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Samenvatting 
 
De tomeloze ruimte aan microbiële diversiteit vormt een onuitputbare bron van 
enzymen en bioactieve stoffen. Genetische methodes hebben afgelopen decennia 
veel vooruitgang geboekt in hun analyse van microbiële gemeenschappen. Echter, 
louter kennis van een genoom bemoeilijkt de beschrijving van biologische 
aspecten, zoals tot expressie gebrachte eiwitten in het proteoom en complexe 
producten zoals bacteriële suiker modificaties, die tot uitdrukking komen in het 
fenotype. Massaspectrometrie levert zowel gerichte als algemene methodes voor 
de analyse van fenotypes, maar ondervindt hinder door een limiet in doorstroom 
en de gecompliceerde data-analyse van complexe monsters, waarvoor nieuwe 
strategieën noodzakelijk zijn. Het doel van deze thesis is daarom de vergelijking en 
verbetering van bestaande technieken, en het ontwikkelen van nieuwe methodes 
voor de analyse van microbiële mengsels met behulp van massaspectrometrie. 
 
In Hoofdstuk 2 wordt een vergelijking gemaakt tussen de 3 meest voorkomende 
analysetechnieken voor microbiële gemeenschappen: 16s rRNA sequencing, 
metagenomics en metaproteomics. Elke methode kwantificeert de contributie van 
individuele microben op een andere manier, en benadrukt hierdoor verschillende 
taxa. Een verdere complicatie komt door het gebruik van een scala aan 
taxonomische databases, die elk andere classificatiesystemen hanteren. Om de 
intrinsieke verschillen tussen de methodes beter te begrijpen, is een algemene 
vergelijking van databases en integratie gedaan aan de hand van de genome 
taxonomy database (GTDB), en wordt getracht om vertekeningen in contributie 
van specifieke organismen te koppelen aan zowel hun fysiologische 
eigenschappen, als aan de opzet van de experimenten en aanpak van de data-
analyse. De geobserveerde verschillen in deze studie benadrukken het belang van 
een centrale taxonomische database en de combinatie van orthogonale 
kwantificatiemethoden voor bekrachtiging van observaties. Hierbij wordt, naast 
celgrootte, het patroon of de verdeling van eiwitexpressie vooropgesteld als een 
belangrijke bron van verschil tussen metagenoom en proteoom kwantificatie. 
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Een alternatieve manier voor het bepalen van peptidesequenties binnen 
massaspectrometrie is door middel van de novo sequencing, dat aminozuur- 
sequenties kan genereren zonder databases te gebruiken, hetgeen tijds-
efficiënter (en goedkoper) is. In Hoofdstuk 3 wordt de effectiviteit van deze 
methode holistisch vergeleken met conventionele spectrum annotatie, voor zowel 
pure cultures als voor microbiële mengsels. Daarbij wordt een strategie 
beschreven voor het verminderen van ruis en voor een vlotte taxonomische en 
functionele annotatie van de novo gemeten peptiden. Hiermee wordt aangetoond 
dat de novo sequencing een vergelijkbare taxonomische verdeling oplevert als de 
spectrum vergelijkende methodes, tot en met de familie rang. 
 
Suiker modificaties zijn moeilijk te voorspellen vanuit genomische data, en 
vormen een minder begrepen aspect van microbiële fysiologie. De siaalzuren 
vormen een zeer complexe suikergroep, die vooral wordt geassocieerd met 
pathogenen, maar die ook hierbuiten beschreven is. In Hoofdstuk 4 worden een 
nieuwe data acquisitie en dataverwerkingsmethode gecombineerd om 
doelgericht siaalzuren te ontdekken in ruwe celextracten met behulp van 
massaspectrometrie. Door middel van een grootschalige studie wordt bewezen 
dat siaalzuren, buiten ziekteverwekkers, door vele ecologische bacteriën 
geproduceerd worden. De methode toont bovendien in staat te zijn om tot nog 
toe onontdekte siaalzuurvarianten bloot te leggen. 
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Summary 
 
The large unexplored space of microbial biodiversity forms a well of untapped 
potential of enzymes and bioactive compounds. Genomic methods have made 
significant improvements over the past decades in their analysis of microbial 
communities. However, several aspects of nature can’t be described by a genome 
alone, such as expressed functions in the proteome and complex products such as 
bacterial glycosylation. Mass spectrometry can provide both general and targeted 
methods for the analysis of phenotypes, but is facing challenges in its limited 
throughput and the demanding data analysis of complex samples, which 
necessitates new methodologies. This thesis therefore aims to compare, improve 
and develop now methods for the analysis of microbial communities using mass 
spectrometry. 
 
Within Chapter 2 a comparison is made between the 3 most applied techniques 
for the quantification of microbial communities: 16S rRNA sequencing, 
metagenomics and metaproteomics. Each method quantifies in another manner 
and therefore emphasizes different taxa. A complicating factor is the use of 
different taxonomic databases, which employ varying methods of phylogenetic 
placement. To better understand the intrinsic differences between quantification 
methods, a general comparison and integration of databases is done according to 
the genome taxonomy database (GTDB), and an attempt is made to link biases in 
quantification to factors stemming from bacterial physiology, experimental setup, 
and data analysis. The observed quantification differences underline the need for 
centralized taxonomic databases and the use of orthogonal quantification 
methods for improved validation. Additionally, next to cell volume, protein 
expression patterns are proposed as a major source of quantification difference 
between metagenomics and metaproteomics. 
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De novo sequencing is an alternative strategy for obtaining peptide sequences 
without the need for a database, which results in a more efficient annotation. In 
Chapter 3 the performance of de novo sequencing is benchmarked against the 
conventional spectrum searching approach, using pure cultures and microbial 
communities. Herewith a data analysis strategy is defined, to reduce noise, and 
for the rapid taxonomic and functional annotation of de novo peptides. With this 
annotation pipeline, it is shown that de novo sequencing can deliver similar 
taxonomic annotations to conventional database searching up to family rank. 
 
Bacterial glycosylation is difficult to predict from genomic data alone, and forms a 
less understood aspect of microbial physiology. Sialic acids describe a complex 
class of sugars, which has been chiefly associated with pathogens, but has also 
been described in other contexts. In Chapter 4 a new data acquisition strategy is 
combined with a novel data analysis method to selectively target sialic acids in 
crude cell extracts using mass-spectrometry. The widespread nature of sialic acids 
in environmental bacteria is proven by virtue of a large-scale screening. 
Additionally, this method is shown to be capable of uncovering new sialic acid 
variants. 
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1 
General introduction 
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1.1  Why study microbial communities? 
Over billions of years, microbes have shaped the world around us. Early microbes 
created the oxygen atmosphere and today play an essential role in 
biogeochemical cycles. From the early days, humans employed fermentation to 
increase food shelf-life, while the discovery of penicillin extended the average 
human live span by over 20 years. We live in a close symbiosis with microbes on 
our planet and our bodies, with a substantial impact on our culture, health, and 
well-being. 
 
The discovery of life’s source code: DNA, has enabled us to transmute microbes to 
do our bidding. This ability to directly alter and improve a microbe’s functionality 
forms a key aspect of industrial microbiology. The field of environmental 
biotechnology, on the other hand, employs natural synergies between groups of 
microbes within non-sterile conditions. This enables the use of alternative 
feedstocks and the design of more sustainable processes. The main challenge, 
however, remains in understanding the underlying metabolic processes that take 
place in such microbial communities. Most microbes have not been sequenced to 
date and are unculturable under laboratory conditions. Nevertheless, natural 
communities have significant potential that, if harnessed, allows to apply the 
nearly unlimited number of enzymes and bioactive compounds that nature 
created during billions of years of evolution. 
 
One of the major industrial applications of microbial communities is wastewater 
treatment, which is of paramount importance for our society and protection of 
the environment. Due to the scale at which these processes operate, thousands of 
tons of biomass are produced per plant annually. Nutrient removal from 
wastewater requires a synergistic effort of several groups of highly specialized 
microbes. Determining the key microbial converters and processes in wastewater 
treatment will assist in improving this widely used process and help to develop 
new applications for the otherwise discarded sludge. Given that community 
complexity easily transcends what is observed in a laboratory setting, studying 
full-scale plants is not an easy task. This requires the use of sophisticated 
analytical techniques that analyze pools of molecules, commonly grouped under 
the “Meta-Omics” umbrella.  
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Omics methodologies can characterize microbial communities from many angles, 
but most commonly target DNA (genomics) and proteins (proteomics). As these 
technologies are still evolving rapidly, there is an increased demand for deep, 
systematic, comparative studies to map out the potentials and limitations of the 
methods, but also for new strategies that can process the ever-increasing volumes 
of information that these technologies provide. This thesis therefore aims to 
benchmark, compare, improve, and develop new data processing approaches for 
mass spectrometry based “Meta-Omics” experiments. In particular, to study 
microbes in complex communities, such as those that exist within wastewater 
treatment plants.  
 
1.2 A timeline of microbial taxonomy 
Since the discovery of the microorganism by Antonie van Leeuwenhoek, Delft has 
been on the forefront of environmental microbiology (Fig 1.1). The Delft school of 
microbiology and its professors Kluyver, Beijerinck, Iterson, and Kuenen pushed 
the development of virology, enrichment cultures, and mathematical approaches 
to model the metabolism of microorganisms.  

 
Fig. 1.1 Top: A timeline of microbial taxonomy, with a few major international highlights (Linneaus, 
Darwin, Woese), as well as achievements from Delft (Van Leeuwenhoek, Beijerinck, Van Iterson, & 
Kluyver). Bottom: the evolution of microbial classification methods, including the transition from 
phenotype to genotype-based classification.  
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While frameworks and tools have been developed to study and predict the 
behavior of microorganisms, the total expansive space of microbial diversity is still 
unexplored. The phrase Beijerink quipped a 100 years ago: “gelukkig zij, die nu 
beginnen” (Lucky are those who start now) seems ever more true, as recent 
advances in sequencing has caused an exponential surge in our knowledge of 
microbial diversity.   
 
With the discovery of biodiversity, the need for a classification system arose. 
Traditionally, the taxonomy of an organism would be assigned according to its 
visible traits, which represent the phenotype. For macroorganisms, this would 
depend on morphological characteristics such as leaf shape, or number of legs, 
and behavioral characteristics such as social structure or mating patterns. For 
microorganisms, a phenotypical classification turned out to be more challenging 
(Fig. 1.2).   

 
Fig. 1.2 The struggles of a microbial scientist. Microbes are hard to classify and identify due to (from 
left to right): their small size, their widespread presence across various environments, their complex 
dependencies, their high diversity. 
 
First, by the microbe’s small size, which necessitates specialized instruments to 
observe their traits. Second, by their ability to persist in many conditions, which 
includes extreme environments that are not easily sampled (such as arctic or deep 
sea), but also conditions that are not easily mimicked in a laboratory setting. 
Third, by their complex symbiotic organization, which limits the study of species in 
isolation. Last, by their enormous diversity, which requires a much more elaborate 
range of characteristics to provide a systematic differentiation.  
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1.2.1 A shift in classification method 
Historically, phenotypical classification of microorganisms was based simply on 
what could be seen with a microscope, focusing on morphological characteristics, 
such as cell shape, size, appearance, or motility (Fig. 1.1). Because these features 
could not explain fine-grained differences at higher taxonomic ranks, the inclusion 
of physiological typing such as substrate use proved helpful. However, since this 
required isolation and culturing in a laboratory setting, it could only be applied to 
a select fraction of bacteria (Staley 1985). 
 
Later, additional biochemical characteristics were included to support the 
classification of microorganisms, which led to the term “chemotaxonomy”, 
including “Gram-staining”, DNA base ratios, or lipid and sugar compositions 
(Schleifer 2009, Pace 2012). However, this inclusion made the classification 
significantly more laborious and prone to human error. Therefore, the scientific 
field sought a universal evolutionary marker (or “semantide”) that is found in all 
organisms and that evolves at low rates to enable the reconstruction of 
evolutionary lineages (Zuckerkandl 1965). Initially, protein-based semantides such 
as hemoglobin and cytochrome C were proposed but were subsequently replaced 
by the discovery of 16S rRNA as a more general evolutionary marker (Woese 
1977). The 16S rRNA gene has the advantage of being present in all organisms 
because of its fundamental role in translation. This discovery also initiated the age 
of genotypic classification, which has expanded into considering full-genome 
sequences (Parks 2018).  
 

 
Fig. 1.3 Comparison of the main differences between traditional phenotypical classification (top row) 
and modern genotypical classification (bottom row) by their characteristics across various categories 
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1.2.2 Genotypical vs phenotypical classification 
The transition from phenotypical to genotypical classification meant a radical shift 
in approach, which can be generalized to some key differences (Fig. 1.3):  
 
Discrete vs Continuous: traditional phenotypical classification was discrete, which 
placed features into a predefined number of categories, like morphotype 
(bacillus/coccus) or nutrient utilization (chemotroph, phototroph), while 
genotypical placement occurs on a more gradual scale by use of similarity scores. 
Qualitative vs Quantitative: Similarly, several of the traditional categories often 
gave qualitative information, and lacked in standardization, but genotypical 
information is purely quantitative. 
Isolates vs Culture independent: Sequencing of 16S rRNA or whole genomes 
enables classifying organisms without the need for isolation or enrichment and 
can even measure samples directly.  
Combinatorial vs All-encompassing: Phenotypical classification combined several 
features while genotypical classification bases this on a single feature.  
Manual vs Automated: Out of the two classification methods, the multi-angular 
nature of phenotypical classification required significantly more manual labor.  
Conditional vs Constant: Depending on culture conditions or growth stages, the 
phenotype can shift dramatically, while a genome would remain relatively 
constant within the same timeframe. 
Direct vs Indirect:  Compared to direct reflection of traits within the phenotype, 
the genotype forms an indirect representation of the organism’s “behavior”.  
 
Since a phenotype is a direct product of gene expression, it will only include a 
fraction of what is present in the actual genotype. Therefore, the functional 
analysis of communities is limited, as there is no way to link activities to those of 
specific organisms. Genotypically-related groups might not fulfill the same 
ecological niches and utilize different substrates (Morissey 2016, Doolittle 2009, 
Jaspers 2004). In addition, varying expression levels can result in large activity 
differences in organisms possessing the same metabolic pathways (Amend 2016). 
Next to expression levels, there are several other factors that complicate the 
translation of a genotype into a phenotype.  
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These include transcriptional “alterations”, such as ribosomal frameshifting, 
codon reassignment, or stop codon read through, post transcriptional 
modifications, such as alternative splicing and mRNA-editing, but also the use of 
non-canonical amino acids, and small open reading frames (Orr 2020, Coruso 
2017, Duval 2018, Meydan 2018, Ruiz-Orera 2019, Atkins 2010, Breinnicke 1999).  
This is reflected in the extended Dogma (Fig 1.4), which shows that between the 
genotype and phenotype there is a slew of steps which can change the final 
characteristics of a microbe. 
 
1.2.3 Mass spectrometry as a bridge between phenotype and genotype 
A molecular-level technique that enables work on the interface between 
genotypic and phenotypic characteristics, is mass spectrometry. This technique is 
widely applied within the field of analytical chemistry since it can analyze a large 
range of different molecules in complex mixtures at high sensitivity, including 
metabolites (metabolomics), lipids (lipidomics), carbohydrates (glycomics), and 
peptides or proteins (proteomics). The proteome represents the sum of the 
individual gene products and the active parts of a cell. Proteins convert, regulate, 
and maintain the cell and are, therefore, very close to the actual phenotype (Fig 
1.4). Mass spectrometry-based methods also enable to study dynamic protein 
organization or substrate utilization of microbes using stable isotope 
incorporation experiments (Kleiner 2019). 
 
Next to the proteome itself, mass spectrometry can study other aspects of 
microbial phenotypes (Fig. 1.5). One of the most abundant protein modifications 
is protein glycosylation, which is fundamental to all domains of life and plays an 
essential role in health by influencing virulence and pathogenicity (Varki 2008, 
Lewis 2009) but also in general protein localization, lifetime, and stability. Because 
this process decorates the cells (through lipids, proteins, and carbohydrate 
polymers), it represents the outermost interaction layer with its environment. 
Within biofilms, extensive glycosylation can support surface layer proteins (Boleij 
2020) and extracellular polymers (Martinez 2020), which protect against 
degradation (Pinel 2020), whereas glycosylation may also be tuned to support 
substrate acquisition (Pabst 2021).   
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Sugar modifications present an aspect of the microbial phenotype that is hard to 
predict from the genotype alone, because of the typically large number of 
carbohydrate-active enzymes in a genome, and since sugar polymers are typically 
a collaborative effort of a cascade of enzymes. Because complex sugars are 
challenging to produce by chemical synthesis, they are a prime target for resource 
recovery of chemical building blocks to add value to otherwise disposed sludge. 
An example of sugars that have shown high abundance in granular sludge is sialic 
acids (de Graaff 2019), which are known for the complexity and diversity of their 
modifications. The flexibility of mass spectrometry enables the development of 
screening methods that specifically targets this class of sugars (Chapter 4). 

 
Fig. 1.4 An extended central biological dogma of transcription and translation, which highlights 
additional steps between genotype and phenotype (transcriptional “alterations”, post-
transcriptional and post-translational modifications, each of which affect the final Phenotype.  

 
Fig. 1.5 An overview “-omics” methods (Top: target molecule, Bottom: the associated name of the “-
omics” technique), and those that can be achieved by use of mass spectrometry: Proteomics, 
Lipidomics, Glycomics, Metabolomics. 
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1.3 Development of large-scale metaproteomics 
In the early days of proteomics, sequencing of cDNA obtained from mRNA 
provided sequence tags (Adams 1993). Within a few years, proteins could be 
directly sequenced through Edman degradation (Erdjument-Bromage 1994). 
However, neither of these techniques could efficiently detect small amounts or 
complex mixtures of proteins (Wilm 1996). Because larger biomolecules were 
difficult to ionize with hard ionization techniques, the development of soft 
ionization techniques, such as electrospray ionization (ESI, Fenn 1989) and matrix-
assisted laser desorption ionization (MALDI, Karas 1988), was a turning point in 
the field of biological mass spectrometry. The new ionization technique, in 
combination with tandem mass spectrometry (which allows to obtain sequence 
information from peptides or proteins) and high-performance separation 
techniques (Wilm 1996), ultimately enabled the field of “large-scale proteomics”.  
 
While the term “proteome” was introduced in the early 2000s, the first 
metaproteomics paper was published a few years later on activated sludge, which 
only identified a handful of proteins and employed laborious techniques, such as 
2D-PAGE to analyze individual gel spots (Wilmes 2004). Shortly after, nearly 2000 
proteins could be identified by employing a shotgun approach using LC-MS/MS 
and database searching with a metagenomics-constructed database (Ram 2005). 
Following further instrumental advancements (such as the development of the 
quadrupole Orbitrap mass spectrometer, Thermo) and optimizations of methods 
(e.g., data-independent fragmentation techniques, Gillet 2012), nearly 10000 
proteins could be identified from one-dimensional analysis runs (Kleiner et al., 
2017). The launch of mass spectrometers that employed additional advanced ion-
mobility spectrometry and the further improved “next-generation” Orbitrap mass 
instruments further pushed the quality and number of spectra that could be 
obtained from proteomics experiments. Since proteomics advancements always 
come from a synergy between experimental, technological and data processing 
(Wilmes 2015, Steen 2004), each generation will also require new strategies in the 
field of data-processing pipelines. 
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1.4 Current trends and limitations 
Recent advances in computational power and reduction of sequencing cost have 
caused an exponential influx of new sequences. While Moore’s law projects a 
doubling of transistors per circuit every two years, the rate at which new 
sequence are submitted steadily outpaces the relative growth of computational 
power (Karl Rupp 2020, Yarza 2014, Nasko 2018, Schoch 2020). The increased 
availability of next generation sequencing by Illumina, and long read sequencing 
with nanopores, that enabled labs to sequence locally with MinIONs®, has led to a 
“space-race” of diversity where each scientific report aims to increase the number 
of reported organisms (Parks 2017, Passoli 2019, Nayfach 2021). Since the 
throughput of mass spectrometry-based proteomics is still lower than that of 
genome sequencing, it lags behind with the number of sequence identifications. 
Traditional metaproteomic spectrum matching suffers in performance from the 
increased protein sequence database size. De novo peptide sequencing 
approaches in metaproteomics provide a promising alternative to conventional 
spectrum searching algorithms, as they can provide faster annotation that scales 
more favorably with larger databases (Chapter 3). 
 
Though field of meta-omics is experiencing rapid growth, it is still in its infancy. 
There is limited consensus on methodologies and the “ever-shifting” databases 
limit comparability of studies. While attempts are made to unify methods in data 
processing and sample preparation, we are still far from reaching an agreement 
(van den Bossche 2021, Sczyrba 2017). Many databases rely on archaic 
phylogenies and are not well curated for annotating microbial communities. Since 
most newly added genomes are incomplete, growing database discrepancies arise 
between 16S and metagenomics databases. The genome taxonomy database 
(GTDB) updates this taxonomic system (Parks 2018). Metaproteomics has recently 
developed itself as a method to quantify the taxonomic distribution in 
communities, next to DNA-based techniques (Kleiner 2017). However, there is a 
clear lack of comparative studies between the three techniques. While the 
quantitative biases between 16S and metagenomics have been thoroughly 
researched, the quantification differences between metagenomics and 
metaproteomics and the impact of different taxonomic databases are still a large 
unknown for complex communities (Chapter 2). 
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1.5 Thesis Outline 
 
 

 
Fig. 1.6 An overview of research chapters within the thesis, and how they are positioned within 
biology.  Chapter 2: compares 16S sequencing, genomics, and proteomics, while Chapter: 3 focuses 
on proteomics only, and Chapter 4 applies mass spectrometry to study sugar modifications. 
 
Apart from chapter 1, there are 3 research chapters 2-4 (Fig. 1.6): 
 
Chapter 2:  Comparative metaproteomics demonstrates different views on the 
complex granular sludge microbiome 
Several methods and databases exist to quantify the contribution of 
microorganisms within a community.  Multiple recent studies benchmark the 
impact of parameters and approaches on a single omics technique across 
different labs. However, there is lack of comparative studies that analyze the 
influence of database choice, and the use different omics techniques for the same 
sample set.  In Chapter 2, we provide an integrative study combining three 
popular methods of taxonomic quantification (metaproteomics, metagenomics 
and 16S rRNA sequencing) annotated with several different databases. We then 
compare the impact and origins of their quantitative biases, to further position 
metaproteomics as a technique in environmental biotechnology. 
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Chapter 3: Database-independent de novo metaproteomics of complex 
microbial communities 
For metaproteomics to move forward and improve overall throughput, new 
approaches are required. A promising strategy that takes advantage of the 
increased mass accuracy and improved peptide fragmentation of new generation 
mass spectrometers is de novo sequencing. This method directly translates mass 
peaks into amino acid sequences, followed by string matching to a peptide 
database, which greatly speeds up the computational aspect of proteomics, while 
reducing database bias (Muth 2018). In Chapter 3, we validate de novo 
sequencing as a faster alternative to conventional spectrum search approach and 
provide an efficient annotation pipeline for taxonomy and function. 
 
Chapter 4: Tackling the chemical diversity of microbial nonulosonic acids – a 
universal large-scale survey approach 
Bacterial protein glycosylation presents a facet of phenotypes that is challenging 
to predict from genotypical information. Sialic acids are a particularly complex 
class of sugar modifications that are abundant within many environmental 
microbes. By leveraging the flexibility of mass-spectrometry, a method was 
designed to screen sialic acids in complex samples. By combining a data-
independent acquisition method with a cheminformatics data-processing 
pipeline, an untargeted method was developed in Chapter 4 for measuring sialic 
acids in complex microbial communities and discovering potential novel 
modifications. 
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2.1 Abstract 
While sequencing developments have made DNA-based analyses the norm in field 
of microbial ecology, recent technological advances in metaproteomics showed 
that protein-based quantification offers an improved representation of biomass 
within a sample. However, there is a lack of comparative studies that delineate 
the observed quantification differences between the methods. Here, we 
systematically compare three microbiomes obtained from aerobic granular sludge 
wastewater treatment plant communities as derived from 16S rRNA gene 
sequencing, metagenomics and metaproteomics. To enable a quantitative 
comparison of the different approaches, we homogenized the Genome Taxonomy 
Database (GTDB) as uniform reference database for a contig-level metaproteomic 
database construction, and compared it to annotations done with conventionally 
used protein and 16S databases. By integrating multiple functional databases, we 
show that DNA-based methods tend to underrepresent key genera in the nutrient 
removal process, and we categorize sources of quantification bias into 
physiological, experimental, and computational sources, and compare their 
impacts. This systematic study underlines the complexity of quantification biases, 
the importance of orthogonal metaproteomic approaches (when characterizing 
complex microbiomes) and showcases the necessity of accurate reference 
sequence databases for enhancing comparability and accuracy in scientific 
reporting.  
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2.2 Introduction 
In the past decades we have come to realize the instrumental role of microbial 
communities in health and biogeochemical cycles (Cho 2012, Falkowski 2008), and 
have started to apply their potential for conversions in industrial processes to 
produce energy and chemicals in a bio-based society (Angenent 2004, Rabaey 
2005). A key industrial process that applies microbial communities is wastewater 
treatment, which will rise in priority as water-scarcity increases. 
 
The challenge of designing processes around complex communities lies not only in 
the identification, but also in the quantification of its major constituents and their 
function. Next generation sequencing (NGS) has created studies of unprecedented 
scale that map the prevalence of specific taxa and led to established core 
microbiomes in wastewater treatment (Wu 2019, Saunders 2015, Dueholm 2021). 
Next to DNA-based methods such as 16S rRNA sequencing and shotgun 
metagenomics, recent technical advancements have enabled metaproteomics to 
analyze complex microbial communities (Kleiner 2019). However, significant 
quantification differences are observed between techniques. This was highlighted 
with mock communities, which first revealed cell volume as a main origin of 
quantification difference (Kleiner 2017). However, since metaproteomics was 
shown to have reduced performance as community complexity increases (Lohman 
2020), quantification biases also need to be investigated in the context of highly 
complex communities.  
 
Wastewater treatment is struggling with a lack of consensus on key role-players 
(Stokholm-Bjerregaard 2017). Traditional quantifications by 16S sequencing or 
qFISH revealed conflicting results (Albertsen 2012), while the addition of 
metagenomics and metaproteomics showed consistent discrepancies for the 
genus Accumulibacter, which is essential in phosphate removal (Barr 2016, Welles 
2015, Azizan 2020). Recently, large-scale screening studies have led to the 
development of the wastewater specific MiDAS database, and the establishment 
of a core microbiome for activated sludge (Mcllroy 2015 2017 Nierychlo 2020).  
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The aerobic granular sludge (AGS) technology is an emerging efficient wastewater 
technology with high space and energy efficiency (Pronk 2015a 2015b, Świątczak 
2018, Ali 2019), but has even less consensus on its major role-players (Leventhal 
2018, Ali 2020). Several roles in nutrient removal have been involved in the water 
purification process, such as phosphate accumulating organisms (PAO), glycogen 
accumulating organisms (GAO), nitrite-oxidizing bacteria (NOB), ammonia- 
oxidizing bacteria (AOB), and nitrate reducers (NR) (Weissbrodt 2013 2014, Szabó 
2017). Next to their role in nutrient removal, bacteria maintain the structure of 
granular sludge by producing extracellular polymeric substances (EPS) (Adav 2009, 
Panchavinin 2019, Liang 2019). Therefore, knowing the composition of the core 
microbiome is a key step towards controlling the plants performance, and 
engineering more efficient processes. 
 
Because of its low costs and ease-of-use, 16S rRNA gene sequencing has been the 
most frequently employed -omics approach for large sample sets and has been 
applied to both obtain a temporal (Zhou 2020, Ramos 2015, de Sousa Rollemberg 
2019) and spatial resolution (Wu 2019, Zhang 2012, Ali 2019). When it comes to 
quantification accuracy, 16S sequencing is known to be biased due to varying 16S 
gene copy numbers (Stoddard 2015), which cannot be corrected for (Starke 2021, 
Louca 2018, Edgar 2017), and is further exacerbated by varying primer efficiencies 
(Brown 2015, Albertsen 2015, Brooks 2015). Additionally, functional annotation 
can only be done predictively (Morrissey 2016, Doolittle 2009, Jaspers 2004).  
 
Whole genome shotgun sequencing (also referred to as metagenomics) is more 
costly and computationally demanding compared to 16S rRNA sequencing but 
provides a significantly higher taxonomic resolution and genome coverage. This 
enables differentiation between functionally distinct clades (e.g., Rubio-Rincón 
2019), and provides insights into the metabolic potential of the individual 
community members. While considered to be less biased than 16S, both suffer 
from extraction biases that reduce recovery efficiency of DNA of certain taxa 
(Albertsen 2012, Pronk 2017). 
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Metaproteomics – the identification and quantification of proteins from complete 
microbial communities – is one of the most promising post-genomics approaches 
and has been applied on several occasions to activated sludge (Hagen 2013, 
Wilmes 2008 2015, Püttker 2015). Because the composition obtained by 
metaproteomics correlates to the mass of individual community members 
(Kleiner 2017), rather than to the number of cells as obtained for genomics 
approaches, metaproteomics can distinguish active and inactive fractions of 
biomass (Adav 2008), and can differentiate between distinct phenotypes (Nielsen 
2019, Stokholm-Bjerregaard 2017, Welles 2015). Conventional metaproteomics 
approaches are hampered by a limited throughput and reduced sensitivity and 
taxonomic resolution compared to DNA-based techniques. Metaproteomics is 
therefore commonly paired with metagenomics to provide community-specific 
protein sequence databases (Narayanasamy 2015, Timmins-Schiffman 2017). 
 
The first major hurdle towards an integrative comparison of analytical techniques 
is the use of different databases, which employ varying nomenclatures and 
phylogenies. These include 16S-specific databases, such as SILVA (Quast 2012) and 
the wastewater specific database MiDAS (Nierychlo 2020, Mcllroy 2017), and 
protein-specific databases such as UniprotKB, Uniref100,90,50 & Swiss-Prot 
(Boutet 2007), as well as general databases which include both 16S genes, 
genomes, and proteins, such as RefSeq (Pruitt 2005), and more recently the 
genome taxonomy database (GTDB) (Parks 2018). Since databases use varying 
methods of phylogenetic placement, there is significant divergence in their 
nomenclatures.  
 
Modern phylogenetic placement tools include 16S gene % similarity (Yarza 2014), 
amino acid identity % (AAI) and average nucleotide identity % (ANI) 
(Konstantinidis 2005). The NCBI taxonomy, which is applied in RefSeq, and 
UniprotKB-derived databases uses a mixture of historical taxonomies and modern 
placement methods (Federhen 2012, Schoch 2020), and lacks rank normalization, 
which results in gapped lineages that lack one or more taxonomic ranks. Both 
SILVA and NCBI taxonomies contain dump taxa, which lump together groups of 
uncultured organisms (Hugenholz 2016). 
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The MiDAS database builds on the SILVA taxonomy, but adds several additional 
unique taxa and sequences, which get proprietarily named with the AutoTax 
system (Dueholm 2020). GTDB solves these issues by using a common placement 
method to normalize taxonomic ranks based on relative evolutionary divergence 
(Parks 2018).  
 
Another challenge is the database completeness. Because of their divergent GC-
content and multiple copies, 16S genes are lacking in many newly deposited 
metagenome-assembled genomes (MAGs) (Soo 2014, Rahman 2015). This 
requires an additional step of database homogenization to ensure that every 
taxon is represented equally. To prevent binning approaches from skewing 
taxonomic resolution towards specific taxa (Nelson 2020, Browne 2020, Chen 
2019, Sieber 2019), a modified contig annotation method (von Meijenfeldt 2019) 
was employed to maximize the number of genus-level annotated open reading 
frames, while remaining closer to the diversity of 16S annotations. 
 
In this study, we systematically compare 16S rRNA sequencing, shotgun 
metagenomics and metaproteomics for sludge samples from three full-scale AGS 
plants: Dinxperlo (DXP), Garmerwolde (GW) and Simpelveld (SP). We compare 
annotations done with homogenized GTDB to 16S databases SILVA and MiDAS, as 
well as protein databases derived from UniprotKB (Swiss-Prot+TrEBML, 
UniRef50,90,100) and RefSeq (non-redundant, redundant). Functional analysis is 
done by the integration of domain annotations by KEGG (Kanehisa 2016), COG 
terms (Tatusov 2000), PFAM (Mistry 2021) and TIGRFAM (Haft 2003), as well as 
UniprotKB genes (Boutet 2007). Lastly, we distinguish physiological, experimental, 
and computational sources of bias to identify the main variables that affect 
quantification differences between metaproteomics and metagenomics. 
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2.3 Results 
 
2.3.1 Standardized contig-based reference database for metaproteomics 

A standardized database with an accurate taxonomy is essential when describing 
the microbial diversity and when comparing scientific data between different 
techniques (Parks 2018, Godfray 2002). Here we demonstrate the application of 
the recently established genome taxonomy database (GTDB), that normalizes 
taxonomic ranks based on relative evolutionary divergence by a set of conserved 
proteins (Parks 2018 2020 2021, Chaumeil 2020), for a contig-based 
metaproteomic sequence database construction. 

 

The Genome Taxonomy Database Toolkit (GTDB-Tk) was developed to classify 
bacterial and archaeal draft genome assemblies rather than contigs or reads 
(Chaumeil 2020, Sedlar 2017, Lin 2021). In metagenomics, the clustering and 
binning of contigs into individual genomes often leaves substantial unbinned 
fractions, which skews the taxonomic representation towards the more complete 
genomes present in the community. Therefore, to provide the most 
comprehensive sequence database for the metaproteomic analysis, and to 
standardize the taxonomic annotation between metaproteomics and 
metagenomics data, we performed taxonomic classification at the contig level.  

 

Apart from rank normalization, another advantage of GTDB is that its 16S 
sequences share the same taxonomy. Silva and Midas, on the other hand, rely on 
16S-derived phylogenies, while NCBI uses a combination of placements methods 
(Parks 2017). When comparing the three techniques, there are two key factors 
that influence the similarity: database homogenization and data processing. Since 
16S genes are notoriously hard to include into assembled genomes due to their 
diverging GC-content and varying copy numbers (Soo 2014, Rahman 2015), there 
is a discrepancy between databases that causes a varying representation of taxa 
(SI Fig S2.3-S2.5). Of the representative GTDB genomes, 14% contains a 
fragmented 16S sequence shorter than 1200 base pairs, and 31% has no 16S 
sequence representative (SI Table S2.1).  
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Fig. 2.1 Workflow diagram of techniques and databases used for the comparative study analyzing 
the microbiome of aerobic granular sludge. In addition to metaproteomics (red), orthogonal 
metagenomics (blue) and 16S rRNA amplicon sequencing (green) were performed. Metaproteomic 
spectra were matched against a metagenomic contig-based protein sequence reference database, 
to establish the peptide-spectrum matches (PSMs). In addition to multiple 16S databases (grey) used 
to annotate amplicon sequence variants (ASVs), several protein sequence databases (purple) were 
used for the taxonomic classification of the contig-based reference sequence database. To improve 
comparability, a homogenized GTDB database was constructed, that could be employed for the 
classification of all different techniques. The different outputs were finally compared for potential 
taxonomic and functional divergences between databases and Omics techniques. 
 

Therefore, GTDB was homogenized to select equally represented taxa with a full 
length 16S sequence. Comparatively, annotation with non-homogenized GTDB 
resulted in ~5% of total reads/peptide spectrum matches (PSMs) being matched 
to organisms not present in the 16S database (SI Fig. S2.7). Within this study, 
homogenized GTDB databases have been applied under the moniker GTDB FL 
(Full-Length). To allow an integrative comparison of this homogenized database, 
we established two tools: GTDB2DIAMOND and GTDB2QIIME (available from 
Github) that format GTDB sequence files for taxonomic annotation with the 
software tools DIAMOND and QIIME2, which are respectively used in the 
annotation of open reading frames (ORFs) and amplicon sequence variants (ASVs).  
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For contig consensus annotation, we provide two modifications to the CAT-
algorithm, which constructs a consensus lineage for each contig from the lineages 
of its individual ORFs by selecting taxa based on their fraction of the total bit-
score (von Meijenfeldt 2019). Since the high stringency of the default CAT 
algorithm resulted in reduced numbers of genus-level annotations, we adjusted 
the CAT algorithm to maximize genus level annotated contigs. To compensate, we 
added an additional filtering step to target contigs with only a few annotated 
ORFs, which can be less robust, and optimized parameters to obtain a similar level 
of diversity as 16S amplicon data (SI Fig. S2.1, S2.2, S2.6). 

 

2.3.2 Database comparison 

Annotations with the homogenized GTDB FL database were compared to Silva 
NR99 and the wastewater specific MiDAS database for 16S, and UniprotKB and 
RefSeq for metagenomics and metaproteomics. Since there are significant 
nomenclature differences between the databases, nomenclatures were 
standardized as much as possible. Some examples of nomenclature differences 
include “–a” versus “–ota” for phylum suffixes, the use of Candidatus prefixes, and 
GTDB unique sub-taxa annotation (Firmicutes_A, Firmicutes_B etc.), but can also 
include phylogenetic rearrangements, such as betaproteobacteria in GTDB. 
Without removing these small mismatches in nomenclature, an exact comparison 
results in drastic differences between databases, even though in most cases they 
effectively refer to the same taxa. To achieve this, the links between taxonomy 
were mapped using GTDB and Silva metadata, renaming taxa with more than 75% 
overlap to GTDB nomenclature.  

 
When looking at the relative distribution of the top 10 most abundant taxa, 
limited effects are observed for database choice (Fig. 2.2A), but more so for the 
choice of technique. At phylum level, Proteobacteria are more dominant in 
metaproteomics than in metagenomics and 16S, while 16S has a reduced 
presence of Chloroflexeota and increased Firmicutes. On a family level, 
metaproteomics has a significantly higher abundance of Competibacteraceae, 
while genus level shows increased Competibacter, Accumulibacter and Nitrotoga 
for proteomics, with a decrease in Novospingobium, Rhodoferax and Sulfuritalea. 
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Fig. 2.2 A: Comparison of the top 10 most abundant taxa on phylum, family and genus level, 
averaged over the 3 combined samples,  for the techniques metaproteomics (MP) metagenomics 
(MG) and 16S,  against major protein databases (GTDB FL, RefSeq NR, UniprotKB) and 16S databases 
(GTDB FL, Midas, Silva), B: Sankey diagram of the relative abundance of all taxa, colored by top 10 
most abundant taxa, as well as other taxa (thistle), unannotated taxa (grey), dump taxa (dark green)  
and gapped lineages (dark purple), for  different protein and 16S databases.  
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The Sankey diagrams of Fig. 2.2B. show the overall shifts between taxa when 
using different databases. These diagrams show how unannotated sequences 
(grey) become annotated when using different databases, but also how they shift 
to gapped lineages (dark purple). Gapped lineages result from databases that lack 
rank normalization and are caused by incomplete lineages which lack annotation 
at one or more key ranks (phylum, class, order, family, genus), or by dump taxa, 
which consist of uncultured and poorly characterized microbes. An example of an 
incomplete lineage can be seen in the NCBI taxonomy of the genus 
Accumulibacter, which lacks order and family ranks: Proteobacteria (phylum); 
Betaproteobacteria (class); Betaproteobacteria incertae sedis (no rank); 
Candidatus Accumulibacter (genus). Dump taxa often lack even more taxonomic 
ranks, for example: Bacteroidetes (phylum); unclassified Bacteroidetes (no rank); 
Bacteroidetes bacterium (species).  When constructing the Sankey diagrams, 
dump taxa are flagged based on a list of keywords, such as “unclassified” or 
“bacterium”. 

 

Both UniprotKB and RefSeq contain incomplete lineages, as they employ NCBI 
taxonomy, while UniprotKB also contains dump taxa. In metaproteomics and 
metagenomics annotations with UniprotKB, the total fraction of gapped lineages 
can be significant, and account for half of the total annotated contigs (Fig. 2.2A). 
This halves the number of taxonomic annotations at certain ranks, which 
highlights the importance of rank normalization, as is done in GTDB. For 
UniprotKB, dump taxa are more clearly visible at species level, while for 16S 
annotations with SILVA, they occur also at earlier ranks (SI Sup Fig S2.11-2.12). On 
the other hand, gapped lineages are not observed in Midas and SILVA. Depending 
on the rank, up to 30-70% of mismatched annotations can be attributed to name 
shifts (SI Sup Tables S2.2-2.4). This underlines the importance of a standardized 
nomenclature when comparing different databases. A larger comparison including 
other taxonomic ranks, non-homogenized GTDB databases as well as expanded 
and clustered databases like Uniref100,90,50, Swissprot & RefSeq nonredundant 
protein sequences are shown in the supporting information (SI Fig S2.8-S2.13).  
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Another major difference between techniques can be observed when comparing 
the abundance of the top 10 taxa in respect to the total sample abundance (Fig 
2.2B). On phylum level the top 10 most abundant taxa cover most of the total 
abundance, but as ranks increase, the total sample coverage by the top 10 most 
abundant taxa decreases. For metaproteomics, the top 10 taxa still cover ~50% at 
genus level, while in DNA-based techniques they only cover a small fraction. This 
clearly shows the different levels of diversity obtained with the techniques and is 
also reflected in the reduced evenness of metaproteomics (Fig. 2.3C).  

 

A notable absence in GTDB annotations is that of the genus Tetrasphaera, a key 
genus in biological phosphate removal systems (Stockholm-Bjerregaard 2017, Ali 
2019), which is identified in MIDAS and Silva annotations, but not in GTDB 
annotations. Though its parent family Dermatophilacae is found amongst top 10 
most abundant families in GTDB, these annotations are not carried over to genus 
level annotations due to the lowest common ancestor algorithm. A closer 
inspection with blast+ alignment of 16S ASVs annotated with Tetrasphaera in 
SILVA and Midas, to GTDB SSUs shows that Tetrasphaera japonica is matched to 
each of the ASVs, but it is not the taxon with the highest percent identity. Instead, 
higher identity matches are typically achieved by other genera belonging to the 
family Dermatophilacae (SI Fig S2.14). This might be a limitation of V3-V4 primer 
resolution and stem from a difference in phylogenetic placement, as GTDB 
reassigns many Tetraspheara taxa from NCBI to other genera. 
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2.3.3 Diversity comparison 

Since different analysis methods rely on different denoising and confidence 
metrics, a fixed cutoff of 0.1% relative abundance was used to standardize data 
treatment. The total number of unique and shared taxa above this cutoff were 
visualized with Venn-diagrams (Fig 2.3.A), and their contribution to total 
abundance was shown in Fig 2.3B.  In both DXP and SP samples, the taxa shared 
between the three techniques cover the major fraction of total abundance (Beige 
area, Fig 2.3B), while GW shows a larger number of genera unique to 16S and 
metagenomics (dark blue circle, Fig. 2.3A). Overall, 16S has the largest number of 
unique genus-level taxa, which is also reflected in its alpha-diversity metrics (Fig. 
2.3C), where it has the highest richness, as well as long tailing (Fig. 2.3D) 
Metaproteomics has lower richness, but also lower evenness (Fig. 2.3C), indicating 
that it focusses on highly abundant organisms, which is also reflected in its shorter 
tail (Fig. 2.3D). 
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Fig. 2.3 Comparison of technique diversity and tailing A: Venn diagrams of shared genus level 
taxonomies between metaproteomics (MP), metagenomics (MG) and 16S from the samples  
Dinxperlo (DXP), Garmerwolde (GW), and Simpelveld (SP), B: The contribution of shared and unique 
taxa to the total biomass, C: Alpha diversity metrics for combined samples: Richness, Simpson’s 
evenness and Shannon diversity, D: Tailing diagrams of taxa sorted by abundance for each separate 
plant.  
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The richness of the analytical technique automatically affects distribution of 
abundances. If a technique detects a larger number of taxa, each taxon will have a 
lower fraction of the total abundance compared to a technique that detects fewer 
taxa. Therefore, to quantitatively compare structural biases between techniques, 
it is essential that we look at a shared fraction of taxa, and renormalize their 
abundances, instead of comparing to the fraction of total abundance. Normalizing 
to all taxa would be disadvantageous to techniques that have higher richness 
(metagenomics and 16S). The taxa that were selected for further analysis (Fig. 
2.4A) were required to have been measured by two techniques and either are 
found in more than 3% of total abundance or express key nutrient removing 
genes (Fig 2.4B). 

 

2.3. 4 Functional comparison 

Nutrient removal in wastewater treatment comprises the removal of nitrogen and 
phosphorous. Key role players in the removal of phosphorous are polyphosphate 
removing organisms (PAO), which remove phosphate from water by producing 
polyphosphate with the gene ppk while ppa hydrolyzes pyrophosphates. Glycogen 
accumulating organisms (GAO) synthesize glycogen with glg, while blg (beta-
glucosidase) breaks down glycosides. Nitrogen removal is done in subsequent 
nitrification and denitrification steps, which are performed by Hao and Amo genes 
of ammonia-oxidizing bacteria (AOB) and Nxr of nitrite-oxidizing bacteria (NOB). 
The gene cluster Nar, Nap (nitrate reductase) is the first step in denitrification 
with subsequent NirK, NirS to reduce nitrite, Nor to convert nitric oxide to nitrous 
oxide and Nos to convert nitrous oxide to dinitrogen gas, but also the first step in 
DNRA/ammonification, which uses Nrf and Nir to convert nitrite into ammonia. 
Anammox metabolic genes hzs and hdh were observed in plant GW, which is 
known to be dosed biomass from a neighboring SHARON process. Lastly, 
cytochrome C is generally present as electron acceptor, but has been implicated 
to play a role in various stages of the nitrogen cycle (Black 2018, Mundinger 2019, 
Camejo 2019). To assess genera involved in the conversion of these components a 
combined annotation was done integrating KEGG, COG terms; PFAM, TIGRFAM 
domains; and UniprotKB genes. This method is particularly effective at annotating 
nitrogen metabolism, which is otherwise fragmented across different databases. 
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The overall relative abundance of key genera and their expressed nutrient 
removal genes are shown across the three plants (DXP top row, GW middle row, 
SP bottom row) in Fig. 2.4A,B. The order of genera is determined by their 
averaged quantification difference between metaproteomics-metagenomics and 
metaproteomics-16S (Fig. 2.5A,B). Genera quantified more strongly in 
metaproteomics are positioned on top and genera quantified more in DNA-based 
techniques are positioned at the bottom. Key roles are generally performed by 
the same genera in each plant. Accumulibacter is highly abundant and expresses 
both PAO, GAO, and denitrification pathways in each plant, while Competibacter 
expresses GAO metabolism, and Nitrosomonas is an AOB in each plant. The role of 
NOB is shared over Nitrospira and Nitrotoga, where DXP only has Nitrospira, GW 
has both and SP predominantly uses Nitrotoga as NOB. Denitrification is much 
more dispersed, but is consistently expressed in several genera, including 
Accumulibacter, Azoxenus and Propionivibrio, while the DXP plant has strong 
expression by Zoogloea. 

 

Comparing the quantification differences between 16S-metaproteomics and 
metagenomics-metaproteomics (Fig. 2.5A,B) shows that several nutrient 
removing organisms are underrepresented in DNA-based techniques compared to 
metaproteomics. This is especially true for two key genera in the phosphate 
removal process: Accumulibacter and Competibacter (Rubio-Rincón 2017). Both 
of which are highly abundant in metaproteomic analysis, but less so in DNA-based 
techniques. For Accumulibacter, this aligns with previous observations where the 
genus was underrepresented in DNA-based techniques (Bar 2016, Welles 2017, 
Azizan 2020), however for Competibacter this observed difference has not been 
reported yet.  Apart from these two, several other key nutrient removing genera 
are underrepresented in DNA-based methods, including Propionivibrio 
(PAO/GAO/DN), Nitrosomonas (AOB), Nitrotoga (NOB/DN) and Zoogloea (DN). 
However, not all genera that express nutrient removal genes are 
underrepresented in this manner. Azonexus (PAO/DN) and Nitrospira (NOB/DN) 
are quantified similarly by metagenomics and metaproteomics, and the genus 
Sulfuritalea (PAO/DN) is underrepresented in metaproteomics.  
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Fig. 2.4 A: The genus level abundance for a subset of genera in DXP, GW, SP (top, middle, bottom) 
across metaproteomics (MP), metagenomics (MG) and 16S. B: nutrient removal genes found in 
metaproteomics for the three samples. Genes are grouped according to associated roles: phosphate 
accumulating organisms (PAO), glycogen accumulating organisms (GAO), ammonium oxidizing 
bacteria (AOB) and nitrite oxidizing bacteria (NOB). Nitrogen metabolism is further grouped into 
nitrification, denitrification, ammonification, and annamox pathways. Genera are sorted according 
to the absolute abundance difference between metagenomics and metaproteomics (Fig. 2.6A). 
 

Therefore, the distinction between “active and inactive” biomass does not relate 
directly to observed quantification differences. To see if the quantification 
difference instead could be linked to specific protein groups, a more general 
functional annotation was performed (Fig. 2.6&7). Here, emphasis was put on the 
relative allocation of reads in metagenomics versus peptide spectrum matches 
(PSMs) in metaproteomics, to see if the overexpression of certain proteins groups 
related to quantification differences.  

PAO
nitrifica+on

denitrifica+on ammonifica+on anammox

A B

GAO AOB NOB
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Fig. 2.5 The average abundance difference for each genus between quantification methods for 
metagenomics versus metaproteomics (MG-MP) (top bar) and  16S versus metaproteomics 16S-MP 
(bottom bar), for absolute (A) and percentual difference (B). 
 

2.3.5 Protein expression comparison       

Apart from annotating nutrient removal genes, the COG classification system was 
used as basis to further categorize the phenotype and strongly expressed protein 
groups, subdividing into “Metabolism and transport”, “Membrane associated”, 
“Cell cycle” and “Other” categories (Fig. 2.6). By integrating KEGG, PFAM and 
TIGRFAM domain annotations, 83% percent of found peptides could be grouped. 
Comparing the distribution of peptide spectrum matches (PSMs) and reads 
allocated to the proteins found in metaproteomics yields a metric of 
overexpression to reveal strongly expressed protein groups (Fig. 2.6).  

A B
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Fig. 2.6 Overexpression analysis and annotation with COG terms for combined samples, described by 
the percentual difference between median fold changes for peptide spectrum matches and read 
counts for all proteins identified in metaproteomics. 

Next to protein groups associated with nutrient removal (Carbohydrate, Nitrogen, 
amino acid metabolism) and growth (Translation), membrane associated proteins 
are heavily expressed. A striking observation is the prevalence of porin proteins, a 
beta-barrel forming class of transporters, whose targets range from fatty acids 
(fadL) to small inorganic molecules (cirA, fepA, OVP1), and coenzyme transport 
(BtuB). Since shotgun metaproteomics generally selects for the most intense 
signals, overexpression of certain protein groups could be source of quantification 
biases observed between protein and DNA-based techniques (Fig. 2.5). The 
expression patterns of COG categories were further investigated for highly 
abundant genera with >3% relative abundance (Fig. 2.7). Each genus shows two 
bars: the left for the relative distribution of reads, and right for the relative 
distribution of PSMs for proteins found by metaproteomics. it could be observed 
that some genera showed significant difference between the relative allocation of 
reads and peptide spectrum matches of identified proteins. 
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Fig. 2.7 A comparison of relative read distribution (left bar) and PSM distribution (right bar) of 
proteins found in highly abundant metaproteomics genera. The absolute quantification bias 
between metagenomics and metaproteomics is shown by the bar on top, which was calculated by 
subtracting relative abundance of each genus in metagenomics (MG) with the relative abundance in 
metaproteomics (MP). Abbreviations of COG categories are explained in Fig. 2.6. 

Extreme examples include Accumulibacter and Azonexus, which strongly express 
proteins of the porin class, while Nitrotoga and Nitrospira highly express proteins 
related to nitrogen metabolism. The presence of strongly expressed membrane 
protein groups however does not directly equate to a quantification bias (Fig. 2.7), 
as Competibacter and Propionivibrio show little difference in the allocation of 
PSMs and reads but are under-quantified in DNA-based techniques, while 
Aquabacterium_A, Azonexus all are quantified similarly by DNA-based techniques 
and metaproteomics but show significant differences between allocation of reads 
and PSMs. These factors indicate that quantification bias cannot be linked directly 
to expression profiles. 
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2.3.6 Further bias investigation 

Since no general trend was observed between quantification bias and the 
expressed proteins, an in-depth look was performed on different sources of bias.       
For 16S analysis, this bias is well described and attributed to variations in 16S 
gene copy number and primer choice. On phylum rank, these effects are clearly 
visible (Fig. 2.8A). Increased 16S gene copy number resulted in an overestimation 
of Firmicutes, while a reduced copy number led to lower Acidobacteriota and 
Verrucomicrobiota. The V3-V4 primers used in this study did not properly amplify 
Chloroflexeota, which was underestimated, and Planktomycetota, which was not 
detected by 16S. A cumulative sum of the total abundance with increasing 16S 
gene copy number is shown in Fig 2.8B. This shows that genera with a copy 
number of less than 5 constitute 95% of all abundance in metagenomics and 
metaproteomics, but only 80% in 16S.  

 

Because quantification biases can come from multiple angles, their influence on 
measured percentual differences should not be taken separately, but as a 
combinatorial “bias phenotype”. Here, we can distinguish bias that stems from 
cell physiology (P), experimental bias that is inherent to decisions made in 
experimental design (E), and computational bias that relates to decisions made in 
data processing (C). By using multiple linear regression, weights can be assigned 
to separate standardized metrics to assess their contribution to the overall 
observed quantification differences. By multiplying the standardized metrics with 
the weights calculated from multiple regression, a weighted clustergram was 
constructed (Fig 2.8C, 2.9). The metrics used for comparison of 16S and 
metagenomics in this way include: 16S gene copy number (P1), primer efficiency 
(E1) and BLAST vs Bayesian classification (C1). Copy number (P1) is inherent to cell 
physiology, while primer efficiency (E1) is classified as an experimental bias. As 
computational bias, the effect of Bayesian classifiers vs alignment was tested by 
aligning 16S sequences with BLAST+ (C1) (SI Fig S2.15). The largest impact was 
seen for primer efficiency, which affected the detection of Brocadia, and the 
Chloroflexota genera OLB13,14 & CFX2,10. Parameters P1 & C1 had a lower effect 
and correlated poorly with observed differences.  Only an R2 of 0.07 was reached 
in multiple regression, indicating poor correlation. 
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This matches prior reports that indicate that even if the source is known, 16S bias 
cannot be corrected for (Starke 2021, Edgar 2017).   

Fig. 2.8 An investigation of quantification bias between 16S analysis and metagenomics. A: Phylum 
level analysis for combined samples of 16S gene copy number and primer efficiency versus the 
percentual difference between 16S and metagenomics. B: Cumulative abundance of taxa versus 16S 
gene copy number for combined plants, and C: Integrated bias clustergram of 16S versus 
metagenomics, with metrics: E1=primer efficiency, P1=16S gene copy number and C1=Bayesian vs 
BLAST. Multiple regression of standardized metrics to the percentual difference (Pdiff) was used to 
assign weights in clustering. 

 

For metaproteomics apart from cell volume (Strous 2017) (which is a physiological 
bias), limited research has been done to explain observed quantification 
differences. This metric is included in bias comparison (Fig. 2.9), which uses cell 
volumes reported from literature (SI Table S5) (P2). As seen in Fig. 2.7, the 
presence highly expressed proteins could be another source of physiological bias. 
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As a metric to describe this bias from protein expression patterns, the equation 
PSMs/K was used, where K equals the number of proteins required to reach 30% 
of total abundance measured for that genus, and PSMs equals relative abundance 
of the genus (P1) (SI Table S2.6).  Potential sources of experimental bias stem from 
the ionization and fragmentation of peptides. The ionization efficiency depends 
on peptide hydrophobicity, here approximated with GRAVY-score (E1) (Bagog 
2013, Kite 1982), but also on the amino acid composition and length of a peptide 
(E2) (Liigand 2019). The charge state and its fragmentation are influenced by the 
presence of basic amino acid residues (E3). (Biniossek 2012). Metaproteomics and 
metagenomics largely use the same data processing, so little computational bias is 
expected. However, since homology and lowest common ancestor analysis are 
used to annotate open reading frames, there can be difference for strongly 
expressed proteins, which are often more conserved (C1). Also, an additional 
lowest common ancestor (LCA) selection is done if detected peptides are detected 
within multiple organisms (C2).  
 

When comparing metaproteomics to metagenomics (Fig. 2.9) the tested metrics 
were: the effects of protein expression patterns (P1), literature reported cell 
volume (P2), peptide hydrophobicity (E1), ionization efficiency (E2), number of 
basic residues (E3). For the computational effects of conserved proteins on LCA 
(C1) and LCA of shared peptides (C2) were considered. Physiological bias 
originating from expression level (P1) is highly impactful. Since metaproteomics is 
employed in a data-dependent manner, highly abundant peptides will take 
precedent over less abundant peptides. This causes organisms with high 
expression of specific proteins to be detected more frequently. These include 
Accumulibacter and Azonexus, with porin proteins, but also Nitrotoga and 
Nitrospira with nitrate reductase (nxr) (Lin  2021). Cell volume (P2) is the next 
most correlating parameter, with the largest cell volumes observed for 
competibacteriacae. The combination of these two physiological parameters 
might largely explain quantification bias. Some genera with smaller cells such as 
Azonexus, Nitrospira and Nitrotoga are detected more in metaproteomics 
because of their high expression of specific proteins, while Competibacter and 
RXV01 have a more gradual expression pattern but larger cell size. 
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Fig. 2.9 An integrated bias clustergram of metaproteomics versus metagenomics, P1=Shotgun 
metaproteomics bias, P2=reported cell volumes, C1=homology bias, E1=peptide hydrophobicity, 
C2=peptide LCA, E2=Ionization efficiency, E3=basic residues. Multiple regression of standardized 
parameters to the percentual difference (Pdiff) was used to assign weights in clustering. 

 

Bias from the contig LCA method (C1) helps explain underrepresentation of 
certain genera in metaproteomics (SI Fig S2.16). In case of organisms with no 
exact match in the database, assigning a consensus contig taxonomy lowers 
taxonomic resolution. This effect is more pronounced for conserved proteins, 
which are more likely to be matched to multiple taxa. Strongly affected genera 
include Rhodoferax and JJ008. Other metrics such as peptide hydrophobicity, 
ionization efficiency, basic amino acids and peptide LCA (E1, E2,E3,C2) showed 
little impact. 
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2.4 Discussion 

2.4.1 16S sequencing vs Metagenomics  
Overall, the community structure of the aerobic granular sludge evaluated by 16S 
and genomics analysis was similar, but differences were observed due to primer 
efficiency and 16S gene copy number (Stoddard 2015, Brown 2015, Albertsen 
2015). The effect on the samples was shown in Fig. 2.8. Major underrepresented 
phyla in 16S include Acidobacteriota with a low copy number, Chloroflexota with 
reduced primer efficiency, and Planktomycetota and Verrucomirobiota, which 
were negatively impacted by both. The Planktomycetota phylum contains 
Anammox bacteria, for which presence was observed in the Garmerwolde plant 
(Fig 2.5B), while Chloroflexota have been associated with sludge bulking (Speirs 
2019), and Acidobacteriota has been linked to PAO and GAO activity in activated 
sludge (Kristensen 2021).   
 
The 16S gene copy number likely has an influence on the high community 
evenness of 16S (Fig. 2.3C). On genus level (Fig. 2.8B), high copy number 
organisms accounted for a significant fraction of total abundance. As granular 
sludge has a longer solid retention time, it is enriched in slow growing organisms 
(de Kreuk 2004, Ali 2019) that generally have a lower 16S gene copy number 
(Roller 2016), which could lead to inflated diversity metrics. 
 
The choice of database showed to be impactful as well. While Midas and Silva had 
similar rates of genus-level annotation, Silva showed an increasing content of 
dump taxa at higher taxonomic ranks (Fig. 2.2A). Though Midas had the highest 
annotation rate, GTDB r202 still outperformed Silva, annotating around 70% and 
40% of AVSs at genus and species level respectively, which is a significant 
improvement over previously reported V4 annotation rates with GTDB r89 
(Dueholm 2021). Tetrasphaera, a key organism in biological phosphate removal 
systems (Nielsen 2019), was not annotated by GTDB after family level.  BLASTn 
alignment of Midas FL-ASVs to GTDB SSUs however revealed that highest identity 
scores (>95%) were attributed to several other genera within Dermatophilacae (SI 
Fig S 14). This underlines the limitation 16S derived phylogenetic placement, and 
the need for longer amplicons than V3-V4 to assess the identity of these taxa. 
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2.4.2 Metaproteomics vs Metagenomics 
As in a previous study (Kleiner 2017), cell volumes derived from literature 
correlated to the observed quantification differences. Several of the genera 
underrepresented in metaproteomics have lower reported cell volumes, including 
Hyphomicrobium, Spingobium and Sulturitalea, while Competibacter, RXIV01, 
Accumulibacter, have larger cell volumes. However, some genera adhered poorly 
to this cell volume relation, like Nitrotoga and Propionivibrio, which are small, but 
still were more abundant in metaproteomics analysis.  For Nitrospira, Nitrotoga, 
and Azonexus, a few strongly expressed proteins were detected. Quantification 
bias stemming from highly expressed repetitive protein complexes likely affects 
the abundance of Azonexus and Accumulibacter (porins), and Nitrospira and 
Nitrotoga (Nxr) (Fig 2.5B), which can form tubular filaments (Chicano 2021). This 
data-dependent acquisition likely also causes the reduced diversity of 
metaproteomics (Fig. 2.3C). 
 
While this focus of metaproteomics on the most dominant signals can be seen as 
a detriment towards accurate quantification, it can also help distinguish the actual 
key-players from the background of potential converters. The presence of certain 
enzymes on the genome can be a poor descriptor of functionality. Some 
ubiquitous genes include (Singleton 2021) ppk for PAO, glg for GAO and 
cytochrome c, which is a general protein, but has been implicated with various 
parts of the nitrogen cycle (Black 2018, Mundinger 2019, Camejo 2019).                 
In particular, ppk proteins were mostly detected in known PAO organisms, such as 
Accumulibacter and Azonexus, but also for Propionivibrio (Albertsen 2016, Nielsen 
2019). Similarly, glg was expressed in organisms with reported GAO activity: 
Accumulibacter, Competibacter, and Propionivibrio, while cytochrome C was 
found heavily expressed in Competibacter (Denitrificans) and Nitrospira, which 
otherwise show limited expression of denitrifying enzymes (Fig. 2.5B). 
Metaproteomics can effectively highlight the division of labor within a sample. 
While PAO, GAO and AOB was consistently performed by the same genera, NOB 
activity was alternated by Nitrospira and Nitrotoga and denitrification was split 
over several genera. Denitrification genes are commonly found in many organisms 
(Singleton 2021), however in metaproteomics Nor is barely detected, Nirs/NirK 
are found in abundant PAO/GAO organisms and Nos seems the most dispersed. 
Additionally, based on proteome analysis, truncated nitrogen metabolism was 
observed within AGS, similarly to activated sludge (Singleton 2021).  
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2.4.3 Sources of bias 
While the sources of quantification bias for 16S are well described, they still 
showed poor correlation with observed bias (Fig. 2.8). On the other hand, the 
differences between metagenomics and metaproteomics are less well covered in 
literature. In this study we therefore categorized potential sources of 
quantification bias into sources of physiological, experimental and computational 
bias. Still, many aspects of bias remain unexplored.  
 
It is a major challenge to assess physiological traits within mixed cultures. Though 
cell volume can be monitored with microscopy, it is not directly representative of 
total protein biomass in a cell, since a system grown under feast-famine regime 
will commonly produce storage polymers such as polyphosphate glycogen and 
polyhydroxyalkanoates that affect the cell volume. Determining the average 
protein content per cell would require cell sorting combined with cell staining. 
There is also a limited understanding of the biases of shotgun metaproteomics, 
which would require modelling approaches with in-silico communities (Herbst 
2016). Additionally, next to genome size, DNA-content per cell can differ based on 
the organism’s growth rate and physiology, as exponential growth has been 
associated with duplicate chromosomes (Haugan 2018), and slow growing 
organisms have more time to accumulate plasmids (Suzuki 2019).  
 
Experimental bias on the other hand can be investigated more easily and should 
become a focal point. Especially the role of extraction bias was not explored 
within this study. To extract DNA or protein, physical homogenization is typically 
employed when working with activated sludge. This is known to impact the 
quantification, either by shearing DNA or by insufficient cell lysis (Pronk 2017, Guo 
2013). On the other hand, proteome extraction can apply more drastic physical 
lysis, but more so relies on detergents to properly solubilize membrane-bound 
and structural proteins (Boleij 2019, Danielsen 2017), both of which could require 
optimization for aerobic granular sludge. Besides extraction, the bias generated 
through shotgun metaproteomics might be mitigated using data independent 
acquisition, which also fragments less abundant peptides (Elo 2020, Gillet 2012). 
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2.4.4 Use cases and synergy 
Though each of the three techniques showed different levels of information and 
varying quantification of the community, none is without merit. Since each comes 
with its own advantages, use will depend on the research question. The most 
common applications of DNA-based techniques in wastewater are the detection 
of pathogens, viruses, and antimicrobial resistance genes (Garner 2021), for which 
metaproteomics will be less effective due to its lower sensitivity and coverage. 
However, large-scale studies have also used DNA-based techniques to infer 
functional roles from metabolic potential and have established a core-microbiome 
based on prevalence (Wu 2019, Saunders 2015, Singleton 2021). This is where 
metaproteomics should be the preferred method, as it is more effective at 
identifying the main metabolic organisms within a microbial community and their 
roles within the system. The use of orthogonal techniques such as FISH RAMAN 
can confirm functions predicted from genomes (McIlroy 2018, Huang 2007), but 
does so less efficiently. Considering the quantification differences observed for 
several key metabolic organisms, the inclusion of orthogonal metaproteomic 
analysis on selected samples should become a standard within large-scale 
metagenomic studies moving forward, as metabolic insights can lead to different 
conclusions on what is “core”. 
 
Metaproteomics is still limited by its lack of throughput and parallelization 
compared to metagenomic sequencing and will require further improvements to 
compete in the field of ecology. It also still typically relies on DNA-based 
techniques for database construction (Tanca 2015). As techniques evolve further, 
they should do so collaboratively. While the current focus lies on improving 
techniques independently (Scyrba 2017, van den Bossche 2021), there also lies a 
risk of divergence. Current attention towards ultra-small endosymbionts (Brown 
2015, He 2021) will result in more extreme differences in cell-counting versus 
biomass-based quantification, while the increasing read length in metagenomics 
will exacerbate extraction biases, as it more susceptible to shearing (Maghini 
2019). Lastly, the lack of 16S genes in most published MAGs results in increasing 
database discrepancy between genomic and 16S databases (Soo 2014, Rahman 
2015). A collaborative evolution between analysis techniques should be desired 
for both the fields of ecology and environmental biotechnology. As a start the use 
of standardized databases and taxonomies of GTDB will be key, to achieve a 
convergent evolution that maximizes synergy. 
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2.6 Supplemental information 

2. 6.1  Material & Methods 
Sampling of aerobic granular sludge. 
Aerobic granular sludge (AGS) was collected from 3 different full scale AGS 
wastewater treatment plants, from the Netherlands: Simpelveld (SP), Dinxperlo 
(DX) and Garmerwolde (GW). Each plant performed stable operation with simul-
taneous denitrification and phosphorous removal. AGS granules were sieved to 
select a size fraction of a diameter of 2.0 mm, which furthermore were stored at -
80˚until further processed. 
  
DNA extraction and sequencing. 
Extraction of DNA for both 16S rRNA gene sequencing and shotgun metagenomics 
was done using a DNeasy UltraClean Microbial Kit (Qiagen, Germany), and was 
quantified with Qubit. 16S rRNA gene amplification was done by Novogene (No-
vogene Co., Ltd., China), by amplifying V3-V4 regions with 341F, 806R primers. 
Sequencing of 16S rRNA genes and shotgun metagenomics was done with paired-
end reads on the Illumina Novaseq platform. 
  
Protein extraction and proteolytic digestion. 
The collected 2 mm granules were freeze-dried and grinded with a mortar and 
pestle. To approximately 5 mg starting material, 200 mg of glass beads (150 – 212 
μm) and 350 μL of both TEAB and B-PER were added. Beads beating was per-
formed for 20 seconds, three times with a 30 second break in-between. Samples 
were shortly centrifuged, and 3 freeze/thaw were performed by placing the sam-
ple into a -80°C freezer, and for thawing into a 95°C hot water bath. The sample 
was centrifuged, and the supernatant was collected. Further, protein precipitation 
was performed by adding TCA at a ratio of 1 to 4 to the supernatant. The samples 
are then incubated at 4°C for 10 minutes and centrifuged at 14,000 rpm for five 
minutes. The pellet was washed with 200 μL ice cold acetone. To every tube, 250 
μL of 6 M urea was added to reconstitute the protein pellet for further digestion. 
Furthermore, the protein extract was reduced using 10 mM Dithiothreitol (DTT) 
for 60 minutes at 37°C. Next the samples were alkylated using 20 mM Iodoa-
cetamide (IAA) in the dark and at room temperature for 30 minutes. Thereafter, 
the samples were diluted with 200 mM Ammonium bicarbonate (AmBiC), to <1 M 
Urea. Finally, sequencing grade trypsin was added (Promega) at an approx. en-
zyme to protein ratio of 1:50 and incubated at 37°C for overnight digestion. The 
obtained peptides were further solid-phase extraction purified by using Oasis HLB 
well plates (Waters), according to the manufactures protocol. Purified peptide 
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fractions were then dried in a Speedvac concentrator, and samples were finally 
reconstituted in aqueous 0.1% TFA solution. Finally, peptides were fractionated 
using a Pierce high pH reversed-phase peptide fractionation kit (Thermo Scien-
tific), according to the instructions of the manufacturer, and dried in a Speedvac 
concentrator. Peptide samples were finally dissolved in H2O, containing 3% ace-
tonitrile and 0.1% formic acid, protein digest was determined using a NanoDrop 
micro volume spectrophotometer. 
  
Shotgun metaproteomic analysis. 
The speed-vac tried peptide fraction was resuspended in H2O containing 3% ace-
tonitrile and 0.1% formic acid. An aliquot corresponding to approx. 300 ng protein 
digest was analyzed in duplicates using an one dimensional shotgun proteomics 
approach. Briefly, the samples were analyzed using a nano-liquid-chromatography 
system consisting of an EASY nano-LC 1200, equipped with an Acclaim PepMap 
RSLC RP C18 separation column (50 μm x 150 mm, 2 μm and 100 Å), and an QE 
plus Orbitrap mass spectrometer (Thermo Scientific, Germany). The flow rate was 
maintained at 300 nL/min over a linear gradient to 30% solvent B over 60 or 90 
minutes, and finally to 75% B over additional 30 minutes. Solvent A was H2O con-
taining 0.1% formic acid, and solvent B consisted of 80% acetonitrile in H2O and 
0.1% formic acid. The Orbitrap was operated in data dependent acquisition mode 
where the top 10 signals were isolated at a window of 2.0 m/z and fragmented 
using a NCE of 28. The AGC target was set to 1e5, at a max IT of 54 ms and 17.5 K 
resolution. 
  
Processing of 16S rRNA raw sequencing data. 
Standard read preparation was done by Novogene including de-multiplexing, 
trimming and assembly. Cleaned reads were used to pick amplicon sequence vari-
ants (ASVs) with Usearchv11 command -unoise3 (Edgar 2016). To improve ASV-
picking, the dataset was padded with additional sample sets containing different 
size fractions from each plant: flocs, >0,2, >0.7, >1.0 mm. (data not shown). Taxo-
nomic annotation was performed using QIIME2 with trained V3-V4 classifiers. As a 
comparison 16S rRNA sequences were annotated with GTDB representative small 
subunit ribosomal RNA (SSU rRNA) sequences, Midas 3.7 flASVs, and a Silva NR99 
v138 pre-trained V3-V4 classifier (Robeson 2021, (Bokulich 2018). To compare the 
effects of database homogenization, GTDB r202 complete 16S (ssu all) and repre-
sentative (ssu reps), were analyzed with all sequences, and full-length sequences 
of >1200 base pairs. 
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Processing of metagenomics raw sequencing data. 
Reads were assembled for all samples using metaSPAdes v3.14.0 (Nurk et al. 
2017) at the default settings. Prodigal v2.6.3 (Hyatt et al. 2010) was used as a 
gene caller to identify open reading frames (ORFs). DIAMOND v2.11 (Buchfink 
2015) was used align ORFs with parameters  -fast -top10 -e 0.001 to protein data-
bases of GTDB r202, from Uniprot  release 2021 03: UniProtKB, Swiss-Prot 
UniRef100, UniRef90, UniRef50, and from NCBI RefSeq protein and  RefSeq pro-
tein NR release 205. Additionally, homogenized databases were annotated by 
constructing databases from organisms represented in GTDB ssu reps to create 
GTDB HOM, and organisms with full length 16S sequences to create GTDB FLHOM. 
Contig-level taxonomic annotation was done by first determining the taxonomy of 
each ORF by lowest ancestor analysis (LCA) of the aligned proteins (protein LCA), 
followed by constructing a consensus lineage for each contig from the annotated 
ORFs (contig LCA). (Supplemental 2.6.2) 
  
Processing of metaproteomics raw data. 
The mass spectrometric raw data were analysed using PEAKS Studio X by either 
database search using metagenomic databases constructed from predicted ORFs, 
or by de novo sequencing (Supplemental). Taxonomic annotation of database 
matched peptides was done by performing an LCA on associated contigs. Meta-
bolic annotation with KEGG orthologies was performed on identified proteins 
using BlastKOALA (Kanehisa 2016), while WEBMGA (Wu 2011) was used to anno-
tate COG, PFAM and TIGRFAM terms, while DIAMOND v2.11 (Buchfink 2015) was 
used to annotate ORFs with UniprotKB genes. 
  
Comparative analysis and visualization of large-scale omics data. 
Sankey diagrams were constructed on an annotation level. By using GTDB 
metadata, taxa with >75% overlap between databases were homogenized to 
GTDB nomenclature. Quantification of taxa was performed on total ASV count in 
16S, total depth of associated contigs in metagenomics, and the total number of 
peptide spectrum matches in metaproteomics. To homogenize data treatment 
across the three techniques, an abundance cutoff of 0.1% was applied. This taxa-
set was used to compute alpha-diversity metrics and shared biomass content. For 
further analysis abundance was renormalized to a subset of shared taxa that ei-
ther contained nutrient removal genes, or had >3% abundance in one tech-
nique.  Between techniques, the absolute abundance difference: (x-y) and percen-
tual abundance difference: (x-y)/(((x+y))⁄2) was computed for each genus. Func-
tional analysis was done by integrating KEGG,COG,PFAM,TIGRFAM and UniprotKB 
genes. Two manually curated subclassifications were added to the COG system 
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“nitrogen metabolism” based on KEGG pathways and “porin”, which includes be-
ta-barrel proteins. As a measure of overexpression a percentual difference be-
tween the fold change respective to the median of reads and PSMs for each class 
as computed.  Sources of bias were grouped into experimental (E), physiological 
(P) and computational (C). Comparison of 16S and metagenomics was done on 
primer efficiency (E1), 16S gene copy number (P1), and BLAST vs Bayesian annota-
tion (C1). Primer efficiency was approximated by the percentage of genomes be-
longing to that taxa that match  a primer pair without mismatches, 16S gene copy 
numbers were obtained from rrnDB (Stoddard 2015) and BLAST+ v2.12.0 was 
used to align ASVs to full length representative GTDB ssu sequences Comparison 
of metaproteomics and metagenomics was done on experimental parameters: 
GRAVY-score (E1) (Kite 1982) ionization efficiency (E2) (Liigand 2019) and number 
of basic amino acids (E3) of each peptide, physiological parameters: expression 
profile (P1) (Table S2.6, Fig. S2.18-S2.20), literature reported cell volume 
(P2) (Table S5) and computational parameters contig LCA (C1) (Fig. S2.16) and 
peptide LCA (C2) (Fig. S2.17). To assess the influence of each parameter, values 
were standardized and fitted to observed percentual differences using multiple 
regression. Standardized values were the fitted coefficients before clustering on 
Euclidian distance. 
 
2.6.2 optimization of contig annotation 

Fig. S2.1 Diagram highlighting the modifications applied to the CAT algorithm (von Meijenfeldt 2019) 
The tolerated fraction of total bitscore (f) is recomputed at each rank, and after annotation, contigs 
with less than a certain number of matched ORFs are filtered based on larger contigs, allowing only 
taxonomies observed in contigs with more than the specified number of ORFs (nORFs). 

Since an optimized binning approach did not cover several of the expected 
organisms (Table S2.7), a general contig annotation was explored. Contig-level 
taxonomic annotation was done by first determining the taxonomy of each ORF 
by lowest ancestor analysis (LCA) of the aligned proteins with a protein-level LCA, 
followed by constructing a consensus lineage for each contig from the annotated 
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ORFs as a contig-level LCA. An existing tool that uses this method is CAT (von 
Meijenfeldt 2019). Since CAT is designed to annotate novel organisms, it’s 
stringency results in a reduced number of genus-level matches. We therefore 
modified the CAT algorithm to construct a stepwise lineage by recalculating the 
total bitscore for each rank from the taxa above the cutoff.  Another disadvantage 
of CAT is that it weighs short contigs equally strong as long contigs, which could 
more easily result in false positives, if only a single ORF can be matched to a 
database within a contig. Therefore, a filtering step was included to filter taxa that 
were only found in shorter contigs.  This filtering step helped to maintain a similar 
diversity as 16S sequences. For this Jaccard similarity as used as a metric, as this 
compares which taxa are detected, but not their abundances. Both protein LCA 
and contig LCA approaches were optimized to maximize genus-level Jaccard 
similarity to 16S annotations, and to maximize the fraction of genus-level 
annotations, which is essential for functional annotation. As baseline comparison, 
the CAT algorithm with parameters r=10 and f=0.5 was used, in which r denotes 
the range of top bitscore % used in protein LCA, and f the minimum fraction 
classification support (von Meijenfeldt 2019).  For optimizing protein LCA, 5 
approaches were compared 1. A standard approach (LCA, r=10), 2.  LCA on top 
bitscore (BLCA, r=0), 3.  Top hit only (Top hit), 4. FtLCA, fraction of taxa (FtLCA, 
r=10, f=0.5), 5. FbLCA, fraction of bitscore (FbLC, r=10, f=0.5). FtLCA and FbLCA are 
newly proposed, modified versions of the CAT algorithm. In both, a lineage is built 
up sequentially from the most frequent taxa, provided it appears above a 
threshold (Fig 1). This threshold is either based on the fraction of taxa belonging 
to the taxon selected at the previous rank (FtLCA), or the fraction of the bitscore 
of these taxa (FbLCA). For optimizing contig LCA, the FbLCA algorithm was 
selected with an added filtering step, in which only taxa were allowed from 
contigs with more than x ORFs (nORF). A parameter sweep of f (0.1-1) and nORF 
(2-10,20) was used to optimize the algorithm on the GTDB FLHOM annotated 
dataset (Fig 2.). As objective score a multiplication was used of the genus 
coverage and the Jaccard similarity to 16S taxa. As a comparison the CAT 
algorithm was combined with the different protein LCA methods. The baseline 
CAT annotation would be CAT with standard LCA.  The final selected parameters 
used for annotation within the paper are BLCA for protein LCA and FbLCA 
(nORFs=5, f=0.5) for contig LCA. Using the optimized parameters, genus level 
annotation improved from 0.27 to 0.82 while Jaccard similarity to 16S from 0.19 
to 0.25. Performance of BLA and standard LCA are shown in (Fig. S2.2). 
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Fig. S2.2 Parameter sweep of fraction of bitscore (f) and mimunum number of ORFS (nORFS) using 
the FbLCA algorithm for contig LCA, and different protein LCAs (Top hit, BLCA, FtLCA, FbLCA, LCA), 
and the resulting heatmaps: fraction of annotated sequences with genus level annotation (genus 
coverage), Jaccard similarity to 16S annotations, and a multiplication of the two (Objective). The 
final selected parameter set  is highlighted in a red square. 
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2.6.3 16S database completeness and homogenization 

Since 16S genes are notoriously hard to include into assembled genomes due to 
their diverging GC-content and varying copy numbers, there is a discrepancy 
between databases. If we look at different databases, we also see different length 
distributions (Fig. S2.3) For Silva ssu parc, which is less curated than silva NR99 we 
see many shorter fragmented sequences, while for MiDAS we only see full-length 
sequences. GTDB offers two different ssu (short subunit) 16S databases, reps, 
which is representative, and all which is all. However only representative 
databases are available for download from the ftp website for proteins. 
Therefore, we can compare the taxonomic representation of GTDB protein reps to 
16S reps and 16S all of GTDB. When comparing GTDB protein reps to GTDB 16S 
reps we see that around 30% of genomes in GTDB protein reps do not have a 
corresponding 16S sequence (MG only), and around 15% of sequences is shorter 
than 1100 base pairs, which was selected as cutoff for full-length sequences in 
this study (Table S2.1). Comparing GTDB 16S all to GTDB protein reps shows that 
here several genomes are present that are not represented in GTDB protein reps 
(16S only), which would also lead to database discrepancies. 

A closer look at how database discrepancy occurs over the taxonomic tree (Fig 
S5.) shows that on the surface this include Bacteroidetes and Firmicutes_A, which 
are phyla that typically higher 16S gene copy numbers, which limits how easily 
they are assembled within MAGs. Still only around 75% of all phyla have one 
representative in the 16S database (Table S2.1). Looking at the fraction of 
representation of each individual phylum (Fig. S2.4-5), we see that while several 
candidate phyla with provisionary names do not have a single 16S representative, 
but common phyla such as Proteobacteria still have a higher representation. 
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Fig. S2.3 16S length distributions of entries for different databases. For GTDB 16S reps and 16S all, 
representation was compared GTDB protein reps, which showed entries only present in GTDB 
protein reps (MG only) and entries present only in the 16S database (16S only). 
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Fig. S2.5 Representation of taxas over taxonomic ranks (superkingdom, phylum, class, order, family, 
genus & species) within a taxonomic tree for GTDB protein reps genomes, that either contain a full 
length 16S representative( >1200 base pairs), a fragmented represntative (<1200 base pairs) or no 
representative (not in 16S). 
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Fig. S2.4 Fraction of coverage of each phylum in GTDB protein reps compared to GTDB 16S reps. 
Coverage is based on the percentage of species within the phylum that are represented in GTDB 16S 
reps. Fragmented sequences (blue) are shorter than 1200 base pairs, while full length sequences 
(orange) are longer, and red is not represented. 
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Table S 2.1 Comparison of GTDB protein reps and GTDB 16S reps representation for different 
taxonomic ranks. Coverage indicates which percentage of taxa at each taxonomic rank has at least 
one representative in the 16S reps database. Fragmented sequences are shorter than 1200 base 
pairs, while full length sequences are longer. 

 

 

Fig. S2.6 A: Selected SSU GTDB sequences and B: selected parameters for contig annotation. 
 

I. All
II. FL homogenized

C D
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Fig. S2.7 Impact of database homogenization the shared biomass between techniques 16S,  
metagenomics (MG) and metaproteomics (MP) on different plants: Dinxperlo (DXP), Garmerwolde 
(GW) and Simpelveld (SP). The techniques were annotated using either homogenized or non 
homogenized protein databases, and either GTDB 16S reps, GTDB reps 16S full length sequences (FL) 
or GTDB 16S all or GTDB 16S all full-length sequences. The database used in further analysis is reps 
FL hom. 
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2.6.4 Mismatch categorization and extended Sankeys Diagrams 
The effect of database homogenization is further compared for individual 
annotations using Sankey diagrams. Additionally, the full length homogenized 
GTDB database is compared to other conventionally used databases for 16S: Silva, 
Midas and proteins: UniprotKB, Uniref100,90,50 Swiss-Prot, and bacterial Refseq 
and Refseq non-redundant databases. To effectively compare annotations of 
different databases, 3 issues need to be solved: 1. Small nomenclature shifts, 2. 
Gapped sequences, and 3. Dump taxa. Between databases there are several small 
shifts in nomenclature. These can include Candidatus- prefixes, standardized 
suffixes such as -ota for phyla, or the additional specifications  GTDB employs such 
as Firmicutes_A. Lastly some phylogenetic rearrangements can occur such as 
shifting annotations from Betaproteobacteria to Gammaproteobacteria (Parks 
2018).  The distribution of the types of matches and mismatches between 
annotated contigs, and ASVs are shown in tables S2-5, where GTDB FL 
homogenized is compared to RefSeq NR or UniprotKB for metagenomics and 
metaproteomics, and to Midas and Silva for 6S. Categorization goes as follows: 
Same includes identical annotation in both databases, which can be either 
matched for both and unmatched (no taxa assigned) for both. Different, indicating 
different annotation for the 2 compared databases includes name shifts, which 
are effectively the same organisms but differ only due to naming conventions 
employed by the database. Dump taxa concern taxa for uncultured or unspecified 
organisms, which are flagged based on certain keywords (“Uncultured”, 
“Unclassified” etc.). Other concerns different annotations that cannot be 
categorized in another way. Missing concerns mismatches that are either 
annotated only in the GTDB FL annotation (missing-GTDB) or in the database it is 
compared to (missing-db). Gapped lineages can be caused either by incomplete 
lineages, or (gapped-lineage) due to lack of rank normalization, or specifically due 
to dump taxa, which often lack multiple taxonomic ranks (gapped-dump).  
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Table S2.2 Categorization of the types of matches and mismatches  observed for metaproteomic 
annotation between GTDB FL either RefSeq NR or UniprotKB databases over different taxonomic 
ranks. 

 
 

Table S2.3 Categorization of the types of matches and mismatches  observed for metagenomics 
annotation between GTDB FL either RefSeq NR or UniprotKB databases over different taxonomic 
ranks. 
 

 

  

GTDB db lineage dump
phylum 0.65 0.64 0.01 0.35 0.24 0.00 0.05 0.01 0.04 0.00 0.00
class 0.31 0.29 0.02 0.69 0.43 0.00 0.16 0.02 0.08 0.01 0.00
order 0.31 0.27 0.04 0.69 0.21 0.00 0.10 0.02 0.10 0.27 0.00
family 0.32 0.26 0.06 0.68 0.26 0.00 0.12 0.02 0.11 0.17 0.00
genus 0.31 0.16 0.16 0.69 0.21 0.00 0.31 0.08 0.09 0.00 0.00
species 0.27 0.06 0.21 0.73 0.13 0.00 0.27 0.10 0.23 0.00 0.00
phylum 0.64 0.63 0.01 0.36 0.29 0.00 0.03 0.02 0.02 0.00 0.00
class 0.31 0.30 0.02 0.69 0.42 0.00 0.12 0.02 0.06 0.00 0.07
order 0.27 0.24 0.03 0.73 0.17 0.00 0.08 0.03 0.10 0.25 0.13
family 0.27 0.22 0.05 0.73 0.19 0.00 0.06 0.04 0.12 0.16 0.18
genus 0.24 0.11 0.14 0.76 0.21 0.00 0.13 0.10 0.09 0.00 0.28
species 0.21 0.03 0.19 0.79 0.09 0.28 0.17 0.12 0.19 0.00 0.00

Refseq
NR

Uniprot
KB

db rank

Same Different

total matched
not

matched total name 
shift

dump
taxa

other
missing gapped

GTDB db lineage dump

phylum 0.43 0.42 0.01 0.57 0.35 0.00 0.12 0.03 0.07 0.00 0.00
class 0.29 0.27 0.01 0.71 0.35 0.00 0.23 0.03 0.09 0.02 0.00
order 0.44 0.41 0.02 0.56 0.16 0.00 0.21 0.04 0.10 0.05 0.00
family 0.34 0.31 0.03 0.66 0.19 0.00 0.24 0.05 0.11 0.07 0.00
genus 0.34 0.27 0.07 0.66 0.06 0.00 0.38 0.09 0.13 0.00 0.00
species 0.30 0.12 0.18 0.70 0.05 0.00 0.24 0.09 0.33 0.00 0.00
phylum 0.42 0.41 0.01 0.58 0.41 0.00 0.08 0.04 0.05 0.00 0.01
class 0.28 0.26 0.02 0.72 0.29 0.00 0.16 0.04 0.10 0.00 0.14
order 0.37 0.34 0.03 0.63 0.12 0.00 0.10 0.05 0.12 0.03 0.23
family 0.26 0.23 0.03 0.74 0.11 0.00 0.09 0.06 0.15 0.05 0.31
genus 0.22 0.15 0.07 0.78 0.05 0.00 0.14 0.11 0.16 0.00 0.39
species 0.21 0.06 0.15 0.79 0.03 0.39 0.07 0.13 0.27 0.00 0.00

Refseq
NR

Uniprot
KB

Different

total matched
not

matched total name 
shift

dump
taxa

other
missing gapped

db rank

Same
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Table S2.4 Categorization of the types of matches and mismatches observed for 16Sannotation 
between GTDB FL either Midas or Silva databases over different taxonomic ranks. 
 

 

Using GTDB metadata, both Silva and NCBI taxonomy can be mapped to GTDB 
taxa. By comparing the frequency of mapping with a cutoff of 75% taxa’s can be 
normalized to the GTDB nomenclature system. Another important aspect is 
annotation gaps. Since many databases do not employ rank normalization, there 
are several bacteria that lack certain taxonomic ranks. An extreme example of 
these taxa are dump taxa, which often lack all ranks between class and species, 
and have unspecific species identifiers such as unclassified Betaproteobacterium. 
Gapped taxa also occur on non-dump taxa, such as Accumulibacter and 
Competibacter, both of which lack the order rank, and are essential wastewater 
treatment organisms. Gapped sequences present problems in the fact that they 
would allow organisms to be identified only at specific ranks, but this also affects 
lowest common ancestor algorithms. To be prevent loss of information, gapped 
sequences can be filled based and flagged based on their nearest child, while 
dump taxa can be flagged by targeting keywords such as unclassified and 
uncultured.  A first comparison of 16S databases shows high similarity between 
annotations (Fig. S2.13). The Midas database is partly based on Silva annotations 
but has many manual additions and nomenclature shifts. Since the exact links are 
not accessible, the nomenclature cannot be directly homogenized in all cases to 
GTDB standards, which does result in some shifts like Nitrospiria -Nitrospira on 
class level. Other than that, Silva contains dump taxa, and commonly employ the 

GTDB db lineage dump
phylum 0.45 0.45 0.00 0.55 0.41 0.00 0.09 0.04 0.00 0.00 0.00
class 0.72 0.72 0.00 0.28 0.02 0.00 0.20 0.05 0.01 0.00 0.00
order 0.42 0.42 0.01 0.58 0.08 0.00 0.39 0.06 0.04 0.00 0.00
family 0.57 0.56 0.01 0.43 0.05 0.01 0.20 0.10 0.07 0.00 0.00
genus 0.19 0.15 0.04 0.81 0.05 0.01 0.41 0.25 0.10 0.00 0.00
species 0.13 0.00 0.13 0.87 0.00 0.00 0.32 0.47 0.09 0.00 0.00
phylum 0.86 0.86 0.00 0.14 0.03 0.00 0.06 0.04 0.00 0.00 0.00
class 0.85 0.85 0.00 0.15 0.00 0.00 0.10 0.05 0.00 0.00 0.00
order 0.71 0.70 0.01 0.29 0.11 0.01 0.11 0.06 0.01 0.00 0.00
family 0.55 0.54 0.01 0.45 0.13 0.07 0.15 0.10 0.01 0.00 0.00
genus 0.29 0.23 0.06 0.71 0.06 0.18 0.24 0.22 0.06 0.00 0.00
species 0.44 0.00 0.44 0.56 0.00 0.21 0.05 0.15 0.23 0.00 0.00

Midas

Silva

Different

total matched
not

matched total name 
shift

dump
taxa

other
missing gapped

db rank

Same
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name “metagenome” for uncultured samples. This is apparent at species level, for 
which Silva annotations are dominated by dump taxa. Still up to genus level 
annotations seem highly similar between databases, except for the lack of 
Tetrasphaera annotations in GTDB. Tetraspheara is considered a key phosphate 
accumulating organism that is detected in both activated sludge and large 
granules (Stockholm-Bjerregaard 2017, Ali 2019). Upon closer inspection with 
Blast+ only Tetrapsheara Japonica is matched in alignment, but other 
Dermatophilacae have better identity scores in GTDB, which results in an LCA 
annotation only at family level. Aligned genera with better scores include genera 
not represented in Midas, such as Terrabacter and Phycococcus (Sup excel sheet 
x). Therefore, lack of Tetrasphaera could be a result of database incompleteness 
on either side, phylogenetic rearrangement in GTDB, and also lack of taxonomic 
resolution of the V3-V4 16S primer used in this study, however it is also important 
to mention that Tetrasphaera is not significantly detected in metagenomics and 
metaproteomic annotations with any protein database. For protein database 
comparison, also a similar distribution between top taxa is observed at genus level 
(Fig. S2.11-12), except for SwissProt, a very small, curated database included as 
negative control. However, while the ratios of top taxa seem similar there is a 
clear difference in the number of annotated reads and peptides. This is due the 
presence of dump taxa and gapped ranks, which are observed for both RefSeq 
and UniprotKB derived databases, both of which employ NCBI taxonomy. The 
effect is still more pronounced for UniprotKB derived databases. Uniref50 shows 
the worst performance of commonly used metaproteomic databases and 
annotates around one third of the sequences annotated with GTDB on family 
level. Some differences observed for top taxa is that UniprotKB annotates less 
Competibacter sequences for metaproteomics than RefSeq and GTDB, while GTDB 
annotates less rhodobacter sequences. We can also use Sankey diagrams to 
visualize changes in annotation upon using different GTDB 16S databases and 
length trimming (Fig. S2.8-10). When comparing different GTDB databases: reps, 
reps full length, and all, all full length, some difference observed at species level 
where the absence of certain taxa leads to contig LCAs being skewed in a different 
direction. For metagenomic and meproteomic database homogenization overall 
has limited effect, mostly visible at species level, but does lead to ~5% of genus 
level annotations changing (Fig. S2.7). An example is the top metaproteomic 
genus uba_7236, a provisionary taxon that does not contain a full-length 16S 
representative and is not present in the full-length homogenized annotation. 
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Proteomics, GTDB-only comparison

 
Fig. S2.8 Sankey diagram and top 10 taxa for metaproteomic annotation of combined with 3 
different GTDB derived protein databases (GTDB non-homogenized, GTDB reps homogenized and 
GTDB reps FL homogenized).  
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Genomics, GTDB-only comparison

 
Fig. S2.9 Sankey diagram and top 10 taxa for metagenomic annotation of combined with 3 different 
GTDB derived protein databases (GTDB non-homogenized, GTDB reps homogenized and GTDB reps 
FL homogenized). 
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16S, GTDB-only comparison

 

Fig. S2.10 Sankey diagram and top 10 taxa for 16S annotation of combined with 4 different GTDB 
derived ssu databases (Reps, Reps FL ,All, All FL). 
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Proteomics, extended db and ranks comparison     

   

 
Fig. S2.11 Sankey diagram and top 10 taxa for metaproteomics annotated to 8 different protein 
databases (full length GTDB reps, UniprotKB, Uniref100,90,50 SwissProt, and bacterial redundant 
and non-redudant RefSeq) 



78 

 

Genomics, extended db and ranks comparison

 
Fig. S2.12 Sankey diagram and top 10 taxa for metaproteomics annotated to 8 different protein 
databases (full length GTDB reps, UniprotKB, Uniref100,90,50 SwissProt, and bacterial redundant 
and non-redudant RefSeq) 
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16S extended ranks comparison

 
Fig. S2.13 Sankey diagram and top 10 taxa for metaproteomics annotated to 3 different ssu 
databases (full length GTDB reps, Midas and Silva) 
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2.6.5 Tetrasphaera annotation with BLAST+ 

                  

Fig. S2.14 Tetrasphaera ssu annotations in GTDB. A: distribution of GTDB genera aligned with blastn 
for Silva ASVs with family Dermatophilaceae, A: distribution of GTDB genera aligned with blastn for 
Midas ASVs with family Intrasporangiaceae. 
 
A key difference between GTDB ssu anntoations and Silva, Midas was the absence 
of Tetrasphaera. Using BlASTN ASVs were aligned to GTDB FL ssus. For Silva 3 
ASVs were annotated with Tetrasphaera (Fig. S2.14A), and for Midas 20 (Fig. 
S2.14B). The alignment shows that several genera within GTDB show better 
identity percentage than genera annotated as Tetrasphaera within GTDB. 

A

B
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2.6.6 Computational bias 
Contig LCA influence 
An important driver of bias is the effect of conserved proteins on contig level LCA. 
Sweeping the fraction of bitscore parameter (f) applied in contig LCA shows that 
some genera are more sensitive towards increased stringency of “f”. By 
normalizing the relative abundance of organisms to their abundance at f=0.1 their 
shift in abundance can be expressed. Depending how well they match sequences 
in the database, some taxa will more easily lose annotations at higher ranks 
because of dispersed alignments with matched candidates belonging to different 
taxa. Since expressed proteins are often more conserved this effect is more 
pronounced in metaproteomics (Fig. S2.15A) than in metagenomics (Fig. S2.15B) 
which creates a quantification bias. Normalized abundance values to f=0.1 can be 
subtracted between techniques (Fig. S2.15C), which is highlighted more clearly at 
genus level (Fig. S2.15D). This helps explain why certain genera are 
underrepresented in metaproteomic annotations. Sequences aligned to Expressed 
proteins of Rhodoferax,  JJ008 (Chitinofagacae),  WYBL01 (Vicinamibacteria), 
OLB14 (Anaerolineales), Aquabacterium_A, both decrease steeply fraction as 
stringency of the f parameter increases. For metagenomics, this also includes 
Competibacter_A.  This indicates that aligned sequences of these organisms 
include a wider variety of matched taxa within its contigs. If the match has a high 
evalue, this infers that the predicted ORF is unspecific, if the evalue is low, this 
could indicate database incompleteness. 
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Fig. S2.15 Effect of sweeping the allowed fraction of bitscore parameter (f) in contig LCA applied on 
combined samples (DXP, GW, SP), on metaproteomics (A), metagenomics (B), and the difference 
between the shifts (C), zoomed in at genus level  (D) with f=0.5, which was the parameter setting 
applied in this study, with genera favored  in  metagenomics (MG) colored green, and genera 
favored in metaproteomics (MP) colored red. 

 

 

 

 

 

 

 

 

Difference between ra+os MP-MG Genus level difference between ra8os (f=0.5)

MetagenomicsMetaproteomicsA B

C D

f (frac+on of total bitscore) à

favorable

unfavorable

favorable in MP

unfavorable in MP

favorable

unfavorable

MG

MP



83 

 

Bayesian vs BLAST 
Standard annotation of 16S sequences is done with Bayesian classifiers, which 
create a statistical estimator for different taxa. Since BLAST weighs each residue 
equally, the different taxonomic annotation methods employed between 16S 
(Bayesian) and metagenomics (BLAST) could be a source of bias. To investigate 
this, the percentual difference was computed between normal 16S annotation vs 
BLAST metagenomics (Fig. S2.16B) and 16S annotated with nucleotide blast vs 
BLAST metagenomics (Fig. S2.16A). The two percentual differences can be 
subtracted from one another to see which taxa are favored by either annotation. 
This showed that genera Rhodoferax and Propionivibrio are annotated less with 
Bayesian annotation than BLAST, which can help explain quantification differences 
between the methods. 

                        

Fig. S2.16 Effect of using Bayesian classifiers in 16S vs BLAST applied on combined samples (DXP, 
GW, SP), both compared to metagenomics (MG) annotations with BLAST. With 16S BLAST vs MG 
BLAST (A), 16S Bayesian vs MG BLAST (B), and both percentual differences subtracted (C). 
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Peptide LCA 
Another source of computational bias is the additional peptide LCA step which is 
required when a detected peptide is found in multiple organisms within the 
database. The resulting annotation takes the lowest common ancestor of the 
shared peptide. If an organisms has many peptides in the database that overlap 
with other taxa, it will be disadvantaged. This is observed strongly for Zoogloea, 
which has significantly more annotations in metaproteomics when no peptide LCA 
is applied. 
 

 
Fig. S2.17 Effect of using peptide LCA applied on combined samples (DXP, GW, SP), on 
metaproteomic (MP) quantification both compared to metagenomics (MG) annotations. With no 
peptide LCA (A), peptide LCA (B), and both percentual differences subtracted (C). 
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2.6.7 Physiological bias 
Since obtaining accurate cell volume measurements for separate genome is a 
massive challenge, literature reported cell volumes were used instead to correlate 
to observed quantification bias. Not all genera of the subset could be linked to 
existing cell volume data, as this was not available for some of the rarer taxa. 
 
Table S2.5 Literature reported cell volumes 
genus_name Literature 

volume (µ3) 

Area 

(µ2) 

Width Length Reference 

g__Accumulibacter 4.21 14.43 1.75 1.75 Kim 2010 

g__Aestuariivirga 0.70 4.52 0.80 1.40 Li 2019 

g__Aquabacterium_A 1.05 5.94 0.90 1.65 Chen 2016 

g__Azonexus 1.66 8.22 1.00 2.12 Reinhold-Hurek 
2006  

g__Bradyrhizobium 0.81 5.39 0.70 2.10 Somasegaran 2012 

g__Brocadia 0.40 3.02 0.80 0.80 Van Niftrik 2008 

g__CAIMWE01 
    

g__CFX10 4.91 78.64 0.25 100.00 Yamada 2006 

g__CFX2 4.91 78.64 0.25 100.00 Yamada 2006 

g__Competibacter_A 12.57 31.42 2.00 4.00 Mcllroy 2015 

g__DSQQ01 4.91 78.64 0.25 100.00 Yamada 2006 

g__Flavobacterium 0.39 3.53 0.50 2.00 Inzana 1999 

g__GCA-013693735 3.03 12.73 1.13 3.02 Marin 2014 

g__Hyphomicrobium 0.04 0.69 0.25 0.75 Oren 2014 

g__Ignavibacterium 1.90 30.53 0.25 38.75 Liu 2012 

g__JACTMI01 
    

g__JJ008 0.87 5.72 0.70 2.25 Siddiqi 2017 
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g__Litorilinea 19.63 157.47 0.50 100.00 Barberán 2017 

g__M3007 2.20 15.98 0.57 8.64 Mcllroy 2014 

g__Nitrosomonas 1.78 8.33 1.12 1.82 Soliman 2018 

g__Nitrospira_A 0.11 1.60 0.30 1.55 Ehrich 1995 

g__Nitrotoga 0.20 1.96 0.50 1.00 Kitzinger 2018 

g__Novosphingobium 0.19 2.12 0.41 1.46 Choi 2015 

g__OLB13 4.91 78.64 0.25 100.00 Yamada 2006 

g__OLB14 4.91 78.64 0.25 100.00 Yamada 2006 

g__OLB5 1.90 30.53 0.25 38.75 Liu 2012 

g__OLB8 2.20 15.98 0.57 8.64 Mcllroy 2014 

g__PHOS-HE28 0.39 3.53 0.50 2.00 Inzana 1999 

g__PNKE01 0.35 2.81 0.65 1.05 Barberán 2017 

g__Propionivibrio 0.34 3.03 0.51 1.63 Oren 2014 

g__QUBU01 
    

g__Quisquiliibacterium 0.37 2.91 0.65 1.10 Felföldi 2017 

g__R-H-3 0.48 3.56 0.68 1.32 Tamura 2013 

g__RHKY01 
    

g__RXIV01 12.57 31.42 2.00 4.00 Mcllroy 2015 

g__Ramlibacter 2.14 8.04 0.80 
 

De Luca 2011 

g__Rhodoferax 0.99 6.19 0.75 2.25 Hiraishi 1991 

g__Rubrivivax 0.48 3.93 0.55 2.00 Nagashima 2102 

g__SCN-69-89 
    

g__SCN-70-22 1.10 7.04 0.70 2.85 Hanada 2014 

g__Sphingobium 0.11 1.38 0.40 0.90 Qin 2020 
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g__Sulfuritalea 0.28 3.08 0.40 2.25 Oren 2014 

g__Tepidiforma 0.18 2.01 0.40 1.40 Kochetkova 2020 

g__Thauera 0.97 5.96 0.77 2.08 Oren 2014 

g__UBA3362 2.20 15.98 0.57 8.64 Mcllroy 2014 

g__WYAZ01 
    

g__WYBL01 
    

g__Zoogloea 1.42 7.46 0.94 2.06 Oren 2014 

 
Next to the cell volume, one of the strongest factors of the quantification 
difference between metaproteomics and metagenomics comes from strongly 
expressed proteins. To express this into numbers, proteins were counted until a 
fraction 0.3 of the total abundance was reached for a signal (expressed in K). 
Some K values are shown in Table S3 and Fig S18-S20, however K values generally 
depend also on the abundance of the organism, as low abundant organisms will 
have lower coverage, they will also have a lower K value, as there are less proteins 
identified for those taxa. Therefore if an organism is highly abundant and still has 
a low K value, this means that it is strongly overexpressing certain proteins, which 
will affect shotgun metaproteomics. 

Table S2.6 Showcase of some of the more abundant genera and their K values, and relative 
abundance (%) based on peptide spectrum matches (PSMs) 
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Fig. S2.18 Cumulative fraction of proteins, and COG annotated genes, for various genera in the 
sample DXP and their  K-values. 
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Fig. S2.19 Cumulative fraction of proteins, and COG annotated genes, for various genera in the 
sample GW and their  K-values. 
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Fig. S2.20  Cumulative fraction of proteins, and COG annotated genes, for various genera in the 
sample SP and their  K-values. 
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2.6.8 Porin associated bias 
Since porins are so strongly detected by proteomics in the samples, it was 
investigated if there was anything giving them an advantage in detection, other 
than their strong expression. Protein conservedness would not improve detection 
per se, but influences at which taxonomic rank proteins are observed, which could 
bias annotation. The conservedness of nutrient removal genes and cog categories 
was analyzed by making box-plots of the highest taxonomic ranks they are 
annotated at (Fig S21). This revealed that porin proteins are less conserved than 
most other COG categories. Since they are membrane bound, porin proteins could 
be advantaged in ionization and fragmentation due to the increased presence of 
hydrophobic residues. Peptides of porin proteins showed limited difference in 
their hydrophobicity and ionization efficiency (Fig S22). 

 
Fig. S 1 Conservedness of nutrient removal genes (A) and COG categories (B). 

 
Fig. S2.2 Peptide hydrophobicity (A) and ionization efficiency (B) of porin proteins compared to other 
proteins, versus the number of peptide spectrum matches (PSMs). Spots are scaled to PSMs. 
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2.6.9 Simpelveld Binning 
 
Initial binning of the Simpelveld metagenome was done by external collaborator 
Dennis Grouzdev, using the following methods: 
 
Reads were assembled for all samples using metaSPAdes v3.14.0 (Nurk et al. 
2017) at the default settings. Metagenome binning was performed using three 
different binning algorithms: CONCOCT v1.1 (Alneberg et al. 2014), MaxBin 2.0 
v2.2.4 (Wu, Simmons and Singer 2016) and MetaBAT 2 v1.7 (Kang et al. 2019). The 
three bin sets were supplied to DAS Tool v1.0 (Sieber et al. 2018) for consensus 
binning to obtain the final optimized bins. Metagenome assembled genomes 
(MAGs) were assessed for completeness and contamination using lineage-specific 
marker genes and default parameters in CheckM v1.0.1271 (Parks et al. 2015). 
RefineM v. 0.0.2450 was used to remove contamination based on taxonomic 
assignments. The quality metrics were assessed using the QUAST v5.0.1 (Gurevich 
et al. 2013). The GTDB-Tk v1.4.0 (Chaumeil et al. 2020) ‘classify_wf’ command was 
used to get the taxonomic assignment of reconstructed MAGs using the GTDB r95 
database (Parks et al. 2018). Prodigal v2.6.3 (Hyatt et al. 2010) was used as a gene 
caller to identify open reading frames, whereas genes were functionally 
annotated using GhostKOALA (Kanehisa et al. 2016) 
 
The selected top genome bins did not contain several of the well-studied aerobic 
granular sludge organisms, such as Accumulibacter and Nitrosomonas, which 
prompted the investigation of a more comprehensive contig-based annotation. 
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Table S2.7 Das Tool optimized bins of Simpelveld plant. 

 

 

Bin Classification GTDB Coverage Completeness
SP005 o__Bryobacterales;f__Bryobacteraceae;g__UBA690;s__ 15.5 95.6
SP029 o__Pyrinomonadales;f__Pyrinomonadaceae;g__OLB17;s__ 7.4 85.3
SP039 o__Holophagales;f__Holophagaceae;g__;s__ 15.4 98.4
SP021 o__UBA5704;f__;g__;s__ 51.5 92.5
SP015 o__Vicinamibacterales;f__UBA2999;g__;s__ 51.2 90.3
SP022 o__Vicinamibacterales;f__UBA2999;g__;s__ 17.6 80.7
SP032 o__Microtrichales;f__Microtrichaceae;g__UBA11034;s__ 13.6 93.6
SP006 o__Actinomycetales;f__Dermatophilaceae;g__GCA-2748155;s__ 58.8 81.2
SP030 o__Actinomycetales;f__Dermatophilaceae;g__GCA-2748155;s__ 101.6 88.1
SP014 o__AKYH767-A;f__2013-40CM-41-45;g__;s__ 9.5 76.2
SP024 o__Bacteroidales;f__vadinHA17;g__LD21;s__ 8 86.3
SP017 o__Chitinophagales;f__BACL12;g__UBA7236;s__ 100.6 92.2
SP011 o__Chitinophagales;f__Chitinophagaceae;g__Ferruginibacter;s__ 30.8 96.0

SP016 o__Chitinophagales;f__Chitinophagaceae;g__Ferruginibacter;s__Fer
ruginibacter sp002400445 22.5 96.3

SP001 o__Chitinophagales;f__Chitinophagaceae;g__JJ008;s__ 30.3 89.5
SP012 o__Chitinophagales;f__Chitinophagaceae;g__JJ008;s__ 19 49.2
SP002 o__Chitinophagales;f__Saprospiraceae;g__;s__ 85.8 89.5
SP031 o__Chitinophagales;f__Saprospiraceae;g__;s__ 9 42.5
SP013 o__Chitinophagales;f__Saprospiraceae;g__UBA3362;s__ 16.3 94.9
SP020 o__Flavobacteriales;f__PHOS-HE28;g__PHOS-HE28;s__ 15.5 65.3
SP028 o__Flavobacteriales;f__PHOS-HE28;g__PHOS-HE28;s__ 19.7 86.3
SP038 o__Flavobacteriales;f__PHOS-HE28;g__PHOS-HE28;s__ 20.6 87.7
SP041 o__Flavobacteriales;f__PHOS-HE28;g__PHOS-HE28;s__ 7.7 46.3
SP009 o__Ignavibacteriales;f__Ignavibacteriaceae;g__Ignavibacterium;s__ 31 76.4
SP008 o__SJA-28;f__OLB5;g__OLB5;s__ 30.5 71.6
SP010 o__Anaerolineales;f__envOPS12;g__;s__ 14.1 71.6
SP018 o__Obscuribacterales;f__Obscuribacteraceae;g__Obscuribacter;s__ 5.9 61.9
SP035 o__F11;f__FEN-1173;g__;s__ 11.1 95.5
SP033 o__Haliangiales;f__Haliangiaceae;g__;s__ 15.3 99.0
SP025 o__Nitrospirales;f__Nitrospiraceae;g__Nitrospira_A;s__ 13.9 95.3
SP042 o__Rhizobiales;f__Anderseniellaceae;g__PALSA-927;s__ 18.4 97.5
SP007 o__Sphingomonadales;f__Sphingomonadaceae;g__Ga0077559;s_ 31.6 97.7
SP040 o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingobium;s__ 13.4 81.9
SP026 o__UBA1301;f__UBA1301;g__UBA6038;s__ 14.5 85.1
SP037 o__Burkholderiales;f__;g__;s__ 14.4 20.6
SP019 o__Burkholderiales;f__Gallionellaceae;g__UBA7399;s__ 39.5 86.8
SP023 o__Burkholderiales;f__Rhodocyclaceae;g__Fen-999;s__ 47.1 81.0
SP027 o__Burkholderiales;f__Rhodocyclaceae;g__Propionivibrio;s__ 58.5 96.1
SP036 o__Competibacterales;f__Competibacteraceae;g__Competibacter;s__ 17.2 89.8

SP004 o__Competibacterales;f__Competibacteraceae;g__Competibacter;s__
Competibacter denitrificans 25.6 93.3

SP003 o__Pseudomonadales;f__UBA5518;g__UBA5518;s__ 10.9 80.1
SP034 o__Pedosphaerales;f__Pedosphaeraceae;g__;s__ 10.6 88.2
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3.1 Introduction 

State-of-the-art approaches for analyzing the composition of microbial 
communities are based on in situ staining, 16S ribosomal RNA sequencing, or 
whole-genome shotgun-based approaches. Moreover, metatranscriptomics 
provides additional gene activity information, but unfortunately, mRNA levels 
often only poorly correlate with actual protein abundances (Maier et al., 2009). 
Therefore, those approaches do not directly assess the actual phenotype of a 
community, and the actively expressed pathways responsible for metabolic 
conversions remain elusive (Martin and Uroz, 2016). On the other hand, 
metaproteomics targets the functional parts—the proteins—of a community 
directly, and therefore provides insights into the community phenotype. 
Furthermore, because proteins make up the bulk mass of a cell, metaproteomics 
also estimates the contribution of individual community members to the 
community biomass (Kleiner et al., 2017).  

 

In recent years, metaproteomics has gained substantial momentum with the 
development of high-resolution proteomics workstations and the establishment 
of next-generation sequencing (NGS) technologies, which provide affordable high-
quality (protein) sequence databases from complete communities (Wilmes and 
Bond, 2006). Classical metaproteomics approaches employ peptide-spectrum-
matching algorithms used for subsequent protein and species identification. The 
quality and completeness of the employed databases are therefore of utmost 
importance (Timmins-Schiffman et al., 2017; Xiao et al., 2018). A complete 
database covers the genetic potential of all community members and may contain 
hundreds of thousands of sequences. Alternatively, comprehensive (and even 
larger) public sequence databases such as NCBI, UniProtKB/Swiss-Prot, or 
GenBank may be accessed (in addition) (Xiao et al., 2018), which, however, 
require advanced focusing/filtering strategies to manage computational efforts 
(Heyer et al., 2017; Muth et al., 2015, 2016; Potgieter et al., 2019). Very large 
protein sequence databases challenge the common ‘‘peptide-spectrum-
matching’’ algorithms and associated statistical parameters, which have been 
historically developed for single-species proteomics.  
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Consequently, conventional metaproteomics experiments can be compromised in 
regard to sensitivity, accuracy, and throughput (Heyer et al., 2017; Muth et al., 
2015; Timmins-Schiffman et al., 2017). Moreover, database-matching inherently 
biases the outcome of a metaproteomics measurement toward the (constructed) 
protein sequence database.  

 

A database-independent approach, such as de novo peptide sequencing, that 
directly annotates mass spectrometric fragmentation spectra with amino acid 
sequences overcomes the above-mentioned database-related limitations. 
Ultimately, the generation of the peptide sequence lists from the mass 
spectrometric raw data can be regarded as inherently unbiased (Muth et al., 
2016). Following a successful de novo sequencing, the sequence lists only require 
retrieving taxonomic and functional annotations from comprehensive taxonomic 
databases using efficient ‘‘text-search’’ tools. Thereby, de novo sequencing also 
avoids the loss of taxonomic and functional information from community 
members not covered by the database. Those signals (not covered by the target 
database) can be further matched to related species through sequence homology 
searching approaches (Ma and Johnson, 2012). Homology searching further 
increases proteome coverage, by annotating also ‘‘partially correct’’ sequences 
(sequence tags), which are common ‘‘by-products’’ of the de novo sequencing 
process (Ma and Johnson, 2012).  

 

Moreover, de novo sequencing may serve as a direct measure of the proportion of 
unsequenced members in a community. In a similar manner, the usefulness of de 
novo sequencing for evaluating the target sequence database completeness, or 
‘‘suitability,’’ has been demonstrated only recently (Johnson et al., 2020). On the 
other hand, de novo peptide sequencing strongly depends on high-quality mass 
spectrometric data and efficient sequence annotation tools. Therefore, de novo 
sequencing commonly provides fewer spectral identifications when compared 
with database search approaches (Medzihradszky and Chalkley, 2015). 
Nevertheless, whether de novo sequencing provides sufficient qualitative and 
quantitative information for (quantitative) metaproteomic applications has not 
been effectively established to date.  
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Over the past years, several high-performance de novo sequencing algorithms 
have been introduced (Tran et al., 2019; Ma et al., 2003; Behsaz et al., 2020), and 
some have also been proposed for taxonomic profiling applications (Lee et al., 
2018; Mooradian et al., 2019). In addition, a number of advanced web-based 
services that support taxonomic and functional analyses of metaproteomic 
protein and peptide sequences have been introduced only recently (Mesuere et 
al., 2015; Boekel et al., 2015; Zhang et al., 2016; Singh et al., 2019; Riffle et al., 
2017). In this study, we introduce and evaluate a newly established de novo 
metaproteomics workflow for its quantitative performance and taxonomic 
resolution using synthetic and natural environmental community data. 
Furthermore, we introduce a new validation strategy and demonstrate how to 
establish the actual content of individual community members within community 
proteomics data. The new pipeline (NovoBridge) efficiently bridges individual 
components from de novo sequencing, automated annotation of sequences with 
taxonomies, a new validation procedure, and the provision of an output summary.  
 

3.2 Results  

The presented metaproteomics pipeline employs conventional high-resolution 
shotgun proteomics data in which fragmentation spectra are subsequently 
translated into peptide sequence lists by de novo sequencing. The lists are then 
submitted by programmed access to the (public) Unipept database to retrieve 
taxonomic and metabolic information (Singh et al., 2019). Annotations are then 
processed by the established pipeline, which includes grouping into taxonomic 
branches and translation of enzyme commission numbers into KEGG pathways. 
We investigated fundamental aspects and evaluated the performance of the 
established workflow using synthetic and natural microbial communities.  

 

Taxonomic resolution   The first question concerns the taxonomic resolution that can be achieved when matching de novo peptide sequences against particularly large taxonomy databases to retrieve taxonomic and functional annotations. A large number of peptide sequences  

The first question concerns the taxonomic resolution that can be achieved when 
matching de novo peptide sequences against particularly large taxonomy 
databases to retrieve taxonomic and functional annotations. A large number of 
peptide sequences is common to several taxa and can therefore only be unique to 
a certain taxonomic ranking.  
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Hence, the number of unique peptide sequences decreases from higher to lower 
taxonomic rankings. For example, because of the relatedness between taxa, there 
will be many more peptide sequences unique only to the phylum level compared 
with the more distinguished genus or species levels. 

 

For our study, we aimed to retrieve taxonomic information from the Unipept 
database, which contains processed peptide sequences pre-allocated with 
taxonomic and functional annotations derived from the Uniprot database, using 
NCBI taxonomy (Mesuere et al., 2012, 2016). The Unipept ranking uses the 
hierarchical structure of the NCBI taxonomy for which consensus taxa have been 
determined using the lowest common ancestor approach (Mesuere et al., 2012). 
To test the Unipept database for the achievable taxonomic resolution, we 
generated in silico peptide sequences from >1,000 species retrieved from the 
NCBI reference sequences database (www.ncbi.nlm.nih.gov/refseq/). This 
provided for approximately 90% of all peptide sequences taxonomic annotations, 
but as expected, showed a steady decrease in the number of assigned peptides 
from higher to lower taxonomic rankings (= ‘‘drop-off rate’’), with a particularly 
large drop between genus and species levels (Figure 1C). It is worth noting that 
deviations from this ‘‘drop-off rate’’ can be observed for species from highly 
sampled taxa and species with inconsistent taxonomic classifications. This impacts 
not only the quantitative performance but may also limit the taxonomic 
resolution, because a certain number of peptides is required for the identification 
of a respective taxon.  

 

Furthermore, because there is no complete taxonomy database available, there is 
always a high likelihood of ‘‘unsequenced’’ community members—those that are 
not in the taxonomy database—being present in the community. Those retrieve 
annotations through related species mostly at higher taxonomic rankings and will 
therefore provide only a comparatively low taxonomic resolution. A quantitative 
analysis should therefore aim to investigate the ‘‘drop-off rates’’ for individual 
taxonomic branches, in order to flag poorly quantitative traits. For this, in silico 
peptidomes may serve as highly useful comparators to establish the actual 
content of a member within the community proteomics data.  
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A validation procedure  

De novo sequencing commonly generates a fraction of only partially correct 
peptide sequences. This raises the question of whether those incomplete 
sequences lead to false-positive assignments, which bias the taxonomic 
representation of the community.  

As a measure of confidence for de novo-established peptide sequences, the 
software platform PEAKS provides the average local confidence (ALC) score, and 
DeepNovo, the p score (Ma et al., 2003; Tran et al., 2019, 2017). Although these 
parameters are useful for ranking de novo sequences based on their quality, an 
estimate on the actual number of incorrect sequences is not provided.  

Consequently, additional measures are required to give confidence in the 
taxonomic representation achieved by de novo generated sequences. A recently 
proposed solution employs a taxonomic database containing sequences not only 
in correct but also in reverse order. This strategy enables to make use of the 
widely employed target/decoy approach (Mooradian et al., 2019). However, 
database volumes are thereby duplicated, and considering only single taxonomic 
points does not allow performance of a quantitative investigation of the 
taxonomic profiles.  

 
 

Figure 1. Overview of the de novo metaproteomics workflow and an evaluation of fundamental 
characteristics (A) Shotgun metaproteomics workflow. Shotgun metaproteomic raw data from 
microbial communities are de novo sequenced and processed through the established pipeline as 
‘‘correct’’ and randomized sequences. The peptide-centric approach accesses Unipept (Mesuere et 
al., 2016) to obtain taxonomic and functional annotations. Further processing includes grouping into 
taxonomic branches and translation of functional annotations into KEGG pathways. High quality 
unmatched sequences are further made accessible for homology search approaches such as BLAST+. 
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(B) Specificity of taxonomy databases for de novo peptide sequence lists. Shotgun proteomic data 
from pure reference strains were de novo sequenced and processed through the established de 

novo metaproteomics pipeline to retrieve taxonomic annotations. The annotated sequences were 
then grouped into taxonomic lineages (phylum, class, order, family, and genus) and represented as 
circle graphs. The circle areas correlate to the normalized sequence counts of the respective 
taxonomic rank. Every reference strain is represented by four circle lanes: black triangle arrow, ‘‘# of 
measured peptides per rank,’’ which counts the number of peptide sequences annotated to the 
lineage of the target strain, e.g., A. baumannii; gray triangle arrow, ‘‘other,’’ which counts the 
number of peptide sequences annotated to other taxonomic lineages than the target strain; light 
gray triangle arrow, ‘‘random,’’ which counts the number of randomized peptide sequences which 
received a taxonomic annotation; blue triangle arrow, ‘‘# of in silico peptides per rank,’’ which 
counts the number of in silico target strain sequences for every rank. The experiment confirms that 
erroneous or only partially correct de novo sequences only insignificantly interfere with the 
taxonomic representation of the metaproteomic sample. Furthermore, the low number of ‘‘other’’ 
strain assignments confirmed the purity of the selected reference strain samples. Except for the in 
silico experiments, the averages of duplicate analyses are shown.  
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(C) In silico proteome recall study. The bar graph shows the average number of in silico peptide 
sequences which retrieved taxonomic or ‘‘enzyme commission number’’ annotations. The in silico 

peptide sequences were generated from a large number of proteomes (>1,000, retrieved from the 
NCBI reference proteome database). The individual taxonomic rankings domain (D), phylum (P), 
class (C), order (O), family (F), genus (G), and species (S) are shown as separate bars. Approximately 
90% of the peptides obtained taxonomic annotations (black bars), and 10%–20% retrieved 
additional functional annotations (enzyme commission numbers, white bars). The number of 
sequence annotations per taxon showed a steady decrease from the phylum to the genus level 
(‘‘drop-off’’ rate, red arrow).  

(D) Evaluation of de novo sequence quality parameters. The bar graph shows the average number of 
random sequences which obtained a taxonomic annotation, when considering different quality 
parameter thresholds. The randomized sequences were generated from the ‘‘correct’’ reference 
strains de novo sequence lists (excluding T. brucei and Ca. Accumulibacter). The quality parameter 
thresholds evaluated were the average local confidence score (ALC, PEAKS platform) and frequency 
limits (# of peptide sequences observed for an individual taxonomic identifier). ALCs below 60 and 
frequency limits <3 increased the percentage of random sequence annotations to >5%. Therefore, 
an ALC of 70 and a minimum of 3 sequence annotations per taxon were set as default thresholds for 
the experiments in this study.  
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(E) The percentage of annotated de novo sequences. The bar graph outlines the percentage of de 

novo sequences submitted to Unipept, which retrieved taxonomic annotations. The bars (1–10) 
represent the strains shown in Figure 1B (A. baumannii, top of the image; L. sakei, bottom right of 
the image). The blue bars represent all annotations including ‘‘root’’ level, which are sequences 
common to all domains of life; the light blue bars represent annotations assigned to domain level 
and lower; and the green bars show annotations assigned to phylum level and lower. The yellow 
bars indicate the average number of random annotations at the lower taxonomic rankings. The 
observed differences in the degree of sequence annotations are supposedly a consequence of 
differences in employed sample preparation protocols and instrumental setups. Therefore, although 
the percentage of assigned sequences are difficult to compare between different laboratories, those 
parameters are likely to provide a useful quality parameter when operations are standardized within 
one laboratory.   

 

Therefore, we aimed not to randomize the target database sequences but to 
randomize the peptide query sequences instead. To qualify this approach, we 
processed proteomics data from pure reference species, once in correct order, 
and once after peptide sequence randomization. The randomized sequences 
retrieved a surprisingly large number of taxonomic annotations at the root (>20%) 
and super kingdom levels (>10%) but were consistently low for the lower 
taxonomic rankings (Figures 1B and 1D). Only small proportions of other taxa 
were observed, mostly related to culturing and sample preparation conditions, or 
the samples themselves (such as virus L-A related proteins for the yeast S. 
cerevisiae). Several of those unexpected matches were only identified at certain 
taxonomic levels, which underlines the importance of measuring the taxonomic 
profiles across several taxonomic rankings (e.g., from phylum, family, or genus 
level) rather than single taxonomic points (e.g., only genus level) (Figure 1B; Table 
S5).  Next, we constructed the theoretical drop-off rates using the reference 
proteomes of the test strains to investigate for ‘‘hidden’’ side populations, not 
covered by the taxonomic database. This, however, showed that the theoretical 
and the observed drop-off rates were very comparable, which confirmed the 
purity of the selected reference strains.  

In summary, using the pure reference strain samples and the sequence 
randomization strategy, we could demonstrate that de novo sequence lists 
provide only small numbers of erroneous assignments at lower taxonomic 
rankings (phylum and genus).  
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Quantitative community profiling  

Finally, we investigated the quantitative aspect when measuring more complex 
communities. Kleiner et al. only recently demonstrated the usefulness of 
metaproteomics for estimating species biomass contributions (Kleiner et al. 2017). 
Thereby, the authors generated highly useful metaproteomic reference data from 
synthetic communities consisting of species with ‘‘equal protein’’ and ‘‘equal cell’’ 
content. We de novo sequenced the publicly available raw data from both 
synthetic communities and subjected the obtained sequence lists to our data-
processing pipeline. By employing the abovementioned multi-point taxonomic 
evaluation, we achieved a particularly good quantitative representation of the 
community as shown for the ‘‘equal protein’’ community (phylum and family) in 
Figure 2A. The 17 genus-level identifiers provided a comparably good correlation, 
although 3 strains did not provide sufficient unique peptides at this lower level. 
The same good species abundance correlation was achieved when analyzing 
another dataset of the same ‘‘equal cell’’ community, thereby also comparing 2 
different de novo sequencing platforms, PEAKS and DeepNovo (Figure 3). Verifi-
cation of parameters such as ALC scores and mass error, including species 
abundance correlations, obtained for the ‘‘equal cell’’ synthetic community are 
shown in Figures S1–S4.  

 

Furthermore, we aimed to apply the de novo pipeline to datasets from two 
natural communities. Thereby, we first processed a publicly available 
metaproteomic dataset published by Mikan et al., representing microbiomes 
sampled from the Bering Sea (Mikan et al., 2020). We generated peptide 
sequences once using de novo sequencing and once using peptide-spectrum- 
matching employing the metagenomics constructed database published by the 
authors. Thereby, the taxonomic profiles between both approaches were highly 
comparable (Figure S5A), where only some of the very-low-abundance members 
were not resolved by the de novo approach. However, the metaproteomics 
approaches indicate a stronger contribution of the Alphaproteobacteria, 
compared with the 16S rRNA sequencing data published by the authors (Figure 
S5A).  
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Figure 2. Quantitative taxonomic profiling of microbial communities  

(A) Analyzing the community composition by de novo metaproteomics. Proteomics data from a 
synthetic community, as established by Kleiner et al. (Kleiner et al., 2017), were used to evaluate the 
quantitativeness of the established de novo metaproteomics workflow. For this, the raw data were 
once de novo sequenced and once analyzed using the constructed target database published by the 
authors. The taxonomic rankings from phylum and family are represented as circle graphs. Thereby, 
rows annotated with: ‘‘DN’’ show the protein abundances of each taxon using the de novo 

sequences; ‘‘DB’’ show the protein abundances obtained for each taxon using the sequences 
established by database matching; ‘‘RB’’ show the protein abundances obtained after grouping the 
taxon annotated database matched peptides directly; ‘‘T’’ shows the theoretical (true) protein 
abundances for each taxon. The circle areas correlate to the normalized spectral sequence counts of 
the respective taxon. All community members show abundance profiles, which strongly correlate to 
the expected/true (T) species protein abundances. The taxonomic lineages of Rhizobiaceae and 
Rhodobacteriaceae are outlined with arrows for exemplification purposes. Those account for 
approximately 13% and 8.5% of the total community protein content, respectively. Shown is the 
average of duplicate analyses. The taxonomic identifiers with the numbers 1–27 represent: (1) 
Bacteria, (2) Eukaryotes, (3) Archaea, (4) Proteobacteria, (5) Firmicutes, (6) Chlorophyta, (7) 
Thaumarchaeota, (8) Deinococcus-Thermus, (9) Alphaproteobacteria, (10) Gammaproteobacteria, 
(11) Bacilli, (12) Betaproteobacteria, (13) Chlorophyceae, (14) Nitrososphaeria, (15) Deinococci, (16) 
Rhizobiales, (17) Alteromonadales, (18) Bacillales, (19) Burkholderiales, (20) Chlamydomonadales, 

16 24
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(21) Neisseriales, (22) Enterobacterales, (23) Nitrososphaerales, (24) Rhodobacterales, (25) 
Pseudomonadales, (26) Xanthomonadales, and (27) Thermales. The lower graph shows the 
Spearman’s rank correlation between the peptide sequence lists (obtained by DB matching, ‘‘DB,’’ 
and DN sequencing, ‘‘DN’’) and the expected protein abundance ratios (‘‘T’’). Overall, the correlation 
to the expected protein abundances was strong for both sequence list approaches (e.g., >0.82 for 
the DN sequence lists from phylum to order, and 0.67 only at the family level, considering all 
taxonomic identifiers, including ‘‘x’’). The very comparable correlation between the de novo and the 
database-matching generated sequence lists confirms the high quality of the de novo established 
peptide sequences. The profiles obtained after directly grouping the database spectrum-matched 
peptides show, as expected, a slightly better correlation. Therefore, the difference between these 
profiles and the profiles obtained by the sequence lists shows the impact of the database, such as 
sequence coverage and volumes. The database used for the database-matching experiments 
consisted of the reference proteomes of the strains present in the synthetic community, and 
therefore represented a comparatively focused, complete, and non-redundant database. Moreover, 
the very large and generic Unipept peptide sequence database, used to annotate the peptide 
sequence lists, contained only closely related taxa for some strains (e.g., for Roseobacter sp. AK199).  

 (B) KEGG pathway community profiles. The graphs compare profiles for the major KEGG categories 
‘‘metabolism’’ and ‘‘genetic information processing,’’ obtained by sequence lists from de novo 

(outer circles) or peptide-spectrum matching approaches (inner circles) of the ‘‘equal protein’’ 
community. Both de novo (DN) and the database (DB) sequences provide very comparable profiles. 
Nevertheless, since peptide sequence lists are compared against a large genomic space, sequences 
can be matched to several enzymes or different pathways, which may inflate functional annotations. 
See also Figure S6. (C) Establishing the actual contribution of community members. The de novo 
metaproteomic analysis of a Ca. Accumulibacter enrichment culture suggests a very high enrichment 
(>95%, ‘‘other’’ versus ‘‘Accumulibacter,’’  
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∆*). Furthermore, comparing the experimental with the in silico ‘‘drop-off’’ rates, shows only a 
discrepancy of approximately 17% (small bar graphs, ∆**). To investigate for potential ‘‘hidden’’ 
members not covered by the taxonomic database, the high- quality (HQ) unmatched sequences (top 
20% fraction based on ALC scores) were analyzed using BLAST+ for homolog sequences. Thereby, 
more than 80% of the newly retrieved annotations were again assigned to Ca. Accumulibacter (small 
pie chart), confirming the content estimated after drop-off correction. The individual circle graph 
columns represent: black triangle arrow, ‘‘# of measured peptides per rank,’’ which counts the 
peptide sequences annotated to the lineage of Ca. Accumulibacter; blue triangle arrow, ‘‘# of in 

silico peptides per rank,’’ which represents the number of Ca. Accumulibacter in silico sequences per 
taxon; light gray triangle arrow, ‘‘random,’’ which counts the number of randomized peptide 
sequences which received a taxonomic annotation; gray triangle arrow, ‘‘other,’’ which counts the 
number of measured peptide sequences annotated to other taxonomic lineages than Ca. 
Accumulibacter. The circle areas correspond to spectral sequence (peptide) counts for the 
respective taxonomic ranking.  

 

The second dataset was derived from the metaproteomic analysis of a 
wastewater treatment plant community, published by Hansen et al. (Hansen et 
al., 2014). The authors investigated different protein extraction procedures to 
maximize extraction reducibility and community coverage. We therefore analyzed 
the mass spectrometric raw data obtained from the most efficient protocol 
through the established metaproteomics pipeline. Furthermore, the observed 
community profiles appeared very comparable between the de novo-generated 
peptide sequences and the (metagenomics) database search peptide sequence 
matches. Again, differences were only observed in the very low-abundance 
community members. Moreover, the de novo phylum-level profile of the de novo 
dataset was found highly comparable to qFISH data established from the same 
community at an earlier time point (Albertsen et al., 2012) (Figure S6).  

 

Database incompleteness and spectral volume dependency 

To evaluate the impact of incomplete databases, we simulated scenarios where 
the taxonomies present in the microbiomes are not covered by the taxonomic 
database (e.g., Unipept). As a consequence, measured peptide sequences from 
those taxonomic identifiers would only match to related taxa (potentially) present 
in the same database. Interestingly, when all species or genera (present in the 
synthetic ‘‘Kleiner community’’ or Bering Sea microbiome) were removed, the 
obtained community profiles at the higher taxonomic rankings (e.g., 
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family/phylum) changed only marginally compared with the unfiltered database 
output (Figures S2B and S5B). However, an incomplete taxonomic database 
unavoidably limits the achievable taxonomic resolution. Nevertheless, this is 
expected to become an increasingly less impactful parameter over time. 
Proteome/genome databases have been rapidly expanding over the past years, 
and this is likely to further accelerate due to the continuous advancements in 
sequencing technologies. For example, the RefSeq database expanded by 
approximately 25,000 entries for bacteria alone over 5 years (November 2015–
November 2020), which corresponds to an increase of >100 million protein 
sequences in that period of time (www.ncbi.nlm.nih.gov/refseq/statistics/).  

Furthermore, to evaluate the dependency of achieving a comprehensive 
taxonomic coverage on the volume of peptide sequences, we performed a 
random downsampling of the peptide sequences from the synthetic ‘‘Kleiner 
community’’ and the Bering sea metaproteomics datasets. To evaluate the impact 
of the downsampling procedure, we plotted the number of the remaining 
sequences against the obtained number of taxonomic identifiers. This showed a 
plateau for the number of obtained taxonomic identifiers at a certain percentage 
of the original number of peptide sequences (approximately 40%–60% for the 
‘‘Kleiner community’’ and approximately 80%–90% for the Bering Sea 
microbiome) for both metaproteomic experiments. This means that (nearly) no 
new taxonomic identifiers were obtained after this fraction of peptide sequences 
and that the acquired datasets therefore indeed comprehensively cover the 
microbiome biomass.  

 

Establishing the actual content of a community member  

Finally, we aimed to investigate the usefulness of in silico drop-off curves (the 
decrease in the number of peptides, assigned to different taxonomic ranks from 
the higher to the lower taxonomic ranks using the (lowest common ancestor [LCA] 
approach) and BLAST+ homology search, for investigating the actual content of an 
enrichment culture. Evaluating the drop-off rates of a lineage enables one to 
evaluate whether the observed numbers of peptides at the higher taxonomic 
levels (e.g., phylum level = Proteobacteria) are aligned with the number of 
peptides observed at lower taxonomic levels (e.g., Ca. Accumulibacter, genus 
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level). This approach allows one to evaluate whether the proportion of 
proteobacteria is likely derived from Ca. Accumulibacter or whether there are 
other lineages present that are not covered by the database. Ca. Accumulibacter 
has been described frequently as showing strong discrepancies in the proposed 
community contribution when comparing between FISH and 16S RNA sequencing-
based techniques (Stokholm-Bjerregaard et al., 2017).  Therefore, we analyzed an 
Accumulibacter enrichment culture metaproteomic dataset through the described 
pipeline, which indicated a particularly high enrichment (Figure 2C, approximately 
98% at the genus level [D*], in contrast to 16S RNA data for the same reactor at 
an earlier time point of approximately 34% [Da Silva et al., 2018]). When 
comparing the experimental drop-off rate for the lineage of Ca. Accumulibacter 
with the in silico constructed drop-off curve, we observed a discrepancy of only 
approximately 17% (D**), meaning that nearly all sequences assigned to 
proteobacteria translate to the Ca. Accumulibacter genus-level annotations.  

Nevertheless, to fully exclude significant quantities of potential other 
populations—e.g., from other phyla, not captured by the (Unipept) database—the 
high-quality unmatched sequences (top 20% based on ALC scores) were analyzed 
using BLAST+ against the non-redundant NCBI protein sequence database (for the 
sake of speed using a local installation). Thereby, approximately 83% of newly 
retrieved (genus level) sequences could be attributed again to Ca. Accumulibacter 
(Table S7; Figure 2D), reflecting the estimated content obtained after drop-off 
correction. Moreover, the high degree of enrichment indicated by our 
metaproteomics experiments is in good agreement with the observed phosphate 
accumulation activity, observed for this culture during lab experiments (data not 
shown).  Determining the fraction of unmatched (high-quality) spectra has already 
been proposed as an indicator for the presence of community members not 
captured by the database (Kleiner et al., 2017; Johnson et al., 2020). The fraction 
of unmatched high-quality spectra, however, may considerably depend on the 
applied analytical procedures. The same was observed for the reference strains 
used in this study, in which raw data were acquired from different laboratories 
and thus showed large variations in their fraction of peptides that obtained 
taxonomic annotations (Figure 1E). Although this approach appears very 
promising, it may provide misleading conclusions if not corrected for individual 
analytical procedures.  
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Figure 3. Comparison of microbiome profiles established by PEAKS and DeepNovo (A) Community 
profiles of the ‘‘equal protein’’ community established by PEAKS and DeepNovo. The circle graphs 
show the taxonomic profiles obtained from the ‘‘equal protein’’ community (Kleiner et al., 2017) 
established by PEAKS or DeepNovo. De novo sequence lists from both platforms were processed by 
the established de novo metaproteomics pipeline using the same parameters. ‘‘T’’ represents the 
true abundance of the respective community members (dashed box). ‘‘PEAKS SC’’ represents the 
established profiles obtained from the PEAKS de novo sequences using spectral sequence counting. 
‘‘DeepNovo SC’’ represents profiles obtained from the DeepNovo de novo sequences using spectral 
sequence counting. The unexpected, ‘‘other’’ taxonomic annotations were summed and are shown 
as circles labeled with ‘‘X.’’ The experiment demonstrates that both tools provide very comparable 
taxonomic profiles and only differ in the proportions of the unexpected ‘‘other’’ matches. The circles 
represent the average of 2 analyses, where the circle areas correlate to the normalized spectral 
sequence counts. The left upper graph shows the Spearman’s rank correlation of the taxonomic 
profiles between PEAKS and DeepNovo. The very strong correlation (rS between 1.0–0.97, from 
phylum–family, considering the expected taxonomic identifiers, 1–40) confirms that both tools 
provide highly comparable peptide sequence lists.  
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3.3 Discussion 

Metaproteomics has emerged as one of the most promising post-genomics 
approaches to study microbial dynamics in nature or in the context of human 
health, such as the microbial dynamics of the gut microbiome (Behsaz et al., 2020; 
Timmins-Schiffman et al., 2017). However, common metaproteomics workflows 
require the laborious construction of high-quality protein sequence databases. 
Thus, spectrum-matching algorithms are challenged by very large databases or 
unsequenced community members not covered by the database. Furthermore, 
the quantitative aspect is often only poorly supported, despite being utmost 
important when investigating community dynamics.  

Here, we introduce a newly established de novo metaproteomics workflow, which 
enables quantitative profiling of microbial communities within a very short 
analysis time. We provide a systematic evaluation of the taxonomic resolution and 
quantitative performance using reference strains and natural communities. 
Thereby, we introduce a validation procedure and demonstrate how to establish 
the actual content of community members within community proteomics data. 
The established pipeline automates data filtering, taxonomic annotation, 
additional validation procedures, grouping, and reporting of taxonomic and 
functional outputs with only minutes of processing time for a typical shotgun 
metaproteomics dataset. In comparison, metagenomics including database 
construction, or the analysis of the mass spectrometric data against very large 
generic databases, typically requires (several) days of processing time.  

 

Notably, because our approach is database independent, it generates peptide 
sequences also from ‘‘not-in-the-database’’ community members, making them 
accessible for further interpretation. The achievable resolution in de novo 
metaproteomics, however, depends not only on the taxonomic database but also 
on the abundance of the individual community members. Moreover, a completely 
metagenomics-independent evaluation of a community, containing only 
unsequenced community members, will likely provide only a comparatively low 
taxonomic resolution or provide assignments only to the closest taxa present in 
the database.  
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The evaluation we performed demonstrates that the highest accuracy is achieved 
up to the family level, which could therefore be suggested as the default level of 
operation. However, an improved resolution and quantification (number of 
peptide matches) for the lower taxonomic rankings—such as genus or even 
species level—could currently be achieved by performing a de novo/database-
matching hybrid approach. De novo-established taxonomies thereby guide the 
construction of a focused database from large generic databases, which 
subsequently  can be used for comparatively efficient peptide-spectrum- 
matching experiments.  

Nevertheless, the current vast technical advancements in the field of mass 
spectrometry and sequencing algorithms are likely to continue improving the 
quality of the sequencing spectra and thus the number of correct de novo 
sequence annotations in the near future. Ultimately, this will strengthen and 
expand the scope of de novo metaproteomics as either a hybrid, orthogonal, or 
stand-alone approach.  
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3.5 methods 
Application of publicly available data  

The synthetic community proteomic raw data were downloaded from 
ProteomXchange server project PXD006118, established by M. Kleiner and M. 
Strous labs (Kleiner et al., 2017). Protein content and taxonomic lineages of the 
synthetic community samples used have been further outlined in the Tables S2 
and S3. Due to incomplete coverage of viral strains in the Unipept database, 
viruses were not further considered in the quantitative analysis. Shotgun 
proteomic raw data from Rhodopseudomonas palustris were retrieved from the 
project PXD013729 generated by E. Nakayasu, Pacific Northwest National 
Laboratory and C.S. Harwood, University of Washington, Campylobacter jejuni raw 
data were retrieved from PXD005306 generated by M. Monroe, and J. Adkins, 
Pacific North-west National Laboratory, Paracoccus denitrificans raw data were 
downloaded from project PXD013274 generated by T. J. Erb and M. Glatter, MPI 
Marburg, respectively. Lactobacillus sakei PXD011417 from C. Ludwig, Bavarian 
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University 
Munich. Acinetobacter baumannii PXD011302 from M. Feldmann Washington 
University School of Medicine and J. Scott, University of Melbourne; 
Streptococcus mutans PXD006735 from J. Koh and K.C. Rice, University of Florida; 
Trypanosoma brucei PXD009073 from J.W. Dupuy form Centre de Ge ́ nomique 
Fonctionnelle Bordeaux, France and M. Boshart, from Ludwig-Maximilians-
University Munich Martinsried, Germany. Additional environmental community 
reference dataset shown in Figure S5, was obtained from PXD008780, as 
published by B. L. Nunn and E. Timmins-Schiffman of the University of Washington 
(Mikan et al., 2020). The waste water treatment plant community data shown in 
Figure S6, were obtained from processing PXD000862, which were published by S. 
A. Hansen and F. A. Herbst, from Aalborg University.(Hansen et al., 2014) 
Comparative database-search peptide sequences were retrieved from published 
supplemental information, which were filtered for sequences with PEP<0.01 
before processing through the pipeline. qFISH abundances were obtained from 
the paper published by Albertsen et al. (2012),(Albertsen et al., 2012) using the 
‘GetData Graph Digitizer’ tool.  
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Whole cell lysate proteolytic digestion  Approximately 25-50mg biomass (wet weight) of each cell pellet/material were homogenised by beads beating in TEAB/B-PER reagent (Thermo ScientificÔ, for bacterial cells such as Ca. Accumulibactor phosphatis enrichment and Clostridium sacch.) or 
Y-PER reagent (Thermo ScientificÔ, for yeast cells), respectively. The supernatant 
was collected by centrifugation at 14.000xg. The protein content was precipitated 
using TCA (1 vol TCA 100 w/v % to 4 vol sample) followed by washing with ice cold 
acetone. The protein pellet was resuspended in 200 mM ammonium bicarbonate 
containing 6M Urea, reduced in a 10 mM DTT solution at 40C for 1 hour, and 
alkylated using 20 mM IAA in the dark, at room temperature, for 30 minutes. The 
solution was diluted to below 1 M Urea and digested using sequencing grade 
Trypsin at a protease to protein ratio of approximately 1:50. Peptides were 
desalted using Oasis HLB solid phase extraction cartridges (Waters Corporation) 
according to the protocol provided by the manufacturer, speed-vac dried and 
resuspended in 3% acetonitrile in H2O, containing 0.1% formic acid.  

 

Shotgun metaproteomic analysis  

An aliquot of each sample was analysed using a nano-liquid-chromatography 
system consisting of an EASY nano LC 1200 equipped with an Acclaim PepMap 
RSLC RP C18 reverse phase column (75mm x 150mm, 2mm) coupled to a QE plus 
Orbitrap mass spectrometer (Thermo, Germany). Solvent A was H2O containing 
0.1% formic acid, and solvent B consisted of 80% acetonitrile in H2O, containing 
0.1% formic acid. The flow rate was maintained at 300 nL/min. The Orbitrap was 
operated in top 10 data dependent acquisition (DDA) mode, acquiring peptide 
signals form 350-1400 m/z, at 70K resolution in MS1 with an AGC target of 3e6 
and max IT of 100ms. For yeast, approx. 250ng protein digest were analysed using 
a short linear gradient from 4 to 30% B over 32.5 minutes, and further to 70% B 
over 12.5 minutes. MS2 acquisition was performed at 17.5K resolution, with an 
AGC target of 2e5, and a max IT of 54ms, using a NCE of 28. Unassigned, singly 
charged as well as 7, 8 and >8 charged mass peaks were excluded. For bacterial 
samples, approx. 100ng protein digest were analysed using a linear gradient from 
5-30% B over 85 minutes and further to 75% B over 25 minutes. MS2 acquisition 
was performed at 17.5K resolution, with an AGC target of 1e5, and a max IT of 
54ms, at a NCE of 30. Unassigned, singly charged, 8 and >8 times charged mass 
peaks were excluded.  

 



118 

 

PEAKS and DeepNovo raw data processing  Comparative database-search peptide sequences were retrieved from published supplemental information, which were filtered for sequences with PEP<0.01 before processing through the pipeline. qFISH abundances were obtained from the paper 
published by Albertsen et al. (2012),(Albertsen et al., 2012) using the ‘GetData 
Graph Digitizer’ tool. Peptide sequencing procedures: Mass spectrometric raw 
data were processed using PEAKS Studio X (Bioinformatics Solutions Inc., 
Canada)(Ma et al., 2003) for database search and de novo sequencing, or 
DeepNovo(Tran et al., 2019) for comparative de novo sequencing studies. Both, de 
novo sequencing and database search was performed allowing 15ppm parent ion 
and 0.015Da fragment mass error (depending on the acquisition, slightly more 
tolerant parameters such as 20ppm/0.02Da were applied). Carbamidomethylation 
was set as fixed and methionine oxidation as variable modifications. Database 
search allowed in addition N/Q deamidation as variable modifications. The same 
settings were applied to DeepNovo where applicable, otherwise software default 
settings were used. Database search further used decoy fusion for estimation of 
false discovery rates (FDR) and subsequent filtering of peptide spectrum matches 
for 1% FDR. Only the top ranked de novo sequence annotations were considered 
for processing. Both, sequence lists were further processed through the same 
metaproteomics pipeline. Except for the comparative study, shown in Figure 3, 
PEAKS was used to generate sequence lists.  

NovoBridge data processing pipeline  The NovoBridge Matlab pipeline is freely available upon request from the lead contact. A conversion (including description) of the original pipeline into Python code is available via github.com.https://github.com/hbckleikamp/NovoBridge  

A Matlab ‘main script’ was constructed that links together functions for pre-
filtering, sequence randomisation, automated submissions to Unipept to obtain 
taxonomic and functional information, threshold filtering, taxonomic grouping 
and visualisation of output data. The pipeline was established and tested with 
peptide sequence lists generated by de novo sequencing using PEAKS or Deep- 
Novo, from high-resolution QE Orbitrap shotgun proteomics raw data. The script 
was constructed using Matlab 2017b and 2019 respectively.  

Function 1, pre-filtering, sequence randomisation and Unipept submission  

The first part of the script involves importing peptide sequence lists (obtained 
from PEAKS/DeepNovo) into the Matlab environment and to perform pre-filtering 
based on the sequence annotation quality parameters. The default pre-filtering 
thresholds were set to ALC scores >40, less than 20ppm mass error and a 
minimum peptide length of 7 amino acids. Sequence lists were ‘cleaned’ from 
peptide modification annotations and mass errors were corrected for mass drifts. 
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The Matlab ‘rand’ function was further used to generate additional randomised 
sequences from imported de novo lists. Thereby, the order of amino acids in front 
of the cleavage site (R or K) of every sequence was randomised, keeping original 
sequence parameters attached. Automated sequence submission to Unipept was 
done using Unipept‘s inbuilt API (https://unipept.ugent.be/apidocs) 
option.(Mesuere et al., 2015) For  

retrieving taxonomic information, ‘pep2lca’ including the options 
’&equate_il=true’, to equate leucine and isoleucine, were used. Further, 
‘&extra=true &names=true’ are specified to get the complete taxonomic lineage 
and the names of every taxonomic rank. The script automatically filters for the 
main categories super kingdom, phylum, class, order family, genus and species. 
The ‘pept2- funct’ combined with the option ’&equate_il=true’ was used to 
retrieve additional EC number information.(Mesuere et al., 2015) Thereby, a 
single peptide sequence can generate multiple EC numbers or pathways which 
cause functional inference and inflation, particularly when searching against a 
large sequence database space. For this study, only the top scoring peptide 
sequence per scan was considered.  

Function 2, compositional analysis  

The compositional analysis considered the major taxonomic categories super 
kingdom, phylum, class, order, family, genus and species. Depending on data 
quality/abundance, lower ranks (such as species or genus) were excluded from 
quantitative analysis/representation due to low numbers or insufficient 
annotations. In a first step, tables were filtered for sequences with ALCs >70 (or 
less than -0.1 for DeepNovo), and a mass error of less than 15 ppm. To exclude 
random matches from erroneous de novo sequences or low-abundance signals, a 
taxonomic identifier of a branch was only considered when occurring at least 3 
times. Frequency and ALC cut-offs/thresholds were established using randomised 
sequences of the pure reference strains. Remaining taxonomic branches are 
further grouped and visualised using the ‘bar(x..,stacked)’ function in Matlab for 
both, absolute and normalized peptide sequence counts (or areas/intensities, 
respectively). Visualising the relative abundances of the individual community 
members were performed using circle graphs using the ‘surf’ function in Matlab. 
Circle areas represent thereby the number of normalised spectral sequence 
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counts and show the average of 2 separate analyses (except stated otherwise). 
True/expected abundances of individual community members of the synthetic 
communities were retrieved from the supplemental information materials, as 
published by Kleiner et al. (2017).(Kleiner et al., 2017)  

Function 3, functional analysis  

KEGG pathways, from global classifications to individual conversions within a 
pathway, correspond to the KEGG orthology (KO) codes.(Kanehisa and Goto, 
2000) Therefore, we established a script, which translates the retrieved enzyme 
commission numbers (EC) into KO codes. This was done by integrating the KEGG 
annotation database, downloaded from https://www.genome.jp/kegg-bin/ 
get_htext?ko00001 (10/19), into the Matlab environment. The analysis of the 
global community metabolic functions, considered thereby only branches which 
were also used for compositional analysis. Sequences assigned to root and super 
kingdom levels were excluded. EC assignments matched more than twice (based 
on unique spectral sequence counts) were further translated into KO codes, 
normalised to the total number of spectral sequence counts and grouped into 
pathways. Obtained functional community profiles were visualised using heat 
maps or circle graphs based on KEGG pathways/category levels 2 (global) and 3 
(carbohydrate and energy metabolism). Further information regarding ‘KEGG 
pathway categories’ are outlined below.(Kanehisa and Goto, 2000)* Heat maps 
were generated using the ‘heatmap’ function, and circle graphs were created 
using Matlab‘s ‘donut.m’ function as available through www.mathworks.com ‘file 
exchange’ website.  

*  Second category codes: 09101 Carbohydrate metabolism, 09102 Energy 
metabolism, 09103 Lipid metabolism, 09104 Nucleotide metabolism, 09105 
Amino acid metabolism, 09106 Metabolism of other amino acids, 09107 Glycan 
biosynthesis and metabolism, 09108 Metabolism of cofactors and vitamins, 09109 
Metabolism of terpenoids and polyketides, 09110 Biosynthesis of other secondary 
metabolites, 09111 Xenobiotics biodegradation and metabolism, 09121 
Transcription 09122 Translation, 09123 Folding, sorting and degradation, 09124 
Replication and repair, 09131 Membrane transport, 09132 Signal transduction, 
09133 Signalling molecules and interaction, 09141 Transport and catabolism, 
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09143 Cell growth and death, 09144 Cellular community – eukaryotes, 09145 
Cellular community – prokaryotes, 09142 Cell motility.  

*  Third category codes: 00010 Glycolysis/Gluconeogenesis, 00020 Citrate cycle 
(TCA cycle), 00030 Pentose phosphate pathway, 00040 Pentose and glucuronate 
interconversions, 00051 Fructose and mannose metabolism, 00052 Galactose 
metabolism, 00053 Ascorbate and aldarate metabolism, 00500 Starch and sucrose 
metabolism, 00520 Amino sugar and nucleotide sugar metabolism, 00620 
Pyruvate metabolism, 00630 Glyoxylate and dicarboxylate metabolism, 00640 
Propanoate metabolism, 00650 Butanoate metabolism, 00660 C5-Branched 
dibasic acid metabolism, 00562 Inositol phosphate metabolism, 00190 Oxidative 
phosphorylation, 00195 Photosynthesis, 00196 Photosynthesis - antenna proteins, 
00710 Carbon fixation in photosynthetic organisms, 00720 Carbon fixation 
pathways in prokaryotes, 00680 Methane metabolism, 00910 Nitrogen 
metabolism, 00920 Sulfur metabolism. *www.genome.jp/kegg/pathway.html  

Function 4. Peptide sequence outputs  

To interface with other tools, a peptide sequence table output is provided in form 
of ‘.xls’ or ‘.mat’ files. Thereby either all sequences, only identified or non-
identified sequences can be selected. The later can be filtered for high quality 
spectra, such as selecting for the top 20% (based on ALC score), which was 
exemplified using the BLAST+ homology search module, to investigate for 
potential un-sequenced community members.  

Alternative BLAST+ search of unidentified spectra  

Alternatively, high quality unidentified de novo sequences were subjected to 
BLAST+ homology search(Madden, 2013; Camacho et al., 2008). Even though 
there are homology search web services available(Junqueira et al., 2008), we used 
a local installation to maintain sufficient throughput and integrity with the 
established de novo metaproteomics pipeline. For this ncbi-blast-2.9.0+ and the 
non-redundant protein sequence database ‘nr.gz’ (segmented for more efficient 
use, due to size) were downloaded from the NCBI ftp server 
(ftp://ftp.ncbi.nlm.nih.gov/blast, updated 12/19) and installed on a local windows 
10 workstation. BLAST searches were operated using the Matlab ‘system’ 
command function. All BLAST searches used the PAM30 scoring matrix. The top 5 
assignments per query sequence (based on bit-scores) were combined and 
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filtered for best e values and scores, respectively. Taxon ID and name databases 
were downloaded from the NCBI server. Full taxonomic lineages were retrieved 
form NCBI using E-utilities calls 
’http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=taxonomy&id=’ and  

‘taxurl_right=’&retmode=xml’.(Sayers, 2009)  

Taxonomic annotation of metagenomic sequence database  

The metagenomics protein (assembly) sequence database from Mikan et 
al.(Mikan et al., 2020) was annotated with taxonomies using DIAMOND v2.0.6 and 
the non-redundant bacterial NCBI RefSeq database (Reference Sequence, release 
203) and default parameters.(Buchfink et al., 2015) Furthermore, for the top 20% 
of sequence alignments (based on bit score), complete lineages were determined 
using the Unipept taxonomy API. The LCA was established using the LCA 
approach, and the taxonomy ID was retrieved from the prot.accession2taxid 
database downloaded from the NCBI repository (ftp.ncbi.nih.gov).  

Quantification and statistical analysis 

In silico evaluation of ‘drop-off curves’  

Large-scale reference proteomes in silico study: A large number of reference 
proteomes (>1500) covering all 3 domains of life were retrieved from the NCBI 
reference database (www.ncbi.nlm.nih.gov/refseq/). In silico trypsin cleavage, 
random selection of 1K sequences (each) and programmed submission to Unipept 
was done and determination of drop-off curves were performed using 
Matlab2017b (The MathWorks, Inc., US). Reference proteome in silico drop off 
analysis: A random selection of 3.5K unique trypsin cleaved in silico peptides (7-15 
amino acids length, to approximate real samples) for the pure strains analysed in 
this study, as listed in the Table S4, was performed using MATLAB’s bioinformatics 
toolbox. The in silico peptidomes were processed through the same NovoBridge 
pipeline, as described above.  
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Simulation of peptide sequence database lacking specific taxonomies  

Peptide sequences were submitted (as usual), using the above-mentioned 
NovoBridge pipeline, to Unipept to retrieve taxonomic lineages based on the 
lowest common ancestor (LCA) approach using ‘pept2lca’. Unlike in the default 
processing pipeline, peptide sequences that obtained a class or lower taxonomic 
annotation were further annotated with taxIDs using the ‘pept2prot’ and 
‘taxonomy’ API to obtain all underlying taxonomic lineages. This moreover 
enabled to selectively remove lineages for peptides from taxonomic entries at 
defined taxonomic rankings, e.g. species, genus, or family. Following the selective 
filtering, the remaining taxonomic lineages (of the respective peptide sequences) 
were regrouped using the LCA approach and further processed through the 
conventional NovoBridge pipeline with default parameters. The evaluation of the 
obtained taxonomic profiles was compared to the true (synthetic Kleiner 
community) or the initially determined taxonomic profiles (Bering Sea 
community) by determining the Spearman rank-order correlation coefficient (rs) 
using the MATLAB ‘corr’ function and the ‘Spearman’ option.  

Simulation of metaproteomics data containing different volumes of peptide 
sequences  

To evaluate the taxonomic profiles obtained from metaproteomics containing 
different amounts of spectral information, we performed a (random) down-
sampling of the peptide sequences. For this, the metaproteomics data from the 
synthetic ‘Kleiner community’ or the natural Bering Sea microbiome were down-
sampled stepwise to finally contain only 90, 80, 70, 60, 50, 40, 30, 20, 10, 8, 6, 4, 
2, or 1% of the original number of peptide sequences. The remaining sequences 
were further processed through the NovoBridge pipeline using default 
parameters. The change in the obtained number of taxonomic identifiers (at 
different taxonomic ranks) was compared using line plots created with the 
MATLAB ‘plot’ function and hill equation curve fitting.  

Spearman rank correlation  

Generally, the evaluation of the obtained taxonomic profiles were compared to 
the true or otherwise comparatively determined taxonomic profiles by 
determining the Spearman rank-order correlation coefficient (rs) using the 
MATLAB ‘corr’ function and the ‘Spearman’ option.  
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3.6 Supporting information 

1. Additional materials and methods 

Large-scale in silico study. Reference proteomes (>1500) covering all 3 domains of 
life were retrieved from the NCBI reference database 
(www.ncbi.nlm.nih.gov/refseq/). In silico trypsin cleavage, random selection of 1K 
sequences (each) and programmed submission to Unipept was done using 
Matlab2017b (The MathWorks, Inc., US).  

Whole cell lysate proteolytic digestion. Approximately 25-50mg biomass (wet 
weight) of each cell pellet/material were homogenised by beads beating in 
TEAB/B-PER reagent (Thermo Scientific™, for bacterial cells such as Ca. 
Accumulibactor phosphatis enrichment and Clostridium sacch.) or Y-PER reagent 
(Thermo Scientific™, for yeast cells), respectively. The supernatant was collected 
by centrifugation at 14.000xg. The protein content was precipitated using TCA (1 
vol TCA 100 w/v %  to 4 vol sample) followed by washing with ice cold acetone. 
The protein pellet was resuspended in 200 mM ammonium bicarbonate 
containing 6M Urea, reduced in a 10 mM DTT solution at 40C for 1 hour, and 
alkylated using 20 mM IAA in the dark, at room temperature, for 30 minutes. The 
solution was diluted to below 1 M Urea and digested using sequencing grade 
Trypsin at a protease to protein ratio of approximately 1:50. Peptides were 
desalted using Oasis HLB solid phase extraction cartridges (Waters corporation) 
according to the protocol provided by the manufacturer, speed-vac dried and 
resuspended in 3% acetonitrile in H2O, containing 0.1% formic acid. 

Shotgun (meta)proteomics. An aliquot of each sample was analysed using a nano-
liquid-chromatography system consisting of an EASY nano LC 1200 equipped with 
an Acclaim PepMap RSLC RP C18 reverse phase column (50µm x 150mm, 2µm) 
coupled to a QE plus Orbitrap mass spectrometer (Thermo, Germany). Solvent A 
was H2O containing 0.1% formic acid, and solvent B consisted of 80% acetonitrile 
in H2O, containing 0.1% formic acid. The flow rate was maintained at 300 nL/min. 
The Orbitrap was operated in top 10 data depended acquisition mode, acquiring 
peptide signals form 350-1400 m/z, at 70K resolution in MS1 with an AGC target 
of 3e6 and  max IT of 100ms. For yeast, approx. 250ng protein digest were 
analysed using a short linear gradient from 4 to 30% B over 32.5 minutes, and 
further to 70% B over 12.5 minutes. MS2 acquisition was performed at 17.5K 
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resolution, with an AGC target of 2e5, and a max IT of 54ms, using a NCE of 28. 
Unassigned, singly charged as well as 7, 8 and >8 charged mass peaks were 
excluded. For bacterial samples, approx. 100ng protein digest were analysed using 
a linear gradient from 5-30% B over 85 minutes and further to 75% B over 25 
minutes. MS2 acquisition was performed at 17.5K resolution, with an AGC target 
of 1e5, and a max IT of 54ms, at a NCE of 30. Unassigned, singly charged, 8 and >8 
times charged mass peaks were excluded. Shotgun proteomic raw data have been 
made available via ProteomeXchange server project PXD016992. 

De novo metaproteomics pipeline outline (NovoBridge). A Matlab ‘main script’ 
was constructed that links together functions for pre-filtering, sequence 
randomisation, automated submissions to Unipept to obtain taxonomic and 
functional information, threshold filtering, taxonomic grouping and visualisation 
of output data. The pipeline was established and tested with peptide sequence 
lists generated by de novo sequencing using PEAKS or DeepNovo, from high-
resolution QE Orbitrap shotgun proteomics raw data. The script was constructed 
using Matlab 2017b and 2019 respectively. Function 1, pre-filtering, sequence 
randomisation and Unipept submission: The first part of the script involves 
importing peptide sequence lists (obtained from PEAKS/DeepNovo) into the 
Matlab environment and to perform pre-filtering based on the sequence 
annotation quality parameters. The default pre-filtering thresholds were set to 
ALC scores >40, less than 20ppm mass error and a minimum peptide length of 7 
amino acids. Sequence lists were ‘cleaned’ from peptide modification annotations 
and mass errors were corrected for mass drifts. The Matlab ‘rand’ function was 
further used to generate additional randomised sequences from imported de 
novo lists. Thereby, the order of amino acids in front of the cleavage site (R or K) 
of every sequence was randomised, keeping original sequence parameters 
attached. Automated sequence submission to Unipept was done using Unipept`s 
inbuilt API (https://unipept.ugent.be/apidocs) option.1 For retrieving taxonomic 
information, ‘pep2lca’ including the options '&equate_il=true’, to equate leucine 
and isoleucine, were used. Further, ‘&extra=true &names=true' are specified to 
get the complete taxonomic lineage and the names of every taxonomic rank. The 
script automatically filters for the main categories super kingdom, phylum, class, 
order family, genus and species. The ‘pept2funct’ combined with the option 
'&equate_il=true’ was used to retrieve additional EC number information.1 
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Thereby, a single peptide sequence can generate multiple EC numbers or 
pathways which cause functional inference and inflation, particularly when 
searching against a large sequence database space. For this study, only the top 
scoring peptide sequence per scan was considered. Function 2, compositional 
analysis: The compositional analysis considered the major taxonomic categories 
super kingdom, phylum, class, order, family, genus and species. Depending on 
data quality/abundance, lower ranks (such as species or genus) were excluded 
from quantitative analysis/representation due to low numbers or insufficient 
annotations. In a first step, tables were filtered for sequences with ALCs >70 (or 
less than -0.1 for DeepNovo), and a mass error of less than 15 ppm. To exclude 
random matches from erroneous de novo sequences or low abundant signals, a 
taxonomic identifier of a branch was only considered when occurring at least 3 
times. Frequency and ALC cut-offs/thresholds were established using randomised 
sequences of the pure reference strains. Remaining taxonomic branches are 
further grouped and visualised using the ‘bar(x..,stacked)’ function in Matlab for 
both, absolute and normalized peptide sequence counts (or areas/intensities, 
respectively). Visualising the relative abundances of the individual community 
members were performed using circle graphs using the ‘surf’ function in Matlab. 
Circle areas represent thereby the number of normalised spectral sequence 
counts and show the average of 2 separate analyses (except stated otherwise). 
True/expected abundances of individual community members of the synthetic 
communities were retrieved from the supplemental information materials, as 
published by Kleiner et al., 2017.2 Function 3, functional analysis: KEGG 
pathways, from global classifications to individual conversions within a pathway, 
correspond to the KEGG orthology (KO) codes.3 Therefore, we established a script, 
which translates the retrieved enzyme commission numbers (EC) into KO codes. 
This was done by integrating the KEGG annotation database, downloaded from 
https://www.genome.jp/kegg-bin/get_htext?ko00001 (10/19), into the Matlab 
environment. The analysis of the global community metabolic functions, 
considered thereby only branches which were also used for compositional 
analysis. Sequences assigned to root and super kingdom levels were excluded. EC 
assignments matched more than twice (based on unique spectral sequence 
counts) were further translated into KO codes, normalised to the total number of 
spectral sequence counts and grouped into pathways. Obtained functional 
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community profiles were visualised using heat maps or circle graphs based on 
KEGG pathways/category levels 2 (global) and 3 (carbohydrate and energy 
metabolism). Further information regarding ‘KEGG pathway categories’ are 
outlined below.3*  Heat maps were generated using the ‘heatmap’ function, and 
circle graphs were created using Matlab`s ‘donut.m’ function as available through 
www.mathworks.com ‘file exchange’ website.  

*Second category codes: 09101 Carbohydrate metabolism, 09102 Energy 
metabolism, 09103 Lipid metabolism, 09104 Nucleotide metabolism, 09105 
Amino acid metabolism, 09106 Metabolism of other amino acids, 09107 Glycan 
biosynthesis and metabolism, 09108 Metabolism of cofactors and vitamins, 09109 
Metabolism of terpenoids and polyketides, 09110 Biosynthesis of other secondary 
metabolites, 09111 Xenobiotics biodegradation and metabolism, 09121 
Transcription 09122 Translation, 09123 Folding, sorting and degradation, 09124 
Replication and repair, 09131 Membrane transport, 09132 Signal transduction, 
09133 Signalling molecules and interaction, 09141 Transport and catabolism, 
09143 Cell growth and death, 09144 Cellular community – eukaryotes, 09145 
Cellular community – prokaryotes, 09142 Cell motility.  

*Third category codes: 00010 Glycolysis/Gluconeogenesis, 00020 Citrate cycle 
(TCA cycle), 00030 Pentose phosphate pathway, 00040 Pentose and glucuronate 
interconversions, 00051 Fructose and mannose metabolism, 00052 Galactose 
metabolism, 00053 Ascorbate and aldarate metabolism, 00500 Starch and sucrose 
metabolism, 00520 Amino sugar and nucleotide sugar metabolism, 00620 
Pyruvate metabolism, 00630 Glyoxylate and dicarboxylate metabolism, 00640 
Propanoate metabolism, 00650 Butanoate metabolism, 00660 C5-Branched 
dibasic acid metabolism, 00562 Inositol phosphate metabolism, 00190 Oxidative 
phosphorylation, 00195 Photosynthesis, 00196 Photosynthesis antenna proteins, 
00710 Carbon fixation in photosynthetic organisms, 00720 Carbon fixation 
pathways in prokaryotes, 00680 Methane metabolism, 00910 Nitrogen 
metabolism, 00920 Sulfur metabolism. *www.genome.jp/kegg/pathway.html   
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Function 4. Peptide sequence outputs. To interface with other tools, a peptide 
sequence table output is provided in form of ‘.xls’ or ‘.mat’ files. Thereby either all 
sequences, only identified or non-identified sequences can be selected. The later 
can be filtered for high quality spectra, such as selecting for the top 20% (based 
on ALC score), which was exemplified using the BLASTp+ homology search 
module, to investigate for potential un-sequenced community members. 

De novo sequence homology search. Alternatively, high quality unidentified de 
novo sequences were subjected to BLASTp+ homology search4, 5. Even though 
there are homology search web services available6, we used a local installation to 
maintain sufficient throughput and integrity with the established de novo 
metaproteomics pipeline. For this ncbi-blast-2.9.0+ and the non-redundant 
protein sequence database ‘nr.gz’ (segmented for more efficient use, due to size) 
were downloaded from the NCBI ftp server (ftp://ftp.ncbi.nlm.nih.gov/blast, 
updated 12/19) and installed on a local windows 10 workstation. BLAST searches 
were operated using the Matlab ‘system’ command function. All BLAST searches 
used the PAM30 scoring matrix. Top search results (based on bit-scores) for every 
sequence were combined and filtered for best e values and scores, respectively. 
Taxon ID and name databases were downloaded from the NCBI server. Full 
taxonomic lineages were retrieved form NCBI using E-utilities calls  
'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=taxonomy&id=' and  

‘taxurl_right='&retmode=xml'.7 

Simulation of peptide sequence databases lacking specific taxonomic entries. 
Peptide sequences were submitted (as usual), using the above-mentioned 
NovoBridge pipeline, to Unipept to retrieve taxonomic lineages based on the 
lowest common ancestor (LCA) approach using ‘pept2lca’. Unlike in the default 
processing pipeline, peptide sequences that obtained a class or lower taxonomic 
annotation were further annotated with taxIDs using the ‘pept2prot’ and 
‘taxonomy’ API to obtain all underlying taxonomic lineages. This moreover 
enabled to selectively remove lineages for peptides from taxonomic entries at 
defined taxonomic rankings, e.g. species, genus, or family. Following the selective 
filtering, the remaining taxonomic lineages (of the respective peptide sequences) 
were regrouped using the LCA approach and further processed through the 
conventional NovoBridge pipeline with default parameters. The evaluation of the 
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obtained taxonomic profiles was compared to the true (synthetic Kleiner 
community) or the initially determined taxonomic profiles (Bering Sea 
community) by determining the Spearman rank-order correlation coefficient (rs) 
using the MATLAB ‘corr’ function and the ‘Spearman’ option. 

Simulation metaproteomics data containing different volumes of peptide 
sequences. To evaluate the taxonomic profiles obtained from metaproteomics 
containing different amounts of spectral information, we performed a (random) 
down-sampling of the peptide sequences. For this, the metaproteomics data from 
the synthetic ‘Kleiner community’ or the natural Bering Sea microbiome were 
down-sampled stepwise to finally contain only 90, 80, 70, 60, 50, 40, 30, 20, 10, 8, 
6, 4, 2, or 1% of the original number of peptide sequences. The remaining 
sequences were further processed through the NovoBridge pipeline using default 
parameters. The change in the obtained number of taxonomic identifiers (at 
different taxonomic ranks) was compared using line plots created with the 
MATLAB ‘plot’ function and hill equation curve fitting.  

Taxonomic annotation of metagenomics protein sequence database. The 
metagenomics protein (assembly) sequence database from Mikan et al.8 was 
annotated with taxonomies using DIAMOND v2.0.6 and the non-redundant 
bacterial NCBI RefSeq database (Reference Sequence, release 203) and default 
parameters.9 Furthermore, for the top 20% of sequence alignments (based on bit 
score), complete lineages were determined using the Unipept taxonomy API. The 
LCA was established using the LCA approach, and the taxonomy ID was retrieved 
from the prot.accession2taxid database downloaded from the NCBI repository 
(ftp.ncbi.nih.gov). 
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2. Evaluation of different protein quantification strategies 

 
SI Figure 1: Taxonomic profiles obtained for the 
‘equal protein’ community (Kleiner et al., 2017), 
shown from super kingdom to the family level. 
Quantification was performed using different 
quantification strategies. Mass spectrometric raw 
data were processed using de novo sequencing or 
peptide-spectrum matching. Both peptide 
sequence lists were processed using the 
established de novo metaproteomics pipeline. ‘T’ 
represents the true, or expected abundances of 
the respective community member(s), surrounded 

by a dashed box. ‘DN SC’ shows abundances obtained from the de novo sequence lists using spectral 
sequence counting. ‘DN TI’ shows abundances obtained from the de novo sequence lists using the 
total spectral (peptide) intensities. ‘DN TX’ shows abundances obtained from the de novo sequences 
using the intensity of the top 5 most intense spectra. ‘DB SC’ shows abundances obtained from the 
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database search sequences using spectral sequence counting. ‘DB TI’ shows abundances obtained 
from the database search sequences using the total sequence (peptide) intensities. ‘DB TX’ shows 
abundances obtained from the database search sequences using the intensity of the top 5 most 
intense spectra.  The sum of ‘other’ taxonomic annotations is shown as circles annotated by ‘X’. Best 
correlation was observed for the spectral sequence counting strategy, whereas the ‘top 5’ approach 
showed the poorest correlation.   The bottom left graph shows the Spearman’s rank correlation 
coefficients plotted over the investigated taxonomic profiles (domain to family level). For both 
approaches (de novo sequencing and database-matching) the spectral sequence counting (and also 
the total intensity approach) provided significantly better correlations compared to the ‘TX’ 
approach, for which only the counts or area of the top ‘X (=5)’ strongest signals are considered. 
Ultimately, the spectral sequence counting approach, is the most straightforward and (likely) most 
robust approach when applied to different operational conditions. The correlation was determined 
considering all taxonomic identifiers (1–40, including the non-target ‘other’ matches labelled with 
‘X’). 
 
3. Influence of DB completeness and peptide sequence quantities on taxonomic 
profiles 
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SI Figure 2: The circle graphs show the community profiles obtained for the Kleiner equal protein 
community (Kleiner et al., 2017)2 after simulating a Unipept peptide sequence database lacking 
specific taxonomic entries. The reduced database content was simulated by selectively removing 
species, genus or family member sequence branches known to be present in the synthetic 
community. The circle graphs labelled with ‘T’ show the expected (or true) protein abundance ratio. 
Circle graphs labelled with ‘DN’ show the community profiles obtained by using the complete (or 
unfiltered) Unipept sequence database. ‘DN-S’, ‘DN-G’ and ‘DN-F’ show the community profiles 
obtained after selectively removing sequence branches corresponding to species, genus or family 
level of the synthetic community, respectively. Overall, the impact of removing branches/sequences 
corresponding to the species and genus level had only a relatively moderate impact on the 
community profiles. Removing the complete set of sequences representing a taxonomic rank, 
however, abolished (as expected) the annotations to this level. Such a scenario, even if not 
impacting significantly on the protein abundance ratios at the higher taxonomic levels, would limit 
the taxonomic resolution. These observations are further demonstrated by the Spearman’s rank 
correlations shown in the bottom left, where the protein abundance profiles induce only moderate 
changes in the overall Spearman’s rank correlation coefficients. The correlations were determined 
considering the above shown taxonomic identifiers (1–40). The lower right plot shows the impact of 
different numbers of de novo peptide sequences on the number of identified taxonomies. For the 
here-investigated equal protein ‘Kleiner community’, at approx. 40–60% of the original number of 
peptide sequences, all taxonomic levels reach a plateau. Hence, no new taxonomic identifiers were 
obtained after further increasing the number of peptide sequences, demonstrating the robustness 
of the dataset in regard to providing a comprehensive coverage of the community biomass. 
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4. Influence of de novo sequence quality parameters on taxonomic profiles 
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SI Figure 3: The influence of the de novo sequence quality parameters ‘average local confidence 
score’ (ALC) and mass error (∆ ppm, of the proposed sequence) on quantitative taxonomic profiles 
was investigated using the ‘equal protein’ community (Kleiner et al., 2017). Mass spectrometric raw 
data were de novo sequenced and processed by the established de novo metaproteomics pipeline. 
The taxonomic profiles were visualised as circle graphs, where the circle areas correlate to the 
normalised spectral sequence counts. Shown are the average of 2 separate analyses. The sum of 
unexpected ‘other’ taxonomic annotations is shown by circles labelled with ‘X’. The experiment 
demonstrates that the obtained taxonomic profiles were comparatively constant and close to the 
true abundances (‘T’) throughout the investigated parameter settings. However, the quantities of 
‘unexpected’ taxonomic annotations decreased when considering only de novo sequences with an 
ALC score >60.The bottom left bar graph shows the proportion of sequence spectral counts that 
obtained correct taxonomic annotations, random annotations or assignment to ‘other’ taxonomic 
identifiers. With increasingly stringent filtering parameters, the proportion of random sequence 
matches and annotations to unexpected taxa is reduced. The bottom right boxplot shows the 
Spearman’s rank correlation comprising the investigated taxonomic ranks (1–40, inclusive ‘other’ 
matches labelled with ‘X’) across the testing conditions. The highly comparable correlation plots, 
moreover, confirm that the taxonomic profiles are relatively stable over the investigated parameter 
space.  

5. Community profiles of ‘equal cell’ community 
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SI Figure 4: The above circle graphs show the quantitative profiles of the ‘equal cell’ community 
(Kleiner et al., 2017) with the aim to investigate a community with large protein abundance 
differences. Mass spectrometric raw data were processed by the described de novo metaproteomics 
pipeline, as described in the materials and methods section. The quantification was performed by 
either summing up spectral sequence counts or by summing up spectral intensities. ‘T’ represents 
the true, or expected abundances of the respective community member(s). ‘DN SC’ shows 
abundances obtained from the de novo sequences using spectral counting (sum of all sequence 
annotations). ‘DN TI’ shows abundances obtained from the de novo sequences using the total 
peptide intensity (sum of all sequence intensities). The sum of ‘other’ taxonomic annotations are 
shown by circle graphs labelled by ‘X’. Overall, the observed community profiles were highly 
comparable to the true/expected profiles (‘T’). Except Staphylococcaceae (#38, family level), all 
other taxonomic identifiers (from phylum - family) could be observed and were close to the 
true/expected abundance profiles. The circles areas represent the normalised spectral sequence 
counts of the respective taxonomic identifiers. Shown is the average of 2 separate analyses.  The 
bottom left plot shows the Spearman’s rank correlation of the taxonomic profiles (1–40, including 
unexpected ‘other’ matches labelled with ‘X’) obtained from DB and DN sequence lists compared to 
the expected taxonomic profiles. Overall, both approaches showed a very high correlation over the 
investigated taxonomic ranks and only dropped to approx. 0.75—which is still considered a strong 
correlation—at the family level. 
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6. Bering Sea microbiome 
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SI Figure 5a: The circle graphs show the obtained community profiles obtained for the different 
marine community samples BS-T1, BS-T6 and BS-T10, which were sampled from the Bering sea, as 
published by Mikan et al (2019).8 Metaproteomic raw data were retrieved from the proteome 
exchange server, de novo sequenced and analyzed by the established de novo metaproteomics 
pipeline. The circle graphs labelled with ‘DB M’ show the community profiles achieved from 
grouping peptide-spectrum matches obtained from using the taxonomy-annotated metagenomics-
constructed sequence database. ‘DN Upept’ show the community profiles obtained from the 
sequence lists generated by de novo sequencing. ‘DB Upept’ illustrates the community profiles 
obtained from the sequence lists generated from the comparative peptide-spectrum matching 
experiment, using the protein sequence database published by the authors. All approaches used 
spectral sequence counting for visualizing the community profiles. The overall taxonomic profiles 
obtained from the different approaches are highly comparable. Differences are only found for the 
very low abundant community members, at the lower taxonomic rankings. Other differences were a 
result of the metagenomics sequence database annotation procedure, which did not consider 
eukaryotic taxonomies (DB M, blue arrows). The circle areas correlate to the normalized spectral 
sequence counts of the respective taxonomic identifiers. ‘Other’ taxonomic annotations (not found 
by the DB Upept submissions) were summed and are shown as circles annotated by ‘X’. The circle 
areas shows the average of 2 separate analyses. The bottom left bar graph provides a comparison of 
the class-level community composition established by 16S RNA sequencing (Mikan et al., 2019)8 and 
by different proteomics approaches. Although the overall composition between the substantially 
different approaches was highly comparable, the fraction of Alphaproteobacteria was consistently 
more strongly pronounced in the metaproteomics experiments.  
 
The bottom right plot shows the Spearman’s rank correlation between the obtained taxonomic 
profiles (including taxonomies 3–35 including ‘X’, but excluding eukaryotic annotations because a 
purely bacterial DB was used to annotated the metagenomic database) of the different approaches. 
Peptide sequences obtained from de novo sequencing and database-matching provided highly 
comparable profiles, shown by their high correlation across the investigated taxonomic levels (DN to 
DB T1/6/10; rS at family level = 0,96; 0,97 and 0,91 respectively). Comparison of the de novo 
sequence lists with the directly grouped peptide-spectrum matches of the annotated metagenomics 
database showed only at the lower taxonomic rankings a decrease of the otherwise strong 
correlation (DN to DB M T1/6/10, rS at family level = 0,41; 0,51 and 0,52 respectively). The observed 
(overall comparatively low) deviation is likely related to the database completeness (or differences 
in content) of the Unipept database compared to the NCBI reference database used to annotate the 
metagenomics sequence database.  
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SI Figure 5b: The circle graphs show the community profiles obtained for the marine community BS-
T10 (Mikan et al., 2019)8, after simulating a Unipept peptide sequence database lacking specific 
taxonomic entries. The reduced database content was simulated by selectively removing identified 
species, genus or family members, previously identified for the same community, using the 
constructed metagenomics database. The circle graphs labelled with ‘DN’ show the community 
profiles obtained by using the complete/unfiltered Unipept sequence database. ‘DN-S’, ‘DN-G’ and 
‘DN-F’ show the community profiles obtained after selectively removing all sequences 
corresponding to previously identified species, genus or family members, respectively.  
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Overall, the selective removal of branches/sequences at the species and genus level showed only a 
moderate impact on the community profiles. The relatively low impact is underlined by the 
Spearman’s rank correlation curves shown in the bottom left graph (for the taxonomic identifiers 3–
35). ‘DN-CTRL’ thereby indicates the maximum correlation (=1) for the case of obtaining identical 
profiles compared to the unfiltered database. ‘DN-S’, ‘DN-G’ and ‘DN-F’ show the Spearman’s rank 
correlation of the species-, genus- or family-filtered community profiles, respectively. Only after 
removing all sequence branches belonging to the family level was a more significant impact on the 
community profiles observed (decrease in correlation to approx. 0.76 and 0.75 for DN-S and DN-G 
(at family level), and drop to 0.4 (at order level) for DN-F). The lower right graph shows the impact of 
the number of de novo sequences available for representing the community profiles. All taxonomic 
levels reach approx. 80–90% of the original number of peptide sequences—a plateau. Therefore, 
after this, no new taxonomic identifiers are obtained and, at the same time, the robustness of the 
acquired dataset in regard to providing a comprehensive coverage of the community biomass is 
demonstrated. 
 
7. Wastewater treatment plant microbiome 

 
SI Figure 6: The circle graphs show the community profiles of a waste water treatment plant 
community as published by Hansen et al.10 Metaproteomic raw data (from the best performing 
extraction protocol using B-BER buffer and beads beating, FAH_SludgeExtr_B_BB_1 and 
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FAH_SludgeExtr_B_BB_2), were retrieved from the proteome exchange server project PXD000862, 
de novo sequenced and analysed by the established de novo metaproteomics pipeline. The circle 
graphs labelled with ‘DN’ show the community profiles obtained from the de novo sequence lists 
using spectral sequence counting. ‘DB’ shows the comparative community profiles obtained from 
the sequence lists (as published by the authors) obtained from peptide-spectrum matching using the 
metagenomics constructed protein sequence database. The taxonomic profiles obtained from both 
approaches are very comparable and differ only in very low abundant community members. 
Noteworthy, the phylum-level profiles further appeared highly comparable to qFISH data acquired 
for the same community at an earlier time point (stacked bar graph). The bar labelled with ‘DN’ 
shows thereby the de novo sequence list generated phylum profile; the bar labelled with ‘NCBI’ 
shows the phylum profile from sequence lists established by using a global NCBI database; and the 
bar labelled with ‘MG’ shows the phylum profiles from sequence lists established by using the 
metagenomics constructed database, as published by Hansen et al.10 The bar labelled with ‘qFISH’ 
shows the profiles obtained by FISH staining from the same community at an earlier time point, 
published by Albertsen et al.11 The circle areas correlate to the normalised spectral sequence counts 
of the respective taxonomic identifiers. Taxonomic annotations only observed for the de novo 
sequences were summed and are shown as circles annotated by ‘X’. The graph shows the average of 
2 separate analyses.         
  
8. Global community functions visualised as KEGG pathway 
Since GO terms have been reported challenging for enrichment analyses due to 
unclear hierarchies and dependencies,12, 13 our workflow translates the obtained 
EC assignments into KO terms and KEGG pathways. Although the peptide-centric 
approach compares sequences to a large genomic space (sequences may be 
matched to several enzymes and different pathways), the overall metabolic 
profiles appear very comparable between peptide-spectrum matching and de 
novo generated sequence lists. (Figure 2B, and SI Figure 5) Nevertheless, the large 
database space may limit taxonomic resolution and inflate functional annotations. 
An investigation with deeper taxonomic resolution requires to maximise 
proteome coverage and to increase the numbers of unique assignments at lower 
taxonomic rankings. This is supported through spectrum-matching approaches 
using tailored databases or potentially also by extensive homology search on high 
quality sequences. EC numbers were translated into KEGG Orthology (KO) 
pathways, where only sequences which were kept for taxonomic analysis, were 
considered for evaluation of the functional profiles. Higher taxonomic rankings, 
such as annotations to the root or super-kingdom levels were not considered. 2 
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unique annotations per EC number were required as minimum. Thresholds were 
generally investigated/tested by using randomised peptide sequences.  
 

 
SI Figure 7. A) The bar graphs visualise the distribution of enzyme commission number (EC) 
assignments for database search (A, left bar graph) and de novo sequencing (B, right bar graph) 
generated sequence lists. Annotations from ‘correct’ sequences are shown by black bars and EC 
annotations retrieved from the randomised sequences are represented by grey bars. Random EC 
assignments were frequently retrieved for ‘root’ and ‘super kingdom’ levels. Therefore, EC 
annotations from those taxonomic levels were excluded from functional analysis. The total number 
of assignments (phylum to species level) were lower for the de novo sequence lists, which is in 
agreement with the lower number of spectral assignments for de novo sequencing, compared to 
database search approaches. The profiles have been established from the ‘equal protein’ 
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community as provided by Kleiner et al., 2017.2 B/C) Global functional community profiles of the 
‘equal protein’ community, established by sequence lists from database search (DB) and de novo 
(DN) sequencing. EC numbers retrieved from Unipept were translated into KO codes, grouped into 
KEGG pathways# and visualised using heat maps. A shows the global profiles for the KEGG 
‘categories’ (1) metabolism, (2) genetic information processing, (3) environmental information 
processing and (4) cellular processes. B further details the metabolic profiles for the (1.1) 
carbohydrate metabolism and the (1.2) energy metabolism.  This experiment shows very 
comparable profiles between the different peptide sequence annotation approaches. Clustering into 
KEGG pathways provides a well-structured way to visualise overall community profiles, but may also 
lead to inflating pathways, because sequences may retrieve more than one EC number or pathway 
annotation, respectively. The large sequence space of generic databases may further lead to 
multiple annotations for a single sequence, thereby lowering the accuracy of metabolic profiles. The 
above shown community profiles were generated from the ‘equal protein’ community raw data as 
established by Kleiner et al., 2017.2  #https://www.kegg.jp/kegg/pathway.html#metabolism 
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Tackling the chemical diversity of 
microbial nonulosonic acids – a 
universal large-scale survey approach 
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4.1 Introduction 

Nonulosonic acids (NulOs, including animal-type sialic acids§) are a class of 9-
carbon α-keto acid sugars essential to many cellular processes throughout all 
domains of life.2–6 The first nonulosonic acid (N-acetyl-neuraminic acid or Neu5Ac) 
was discovered during the 1940s in salivary mucins (from Greek ‘sialon’), 
establishing the nowadays commonly used abbreviation ‘sialic acids’.7,8 Since 
then, the broader group of discovered NulO derivatives expanded to some 100 
members.9 Neuraminic acid (Neu) and the unmodified variant keto-deoxy-
neuraminic acid (Kdn) are commonly associated with animal tissues. Pseudaminic 
acid (Pse), its stereoisomers legionaminic (Leg) and acinetaminic acid (Aci) are 
variants exclusive to prokaryotes.10 Neus are involved in processes such as cell–
cell interaction, signalling, adhesion, regulation of protein half-life and mediating 
an immune response. Similarly, derivatives of Pse/Leg have been found as part of 
bacterial cell surface structures such as lipopolysaccharides, peptidoglycans or 
glycoproteins of cell surface layers, adhesins, pili and flagella.11–14 Most uniquely, 
every type of NulO can undergo diversification at multiple positions, which 
enables an (potential) enormous chemical diversity.9 Where diversification on 
animal-type NulOs is mostly limited towards acetylation, glycolylation, 
methylation, and more rarely, phosphorylation or sulphation, diversifications in 
prokaryotes have been found to be remarkably innovative. This includes additions 
of formyl, glyceryl, hydroxybutyryl, lactoyl and glutamyl groups, to just name a 
few out of many more.9 Moreover, new types of modifications are being 
discovered continuously. Currently there is no good estimate on the natural 
boundaries of this process in prokaryotes. Therefore, the driving forces behind the 
evolution of a certain configuration remain elusive. 
When only considering a number of some 15 possible modifications—occurring at 
several diversification points—the number of modified NulO derivatives exceeds 
several thousands, thereby not considering stereochemistry or linkage isomers 
(Fig. 1A and B). Furthermore, any changes in the chemical structure are likely to 
affect physicochemical properties and therefore may interfere with highly 
important molecular recognition processes. 
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Fig. 1 Universal sialic acid large-scale survey approach. (A) outlines the three main NulO core 
structures known to date: Kdn (deaminoneuraminic acid), Neu (neuraminic acid) and P.L.A = Pse 
(pseudaminic acid), Leg (legionaminic acid) and Aci (acinetaminic acid). (B) demonstrates the 
potential diversity generated through (combinations) of (natural) diversifications of the three main 
NulO core compositions Kdn, Neu and P.L.A (Pse/Leg/Aci). The left graph shows a binned mass 
histogram (5 Da) of the theoretically possible chemical compositions between 380–520 Da. Already 
more than 25 different compositions are found within ±0.05 Da of Pse5Ac7Ac. The image on the 
right shows the mass defect binned for every calculated structure, which all fall within a very narrow 
window between 0.05–0.25 Da. The mass spectrometric mass defect is defined as the delta of 
monoisotopic mass and nominal mass. For combinatorial space and abbreviations see ESI-Table, 
sheet 8.‡ This filters for possible realistic structures during parent NulO annotation. (C) outlines the 
established large-scale survey pipeline starting from crude cell lysates, α-keto acid specific chemical 
labelling, small mass channel scanning (2.75 m/z windows, from 380–520 Da), and the automated 
structural filtering and evidence scoring pipeline to annotate parent NulOs. In summary, channel hits 
and compositions are discovered based on highly conserved quinoxaline-core fragments together 
with the diversification-independent carbon chain length and structural features. 

 
Bacterial NulOs have been commonly linked to virulence and pathogenicity, 
presumed to mimic the host's glycosylation for evading an immune 
response.15 However, a recent genome level study by Lewis et al. across bacteria 
and archaea revealed an unexpectedly wide distribution of homologous 
neuraminic acid biosynthesis (NAB) pathway genes.1 Unfortunately, genome-level 
studies are only predictive and do not allow for conclusions on active gene 
products, and the possibility that yet-to-be-discovered NulO pathways have 
evolved completely independently cannot be ruled out completely. Most 
importantly however, the above mentioned diversifications processes, which 
make sialic acids and other NulOs so unique, remain unnoticed because they are 
not accessible through genome level analysis.16 Furthermore, fully untargeted 
large-scale molecular level studies on the diversity of natural NulOs is by current 
state-of-the-art approaches not achievable. 
Current detection of sialic acids and other NulOs is achieved by imaging, staining 
approaches, or by selective fluorescent labelling of the alpha-keto acid group 
followed by liquid chromatography with or without additional mass-spectrometric 
detection.6,17,18 Complex lysates, however, produce a large background derived 
from lower carbon-chain ulosonic acids or common bulk metabolites. Therefore, 
the classical approach engages pre-fractionation of target conjugates or applies 
only to samples with low complexity.17,19 Unfortunately, this procedure is 
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laborious and biased, particularly when dealing with uncharacterised (or low 
abundance) compounds. Alternatively, gas chromatography combined with mass 
spectrometry has been successfully employed, but this approach also requires 
pre-fractionation and involves manual data curation of low resolution spectra.20 
Over the past decade, new high-resolution mass spectrometers have paved the 
way to a new era in metabolite analysis. Rapid identification of thousands of 
compounds in a single experimental measurement is achieved, mostly by using 
shotgun-type sampling. Due to the stochastic nature of this approach, sub-
stoichiometric compounds are overlooked, and frequent co-isolation of closely 
related metabolite peaks generates hybrid-type and low-informative spectra. 
The common route for identifying a given metabolite peak is by matching mass 
and fragmentation spectra to database library entries.21 More recent 
advancements include isotope pattern analysis, consider spectral relatedness, and 
make use of common fragmentation patterns or ultra-high resolution mass 
spectrometers.21–23 Even so, the virtually large (and yet unmapped) chemical 
diversification of prokaryotic NulOs, their sub-stoichiometric occurrence, poorly 
recorded species distribution and difficult to measure nature, hampers the 
application of shotgun as well as database-matching approaches. 
In this study, we describe a nonulosonic acid (NulO) universal screening approach 
which tackles the (yet unmapped) chemical diversity of prokaryotic nonulosonic 
acids (NulOs). By doing so, we take advantage of chemical labelling combined with 
continuous small mass channel mass spectrometric scanning and a systematic 
matching for NulO unique core features. We applied our approach to a large 
number of yet unexplored environmental microbes revealing a yet undescribed 
diversity. 
 
4.2 Results and discussions 
Given the limitations of current methods, we sought to establish a universal ‘sialo-
omics’ approach for untargeted large-scale molecular studies starting from crude 
cell lysates (Fig. 1C). However, the search for sub-stoichiometric compounds with 
an unknown chemical composition in complex mixtures compares to the search 
for a needle in a haystack.  
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To tackle this challenge, we searched for mass spectrometric features which are 
unique for ulosonic acids but are independent of any diversification. Thereby, we 
took advantage of the alpha-keto-acid specific labelling reagent 1,2-diamino-4,5-
methylene dioxybenzene, which is otherwise utilized for fluorescence detection. 
However, for our purpose, the probe-of-choice was selected since it significantly 
shifts the double bond equivalents (+7.5), the mass defect, and since it introduces 
highly conserved ulosonic acid core fragment features which are different from 
the bulk cell lysate background. Since lower carbon ulosonic acid molecules are 
highly common in nature, we aimed to establish additional features which contain 
structural information.  
 
Therefore, we first screened the experimental data acquired in this study for 
commonly co-occurring fragment compositions using an automated script which 
confirmed the theoretical fragmentation space (Fig. 2). By doing so, we uncovered 
universal features which contain the carbon chain length information and which 
were not influenced by any diversification process (Fig. 2). While the conserved 
core features are important for identifying ulosonic acids, the carbon chain length 
features enable differentiation from structurally related eight (KDO) and lower 
carbon ulosonic acids. However, most importantly, the carbon chain length 
features provide also information on the degree of saturation and oxidation, and 
therefore allow differentiation between types of NulOs, such as Neu/Kdn-type 
and Pse/Leg-type ulosonic acids (Fig. 2A–C). Where this serves as tool to identify 
derivatives related to known NulOs, the systematic extrapolation of those 
features makes it universal for the discovery of completely novel types of NulOs. 
In addition, to maintain high sensitivity for sub-stoichiometric signals, we 
established a high-resolution mass spectrometric fragmentation of highly small 
mass segments covering the mass range established by our initial theoretical 
calculations. The very small mass segments generate hybrid fragmentation 
spectra of only medium complexity. However, in ‘all-ion-type’ fragmentation 
techniques, a large number of parent ions contribute to a single spectrum, and 
the link between parent ions and their product fragment peaks is very difficult to 
reconstruct. 
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Fig. 2 Conserved and diversification independent feature space for nonulosonic acids (NulOs). (A and 
B) outline the empirical fragmentation space systematically spanning the oxidation and saturation 
space of ulosonic acids with different carbon chain lengths. More specifically, (A) outlines (from left 
to right) one universal fragmentation route for the three main sialic acid compositions (Kdn, Neu 
and Pse/Leg/Aci). (B) The alpha-keto acid specific chemical labelling introduced a significantly 
altered mass defect and fragment features such as the (quinoxaline-based) ulosonic acid unique 
core fragments and carbon chain length features. Deviations in the degree of saturation and 
oxidation allow further differentiation between types of NulOs and the identification of completely 
new structures.(C) shows the frequency (>50 counts, see ESI-Table sheet 4‡) of binned fragments 
from ulosonic acid related compounds observed in the large-scale study. This confirmed the 
theoretically established fragment feature space for different ulosonic acid classes. The high 
frequency for 283 and 301 (8 C, black bars) and 295 and 297 (9 C, red bars) correspond to fragments 
from KDO, Neu/Kdn and P.L.A respectively. Furthermore, this provided mass spectrometric evidence 
for potential higher carbon chain ulosonic acids (blue). 
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Nevertheless, identification of the above described conserved ulosonic acid 
features in mass segments provides very sensitive global maps (channel hits) of 
the NulO landscape (Fig. 3A and B, ESI-Table, sheet 3‡). The channel hit 
generation has been automated by a Matlab script, which loops through high-
resolution spectra of complete runs within only a few minutes. Nevertheless, 
molecular studies typically require the exact chemical identity and nature of the 
NulO. Therefore, we established a chemical filtering and structural evidence 
scoring pipeline to identify the parent NulO from positively assigned mass 
segments. In most cases, the small mass segments showed sufficiently low 
complexity to unambiguously filter for a NulO candidate. To enable higher-
throughput studies, the complete process from channel-hit generation to 
chemical filtering and structural evidence scoring and reporting was automated in 
a pipeline (ESI‡). Where this provides a very efficient solution to screen classes of 
NulOs based on the backbone, the closer investigation of fragmentation spectra 
provides hints on the nature of the modification(s) present. 
 
A molecular level survey across eukaryotes and prokaryotes 
Using our newly established pipeline, we performed a first molecular level survey 
on prokaryotic NulOs where we included a range of well-characterised 
commercial standards, animal cells, model plants and algae (Fig. 3A and B, ESI-
Table, sheet 3‡). To qualify our approach, we first analysed the well-characterised 
animal-derived cell materials such as CHO and HeLa cells (cultivated on 2 growth 
media).Apart from low quantities of Kdn, Neu5Ac was identified in all samples as 
the predominant species, which appeared further diversified through 
glycolylation, methylation and higher degrees of acetylation. HeLa cells cultivated 
on foetal calf serum showed a large increase of the N-glycolylated variant 
compared to serum-free conditions, which presumably results from uptake and 
internal release in lysosomes, followed by metabolic incorporation. 
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Fig. 3 NulO large-scale survey represented 
as channel hit-map and chemical diversity 
graphs. (A) shows a hit-map for channels 
with detected nonulosonic acid (NulO) 
candidates in samples (duplicates shown 
separate for samples) individual injections 
are plotted along the x-axis. The y-axis is 
binned into 2.5 Da mass channel units. The 
upper map is filtered for Kdn and Neu-like 
species and the lower map is filtered for 
Pse/Leg-type hits. The same data are 
visualised as binned (0.1 m/z) spectra on 
the left. The numbers on the top of the hit-
map represent: (1) references, spiked E. 
coli and animal cell samples; (2) plants, 
fungi and algae; (3) Archaea, alpha-, beta-, 
gamma-, delta- and epsilon proteobacteria, 
actinobacteria, firmicutes, cyanobacteria; 
(4) enrichment/communities. (B) Sialic 
acids were found at high frequency 
throughout environmental samples and 
almost half of all samples showed two or 
more types per species. (C) Kdn/Neu-type 
sugars were observed with comparable 
frequency to bacterial-type NulOs. While 

the former were found in eukaryotes and prokaryotes, the bacterial types were exclusive to 
prokaryotes. Potential higher carbon chain ulosonic acids (blue) were only detected in rare cases. 
(see also ESI-Table, sheets 1–3‡). 
 
The well-established model plants Arabidopsis thaliana and Nicotiana 
benthamiana, as well as baker's yeast, contained lower carbon chain ulosonic 
acids (not shown), but as expected, did not show any observable nonulosonic acid 
analogues (9-carbon). Noteworthy, in our experiments, one plant showed 
misleading artefacts that were difficult to distinguish from Kdn by mass only 
(‘pseudo-Kdn’, ESI, Section I‡). Such or related other misleading candidates may 
have fuelled historical debates about the presence of (active) NulO biosynthesis 
pathways in plants. Furthermore, we included selected algae, which are 
increasingly considered as production systems in biotechnology. 
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In contrast to a recent report which speculated about the presence of sialylated 
glycans in Chlamydomonas reinhardtii, nonulosonic acids were not identified in 
either of the strains analysed. On the other hand, we could confirm the existence 
of (genuine) Kdn and associated derivatives in some microalgae. In animal tissues, 
sialic acids provide a barrier which protects from predators. However, some 
pathogens, including viruses, have adapted to this strategy and developed specific 
proteins that bind to sialic acids, to use them as an entry point for successful 
colonisation of the host. Some other pathogens appeared to have adapted to 
cleave terminal sialic acids and utilise those as a source of energy. Furthermore, 
many pathogenic or symbiotic bacteria display sialic acids or other NulOs on their 
own surface, which is regarded as molecular mimicry of the host sialylation. This 
strategy has been found effective in delaying, or abolishing the host's immune 
response.24 Hence, we included in our survey a well-studied 
pathogenic Campylobacter jejuni strain that is able to utilise bacterial-type and 
animal-type NulOs. As expected, we observed several heavily expressed hits for 
both animal- and bacterial-type NulOs.  
 
The majority of Neu variants are expected to derive from medium uptake (and 
potential incorporation), but the strain further produced at least 3 distinct 
bacterial-type NulO variants (ESI-Table, sheet 3‡). Moreover, it is suggested that 
bacteria apply cell surface diversification strategies (such as through NulOs) to 
evade recognition by bacteriophages.25 Bacteriophages are viruses that infect and 
replicate within prokaryotes and attach specifically through bacterial cell surface 
carbohydrates. For that reason, we selected a range of environmental, non-
pathogenic species, spanning most phyla described to date. Surprisingly, the 
NulOs uncovered from those microbes were rich in diversity and frequency – 
nonulosonic acid peaks were detected in more than half of the measured species: 
two-thirds showed more than one hit, and one-half showed three or more NulO 
hits. The relative sialic acid abundances compared to the mammalian cell lines 
(normalised to dry weight biomass starting material) was in many cases only 
slightly lower compared to quantities observed in animal cells. The more rigid 
bacterial cell walls may, however, make a fair comparison not particularly 
meaningful (ESI-Table, sheets 1–3‡).  
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The authors also want to emphasize that incubation with acetic acid at higher 
temperature is required to ensure sufficient release of different types of NulOs 
from various biological matrices. On the other hand, the release and labelling 
procedures may introduce additional degradation variants, which impacts on 
quantitation and comparability. Furthermore, we aimed to ensure excess of 
labelling reagent over the biological matrix to ensure efficient NulO labelling. An 
additional reagent mass channel however might be highly useful to monitor the 
labelling process when dealing with unknown matrices. Nevertheless, as 
expected, there was a strong trend towards Pse/Leg-type NulOs, but also Kdn and 
Neu-type acids were found with high frequency. When animal derived media 
supplements were used (such as casein tryptone) the detected NeuAc may 
originate from uptake or scavenging rather from neo-biosynthesis. In some cases, 
additional Neu derivatives were observed indicating that these did result from 
further cellular processing. Several environmental microbes, isolated from 
distinctive niches, displayed a remarkable diversity of NulOs, 
including Streptomyces coelicolor, which is seemingly specialized in abundant Kdn 
and modified variants thereof, as well as Paracoccus denitrificans harbouring at 
least 4–5 different bacterial-type sialic acid derivatives (ESI-Table, sheets 1–3‡). 
The authors also would like to point out, that the investigated microbes were 
analysed from one particular culturing condition, and the extend of variability 
between conditions and stimuli remains to be explored. 
 
In support of the observed frequency, we analysed the proteomes of selected 
strains for homologues of known NAB pathways. This largely confirmed observed 
trends from the molecular identifications, but also underlined the notion that 
gene and protein sequence databases are still incomplete und selection of 
comparator sequences is crucial. For example, the homologous genes for Kdn 
pathways in algae were not identified, although their existence had been 
confirmed previously in an independent study26 (Fig. 4). 
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Fig. 4 NulO channel-hits and compositions for selected species. The bar graph highlights results for 
selected species from the NulO survey. The lower bar graphs are normalised to 100%. Individual bars 
represent a channel hit (annotated by the channel centre mass). The bar graph size correlates to the 
MS1 intensity of the aligned parent mass peaks. The following samples are shown from left to right: 
(1) DMB blank incubation; (2) reference sialic acids spiked into E coli, (3) free grown HeLa serum free 
grown, (4) HeLa grown on serum, (5) A. thaliana, (6) N. benthamiana, (7) Saccharomyces cerevisiae; 
(8) Chlamydomonas reinhardtii-s1; (9) Chlamydomonas reinhardtii-s2; (10) Cryptomonas; 
(11) Asterionella formosa, (12) Diatoma, (13) Alexandrium ostenfeldii, (14) Cricophaera carterae, 
(15) Galdiera sulpharia, (16) Haloferax volcanii, (17) Geitlerinema n., (18) Methanogenic archaeon, 
(19) Scalindua, (20) Nitrospira moscoviensis; (21) Clostridium S. (22) Thiothrix enr. (23) Pseudomonas 
putida (24) E. coli BW25113 (25) Myxococcus xanthus, (26) Acidovorax avenae, (27) Streptomyces 

coelicolor, (28) Mycobacterium smegmatis, (29) Arthrospira platensis, (30) Paracoccus denitrificans, 
(31) Magnetospirillum gryphiswaldense (MG) acid hydrolysed + labelled, (32) MG non-hydrolysed + 
labelled, (33) MG acid hydrolysed + unlabelled, and (34) MG non-hydrolysed + unlabelled. The insert 
for Alexandrium ostenfeldii (13) exemplifies the parent NulO deconvolution from the channel-hit 
using the chemical and structural evidence scoring and filtering. A comparative gene level NAB 
pathway search is illustrated in the box between bars (white box = no significant, light grey = <5 and 
dark grey >5 homologue hits). All survey channel-hits and NulO parent annotations are summarised 
in the ESI-Table, sheets 1–3,‡ and the NAB pathway search results are summarised in ESI-Table 
sheet 7.‡ 
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Carbon chain length diversification: from octulosonic, nonulsonic and higher 
carbon ulosonic acids 
All described nonulosonic acids (9 C) are products of evolutionarily related 
synthase families. A condensation of a hexose derivative with 
phosphoenolpyruvate (PEP) takes place by a mechanism comparable to the 
reaction of the Neu5Ac synthase in humans. Alternative (reversible) routes exist 
through aldolase activities, which utilize pyruvate instead of PEP. A highly 
comparable condensation reaction produces other lower carbon ulosonic acids 
such as heptulosonic (7 C) or octulosonic (8 C) acids. Heptulosonic acids are 
intermediates of the shikimic-acid pathway (deoxy-d-arabino-heptulosonate 
phosphate, DHAP), an essential part of the neo-biosynthesis of amino acids. 
Octulosonic acids (keto-deoxy-octulosonate, KDO) are essential building blocks of 
cell walls of many prokaryotes and plants. Indeed, the large majority of ulosonic 
acids (UAs) observed in our survey were of modified 7-, 8-, or 9-carbon nature. 
However, surprisingly, some rare cases evidenced the existence of higher carbon 
ulosonic acids (potential 10 C, or other by means of MS indistinguishable 
variants), such as in Magnetospirillum gryphiswaldense, a Gram-negative 
magnetotactic alpha-Proteobacterium, capable of orienting and navigating along 
geomagnetic field lines27 (Fig. 2B). Additional experiments on the unlabelled and 
fractionated NulO further support the presence of a triply acetylated higher 
carbon ulosonic acid (ESI, Section H‡). The same species was detected in lower 
abundance in Methanococcus. In support of this finding, Hsu et al., reported on 
directed evolution of sialic acid aldolases with low specificity, that accept a variety 
of (different) monosaccharide substrates for condensation with pyruvate to 
uncommon NulOs.28 Furthermore, Jacobs et al. demonstrated the efficient 
incorporation of mannosamine analogues with alternative N-acyl groups.29 The 
promiscuousness of biosynthetic routes together with substrate availability may 
be frequent mediators for species/niche diversification processes of sialic acids 
and other NulOs. 
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4.3 Conclusions 
In summary, we developed the first universal large-scale survey approach that 
tackles the enormous chemical diversity of prokaryotic NulOs by using chemical 
labelling, segmented mass spectrometric scanning and structural evidence 
filtering and scoring. Comparative large-scale studies will advance the 
understanding of important molecular level processes relevant to medical 
applications. Furthermore, we provide a first molecular-level comparative study 
on selected species representing a large number of the prokaryote phyla 
described to date, with a focus on the largely unexplored environmental niches. In 
this study, we observed NulOs at a high frequency and diversity, which challenges 
the current model of evolution and utilisation of sialic acids and other NulOs being 
predominantly driven by mechanistic advantages during host–pathogen 
interactions. This supports a broader utilisation of these compounds, such as for 
diversification of cell surface attachment points and protection from 
bacteriophages, which are a major driver of bacterial evolution in the laboratory 
and in nature.30 Furthermore, our large-scale data evidence potential higher 
carbon ulosonic acids, which would further expand the boarders on the chemical 
diversity of natural NulOs. At the same time, we emphasise, although the 
approach presented here serves as an ideal tool to survey for known and 
completely new UAs, the latter require orthogonal analysis, such as by NMR, to 
completely unravel and confirm their chemical structures. 
Nevertheless, chemical synthesis of sialic acid and other NulO derivatives is highly 
challenging and often only achieved at low yields.31 The exploration of non-
pathogenic microbes for novel biosynthetic routes gives access to new NulO 
derivatives that have thus far been difficult to produce by chemical synthesis. 
 

 

 
 
 
 
 
. 
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4.5 Supporting information 
 
Experimental Procedures  
A. Cell lysis, acid hydrolysis and alpha-keto acid specific labelling. Liquid cultures 
were pelleted at 4200 rpm for 10 minutes, and supernatants were removed and 
washed with PBS. Further, cell pellets and all other solid materials were freeze-
dried, followed by physical disruption and homogenisation. Then, 1 mL of 2 M 
acetic acid solution was added to 2.5 mg of freeze-dried biomass. The 
resolubilised material was hydrolysed at 80 °C for 2 hours, after which samples 
were centrifuged for 5 min at 14K rpm. From every sample hydrolysate, 10 μL 
were dried at 45 °C under reduced pressure using a speed vac concentrator. 
Labelling was performed by adding 20 μL labelling solution at 50 °C for 2.5 hours. 
The labelling solution consisted of 1.4 M acetic acid, 0.75 M 2-mercaptoethanol 
(beta-mercaptoethanol), 18 mM of sodium dithionate and 7 mM of DMB. 
Reference sialic acid standards were labelled directly and were prepared to reach 
a final concentration of 2.5 pmol per μL injection solution. MS-grade water was 
added to the reference panel to reach a concentration of 10 pmol/μl. The labelling 
procedure follows the original work published by Hara et al.,[1] where 1,2-
diamino-4,5- methylene dioxybenzene was introduced as the selective label for 
alpha-keto acids, forming a fluorescence-active quinoxaline derivative. Here, we 
decided to select the well-established DMB label (otherwise used for fluorescence 
detection) because it has a high degree of saturation and therefore the mass 
defect of labelled ulosonic acids distinguishes significantly from non-labelled 
metabolites or background signals. Furthermore, the large quinoxaline core 
guided highly unique ulosonic fragmentation pattern. The reaction is outlined in 
Figure S2.  
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B. Reverse-phase-Orbitrap-MS and segmented very small mass window 
scanning. An M-Class HSS T3 300μm x150mm C18 was mounted to an Acquity M-
Class UPLC (Waters) using 97% H2O plus 3% acetonitrile as solvent A and 97% 
acetonitrile plus 3% H2O as solvent B (both 0.1% formic acid). A gradient from 
12% B to 25% B was maintained at a flow-rate of 9 μL/min over 20 minutes, 
followed by a washing-step. Samples were injected in duplicates followed by 
blanks. Continuous fragmentation of very small mass segments was performed 
using a QE plus bench top Orbitrap mass spectrometer, operated in ES+ mode, in 
2.5 Da steps from 380–520 Da (2.75 Da width). Fragmentation was performed at a 
NCE of 28. Alternating MS1 and MS2 scans at a loop count of 51 and a resolution 
of 70K with an AGC target of 5e5 for MS1, and 17K with an AGC target of 5e4 for 
MS2, were acquired in centroid mode. Confirmatory high-resolution and targeted 
experiments were performed at 140K resolution in HRMS, or PRM mode at 1 Da 
isolation, respectively. Calibration was carried out within every 24 hours.  
 
C. Channel hit detection and NulO parent assignment by chemical filtering and 
structural scoring. Nonulosonic acid parent candidate identification was 
performed using Matlab (R2019b). Briefly, raw files were converted to mzxml 
(‘.mzXML‘) format using the msConvert software tool. Peak lists were imported 
into Matlab using the ‘mzxmlread’ function, followed by ‘mzxml2peaks’ to extract 
MS1 and MS2 mass lists. MS1 data were deisotoped (within 5 ppm) by removing 
up to three 13C isotopes, provided that intensity ratios were close to natural 
abundance ratios (113C=1, 213C<0.25, 313C<0.05, 413C<0.01). Furthermore, MS2 
peaks with less than 103 counts were excluded. For each fragmentation channel 
(2.75 Da window) a cell array was created, containing scan index, mass channel 
range, retention time, fragment peaks and peak intensities. MS2 scans containing 
core, class or reporter fragments were extracted (allowing a max mass error of 
15ppm, see SI-table, sheet 9, script box 1), and only MS2 scans containing both, 
class and core fragments, were considered for further processing. For each scan, 
the class of the ulosonic acid was determined by the carbon length of the largest 
class fragment (see SI-table, sheet 9, script box 2). Neighbouring MS1 scans were 
then analysed for potential precursors (see SI-table, sheet 9, script box 3), where 
only precursor masses with a mass defect between 0.075–0.225 m/z were 
considered.  
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For this, an empirical (NulO) chemical composition space was constructed 
considering min/max element counts (C15-30H16-35N2-5O7-15P0-1S0-1) and 
constrained ratios between elements and degree of unsaturation (RDBE >7.75, 
C/H ratio = 0.65–0.9, C/O ratio = 1.25–2.5, which was further corrected for 
amidation, phosphorylation and sulphation) (see SI-table, sheet 9, script box 4-
5).[3] P/O and S/O ratios were set to <0.09, which elements also required the 
presence of in-source loss fragments of -79.96 Da or -79.95 Da, respectively. All 
precursors matching the constructed (NulO) chemical composition space, thereby 
allowing no more than 5 ppm mass error, received a chemical composition and 
were considered for further processing (see SI-table, sheet 9, script box 6). 
Precursor candidates occurring in >75% of all scans were regarded as static 
background and not further considered.  
 
The passed MS1 parent mass candidates were finally subjected to a structural 
evidence scoring as described in the following (=decision tree). Parent mass 
candidates were scored based on the occurrence of water loss peaks, either 
observed as a neutral loss peak in the MS2 scan or as an in-source fragment in the 
MS1 scan (=Water score, +1 score for MS1/MS2 scans with water loss, [M+H+]+-
H2O, - 18.0105). Further, scores were added according to the max. number of 
observed ulosonic acid (UA) fragments (2. # Fragments, +X scores equal to X = 
#core + #class-fragments (one per oxidation state)), and for the uniqueness of a 
parent mass candidate within a MS1 fragmentation window (=Window score, +1 
score if parent mass candidate is the only ‘realistic candidate’). Additional scores 
were granted for the fraction of co-elution of a parent mass candidate with the 
MS2 scans containing UA fragments (=Overlap, expressed as fraction= 
aligned/total). Parent mass candidates belonging to the same class and chemical 
composition were combined (intensity, scores, retention times and fragment 
signatures). In order to provide a comparative measure (to compare to random 
matches, as described below) a total score was established (=sum of Water score, 
Window score and # Fragments, multiplied by the fraction of Overlap).  
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To verify the significance over purely random matches, a ‘total score-cut-off, was 
defined for every sample. For this, every dataset was subjected to semi-
randomisation of the MS scan mass peaks and processed through the same 
pipeline as described above. Randomisation was performed using Matlabs ‘rand’ 
function, with the constrain, that randomised masses fall within the window of 
the lowest and highest masses of the original data (see SI-table, sheet 9, script box 
7). The largest total score observed for the randomised data set defined the ‘total 
score-cut-off’. Only parent mass candidates (from the correct dataset) with a total 
score greater than the ‘score-cut-off’ were considered for further analysis.  
Finally, the minimum threshold for a valid ulosonic parent mass candidate (to be 
reported in SI-table, sheet 1) required a minimum MS1 intensity of 10^4 counts, a 
MS1 water loss in-source peak (a water loss peak (MS1 or MS2, during filtering), 
being matched twice in 2 consecutive runs, a minimum of 3 fragments (at least 
one class), and in addition either an MS2 water score or a window score. Hits 
showing strong mono-linker marker peaks as well as degradation makers were 
rejected. The hits were finally exported using the ‘writetable’ function. Peaks from 
the LC gradient wash region were excluded. The complete output of channel-hits 
and assigned NulO parents for all species/references as analysed above is 
presented in the SI-table, sheets 1-3.  
 
D. Genome-level analysis of ulosonic acid biosynthesis (UAB) pathways. Analysis 
for homologues of oct- and non-ulosonic acid biosynthetic routes in genomes of 
species highlighted in Figure 2B was established as described in Lewis et al., 
2009.[2] The following protein sequences were used for protein homology search 
using the NCBI Blast tool: Kdn Q8A710 (NAB1) and Q8A711 (NAB2), Neu 
P13266/Q8NFW8 (NAB1) and A0A0H3MPX1/Q9NR45 (NAB2); Pse A0A3K5CFB7 
(NAB1) and A0A3X8VGM4 (NAB2), Leg Q0P8S7 (NAB1) and Q0P8T1 (NAB2).The 
Matlab function ‘[RID1, ROTE]=blastncbi(seq, 'blastp',' Entrez', species, 'expect', 
1e-3)’ was used to obtain the homology search request ID (‘RID1’) and estimated 
search time (‘ROTE’) for every fasta template (seq) and selected species 
(‘species’). The homology search report was collected using ‘report1= 
getblast(RID1,'WaitTime',ROTE,'ToFile','1CIV_report.xml')’. Results are 
summarised in SI-table, sheet 7.  
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E. Graphical representation of Channel-hit maps, mass binning graphs and 
fragment statistics. The theoretical chemical space for NulOs was established by 
considering the three currently known core compositions (Figure 1, A) and by 
performing a combinatorial addition of up to 4 (‘functional’) modifications out of 
10 frequently found modifications, plus one small mass-shift such as oxidation, 
dehydration and reduction. To further expand the chemical space and mass 
defect for yet undescribed diversifications we allowed also for one additional 
single amino acid and one additional sugar modification (see SI-table, sheet 8, 
script boxes 1-3). The formula weight for every composition was calculated and 
masses were binned in 5 Da channels using the ‘histogram’ function of Matlab. 
The difference to the nominal mass unit of every composition was binned and 
visualised in a mass defect histogram (Figure 1, B). The established combinatorial 
space described above is outlined in detail in the SI-table, sheet 8. 
Initial mining for realistic ulosonic acid species in the large scale data was 
performed using a Matlab script. Thereby, all acquired spectra were searched for 
the highly conserved core ulosonic acid DMB fragment features 205.06, 217.06, 
229.06 and 231.06. Spectra containing those features were extracted and 
fragments were binned according to their chemical compositions. Continuous 
carbon chain fragments with chain lengths of 7, 8, 9 and potential higher, allowing 
different degrees of oxidation and saturation (=realistic backbone compositions), 
were extracted and translated into structures (considering continuous and steady 
fragmentation trees) and visualised using the ‘histogram’ function of Matlab (SI-
table, sheet 4, including script boxes 1-4, Figure 2 A-C). 
The channel-hit map (Figure 3) showing all references/species analysed was 
prepared using the ‘pcolor’ function in Matlab. Limits were set so that every valid 
channel hit (containing a potential parent NulO) was represented by a black/red 
channel. In-between sample run blanks are shown first, followed by the analysed 
samples/references. The order of samples shown in the map (from left to right) 
follows the order listed in the SI-table, sheet 3, except that duplicates were not 
combined, but represented separately. The channel hit-map was once filtered for 
Neu/Kdn-like signals and once for bacterial-type NulOs across samples analysed. 
The binning of identified NulOs from every channel was performed using the 
‘histogram’ function of Matlab. Thereby, masses calculated from chemical 
compositions (of individual runs) were combined within 0.1 Da bins. Selected 
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species from the survey (Figure 4) are presented as a combined graph using 
Matlabs ‘bar’ function (stacked). For this, the intensity of the most intense parent 
ion was used to present the proportion of every channel hit. Bars are annotated 
by the channel mass (rounded to unit mass). Boxes representing the NAB hits 
were included manually between the relative and absolute proportions. For 
sample 13, NulOs are annotated with their chemical composition, mass error and 
class (Kdn derivatives) and scores.  
 
Additions to results and discussions  
 
F. NulO core compositions. The to-date three distinct core NulO compositions are 
known, which are outlined in Figure S1. The only composition without any amino 
functionality is keto-deoxy-neuraminic acid (Kdn, Figure S1, middle). The second 
(Figure S1, right) refers to N-acetyl-neuraminic acid (Neu5Ac, 5-acetamido-2-keto-
3,5-dideoxy-D-glycero-D-galactonononic acid) commonly found in the D- glycero-
D-galacto configuration. The third class is a 5,7-diamino variant with an additional 
deoxy on the 9 position. This composition is commonly found for pseudaminic 
acid (Pse, 5,7-Diamino-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-
ulopyranosonic) found in L- glycero-L-manno configuration or its stereoisomers 
legionaminic acid (Leg, D-glycero-D-galacto configuration, including a 3/8- 
epilegionaminic acid referred to as 3/8eLeg) as well as acinetaminic (Aci, D-
glycero-L-altro configuration 8 epimer, D-glycero-L-altro and a 8 epimer referred 
as to 8eAci). Diversification can be found on any of the amino and hydroxyl 
positions. A recent comprehensive summary of a large collection of discovered 
sialic acids and other NulOs has been collected by Schauer et al.[3]  
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Figure S1. Three most commonly found classes of non-ulosonic acids, including groups undergoing 
frequent diversification (orange). Common isomerisation points for Pse, Leg and Aci (also referred to 
as to P.L.A) are not further differentiated in this study.  
 
 

 
 
Figure S2. DMB labelling reaction scheme, first described by Hara et al.[1] I) first step includes 
incubation with 2M acetic acid at 80°C for 2 hours to release glycosidically as well as nucleotide 
activated sialic acids or other NulOs. II) Alpha keto acid specific labelling using 1,2-diamino-4,5-
methylene dioxybenzene at 50°C for 2.5 hours.  
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G. Sialic acid reference standard spiking experiments. Initial spiking experiments 
were performed using a mix of 6 commercial sialic acid standards Neu5Ac, NeuGc, 
Neu(AC)2, Neu(Ac)3, NeuGcAc (Ludger, CatNo CM-SRP-01) and Kdn (Sigma 
Aldrich, CatNo 60714). All 6 sialic acid standards could be successfully recovered 
when spiking into E-coli K12 lysate at concentrations of 1:1, 1:5 and 1:1). It was 
also possible to distinguish from E. coli’s octulosonic acid derivatives.  
 

 
Figure S3. Stacked bar graphs show the observed peak intensities/proportions for reference sialic 
acids Kdn, NeuAc, NeuGc, NeuAc2, NeuGcAc and NeuAc3 and an 8-Carbon ulosonic acid naturally 
present in E-coli (presumably Kdo-Ac, the mass analysis did not include the native Kdo mass). A) Bars 
1 to 2 represent the (absolute) summed MS1 peak intensities of the 6 sialic acid reference standards 
and the E. coli octulosonic acid derivate measured separately. B) Bars 3-4 show the (absolute) 
summed MS1 peak intensities of the 6 reference standards, after spiking in ratios 1:1 (3) 1:5 (4) and 
1:10 (5) into the E. coli extract. The extract was prepared with protocols and biomass quantities, 
exactly as used for all other samples in this survey. B) shows the same order of samples normalised 
to 100%.  
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H. Towards establishing universal fragmentation features. We systematically 
established a core fragmentation framework for ulosonic acids with different 
carbon chain lengths ranging from C-8 to theoretical C-10 sugars (C-9+), 
deoxygenation states and degrees of saturation. Ulosonic acids are identified for 
which class fragments determine the carbon length, core fragments show 
attachment to the DMB-label and reporter fragments show side products from 
DMB-labelling. After an initial water loss peak (-H2O), the neutral losses will be all 
–N and –O modified side groups. This leaves behind the backbone carbon chain, 
with many unmodified hydroxyl groups, varying from 0 to 3 -OHs that remain 
attached to the backbone. Depending on which –O positions are unmodified, 
fragmentation of the backbone can occur before all hydroxyl groups are 
fragmented, such as in Kdn. The fragments with the largest complete intact 
carbon backbone can be used to allocate the carbon length and corresponding 
class of the ulosonic acid (C-8–C-10). Due to the higher degree of modification, C-9 
backbone with 1 –OHs Kdn/Neu core (295.07 m/z) can be differentiated from Pses 
with a less-saturated backbone (297.09 m/z). Extrapolating the fragmentation 
route can also be used to include octulosonic acids Kdo, Kdo8N (283.07 m/z), as 
well as more theoretical chemical space of deoxy Pse/Leg 299.10, deoxy Kdo 
(285.09 m/z) and larger C-10 sugars (311.09). Almost exclusively, the 
methylenedioxybenzene proximate C1-hydroxyl remained stabilised and 
contributed to the 3-carbon core fragments as described further below. 
Fractionation of the product alkene and alkyne chains led then to losses of 12.00 
Da and 27.99 Da corresponding to the loss of C or CO, respectively. The smallest, 
but unique ulosonic fragments observed (core fragments), were a C-3 (205.061 
m/z), C-4 (217.061) and C-5 (229.061 m/z) respectively, and an alternative C-5 
fragment for 4-deoxy ulosonic acids (231.076 m/z).  
Finally, reporter fragments were determined for detection of mono-labelled 
species (223.071, 343.114, 283.093, 297.108, 313.103) and DMB label 
degradation products (201.066, 189.066), which shows chemical instability at the 
4,5-methylenedioxy end. Lower mass fragments at 177.07 m/z displayed 
additional DMB label-related fragmentation events.  
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Table S1. Empirical conserved fragmentation trees for different kinds of ulosonic acid classes 
considering varying degrees of oxidation, saturation and carbon backbone length. For every 
backbone class, we considered a range of 12 indicative fragments. Following the same rationale, 
potential higher carbon ulosonic acid derivatives e.g. (10-carbon) where considered using 289.06, 
291.08, 293.09, 307.07, 309.09, 311.10, 325.08, 327.10, 329.11, 343.09, 345.11 and 347.12. Out of 
these derivatives, 293 and 311 were most prominently observed in our study. This mass table was 
used for the screening study to discriminate between different carbon chain length ulosonic acids.  

 

 

Figure S4. CID fragmentation tree for Kdn including quinoxaline (label) core.  
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Figure S5. Comparative fragmentation trees of Kdn/Neu and Pse/Leg/Aci, where R represents the 
quinoxaline label core. The here shown fragmentation tree could also be extended towards other C-
9 derivatives, showing highly comparable fragmentation behaviour. The main difference between 
Pse-type and Neu/Kdn is the 2 Da difference, which is not caused by the number of substitutions 
reducing the saturation. This difference is seen for the ‘Class fragments’ because the Pse-type C-9 
sugars have an exposed primary carbon. However, this difference did not appear to be influenced by 
the number of amine versus hydroxyl groups; amine groups were not further considered during 
fragment mining in automatic data processing. Apart from core fragment and class fragments, 
reporter fragments were included to assess false positives due to side reactions of the DMB-label, or 
artefacts generated upon fragmentation of the DMB-labelled compounds.  
 

 

 
Figure S6. Proposed fragmentation for ‘mono-linked‘ species (A), and proposed instability of the 
DMB label itself (B).  
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I. Verification of the empirical fragmentation features. The empirical 
fragmentation tree was verified with known ulosonic acid standards for Kdo (E-
Coli), Kdn (commercial), Neu5Ac (commercial) and Pseudaminic acid (Pse) as 
obtained from Campylobacter.  
 
 
Table S2. Kdo C-8 fragmentation markers were as predicted 283.07, 301.08 and 319.09; Neu/Kdn C-
9 markers were 295.07, 313.08 and 331.09. For Pse, the C-9 markers were 297.09, 315.10 and 
333.11. Pse showed compared to Neu an additional lower oxidation peak of 279.08. The identified 
peaks for the ulosonic acid form Gryphiswaldense (GW) were 331.10 and 328.13 (amine instead of 
H2O*). GW showed in addition (similar to Pse) the lower oxidised species 293.09. Due to high levels 
of acetylation, the further oxygen was only added after addition of 2 acetylations (**).  
 

 

 
Figure S7a. DMB-Kdo fragmentation profile.  
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Figure S7b. DMB-Kdn fragmentation profile.  

 
Figure S7c. DMB-NeuAc fragmentation profile.  

 
Figure S7d. DMB-Pse fragmentation profile.  
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Figure S7e. DMB-UA GW fragmentation spectrum (of 507 m/z) annotated with sum formulae as 
determined by the Xcalibur chemical composition annotation tool (max mass deviation 10 ppm, 
DMB core set as min elemental composition)  
 
J. Potential higher carbon ulosonic acids. The ulosonic acid peaks observed for M. 
Gryphiswaldense matched a fragmentation tree of a potential 10 carbon 
backbone (or any other structure indistinguishable by means of MS). More 
precisely, three ulosonic acid peaks were observed that matched the UA 
backbone peaks 293.09 and 311.10 [M+H]+, which correspond to 3 and 4 oxygen-
containing species (2 oxygens derive from the DMB label, and one from a hydroxyl 
group which is part of the unique core quinoxaline fragment). The mass peak with 
the sum formula C23H30N4O9 (mi = 506.2013, confirmed by high-resolution mass 
spectrometry) revealed following fragmentation the loss of three acetyl groups. 
Other losses derived from the loss of water, ammonia and -CH2 groups. No other 
type of backbone modification was observed that could have increased the 
carbon count compared to the known ulosonic acid fragmentation features. The 
other mass peaks observed derived from a water loss of 506.2013 mass peak and 
from a species with only 2 acetyl groups instead of 3. The latter (twofold 
acetylated) species was further also observed in the methanogenic bacterium 
sample (SI-table, sheet 1- 3). The same sample (M. Gryphiswaldense) was also 
measured without prior DMB labelling (plus/minus acid hydrolysis) which did not 
show any of the abovementioned ulosonic acid peaks. Further, the same sample 
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was measured without acid hydrolysis, but with DMB labelling, which resulted in 
only trace quantities of the above mentioned ulosonic acid peaks, only observable 
after manual investigations of the mass traces.  
To confirm the said peaks as ulosonic acids and to obtain additional fragmentation 
spectra, we analysed the acid hydrolysed and non- derivatised (non DMB labelled) 
material for the theoretical free ulosonic acid mass peak (predicted sum formula 
from the AiRM experiment: C16H26N2O9 after subtraction of the label). Thereby, 
we indeed observed an abundant mass peak corresponding to the predicted 
accurate mass of the free ulosonic acid and fragmentation profiles similar to those 
observed for the nonulosonic acid standards. To verify the carbon backbone 
length, we investigated the fragmentation tree closer and compared it with 
Neu5Ac (commercial standard) and Pse (Campylobacter jejuni). Since the 
fragmentation tree of the triply acetylated ulosonic acid from M. Gryphiswaldense 
(GW) appeared somewhat more complex, we undertook a chemical deacetylation 
using 20 mM sodium hydroxide. To do so, a microscale quantity of the peak 
(giving the parent ion 391 [M+H+]+) was fractionated manually from the capillary 
HPLC, speed- vacuum dried and redissolved in 20 mM aqueous sodium hydroxide. 
The mixture was incubated at 30°C for 12 hours and (re)injected to the LC-MS 
system. We performed a targeted analysis for masses of species with 3 (starting 
material), 2, 1 and no acetylation(s). The fractionated ctrl, as expected, showed 
only a peak for the threefold-acetylated species, where the (mild) base treated 
sample showed only a peak for a twofold-acetylated species (loss of O-Ac, but not 
N-Ac). In the following, the fragmentation tree for the twofold (N) acetylated 
species was compared to Neu5Ac (commercial, single-NAc, 9 carbon) and Pse 
(Campylobacter, di-NAc, 9 carbon).  
Neu5Ac shows major fragments for a threefold water loss followed by the 
fragmentation of the N-acetyl group (-42.01 Da -C2H2O or - 59.03Da -C2H5ON). 
From the later peak (197.04 m/z), the backbone fragmentation occurred from 
either loss of carboxylic acid (-46.005 Da, -H2CO2) or the cleavage of the C-9 
carbon methanol group (-30.01, -CH2O). The fractionation from the resulting peak 
at 176.03 Da was followed by the carboxylic acid loss (-46.005 Da, -H2CO2) to give 
a peak at 121.02 m/z.  
Pse shows the same major fragments for a threefold water loss followed by the 
fragmentation of one acetyl group (major -42.01 Da, -C2H2O) and a second N-
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acetyl group (major - 59.03Da, -C2H5ON). The resulting C-9 backbone fragment 
(180.06 m/z) showed further the loss of carboxylic acid (-46.005 Da, -H2CO2) or 
the cleavage of the C-9 carbon methanol group (-30.01, -CH2O). The fractionation 
from the resulting peak at 176.03 Da was followed by the carboxylic acid loss (-
46.005 Da, -H2CO2) to give a peak at 121.02 m/z.  
The (doubly N-acetylated) ulosonic acid from GW showed a comparable (simple) 
fragmentation tree compared to Neu5Ac and Pse. First, 2 water loss peaks were 
observed followed by twice a loss of N-Acetyl groups (major -59.03 Da -C2H5ON) 
to 254.1 m/z and to the 10- carbon fragment 195.06 m/z (C10H11O4). From here, 
we observed the backbone fragmentation by the loss of the carboxylic acid (-
46.005 Da, -H2CO2) to give a 9-carbon peak at 149.05 m/z. A second lower 
abundant route branching from 2 water loss peaks to the loss of one N-Acetyl 
group (major -59.03 Da, -C2H5ON) to the peak 254.1 m/z. From there, an (early) 
CO2 loss to 210.1 m/z (including a minor carboxylic acid loss to 208.09 m/z) was 
found taking place. This loss was followed by the loss of acetyl to the C-9 168.1 
m/z (-42.01 Da, - C2H2O), where the loss of -59.03 Da (-C2H5ON) was much 
weaker. The (early) loss of CO2 (-43.98 Da) in parallel to the carboxylic acid loss 
was also observed in Neu5Ac and Pse but was significantly less pronounced.  
 

 
Figure S8a. HCD fragmentation profile of unlabelled ulosonic acid from GW with the proposed sum 
formula C16H26N2O9 and the theoretical [M+H]+ of 391.1711 Da.  
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Figure S8b. HCD fragmentation profile of unlabelled and de O-acetylated ulosonic acid from GW.  

 
Figure S8c. HCD fragmentation profile of unlabelled and de O-acetylated ulosonic acid from GW, 
with zoom to the C-10 peak which fragments to a C-9 following the loss of carboxylic acid.  

 
Figure S8d. HCD fragmentation profile of unlabelled Pse from Campylobacter jejuni.  
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Figure S8e. HCD fragmentation profile of Pse from Campylobacter, with zoom to the C-9 peak which 
fragments to a C-8 by carboxylic acid loss.  

 
Figure S8f. HCD fragmentation profile of the commercial, unlabelled Neu5Ac standard.  

 
Figure S8g. HCD fragmentation profile of Neu5Ac, with zoom to the C-9 peak which fragments to a 
C-8 by carboxylic acid loss.  
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K. Degradation and non-specific labelling side products. Most lysates showed 
additional artefacts deriving from nonspecific labelling side reactions with other 
sugars and that unfortunately showed upon fragmentation the ulosonic acid core 
fragments 205.061, 217.061 and 229.061 [M+H+]+. However, to distinguish from 
actual hept-, oct- and nonulosonic acids, we included the ‘Reporter ions 1’ that 
were established through initial validation experiments using common bulk 
monosaccharides. In addition, we included in-source fragments of common bulk 
monosaccharides such as for 162.053, 146.058 and 132.042. Spectra showing 
reporter ions and in-source fragments at high frequency were rejected, or marked 
as possible labelling artefacts. Furthermore, chemical instability of the DMB 
derivative may produce low abundant artefacts peaks. A presumable hydrolysis of 
the methylenedioxy group followed by elimination would result in a mass 
decrease by 28 Da. Unfortunately, higher fragments may mimic the intact 
quinoxaline core fragments. For example degraded DMB- Neu5Ac would appear 
with the mass of potential ‘N-methyl-neuraminic acid’ and could only be 
distinguished by fragmentation tree analysis. Therefore, we included in our 
fragmentation trees the ‘Reporter ions 2’ 177.066, 189.066 and 201.066 [M+H+]+. 
Spectra were rejected, or marked as degradation products when all 3 reporter 
ions were present at high frequency.  
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Figure S9. Non-specific derivatisation (artefacts) mimic ulosonic acid mass peaks, 
including core ulosonic acid fragment ions, as shown for a “pseudo-Kdn” peak 
C16H21O9N2. Spectra could be differentiated from genuine peaks by the carbon 
number fragments and reporter ions. A) Genuine Kdn from Cricosphaera carterae, 
B) ‘pseudo-Kdn’ peak observed in Nicotiana benthamiana and C) commercial Kdn 
standard.  
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5.1 The snake that eats its own tail 

It is often claimed that the number of stars in the universe equals the number of 
microbial species on earth (Dykhuizen 1998). Likewise, our knowledge of microbial 
diversity can be seen as a universe that is continuously increasing in entropy until 
its eventual death. For the universe, a state of death is reached when all energy is 
dispersed, while for ecological knowledge, a point of “death” would be reached 
when the vastness of total sequence space completely halts our ability to 
annotate taxa. In this sense the current explosion of sequence data is like a snake 
eating its own tail, similar to the classical symbol of the ouroboros, which can 
signify both a self-destructive and cyclic behavior. The more our knowledge 
increases, the more difficult it will be to place new findings, which would make 
the accelerated discovery of new species its own worst enemy. As knowledge 
increases, the surrounding framework will have to be iteratively reborn to 
categorize these new insights, as is happening at currently with the creation of 
new taxonomic databases. Another association of the ouroboros is “εν το παν” 
(The all is one), which can be interpreted as the more knowledge is gained, the 
more connections are formed between entities, which will end up dissipating 
boundaries between bodies of knowledge. The 3 main challenges that I expect to 
threaten future ecological developments are 1. Computational burden, 2. 
Reduced sequence uniqueness, and 3. Phylogenetic placement, each of which will 
require us to reconsider how we treat and classify our information.  

 

5.1.1 Computational burden 

Since sequence growth is significantly outpacing Moore’s law at the moment, we 
will continuously have to change our approaches to accommodate such large 
databases, like data compression, representative databases or the use of “de 
novo” database independent methods. To exemplify: during the time of my 
thesis, the UniprotKB protein database has tripled in size. We will have to think 
about minimizing the data that will be compared to the ever-growing reference. 
In metagenomics, taxonomic annotation often was done by assembly with read-
mapping sequences to reference genomes (Nasko 2018) but is currently outpaced 
by de novo assembly. Similarly, de novo metaproteomics methods can circumvent 
using large databases for peptide spectrum matching, which is computationally 
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taxing. Another strategy involves data reduction before using database 
annotation to minimize the total amount of data that is matched. In 
metagenomics annotation, binning is often performed before taxonomic 
annotation. Data reduction is also standard in 16S analysis. Either by clustering 
sequences into operational taxonomic units (OTUs) or denoising them into 
amplicon sequence variants (ASVs). Data reduction strategies are not commonly 
applied with metaproteomics, though spectral clustering pipelines have been 
developed (Bandeira 2007, Frank 2008). 

 

5.1.2 Sequence uniqueness 

An additional side effect of increasing reference database size is that sequence 
uniqueness decreases. This has significant effects on lowest common ancestor 
algorithm and requires us to shift towards longer sequences to improve the 
specificity of our sequences. We see this in 16S sequencing where currently the 
emphasis is put on increasing amplicon length, shifting to full length 16S 
sequences to enable species level annotations, and even adding ITS and 23S 
regions to extend the analyzed ribosomal region. In metagenomics, long-read 
sequencing is also gaining traction as it has several other benefits and improves 
the generation of fully circular metagenome assembled genomes (MAGs).  For 
metaproteomics a potential step would be to increase peptide length. Especially 
for de novo sequencing this will be a major step, as here peptides are matched 
against an entire reference database. Shifting from trypsin to separately digested 
Lys-K and Arg-C could be a relatively easy way to accomplish longer overall 
peptide length (Wu 2018). Though not included in this thesis, the influence of 
different proteases on peptide uniqueness was explored by bachelor student Jelle 
Keijzer. However, moving towards longer sequences also generally results in more 
errors per read, which will limit methods that annotate by exact sequence 
matches. To this extent Ramon van Valderen researched error-tolerant alignment 
for de novo sequencing in his master thesis, which was also not included in this 
thesis. 
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5.1.3 Phylogenetic placement 

While a species definition in macroorganisms is based on the ability to reproduce, 
a species of microorganisms was based on arbitrary genotypical cutoffs, which 
shifted from 70% DNA:DNA hybridization (Brenner 1973) to 97% 16S rRNA 
(Stackebrandt 1994) and more recently to a 95% average nucleotide identity 
(Konstantidinis 2005, Hugenholtz 2021). This means that distance metrics form a 
continuous scale, which enables normalization of evolutionary distance. However, 
as the tree of life ends up getting filled, continuous species cutoffs will become 
meaningless as the boundaries between groups will result in overlapping species 
groups, from which no tree can be constructed.  Still, many of the recent 
expansion is instead added to existing genera (Nasko 2018). The normalization of 
GTDB started introducing suffixes to existing ranks (e.g. g__Nitrospira A,C,F), 
splitting them into subclusters (Parks 2017), showing that more intricate grouping 
is required to separate taxa.  

 
Additionally, it should be reconsidered whether an evolutionary system of 
classification (phylogenetic) is desired over a functional or trait-based system 
(phenetic/cladistic). Events such as horizontal gene transfer and microdiversity 
stemming from mutations or genomic rearrangements can cause massive changes 
in functionality (Nelson 2015), while strain-to-strain variations can determine key 
traits such as pathogenicity, each of which is poorly reflected within evolutionary 
distance. Before the advent of genotypical phylogeny, phenetic mathematical 
taxonomy with automated systems was on the rise (Sokal 1966, Sneath 1962). 
While mass spectrometry has the potential to enable mathematical taxonomy by 
quantifying expressed functions, the fact remains that functionality remains 
conditional. Like the pupa and the butterfly, that share the same phylogeny 
(Sneath 1995), microorganisms can exhibit growth cycles, dramatic examples 
being stigmatella and myxococcus, but can also have various states of being and 
modes of operation. Should the different states of being then be separate entities 
in a phenetic system? As the presence and absence of pathways does not equate 
functionality (ppk and PAO), it is also a question if this classification should be 
discrete, which minimizes conditional effects, or continuous by relying on 
similarity between expression profiles. 
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5.2 A coming of age  

What is a worrying trend in the field in -omics is that while most people agree that 
it is not an established field, the rate at which people are generating data makes it 
seem otherwise. There is yet to be consensus within single methodologies as 
evidenced by CAMI and CAMPI studies (van den Bossche 2021, Sczyrba 2017), and 
on quality requirements for database inclusion (Bowers 2017, Chen 2020), which 
leads to a flood of imperfect data, resulting in database discrepancies between 
16S and metagenomics data. The high time-investment required for mastering an 
–omics technique leads to people getting blindsided to the potential bias of their 
employed techniques. A recent discovery that highlighted this is that of candidate 
phyla radiation (Brown 2015)  and DPANN (Rinke 2013), two phyla of ultra-small 
symbiotic microorganisms that are barely found by 16S sequencing. However 
similar results concerning large sulphur bacteria have largely flown under the 
radar (Salman 2012). This reeks of survivorship bias, where a method is 
continuously applied and built upon, instead of continuously challenged and 
teared down. As potentially a lot of organisms remain unsequenced because of 
extraction bias in DNA-based methods (Mcllroy 2008), and differential binning 
bias (Miller 2016), the same is also true for proteomics, where posttranslational 
modifications and use of non-canonical amino acids can affect detection (Den 
Ridder 2020). While control samples exist in the form of idealized mock-
communities, they poorly approximate true community complexity. As each 
methodology has varying sensitivity and noise, a tradeoff remains between 
measuring low-abundant signals and artifacts from erroneous sequencing. Since 
each technique has its own “dark matter” we will need to be wary of unidentified 
signals.  A key factor in the maturation of the field will remain the implementation 
of control experiments, quality control metrics and in-silico models, to assess the 
fraction of missing signals. 
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5.3  The future of metaproteomics 

Compared to metagenomic methods, metaproteomics is lagging behind. It still 
mainly employs methodologies designed for regular pure culture proteomics, and 
has remained stagnant for over a decade in its number of identified proteins per 
sample. The main limitation of metaproteomics at the moment is its throughput. 
The complex separation of peptides in mixed communities leads to co-eluting 
peptides, which greatly limits the detection of low abundant organisms in 
complex samples (Mccain 2019).  While this is likely to be an inherent aspect of 
chromatographic separation and shotgun methods, there are several angles that 
should be explored to improve resolution, on an experimental level, an acquisition 
level, and a data processing level.  

 

As discussed prior in the outlook, an experimental improvement would be the 
increase of peptide length, to create middle-down proteomics (Cristobal 2017), 
either with incomplete digestion or the use of different proteases. Which would 
result more unique peptides with less mass and sequence overlap. On the other 
end of the spectrum is nanopore sequencing of proteins, which has the potential 
to sequence full length proteins at very high rates, and also measure low 
abundant organisms. However, this is still far from being realized, as there is 
limited ability to distinguish amino acids and their modifications (Restropo-Perez 
2018).  On the acquisition level, data-independent methods (Gillet 2012, Tsou 
2015, Pietilä 2020) are promising, as they can potentially sequence more 
peptides, and circumvent the bias of shotgun fragmentation. Spectral 
deconvolution will remain a challenge, which is currently done with graph-based 
methods, but seems a prime target for artificial intelligence. As an alternative, 
small tweaks with exclusion lists to reduce the impact of shotgun bias should be 
explored. With data processing there are several angles for improvement, 
including automated detection of glycosylation and other modifications (Pabst 
2021), de novo sequencing (Kleikamp 2021) combined with homology searching 
(Schevchenko 2006) or spectral clustering (Frank 2008). 
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Within the field, the “metaproteomic iceberg” is often discussed, as the shotgun 
nature of metaproteomics often tends to focus on the most abundant proteins, 
and struggles with increasing community complexity (Lohmann 2020). The 
question remains which fraction of the total diversity is represented. This presents 
a challenge on its own, since currently only simple mock communities exists to 
validate communities. Creating a mock community that approximates actual 
microbial complexity (>1000 species) is unfeasible from a practical point of view.  
Though not included within this thesis, master student Ramon van der Zwaan 
created a model to mimic metaproteomics experiments, with the aim to uncover 
the limits of community complexity in metaproteomics.  However, to develop a 
generally applicable model, further research would be required into the 
prediction of retention times, ionization and fragmentation.  

 

In the long run, metaproteomics could be integrated with orthogonal experiments 
to enable de novo functional annotation without the use of metagenomics. Once 
peptide length and coverage have been improved, de novo assembly of peptide 
sequences into proteins could be a possibility. This could in turn enable true 
database independent annotation when combined with structure-based 
functional annotation tools such as Alphafold or Rosetta (Jumper 2021, Rohl 
2004). Added value could be gained with integrative approaches, such as 
metabolomics, glycomics and stable isotope probing. Metabolomics combined 
with molecular docking could help understand more about substrate utilization 
and enable high-throughput enzyme discovery platforms.  

 

5.4 Concluding remarks 

While genomic methods have booked great progress, there is a need for 
orthogonal analysis methods that help investigate phenotypes of microorganisms. 
Mass spectrometry is not only very powerful but also very flexible will carry us to 
distant lands. However, we have our work cut out for us as we are just beginning 
on this journey. 
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