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Abstract: Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient
microbiological conversion of a substrate to a product. However, industrial settings inherently pro-
mote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through
such regions repeatedly experience substrate shortages and respond individually but often with a
deteriorated production performance. A priori knowledge of the expected strain performance would
enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today,
computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for
the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on
microbial performance. However, profound wet-lab datasets are needed to cover relevant perturba-
tions on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics
of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response
experiments were operated as chemostats with an intermittent feed and high-frequency sampling.
Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant
perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Ap-
parently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute
carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7%
increased maintenance demands.

Keywords: scale-up; scale-down; metabolomics; bioreactor; systems biology; baker’s yeast;
Saccharomyces cerevisiae; stimulus-response experiment; substrate gradient; bioprocess
engineering; chemostat

1. Introduction

Microbial catalysis has a pivotal role in realizing the transition from natural resource
depletion towards a sustainable and circular economy [1,2]. Key factors underlining this
status encompass the use of renewable feedstock, mild reaction conditions, a vast diversity
of products and high potential for improving production efficiency and product quality—
all benefitting from biological flexibility [3]. Consequentially, the European Horizon 2020
program recognizes biotechnology as one of four “Key Enabling Technologies” to maximize
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the sustainability and growth potential of European companies [4]. A prerequisite, but
also one of the greatest challenges, is the successful transfer of lab results into commercial-
scale bioreactors without the loss of performance [5–8]. This scale-up is often hampered by
intrinsic drawbacks such as mixing insufficiencies, which, ultimately, cause a heterogeneous
extracellular environment [9–11]. Numerous factors become increasingly dynamic, causing
unexpected biological responses that either reduce the expected TRY (titer, rate and yield)
criteria or even reveal a fatal potential for a given process [11,12].

To prevent the occurrence of detrimental scale-up effects, the inclusion of large-scale
considerations into early-stage development is gaining more and more recognition in
both the industry [13–15] and academic research [16–19]. Especially during substrate lim-
ited operation modes such as fed-batch or chemostat, concentration gradients can easily
emerge, since volumetric reaction times are often within the same order of magnitude of
the mean broth circulation times in an industrial environment [20,21]. Multiple investi-
gations monitored cellular responses upon exposure to industrial conditions, aiming to
explain the observed performance losses. Industrial hosts were exposed to substrate het-
erogeneities, revealing an overflow metabolism [22,23], the disturbance of energy manage-
ment [24,25] and perturbations of regulatory programs mirrored by metabolomics [26,27],
transcriptomics [28,29] and proteomics [30–32]. Even a population heterogeneity was
observed [33,34].

How can scale-down experiments be designed to adequately reflect industrial hydro-
dynamics and reaction dynamics when large-scale data are usually not available? Modern
bioprocess development strategies substitute this knowledge gap with simulations based
on computational fluid dynamics (CFD) coupled to biokinetic models [6,21,35]. This setup
allows integrating exchange rates with the hydrodynamic environment of the bioreactor.
More precisely, the exposure of individual microorganisms to substrate gradients can be
recorded during all process phases and expressed as lifelines [36]. Currently, this approach
reaches considerable agreement with quantitative data on concentration gradients from
pilot to industrial scale [37–40]. An adjacent development goal is to increase the predictive
power to uncover biological scale-up effects already at the development stage in the lab
via data-driven models. Thus, comprehensive -omics data for model development are
paramount and can, for instance, be provided by stimulus-response experiments (SRE) that
capture relevant large-scale dynamics. Figure 1 demonstrates a conceptual workflow with
integrated wet- and dry-lab contributions. Ultimately, the generated knowledge allows
both the identification of strain engineering targets and the quantitative design of scale-
down simulators to replace physical upscaling. A successful archetype for this strategy has
recently resulted in the construction of an E. coli strain with reduced maintenance energy
demands when subjected to industrial glucose gradients [29,41].

This work is part of a case study with the ambition to deploy the aforementioned
rational bioprocess engineering approach for a eukaryotic model organism. Saccharomyces
cerevisiae was chosen due to its broad prevalence in several sectors of the bioprocessing
industry, comprising foods, fuels, chemicals and pharmaceuticals [42,43]. The industrial
setting is derived from a 22 m3 research bioreactor operated as a glucose-limited fed-batch
process for biomass production, which is thoroughly described in the literature [37,44,45].
Corresponding CFD investigations and large-scale measurements already identified glucose
gradients in the range of 23–460 µmol·L−1 [22,38,39]. This distinct concentration spectrum
favors the emergence of three metabolic regimes: First, the desired operating point in
the glucose-limited state to achieve an optimal biomass conversion. Second, overflow
metabolism due to a glucose excess close to the feeding position. Third, starvation regimes
far away from the feed, where the glucose uptake cannot satisfy cellular maintenance
demands anymore.
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Figure 1. Basic procedure for data-driven scale-up/scale-down development. Concentration gradi-
ents are derived from large-scale simulations to design stimulus-response experiments and generate
-omics datasets. This approach further allows the set-up of biological models to refine large-scale
simulations. Ultimately, gained knowledge enables process-adapted strain engineering and the
design of realistic scale-down simulators for validation experiments to replace classical scaling-up.

The before-mentioned SRE approach represents a proven methodology to provide
the necessary ground to set up data-driven models [46–48]. For the organism under in-
vestigation, several studies quantitatively investigated the metabolome and transcriptome
during a sudden shift from a glucose limitation to excess [26,47,49,50]. To the best of
our knowledge, the current state of the literature is missing complementary data for the
opposing transition between limitation and starvation. This study, therefore, set out to close
this gap of knowledge, beginning on the metabolic level. On the one hand, quantitative
endometabolomic measurements provide a sound database for a more detailed model
development. On the other hand, the interpretation of the dataset uncovers biological
mechanisms that can lead to strain performance losses for different production scenarios
and guide large-scale adapted strain engineering.

2. Results
2.1. Hyperbolic Kinetics Overestimate Starvation Regimes in Industrial-Scale Simulations

Figure 2a presents 24 min of a three-hour single-cell lifeline mimicking the late stage of
an industrial baker’s yeast production scenario. The simulation suggests that cells resided
only 39% of the time in the favored glucose limitation regime, delivering the planned
substrate supply for growth and maintenance. Moreover, overflow regimes occurred,
lasting for 1–10 s and making up 3% of the lifeline. However, for 58% of the lifeline, the
yeast trajectory was subject to severe starvation conditions, which caused the famine status
to be the normality rather than the exception.
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Figure 2. Simulated versus experimental glucose profiles experienced by yeast cells. (a) Exemplary
lifeline of a single Saccharomyces cerevisiae trajectory recorded over 24 min during an industrial
glucose-limited fed-batch process with a biomass concentration of 10 g·L−1. The lifeline was sim-
ulated during the work of Sarkizi et al. [39], but not published. (b) Stimulus-response experiment
as a glucose-limited chemostat with intermittent feed (this work). Extracellular glucose levels
are the means ± standard deviation of six biological replicates (merged trends from adapted and
non-adapted time series). All simulated values were computed using published glucose uptake ki-
netics [51]. Overflow metabolism was assumed to start at glucose concentrations >207 µmol·L−1 [52]
and starvation zones developed below 53 µmol·L−1, where maintenance demands could not be
covered anymore [53].

To mimic the dominant role of glucose starvation, we exposed yeast cells to famine
conditions (Figure 2b). In the glucose depletion experiment, minimal glucose levels of
22 µmol·L−1 were found after the feed was stopped for 2 min. Interestingly, simulations
using the kinetic parameters of Figure 2a predicted residual glucose levels well below
10 µmol·L−1. However, the semilogarithmic slope of the experimental limitation-starvation
transition in Figure 2b was only 0.44 s−1, which accounted for 60% of the anticipated
kinetics (0.71 s−1). Apparently, additional impacts occurred that hampered the one-by-one
application of the stated hyperbolic uptake kinetic for the short-term starvation.

Nevertheless, it was concluded that cellular exposure to famine conditions was a
dominating scenario in large-scale bioreactors. Accordingly, follow-up studies considered
2 min starvation intervals that allowed the investigation of endo-metabolite dynamics
for two scenarios: (i) a single limitation–starvation–limitation (LSL) cycle revealing the
nonadapted cellular response and (ii) a representative LSL cycle from an adapted culture.

2.2. Process and Phenotypic Characterization

The haploid S. cerevisiae strain CEN.PK 113-7D was cultivated in glucose-limited,
aerobic chemostats in biological triplicates, each carried out with a dilution rate of 0.1 h−1.
Three experimental phases were investigated: (i) The first period operated stably for
five residence times serving as the reference steady state (RS). (ii) Then, the feed was
inactivated once for 120 s to install starvation conditions. Subsequently, previous feeds
were re-installed and the post-starvation response was tracked for 360 min. (iii) During the
third phase, a periodic feed regimen with cycles of 2 min starvation and 7 min limitation
was implemented, operating for five residence times to establish a new steady state after
dynamic stimuli (DS).

Table 1 lists recoveries of carbon, nitrogen and available electrons (ave) for steady-
state RS, samples after the first LSL cycle and for steady-state DS. Notably, all balances
closed within 100 ± 5%. Except for minor amounts of trehalose and glycerol (data not
shown), no by-product formation was detected, which agreed with similar studies us-
ing CEN.PK 113 7D [54,55]. Only acetic acid formation was reported under reference
conditions [55], which did not occur in our study. The carbon balance of the ‘30 min
post-stimulus’ sample was the only significant deviation from the reference steady state
(p-value < 0.05). In this phase, respiratory dynamics (see Section 2.3) estimated by the
mathematical off-gas deconvolution method might have caused a measurement error, since
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both the CO2-dependent carbon and O2-dependent ave recoveries were affected by the
same increase.

Table 1. Process balances at sample points relevant for this study.

Sample Point Carbon Recovery
(% ± s.d.)

Nitrogen Recovery
(% ± s.d.)

Available Electron
Recovery (% ± s.d.)

Steady-state RS 98.8 ± 0.7 102.5 ± 6.5 97.5 ± 0.7
30 min post-stimulus 102.2 ± 1.2 102.8 ± 6.6 100.2 ± 1.2
60 min post-stimulus 97.2 ± 0.6 99.0 ± 3.5 96.4 ± 0.6

120 min post-stimulus 98.6 ± 0.9 98.9 ± 3.5 97.4 ± 0.9
180 min post-stimulus 98.3 ± 0.8 98.9 ± 3.6 97.2 ± 1.0
240 min post-stimulus 98.4 ± 0.5 98.9 ± 3.6 97.3 ± 0.5
360 min post-stimulus 99.0 ± 0.6 101.2 ± 4.6 97.8 ± 0.7

Steady-state DS 100.7 ± 0.7 101.0 ± 7.8 99.1 ± 1.0
All percentages express means ± standard deviation (s.d.) of three biological replicates. RS, reference steady state;
DS, dynamic steady state.

The phenotypic characterizations of the steady states RS and DS are presented in
Table 2. Prominent differences were observed for biomass-specific oxygen demands and
carbon dioxide emissions in DS, each rising by 4.3%. Although YDMB/glucose and the glucose
uptake rate (qglucose) remained unchanged in RS and DS, changes in the oxygen uptake
and carbon dioxide release pointed towards metabolic rearrangements. Furthermore, the
adapted cells of DS appeared to possess a superior cellular integrity, since the leakage of
unknown carbon was reduced by 13.4%, which is an indicator for cell lysis [56].

Table 2. Yeast kinetics at the steady states RS (reference) and DS (after dynamic perturbation).

Parameter Dimension Steady-State RS Steady-State DS Change (%) Welch Test
(p-Value)

D h−1 0.101 ± 0.001 0.100 ± 0.002 n.s. >0.05
YDMB/glucose gDMB·gglucose

−1 0.494 ± 0.005 0.498 ± 0.002 n.s. >0.05
−qglucose mmol·gDMB

−1·h−1 1.13 ± 0.01 1.12 ± 0.02 * n.s. >0.05
−qoxygen mmol·gDMB

−1·h−1 2.52 ± 0.01 2.63 ± 0.04 * +4.3 0.03
qcarbon dioxide mmol·gDMB

−1·h−1 2.71 ± 0.02 2.83 ± 0.04 * +4.3 0.02
Yoxygen/glucose mol·mol−1 2.23 ± 0.03 2.34 ± 0.03 * +4.9 0.02
−qammonia mmol·gDMB

−1·h−1 0.86 ± 0.04 0.94 ± 0.07 * n.s. >0.05
qother carbon mmolC·gDMB

−1·h−1 0.140 ± 0.008 0.121 ± 0.003 −13.4 0.04

All values represent means ± standard deviation of three biological replicates. Values marked with an asterisk
indicate an averaged parameter over one 9 min perturbation cycle. DMB, dry matter of biomass; RS, reference
steady state; DS, dynamic steady state; n.s., not significant.

Summarizing, the comparison of steady-state phenotypes hinted to elevated ATP
needs at DS that were mirrored by an increased oxygen uptake and carbon dioxide forma-
tion rates. Consequently, time-resolved studies were performed to uncover
underlying mechanisms.

2.3. Short-Term Metabolome Relaxation Requires 7 min after Glucose Repletion

Metric multidimensional scaling (MDS) plots of the quantified intracellular metabolome
and respiratory activity were used as proxy variables to visualize the relaxation pattern of
intracellular dynamics in non-adapted and adapted cells. By trend, Figure 3a resembles
a spiral-type trajectory of metabolite levels converging to the ‘9 min’ spot. Remarkably,
late time points 240 and 360 min did not approximate the reference steady state (0.00 min).
This result was rather unexpected, since the maximum turnover times for the reported
metabolites were in the range of 1 × 100–1 × 102 s [57] and, thus, two orders of magnitude
shorter than the observed time window. Instead, the observation may be taken as a hint
on the flexibility of the metabolome, enabling similar growth phenotypes with different
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compositions of intracellular metabolite patterns. Further evidence was provided later.
Maybe even more surprising was the continuing phenotype dynamics of the oxygen uptake
and CO2 formation during 10–60 min (Figure 3c), although the metabolome seemed to
have already relaxed after converging to the ‘attractor’ point of the 9 min sample. Together,
these results unraveled the existence of a first, immediate response to a glucose shortage
lasting for about 9 min, and a second, less pronounced dynamic between 10 and 60 min.

Figure 3. Relaxation of the intracellular metabolome and respiratory activity. (a) Multidimensional
scaling (MDS) plot of the non-adapted (red) 6 h time series based on min–max normalized concen-
trations of 28 intracellular metabolites. Arrows provide a visual aid to follow the short-term (solid)
and mid-term (dashed) dynamics. (b) Analogous MDS plot of the adapted (green) 9 min time series.
(c) Evolutions of the oxygen and carbon dioxide transfer rates after a single starvation transition.
(d) Analogous off gas analysis over 5 perturbation cycles during the dynamic steady state. Text labels
in (a,b) represent the sample time in minutes. Blue and orange lines in (c,d) represent the mean and
light areas represent the respective standard deviation of three biological replicates.

For investigating the adapted response, the final metabolite cycle (Figure 3b) after
multiple stimulations was expressed in the MDS space. Other than the non-adapted
response, we observed no spiral but rather a circular 9 min trajectory without a distinct
convergence. This reflected the dynamics in the off-gas analysis (Figure 3d), showing highly
repeatable amplitudes of Qoxygen and Qcarbon dioxide with 22.8 ± 0.3 mmol·L−1·h−1 and
12.3 ± 0.2 mmol·L−1·h−1, respectively. Notably, off-gas dynamics were always observed
in biological triplicates lasting for more than 10 cycles (only 5 were shown). The high
reproducibility of the phenotype gave rise to the assumption that the metabolite cycles of
Figure 3b equally repeated in the perturbation series.
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Summarizing, results indicated that an observation window of nine minutes covered
the first, immediate cellular response on the glucose shortage. Differences between the
adapted and non-adapted cell response existed that may have been elucidated by the
analysis of intracellular metabolite dynamics.

2.4. Short-Term Dynamics of the Central Catabolism upon Glucose Depletion

To elucidate the phenotypic differences shown by non-adapted and adapted cells after
exposure to a glucose limitation, we investigated the time course of selected intracellular
metabolites involved in the glucose catabolism (Figure 4).

Figure 4. Dynamics of central catabolic metabolites after a 2 min glucose depletion phase. The
nonadapted response (red) indicates dynamics following a single transition into a starvation scenario
(“feed off” phase) and the adapted response (green) was sampled from representative 9 min cycles
during steady-state DS. Time point 0 min of the non-adapted response was equal to steady-state RS.
All values indicate means ± standard deviation of three biological replicates.
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The central upper glycolysis metabolites glucose-6-phosphate (G6P) and the merged
glucose-1-phosphate/fructose-6-phosphate pool (Hex6P) both qualitatively followed the
extracellular availability of glucose, irrespective of the cellular adaption status. However,
a slight overshooting of about 29% occurred in adapted cells (green) for the minimum
and maximum G6P compared to the extracellular glucose amplitudes (p-value < 0.05).
The hexokinase reaction was feedback-inhibited by trehalose-6-phosphate (T6P) [58,59]
and indeed, on average, the T6P pool decreased by 52% in the adapted yeast population,
possibly resulting in reduced control over the hexokinase activity. Furthermore, a sharp rise
of T6P coincided with peaking G6P levels. Apparently, large G6P pools triggered the carbon
drain into the storage compound trehalose via T6P. Interestingly, the total levels of the
carbon storage buffers trehalose and glycogen were reduced in adapted versus nonadapted
cells by 43% and 49%, respectively. As these pool sizes are reported to correlate inversely
with the growth rate [60,61], which was kept constant in the experimental series, the
finding was unexpected. Assuming a carbon ratio of 0.04 molC·gDMB

−1 [62], the reduction
in the carbohydrate pools should account for a 4% drop in YDMB/glucose. Because the latter
was not observed (Table 2), we assumed that the substantial metabolic re-arrangement
should have occurred in adapted cells. Further hints were provided by the elevated
average concentrations of UDP-glucose (+31%) in adapted cells. UDP-glucose not only
links glycolysis with the carbohydrate storage pools, but plays a key role in the anabolism
of structural components such as cellulose, β-glucan, glycolipids and glycoproteins [63].
Consequently, increased UDP-glucose levels may reflect the observed increase in the cellular
integrity (Table 2) of adapted cells.

Regarding the short-term dynamics of the intermediates of the pentose phosphate
pathway (PPP), two phases could be observed. Interestingly, they were similar for adapted
and non-adapted cells. During the first 2 min of nascent glucose depletion, the trends of
6-phosphogluconic acid (6PGA) and the merged pool of ribose-5-phosphate and ribulose-5-
phosphate (P5P) followed the extracellular glucose availability. Then, the recovery to initial
pool sizes was delayed and somewhat disconnected from the external glucose supply. The
observation agreed with findings of Theobald et al. and Suarez-Mendez et al., who applied
glucose pulse experiments [49,50]. They hypothesized a dominating glycolytic flux control
over PPP, a conclusion that was complemented by additional cofactor and sink reaction
measurements presented and discussed in Figures 5 and 6a.

Figure 5. Dynamics of the reduction equivalents, conserved moieties and according to ratios. The
non-adapted response (red) indicates dynamics following a single transition into a starvation scenario
(“feed off” phase) and the adapted response (green) was sampled from representative 9 min cycles
during steady-state RS. Time point 0 min of the non-adapted response was equal to steady-state
RS. All values indicate means ± standard deviation of three biological replicates (except for the
non-adapted time series, which was derived from two biological replicates).
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Similar trends of delayed recovery were also observed for fructose-1,6-bisphosphate
(FBP). Phosphofructokinase (PFK) delivering FBP is well known to be inhibited by ATP and
citrate (CIT) and activated by ADP, AMP, F6P and fructose-2,6-bisphosphate (F2,6BP, not
quantified) [64,65]. Noteworthy are the in vitro and in vivo studies by van den Brink et al.,
revealing that metabolic regulations of PFK may be superimposed by upshifting glycolytic
fluxes if energy homeostasis is impaired [66]. The latter likely occurred during the first
2 min of the experiments (see Figure 6a).

Further down in glycolysis, pools of 2- and 3-phosphoglycerate (2/3PG) and phos-
phoenolpyruvic acid (PEP) showed surprisingly few perturbations irrespective of whether
non-adapted or adapted cells were studied. Either related metabolite consumption com-
pletely stopped or compensating fluxes occurred. Given the fast turnover rates of the stated
pools typically ranged in seconds, the latter is the likely explanation. Further considering
that trehalose and glycogen pool sizes persisted even during the first 2 min of nascent
starvation, the start of gluconeogenesis is a plausible scenario. Pyruvate kinase (PKY)
converting PEP + ADP into PYR + ATP is well known to be activated by FBP, which, inter-
estingly enough, dropped severely by 61% from 0.36 ± 0.10 µmol·gDMB

−1 to 0.14 ± 0.02
µmol·gDMB

−1. Because of the missing downwards flux, gluconeogenesis was induced [67],
causing stable upstream pool sizes.

In the tricarboxylic acid cycle (TCA), intermediates showed similar trends in all
conditions. The merged pool of citric acid (CIT) and isocitric acid (ISOCIT) kept constant,
whereas the downstream intermediate α-ketoglutaric acid (αKG) mirrored the extracellular
glucose shortness of the first 2 min, followed by a delayed recovery. This trend was
visible in all subsequent TCA metabolites, although dampened with an increasing reaction
distance to αKG. This finding was in agreement with earlier studies of Mashego et al., who
performed glucose pulse experiments, observing stronger perturbation dynamics for αKG
than for CIT [47]. Presumably, the trends reflect the mitochondrial export of αKG into the
cytosol for oxidative nitrogen fixation in glutamic acid [68]. Unfortunately, no dynamic
glutamic acid measurements were available in this study.

Taken together, LSL perturbations were propagated on separating time scales through
the central metabolic nodes of S. cerevisiae. Moreover, the adaption status was most visible
in the pool sizes of carbon storage buffers.

2.5. Analysis of Anabolic and Catabolic Reduction Equivalents

The dynamics of the nicotinamide electron carriers are depicted in Figure 5. The upper
panel indicates individual concentrations of the anabolic redox pair NADP+, NADPH, their
sum and their ratio. By analogy, the catabolic redox state is indicated in the second row.

Regarding anabolic reduction, the total pool size of 0.36 ± 0.00 µmol·gDMB
−1 and the

reductive ratio of 1.28± 0.01 measured at reference conditions agreed with literature values
for CEN.PK113-7D, which were observed in glucose-limited chemostat at D = 0.1 h−1 as
0.25–2.17 µmol·gDMB

−1 and 0.29–4.86, respectively [69]. By trend, NADP+ pool sizes
dropped during glucose depletion, both for adapted and non-adapted cells, which led to
rising anabolic reduction charges.

In contrast, NAD+ concentrations remained virtually unchanged during glucose de-
pletion, whereas NADH levels decreased. Interestingly, in the non-adapted scenario,
the recovery of the NADH pool was not observed within the 9 min time window, but
in the adapted case, full relaxation was reached after 5 min. However, NADH lev-
elled out at 0.10 ± 0.01 µmol·gDMB

−1, which was 43% less than the reference state at
0.17 ± 0.03 µmol·gDMB

−1. The lumped pool size remained stable during the perturba-
tion, since only NADH showed dynamics, which only accounted for approximately 4% of
the total pool size. Literature values for the catabolic reduction charge under comparable
steady-state conditions ranged from 0.05 to 0.2 [50,70,71], which was somewhat larger than
the reference value of 0.046 ± 0.009 measured for the non-adapted yeast. The observa-
tion mirrored the twofold increased NAD+ concentrations of this study work versus the
respective levels in the cited studies that yielded ratios above 0.1.
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Summarizing, the results indicated opposite trends during nascent glucose starvation:
while the anabolic reduction state rose, the catabolic dropped. Or, in other words, NADPH
and NAD+ levels persisted, whereas NADP+ and NADH pool sizes dropped.

2.6. The Adenylate Energy Charge Is Quickly Regenerated at the Cost of Total Adenylate Pool Size

Energy carrier homeostasis and nucleotide resource management during dynamic
glucose availability were monitored via adenylate and selected purine salvage pathway
(PSP) intermediates (Figure 6a). The adenylate energy charge (AEC) was calculated based
on the original approach from Atkinson et al. [72]. The ATP concentration decreased from
8.12 ± 0.72 µmol·gDMB

−1 to 3.56 ± 0.16 µmol·gDMB
-1 and from 5.63 ± 1.54 µmol·gDMB

−1

to 1.60 ± 0.61 µmol·gDMB
−1 within 120 s in the non-adapted and adapted scenarios, respec-

tively. In the same interval, AMP displayed a sharp 3.9-fold (non-adapted) and 6.6-fold
(adapted) peak, while ADP first dropped before rising after 30 s with a maximum coin-
ciding with that of AMP. Adenylate energy charges of non-adapted and adapted yeasts
showed physiological values of about 0.90 ± 0.03, which dropped during glucose starva-
tion before recovering again to the initial value. Interestingly, the drop of AEC was more
pronounced in adapted cells. However, both cells had in common that total AxP pools
reduced during glucose starvation and did not fully replenish during the post-starvation
period. Apparently, physiological AEC values of about 0.9 observed after famine exposure
were achieved at the cost of ADP pools that did not recover to the prestarvation values.

Remarkably, the similar phenotype of the AEC adjustment at the cost of AxP reduction
was reported in glucose pulse studies [26,46,47,73]. Kresnowati et al. and Walther et al.
hypothesized that nucleotide salvage mechanisms may explain the underlying mechanism
of the observation. Adenine nucleotides were shuttled into the PSP via the AMP deaminase
(AMD1) reaction yielding inosine monophosphate (IMP), the central intermediate for both,
de novo and salvage pathways of purines (Figure 6b). At this branch point, IMP could
either (i) enter a futile cycle where AMP is regenerated at the expense of GTP and aspartate,
yielding GDP and fumarate; (ii) be interconverted via inosine (INO) to hypoxanthine (HYX)
back to IMP at the expense of ribose-1-phosphate (R1P) and phosphoribosyl pyrophosphate
(PRPP) or (iii) be shuttled towards the guanine salvage branch catalyzed by the NAD+-
dependent IMP dehydrogenase (IMD2,3,4) [73]. Surprisingly, the pattern of IMP under
famine conditions resembled the oscillatory behavior of ADP rather than that of the IMP
precursor AMP. The IMP levels displayed a second decline phase after 1 min, coinciding
with strongly increasing inosine and hypoxanthine levels. The latter accumulated to their
maximum concentrations about 1 min later than AMP, their common upstream intermediate.
Interestingly, INO pools of non-adapted cells remained 1.6-fold elevated compared to the
prestarvation condition. This may be interpreted as a ‘memory’ effect that was not shown
by adapted cells.
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Figure 6. Dynamics of energy carriers and intermediates of the purine salvage pathway. (a) The
non-adapted response (red) indicates dynamics following a single transition into a starvation scenario
(“feed off” phase) and the adapted response (green) was sampled from representative 9 min cycles
during steady-state DS. Time point 0 min of the non-adapted response was equal to steady-state RS.
The adenylate energy charge was calculated according to [72]. All values indicate means ± standard
deviation of three biological replicates. (b) Schematic representation of the adenylate kinase sys-
tem attached to the purine salvage pathway, reproduced from [73,74]. Aah1, adenine deaminase;
Ade12, adenylosuccinate synthase; Ade13, adenylosuccinate lyase; AdeS, adenylosuccinate; Adk1,
adenylate kinase; Ado1, adenosine kinase; Amd1, AMP deaminase; Apt1, adenine phosphoribosyl
transferase; ASP, aspartate; FUM, fumarate; Hpt1, hypoxanthine-guanine phosphoribosyl transferase;
Isn1, IMP-specific 50-nucleotidase; Pnp1, purine nucleoside phosphorylase; PRPP, phosphoribosyl
pyrophosphate; R1P, ribose-1-phosphate.

3. Discussion
3.1. Decreased Glucose Uptake Kinetics

Several reports have shown that a variable substrate availability is a fundamen-
tal scale-up effect causing observed strain performance losses in industrial fed-batch
processes [22,23,45,75]. The investigated case of glucose limited S. cerevisiae CEN.PK113-7D
exemplified the cellular responses at µ = 0.1 h−1 when the substrate concentration cS was
10-fold lower than the affinity constant KM of the most efficient hexose transporters HXT6
and HXT7 [51,76]. If cS << KM, the glucose uptake kinetics are proportional to extracellular
concentrations [77], which may explain the observed deviation between predictions based
on hyperbolic kinetics and the experimental observation in our study (Figure 2) and in



Metabolites 2022, 12, 263 12 of 24

other works [50]. This discrepancy could be attributed to the presence of a secondary
source of extracellular glucose in the form of exported trehalose. The disaccharide is hy-
drolyzed in the extracellular space by the free acid trehalase Ath1, which has an optimum
at the operated pH of 5.0 [78]. Comparable fermentation studies investigating 13C labeling
patterns traced the presence of unlabeled glucose to trehalose breakdown. Furthermore,
there are several other theoretical indications to consider, such as the decoupled glucose
uptake and sensing [79] or the inhibition of the glucose uptake by intracellular glucose [80]
concomitant with glucose secretion due to the reversibility of facilitated diffusion [81].
Thus, several aspects of glucose transport and even additional source reactions must be
considered for optimal glucose characterization at the boundary of starvation, as they can
play an important role in computing realistic large-scale simulations.

3.2. Exposure to Starvation Revealed Different Tactics of Reserve Management

Macroscopic observations indicated the emergence of a new growth phenotype of
adapted cells compared to non-adapted cells. The first managed to maintain the same
biomass/substrate yield, while the respiratory activity rose and carbon storage pools
remained on a lower, but constant, level. Given that carbon dioxide emission rates of
adapted cells increased by about 4.3% while the glucose uptake rates kept constant, one
may anticipate a likewise dip of YDMB/glucose that did not occur. Therefore, the cells should
have found alternative resource allocation possibilities targeting proteins. The hypothesis
was consistent with strongly reduced amino acid pools (Table A2) and an observed 9%
increase in the ammonia uptake rate during the dynamic steady state (Table 2). In general,
the rearrangement of the cellular composition is a fundamental strategy of S. cerevisiae to
adjust to new environmental conditions through balancing growth against maintenance [82].
Fast growth, for instance, is accompanied by high ribosomal contents tapping into storage
carbohydrates to ensure anabolic needs [83,84]. A similar cellular strategy was revealed in
the current study, most likely to support the increased maintenance demands rather than to
elevate growth. Indeed, estimating qATP assuming a P/O ratio of 1.08 yielded a significant
2.7% increased ATP demand in adapted cells [85].

Considering intracellular metabolite pool sizes, differences between the adapted
and non-adapted states mirrored the adaptation of the yeast to cultivation conditions.
Prolonged carbon-limited chemostat cultivations by Mashego and Jansen et al. [86,87]
already revealed decreasing pool sizes of maximum 20% after 10 generations that were
interpreted as the consequence of selection pressure. The present study also encompassed
approximately 10 generations between steady states RS and DS. Consequently, minor
pool size reductions <20% should be ignored to separate the effects of long-term growth
selection from the results of metabolic rearrangement because of the dynamic stimuli. Still,
key findings outlined above should be valid. For instance, trehalose and glycogen pool
reductions were likely to be a consequence of the repeated exposure to famine conditions.
This made sense from an economic point of view, given the relatively high contribution
of both pools towards ATP dissipation via futile cycling [55]. Other evidence towards a
more energy-saving mode in adapted cells was derived from the twofold increased AMP
peak compared to the non-adapted yeast. High AMP levels activate the PFK enzyme
while simultaneously inhibiting the reverse reaction catalyzed by FBP and, consequentially,
further reduce ATP dissipation in the F6P–FBP futile cycle [88]. Hence, during adaption, the
non-growth-associated ATP usage appeared to be increased and rebalanced for supporting
other maintenance components than energy buffering.

There remains the question of which relationship elicited the emerging new phenotype
when the same net rates of growth and substrate uptake prevailed. As mentioned earlier,
glucose uptake and sensing are decoupled processes in S. cerevisiae [79]. Zaman et al.
characterized the transcriptional response of conditional mutants against different glucose
sensing scenarios. The authors concluded that extracellular glucose sensing could indeed
induce strong phenotypic changes, while the same net influx of glucose prevails [89].
Whether the decoupled substrate uptake and sensing explain the present observation
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should be addressed in future research to fully understand the regulatory mechanisms that
shape the industrial phenotype.

3.3. The Cellular Strategy to Ensure Anabolic Demands

The concentration profiles of most intermediates of the upper glycolysis and tightly
linked metabolites followed the decline in extracellular glucose levels. However, during
the transition from starvation back to the new steady state, time scales of pool relaxation
were partially decoupled from glucose availability. The differences of recovery dynamics
reflected different flux patterns that apparently mimicked cellular needs. For instance,
the PPP reached pre-perturbation levels 4 min later than its precursor G6P. Considering
that steady-state glycolytic flux was about 20-fold larger than the branching flux into
PPP [55], its pools needed longer to recover. Apparently, this reflected the cellular program
to prioritize catabolic over anabolic activity. Saliola and colleagues reported that most
eukaryotic G6P dehydrogenases (Zwf1 in S. cerevisiae) possess both a catalytic binding site
for NADP+ and an allosteric binding site for NADPH [90]. This allows the cell to drain
fluxes towards glycolytic catabolism, thereby gaining ATP either via Zwf1 inhibition under
NADPH excess or via NADP+ limitation. Apparently, the second occurred during the
SRE experiments.

Interestingly, neither trehalose nor glycogen pools were degraded during the short-
term exposure to glucose starvation. This was in line with previous observations, where
short-term glucose perturbations on the same time scale did not change glycogen [27,91] or
trehalose concentrations [27], even though rapid trehalose mobilization is anticipated in the
literature [92]. This disagreement may be explained as follows: cytosolic trehalase is depen-
dent on activation via a cAMP-dependent prost-translational modification (PTM) cascade
yielding its phosphorylation [92]. However, the adenylate cyclase Cyr1 in CEN.PK113-7D
carries a mutation that causes a delay in trehalose and glycogen mobilization [93]. Con-
sequentially, the short-term persistence of glycogen and trehalose pools may be a distinct
feature of the current strain, and may be different in other genotypes that were not selected
after growth evolution.

Intracellular metabolite dynamics were less pronounced in lower glycolysis and in
TCA. In some cases, a high variance additionally hindered a statistically sound interpreta-
tion (e.g., for PYR). However, the quick reduction in the catabolic reduction charge under
famine conditions might be the consequence of a reduced flux into the TCA, since the
onset of gluconeogenesis was observed. In essence, reactions generating NADH, such as
oxoglutarate decarboxylase (OGDC), isocitrate (IDH) and malate dehydrogenases (MDH),
were reduced. With the missing influx, pools of αKG reduced quickly, indicating that the
drain into amino acid synthesis and the production of glutamate remained. Notably, αKG
may be regarded as an alarmone, being at the intersection of oxidative carbon and nitro-
gen metabolism. The reductive amination to form glutamate is tightly controlled by the
redox status of the NADP+/NADPH couple [94]. Considering the rising NADPH/NADP+

ratio (Figure 5), glutamate formation was likely to continue even during famine condi-
tions. Together with the observation of falling NADH/NAD+ ratios, the conclusion could
be drawn that the yeast favored anabolism for the sake of catabolism under short-term
carbon starvation.

Ultimately, decreasing catabolic reduction power impaired energy homeostasis due
to an imbalance in the electron transport chain. With reducing glycolytic fluxes, ATP gain
via respiration became even more important under famine conditions. Consequently, the
falling NADH supply was proportionally reflected in likewise falling ATP levels. The
increasing ADP:ATP ratio pushed the adenylate kinase 1 (Adk1) away from its equilibrium
to catalyze the conversion of ADP to ATP and AMP [95]. This correlation might also explain
the larger AMP peak in adapted cells, since the ADP:ATP ratio increased by approximately
15% compared to non-adapted cells. AMP accumulation was prevented via removal
towards INO via IMP using the purine salvage pathway. As no obvious regulatory roles
could be assigned to IMP and INO thus far, Walther and colleagues suggested that AMP is
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shuttled to PSP to reduce its regulatory impact, which may partially explain the delayed
regeneration of the AxP pool after stress relief [73].

3.4. Consequences for Production Scenarios with Saccharomyces cerevisiae

Dynamic environments in industrial-scale bioreactors can induce manifold cellular
responses. Carbon-limited fed-batch processes typically operate at carefully designed
substrate supply optima, which could be easily inferred once cells enter zones of substrate
depletion. The latter often occur far away from the feed inlet [38] or in areas with poor
mixing. The current study identified a number of intracellular responses that have the
potential to impair the yeast performance in large-scale production scenarios. For instance,
dynamic extracellular LSL transitions caused the emergence of a new phenotype with possi-
ble implications in recombinant protein production. Increased maintenance demands could
directly compete with energetic demands for protein production in the form of an added
metabolic burden [96]. Another point to consider might be the failure of cellular buffering
capacities to counterbalance rapid substrate perturbations. For instance, a delayed trehalose
or glycogen mobilization to maintain the glycolytic flux could result in a dynamic redox
state. Celton et al. reported a negative impact of aberrant NADPH homeostasis on the
production of aromatic molecules [97]. In addition, a dynamic NAD+/NADH ratio is con-
stantly monitored via Sir2 in yeasts that can trigger pronounced transcriptional dynamics
with possible impacts on different metabolic routes for several production scenarios [43].
Knowledge concerning dynamics of specific signaling compounds could also shed light on
process performance. Alpha-ketoglutaric acid has recently been characterized as a master
regulator in E. coli, and its role in the yield reduction in recombinant protein production
was discussed by Zhang et al. [98].

Thus far, this study revealed the biological feedback of yeast cells on a specific pertur-
bation. Follow-up work should use this finding and complementary datasets to generate
models that would allow more realistic predictions of the cellular response towards indus-
trial stimuli, with a view to enabling the a priori identification of biological scale-up effects.

4. Materials and Methods
4.1. Strain, Precultures and Medium

The haploid, prototrophic Saccharomyces cerevisiae model strain CEN.PK 113-7D [93]
was used in this study and was kindly provided by Royal DSM N.V. (Delft, The Nether-
lands). Cells were stored at −70 ◦C in 1 mL aliquots supplemented with 30% (v/v) glycerol.
For each experiment, yeast extract peptone dextrose (YPD) agar plates were prepared
by streaking cells directly from the frozen glycerol stock and incubating for two days
at 30 ◦C. Single colonies were picked and suspended with 5 mL YPD broth in a culture
glass vial. The vials were mounted at a 45◦ angle on an orbital shaker and incubated
for 8 h at 30 ◦C with 120 revolutions per minute. Subsequently, the cultures were pel-
leted and inoculated in shake-flask cultures with 110 mL adjusted Verduyn medium [99]
and incubated over night at 30 ◦C on an orbital shaker with 120 revolutions per minute.
To support carbon-limited growth in chemostat conditions with 22.5 g·L−1 glucose, the
medium was designed as follows: ammonium sulfate ((NH4)2SO4) 15.0 g·L−1, monopotas-
sium phosphate (KH2PO4) 9.0 g·L−1, magnesium sulfate heptahydrate (MgSO4·7H2O)
1.5 g·L−1, ethylenediaminetetraacetic acid ((CH2N(CH2CO2H)2)2) 38.22 mg·L−1, zinc
sulfate heptahydrate (ZnSO4·7H2O) 9.00 mg·L−1, manganese(II) chloride tetrahydrate
(MnCl2·4H2O) 2.00 mg·L−1, cobalt(II) chloride hexahydrate (CoCl2·6H2O) 0.60 mg·L−1,
copper(II) sulfate pentahydrate (CuSO4·5H2O) 0.60 mg·L−1, sodium molybdate dihydrate
(NaMoO4·2H2O) 0.80 mg·L−1, calcium chloride dihydrate (CaCl2·2H2O) 9.00 mg·L−1,
iron(II) sulfate heptahydrate (FeSO4·7H2O) 6.00 mg·L−1, boric acid (H3BO3) 2.00 mg·L−1,
potassium iodide (KI) 0.20 mg·L−1, D-biotin (C10H16N2O3S) 0.10 mg·L−1, calcium pan-
tothenate (C18H32CaN2O10) 2.00 mg·L−1, nicotinic acid (C6H5NO2) 2.00 mg·L−1, myo-
inositol (C6H12O6) 50.00 mg·L−1, thiamine HCl (C12H18Cl2N4OS) 2.00 mg·L−1, pyridoxine
HCl (C8H12ClNO3) 2.00 mg·L−1 and para-aminobenzoic acid (C7H7NO2) 0.40 mg·L−1.
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4.2. Bioreactor and Chemostat Setup

Aerobic, carbon-limited chemostat cultivations were carried out in a 3 l stainless
steel benchtop bioreactor (Bioengineering, Wald, Switzerland) with a working volume of
1.7 L. The reactor was equipped with two six-blade Rushton-type impellers, four baffles
and sensors for pH (Mettler Toledo, Columbus, OH, USA), pO2 (PreSens, Regensburg,
Germany), temperature and pressure (both Bioengineering, Wald, Switzerland). The system
was operated with an overpressure of 0.3 bar, pH was controlled at 5.00 with 2 M KOH,
the temperature was kept at 30 ◦C and aerobic conditions were maintained with bottled,
ambient air supplied with 0.8 Nl·min−1 and bubbles were dispersed with an impeller speed
of 800 rpm. Foaming was prevented throughout the process by a continuous supply of
Struktol J 674 antifoam (Schill und Seilacher, Hamburg, Germany) with a pump rate of
30 µL·h−1. Oxygen and carbon dioxide fractions in the off-gas were logged every minute
with BCP-O2 and BCP-CO2 sensors (BlueSens, Herten, Germany).

Each process was initiated as a batch fermentation by inoculating 1.6 L adjusted
Verduyn medium with 0.1 L of an overnight shake-flask culture. Glucose depletion was
monitored based on a sharp increase in the pO2 signal, which was followed by switching
to chemostat conditions. The system was operated at a dilution rate of 0.1 h−1 with two
U-120 peristaltic pumps (Watson-Marlow, Falmouth, UK). The feed pump was operated
continuously at 2.83 mL·min−1 and the harvest pump was controlled at a higher speed
relative to the feed pump via mass balancing of the bioreactor. The feed medium was
continuously stirred with a magnetic stir bar to avoid gradient formation in the feed casket
and the dilution rate was monitored based on the mass balance of the feed reservoir.

4.3. Stimulus-Response Experiment

Reference steady-state samples were drawn after five residence times with constant
off-gas signals. The non-adapted response was induced by a single transition into a non-fed
regime by switching off the feed pump for 2 min, followed by a continuation of the previous
chemostat regime. The biological response was characterized with the below-mentioned
methods for up to six hours post-stimulus. Subsequently, the feeding regime was switched
to an intermittent feed. The feed pump was switched off for two minutes and switched
on for seven minutes repetitively, resulting in nine-minute regime transitioning cycles.
During the feed phase of every cycle, the feed rate was adjusted to 3.64 mL·min−1 to
maintain an average dilution rate of 0.1 h−1. After five residence times in the intermittent
feeding regime, a dynamic steady state was assumed and samples representing the adapted
response were drawn. The whole chemostat process was not operated for more than
15 residence times to avoid the occurrence of laboratory evolution effects [86].

4.4. Sampling

The bioreactor was equipped with two custom-made, semiautomated sampling de-
vices. For each sample port, a stainless steel broach needle (Bioengineering, Wald, Switzer-
land) was connected via a septum with the bioreactor and the exit was extended with a
silicon tube with an inner diameter of 0.5 mm. The tube was closed with a pinch valve
(model: S105, ASCO/Sirai, Bussero, Italy) to allow sampling of precise volumes enabled
via time-relay-controlled valve opening (time relay model: FSM10, Tele Haase Steuergeräte,
Vienna, Austria). Each sampling device was calibrated during reference steady-state condi-
tions for each biological replicate separately and the volume deviation from the set point of
five replicates for volumes between 1 and 5 mL was always below 2%. All samples were
drawn after discarding the dead volume of 300 µL.

Cultivation broth samples for biomass and carbon balancing were briefly chilled on
ice for degassing of the broth before distributing adequate volumes for each method.

Extracellular supernatants were obtained by directly sampling into a syringe equipped
with a PES filter (Ø 30 mm, 0.22 µm pore size, ROTILABO®, Carl Roth, Karlsruhe, Germany)
and the filtrate was collected within 5 s and stored at −70 ◦C.
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Defined biomasses for intracellular metabolic analysis were withdrawn according
to an adapted and sequential protocol employing rapid cold-methanol quenching and
methanol–chloroform extraction [100]. Following procedure: 1.5 mL cultivation broth was
directly injected into 10 mL methanol cooled down to −40 ◦C and immediately centrifuged
at 5000× g for 5 min at −11 ◦C. Samples were thoroughly decanted, flash-frozen and stored
at −70 ◦C until extraction. During high-frequency sampling periods (initial perturbation
phase, up to ∆t = 540 s), quenched cultivation broths were interim stored at −40 ◦C in a
cryostat (RK20, Lauda, Lauda-Königshofen, Germany) for a maximum time of 5 min to
prevent metabolite leakage [57]. The frozen cell pellets were resuspended in precooled
(−20 ◦C) extraction buffer consisting of 50% vv−1 aqueous methanol solution, 100 mM
ammonium acetate (pH 9.2), 2.5 mM 3-mercaptopropionic acid and 100 µM L-norvaline as
internal standard (extraction). Added volumes were adjusted to achieve constant biomass
concentrations (8.5 g·L−1) and the sample temperature was kept below−20 ◦C by rotational
mixing (∆t = 30 s) and chilling in a cryostat (−40 ◦C) during complete resuspension. Next,
the same volume of precooled (−20 ◦C) chloroform was added and the mixed suspension
was incubated for 2 h at −20 ◦C and 1 h at room temperature in a rotary overhead shaker.
Afterwards, the samples were centrifuged at 20,000× g for 10 min at 4 ◦C and the upper
aqueous methanol phase containing polar metabolites was carefully removed and stored at
−70 ◦C until measurement.

4.5. Off-Gas Deconvolution

A prerequisite for proper off-gas analysis in stimulus-response experiments is a suit-
able approach for signal deconvolution. Long tubing lines and foam traps between fer-
menter and sensors led to the formation of mixing chambers, causing a sensor delay of
several minutes and increased apparent time constants versus the reported 55 s for BCP-O2
and BCP-CO2 sensors [101]. Step experiments were carried out under experimental condi-
tions with H2O as a broth substituent to identify delay times and time constants for each
sensor. Correction of the O2 and CO2 signals during the stimulus-response experiments was
computed based on the methodology by Theobald et al. [102]. For a complete description
of the step experiments and mathematical deconvolution approach, the reader is referred
to Appendix A.

4.6. Dry Matter of Biomass Determination

Triplicated 5 mL volumes were vacuum-filtered through dried and tared PES mem-
brane disc filters (Ø 47 mm, Type 154, Sartorius, Göttingen, Germany). Filters were,
subsequently, washed with 15 mL demineralized water and dried at 70 ◦C until mass con-
stancy was observed. Finally, filters with biomass cakes were brought to room temperature
in a desiccator and were weighed again. The calculated weight of the biomass cake was
normalized to the sample volume and expressed as dry matter of biomass (DMB).

4.7. Extracellular Metabolite Quantification

Frozen supernatant samples were thawed on ice and glucose was measured using a
UV-based enzyme test kit (art. no. 10716251035, r-biopharm AG, Darmstadt, Germany).
The free ammonium concentration was quantified with the LCK302 cuvette test kit (Hach
Lange, Düsseldorf, Germany). Each kit was performed according to the manufacturer’s
instructions on a spectrophotometer (Hach Lange, Düsseldorf, Germany). Unknown
extracellular carbon was calculated based on an organic carbon balance of broth supernatant
using a total carbon analyzer (Multi N/C 2100s, AnalytikJena, Jena, Germany).

4.8. Determination of Intracellular Carbohydrate Storage Pools

Intracellular glycogen and trehalose levels were determined based on the protocols re-
ported by Parrou et al. and Suarez-Mendez et al. [103,104]. Frozen pellets were resuspended
in 250 µL 0.25 M sodium carbonate and incubated for 3 h at 95 ◦C. Subsequently, the pH
was adjusted to 5.5 by addition of 150 µL−1 M acetic acid and 600 µL 0.2 M sodium acetate
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(pH 5.2, adjusted with acetic acid). The sample was split into a 480 µL and a 466 µL aliquot.
The first was treated with 20 µL of α-amyloglucosidase (~70 U/mL, catalog number: 10115,
Merck, Darmstadt, Germany) at 57 ◦C overnight to determine glycogen expressed as liber-
ated glucose equivalents. For trehalase determination, the pH of the 466 µL aliquot was
adjusted slightly upwards by the addition of 30 µL of 0.2 M sodium acetate, and trehalose
was hydrolyzed to glucose by the addition of 4 µL trehalase (2.27 U/mL, catalog number:
T8778, Merck, Darmstadt, Germany) and incubated at 37 ◦C overnight. Glucose equivalents
were measured with the UV-based enzyme test kit (art. no. 10716251035, r-biopharm AG,
Darmstadt, Germany).

4.9. Determination of Intracellular Metabolites Measured via LC-MS/MS

Quantitative metabolome analyses of intracellular S. cerevisiae extracts (see Section 4.4)
were conducted on an Agilent 1200 HPLC system coupled with an Agilent 6410B triple-
quadrupole (QQQ) mass spectrometer with a classical electrospray ionization (ESI) interface.

Analytical preparation of sample extracts and chromatographic separation of non-
derivatized polar metabolites by alkaline polymer-based zwitterionic hydrophilic inter-
action chromatography (ZIC-pHILIC) were performed as previously described [105,106].
Defined standard mixtures and samples with adapted dilution containing 50 µM 2-keto-
3-deoxy-6-phosphogluconate (KDPG) and α-amino isobutyric acid (AIBA) as global in-
ternal standard (measurement) were injected (5 µL) into a Sequant ZIC-pHILIC column
(150 × 2.1 mm, 5 µm, Merck Millipore, Darmstadt, Germany) equipped with a guard
column (20 × 2.1 mm, 5 µm, Merck Millipore, Darmstadt, Germany) maintained at 40 ◦C.

Analogue measurements of previously derivatized (Phenylhydrazine) α-keto acids
(αKG, PYR, GXY) were performed by an adapted LC-MS/MS protocol [107] using 50 µM
α ketovalerate as internal standard (derivatization/measurement). Derivatized analytes
were separated under acidic conditions (pH 3.0) by reverse-phase liquid chromatography
(RPLC) [108]. Samples were injected (5 µL) onto a ZORBAX SB-C18 column (150 × 4.6 mm,
5 µm, Agilent Technologies, Waldbronn, Germany) with a guard column (12.5 × 4.6 mm,
5 µm, Agilent Technologies, Waldbronn, Germany) maintained at 40 ◦C.

Targeted metabolites were detected with high selectivity in multiple reaction moni-
toring (MRM) mode using established and preoptimized precursor-to-product transitions
and MS/MS parameters with a mass resolution of 0.1 u. Intracellular metabolite pools
were absolutely quantified by a threefold standard addition of defined amounts of ref-
erence standard mixes (internal calibration). Applied amounts were adjusted according
to previously estimated concentration levels and linear dynamic ranges of the targeted
metabolites [109]. The absolute concentration levels of the AxP species were normalized
to results from a reference method [54] to compensate for known HILIC-specific peak
tailing effects in iron-based LC systems [110]. The normalization factors (ATP: 2.71, ADP:
1.88 and AMP: 1.21) were calculated from analogues steady-state RS samples and were
applied conformably.

4.10. Characterization of the Endometabolome Relaxation Pattern

A classical, metric multidimensional scaling approach [111] was chosen to quan-
tify and visualize dissimilarities between the different time points. Concentrations of all
29 intracellular metabolites, except pyruvic acid, were considered and min–max normal-
ized. In the next step, the Euclidean distance matrix was computed with the function dist
and used as an input for cmdscale, which was limited to a two-dimensional representation
of the sample distances (k = 2). All computations were executed in the R environment
(version 1.4.1106) with the package stats (version 4.1.0).

4.11. Total Carbon and Nitrogen Determination

One milliliter of fermentation broth was mixed with nine milliliters of 36.84 mM KOH
to prevent loss of inorganic carbon in the form of dissolved carbonate. Next, the 1:10
diluted sample was measured in octuplicate, and undiluted supernatant (also stabilized
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with 36.84 mM KOH) was measured in quadruplicate with a multi N/C 2100 S composition
analyzer (Analytik Jena, Jena, Germany). The system was calibrated according to the
method of Buchholz et al. [112]. Nitrogen concentrations were directly measured and
organic carbon was determined based on the difference between the total carbon and the
inorganic carbon fractions.

5. Conclusions

This study set out to investigate the response of Saccharomyces cerevisiae during in-
dustrially relevant transitions between carbon limitation and starvation, and vice versa.
The intracellular metabolite analysis provided a solid dataset for future modeling efforts
and revealed distinct phenomena that helped to explain biological scale-up effects. The
experimental design allowed the observation of several dynamics from the allosteric control
of specific intermediates to global phenotypic changes as a response to the applied substrate
gradient. In particular, a distinct mode was uncovered where yeasts sacrificed catabolic
reduction power to sustain ongoing anabolic demands under acute carbon starvation
conditions. A natural progression of this work is to expand the obtained knowledge by
analyzing gene expression dynamics to investigate (i) if and how metabolic stimuli are
propagated in cells exposed to an industrially relevant famine perturbation and (ii) to use
the obtained data for setting up data-driven models for a rational scale-up/scale-down.
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Appendix A. Off-Gas Deconvolution

A prerequisite for the off-gas analysis in stimulus-response experiments is a suitable
approach for data deconvolution. Long tubing lines and foam traps between fermenter
and sensors led to the formation of mixing chambers, causing a sensor delay of several
minutes and increased apparent time constants versus the reported 40–55 s for BCP-O2
and BCB-CO2 sensors [101]. This could cause misguided readouts such as strong RQ
dynamics that might not at all be caused by biological effects. To compensate for this
system characteristic, step experiments under experimental conditions were carried out to
acquire delay times and time constants for the whole “fermenter→ sensor” unit, as laid
out in Table A1. A correction of measured off-gas signals was calculated according to the
procedure of Theobald et al. [102]:
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with(
Yω

O2

)
F

molar fraction of O2 in the fermenter broth;(
Yω

CO2

)
F

molar fraction of CO2 in the fermenter broth;(
Yω

O2

)
A

measured molar fraction of O2 at the sensor;(
Yω

CO2

)
A

measured molar fraction of CO2 at the sensor;
t time of data logging for O2 and CO2;

τO2
d delay time of O2 signal;

τCO2
d delay time of CO2 signal;

τO2
1 time constant of BCP-O2 sensor and gas line “fermenter→ sensor”;

τCO2
1 time constant of BCP-CO2 sensor and gas line “fermenter→ sensor”.

Table A1. Parameters for off-gas deconvolution. Delay times (τd) and time constants (τ1) were
derived from step experiments, where the reactor system was operated with water, but otherwise
equal to fermentation conditions. Each parameter was derived from two-step experiments, where
aeration was switched from a calibration gas mixture (2.00% O2, 8.99% CO2) to ambient air (20.94%
O2, 0.04% CO2).

Analyte Sensor Manufacturer τd (s) τ1 (s)

Oxygen BCP-O2 BlueSens, Herten, Germany 92 381
Carbon dioxide BCP-CO2 BlueSens, Herten, Germany 155 490

Figure A1 shows an exemplary correction for both, oxygen and carbon dioxide signals
against raw signal readouts after a single perturbation (Figure 3c), as indicated by the
dashed lines. It became obvious that this procedure was essential to compensate for delays
and curve flattening due to a total of 3.2 L mixing volume in the off-gas line.

Figure A1. Exemplary deconvolution results for O2 and CO2 signals of one replicate after a single
perturbation (see Figure 3c). Deconvolution of O2 (left panel) and CO2 (right panel) signals (green)
was calculated based on equations (A1) and (A2), parameters from Table A1 and plotted against raw
signals (red).

Appendix B. Steady-State Amino Acid Concentrations

A total of 18 amino acids was also monitored during the SRE experiment under both
conditions. However, due to the absence of significant dynamics during the perturbation,
only steady-state values were reported in Table A2.
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Table A2. Amino acid concentrations during reference and dynamic steady-state conditions. For the
dynamic steady state, average pool concentrations over one perturbation cycle were reported.

Amino Acid Steady-State RS
(µmol·gDMB−1)

Steady-State DS
(µmol·gDMB−1) Change (%) Welch Test

(p-Value)

glycine 2.37 ± 0.02 1.05 ± 0.28 −56 7.4 × 10−5

L-methionine 0.18 ± 0.04 0.05 ± 0.01 −72 2.9 × 10−2

L-serine 3.29 ± 0.19 1.29 ± 0.51 −61 6.9 × 10−5

L-proline 6.15 ± 1.12 2.17 ± 1.08 −65 7.4 × 10−3

L-threonine 10.5 ± 4.5 9.8 ± 2.9 −7 n.s.
L-glutamine 149 ± 10 103 ± 20 −31 2.6 × 10−3

L-asparagine 8.64 ± 1.31 8.7 ± 1.60 +1 n.s.
L-glutamic acid 449 ± 26 390 ± 71 −13 n.s.
L-aspartic acid 22.9 ± 5.7 22.4 ± 5.8 −2 n.s.

L-lysine 3.79 ± 0.47 4.19 ± 0.12 +11 n.s.
L-arginine 17.8 ± 0.3 9.8 ± 0.9 −45 5.9 × 10−7

L-tyrosine 1.92 ± 0.05 0.41 ± 0.05 −78 1.5 × 10−3

L-tryptophane 0.36 ± 0.11 0.11 ± 0.01 −68 n.s.
L-phenylalanine 0.85 ± 0.09 0.28± 0.05 −66 4.1 × 10−3

L-valine 22.1 ± 2.6 12.6 ± 4.1 −43 5.0 × 10−3

L-leucine 0.69 ± 0.09 0.38 ± 0.1 −46 6.8 × 10−3

L-isoleucine 1.45 ± 0.02 0.79 ± 0.19 −46 3.1 × 10−4

L-alanine 84.9 ± 8.0 43.4 ± 16.7 −49 1.5 × 10−3

All values represent means ± standard deviation (s.d.) of three biological replicates. n.s., not significant.
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