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Abstract: Model calibration and validation are challenging in poorly gauged basins. We developed
and applied a new approach to calibrate hydrological models using distributed geospatial remote
sensing data. The Soil and Water Assessment Tool (SWAT) model was calibrated using only twelve
months of remote sensing data on actual evapotranspiration (ETa) geospatially distributed in the
37 sub-basins of the Lake Chad Basin in Africa. Global sensitivity analysis was conducted to identify
influential model parameters by applying the Sequential Uncertainty Fitting Algorithm–version 2
(SUFI-2), included in the SWAT-Calibration and Uncertainty Program (SWAT-CUP). This procedure
is designed to deal with spatially variable parameters and estimates either multiplicative or additive
corrections applicable to the entire model domain, which limits the number of unknowns while
preserving spatial variability. The sensitivity analysis led us to identify fifteen influential parameters,
which were selected for calibration. The optimized parameters gave the best model performance
on the basis of the high Nash–Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and deter-
mination coefficient (R2). Four sets of remote sensing ETa data products were applied in model
calibration, i.e., ETMonitor, GLEAM, SSEBop, and WaPOR. Overall, the new approach of using
remote sensing ETa for a limited period of time was robust and gave a very good performance, with
R2 > 0.9, NSE > 0.8, and KGE > 0.75 applying to the SWAT ETa vs. the ETMonitor ETa and GLEAM
ETa. The ETMonitor ETa was finally adopted for further model applications. The calibrated SWAT
model was then validated during 2010–2015 against remote sensing data on total water storage
change (TWSC) with acceptable performance, i.e., R2 = 0.57 and NSE = 0.55, and remote sensing soil
moisture data with R2 and NSE greater than 0.85.

Keywords: hydrological modeling; SWAT model; hydrological remote sensing observables; ETMonitor
evapotranspiration; African Sahel; limited calibration

1. Introduction

The sustainable management of river and lake basins requires mitigating the vulner-
ability of the eco-hydrological systems against environmental stressors. This is widely
considered a crucial priority by organizations such as the United Nations, national and in-
ternational water resources bureaus, and research institutions. The challenge is augmented
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by the growth in population, leading to rapid and extensive changes in land use under se-
vere climate variability [1]. These two phenomena are more complicated and severe in arid
and semi-arid regions, especially in developing countries. Due to its location, the African
Sahel is most vulnerable to simultaneous changes in land use/land cover (LULC) and
climate. In addition to the considerable changes in LULC, the arid and semi-arid climate in
the Sahel is characterized by scarce rainfall as well as high temperature. These conditions
have a large impact on the environment in general and particularly on the surface water
resources [2]. The United Nations articulated the Sustainable Development Goals (SDGs)
to identify shared priorities towards a better future for all. Specifically, SDG 6 addresses
water security through a detailed hierarchy of Tasks and Targets. A better understanding of
the impacts of LULC and climate variability is needed to develop effective paths towards
sustainable water security regarding both quantity and quality [3,4].

To reveal the hydrological processes that occur in a changing environment, distributed
hydrological models such as the Soil and Water Assessment Tool (SWAT) [5] are most useful
to assess the impacts of land/water management and climate variability on water quantity
and quality. The SWAT model has been applied to understand the hydrological system and
explain the impacts of land and water resource management scenarios [6,7]. Such studies
based on different climate and land-use scenarios require accurate model calibration and
validation which are usually performed using a traditional method based on the ground
observed data, e.g., discharge. However, in many regions, such data are very rare or totally
absent in some cases for different reasons (e.g., in some basins in Africa); novel calibration
and validation procedures are therefore needed.

In Africa, several studies have been conducted by applying the SWAT model in
different basins [8–13]; the main limitation of these studies was the spatiotemporal coverage
of data used for calibration and validation. These previous studies on SWAT applications in
Africa documented some variability in model performance, although all aimed at improving
model performance in data-scarce catchments. The Lake Chad Basin was selected as a
study area because it is considered an ideal study case in terms of ground observation
data scarcity.

Due to the scarcity of ground observed data used for calibration and validation, many
studies found that retrievals of hydrological variables from remote sensing data may help
to improve model performance. Multiple remote sensing actual evapotranspiration (ETa)
products have recently become available with extended temporal coverage [14–17]. These
data have proven useful to calibrate and validate hydrological models, especially in data-
scarce basins [18]. Recently, Ha et al. (2018) [19] used three years of remote sensing ETa in
monthly time steps to calibrate the SWAT model for a tributary of the Red River in Vietnam.
The performance of the calibration showed high-performance metrics. Poméon et al.
(2018) [20] applied the SWAT model in the Niger, Volta, and Senegal River Basins; they
used the traditional calibration method based on observed discharge data for calibration,
and they validated the model using time series of remote sensing data in monthly time
steps. They used actual evapotranspiration, soil moisture, and total water storage derived
from remote sensing data to evaluate model performance after calibration. The multi-
objective validation using remote sensing evapotranspiration, total water storage change,
and soil moisture revealed good agreement between model estimates and observations.
Odusanya et al. [21] applied the SWAT model in the Ogun catchment in Southwestern
Nigeria. The SWAT ETa estimates using the Hargreaves equation performed well against
the GLEAM ETa data. These studies have used several years of satellite-based data to
calibrate and validate the SWAT model. They concluded that the remote sensing data could
be potentially used for SWAT calibration and validation. The weak point of these studies is
that they did not well emphasize the benefit of the geospatial distribution of remote sensing
retrievals, which could resolve the problem of the lack of ground observation time series,
e.g., discharge.

This study aims to provide a novel calibration approach of the SWAT model based
on limited time series of earth observation data in the data-scarce Lake Chad Basin. This
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study has two objectives: (1) to evaluate the performance of the SWAT model after a limited
calibration period (one year) using multiple satellite remote sensing ETa products, which
would be the novelty of this study; and (2) to validate the model using remote sensing
ETa, total water storage, and soil moisture in a distributed manner in the whole Lake
Chad Basin.

2. Study Area and Data
2.1. Study Area

The Lake Chad Basin (LCB), located in the center of the African Sahel between
5.19◦ N–25.29◦ N latitude and 6.85◦ E–24.45◦ E longitude (Figure 1), is one of the most
important catchments in the Sahel due to the dramatic decrease of water level and extent
during the last decades.
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Figure 1. The African Sahel, the location of the Lake Chad Basin, the study area (Southern Lake Chad
Basin), and the 37 delineated sub-basins.

The Lake Chad Basin is the largest endorheic basin in the world, with an initial
area of 2,500,000 km2 (about 8% of Africa) [22–24]. The Lake Chad Basin is shared by
10 African countries, i.e., Algeria, Cameroon, Central African Republic, Chad, Libya, Niger,
Nigeria, and Sudan. In terms of location, 44% of the lake area is in Chad, and 29% is in
Niger. The mean annual precipitation in the Lake Chad Basin is about 415 mm, varying
from 1215–1600 mm in the south-western parts of the basin (Central African Republic) to
20–150 mm in the northern region such as Algeria [25,26]. In 1964, the Lake Chad Basin
area was reduced to about 20% (427,000 km2) of the initial area [27,28]. In the same year,
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1964, the Lake Chad Basin Commission (LCBC) was founded, representing four countries,
i.e., Nigeria, Cameroon, Niger, and Chad. According to Policelli et al. [29], the water area
continued to decrease till it reached an annual peak area estimated at 14,700 km2 in 2017.
After the dramatic decrease, Lake Chad became divided into a dry and hydrologically
disconnected northern part and a southern part that is active [30]. The northern part of
the catchment belongs to the Sahara desert and does not generate runoff that reaches Lake
Chad [31]; thus, we focused on the southern part of the Lake Chad Basin (Figure 1).

2.2. Data

We have used two types of data in this study: (a) the configuration and climate forcing
data to run the SWAT model; and (b) remote sensing data used to calibrate and validate
the model. In this study, the datasets were used from 2009 to 2015. These datasets were
resampled to 250 m spatial resolution using ArcGIS resample tool to be aligned with LULC
data, except for the remote sensing actual evapotranspiration products, which were used
in their original resolutions. A detailed description of the data used in this study is given
in the following sections. The forcing data are described in Section 2.2.1 (Table 2), while the
data used for calibration and validation of the SWAT model are described in Section 2.2.2
(Table 3) and Section 2.2.4 (Table 1), respectively.

Table 1. Satellite-observation-based data products of surface soil moisture and total water storage
change used for validation of the SWAT model.

Variables Temporal Coverage Spatial Resolution Source/Reference

Soil moisture 1978–2019 25 km European Space Agency
Climate Change Initiative
ESA-CCI combined v5.2

Total water
storage change

2002–2017 300 km http://www2.csr.utexas.
edu/grace; accessed on

13 January 2021

2.2.1. Forcing Data
Atmospheric Forcing Data

Minimum and maximum daily temperature, wind speed, solar radiation, and relative
humidity at 2 m height were the fifth generation of the European Centre for Medium-Range
Weather Forecasts (ECMWF ERA5) reanalysis. These data are the improvement of ECMWF
reanalysis first generation [32]. The variables were used in the daily time step as required
by the SWAT model.

Precipitation

Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) were used
in this study. The data were generated from 1981 to the present [] in daily, monthly, and
yearly time steps. Compared to other precipitation products, its main characteristic is a
fine spatial resolution of 5 km [33]. CHIRPS uses several data sources, such as the monthly
precipitation climatology from the climate hazard center’s precipitation climatology (CH-
Pclim), infrared measurements from geostationary satellites, and information from the
TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 product. The precipitation
estimates are merged with in situ gauge data from several archives, including the sparse
World Meteorological Organization’s Global Telecommunication System (GTS), to reduce
biases [34]. In this study, the precipitation data were used in the daily time step.

http://www2.csr.utexas.edu/grace
http://www2.csr.utexas.edu/grace
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Table 2. Description of forcing data used in the SWAT model in this study.

Products Temporal Coverage Spatial Resolution Source/Reference

DEM 2000 30 m

Shuttle Radar Topography Mission
(SRTM) 30 m Digital Elevation Data

(www.earthexplorer.usgs.gov; accessed
on 6 December 2019)

Soil - 1 km
Digital Soil Map of the World (DSMW)

version 3.6: Land and Water
Development Division, FAO, Rome

LULC 2000–2019 250 m [35]

Precipitation 1981–2021 5 km

CHIRPS:
https://data.chc.ucsb.edu/products/
CHIRPS-2.0/global_daily/tifs/p05/;

accessed on 24 June 2020

Min/Max Temperature

1950–2021 ECMWF ERA5 [33]
Wind speed 31 km

Relative humidity

Solar radiation

Table 3. Satellite-observation-based actual evapotranspiration products used for calibration of the
SWAT model (E: soil evaporation; T: transpiration; I: rainfall interception).

Product Temporal
Coverage

Spatial
Resolution

Estimation
Approach

Input Data
Source Reference

ETMonitor
2001–2020

Produced by co-author of
this study

1 km

P-M, Gash model,
Shuttleworth–Wallace,

calculates E, T, and
I separately

GLASS (MODIS),
ESA-CCI, ERA5,

et al.
[15,36]

GLEAM

1980–2020
Accessed:

https://www.gleam.eu/ (last
access: 22 December 2021)

25 km P-T equation, the soil
stress factor

AMSR-E, LPRM,
ERA5 [16]

SSEBop

2003–2017
Accessed:

https://earlywarning.usgs.
gov/fews/search (last access:

22 December 2021)

1 km
P-M equation, ETa fractions
estimated from land surface

temperature
MODIS [37]

WaPOR

2009–2017
Accessed: https://wapor.

apps.fao.org/home/1 (last
access: 22 December 2021)

250 m P-M Equation, calculates E,
T, and I separately

MODIS,
GEOS-5/MERRA [38]

2.2.2. Remote Sensing ETa Data

Due to the scarcity of ground observations in the Lake Chad Basin, particularly of river
discharge in the study area, four ETa products derived from remote sensing observations
were used to calibrate the SWAT model. These four ET datasets include the global ET
products from ETMonitor, the Simplified Surface Energy Balance for operational application
(SSEBop_v4, version 4), the FAO WAter Productivity through Open access of Remotely
sensed derived data (WaPOR_1.1, version 1.1, covers only Africa), and the Global Land
Evaporation Amsterdam Model (GLEAM_3.3a, version 3.3a) (Table 3). The details of the
four ETa datasets are described in Text A1. The selection of these ETa products was based
on free availability, spatiotemporal coverage, and resolution. GLEAM and WaPOR have

www.earthexplorer.usgs.gov
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/tifs/p05/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/tifs/p05/
https://www.gleam.eu/
https://earlywarning.usgs.gov/fews/search
https://earlywarning.usgs.gov/fews/search
https://wapor.apps.fao.org/home/1
https://wapor.apps.fao.org/home/1
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been validated in several countries in Africa; SSEBop and ETMonitor have been validated
globally using data from ground observation sites.

2.2.3. Soil Moisture

The soil moisture product used in this study is version 5.2 of the European Space
Agency Climate Change Initiative combined soil moisture data product (ESA CCI SM v5.2),
which was generated by combining various available passive and active microwave-based
soil moisture datasets and released in 2019 [39–41]. It was generated by blending active and
passive microwave soil moisture retrievals from the data acquired by C-band scatterometers
and multi-frequency radiometer data. The data are available at a daily temporal resolution
from 1978 to 2019 and a spatial resolution of 0.25◦ and represent only the topsoil layer
(0–5 cm).

2.2.4. Total Water Storage Change

The Gravity Recovery and Climate Experiment (GRACE) mission comprises two twin
satellites following each other, 220 km apart. It was launched by the National Aeronautics
and Space Administration (NASA) and Deutsches Zentrum für Luft- und Raumfahrt (DLR)
to determine the global Earth gravity field every 30 days [42]. The time-dependent distance
between these two twin satellites is converted to a local Earth gravity field. Retrievals
at different times can be applied to compute the mass changes in units of equivalent
water height [43]. Different “GRACE solutions,” i.e., retrievals of local gravity, have been
reported; for more information about GRACE, see, for example, the study by [44]. The
GRACE product used in this study is the global “mascons” solution [45]. The data were
downloaded from: (http://www2.csr.utexas.edu/grace; accessed on 13 January 2021).
The GRACE provides the total water storage anomaly in the monthly time step (TWSA),
which corresponds to the sum of all water mass variations at the continent’s surface and
in the soil [46]. Monthly data from GRACE in the study period (2009–2015) yield a total
of 84 months with gaps of 15 months (i.e., about 18% of the total data). The GRACE has a
spatial resolution of 300 km; in this study, it was resampled to 1 km spatial resolution using
the bilinear interpolation method without filling the gaps of missing months (15 months).
The same missed months data in GRACE were not considered in the TWSC from the SWAT
model in the comparison of the two datasets.

The monthly total water storage change (TWSC) was calculated as the difference
between the values estimated in two subsequent months [47]:

TWSCt =
TWSAt − TWSAt−1

∆t
(1)

where TWSCt is the total water storage change at time step t; TWSAt and TWSAt−1 are
the total water storage anomalies at steps t and t−1, respectively.

2.2.5. Auxiliary Data

The annual land use and land cover dataset (LULC) used in this study was produced by
Tsinghua University based on MODerate-resolution Imaging Spectroradiometer (MODIS)
data at a spatial resolution of 250 m. More details about the dataset can be found in [32].
The LULC dataset is available from 2000 to 2015. The LULC dataset was used at its original
spatial resolution of 250 m, and the other datasets were resampled to this spatial resolution
to be used in the SWAT model.

The soil data used in this study were obtained from the Digital Soil Map of the World
(DSMW) version 3.6 produced by the Food and Agriculture Organization (FAO) at 1 km
resolution. The physical properties were extracted for each soil texture class from the
Map Window (MW) interface of the SWAT database (http://swat.tamu.edu/software/
mwswat/; accessed on 21 October 2020), which is compiled from FAO world soil data. The
MWSWAT interface was developed by the WaterBase project (http://www.waterbase.org;
accessed on 21 October 2020) of the United Nations University [48].

http://www2.csr.utexas.edu/grace
http://swat.tamu.edu/software/mwswat/
http://swat.tamu.edu/software/mwswat/
http://www.waterbase.org
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The Digital Elevation Model (DEM) of LCB was clipped out of the Shuttle Radar
Topography Mission (SRTM) 30 m resolution Digital Elevation Data (www.earthexplorer.
usgs.gov; accessed on 6 December 2020).

3. Methodology

The conceptual framework of this study is given in Figure 2. The overall approach
used in this study is based on the hydrological SWAT model, which was run to estimate
water balance components at each Hydrological Response Unit (HRU) to be aggregated
to each of the 37 delineated sub-basins. Actual evapotranspiration (ETa), as a major
component of water balance and terrestrial water cycle, is defined as the quantity of water
that is actually removed from the land surface by the processes of evaporation (soil or
water) and transpiration (vegetation). In this study, the ETa of the HRUs calculated by
SWAT was combined with the spatially distributed ETa based on satellite remote sensing
observations to calibrate the SWAT model parameters. Four satellite-observation-based ETa
data products were evaluated, and the one with the best performance was used for further
analysis. The SWAT model calculates the ETa using the potential evapotranspiration (ETp),
defined as the measure of the ability of the atmosphere to remove water from the land
surface through both evaporation and transpiration. In this study, three available ETp
equations (Hargreaves, Priestley–Taylor, and Penman–Monteith) were used to configure the
SWAT model to estimate the ETa (Figure 2a). In contrast to previous traditional calibration
methods, a new calibration approach based on a limited record length of calibration data
(i.e., monthly data for one year), but having rich spatial information from the spatially
distributed remote sensing ETa data, was applied using the SUFI-2 algorithm in the SWAT-
CUP tool-kit for each sub-basin. To accomplish these steps, four satellite-based ETa datasets
were tested to evaluate the performance of the new calibration approach (Figure 2b). For
validation, the results from the calibrated SWAT were assessed by comparing with the
satellite-based observations of surface layer soil moisture and terrestrial water storage
change (Figure 2c).

3.1. Model Description

The eco-hydrological model Soil and Water Assessment Tool (SWAT) is an open-source,
process-based, and semi-distributed model [5]. The model uses daily meteorological data,
i.e., precipitation, wind speed, air temperature, relative humidity, and solar radiation, in
addition to topography, soil data, and LULC, to simulate different water balance compo-
nents in a watershed. The model can also describe the water quality and soil erosion in the
basin. SWAT model describes watershed hydrology in two stages: (a) sediments, nutrients,
and water flow into the main channel of each sub-basin; and (b) transport of sediments,
nutrients, and water through the network of channels to the outlet of the main watershed.
The catchment water balance calculation in SWAT is based on the principle of conservation
of mass as follows:

SWCt = SWC0 +
t

∑
i=1

(
Rday − Qsurf − ETa − Wsep − Qgw

)
(2)

where SWCt is the final soil water content of the simulation period for the entire soil profile
(mm), SWC0 is the initial soil water content on day i (mm), t is the simulation time (day),
Rday is the precipitation on day i (mm), Qsurf is the surface runoff on day i (mm), ETa is the
actual evapotranspiration on day i (mm), Wsep is the water entering the vadose zone from
the soil profile on day i (mm), and Qgw is the return flow on day i (mm).

www.earthexplorer.usgs.gov
www.earthexplorer.usgs.gov
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The soil dataset used in this study was the Digital Soil Map of the World (DSMW),
which provides physical characteristics of the soil profile split into two layers: 0−300 mm
and 300–1000 mm. SWAT model calculates the soil moisture (SWAT SM) as plant-available
water (PAW) [46], specifically as the mean values for the soil layers at 0−10 mm as part of
the first layer (septic layer), 0−300 mm, and 300−700 mm. The PAW is calculated as:

PAWly = SWCly − WPly (3)

so,
SWCly = PAWly + WPly (4)

where PAWly is the plant-available water in a layer “ly” (mm), SWCly is the total soil water
content in the same layer (mm), and WPly is the soil water content at the wilting point (mm)
(i.e., permanent wilting point).

The permanent wilting point (WP) is the amount of water held in the soil at a tension
of 1.5 MPa. The WP in each soil layer was estimated from soil texture [46] using the clay
fraction and the mean bulk density in each HRU as:

WPly = 0.4 × Bdly × fclay,ly (5)

where Bdly is the bulk density of the layer (Kg/m3), the fclay, ly is the percentage of the clay
content in the layer.

Since the soil dataset used in this study does not have a 50 mm soil layer, this SWAT
model could not compute the soil moisture at 50 mm to be compared to ESA CCI SSM
(50 mm). In this part, the conversion of the SWAT SM at the soil layer 0–300 mm into
volumetric soil moisture was performed by dividing it by the depth of 300 mm and adding
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the soil water at the wilting point of the same soil layer (0–300 mm), then multiplying by
50 mm to obtain the soil moisture at 50 mm as shown in the following equation:

SM50mm = (PAW300mm /300)× 50 + WP300mm × 50 (6)

where SM50mm is soil moisture at 50 mm soil depth (mm), PAW300mm is plant-available
water at 300 mm soil depth (mm), WP300mm is wilting point of the same soil layer (mm).

The values of SM50mm obtained soil moisture were compared with the ESA CCI SSM
multiplied by 50 mm.

The SWAT model does not directly calculate the TWSC as output. However, it simu-
lates the shallow aquifer and the deep aquifer in the function of recharge and percolation
as described in [49,50]. The groundwater (shallow and aquifer storages) is given by the
SWAT model as outputs in “output.hru” file. So, the TWSC was estimated as the sum of the
soil water content (SWC), deep aquifer (DA), and shallow aquifer (SA). Then, the deviation
of monthly TWSC was estimated according to Poméon et al. [20] as:

∆TWSt = (SWCt + DAt + SAt)− (SWCt + DAt + SAt) (7)

where ∆TWSt is the total water storage change at time step t and estimated by SWAT, DAt
is deep aquifer water storage, SAt is shallow aquifer water storage, and SWCt is soil water
content. The overbar indicates the long-term average and applies to the period 2009–2015.
All variables are expressed in mm.

3.2. Model Setup

In this study, the model was run in each Hydrological Response Unit (HRU) with a
monthly time step for each year of land use/land cover data separately (2009–2015), and
then the results from the HRUs were integrated to monthly and annual values for each
sub-basin for further analysis. In the SWAT model, each HRU is defined as a combination of
an LULC class, soil type, and slope class for each sub-basin separately [51]. The Lake Chad
Basin was partitioned into 37 sub-basins using the topography data (SRTM-DEM). In this
study, eight LULC classes were considered: forest (FRST), agriculture (AGRR), bare land
(BARR), shrubland (RNGB), grassland (RNGE), urban (URBN), water (WATR), and wetland
(WETN). Within the model domain there are seven soil types, i.e., loam, loamy-sand, sand,
sandy-loam, sandy-clay-loam, clay, and clay-loam, and five slope classes, i.e., (1) 0–8% (flat);
(2) 8–15% as gently sloping; (3) 15–20% as moderately steep; (4) 20–45% as steep; (5) >45%
as very steep. This yields 8 × 7 × 5 = 280 possible combinations. The thresholds reduce
the number of combinations, to which threshold rules (given in the next paragraph) are
applied to define and delineate (using the maps of attributes) the HRUs.

The thresholds, i.e., fraction of area of specific LULC class in each sub-basin (F_LULC),
the fraction of area of specific soil type in that LULC class area (FLULC_soil), and the fraction
of specific slope class in the area of that land cover type and that soil type (FLULC_soil_slope),
are employed to select the LULC classes, soil types, and slope classes that need to be
taken into account in a given sub-basin. We carried out the experiments by comparing
the SWAT model results from using different combinations of thresholds (i.e., F_LULC,
FLULC_soil, FLULC_soil_slope) with the results from the standard delineation of HRU, which
is carried out using zero-thresholds (i.e., F_LULC, FLULC_soil, and FLULC_soil_slope were all
>0% sequentially). The experiment results showed that the best agreement was obtained
by using the thresholds of LULC class, soil type, and slope class of 5%, 20%, and 20%,
respectively, which were used in this study to run SWAT. Those LULC classes, soil types,
and slope classes that were below the thresholds would be reapportioned into the other
qualified land covers, soil types, and slope classes, respectively. If no one HRU in a sub-
basin can be defined by the thresholds (meaning all are below the defined thresholds),
the model selects the combination that has the largest fraction of areas of land cover, soil
type, and slope class, respectively, as a single HRU. A similar procedure could be found
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in other studies, though they have used different values of the thresholds for their study
cases [52,53].

In this study, we used annual land use data, i.e., the land use changed for each year
from 2009 to 2015. This change in land use led to the change in the number of HRUs for
each year, as shown in Table 4.

Table 4. Number of HRU changes with the annual LULC changes.

Year of Simulation Land Use Data Number of HRUs

2009 LULC2009 155

2010 LULC2010 154

2011 LULC2011 160

2012 LULC2012 148

2013 LULC2013 161

2014 LULC2014 156

2015 LULC2015 156

After the delineation of the HRUs, the weather data (precipitation, temperature, wind
speed, relative humidity, and solar radiation) were averaged for each HRU in the Lake
Chad Basin catchment.

The SWAT-simulated ETa was used for the calibration of model parameters as de-
scribed in Section 3.3. Literature and our own experiments showed that the SWAT estimates
of ETa are highly sensitive to the choice of the equation applied to estimate ETp. We could
not select one equation among the three equations provided in the SWAT a priori; there-
fore, we designed the calibration experiments to shed light on model performance in the
estimation of ETa. Our numerical experiments on SWAT calibration and validation showed
that the best performance was achieved by using the ETMonitor ETa combined with SWAT
ETa calculated based on Hargreaves equation for ETp; the results from this combination
will be used for further analysis.

3.3. Calibration Procedure

The calibration of the SWAT model was performed using the semi-automated multi-
site and inverse modeling algorithm SUFI-2 in the SWAT-CUP tool-kit [54,55]. The pa-
rameters to be calibrated were initially preselected (about 40 parameters) on the basis of
literature [11,18,19,21,55–58]. Furthermore, a global sensitivity analysis was carried out to
identify the parameters most influential on ETa by applying the multiple regression method
following the study by Abbaspour et al. (2015) [54]. An iteration included 1000 simulations
for all HRUs, and the parameters were ranked on the basis of the p- and the t-test values.
The latter provide information about the influence of the parameter on ETa, with a larger
absolute value indicating more influence on ETa, while the former indicates the significance
of the influence, i.e., a value close to zero indicates highly significant influence. Based on
the global sensitivity analysis, 15 parameters were selected to be determined by calibration
with SUFI-2 (Figure 2b).

The traditional approach to calibrating hydrological models such as SWAT relies on
discharge measurements at hydrometric stations. This requires multiple stations distributed
in a river basin and a long time series of discharge data, in which the calibration period
generally is longer than the validation period. In our study, we used raster-based spatially
distributed retrievals of hydrological variables from multiple remote sensing observations.
The spatial coverage of such data, which provided rich information in space, made it
possible to limit the temporal coverage of the calibration experiments to one year at a
monthly time step. Specifically, the calibration was performed using satellite retrievals of
actual evapotranspiration (ETa), i.e., ETMonitor, GLEAM, SSEBop, and WaPOR. Monthly
observations for each of the 37 delineated sub-basins in the watershed were applied for
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each yearly calibration or validation, adding up to 444 data points to estimate the 15 se-
lected parameters.

The parameter values are assigned to each HRU, and two types of parameters are
considered: (1) heterogeneous, i.e., specific for each soil type, slope range, or LULC class,
which have a different value in each HRU; (2) homogeneous, i.e., constant in the entire
watershed. SWAT-CUP allows three types of updates on the selected model parameters
through the iterations: (a) by a multiplicative factor “(1 + α)”; (b) by adding a constant “β”;
and (c) assigning a parameter a new value “γ”. The default parameter value is replaced
with a new candidate value in each iteration by:

Pnew = P × (1 + α) (8)

Pnew = P + β (9)

Pnew = γ (10)

where Pnew is the updated parameter value in each iteration, P is the value in the last
iteration with the initial value taken from the “default value” in SWAT. In this study,
we have applied corrections of types (a) and (c). The former is generally applicable to
parameters having a well-defined spatial distribution, such as soil properties assigned to
each soil type in a soil map. The calibration procedure preserves the soil spatial pattern
within the watershed. The latter is applicable to parameters that are process- rather than
location-related, such as the maximum stomatal conductance. The initial ranges of different
parameters were estimated on the basis of literature [49,51,54]. The 15 parameters are listed
in Table 5, which also specifies which type of correction was selected for each parameter.
The calibration was performed at the sub-basin level, i.e., the corrections detailed in Table 5
are estimated for each sub-basin.

Table 5. SWAT calibration: 15 most influential parameters (15); type and range of the corrections and
initial values assigned according to the SWAT database.

Parameters
Used Range

Name Unit Default Values
Min Max

r__CN2.mgt −0.5 0.25 SCS runoff curve number % specific to HRU

r__SOL_AWC.sol −0.5 0.95 Available water capacity of the
soil layer mm H2O/mm soil specific to soil

r__SOL_BD.sol −0.5 0.95 Moist bulk density Mg/m3 specific to soil

r__SOL_ALB.sol −0.03 0.2 Moist soil albedo % specific to soil

v__ESCO.hru 0.5 1 Plant uptake compensation factor - 0.95

v__BLAI{15,16}.plant 0.5 5 Max leaf area index - specific to plant

v__GSI{15,16}.plant 0 3 Max stomatal conductance m s−1 specific to plant

r__HRU_SLP.hru 0 0.2 Average slope steepness m/m specific to HRU

r__SOL_CBN.sol −0.03 0.2 Organic carbon content Kg specific to soil

r__SOL_Z.sol −0.03 0.2 Depth from the soil surface to bottom
of the layer mm specific to soil

v__SLSOIL.hru 0 150 Slope length for lateral
subsurface flow m 0

v__FFCB.bsn 0 1
Initial soil water storage expressed as

a fraction of field capacity
water content

- 0
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Table 5. Cont.

Parameters
Used Range

Name Unit Default Values
Min Max

v__DDRAIN.mgt 0 200 Depth to subsurface drain mm 0

v__EPCO.hru 0 1 Soil evaporation compensation factor - 1

v__SURLAG.bsn 0.05 10 Surface runoff lag time - 4

A full SWAT run is carried out, and new monthly values of ETa are obtained and
compared with ETa from satellite-based observations. The accuracy of the SWAT model
estimate of ETa is evaluated using the Nash–Sutcliffe efficiency (NSE) [59,60]. The calibra-
tion is carried out by evaluating the candidate correction values iteratively for the selected
parameters to maximize the NSE value. The performance is considered satisfactory when
the objective function reaches a certain threshold, e.g., NSE = 0.5, and the iterations are
terminated. The values of the parameter corrections in the last iteration are the final result
of a calibration experiment.

Using four remote sensing ETa data products, i.e., ETMonitor, GLEAM, SSEBop, and
WaPOR, and three SWAT ETa, i.e., based on ETp calculated with the Hargreaves, Penman–
Monteith, and Priestley–Taylor equations, this added up to 12 calibration projects: the
three ETp equations; Hargreaves (HG), Penman–Monteith (PM), and Priestley–Taylor
(PT) with the four ETa products; ETMonitor (ETM), GLEAM (GLM), SSEBop (SEB), and
WaPOR (WaP) were named HG_ETM, PM_ETM, PT_ETM, HG_GLM, PM_GLM, PT_GLM,
HG_SEB PM_SEB, PT_SEB, HG_WaP, PM_WaP, and PT_WaP.

3.4. Evaluation of Calibration, Validation, and Uncertainty Analysis

The uncertainty in the input data, the observed variable used for calibration, and
calibration parameters lead to uncertainty in the output results [61]. The analysis of the
uncertainties of the outputs caused by the propagation of the uncertainty of the parameters
used for calibration was performed using SUFI-2. These uncertainties are expressed as 95%
probability distributions (95PPU). In this stage, the SUFI-2 depicts the 95PPU of the model
estimates compared with the ETa retrievals. The 95PPU was computed at the 2.5% and
97.5% levels of the cumulative distribution of the model ETa generated by the propagation
of the uncertainties using Latin Hypercube Sampling. The uncertainties were evaluated
based on two factors: the P factor and the R factor [62,63]. The P-factor is the fraction of
observations enveloped by the model estimates (95PPU) and varies from 0 to 1, where
1 indicates 100% bracketing of the observations within model simulations. The R-factor is
the thickness of the 95PPU envelope, with values ranging between zero and infinity. The
ideal situation is when the P factor is g close to 1, and the R factor is close to 0.

The metrics of model performance are recommended by Moriasi et al. [59,60], i.e.,
NSE, PBIAS, and R2 are usually applied to calibration and validation of model estimates
of monthly sediment and nutrient transport and runoff. In this study, the calibration was
performed using satellite retrievals of actual evapotranspiration. We applied the evaluation
methods that were well documented in the literature [18,19,21,64,65], where calibration
and validation of hydrological models were carried out by applying the NSE, PBIAS, and
R2 metrics according to Moriasi et al. [59,60].

In this study, the simulation period (2009–2015) was split into one year for calibration
(2009) and six years for validation (2010–2015). The calibration experiments have been
described in Section 3.2 on model setup and Section 3.3. Then, according to the user manual
of SWAT-CUP [61], the number of simulations in each iteration is recommended to be 500,
but if the calibration is too slow, it could be even less (200–300). SWAT-CUP has been run
for five iterations, each one comprising 500 simulations. The validation was performed by
running the SWAT model using the calibrated values of the 15 model parameters. Likewise,
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the calibration and the validation were performed by comparing the model ETa with each
one of the four remote sensing ETa datasets for the period (2010–2015).

We applied four performance metrics: the R squared coefficient (R2), the Nash–Sutcliffe
Efficiency (NSE), Kling–Gupta Efficiency (KGE), and the percent bias (PBIAS) to evaluate
the SWAT calibration and the validation, as performed by Odusanya et al. [21]. The R2 is a
metric of the strength of the relationship between the data and the fitted regression line.
The range of R2 is from 0 to 1, where the value close to 1 means less error variance.

The NSE is used to compare the relative magnitudes of the residual (“noise”) and
the variance of the observations [62]. NSE varies from −∞ to 1, where NSE > 0.5 means a
good agreement [59,60] between model estimates and observations. NSE close to 1 is the
optimal value.

The KGE goodness-of-fit metric was developed by [66], and it measures the rela-
tive importance of different metrics, i.e., correlation, bias, and variability, in hydrologic
simulations. The range of KGE is from −∞ to 1, with KGE = 1 being the optimal value.

The PBIAS is the relative bias, which indicates whether the model data are larger
or smaller than the observations. The ideal value is zero, i.e., a value closer to zero
indicates better model accuracy. A negative value indicates that the model overestimates
observations, and vice versa if the value is positive [67]. The performance metrics equations
are all described in Table 6.

Table 6. Metrics used to evaluate the calibration and validation.

Performance Metrics Equations Descriptions

Coefficient of determination R2 =
[∑i(ETRs,i−ETRs)(ETs,i−ETs)]

2

∑i(ETs,i−ETs)
2

∑i(ETRs,i−ETRs)
2

where
ETRs represents satellite-based ETa values;

ETs represents simulated ETa values;
ETRs represents mean satellite-based ETa values;

ETs represents mean simulated ETa values.
r is the Pearson product correlation coefficient between

satellite-based ETa and the simulated ETa;
α is the standard deviation of the simulated ETa over the

standard deviation of the satellite-based ETa;
β is the ratio of the mean simulated ETa to the

satellite-based ETa.

Nash–Sutcliffe Efficiency NSE = 1 − ∑i(ETRs−ETs)
2
i

∑i(ETs,i−ETs)
2

Kling–Gupta Efficiency
KGE =

1 −
√
(r − 1)2(α − 1)2(β − 1)2

Percent bias PBIAS = ∑n
i=1(ETRs−ETs)i

∑n
i=1(ETRs)

4. Results

The SWAT-CUP was run for five iterations comprising 500 simulations each. The
values of the fifteen corrections estimated in each calibration experiment are given in
Table A1.

4.1. Sensitivity Study

To explain the effectiveness of the ETa vs. discharge-based calibration, we have de-
termined the sensitivity of the selected parameters to the simulated ETa and discharge.
SWAT was run using the initial range of 15 selected parameters described in Table 5 for
1000 simulations. To determine the sensitivity of the parameters to the simulated ETa and
discharge, the variation of the parameter values during the simulations was used. Two
linear regression projects were implemented. The first was to evaluate the 15 parameters’
sensitivity to simulated ETa, while the second was to determine the sensitivity of the same
15 parameters to simulated discharge. The results are shown in Table 7. The higher the ab-
solute value of the t-stat, the higher the parameter sensitivity, provided the p-value is lower
than 5%. The t-stat values of the parameters for ETa are much higher than the t-stat values
for discharge (e.g., CN2 t-stat = −26.91 for ETa while it is 2.93 for discharge). Moreover, the
number of parameters that have very high sensitivity to ETa (p-value <<< 0.05) is higher
than those that have high sensitivity to discharge (eight parameters vs. three parameters).
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Table 7. Parameter sensitivity to ETa and discharge.

Parameters Unit

Parameter’s Sensitivity
to ETa

Parameter’s Sensitivity
to Discharge

t-Stat p-Value t-Stat p-Value

CN2 % −26.919 <0.0001 2.930 0.003

SOL_AWC mm H2O/mm
soil 5.193 <0.0001 −0.281 0.779

SOL_BD Mg/m3 −4.633 <0.0001 2.928 0.003

SOL_ALB % 0.351 0.725 0.292 0.770

ESCO - −18.493 <0.0001 1.580 0.114

BLAI - 2.144 0.032 −0.031 0.975

GSI m s−1 −0.647 0.518 0.031 0.976

HRU_SLP m/m −1.081 0.280 −1.476 0.140

SOL_CBN Kg 2.287 0.022 −1.496 0.135

SOL_Z mm −0.514 0.607 0.094 0.926

SLSOIL m 0.376 0.707 −2.213 0.027

FFCB - −0.803 0.422 1.148 0.251

DDRAIN mm −0.725 0.468 −0.954 0.340

EPCO - 3.017 0.003 0.980 0.327

SURLAG - −0.722 0.471 −0.003 0.998

The configuration using the Hargreaves ETp (Figure 3) achieved the best performance
compared to other configuration ETp equations (Figure A1), so only these results are
presented in detail (Table 8). The P-factor varied between 0.2 and 0.3, with the highest
achieved with the GLEAM retrievals. Note that p = 0.29 means that 29% of the model
estimates were within the 95% PPU. The lowest p = 0.21 was obtained with SSEBop, while
ETMonitor gave p = 0.27. The R-factor varied between 0.07 and 0.29, where the lowest
was achieved with the ETMonitor ETa and the highest with WaPOR. The ETMonitor and
the GLEAM ETa data gave the best performance, i.e., the highest P-factor values and the
lowest R-factor values (Table 8). The validation experiments gave higher P-factor and
r-factor values than the calibration with all the ETa retrievals (Table 9). The P-factor varied
between 0.25 (WaPOR) and 0.65 (GLEAM). The R-factor varied between 0.16 (ETMonitor)
and 0.96 (WaPOR). The highest P-factor and the lowest R-factor were achieved with the
GLEAM and ETMonitor data.
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Remote Sens. 2022, 14, 1511 15 of 31

Table 8. Performance metrics of SWAT_Hargreaves when calibrated using remote sensing ETa
products for the year 2009.

Products P-Factor R-Factor R2 NSE KGE PBIAS

ETMonitor 0.27 0.07 0.91 0.83 0.79 2.33
GLEAM 0.29 0.13 0.88 0.80 0.78 −4.18
WaPOR 0.22 0.29 0.65 −3.17 0.20 30.44
SSEBop 0.21 0.17 0.62 −0.68 0.56 7.59

Table 9. Performance metrics of ETa from SWAT_Hargreaves when validated against remote sensing
ETa products.

Year Products P-Factor R-Factor R2 NSE KGE PBIAS

2010

ETMonitor 0.33 0.16 0.93 0.86 0.79 −3.15
GLEAM 0.41 0.37 0.86 0.77 0.76 8.55
WaPOR 0.25 0.96 0.59 −4.75 −0.19 20.24
SSEBop 0.40 0.55 0.55 −0.78 0.41 23.86

2011

ETMonitor 0.40 0.18 0.94 0.85 0.77 −4.09
GLEAM 0.44 0.40 0.85 0.75 0.75 3.94
WaPOR 0.35 0.77 0.70 −1.50 0.27 17.09
SSEBop 0.37 0.69 0.60 −2.35 0.47 −3.23

2012

ETMonitor 0.36 0.19 0.93 0.88 0.84 5.37
GLEAM 0.50 0.39 0.85 0.70 0.68 −12.08
WaPOR 0.34 0.83 0.69 −2.49 0.26 18.49
SSEBop 0.35 0.59 0.63 −1.60 0.50 20.45

2013

ETMonitor 0.34 0.19 0.93 0.82 0.76 −1.89
GLEAM 0.65 0.43 0.92 0.84 0.78 −2.35
WaPOR 0.32 0.92 0.65 −2.14 0.26 21.66
SSEBop 0.43 0.77 0.73 −1.81 0.57 1.42

2014

ETMonitor 0.44 0.21 0.93 0.85 0.78 6.40
GLEAM 0.51 0.39 0.90 0.82 0.76 7.34
WaPOR 0.25 0.61 0.62 −1.23 0.38 36.32
SSEBop 0.39 0.58 0.69 −0.63 0.50 16.34

2015

ETMonitor 0.36 0.16 0.95 0.88 0.79 0.43
GLEAM 0.52 0.36 0.92 0.86 0.80 9.77
WaPOR 0.27 0.58 0.75 −1.37 0.45 30.18
SSEBop 0.29 0.62 0.49 −1.19 0.38 23.54

4.2. Calibration Results

The performance achieved in the calibration and validation was further evaluated by
considering the R2, NSE, KGE, and PBIAS metrics (Tables 8 and 9). The ETMonitor ETa
gave the best performance with R2 = 0.91, NSE = 0.83, and KGE = 0.79, indicating very good
performance. The second-best performance (Table 8) was achieved with the GLEAM ETa
data, i.e., R2 = 0.88, NSE = 0.8, and KGE = 0.78. The PBIAS was lowest with the ETMonitor
and GLEAM, i.e., less than ±5% (2.33 and −4.18, respectively), while the highest values
were obtained with the SSEBop and WaPOR ETa, i.e., 7.59 and 30.44, respectively. SWAT
underestimated ETa by 2.33% compared to ETMonitor, by 7.59% vs. SSEBop, 30.44% vs.
WaPOR, while it overestimated ETa by 4.18% compared to GLEAM data. Each scatter
plot in Figure 4 shows the 12 monthly values of the SWAT estimates of ETa (based on
Hargreaves ETp equation which returned the highest performance) against the ETMonitor
retrievals of ETa (which also yielded the highest performance compared to other ETa of
remote sensing products) for a given sub-basin.
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The high performance of SWAT ETa estimates against the ETMonitor retrievals was
confirmed by the comparison disaggregated across the 37 sub-basins, and it gave a slope
positive and mostly equal to 1 in different sub-basins (Figure 4).
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The calibration was performed in the monthly time step for one year (12 months) of
2009 for each of the 37 sub-basins; Figure 3 and Table 8 show the metrics performance in
which the ETa from SWAT was based on Hargreaves ETp. In Figure 3, the spatial distri-
bution of the performance metrics of SWAT configured using Hargreaves ETp against the
four remote sensing ETa products (ETMonitor (a), GLEAM (b), WaPOR (c), and SSEBop (d))
within the Lake Chad watershed provides further insights on the sensitivity of model
performance to parameter setting. There is clearly an advantage in performance of the
ETMonitor and the GLEAM compared to the WaPOR and the SSEBop. The spatial distri-
bution metrics maps of the SWAT ETa calculated based on the other two ETp equations
(Penman–Monteith and Priestley–Taylor) against the four remote sensing ETa are shown in
Figure A1.

4.3. Validation Results

Likewise, the performance metrics were calculated for each year of the validation
period (Table 9 and Figure 5). The model validation experiments gave higher R2 values than
calibration with the ETMonitor data (Table 9), i.e., R2 = 0.94 on average across sub-basins.
Good agreement with slightly lower values of R2 was also achieved with the GLEAM data,
i.e., mean R2 = 0.88 varying between 0.85 and 0.92 across sub-catchments. Performance was
lower against the WaPOR and the SSEBop data with mean R2 = 0.67 and 0.62, respectively.
The NSE metric provided similar indications, i.e., higher values were obtained against
ETMonitor in the validation experiments, with NSE = 0.86, compared to calibration (see
above). A lower NSE = 0.79 was obtained with the GLEAM data, while NSE was negative
with the WaPOR and SSEBop data. Likewise, with ETMonitor ETa, the mean KGE = 0.79,
i.e., the same value as in the calibration experiments, while KGE = 0.76 with GLEAM
and KGE = 0.2 with WaPOR, lower than in the calibration experiments in both cases. The
validation using SSEBop gave a higher value than the corresponding calibration experiment
(0.56). PBIAS values shown for validation using both ETMonitor and GLEAM datasets
indicated promising values (<10%). In general, the SSEBop and WaPOR products gave
high PBIAS values greater than ±15%.
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Overall, the performance achieved in the SWAT calibration and validation was rather
high and consistent when using the ETMonitor and GLEAM data. The highest performance,
with R2, NSE, PBIAS, and KGE values, respectively, 0.94, 0.86, 0.43, and 0.79, was achieved
with the ETMonitor data, while the corresponding metric values with the GLEAM data
were 0.88, 0.79, −2.35, and 0.76, respectively, indicating slightly worse performance. The
performance with SSEBop and WaPOR was much worse, with very low metrics values.

Taking into account the overall performance achieved in the calibration (Table 8
and Figure 3) and validation (Table 9), the results of SWAT configured using Hargreaves
validation against ETMonitor for the year 2010 to 2015 are shown in Figure 5 for both
calibration (Figure 3a) and validation (Figure 5a–f); R2 was higher than 0.7 for all the
sub-basins within the study area in the Lake Chad Basin, and more than 80% of the 37 sub-
basins gave NSE and KGE between 0.7 and 1. This shows very good performance of
SWAT estimates of ETa, with ETp computed with the Hargreaves equation against ETa
from ETMonitor.

The comparison of calibrated and uncalibrated SWAT ETa (Figure 6) confirms these
findings. SWAT ETa prior to calibration was in good agreement with the ETMonitor ETa
during the transitions from the dry to wet season and vice versa. In the first few months
of the year, the SWAT uncalibrated ETa curve (red color) shows the second peak in ETa
in the early season of every year (Figure 6), which was successfully corrected after model
calibration. SWAT underestimated maximum ETa in summer without calibration, while
the SWAT ETa was much closer to ETa retrievals after calibration. Overall, the calibration
gave R2 > 0.9 and NSE > values higher than 0.8 every year.
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4.3.1. Validation of SWAT Soil Moisture

During the dry months, there was good agreement between SWAT SWC and the ESA
CCI SSM (Figure 7a,c). Larger differences were observed during the wet months (June to
September) (Figure 7b,d), which is also the growing season, probably due to the potential
SWAT model deficiency in the ETa parameterization [68].
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(d) wet months.

The time series of SWAT SWC and ESA CCI SSM in the top 50 mm soil layer gave
better agreement throughout the entire period 2009–2015 (Figure 8a). Contrary to the
top 10 mm soil layer (Figure 7), the maximum SWAT SWC during the wet months was
consistently higher than the ESA CCI SSM. This suggests that model estimates and the
surface soil moisture data product capture, in a different manner, the vertical redistribution
of rainwater. The R2, NSE, and KGE were all higher than 0.85 (Figure 8b).
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(b) comparison of time series.

4.3.2. Validation of SWAT Estimates of Changes in Total Water Storage

Overall, the SWAT estimates appear to capture the seasonality correctly in TWSC:
the total water storage change estimated by the SWAT (SWAT TWSC) model was in good
agreement with the GRACE retrievals, although the differences in the wet months were at
times large and not systematic (Figure 9). The monthly GRACE TWSC data showed rather
large and rapid fluctuations in the dry period, leading to large and variable differences
with the SWAT TWSC estimates. The performance metrics were satisfactory, but not very
high, i.e., R2 = 0.56 and NSE = 0.55 (Figure 9b).
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Figure 9. Comparison between monthly TWSC averaged over the study area in the Lake Chad
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The resampling of the GRACE data to 1 km did not affect the signal. Both at 1 km
(Figure 9(a1,b1)) and 300 km (Figure 9(a2,b2)), the GRACE data provide a comparable signal,
as shown in Figure 9, particularly the comparable regression coefficient in Figure 9(a1,a2).
The resampling was performed to apply the same spatial sampling as the ETMonitor ETa,
which was used for calibration (1 km sampling grid—size). In addition, according to [69],
it is possible to capture a meaningful signal from GRACE data for catchments larger than
200,000 km2. In this study, the area of the catchment is approximately equal to 106 km2, i.e.,
>200,000 km2. The results at 1 km and 300 km resolution (Figure 9) are almost the same
with (R2 = 0.57).
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4.4. Water Balance

In fact, the calibration had clear impacts on different water balance components, be-
sides ETa, which were used to calibrate the model (Figure 10). Generally, all the water
balance components showed an increase compared to the first year of simulation (2009).
The lowest value was shown in 2009, and the maximum value occurred in 2012. The
mean annual values of actual evapotranspiration (ETa), soil water (SW), perception (PERC),
surface runoff (SURQ), groundwater recharge (GW_Q), water yield (WYLD), and lat-
eral runoff (LAT_Q) are 533.88 mm/year, 7.15 mm/year, 62.15 mm/year, 51.9 mm/year,
43.15 mm/year, 98.01 mm/year, and 0.59 mm/year, respectively.
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groundwater recharge; WYLD: water yield; LATQ: lateral runoff.

5. Discussion

Both the calibration and validation with the ETMonitor and GLEAM ETa retrievals
showed very good performance when the model was configured using the Hargreaves ETp
equation to simulate ETa. The SSEBop and WaPOR ETa data gave the lowest calibration
and validation performance with different ETp equations used to estimate ETa.

According to Moriasi et al. [59,60] and Kouchi et al. [70], good model performance is
indicated by the PBIAS values (PBIAS ≤±15) for the calibration and validation of the SWAT
model with monthly remote sensing ETa from ETMonitor and GLEAM (Tables 8 and 9).
These positive values of PBIAS showed that the SWAT model underestimated monthly ETa
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in the LCB. On the other hand, negative values of PBIAS indicate that SWAT overestimated
the ETa. This difference between different RS ETa products and SWAT ETa estimates is
mainly due to the difference in forcing data and to the algorithm used to estimate the ETa.
The PBIAS values achieved in the calibration and validation using ETMonitor and GLEAM
< 15% were lower than values in Odusanya et al. [21], who calibrated and validated SWAT
using MOD16 and GLEAM < 25% in the Ogun River Basin in Nigeria. The PBIAS achieved
during calibration and validation of the model with ETMonitor almost agreed with the
results by Poméon et al. [20] when they validated the SWAT in West Africa using MOD16.
The PBIAS values obtained with the WaPOR and SSEBop data do not agree with the
findings of Weerasingh et al. [71], who evaluated different remote sensing ETa products in
Africa and found that the highest-ranked products were WaPOR and SSEBop, while the
GLEAM dataset attained the lowest rank.

Our results on the calibration with ETMonitor suggested an underestimation by SWAT,
but in the validation experiments, SWAT generally overestimated ETa. A very good per-
formance of the SWAT model ETa configured using Hargreaves ETp equation with both
ETMonitor and GLEAM was indicated by all performance metrics. These findings showed
better values than those found by other studies [21]. The best SWAT calibration and valida-
tion performance is related to the choice of the Hargreaves ETp equation. This equation was
applied to actual observations of precipitation and maximum and minimum temperature
to compute the ETa. On the other hand, the other two ETp equations (Penman–Monteith
and Priestley–Taylor) were calculated with the model (reanalysis) meteorological data
on solar radiation relative humidity and wind speed due to the absence of the required
data. The differences in all remote sensing ETa datasets are due to their input and forcing
data [72] and to the different remote sensing ETa retrieval algorithms. Our findings agreed
with Lopez et al. [18] in Morocco. They reported that the GLEAM ETa gave a satisfactory
performance for the calibration of a large-scale hydrological model set-up. Moreover, our
results agree with the findings of Odusanya et al. [21] in the Ogun River Basin in Nigeria.
They reported that the calibration of the SWAT model using the GLEAM dataset showed a
satisfactory performance.

Furthermore, the four remote sensing ETa products were compared and we found
that the WaPOR values were on average higher than SSEBop, ETMonitor, and GLEAM
by 80 mm, 240 mm, and 300 mm, respectively. The SSEBop values are on average higher
than ETMonitor and GLEAM by 160 mm and 220 mm, respectively, while the difference
between ETMonitor and GLEAM is about 60 mm (Figure A2). Moreover, the calibration
was performed using the original spatial resolutions of the four products, and, as shown
in Figure 3, the spatial distribution of the performance metrics indicated that there is no
relation between the calibration performance and sub-basin extensions (size). Furthermore,
the calibration with the ETMonitor data achieves the highest performance, while SSEBop
gave a lower performance at the same spatial resolution (Figure 3 and Table 8) and this
indicates that the performance is not related to the spatial resolution of the products.

The SWAT estimates of SWC for the top 10 mm soil layer were compared with
the ESA CCI SSM for a dry, i.e., 2009, and wet year, i.e., 2012 (Figure 7). To further
refine this analysis, the results are also presented separately for the dry, i.e., January–May
and November–December, and wet months, i.e., June–October. During the dry months,
there was good agreement between SWAT SWC and ESSA CCI SSM. Larger differences
were observed during the wet months, suggesting limited sensitivity of the SWAT SWC
to precipitation.

The time series of ESA CCI SSM at a depth of 50 mm and SWAT SWC at the top 50 mm
gave better agreement throughout the entire period 2009–2015 (Figure 8b). Contrary to the
top 10 mm soil layer, the maximum SWAT SWC during the wet months was consistently
higher than the ESA CCI SSM. This suggests that model estimates and the SSM data product
capture in a different manner the vertical redistribution of rainwater. The R2, NSE, and
KGE were all higher than 0.85. That confirmed what was reported by Poméon et al. [20]
and Odusanya et al. [21] that the dynamic of the SWAT SM fit very well with the ESA CCI
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SSM (%) in the upper few centimeters of the soil profile in most of the basin at a monthly
time step.

Overall, the SWAT estimates appear to capture the seasonality correctly in TWSC
(Figure 9b): the SWAT TWSC was in good agreement with the GRACE retrievals, although
the differences in the wet months were at times large and not systematic. The monthly
GRACE TWSC data showed rather large and rapid fluctuations in the dry period, leading
to large and variable differences with the SWAT TWSC estimates. The performance metrics
were satisfactory, but not very high, i.e., R2 = 0.56 and NSE = 0.55. Grippa et al. [73]
observed similar outcomes in the Sahel and West Africa after they compared the TWSC
GRACE retrievals with estimates based on nine hydrological models. They concluded that
the most important difference between the two TWSC datasets is the noticeable decline
of TWSC during dry months. They reported that these results were explained by the
incorrectly simulated evapotranspiration through the dry season. Ndehedehe et al. [74]
reported similar results, and they assumed that it might have been due to the anthro-
pogenic influences intensifying land surface processes that were not properly captured by
hydrological models. Poméon et al. [20] also suggested that the lack of observations to be
used in model calibration could lead to a biased estimation of soil water outflow, which
causes erroneous estimates of TWSC. The multi-validation results show the SWAT model
to perform satisfactorily in the study area.

Several studies have been performed in order to evaluate the water balance of the
Lake Chad Basin [2,25,30,75–79]. Some of these studies are summarized in Table 10. The
first two studies evaluated the water budget when the Lake Chad Basin was in hydrological
equilibrium and the lake was not shrinking. Almost all the previous studies simulated the
runoff only for the Chari-Logone River, such as the studies conducted by Vuillaume [79],
Olivry et al. [77], Odada et al. [2], Zhu et al. [25], and Mahamat Nour et al. [30]. In our
study, the runoff was estimated for the whole southern Lake Chad Basin. Note that all these
studies were carried out in different years and different parts of Lake Chad Basin so that
exact comparison is unrealistic. In general, the runoff simulated by our study is comparable
to the other studies in recent years (i.e., after 1970), notwithstanding the different temporal
and spatial coverage of the study.

Table 10. Comparison of water budget components estimated in Lake Chad Basin in different studies.

Study Time Period Study Area Mean Runoff (mm/Year)

1 LCBC [75] 1954–1969 Lake Chad 170.7

2 Odada et al. [2] Pre-1970 Lake Chad 90.8

3 Vuillaume [79] 1954–1969 Chari-Logone Basin 67.67

4 Olivry et al. [77] 1932–1995 Chari-Logone Basin 52.64

5 Odada et al. [2] 1971–1990 Lake Chad 42.22

6 LCBC [75] 1988–2010 Lake Chad 65.7

7 Zhu et al. [25] 1991–2013 Southern Pool of Lake Chad 40.52

8 Mahamat Nour et al. [30] 1960–2015 Chari-Logone Basin 42

9 Lemoalle et al. [76] 1960–2009 Chari-Logone Basin 41.35

10 This study 2009–2015 Southern Lake Chad Basin 51.9

We also compared the time series of our estimates of yearly runoff with other available
studies on time series, either from observations or by modeling [80,81] (Figure 11). All
the model studies and the observed runoff confirmed the increase in the runoff in the
comparison period starting from 2009, and followed similar trends and fluctuations. The
difference in some values between our study and the two other studies is probably due
to the different spatial coverage, where the studies by Zhu et al. [81] and Mahmood and
Jia [80] simulated the runoff only for the Chari-Logone River Basin which is a part of our
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study area. In these two studies, data of observed runoff were collected only at the outlet
of Chari-Logone River [80,81], while our study simulated the runoff for the whole southern
Lake Chad Basin. There is a difference in various hydro-meteorological conditions between
those two studies, the observations, and our study, which is probably the main reason
for the high value in 2012 in our study; however, our simulated runoff showed higher
agreement with the runoff observations shown in Figure 11.
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6. Conclusions

This study demonstrated that it is feasible to calibrate the semi-distributed regional
hydrological model SWAT for the entire LCB, notwithstanding the scarcity of hydrological
data, by using remote sensing data products of ETa. An innovative aspect was to limit
the calibration to one year, i.e., 2009, by designing the calibration experiments to reduce
the number of unknown parameters. Our results demonstrated that this new limited
calibration approach did improve model performance for the entire period past calibration,
i.e., 2010–2015. A broader set of forty potentially influential parameters was defined
based on the literature. Using the global sensitivity analysis tool in SWAT-CUP, fifteen
parameters were selected for calibration. The 15 correction values used to modify the
selected parameters, which are assigned by HRU, were computed using LHS in SUFI-2 in
the SWAT-CUP package, and only one value for each correction of each parameter was
calculated for the entire LCB using twelve observations of ETa in each of the 37 sub-basins,
i.e., using 444 data points in the calibration experiments. The final values of the corrections
were applied in the validation experiments and subsequent analyses by SWAT.

The calibration experiments were designed to improve the accuracy of the SWAT
estimates of monthly ETa against four different ETa datasets based on remote sensing
observations. The model was configured to use three equations to calculate potential
evapotranspiration, i.e., Hargreaves, Priestley–Taylor, and Penman–Monteith, due to their
impacts on the estimated ETa. Four satellite observation-based ETa products and SWAT
estimates with the three ETp equations gave twelve (12) calibration experiments aiming to
improve model performance in the LCB. Generally, the limited calibration (one year on a
monthly timescale) results show that the remote sensing products are useful to calibrate
and validate the SWAT model in arid to semi-arid poorly gauged basins, even though the
temporal coverage of the calibration was limited. The best performance was obtained with
the SWAT ETa estimates based on the ETMonitor ETa.
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A statistical study has been performed to evaluate the model calibration limited to one
year. Differences across the remote sensing ETa products were significant, consistent with
the different algorithms used to estimate the ETa. The statistical analysis of both calibration
and validation results indicated that the ETMonitor and GLEAM led to a better SWAT
performance than SSEBop and WaPOR. The variations in ETa performance across different
sub-basins are due to the non-linearity of the algorithms used to generate the four data
products and the SWAT model. This gives a complex response of actual evapotranspiration
to the spatial variability in the main input data such as weather, land use, soil moisture, etc.
To address this issue properly requires a complete, in-depth study to analyze and explain
in detail the interplay of these factors in determining the spatially variable performance in
estimating ETa across different locations.

SWAT estimates of soil water content and total water storage change were compared
with satellite data products. Overall, the agreement was good, further confirming the
usefulness of the proposed limited calibration in our data-scarce study area. The limited
calibration of a hydrological model using remote sensing data is one of the solutions to
deal with the scarcity of hydrological data, and it also needs less computational capacity
and time, as opposed to a calibration performed for several years which requires much
computational time and resources. So, the computational load in the case of limited
calibration is much lower than the calibration for several years.
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Appendix A

Text A1: Details about remote sensing ETa products.
ETMonitor
In this study, the ETMonitor ETa was used on its version v1.0. In the ETMonitor

model, different modules were integrated to estimate each evapotranspiration component
for different land cover types. These include soil evaporation and plant transpiration by
a dual-source Shuttleworth–Wallace model for the soil-plant system, vegetation canopy
rainfall interception loss by the modified Gash analytical model, open water body, and a
sublimation module for snow/ice surfaces by Penman equation. Each module is described
in [15]. ETMonitor has been validated globally using in situ measurements in several
bioclimatic zones [36].

SSEBop
The version of the ETa of the Simplified Surface Energy Balance for operational

application (SSEBop) used in this paper was v4. The SSEBop model requires elevation, land
surface temperature, clear-sky net radiation, reference ETa, albedo, and NDVI data. The
SSEBop ETa is based on a thermal index approach, and more details can be found in [80].
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WaPOR
Version v1.1 of the water productivity (WaPOR) ETa was used in this study. The Wa-

POR evapotranspiration dataset was produced by the Food and Agriculture Organization
of the United Nations. Evaporation (E) and Transpiration (T) were calculated based on the
ETLook model described in [82]. It uses the Penman–Monteith (P-M) equation, adapted
to remote sensing input data. The Penman–Monteith equation [83] estimates the rate of
total evapotranspiration using commonly measured meteorological data (solar radiation,
air temperature, vapor pressure, and wind speed). Calculating evapotranspiration requires
input from seven data components. Solar radiation and precipitation were obtained from
ground stations; other weather data (the wind speed, min and max temperature, and
relative humidity were estimated using models) are daily inputs. Soil moisture stress,
NDVI, and surface albedo are decadal inputs; readers can refer to FAO, (2018) [38] for
further details. The WaPOR ETa product has been available since 2009.

GLEAM
The Global Land Evaporation Amsterdam Model (GLEAM) was developed in 2011 [17],

and it was revised and updated in 2017 [16]. In this study, the latest version of this product
(GLEAM_v3.3a) was downloaded from (www.gleam.eu; accessed on 28 October 2020). The
forcing variables used to produce GLEAM_v3.3a are detailed in [16]. The Priestley–Taylor
equation was used in GLEAM to compute the potential evapotranspiration (mm/day)
based on surface net radiation and near-surface air temperature observations. Actual evapo-
transpiration is estimated by multiplying potential evapotranspiration with the evaporative
stress factor “S” which was calculated based on microwave observations of the vegetation
optical depth, remote sensing retrievals of soil moisture, and simulations of root-zone soil
moisture. More details about GLEAM can be found in [16,84].

Table A1. The 15 parameters with fitted values for the 12 calibration projects.

Parameters
Fitted Values

ETMonitor WaPOR SSEBop GLEAM

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 *

r__CN2.mgt 0.02 0.00 −0.12 −0.04 −0.01 −0.15 −0.12 0.01 0.09 0.09 0.12 0.08

r__SOL_AWC.sol 0.94 0.79 0.84 0.94 0.97 0.94 0.95 0.92 0.95 0.94 0.90 0.56

r__SOL_BD.sol −0.11 −0.30 −0.26 −0.43 0.13 −0.03 −0.49 −0.02 −0.01 −0.07 0.09 −0.10

r__SOL_ALB.sol 0.18 0.06 0.04 0.04 0.13 0.04 −0.01 −0.02 0.06 0.06 0.06 0.19

v__ESCO.hru 0.34 0.69 0.45 0.91 0.92 0.90 0.93 0.95 1.00 0.81 0.82 0.90

v__BLAI{15,16}.plant 3.39 0.51 3.43 4.95 4.60 3.04 4.90 4.43 3.96 1.56 1.30 4.87

v__GSI{15,16}.plant 1.73 1.64 0.01 1.38 4.86 0.10 1.03 1.05 0.07 1.72 1.76 0.00

r__HRU_SLP.hru 0.09 0.07 0.11 0.16 0.16 0.16 0.18 0.17 0.17 0.08 0.08 0.00

r__SOL_CBN.sol 0.10 0.15 0.12 0.14 0.03 0.11 0.14 0.14 0.11 −0.01 0.03 0.11

r__SOL_Z.sol 0.20 0.19 0.18 0.17 0.19 0.17 0.13 0.14 0.17 0.20 0.16 0.20

v__SLSOIL.hru 103.74 138.64 67.12 123.67 100.54 104.30 118.26 116.20 146.00 126.21 140.98 66.22

v__FFCB.bsn 0.54 0.93 0.88 0.61 0.88 0.86 0.46 0.25 0.58 0.73 0.63 0.98

v__DDRAIN.mgt 140.34 122.43 178.44 153.39 106.34 157.98 118.14 116.34 138.64 139.21 108.2 144.75

v__EPCO.hru 0.72 0.06 0.37 0.43 0.59 0.34 0.46 0.60 0.30 0.11 0.17 0.06

v__SURLAG.bsn 9.22 9.17 2.34 4.02 6.74 9.34 5.55 7.28 2.84 8.49 9.75 1.80

* Note: 1 for HG_ETM; 2 for PT_ETM; 3 for PM_ETM; 4 for HG_WaP; 5 for PT_WaP; 6 for PM_WaP; 7 for HG_SEB;
8 for PT_SEB; 9 for PM_SEB; 10 for HG_GLM; 11 for PT_GLM; 12 for PM_GLM.

www.gleam.eu
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