the normalized weight of particle 2

is increased with respect to particle 1, the positional error trend starts to decrease
for particle 2 and increase for particle 1, but stays within the threshold limit.

Movie 4.5

Furthermore, the streamline patterns are analyzed using the experimentally
measured flow rates during the manipulation at the time, t= 10 s, 72 s, and 104 s
corresponding to Fig. 4.13D, E, and F, respectively. The particles continue to move
downstream, with particle 1 moving towards inlet 3, which acts as a sink
[Fig. 4.13D]. As the particles move downstream, they separate further as a result of
inlet 1 acting as a sink, and the distance between the particles increases [Fig. 4.13E].
As the particles travel towards inlet 2, the source strength of the inlet 2 increases to
separate the two particles and move them closer to the pre-defined final positions
[Fig. 4.13F]. See Movie 4.5 and Movie 4.6 for the experimental video for the
separation of a particle-pair and the corresponding streamline visualization
respectively.

Movie 4.6

https://drive.google.com/file/d/1XhyFiDY8Qi1cGdIxFCMB68vnAre6LV5u/view?usp=sharing
https://drive.google.com/file/d/1HxTaM2aSlgRvZU4lh1TgAi2td2xGrFXA/view?usp=sharing


C
h

a
p
t
e
r

4

4.4 results 79

Figure 4.14: Joining two particles: (A)
Particle trajectories showing particle coming
close to each other for optimized particle
trajectories ( : particle 1, : particle
2) and experimentally measured ( :
particle 1, : particle 2) data. XP1(t0)
and XP1(t f ) denotes pre-defined initial
and final particle location for particle 1

respectively. Similarly, XP2(t0) and XP2(t f )
are for particle 2. The measurement domain
is marked as the black square box. The
blue shaded area indicates manipulation
region. (B) Imposed and experimentally
measured flow rates. (Inset) Flow rate
corrections by PID controller during the
experiment to minimize particle positional
error. (C) Positional error as a function
of time for particle 1 ( ) and particle 2

( ). The green shaded area indicates the
mean particle diameter, 212 µm, which is
considered as an acceptable threshold. The
streamlines are computed from the flow
rates recorded during the experiment at
different time instants: (D) t = 16 s (E) t =
55 s and (F) t = 75 s. The scale bar represents
4 mm.

4.4.5 joining two particles

Bringing two particles together in an open-loop system is discussed in section 3.5.4,
here a similar experiment is demonstrated with the closed-loop control system.
The a priori manipulation algorithm determines the optimized particle trajectories
and the corresponding flow rates from the input: initial particle position (XP1(t0)
and XP2(t0)) and final particle position (XP1(t f ) and XP2(t f )) for particles 1 and 2

respectively. The optimized particle trajectories (solid green and red lines) and
experimentally measured particle trajectories (dashed green and red lines) are
indicated in Fig. 4.14A. A maximum of 10% deviation between the imposed and
the experimentally measured flow rates is shown in Fig.4.14B. A small flow rate
correction at the time t= 100 s is required [Fig.4.14B (inset)]. The particle positional
error of particle 2 is within the threshold for the entire experiment. In this case, the
particle position error of particle 1 remains constant until t= 70 s and increases for
a short duration between t = 70 s and 75 s. During the experiment, the normalized
weight of particle 1 is increased with respect to particle 2, the particle position
error for particle 1 decreases to the threshold level after that [Fig. 4.14C].

Movie 4.7

https://drive.google.com/file/d/18JcFJczOX8n4_qwQ-zRSW5XdGZkfGo1A/view?usp=sharing
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Figure 4.15: Virtual mixing channel: (A)
Particle trajectories showing particle mixing
for optimized particle trajectories ( :
particle 1, : particle 2) and experimentally
measured ( : particle 1, : particle
2) data. XP1(t0) and XP1(t f ) denotes pre-
defined initial and final particle location for
particle 1 respectively. Similarly, XP2(t0) and
XP2(t f ) are for particle 2. The black square
box marks the measurement domain. The
blue shaded area indicates the manipulation
region. (B) Imposed and experimentally
measured flow rates. (Inset) Flow rate
corrections by PID controller during the
experiment. (C) Positional error for particle
1 ( ) and particle 2 ( ). The green
shaded area indicates the threshold, i.e. mean
particle diameter: 212 µm. The streamlines
are computed from the flow rates recorded
during the experiment at different time
instants: (C) t = 68 s (D) t = 100 s and (E) t
= 150 s. The scale bar represents 4 mm.

Subsequently, the streamline patterns are presented using the experimentally
measured flow rates determined during the manipulation at the time, t= 16 s, 55 s,
and 75 s corresponding to Fig. 4.14D, E, and F, respectively. Both the particles
move downstream, and particle 1 begins to move towards inlet 1 due to inlets 1

and 2 acting as a source and sink, respectively [Fig. 4.14D]. Both particles travel
downstream, with particle 1 having a larger velocity due to a strong source and
sink strength from inlets 1 and 2, respectively, making a Rankine oval [Fig. 4.14E].
As the particles travel towards inlet 2, the sink strength of inlet 2 increases to move
the two particles closer to each other to the pre-defined final particle position
[Fig. 4.14F]. See Movie 4.7 and Movie 4.8 for the experimental video for the
particles coming close to each other experiment and the corresponding streamline
visualization respectively.

Movie 4.8 4.4.6 virtual mixing channel

Movie 4.9

Interchanging the position of a particle pair downstream for an open-loop system
is shown in section 3.5.5. In this section, the same particle manipulation is
discussed in a closed-loop. The optimized particle trajectories (solid green and red
lines) computed from the a priori particle manipulation algorithm, and
experimentally measured particle trajectories (dashed green and red lines) are
indicated in Fig. 4.15A. In this experiment, significant deviation arises between the
imposed and the experimentally measured flow rates in the second half of the

https://drive.google.com/file/d/1ESk8ijTAMv4_3S2pWS5VqpdO0pqqWxu0/view?usp=sharing
https://drive.google.com/file/d/1Fiq5hqc5RaB3THS85lHzIeHjqbl-Iyec/view?usp=sharing
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experiment, as shown in Fig.4.15B. Here, the flow rate corrections are substantial
in correcting the particle positional error [Fig.4.15B (inset)]. Since the controller
gains were kept constant, the high magnitude of the flow correction may be due to
a small blockage in the inlet tubes or to particle settling in the flow cell that
reduces the velocity in the parabolic flow profile. This example shows that the PID
control is robust in practice and can give appropriate flow rate corrections to
mitigate random disturbances in the experiment. The positional error of particle 2

increases significantly, and it might be due to the settling behavior of the particle
in the flow cell. The flow rate corrections decreased the particle positional error to
the threshold level [Fig. 4.15C].

Movie 4.10

The streamline patterns are computed using the experimentally measured flow
rates during the manipulation at the time, t= 68 s, 100 s, and 150 s corresponding to
Fig. 4.15D, E, and F, respectively. In the beginning, particle 2 is in front and below
particle 1. At t = 68 s, both particles are close to each other near inlet 1 [Fig. 4.15D].
Both particles are subsequently deflected towards inlet 2, and particle 2 is pushed
towards inlet 3 at a steep angle such that it moves on the other side of the trajectory
of particle 1 [Fig. 4.15E]. Towards the end of the manipulation period, particle 2

is behind and above particle 1 [Fig. 4.15E]. See Movie 4.9 and Movie 4.10 for the
experimental video and the corresponding streamline visualization, respectively.

4.4.7 real-time pollen selection and trapping

As an application of this multi-purpose flow cell, an arbitrary pollen grain is
selected and trapped in the flow cell while the other pollen grains continue to flow.
There has been considerable work done in pollen trapping [105, 106].
Manipulation techniques such as electric or magnetic manipulation are not feasible
here. They do not create appropriate growth conditions for growing pollen tubes
from a pollen grain, which promptly respond to chemical or electrical stimuli. The
pollen trapping experiment is done similarly to the particle trapping experiment
explained previously in section 4.4.3. The modified experimental setup for the
pollen grain experiment is discussed in section 4.2. The pollen grain approaches
the measurement domain from the centerline along the width of the device. The
objective is to trap the pollen at the stagnation point in the trapping area
(red-shaded region) as shown in Fig. 4.16A. As the pollen enters the manipulation
region, significant flow rate corrections are required [Fig. 4.16B (inset)]. The
magnitude of the corrections is in the same order as the pre-computed flow rates.
The pollen diameter (70 µm) is significantly smaller than the channel height
(350 µm). Thus, the probability of the pollen grain not being at the centerline along
the channel height is significant. At the start of the experiment, the positional error
is large and gradually decreases throughout the experiment to the threshold value
of 70 µm i.e. pollen grain diameter. Fig. 4.16D, E, and F correspond to pollen grain
trapping at the manipulation time of 100 s, 130 s, and 160 s, respectively, as seen
with a 3x zoom lens along with the streamline imposed from the experimental

https://drive.google.com/file/d/1QWipi0AXDa5dgGXKjyvqbh8j-OoYeP9x/view?usp=sharing
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Figure 4.16: Real-time pollen selection
and trapping: (A)Particle trajectories
showing pollen grain trapping for
simulated ( ) and experiment
( ) data. XP1(t0) and XP1(t f )
denotes pre-defined initial and final
location for the selected pollen grain
respectively. The black square box
marks the measurement domain. The
Blue shaded area indicates manipulation
region. The red shaded area shows the
particle trapping location. (B) Imposed
and experimentally determined flow
rate. (Inset) Flow rate corrections
by PID controller to minimize the
positional error. (C) Positional error as a
function of time. The green shaded area
represents the mean pollen diameter,
70 µm, considered as the acceptable
threshold. Images of trapped pollen is
shown at different time stamps during
the trapping process: (C)t = 100 s (D)t
= 130 s and (E)t = 160 s.The gray lines
depict the streamlines around the pollen
grain. The scale bar represents 250 µm.

flow rate data. The streamlines vary with time to keep the pollen at the same
position. See Movie 4.11 for the pollen trapping experiment as seen by 1x lens (for
pollen manipulation) and 3x zoom lens (for visualization).

Movie 4.11 4.5 discussion and conclusion

This chapter describes the PID control approach, which complements the a priori
particle manipulation algorithm to improve the accuracy and precision of the
experimental manipulation of particles using pre-computed optimized trajectories.
It is essential to make this work in practice. The linear aspect of potential flow
makes the control strategy straightforward and fast. The PID controller gives flow
rate corrections added to the pre-computed flow rate based on the measured
particle deviation from the pre-computed optimized particle trajectories in
real-time during the experiment.

With the PID control strategy, the flow cell is capable of various microfluidic
fundamental processes such as sorting (see Fig. 4.10), trapping (see Fig. 4.11),
separating (see Fig. 4.13), joining (see Fig. 4.14) and interchanging (see Fig. 4.15).
This work can be used in chemical and biological processes such as cell trapping,
cell interactions, cell separations, micro-reactors, particle assembly, adhesion,

https://drive.google.com/file/d/1G-LD5OrBycPrvUnuWygRaCYp8tWfiALy/view?usp=sharing
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droplet coalescence, and mixing. As a potential application for the device, it was
also shown that an arbitrary pollen grain in the flow cell was trapped (see
Fig. 4.16), while the flow further advects the other pollen grains. Here, the pollen
grain is trapped for a minute. In principle, trapping time can be extended or
reduced based on the user. An advantage of using hydrodynamic forcing is that it
does not influence chemical/biological samples by external forces such as electric
fields or acoustic fields.

In the future, adding more ports can make the system for two-particle
manipulation more redundant. In addition, having more inlets will help to have
more stable streamlines. Moreover, coupling the a priori particle manipulation
algorithm with a more robust feedback loop such as Nonlinear Model Predictive
Control (NMPC) would allow better control of the particle manipulation. NMPC
can be applied with a pre-determined time horizon as already the most stable
optimized particle trajectories are computed from the a priori particle manipulation
algorithm. Additionally, an adaptive feedback controller can also be formulated
that selects the controller parameters from the particle locations and the
pre-computed flow rates. Also, a separate optimization can be done to find the
optimum location for the inlets and their configuration to facilitate optimized
particle trajectories with minimum absolute flow rate and flow rate variations.
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5
C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E

This chapter summarizes the main conclusions presented in the different chapters.
Each chapter is self-contained and has its respective conclusion. Moreover, possible
future research and development suggestions are discussed here.

5.1 conclusions

The main objective of this thesis is discussed in section 1.4. The aim was to build a
versatile microfluidic platform for multi-purpose particle manipulation
applications. This thesis demonstrates that such a device can be fabricated and can
potentially be employed for diverse applications. To support this claim, multiple
pivotal experiment test cases such as sorting, trapping, separating, joining and
mixing are performed in the microfluidic device. The success of these test cases
shows the capability of the device for various applications in the field of
microfluidics. Concluding remarks from this work are discussed hereafter.

psi-piv

The development of the Psi-PIV algorithm was an important milestone in moving
towards the main objective of this thesis. Psi-PIV overcomes the problem of
correlation depth, which is substantially larger than the channel height. Thus
Psi-PIV does not suffer from measurement errors and uncertainty that one would
otherwise encounter. This algorithm helps determine the flow fields using the
potential flow theory. In comparison to conventional PIV, a major difference lies in
the fact that Psi-PIV requires a lower image density (Neff = NF NI FI F∆) to
determine the flow direction for each interrogation window. Once the flow
direction is determined, the two-dimensional stream function is used to extract
and reconstruct the magnitude of the velocity field. This increases the temporal
resolution that Psi-PIV can achieve compared to conventional PIV. In this thesis,
Psi-PIV was used to validate the flow field pattern in the microfluidic device when
comparing the data from experiments to the potential flow simulations.
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particle manipulation

The development of the novel a priori particle manipulation algorithm made great
strides in making such a flow cell a reality. The optimization routine determines an
optimal particle trajectory based on the pre-defined initial and final location of the
particles. The optimized particle trajectory is determined while minimizing the
absolute flow rates and the flow rate variations, which are crucial from the
experimental point of view. Additionally, the a priori particle manipulation
algorithm is adaptable and easy to scale up or down to suit the physical
dimensions of the microfluidic device. It is possible since the entire optimization
calculations are performed on non-dimensional terms that are scaled by the length
scale of the region of interest, channel height, and the uniform flow velocity. The
experimental results in chapter 3 showed that the a priori particle manipulation
algorithm can construct stable pre-computed flow rates that the pump can deliver.
Thus, it maximizes the probability of the particle following the desired optimal
particle trajectory in an experiment despite measurement noise. However, the
robustness of the a priori particle manipulation algorithm is currently limited as it
does not consider certain effects, which can unpredictably alter the particle
trajectory, such as surface roughness, particle density, and off-center particle
position along the channel height. This would lead to error in the particle
trajectory that will accumulate over time, leading to an increasing deviation of the
particle from the desired trajectory.

particle manipulation with a feedback loop

To increase the reliability of the experiments in the flow cell, real-world aspects
such as flow cell surface roughness, small deformities of the inlets due to the
fabrication process, and off-center particle position in the channel need to be
addressed. To address these issues, we develop a Proportional Integral Derivative
(PID) controller, which complements the a priori particle manipulation algorithm to
improve the robustness, accuracy and precision of our particle manipulation
approach. The linearity of the potential flow theory makes the control strategy
straightforward and fast. The PID controller produces flow rate corrections for the
pre-computed flow rates based on the particle deviation from their prescribed path
during the real-time experiment. The experiments demonstrated that with the a
priori particle manipulation algorithm and PID control strategy, the flow cell
performs various microfluidic fundamental processes such as sorting, trapping,
separating, joining, and mixing. As an application for the device as a trapping
device, an arbitrary pollen grain is selected in the flow cell and trapped while the
other pollen grains continue to flow. An advantage of using hydrodynamic forcing
is that it allows identical growth conditions for the chemical/biological specimens
compared to external forces such as electric fields or acoustic fields.
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Thus, this microfluidic device can be used in chemical and biological processes
such as cell trapping, cell interactions, cell separations, micro-reactors, particle
assembly, adhesion, droplet coalescence, and mixing.

5.2 future perspectives

Considering the challenges experienced in this work, the following
recommendations are formulated for future work.

psi-piv

The minimum image density required to determine the direction field could be
further improved with the use of advanced PIV processing steps such as
multi-grid and iterative windows approach ([89]). Psi-PIV can be modified to
determine velocity field from the concentration measurements in a Hele-Shaw cell
which is relevant for studies related Rayleigh-Benard convection of carbon dioxide
dissolving into brine [107]. In such a method, in-plane velocity ratio (u/v) at every
x-, y-coordinate pair can be determined from the directional correlation as
discussed in Chapter 2. The concentration map of carbon dioxide can be captured
using fluorescent emission of a pH-sensitive dye. The information from the
concertation map and the vector angle (Θ) from Psi-PIV can be combined and
coupled with the advection-diffusion equation ([90]) to determine the velocity
from the concentration as shown below:

u = v · tan θ (5.1)

v =
D ·
(

∂2C
∂x2 + ∂2C

∂y2

)
− ∂C

∂t

tan Θ · ∂C
∂x + ∂C

∂y

(5.2)

where u and v are velocity component in x- and y- direction respectively. C is
concentration and D is diffussion coefficient.

particle manipulation

The a priori particle manipulation algorithm is a two-step optimization that uses
the solutions of Legendre polynomials to predict the flow rates. A combination of
the orthogonal polynomials for the unconstrained and constrained algorithms can
be explored to deliver lower absolute flow rates values and lesser flow rate
variations. As the flow rate is calculated using potential flow theory, the flow
control mechanism will work for all the Newtonian fluids as long as the
Hele-Shaw approximation is valid. As the a priori particle manipulation algorithm
is based on the framework of superposition of sources and sinks in a potential flow
field, the same framework can be modified to be used with electric and magnetic
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forces as well. It is possible because even these forces can be described as a
superposition of sources and sinks.

Combining hydrodynamic forcing with acoustic/magnetic/electric fields or
optical tweezers can make the flow cell more versatile. The microfluidic device can
be made smaller, making it more interesting for biological applications such as cell
trapping. Fabricating the device with different materials such as glass can reduce
the flow cell surface roughness. The effects of microbubbles or air obstruction in
the channel can be reduced with hydrophilic coating. Also, adding more inlets
would make the system more redundant for two-particle manipulation. Having
more inlets will help to establish more stable streamlines. Moreover, a separate
optimization can be done to find the optimum location of the inlets and
configuration to facilitate the desired particle trajectories.

particle manipulation with a feedback loop

In the existing PID setup, the corrections for the individual inlets depend only on
the zone and particle deviation values. This can be further extended by using
"weighting functions" to determine relative weights for individual flow rate
corrections based on the distance of the particles from the inlets. Additionally, to
prevent possible oscillatory behavior at zone boundaries, "dead zones" can be
demarcated within which no control action should be applied to the flow rates.
Furthermore, coupling our a priori particle manipulation algorithm with more
optimal approaches such as Nonlinear Model Predictive Control (NMPC) [108]
may allow better control of the particle manipulation. NMPC can be used to break
the optimized trajectory from the a priori particle manipulation algorithm into
multiple optimization problems over a finite period of time. Here, the model is a
system whose output consists of particle trajectories over the finite period of time
(horizon) in the control domain. The set of input is the flow rates to be imposed.
The optimized particle trajectories and flow rates for the horizon can be computed
using the a priori manipulation algorithm considering the deviated particle
positions as the new initial positions. This process is computationally more
expensive but provides optimal flow rate values based on particle deviations from
the pre-defined particle trajectory. Additionally, an adaptive feedback controller
can also be formulated that selects the controller parameters from the particle
locations and the pre-determined flow rates.
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