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A B S T R A C T   

IntraOcular Pressure (IOP) is one of the most informative factors for monitoring the eye-health. This is usually 
measured by tonometers. However, the outputs of the tonometers depend on the physical and geometrical 
properties of the cornea. Therefore, the common practice is to develop a numerical model to generate some 
correction factors. The main challenge here is the accuracy and efficiency of a numerical model in predicting the 
IOP and Dynamic Corneal Response (DCR) of each patient. This study addresses this issue by developing a two- 
step surrogate model based on adaptive sparse Polynomial Chaos Expansion (PCE) for fast and accurate pre-
diction of the IOP. In this regard, first, an FE model of the cornea has been developed to predict the DCR pa-
rameters. This FE model has been replaced with a PCE-based surrogate model to speed up the simulation step. 
The uncertainties in the geometry and material model of the cornea have been propagated through the surrogate 
model to estimate the distributions of the DCR parameters. In the second step, the combination of DCR pa-
rameters and the input parameters provide a proper parameter space for developing an efficient data-driven PCE 
model to predict the IOP. Moreover, sensitivity analysis by using PCE-based Sobol indices has been performed. 
The results demonstrate the accuracy and efficiency of the proposed method in predicting the IOP. Sensitivity 
analysis revealed that IOP measurement was influenced mostly by deflection amplitude and applanation time. 
The analysis indicates the importance of the interactions between the parameters.   

1. Introduction 

IntraOcular Pressure (IOP), as one of the most important eye-health 
factors, should always be measured and evaluated. Increasing this 
pressure can cause hypertension and glaucoma, and in severe cases, 
could damage the retina cells and cause blindness. The lack of this 
pressure changes the corneal geometry and causes malfunctions in the 
refraction of light and visual impairment. Therefore, its continuous 
monitoring is a vital task. For this purpose, several tonometers have 
been developed that can be divided into two main groups: (i) contact 
tonometers such as Goldman (Goldmann, 1955), Dynamic Contour 
Tonometer (Kaufmann et al., 2003; Kanngiesser et al., 2005) (DCT, 
Swiss Microtechnology AG, Port, Switzerland), and (ii) non-contact and 
non-invasive tonometers like ORA (Luce, 2005), and CorVis ST 
(Ambrósio et al., 2011). The commonality of all these tonometers is that 
they measure IOP by applying a static or dynamic mechanical load on a 
portion of the cornea and study the induced changes in its configuration. 
Therefore, the pressure measured by these tonometers is influenced by 

rigidity (stiffness) parameters, e.g. corneal thickness and curvature (Hsu 
et al., 2009; Broman et al., 2007; Kirwan and O’Keefe, 2008; Harada 
et al., 2008), and biomechanical properties of the cornea (Liu and 
Roberts, 2005). In this regard, several correctional equations and co-
efficients have been proposed to compensate or to reduce the effect of 
these factors on pressure measurement (EHLERS et al., 1975; Orssengo 
and Pye, 1999; Kwon et al., 2008; Chihara, 2008; Elsheikh et al., 2011). 

One of the most common types of these tonometers is the non-contact 
CorVis tonometer. It makes deformation in the cornea by applying an 
air-puff and then, by using ultra-high-speed scheimpflug imaging, the 
Dynamic Corneal Response parameters (DCRs) and the IOP are esti-
mated. This means that the CorVis tonometer can provide images of the 
corneal deformation and also a report of its dynamic parameters (Joda 
et al., 2015). These outputs can be used as biomarkers for eye diseases 
such as Glaucoma (Lee et al., 2016; Tian et al., 2016) and Keratoconus 
(Vinciguerra et al., 2016). However, the outcomes of this tonometer are 
mostly affected by the corneal hardness parameters, biomechanical 
properties, and pachymetry data (Ali et al., 2014). The bIOP is another 

* Corresponding author. Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands. 
E-mail address: v.yaghoubi@tudelft.nl (V. Yaghoubi).  

Contents lists available at ScienceDirect 

Journal of the Mechanical Behavior of Biomedical Materials 

journal homepage: www.elsevier.com/locate/jmbbm 

https://doi.org/10.1016/j.jmbbm.2022.105210 
Received 29 August 2021; Received in revised form 17 March 2022; Accepted 26 March 2022   

mailto:v.yaghoubi@tudelft.nl
www.sciencedirect.com/science/journal/17516161
https://www.elsevier.com/locate/jmbbm
https://doi.org/10.1016/j.jmbbm.2022.105210
https://doi.org/10.1016/j.jmbbm.2022.105210
https://doi.org/10.1016/j.jmbbm.2022.105210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmbbm.2022.105210&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of the Mechanical Behavior of Biomedical Materials 130 (2022) 105210

2

output of the CorVis Tonometer in which the effect of the 
above-mentioned parameters has been taken into account (Eliasy et al., 
2018). Precise knowledge of the material behavior and geometry of the 
cornea is thus necessary for the accurate measurement of the bIOP. 
However, the bIOP used previous data to generate a model and in that 
model, the effect of each feature has been decided by the experts’ 
opinion (Eliasy et al., 2018). In this work, the model can be generated for 
each patient specifically and the contribution of each feature has been 
estimated mathematically. However, inappropriate numerical models 
could affect the DCRs (Pedersen et al., 2014; Shen et al., 2014a; 
Bak-Nielsen et al., 2014; Hassan et al., 2014) and, in turn, lead to 
erroneous pressure measurement (Hassan et al., 2014; Shen et al., 
2014b). In other words, accurate measurement of the bIOP requires a 
proper numerical model of the cornea. And for that, two main aspects of 
the cornea should be considered: geometry and material model. 

Studies have shown that the corneal dimensions, such as thickness 
and curvature, could affect the IOP measurement and change the DCR 
parameters (Joda et al., 2015; Huseynova et al., 2014). For instance, 
refractive surgery changes the thickness and curvature of the cornea 
which could lead to over-/under-estimation of IOP depending on the 
pressure calculation algorithm in tonometers. Some studies have 
investigated the effect of the central corneal thickness and/or radius of 
the corneal curvature on the CorVis estimation of IOP (CVS_IOP). 
However, they cannot be proper factors for the estimation of CVS_IOP 
due to the following reasons: (i) the differentiation between them is 
impossible in clinical studies, (ii) they are dependant on age, gender, 
and race of the patient, (iii) their distributions from the central region to 
the cornea edges are not the same and are different in vertical and 
horizontal directions (Dubbelman et al., 2006). 

The challenge in material modeling of the corneal tissue is two- 
folded: First, which material model, e.g. viscoelastic, hyperelastic, or 
hyper-viscoelastic material, is to be chosen; Second, how to measure the 
material properties of a cornea to be used for calibration of the material 
model. To tackle the former, it is known that the viscosity and nonlinear 
elasticity vary in different corneas, depending on the type of test, the 
rate and type of loading, and the rate of deformation. Therefore, since 
the strain rate and loading rate of the CorVis test are high in this test, the 
cornea exhibits a hyperelastic behavior and its viscous ratio is negligible 
(Jannesari et al., 2018a). Moreover, some studies have considered the 
corneal tissue to be completely isotropic while others have modeled 
some corneal layers and even composite collagen fibers, and believe that 
the dominant mechanical behavior is dependent on the distribution of 
collagen fibers. But, it is well accepted that the orientation of collagen 
fibers and their distribution densities vary in different patients and 
different diseases, that is the Holzapfel material model (Bagheri et al., 
2021). However, any change in the collagen orientation leads to a 
change in the corneal stiffness and its elastic anisotropy (Singh et al., 
2016), and this, in turn, results in the IOP variation. Therefore, the 
mentioned complexities result in models with higher accuracy but with 
longer simulation time. To address the second issue, it is worth 
mentioning that the material properties of the cornea could be measured 
in in-vivo and ex-vivo methods. In this regard, some researchers have 
studied the corneal strips or have inflated the cornea or the eyeball. 
However, these tests result in the separation of corneal layers leading to 
changes in boundary conditions as well as the position of the layers and 
the collagens. Therefore, the biomechanical properties vary during the 
test. In determining the in-vivo properties, the measured properties are 
influenced by IOP, boundary conditions, corneal geometry, external 
loading, age, and medical history of patients. 

Since, in the tonometers, the force is applied on the outer surface of 
the cornea, the response is a combination of motion and deflection in the 
eyeball. This means that the fatty tissues behind the eyes and the mus-
cles that control the overall movement of the eye should be considered. 
However, they have age-dependent properties that cannot be captured 
by the CorVis imaging. Therefore, this tissue and its modeling could 
affect the images and outputs of the CorVis tonometer. To take into 

account the effect of the fatty tissues, they have been modeled with a 
simple mass-spring-damper system as described in references (Jannesari 
et al., 2018b; Sinha Roy et al., 2015). In (Joda et al., 2015), the whole 
eye has been modeled which is not cost-effective in terms of time and 
complexity. Moreover, the errors in corneal-scleral attachment and 
properties of the eyeball propagate into the pressure measurement. 
Although some researchers have tried to separate the eye movement 
from the corneal deflection (Vinciguerra et al., 2016), the eyeball itself 
deforms and changes the curvature of the cornea. Together with the fact 
that the behavior and structure of the cornea change by diseases, e.g. 
keratoconus, glaucoma, and diabetes (Tian et al., 2014, 2016; Ye et al., 
2015; Romero-Jiménez et al., 2010), environmental conditions, and 
refractive surgeries (Dupps and Wilson, 2006; Frings et al., 2015), this 
means that the calculations of the tonometers are patient-specific. In 
other words, in numerical modeling, some parameters should be 
considered as uncertain values. 

In order to model physical systems with uncertain parameters, sto-
chastic modeling techniques can be employed. This could be achieved 
intrusively or non-intrusively. In intrusive approaches, the equations of 
a system are modified to create an explicit function between the sto-
chastic responses and the uncertain inputs of the system. Examples of 
such approaches are the perturbation method (Schuëller and 
Pradlwarter, 2009) and intrusive Polynomial Chaos Expansion (PCE) 
(Ghanem and Spanos, 2003). In non-intrusive approaches, the existing 
deterministic model is evaluated at several points sampled from the 
parameter space, e.g. Kriging (Fricker et al., 2011), non-intrusive PCE 
(Yaghoubi et al., 2017), or combinations thereof (Schobi et al., 2015). In 
this study, the simplifications made in the modeling of the CorVis test 
procedure and the lack of proper allocation of the material properties 
and loading conditions in the numerical models are examples of un-
certainties. To create the stochastic model, the non-intrusive PCE 
method has been chosen. However, the major drawback of PCE methods 
is the presence of a large number of unknown coefficients that could 
occur in problems with large parameter spaces. Sparse (Blatman and 
Sudret, 2008) and adaptive sparse (Blatman and Sudret, 2011) poly-
nomial chaos expansions have been developed to tackle this issue. 

To the best of the authors’ knowledge, there is no study available in 
the literature to investigate the effect of uncertainty in the inputs, i.e. the 
mechanical properties of the cornea, central corneal thickness and cur-
vature, IOP, and corneal boundary conditions, on the outputs, i.e. IOP 
and DCR parameters. Therefore, the major contribution of this study is 
to develop a stochastic model based on adaptive-sparse PCE for efficient 
and accurate prediction of the internal pressure of the cornea. In this 
regard, the main novelties of the current study are:  

1 Developing a deterministic finite element model of the cornea to 
properly simulate the CorVis tonometry process, and to obtain IOP 
and DCR parameters for one specific case.  

2 Proposing a new two-stage surrogate modeling technique based on 
adaptive sparse polynomial chaos expansion (PCE) to efficiently and 
accurately predict IOP and DCR parameters for each patient  

3 Performing sensitivity analysis by using PCE-based Sobol indices to 
quantify the effect of each input on the outputs. 

2. Materials and methods 

Nonlinear finite element analysis of the CorVis tonometer process for 
corneas with specific and controllable geometry, biomechanical prop-
erties, internal pressure, and boundary conditions were carried out using 
ABAQUS finite element software (6.14). Python as the built-in pro-
gramming language of the ABAQUS was used for parameterizing the FE 
model. Then, by using the UQLAB plugin (Marelli and Sudret, 2014) 
from MATLAB software, the finite element model was transformed into a 
stochastic model. At last, the sensitivity analysis was performed. 
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3. Deterministic modeling 

3.1. Geometry 

The Corneal thickness and curvature vary from central region to 
limbus area. According to studies, the corneal thickness is generally 
lower in the center and is thicker in the edges. Therefore, in a primary 
geometry, the inner curvature of the cornea is supposed to be larger than 
its outer curvature (Dubbelman et al., 2006) so that the corneal thick-
ness increases from the center to edge. On the other hand, since the 
study of the effect of thickness and curvature on different quantities is 
considered, corneal geometry and its properties are modeled axisym-
metric, as shown in Fig. 1a. CorVis tonometer device also calculates its 
parameters based on a cross-sectional area of the cornea, which is 
located along the horizontal meridian of the cornea. The local curvature 
varies in different directions of each cornea, and the distribution of 
corneal thickness and curvature vary due to diseases. Therefore, since 
clinical studies and mechanical models rely on central corneal thickness 
and curvature, these results are only qualitatively acceptable. While in 
this study the corneal curvature is the same in all regions, the thickness 
of each region is also a function of the central corneal thickness. In order 
to reduce the errors due to extraocular muscles and fatty tissue behind 
the eye, the cornea is fully bounded to eliminate the effects of boundary 
conditions so only corneal deformation is reported as shown in Fig. 1b. 

3.2. Loading 

The simulation of the CorVis tonometry test is performed in two steps 
in ABAQUS software. First, in a static step, internal pressure (IP) is 
applied to the inner surface of the cornea, which causes the initial ge-
ometry of the cornea to be altered under the pressure of the aqueous 
humor. This should be emphasized that, in contrast to the IOP which is a 
clinical parameter to be measured, the IP is a modeling parameter that 
should be set. In the second step, the spatial and temporal distribution of 
the air pressure is applied to the outer surface of the cornea at a time 
interval of 32 ms in a dynamic step (Dynamic, Implicit) with the use of 
the subroutine DLOAD, which receives all the dynamic responses at that 
time. 

3.3. Corneal behavior and structure 

Most of the previous studies have considered corneal behavior as a 
linear elastic material (Asejczyk-Widlicka et al., 2004; Schutte et al., 
2006; Rangarajan et al., 2009). By examining laboratory and clinical 
topographies, it was concluded that the cornea also has viscoelastic 
behavior. The progressive deformation of the cornea in the keratoconus 
(Shah et al., 2007) and the changes made after the common refractive 

surgeries (Kerautret et al., 2008) are probably due to a change in the 
time-dependent stress distribution in the cornea, i.e. due to its visco-
elastic deformation. In addition, in some studies, corneal behavior has 
been modeled as hyperelastic (Han et al., 2013; Nguyen and Boyce, 
2011; Bekesi et al., 2016). But, nowadays, it can be deduced that the 
human cornea has both hyperelastic and viscoelastic properties (Cui 
et al., 2015; Whitford et al., 2017). However, due to the high loading 
rate and applied strains in the CorVis test, it can be concluded that the 
cornea exhibits hyperelastic behavior in this test so its viscosity is 
negligible (Jannesari et al., 2018a, 2018b). In this regard, the theory of 
isotropic non-linear elastic material is considered. In this theory, the 
strain energy per unit of reference volume W depends on the two co-
efficients C10 and D1 as the material constants of the model that should 
be measured for each cornea. It is 

W =C10(I1 − 3) +
1

D1
(J − 1)2 (1)  

where I1 is the first invariant of the left Cauchy-Green deformation 
tensor, and J is the elastic volume ratio. 

3.4. Reconstruction of the CorVis tonometer parameters 

Since there is no direct access to the anterior chamber of the eye and 
its fluid, and corneal tissue’s property is unknown, the CorVis tonometer 
is used in a loading process as an intermediate device to measure in-
termediate parameters called dynamic corneal parameters. Afterward, 
this tonometer analyzes the intermediate parameters to identify the 
biomechanical properties of the cornea and eye tissue. The first appla-
nation time (tA1 ), the deflection amplitude (Def), the highest deflection 
amplitude (DefH), the applanation length (LA1 ), and the peak distance 
(PD) are the most important dynamic parameters, see Fig. 2, reported by 
the CorVis tonometer, which are effective in IOP measurement and 
corneal tissue identification. However, the effectiveness of these pa-
rameters has been reported neither qualitatively nor quantitatively. 
Therefore, the first applanation time for each simulation was calculated 
using Python software; then, the other related parameters were 
computed including applanation length and deflection amplitude. The 
highest corneal deflection was also detected by the Python code and the 
peak distance is calculated. In addition, given that the corneal surface is 
discretized in simulations, the number of increments should be high 
enough so that the criteria for recognizing dynamic parameters could 
understand the smallest changes made in the dynamic parameters for 
changes in the initial factors. 

Fig. 1. a. Basic geometry of human cornea for FEA (in millimeters) b. Boundary conditions of a human cornea.  
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4. Stochastic modeling 

4.1. Mathematical background 

Surrogate models are mathematical functions that replace the 
computationally expensive models and, without any knowledge about 
the physics of the problem at hand, could approximate a response with 
high precision in much less simulation time. Polynomial Chaos Expan-
sions (PCE) is a powerful surrogate modeling technique that is employed 
here. In this section, some topics pertinent to PCE are first briefly 
introduced; then, the sensitivity analysis by using the PCE-based sur-
rogate model is presented. 

4.1.1. PCE-based surrogate model 
First, assume that the computational model of a physical system is in 

the form M : X→Y = M (X). Here X = {X1,…,XM} and Y are the 
random inputs and output of the model. Also, assume that random 
variables X are independent with joint probability density function of 
fX(x) =

∏M
i=1 fXi (xi). Then, the polynomial chaos expansion of the model 

M is defined as: 

Y =M (X) =
∑

αεNM

λαΨα(X) (2)  

where the Ψα(X) are multi-variable polynomials orthonormal chosen 
with respect to the distribution of inputs, αεNM is a multi-index (α =

(α1,…,αM)) indicate the polynomial degree of the components of Ψα, and 
λα denotes its associated coefficients which should be estimated. In 
realistic applications, Eq. (2) is converted into a finite summation, i.e., 
the truncated polynomial chaos expansion: 

M (X)≈M
PCE

(X) =
∑

αεA
λαΨα(X) + εt ≡ ΛT Ψ(X) + ε (3) 

in which (⋅)PCE stands for the polynomial chaos expansion, A⊂ NM 

with cardinality P is the set of multi-indices selected based on the 
truncation scheme, and εt is the truncation error. To estimate the co-
efficients λα by non-intrusive techniques, one should minimize εt. To this 
end, let 𝒳 = {x(1), x(2), …., x(NED)} be an experimental design with NED 

space-filling samples of X and 𝒴 = {y(1) = M (x(1)), y(2) = M (x(2)), …, y 
(NED) = M (x(NED))} be their associated responses. Then, the minimization 
problem is 

Λ̂ = argminE
[(

ΛT Ψ(Х) − M (Х)
)2
]

(4) 

with the closed-form solution as 

Λ̂ =
(
ΨTΨ

)− 1ΨT𝒴 (5)  

here Ψ is a matrix with elements Ψij = ψαj
(x(i)), i = 1, 2, …, NED, j =

1, 2, …, P. 
To avoid overfitting, the least square problem can be solved by using 

adaptive sparse regression algorithms such as the Least Angle Regression 
(LAR) algorithm (Blatman and Sudret, 2011). The accuracy of the rep-
resentation is estimated by means of the leave-one-out (LOO) 
cross-validation as presented in (Blatman and Sudret, 2008). Given the 
sample set χ = {x(1), x(2), …., x(n)} and the system output 𝒴 = {y(1),

y(2), …, y(n)}, the LOO error is defined as: 

εLOO =
1
n
∑n

i=1

(
y(i) − M

PCE ( x(i)
)

1 − hi

)2

(6)  

where hi is the ith diagonal term of the matrix Ψ(ΨTΨ)
− 1ΨT as defined in 

Eq. (15). In practice, a normalized version of the ErrLOO is used: 

εLOO =
εLOO

Var(Y )
(7)  

where Var(Y ) is the sample variance of the system response. 

4.1.2. PCE-based sensitivity analysis 
Sensitivity analysis should be performed to quantify the importance 

of the random inputs to the outputs. This could be beneficial in better 
understanding of the model, prioritizing the input parameters, possibly 
removing some of them, and thus simplifying the model. For this pur-
pose, Sobol indices is one of the established methods (Sobol, 1993). It is 
based on the idea of expanding the output variance into the summands 
of variances in the input parameters. That is, 

Var(Y)=
∑M

i=1
Vi +

∑

1≤i<j≤M
Vij + … + V12…M (8) 

in which Vi is the effect of parameter Х i on the output Y. Vij is the 
joint effect of interactive term Х i and Х j and V12…M is the interaction of 
all M parameters on the output Y. Then the Sobol sensitivity indices are, 

Si =
Vi

Var(Y)
i = 1, 2,….,M (9) 

as the first order, 

Sij =
Vij

Var(Y)
i, j = 1, 2,….,M, j ∕= i (10) 

as the second order sobol indices. The total effect is, 

ST
i = Si +

∑M

j=1

j∕=i

Sij + … + S12…M (11) 

Given a PCE-based surrogate model, these indices can be calculated 
for free (Sudret, 2008). For this purpose, Eq. (3) can be rewritten as: 

M (X)≈M
PCE

(X)=
∑

αεA
λαΨα(X)= λ0 +

∑

u⊂{1,…,M}
u∕=∅

∑

αεAu

λαΨα(X) (12) 

in which, for any non-empty set u⊂{1,…,M}, A u contains all multi 
indices α ∈ A which have non-zero components αk ∕= 0 if and only if 
k ∈ u. Then, the Sobol indices can be obtained as, 

Su =
Var(Yu(xu) )

Var(Y(x) )
=

⎡

⎢
⎢
⎢
⎢
⎣

∑

α∈A u
α∕=0

λ2
α

/
∑

α∈A
α∕=0

λ2
α

⎤

⎥
⎥
⎥
⎥
⎦

(13) 

Fig. 2. Schematic of the cornea at three states: initial, first applanation, and the highest deflection. The associated parameters are also shown.  
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4.2. The proposed methodology 

In this section, different steps of the proposed method are explained. 
Fig. 3 shows the building blocks of the procedure consisting of two main 
stages:  

I) FEM-driven PCE-based surrogate model: at this step, a PCE model 
is created to replace the FE model generated in Section 1. This is 
elaborated in Section 2-2-1.  

II) Data-driven PCE-based surrogate model: at this step, the PCE is 
used to make a model to estimate the pressure (IP). This is 
explained in Section 2-2-2. 

These steps are implemented in MatLab by using the UQLAB toolbox 
(Marelli and Sudret, 2014). 

4.2.1. FEM-driven PCE-based surrogate model (PCEFD)

Predicting the intermediate parameters of the CorVis tonometer by 
the FE model, see Section 1, is a computationally expensive task. 
Therefore, the target of this stage is to replace it with a surrogate model. 
For this purpose, the following steps should be taken:  

1 Choosing inputs of the FE model: The input vector has been chosen to 
be the following 5-dimensional vector, 

Input  space  I : XI ={CCT, IP, ρ,C10,D1}⊂R5 (14)  

in which, CCT is the central corneal thickness, IP is the applied internal 
pressure, ρ is the radius of external curvature, and C10 and D1 are the 
constants of the Neo-Hookean hyperelastic material model. 

2 Creating a parameter space from the clinical dataset: A large popu-
lation of clinical data is used to provide inclusive parameter space for 
the input parameters. Since the properties and geometries of healthy 
eyes vary in different parts of the world, information on healthy eyes 

and corneas was extracted from several sources (Joda et al., 2015; 
Lee et al., 2016; Jannesari et al., 2018a, 2018b; Shah et al., 2007; 
Lopes et al., 2017; Smedowski et al., 2014; Nemeth et al., 2017; 
Kohlhaas et al., 2006). A Gaussian distribution has been assumed for 
each parameter. They are illustrated in Fig. 3.  

3 Generating the experimental design: This has been carried out by 
using the Sobol sampling method. It should be mentioned that some 
of the samples may not be compatible with the physical facts and 
mathematical principles. Such samples have been thus deleted.  

4 Evaluating the FE model at the samples: the selected sample points 
have been transmitted to the Python code. The FE model was eval-
uated and the outputs of interest were received. Here, the outputs of 
interest are the intermediate CorVis parameters, i.e. 

Output  space  I : YI ={Def ,DefH , tA1 , LA1 , PD}⊂R5 (15)   

5 Making the PCE-based surrogate model M PCE
FD : since the input pa-

rameters have been assumed to be Gaussian, the Hermite polynomial 
should be selected as the basis. One PCE model has been made for 
each output, their coefficients were estimated by the LARS approach 
with a maximum polynomial degree of 10. 

Having this PCE model, one could simply propagate the uncertainty 
in the input parameters through the model to estimate the uncertainty in 
the output parameters, i.e. intermediate CorVis parameters. This is 
called uncertainty propagation. Further, the PCE model could be used to 
perform the sensitivity analysis to highlight the important input 
parameters. 

4.2.2. Data-driven PCE-based surrogate model (PCEDD)

At this stage, a surrogate model is generated to predict the pressure 
applied to the inner surface of the cornea (IP). In this regard, to create 
the input space, the intermediate CorVis parameters obtained in the 
previous section have been employed. Since this procedure is the inverse 

Fig. 3. The used process to build the internal pressure surrogate model.  
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of the PCE model built in the previous section, one could consider it as 
an estimation of the inverse PCE model by another PCE. However, to 
take into account the effect of geometries and material properties of the 
cornea on the IP, they are included in the input space. This is in accor-
dance with the well-known issue that the IP estimated by the CorVis 
parameters needs to be corrected (Joda et al., 2015). Therefore, the 
input and output spaces of this PCE model are, 

Input  space  II : XII =XI\{IP} ∪ YI

={CLT, ρ,C10,D1,Def ,DefH , tA1 , LA1 , PD}⊂R9

(16)  

Output  space  II : YII ={IP} (17) 

The main challenge here is to create the required experimental 
design for making the PCE. Since the parameters in YI are functions of XI, 
sampling the input space II can not be performed randomly. Moreover, 
since no explicit function for predicting the IP is available, obtaining 
true IP for each input parameter set is another issue. In this regard, the 
following procedure is proposed:  

1 Sampling the input space I, X I ∈ XI,  
2 Evaluating the FEM-driven PCE model, Y I = M

PCE
FD (X I).  

3 Creating the experimental design for the data-driven PCE as 
E= {X I\{IP} ∪ Y I} and their associated output as Y II = IP. 

Then, the data-driven PCE model M PCE
DD could be built over the 

experimental design E and output IP. 

5. Results and discussion 

Fig. 4 shows deformations obtained by the FE model of a cornea with 
random properties before and after applying the air-puff. The whitened 
part of the figure is a copy of the main result. It has been added just for 
illustration purposes. This result shows high qualitative correlation be-
tween the FE model’s output and the experimental data shown in Fig. 5 
(Bekesi et al., 2016). 

A Gaussian distribution has been fitted to each stochastic input 
parameter of the FE model. Fig. 6 shows these distributions. To make the 
FE-driven PCE surrogate model, the Hermite polynomial has been 
selected as the basis. 400 points have been sampled from the parameter 
space to generate the experimental design. The FE model was evaluated 
at these points. 

LARS algorithm has been employed to make sparse PCEs with 
adaptive degrees up to order 10. For further reduction in the number of 
unknown coefficients of the PCEs, a hyperbolic truncation with a q-norm 
of 0.7 was utilized prior to LARS algorithm. Moreover, only polynomials 
up to rank 2 were selected here (i.e. polynomials that depend at most on 
2 parameters). A convergence analysis has been performed by evalu-
ating the LOO error by enlarging the experimental design. The results 
presented in Fig. 7 illustrate the accuracy of the built PCEs for all the 
outputs except for the first applanation length LA1 . In the convergence 
analysis of the surrogate model of the LA1 , it can be seen that, although 
its error was reduced, the rate of its error reduction was so low and, even 
after 400 cases, it still has 30% error. Therefore, we stop using this 
output parameter for further investigation. 

Now, to choose the polynomial bases of the PCEDD model, one should 
first estimate the distribution of the PCEFD model’s output. For this 
purpose, 100,000 samples have been extracted from the parameter 
space to feed the PCEFD model. It took 0.2 s for the surrogate model to 
deliver the whole results but for FEM, each simulation took around 1 h. 
The result has been shown in Fig. 8 in the form of histograms. A normal 
distribution has been assigned to the distribution of the deflection 
whereas, a lognormal distribution has been fitted to the other outputs. 
Therefore, the Hermite polynomials have been chosen as the bases of the 
PCEDD. It is worth mentioning that, for lognormal distributions, the 
Hermite polynomials on the transformed variable Z = ln(X) has been 
used to make the polynomial bases as follows, 

Y = M
PCE

(X)=
∑

αεA
λαΨα(ln(X)) (18) 

The next step is to create an experimental design. For this purpose, 
first, 10,000 points sample from the “input space I′′ and send it to the 
PCEFD to predict their outputs. The combination of the outputs with the 
input parameters except for the IP made the required ED. The IP has 
been used as the output. Then, the LARS algorithm has been used to 
build a sparse PCEDD model with the adaptive degree. Here, a q-norm of 
0.7 has been chosen. The obtained model has the LOO cross-validation 
error of 0.39%, indicating the model is highly accurate. However, to 
display this accuracy on a separate validation dataset, 10,000 new 
samples have been extracted from the “Input space I′′ and passed 
through the proposed procedure to predict IP. The result is presented in 
the left plot in Fig. 9. Comparing this figure with its corresponding one 
obtained from the clinical data, IOP in Fig. 6, reveals the accuracy of the 
proposed procedure in predicting the distribution of the IP. Moreover, 
the accuracy of the proposed procedure in predicting one IP is illustrated 

Fig. 4. Deformation of the FE model of the cornea, a) before applying the air-puff, b) after applying the air-puff, at the highest concavity. The whitened part is a copy 
of the main results. The colors indicate the deformation due to the air-puff. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Fig. 5. Spatial and temporal deformation profiles of model cornea for qualitative comparison (Bekesi et al., 2016).  

Fig. 6. Marginal distributions of the parameters in the input space I, estimated from the clinical data.  
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by its comparison with its corresponding true one extracted from the 
“Input space I′′, i.e. IPtrue by the following error equation, 

Relative error =
⃒
⃒IPtrue − IPPCE

⃒
⃒

IPtrue × 100 (19)  

here, IPPCE is the internal pressure predicted by the PCE models. The 
outcome, shown in Fig. 9, indicates the high accuracy of the whole 
procedure. For further analysis of the model’s performance, the IP range 
has been divided into 4 regions at each of which, the lative errors have 

been assessed and depicted in Fig. 10. This indicates the high accuracy of 
the model in different regions. 

It should be emphasized that the sampling procedure may lead to 
some samples against the physics and mathematics of the problem, e.g. 
samples with deflection larger than the maximum deflection. Although 
such samples occur very rarely and, thus, cannot affect the accuracy of 
the models, in the current work, we have removed them from the 
experimental design. 

One of the main issues of measuring IOP by tonometer is its high 
dependence on the eye geometry. This could lead to erroneous pressure 
reports, for instance, before and after eye refractive surgery in which the 
corneal curvature and thickness are changed but the IOP should remain 
constant (Hsu et al., 2009; Lee et al., 2017). To investigate this effect, 
two cases have been considered with the same internal pressure but with 
different thicknesses and curvatures to resemble before and after sur-
gery, (see Table 1). As a result, the pressures measured by the innovative 
method of this study are calculated with high precision. 

5.1. Sensitivity analysis and parameter study 

Fig. 11 shows the sensitivity analysis of the output parameters. In the 
figures, diagonal and off-diagonal elements respectively indicate the 
first- and second-order indices. Total Sobol indices are shown by “Total” 
in the abscissa. 

As can be seen, CCT, ρ, and C10 are the most influential parameters 
on the outputs whereas D1 has almost no effect. The interaction between 
ρ and CCT is the biggest second-order index. The effect of other inter-
action terms is negligible. Moreover, the following statement can be 
inferred, 

Fig. 7. Leave-one-out cross-validation error for the FEM-driven PCE 
model M PCE

FD . 

Fig. 8. Distribution of the outputs of FE-driven PCE model.  
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i The Deflection amplitude can be estimated in all corneas, regardless 
of material properties, i.e. C 10 and D1. It implies that the deflection 
can be a proper indicator for some eye diseases such as keratoconus 
since the radius of curvature and corneal thickness change in this 
disease.  

ii In the highest deflection, the interaction of ρ and CCT makes a big 
impact. Besides, the material model C10 plays an important role. 

iii First applanation time is one of the important outputs for the esti-
mation of the biomechanical properties of the cornea because it is 
very sensitive to the C10.  

iv Peak distance shows a similar sensitivity pattern to the highest 
deflection because it is related to the time of the highest deflection. 
However, here, ρ is less influential whereas C10 become more 
important parameters. 

The Sobol indices give the score of importance to each input 
parameter, but it does not provide any information about the direction 
of the sensitivity. Therefore, a complementary analysis would be a 
parameter study. In the following, this analysis has been made by using 
the FE model around the reference point: CCT = 0.5 mm, IP = 15 mmHg,

Fig. 9. Left) distribution of the internal pressure estimated by using the proposed procedure. Right) distribution of the relative error between the estimated IP and the 
true IP. 

Fig. 10. Relative error calculated in four region of the internal pressure (IP).  
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ρ = 7.8 mm, C10 = 0.316 MPa, D1 = 0.185 MPa− 1. In order to show the 
effect of different parameters in one plot, the parameters have been 
normalized to be in the range [0, 1]. The results are shown in Fig. 12. 
They also confirm the importance of the ρ, CCT, and C10. However, as 
can be observed that all the outputs are inversely proportional to the ρ 
except for the first applanation length in which the relation seems 
nonlinear. Deflection amplitude and first applanation time are directly 

proportional to the CCT and C10 whereas the highest deflection and peak 
distance are inversely proportional to them. Moreover, except for the 
first applanation time, the other outputs are directly proportional to the 
Internal pressure. The figures also confirm the negligible effect of D1. 
The first applanation length shows high sensitivity with direct propor-
tionality to CCT but with negligible sensitivity to the other parameters. 

5.2. Sensitivity analysis of the internal pressure 

To obtain the most effective parameters for the internal pressure, a 
sensitivity analysis has been performed. The result is shown in Fig. 13. In 
this figure, the Cyan bars show the first-order Sobol indices whereas, the 
red bars stand for the total Sobol indices. Since most of the red bars have 
been hidden behind the first-order Sobol indices, the visible red parts 
show the effect of higher-order Sobol indices which is negligible. As can 
be seen in this figure, the applied internal pressure is significantly sen-
sitive to Def, ρ, tA1 , and mildly to C10. Its sensitivity to other factors is 
negligible. This implies that one can remove the CCT, D1, DefH, PD, and 
cautiously C10 from the input space and reduce its dimension to three. 
This means that, for each new patient, it is enough to measure the radius 
of curvature using the Pentacam device. Then, by positioning the cornea 
against an air-jet to estimate first applanation time and deflection 
amplitude, one could estimate the internal pressure with high accuracy 
by using the model presented in this study. 

6. Conclusion 

This paper presents a probabilistic model to calculate IOP using finite 
element simulation responses from the CorVis tonometer test. The 

Table 1 
Effect of variation in geometry on the IP, resembling before and after eye 
surgery.  

No. Properties PCEFD PCEDD Relative error 
(%) 

1 CCT = 0.55 
mm 
IP = 15.00 
mmHg 
ρ = 7.9 mm 
C10 = 0.316 
MPa 
D1 = 0.184 
MPa− 1 

Def = 0.2536 
mm 
tA1 = 0.0107 s 
DefH = 0.
6362 mm 
PD = 3.8178 
mm 

YIP =

14.8526 mmHg 
0.98 

2 CCT = 0.51 
mm 
IP = 15.00 
mmHg 
ρ = 7.95 mm 
C10 = 0.316 
MPa 
D1 = 0.184 
MPa− 1 

Def = 0.2355 
mm 
tA1 = 0.0101 s 
DefH = 0.
8591 mm 
PD = 4.4997 
mm 

YIP =

15.1068 mmHg 
0.71  

Fig. 11. Sensitivity analysis of the outputs of the FE model based on the Sobol indices. Diagonal and off-diagonal bars respectively indicate the first and second-order 
Sobol indices. Total indices are shown in the last column. 
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reason for using the CorVis tonometer test is the valuable parameters 
that are evaluated during this process. There are many methods avail-
able today to calculate and modify the CVS_IOP. The impact of mea-
surements from the statistical information and the numerical results of 
other studies can lead to further errors whereas, in this model, the fac-
tors affecting the measurements are known. Additionally, the 

transformation of the finite element model into a mathematical model 
makes it an appropriate model for real-time ophthalmic applications. 

In this study, corneal geometry including thickness and curvature, 
corneal structural model, biomechanical properties, IOP, and corneal 
boundary conditions are determined, and CorVis tonometer parameters 
are calculated by simulating the CorVis tonometer. Then, by using 

Fig. 12. Analysis of the effect of input parameter on the outputs.  
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adaptive-sparse PCE, we present a mathematical model of this simula-
tion for each of the CorVis tonometer parameters. Afterward, using an 
inverse method, the IOP is obtained as a black box function of the 
geometrical parameters, material properties, and the CorVis tonometer 
parameters. Therefore, this model is capable of delivering IOP only with 
known or measurable parameters. Sobol indices of the initial and final 
mathematical models demonstrate that IOP is strongly correlated with 
deflection, first applanation time, and the radius of external curvature ρ. 

These mathematical models are based on finite element models. 
Finite element models are also created using clinical data and evaluated 
using clinical results. On the other hand, the results of mathematical 
models are evaluated with the results of finite element models and, since 
they have very low cross-validation errors, they are highly reliable. 
Sensitivity analyses of these models prove that, in addition to the radius 
of curvature, some of the CorVis tonometer parameters including 
applanation time and corneal displacement until applanation time are 
very important in pressure measurement and can be used in other to-
nometers. The sensitivity analyses of Def and first applanation time 
show that, if the central corneal thickness, radius of curvature, or 
biomechanical properties are not properly simulated so the results are of 
poor accuracy. 
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