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A −121.5-dB THD Class-D Audio Amplifier With
49-dB LC Filter Nonlinearity Suppression

Huajun Zhang , Graduate Student Member, IEEE, Marco Berkhout , Member, IEEE,

Kofi A. A. Makinwa , Fellow, IEEE, and Qinwen Fan, Senior Member, IEEE

Abstract— Class-D audio amplifiers produce electromagnetic
interference (EMI), which often needs to be suppressed by an
external LC filter. However, due to component nonlinearity, this
filter can itself cause significant distortion. This article presents a
class-D amplifier that suppresses LC filter nonlinearity by 49 dB
and is robust to ±30% variations in its cutoff frequency. This
is achieved by a dual-loop architecture, in which an inner loop
provides stability, while an outer loop provides the high gain
needed to suppress the LC filter and output-stage nonlinearity.
A prototype, implemented in a 180-nm BCD process, achieves
−121.5-dB total harmonic distortion (THD) and −107.1-dB
THD+N, which is maintained to within 3 dB even as the LC filter
cutoff frequency is varied from 62 to 106 kHz. It can deliver a
maximum of 21 W into a 4-� load with 87% efficiency and 12 W
into an 8-� load with 91% efficiency, measured at 10% THD.

Index Terms— Audio power amplifier, class-D amplifier, feed-
back after LC filter, nonlinearity compensation, total harmonic
distortion (THD).

I. INTRODUCTION

CLASS-D amplifiers are widely used in audio applications
due to their superior power efficiency. However, the

switching activity of their output stages produces electro-
magnetic interference (EMI). This necessitates the use of
an LC filter [1]–[5] in some applications (e.g., automotive)
to comply with the associated EMI standards (e.g., CISPR-
25 [6]). This EMI challenge has led recent designs to employ
pulsewidth modulation (PWM) schemes with a switching
frequency ( fPWM) above the AM band [1]–[3]. This choice
also enables high loop gain (>70 dB in [2] and [3]), pushing
the total harmonic distortion (THD) +N below −100 dB.

Fig. 1 shows a conventional PWM-based class-D amplifier.
A closed-loop architecture is commonly used to suppress the
distortion and supply sensitivity of the output stage, and an LC
filter is placed at the output to suppress EMI emission. Due to
the nonlinearity of practical inductors and capacitors, however,
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Fig. 1. Conventional Class-D amplifier with output LC filter.

TABLE I

SELECTED INDUCTORS FOR CLASS-D AMPLIFIER APPLICATIONS

the LC filter may cause significant distortion. According to
Berkhout [7], the distortion is dominated by the inductor’s
current dependence and can be estimated by the following
equation:

THDL ≈ fIN

fLC Q
· POUT

6RL I 2
SAT

(1)

where fLC = (2π(LC)1/2)−1 is the LC filter’s cutoff frequency
and ISAT is the inductor’s saturation current.

According to (1), THD can be improved by using inductors
with a high saturation current or increasing fLC . This is
corroborated by Table I, which shows the measured THD
of the class-D amplifier described in [3] when its LC filter
is realized with three different inductors. However, inductors
with a high saturation current tend to be bulky and expensive.
In [3], a 580-kHz fLC is enabled by the combination of a
multi-level output stage and a 4.2-MHz fPWM. However, its
THD still depends on inductor choice. From (1), ISAT > 12 A
would be required for THD <−100 dB, while the maximum
load current is only 3.6 A. Hence, the use of inductors with
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Fig. 2. Triple-loop architecture of [12].

a large footprint and high cost is still necessary to guarantee
high linearity.

Feedback-after-LC architectures have been proposed to
reduce the impact of LC filter nonlinearity [4], [8]–[12].
In such architectures, LC filter nonlinearity is suppressed by
the amplifier’s overall loop gain. However, implementing this
is challenging because the LC filter introduces two additional
complex poles into the amplifier’s feedback path. Further-
more, practical inductors and capacitors have manufacturing
tolerances, as well as bias (current and voltage) dependencies,
leading to variations in fLC . In [8]–[10], self-oscillating archi-
tectures that take advantage of the LC filter’s poles have been
employed. However, their PWM frequency is signal- and fLC -
dependent, leading to an unpredictable EMI spectrum, which
restricts their use in EMI-sensitive applications.

In fixed-frequency PWM designs, zeros can be added to
the loop filter to compensate for the LC filter’s phase shift.
However, with a single feedback path, the loop bandwidth
( fU ) will be a function of fLC . This limits the allowable fLC

tolerance because fU should not exceed fPWM/π in class-D
amplifiers with fixed-frequency PWM [11], [13]. In [11], the
effect of capacitance variation is eliminated by using a current-
mode inner loop, but fU still depends on the inductance, and
the maximum modulation index is limited to 0.85. To mitigate
this, a triple-feedback architecture (see Fig. 2) is proposed
in [12], where the first feedback path around the output stage
and before the LC filter desensitizes the loop bandwidth from
fLC variations. The second feedback path after the LC filter
is then stabilized with the help of a Type-III compensator.
Finally, an outer first-order feedback path increases the sup-
pression of LC filter nonlinearity. However, due to its limited
loop filter order and a low fPWM of 100 kHz, this design only
achieves a modest (10 dB) suppression of LC filter nonlinearity
at 20 kHz.

In [4], a digital feedback architecture is proposed in which
a fifth-order digital loop filter provides 50 dB of the loop
gain around the LC filter at 20 kHz. To maintain stability, the
LC filter’s poles are nominally canceled by an LC−1 filter
implemented in the digital domain. This architecture requires
a high-performance and low-latency ADC in the feedback
path, significantly increasing its complexity. Furthermore, the
mismatch between the external LC filter and the digital LC−1

filter compromises stability, which is exacerbated by its low
loop bandwidth (100 kHz). As a result, the coefficients of the
digital LC−1 filter have to be adjusted for a given LC filter,
resulting in significantly increased application cost.

Fig. 3. (a) Proposed feedback-after-LC architecture stabilized by the inner
loop and (b) loop gain around the output stage under LC filter variations.

In this article, which is an extension of [14], a dual-
loop architecture is proposed that aims to suppress LC filter
nonlinearity by at least 40 dB, based on the data in Table I, and
is robust to ±30% variation in LC filter cutoff frequency to
accommodate the manufacturing tolerances and bias depen-
dencies of typical components. In contrast to [12], a single
inner loop desensitizes the loop bandwidth from fLC variations
and ensures stability. An outer loop then employs a resonator
with optimized in-band poles to maximize the suppression
of LC filter nonlinearity. This is enhanced by the use of a
high (1.2 MHz) loop bandwidth, which is enabled by a high
(4.2 MHz) PWM frequency.

This article is organized as follows. Section II introduces the
proposed architecture and explains the design considerations
for the loop filter parameters. Section III describes circuit
implementation details. Measurement results are presented in
Section IV. Section V concludes this article.

II. PROPOSED ARCHITECTURE

A. Inner Loop

Fig. 3(a) illustrates the proposed architecture. It consists of
an inner loop, which incorporates a first-order RC low-pass
filter (LPF), which bypasses the main feedback loop (with
a gain of b0) at high frequencies. The inner loop has three
main functions: 1) it compensates for LC filter phase shift
and, therefore, stabilizes the overall amplifier; 2) it ensures
that the loop bandwidth around the output stage is insensitive
to LC filter variation [see Fig. 3(b)] and satisfies the PWM
stability criteria ( fU < fPWM/π) since the loop gain around
fU is dominated by the first-order path; and 3) it provides the
loop gain needed to suppress output-stage nonlinearity.

To evaluate the dampening effect of the inner loop on the
LC filter’s complex poles, its closed-loop gain HCL ,inner will

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. (a) Inner loop’s closed-loop response HCL,inner and (b) loop gain
around the LC filter Houter for the system of Fig. 3(a).

be analyzed. For simplicity, the integral path KI /s (drawn in
red) is initially ignored. Then, HCL ,inner can be expressed as

HCL ,inner(s) = K P GPWM · s + ωRC

s + (1 + K P GPWM)ωRC
(2)

where K P denotes the proportional gain in the forward path,
GPWM is the equivalent gain of the output stage (the ratio
between its supply voltage and the amplitude of the triangular
wave used for PWM generation) [13], and ωRC is the cutoff
frequency of the first-order LPF. From Fig. 3, the loop
bandwidth fU is given by

ωU = 2π fU ≈ K P GPWMωRC (3)

where fU is slightly lower than fPWM/π . Hence, (2) can be
simplified to

HCL ,inner(s) = ωU

ωRC
· s + ωRC

s + (ωRC + ωU )
. (4)

Equation (4) shows that the inner loop acts as a lead
compensator with a low-frequency zero at ωRC . Fig. 4(a)
shows its Bode plot, which illustrates how its phase lead can

Fig. 5. Complete block diagram of the proposed class-D amplifier.

be used to compensate for the phase lag introduced by the LC
filter.

The loop gain around the LC filter is given by

Houter(s) = b0 HCL ,inner(s)HLC(s) (5)

where HLC(s) is the LC filter’s frequency response. Fig. 4(b)
shows the Bode plot of Houter(s). There is a tradeoff between
the phase margin and the in-band magnitude of Houter(s).
This is because a smaller ωRC implies a higher |HCL ,inner|,
especially at frequencies above ωRC , so b0 must be reduced
to achieve the extra phase lead.

Apart from stabilizing the outer loop, the gain of the inner
loop also helps to suppress output stage nonlinearity. This
can be improved by adding an integral path in parallel with
K P , forming a PI compensator in the forward path. Then, (2)
should be modified as follows:

HCL ,inner(s) = GPWM HPI(s)

1 + GPWM HPI(s) · 1
1+ s

ωRC

(6)

where HPI(s) = (K Ps+KI )/s is the PI compensator’s transfer
function.

By choosing the PI compensator’s zero to coincide with
ωRC , i.e., KI /K P = ωRC , the loop gain around the output
stage reduces to that of an integrator, and (6) simplifies to

HCL ,inner = GPWM(sK P + KI )

s + GPWM KI
. (7)

Due to the pole–zero cancellation, the inner loop remains
first order, and the closed-loop response is still that of a lead
compensator. The accuracy of the pole–zero cancellation can
be ensured by defining KI /K P and ωRC with the same type
of RC components on-chip. The loop bandwidth is given by

ωU = 2π fU = GPWMKI (8)

where KI is defined by on-chip RC components, which can
be set with sufficient accuracy by a one-time trim [3], [15].
Consequently, the loop bandwidth becomes insensitive to LC
filter variations.

However, as shown in Fig. 4(b), the loop gain around the
LC filter is still relatively low in the audio band. Also, the loop
gain around the output stage does not suppress its nonlinearity
sufficiently. These problems are addressed by the addition of
an outer loop.

B. Outer Loop

The outer loop employs two additional stages to increase
the suppression of the LC filter and output stage nonlinearity,

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. (a) Root loci and (b) loop gain around the LC filter for different Q’s
of the outer loop zeros.

as shown in Fig. 5. These stages form a resonator that is
designed to maximize the in-band loop gain. A feedforward
path (a1) is used to reduce the output swing of the first
integrator [16]. A direct input feedforward path (a0) is used
to reduce the output swing of the second integrator [17]. The
inclusion of these paths relaxes the amplifiers’ specifications
and facilitates smooth overdrive recovery (see Section III-B).

Besides adding two poles to boost the audio-band gain, the
outer loop introduces two zeros due to the presence of the
feedforward (a1) and feedback (b0) paths highlighted in Fig. 5.
In contrast to the zero provided by the inner loop, these two
zeros can be arranged as a complex conjugate pair, which
pulls the LC filter poles further into the left half-plane (LHP)
without compromising loop gain [18], as shown in Fig. 6.
However, Q of these zeros cannot be made too high. In this
case, shown by the red traces in Fig. 6, the LC filter poles no
longer move into the LHP but stay close to the imaginary axis,
implying excessive ringing in the transient response. In this
work, to balance performance and robustness, Q of these zeros
is set to unity. The zero locations of the inner loop and outer
loop are co-optimized in the overall system.

C. Nonlinearity Suppression

In Fig. 5, the LC filter and the output stage nonlinearity
are modeled as additive errors. The LC filter nonlinearity is

Fig. 7. (a) STFs and NTFs and (b) locations of closed-loop poles under fLC
variations.

Fig. 8. Loop gain around the output stage under ±30% fLC variations.

suppressed by the gain of the resonator and the closed-loop
gain of the inner loop. This results in the following noise
transfer function (NTF):

NTFLC(s) = VOUT(s)

ELC(s)
= 1

1 + HCL ,inner(s)HRES(s)HLC(s)
(9)

where HRES(s) is the open-loop gain of the resonator.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 9. Circuit implementation of the loop filter.

Fig. 10. (a) Block diagram of the PWM generation with overload detection and (b) its corresponding waveform.

The output stage nonlinearity is suppressed by both the inner
loop and the outer loop, resulting in the following NTF:

NTFOS(s) = VOUT(s)

EOS(s)

= HLC(s)

1 + GPWM K I
s + HLC(s)HRES(s)HPI(s)

. (10)

Fig. 7(a) plots NTFLC(s) and NTFOS(s). As shown, LC
filter nonlinearity is suppressed by more than 47-dB in-band,
and the output stage nonlinearity is suppressed by more than
80 dB. This is advantageous since |EOS(s)| is higher (about
−40 dB according to simulations).

D. fLC Tolerance

The proposed architecture should be robust to ±30% vari-
ations in fLC . As shown in Fig. 7(a), such variations do not
affect the in-band magnitude of the NTFs. Furthermore, they
do not affect amplifier stability since all the poles remain well
within the LHP [see Fig. 7(b)].

The loop gain around the output stage is plotted in Fig. 8.
With ±30% variations in fLC , the loop bandwidth varies by
only ±12% and remains below fPWM/π . The lower phase
margin when fLC increases is not a problem since the resulting
STF peaking is far beyond the audio band, as shown in
Fig. 7(a).

III. CIRCUIT IMPLEMENTATION

A. Loop Filter

Fig. 9 shows a simplified schematic of the loop filter. The
implementation is fully differential, and active RC integrators
are used for high linearity. Note that, in the feedback-after-LC
architecture, high-frequency content at the amplifier’s output
is heavily attenuated by the LC filter, significantly relaxing
the speed and linearity requirements on the outer loop filter.
The first-order LPF in the inner loop is implemented by RFILT,
CFILT, and RFB3.

To realize the target RC time constants after a one-time fore-
ground calibration, the loop filter’s capacitors are implemented
as 2-bit switchable banks. As a result, the tolerable fLC range
can be centered around the nominal fLC of 85 kHz despite
process variations. In contrast to the coefficient calibration of
the digital filter in [4], this calibration does not have to be
tailored to a particular LC filter as long as fLC is within the
tolerable range.

B. Overload Detection and Recovery

When the amplifier is overdriven, the integrators in the fifth-
order loop will saturate, and their outputs will clip. As a result,
an audible settling transient, dictated by the loop dynamics,
will occur when the overdrive is removed.

To avoid such transients, an overdrive detection block is
implemented in the PWM generator, as shown in Fig. 10(a).
Due to the feedforward architecture, the integrators in the loop

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 11. Simulated waveform of the proposed class-D amplifier with and
without overdrive recovery.

Fig. 12. Die micrograph.

filter only process small error signals during normal operation.
Once overdrive is detected, however, the integrator outputs
are reset to zero. After the overdrive is removed, they can
then return quickly to the small error signals that occur during
normal operation, as shown in Fig. 11, resulting in smooth
overdrive recovery.

This class-D amplifier employs a three-level PWM scheme
that maintains a constant output common-mode voltage [3].
The waveforms in the pulsewidth modulator and the overdrive
detection circuit are shown in Fig. 10(b). During the normal
operation, the PWM input VINT3 lies between the peaks of the
triangular wave, and the two comparator outputs have opposite
polarity at the peaks of either triangular wave. Therefore,
overdrive can be detected by first xnor-ing the comparator
output and then sampling the result at the peaks of both
triangle waves, giving the CLIP signal.

IV. MEASUREMENT RESULTS

A prototype chip is fabricated in a 180-nm BCD process
and occupies an active area of 5 mm2 (see Fig. 12). The
output stage employs a 14.4-V supply. The loop filter and
PWM operate with a 1.8-V supply.

A. Audio Performance

The audio performance is measured with an APx555 ana-
lyzer. Fig. 13 shows the measurement setup. To estimate the

Fig. 13. Measurement setup for estimating LC filter nonlinearity.

Fig. 14. Output spectra for (a) 8- and (b) 4-� loads.

magnitude of LC filter nonlinearity, the THD+N at the LC
filter input is measured as well. This waveform includes the
pre-distortion applied by the feedback loop to linearize the LC
filter output.

Fig. 14 shows the output spectrum after the LC filter at
an output power of 1 W with a 1-kHz sine wave input. The
amplifier achieves a THD of −121.5 and −119.0 dB, when
driving an 8-� load and a 4-� load, respectively.

The solid lines in Fig. 15 show the measured THD+N with
a 4-� load as the input amplitude is swept. The measurement
is repeated for the three inductors listed in Table II, which
has different current dependencies, and for input frequencies
of both 1 and 6 kHz. The difference in THD+N due to the
inductors (measured right before clipping) is only 1.1 dB for
the 1-kHz input and 3 dB for the 6-kHz input.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 15. THD+N for (a) 1-kHz input and (b) 6-kHz input.

TABLE II

INDUCTORS USED IN THE MEASUREMENT FOR FIG. 15

Fig. 16 shows the measured overdrive recovery behavior.
The smooth recovery confirms the effectiveness of the over-
drive recovery scheme.

B. Suppression of LC Filter Nonlinearity

As shown in the dashed lines in Fig. 15, the nonlinearity of
all three LC filters is above −80 dB, with the worst being close
to −55 dB for a 6-kHz input. The class-D amplifier suppresses
the LC filter nonlinearity by up to 49 dB. As expected, the

Fig. 16. Measured overdrive recovery transient.

Fig. 17. Output spectra from a two-tone test.

smallest inductor has the largest nonlinearity, but, due to the
feedback-after-LC architecture, it only degrades the overall
THD+N by some 3 dB.

Fig. 17 shows the spectra of the signals before and after
the LC filter obtained from a two-tone test. The signal before
the LC filter contains significant intermodulation products
that spread across the entire audio band. In a conventional
class-D amplifier, with feedback before the LC filter, a similar
spectrum would have appeared across the load. In contrast, for
the proposed architecture, the intermodulation products at the
LC filter output are significantly suppressed, and the residual
IM3 is −113.1 dBc.

C. Variations on Loading and fLC

Besides load resistance, practical speakers also present
an inductive impedance to the class-D amplifier. To verify
the robustness to load impedance variations, the THD+N
measurement is performed for load inductances varying
from 0 to 330 μH. As shown in Fig. 18, the high linearity
performance is maintained. Fig. 19 shows the robustness of
the class-D amplifier to fLC variation from 62 to 106 kHz,
obtained by intentionally varying the LC filter’s capacitance.
Across six samples, the variation in THD+N is less than 3 dB.

D. Efficiency and Idle Power

Fig. 20 shows the power efficiency of the prototype as a
function of output power. It achieves 91% efficiency for an
8-� load and 87% efficiency for a 4-� load. It can deliver

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2022 at 07:17:17 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE III

PERFORMANCE SUMMARY AND COMPARISON

Fig. 18. Peak THD+N versus series load inductance.

Fig. 19. Peak THD+N versus fLC.

a maximum of 21 W, measured at 10% THD, and consumes
120 mW of idle power.

E. Comparison With Prior Art

Table III summarizes the prototype’s performance and com-
pares this work with other state-of-the-art class-D amplifiers.
It achieves the best THD, as well as the best THD+N for a
4-� load. Last but not least, it suppresses LC filter nonlinearity
by 49 dB while being the only work that is robust to a wide
variation in fLC .

Fig. 20. Power efficiency versus output power (LLOAD = 0).

V. CONCLUSION

A dual-loop analog-input class-D amplifier with feedback
after the LC filter is presented. An inner loop dampens the
LC poles, improves fLC tolerance, and suppresses output-stage
nonlinearity, while an outer loop further suppresses both LC
filter and output-stage nonlinearity. A prototype implemented
in a 180-nm BCD process achieves −121.5-dB THD and
49-dB suppression of LC filter nonlinearity. It is also robust
to ±30% fLC variation, thereby enabling the use of small and
low-cost LC components in high-linearity class-D amplifiers.
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