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Coupled Mobile Manipulation via Trajectory
Optimization with Free Space Decomposition

Max Spahn, Bruno Brito and Javier Alonso-Mora

Abstract— This paper presents a real-time method for whole-
body trajectory optimization of mobile manipulators in sim-
plified dynamic and unstructured environments. Current tra-
jectory optimization methods typically use decoupling of the
mobile base and the robotic arm, which reduces flexibility in
motion, does not scale to unstructured environments, and does
not consider the future evolution of the environment, which is
crucial to avoid dynamic obstacles. Given a goal configuration,
such as waypoints generated by a global path planner, we for-
mulate a receding horizon trajectory optimization minimizing
the distance-to-target while avoiding collisions with static and
dynamic obstacles. The presented method unifies the control
of a robotic arm and a non-holonomic base to allow coupled
trajectory planning. For collision avoidance, we propose to
compute three convex regions englobing the robot’s major body
parts (i.e., base, shoulder-link and wrist-link) and thus reducing
and limiting the number of inequality constraints, regardless
of the number of obstacles in the environment. Moreover,
our approach incorporates predicted trajectory information
to smoothly, and in advance, avoid dynamic obstacles. The
presented results show that trajectory optimization for the
coupled system can reduce the total execution time by 48% and
that applying the convex region generation for individual links
allows keeping the computational costs low, even for complex
scenarios, enabling onboard implementation.

I. INTRODUCTION

Mobile manipulation is the field of robotics in which
a mobile robot’s locomotion ability is combined with the
manipulation ability of a robotic arm. However, conven-
tional trajectory optimization methods dealing with such
systems often dramatically reduce flexibility by decoupling
planning for the base and the arm. Motion for both parts
then need to be synchronized or are executed sequentially.
Both synchronization and sequencing limit the ability of
the robot to perform complex tasks, and it was shown
that decoupled and sequenced approaches show significantly
higher operational times [1], [2]. Yet, solving the whole-
body trajectory optimization problem is challenging due to
a large number of degrees of freedom (e.g., 10 for the robot
used in our experiments and shown in Fig. 1). Moreover,
dynamic and unstructured environments have not been ad-
dressed in a coupled approach yet. Such environments have
been extensively investigated for autonomous vehicles (e.g.,
mobile robots navigating through human crowds [3], [4],
drones in cluttered environments [5], [6]). In the context of
autonomous vehicles, model predictive control (MPC) can
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Fig. 1: Mobile manipulator performing a pick & place task
using whole-body trajectory optimization with our coupled
MPC formulation.

effectively incorporate future evolutions of the environment
[7]. A coupled MPC scheme for mobile manipulators was
introduced in [8], where locomotion and manipulation were
softly decoupled through dynamic weight-setting. Dynamic
obstacles were not considered, and the method suffered from
increasing computational costs as the environment becomes
more densely populated [9]. More specifically, collision
avoidance in an unstructured environment typically results
in many inequality constraints that scale with the number of
obstacles.

In this work, we propose a whole-body trajectory op-
timization, sometimes referred to as MPC, using convex
region decomposition of the free space on multiple kinematic
chain links for collision avoidance with static obstacles.
As a result, the number of inequality constraints remains
constant regardless of the number of obstacles, allowing
continuous control of the arm and the base to navigate
through unstructured environments. Dynamic sphere-shaped
obstacle avoidance is included using stage-dependent sphere-
to-sphere inequality constraints.

Experimental results demonstrated that operational time
is reduced considerably when using whole-body trajectory
optimization. Computational costs for the optimization solver
were independent of the number of obstacles present in the
environment. Single dynamic obstacles moving at a constant
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velocity could be avoided successfully.

II. RELATED WORKS

Past works devoted to motion planning for mobile manipu-
lators can be divided into two main categories: optimization-
based and sampling-based methods [10], [11]. Sampling-
based methods, such as rapidly exploring random trees
(RRT’s) [12]–[14] and probabilistic roadmaps (PRM’s) [15],
[16] are highly efficient at generating paths for systems with
high-degree of freedom. However, these approaches consider
static environments requiring a complete replanning if the
conditions change and hence, are not applicable for dynamic
environments [9].

In contrast, trajectory planning methods focus on execut-
ing generated paths while avoiding collisions in dynamic
environments. Despite the vast number of works developing
motion planning methods for mobile manipulators, most
approaches either tackle the motion planning problem for the
robot’s base or the robot’s arm. Pioneer works on motion
planning methods for statically mounted manipulators em-
ployed potential fields for collision avoidance [17]. Building
on the previous, [18] introduced the Circular Field method
to address dynamic collision avoidance. Finally, to ensure
collision avoidance for the end-effector when grasping a
moving obstacle, [19] employed a repulsive vector.

A. Collision Avoidance For Mobile Robots

The dynamic window approach [20] and its new variant
proposed in [21] have proven to be efficient in gener-
ating smooth trajectories for mobile robots in static and
dynamic environments. To navigate among pedestrians, [22]
introduced the Social Forces model imitating the human
navigation behavior and using it as navigation policy for
the robot.Yet, Social Forces and its variants rely on hand-
crafted functions limiting their ability to handle more com-
plex navigation scenarios. To deal with a large number of
agents, ORCA was proposed in [23] and later extended for
non-holonomic bases in [24]. However, these approaches
demonstrate highly reactive behaviors because they only
consider one step look-ahead predictions. MPC schemes
were proposed for mobile robots and autonomous vehicles in
[7] and [25] allowing to optimize over a prediction horizon
and avoid, in advance, dynamic obstacles. To enable coupled
control of a mobile manipulator, collision avoidance must be
performed in the 3D space which is usually not necessary
for ground vehicles. Several 3D MPC formulation were
proposed for drones to enable safe motion through cluttered
environments [5], [6].

B. Collision Avoidance For Mobile Manipulators

Despite abundant research in trajectory planning for mo-
bile robots and robotic arms, few works focused on cou-
pling both systems’ control. It was shown that coupling the
base and the robotic arm motion leads to a considerable
reduction of total operational time and smoother motions
[1], [2]. Nevertheless, these methods were designed for static
environments and did not allow real-time collision avoidance.

Furthermore, trajectory planning for the coupled system is
a precondition for effective interactive navigation, including
opening doors [26], [27] or moving obstacles out of the way
[28].

In the context of mobile manipulation, less research
focused on collision avoidance in dynamic environments,
including changing scenes and moving obstacles. A real-time
controller using MPC was presented in [29], in which either
a holonomic or a non-holonomic base was combined with a
two-degree-of-freedom robotic arm mounted onto the base.
Although hardware constraints were respected, no collision
avoidance was considered. An MPC formulation for mobile
manipulators with holonomic bases that allows collision
avoidance was presented in [8]. The perceived obstacles were
translated into a set of spheres to be respected by the MPC
scheme. The proposed approach used dynamically changing
weights to change between arm motion and locomotion,
resulting in a locked arm during navigation. A different
weight setting was used to perform motion underneath a
horizontal bar with an a priori position. The work is extended
to non-holonomic bases and includes object detection in
moving underneath the horizontal bar [9].

C. Contribution Of This Work

In this work, a 3D collision avoidance for the entire
kinematic chain is proposed that allows safe arm motion
during all phases of the locomotion process. In contrast to the
work of [9], no dynamic weighting is required, as collision
avoidance can be guaranteed for the entire kinematic chain.
The proposed work does not require an object detection
method to allow safe motion, as the raw point cloud can be
processed using free convex region generation [5]. Moreover,
our approach reduces overall operational time while intro-
ducing a convex region generation to keep the computational
costs low.

III. METHODS

A. Definitions

Throughout this paper, vectors are denoted in bold lower-
case letters, x, matrices in capital, M , and sets in calligraphic
uppercase, S. ‖x‖Q = xTQx denotes the weighted squared
norm.

B. Mobile Manipulator’s Representation

Let us consider a velocity controlled mobile manipulator
consisting of a mobile base with a mounted robotic arm. The
coupled system’s dynamics are described by the discrete-time
non-linear system

zk+1 = f(zk,uk), (1)

where zk and uk describe the state and the control inputs
at the time-step k, respectively. The robot’s state is the
base position and orientation, and the manipulator’s joint
positions, z = [x, y, θ,qarm]. The robot’s control inputs are
the left ul and right ur wheel velocity, and joint velocities
q̇arm, hence u = [ul, ur, q̇arm]. We denote Z and U as the
corresponding state and control commands admissible sets,
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respectively. The space occupied by the robot is denoted as
B(z) =

⋃
i∈{1,...,nlinks} Bi(z) and Bi(z) denotes the space

occupied by the i-th robot’s link with i ∈ [0, Nlinks]. We
approximate the state occupied by each link by spheres
with radius ri. The space occupied by the static obstacles
and dynamic obstacles is represented as Ostatic and Odynamic,
respectively. To limit the complexity of the problem we only
consider a limited number nlinks ≤ Nlinks of the robot’s links
and the ndyn closest dynamic obstacles.

C. Mobile Manipulator’s Model

Here, we assume a differential drive model for the base
and first order dynamics for the robotic manipulator:

ż =


1
2cos(θ)(u

l + ur)rwheel
1
2sin(θ)(ul + ur)rwheel

(ur−ul)rwheel
Lwheel

q̇arm

 , (2)

where rwheel and Lwheel are the wheel radius and distance
between the two controllable wheels, respectively. The dis-
crete transition function f(zk,uk) can be found using a
discretization scheme (e.g. Backward-Euler or Runge-Kutta).
The set of admissible states (Z) and control inputs (U) is
defined by the joint position and velocity limits

qmin ≤ qarm ≤ qmax

umin ≤ uwheels ≤ umax

q̇min ≤ q̇arm ≤ q̇max.

(3)

where qmin and qmax, umin and umax and, q̇min and q̇max are
the minimum and maximum joint position position, wheel
velocity limits and joint velocity limits, respectively.

D. Optimization Problem

Consider that a reference path in R2 is provided for the
base, denoted as a sequence of M waypoints, ([x, y]m)Mm=0.
The goal is to generate feasible control commands for the
whole mobile manipulator enabling it to track the provided
path while avoiding collisions in 3D space with dynamic
and static obstacles. Hence, we formulate the trajectory
planning problem for the unified system, base plus arm,
as an optimization problem. As a result, we can explicitly
formulate collision avoidance and kinodynamic constraints
and compute control commands to generate feasible and
collision-free motions. The optimization problem is formu-
lated as

J? = min
z0:N ,u0:N

N∑
k=0

J(zk,uk), (4a)

s.t. zk+1 = f(zk,uk) ∀k < N, (4b)

B(zk) ∩
(
Ostatic ∪ Odynamic) = ∅, (4c)

uk ∈ U , zk ∈ Z, (4d)
z0 = z(0). (4e)

In this formulation, Eq. 4a is the cost function (Section III-E),
Eq. 4b represents the kinodynamic constraints of the system
(Section III-C), Eq. 4c formalizes collision avoidance with

static (Section III-F) and dynamic obstacles (Section III-G),
and Eq. 4d defines the set of admissible states and control
inputs (Section III-C). Finally, Eq. 4e defines the initial state
conditions. Note that we optimize over a prediction horizon
N allowing to avoid dynamic obstacles in advance.

E. Cost Function
To track the reference path, we first create a contin-

uous path representation by approximating the provided
reference path using a cubic Bézier Curve and using a
normalized time parametrization, φk ∈ [0, 1]. We denote
pk and θk as the predicted base position and orientation
at time step k and prk(φk) = [x, y]rk and θrk(φk) as the
reference base position and orientation at future time-step
k, respectively. Then, we define a tracking error vector
ek := [ec(zk, φk), el(zk, φk)]T composed by the contour
ec(zk, φk) and a lag-error el(zk, φk), and computed as it
follows

ek =

[
cos(θrk) sin(θrk)
−sin(θrk) cos(θrk)

]
(pr
k − pk) . (5)

The cost function J(zk,uk) is composed of the weighted
(We) quadratic tracking error, the weighted (Wq) arm con-
figuration distance-to-goal and the weighted (Wu) quadratic
inputs to penalize high control commands . The difference
between the current and desired orientation is quadratically
weighted to ensure that the robot is moving forward (wθ).
In addition, to relax the problem, we introduce the slack
variable s and penalize its weighted norm

J(zk,uk) = ‖ek‖We
+ ‖uk‖Wu

+ ‖(θrk − θk)‖wθ
+ ‖qk − qdes,k‖Wq

+ ‖sk‖wslack
.

(6)

F. Collision Avoidance For Static Obstacles
In this paper, we tackle the problem of avoiding static

obstacles in 3D space. Hence, we employ an octree represen-
tation of the static obstacles fed directly from 3D sensor data
(e.g., depth camera). Given this information, we propose to
model the free space as a set of convex polyhedrons around
the robot’s links instead of explicitly describing individual
obstacles. This representation allows us to limit the number
of collision constraints regardless of the number of obstacles,
and depending only on the number of robot’s links and the
number of planes used for the convex regions. To compute
the convex regions, we employ the method proposed in [5]
using an ellipsoid based regional inflation. Fig. 2 depicts an
example of one of these convex regions computed for one
robot’s link. For each i ∈ [1, nlinks], we compute a polyhedron
with nplanes planes representing the free-space around the i-th
link.

Then, we impose a linear inequality constraint between
each j-th polyhedron plane and i-th link to ensure B(zk) ∩
Ostatic = ∅ as

aTpi ≤ b− (ri + dsafety)

∀i ∈ {1, . . . , nlinks}, ∀j ∈ {1, . . . , nplanes},
(7)

with a = nj,i and b = −nTj,ipobs
j,i , where nj,i is the normal

vector and pobs
j,i a point on the j-th polyhedron’s plane
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(a) Polyhedron (b) Single Inequality

Fig. 2: Generated polyhedron representing the free space in
the presence of sensed pointcloud (orange) for last link and
the corresponding sphere on the robot (blue) and visualiza-
tion sphere-plane inequality constraint (right).

enclosing the i-th robot link, pi is the i-th link position, and
dsafety an hyper-parameter that acts as a safety margin. The
proposed collision constraint ensures that each link’s space
is inside the convex region and thus free of static obstacles,
as depicted in Fig.2.

G. Collision Avoidance For Moving Obstacles

To avoid moving obstacles, it is necessary to propagate the
states of the dynamic obstacles over the planning horizon
N . Using the previous constraint for dynamic collision
avoidance requires the propagation of the 3D octree and the
computation of the convex polyhedra for every stage, which
is highly computationally expensive.

Hence, we propose to model dynamic obstacles as spheres.
For each dynamic obstacle d we assume to know the position
pdyn
d , velocity vdyn

d , and radius rdyn
d , with d = {1, . . . , ndyn}.

Then, we employ a constant velocity model to obtain pre-
dictions on the dynamic obstacle’s future positions, p̄dyn

d,k =

pdyn
d + k∆tvdyn

d . Finally, we define a non-linear collision
avoidance constraint ensuring that the obstacle’s space does
not intersect with any link’s space, Bi(zk) ∩ Odynamic =
∅ ∀i ∈ [1, nlinks], imposing that the distance between both
bounding spaces is larger than the sum of their radius and
the previously introduced safety margin∥∥∥p̄dyn

d,k − pi,k

∥∥∥ ≥ rdyn
d + ri + dsafety

∀i ∈ {1, . . . , nlinks}, d ∈ {1, ..., ndyn}, k ∈ 0, ..., N,
(8)

where pi is the position of the i-th robot link and rdyn
d the

d-th dynamic obstacle radius.

IV. EXPERIMENTAL RESULTS

The presented method is evaluated in simulation and
with the real hardware. After a short introduction to the
experimental setup, three simulation scenarios and one real-
world scenario are introduced. We compare the presented
method with a sequenced MPC formulation in which arm
motion and locomotion are sequenced and a conventional
MPC formulation in which inequalities are formulated for in-
dividual obstacles. Scenarios are considered infeasible when

TABLE I: Positions of spheres for the volumetric represen-
tation.

Parent Link Offset Radius
base link [0, 0, 0.25] 0.25
base link [0.3, 0, 0.25] 0.25

link 2 [0, -0.1896, 0] 0.2275
link 7 [0, 0, 0] 0.3

following the trajectory without global replanning is not
possible without violating the collision constraints.

A. Experimental Setup

a) Hardware Setup: The mobile manipulator used
to validate this approach consists of the mobile base
ClearpathTM Boxer and the robotic manipulator Franka
Emika Panda, see Fig. 1. The resulting system has 10
degrees of freedom (DoF’s) for which the dynamics are
approximated using a Runge-Kutta scheme to obtain the
discrete transition function f(zt,ut). The presented robot is
equipped with low level controllers that accept commanded
velocities for all joints, one LiDAR sensor and one depth
camera pointing forward. Laser data and camera depth im-
ages are fused into one pointcloud using the octomap frame-
work [30]. Polyhedrons to describe the convex space around
the links are computed using the DecompUtil presented in
[5], into which the pointcloud generated from the vertex
centers of the occupied cells of the octomap are fed. Joint
positions for the arm are known at every time step using the
encoders and the pose of the base is estimated using SLAM.
The implementation is realized in the Robotics Operating
System (ROS) framework, as it allows simple integration of
the different components. The underlying MPC problem is
solved using FORCES-Pro solver [31] and employing an
interior-point method [32]. We used a laptop with an Intel
Core i7 and 32GB of RAM to run the simulations and an
Intel NUC with an Intel Core i7 and 8GB to run the real-
world experiments.

b) Parameter Details: The presented robot has nine
links which are represented by four spheres for collision
avoidance. The positions of the spheres on the kinematic
chain are explicitly given in Table I. Note that the robot is
not fully contained in the union of spheres. For dsafety = 0,
this could potentially result in collision. However, much
larger spheres would result in the inability to move close to
obstacles when manipulation is requested. The parametriza-
tion with dsafety allows to flexibly change between different
motion types, e.g. manipulation (low safety margin) and
navigation (large safety margin). The centers of the given
spheres are also used as seed points for the convex region
generation. Two different step size were used over the time
horizon, ∆t1,∆t2. All remaining parameter settings are
summarized in Table II.

B. Manipulation Scenarios

We compare our proposed method against two baseline
methods: a decoupled MPC baseline (i.e., locomotion and
arm motion are performed sequentially) and a coupled MPC
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TABLE II: Parameter Settings

Parameter Static Scenarios Dynamic Scenario
Prediction Horizon 11 sec 11s sec

∆t1/∆t2 0.2/1.0 sec 0.2/1.0 sec
#Planes/Link 15 15

dsafety 0.15 m 0.25 m
We 5.0I2 5.0I2
wθ 2.0 2.0
Wq 0.7I7 0.7I7

Wu

[
0.05I2 0

0 5I7

] [
0.05I2 0

0 5I7

]
wslack 105 105

formulation based on sphere-sphere inequality constraints,
as proposed in [9]. Moreover, as this work presents a
method for local trajectory optimization, the effect of global
replanning during the execution is not considered. To access
our method’s performance, we present simulation results for:

• Static collision avoidance with a horizontal bar [9] (Sub-
section IV-B.0.a);

• 2D trajectory tracking while avoiding collisions with
randomly placed static obstacles (Sub-section IV-B.0.b);

• Dynamic collision avoidance with a moving obstacle
(Sub-section IV-B.0.c).

Finally, we present experimental results on a mobile ma-
nipulator performing a real manipulation task (Sub-section
IV-B.0.d).

a) Horizontal Bar: A horizontal bar is placed between
the start and goal configuration. In contrast to the work
in [9], no object detection is required in our approach,
as the sensed point cloud is fed directly into the convex
region generator. The base’s global path consists of a simple
straight-line motion to a pose behind the bar. The motion
of the manipulator and the generated convex regions for the
last link of the kinematic chain are depicted in Fig. 4. The
advantage of whole-body optimization can be extracted when
the horizontal bar is placed at a lower z-positions. In Fig. 3,
such a situation is visualized for z = 1.3. In the visualized
case, it is not possible to move underneath the bar with the
sequenced approach. On the other hand, the coupled method
can navigate safely avoiding collision by moving the arm into
an extended position in which the absolute height is smaller
than when having it folded.

(a) coupled (b) decoupled

Fig. 3: Advantage of coupled MPC when moving underneath
a horizontal bar (orange).

(a) t = 0sec (b) t = 6sec (c) t = 17sec

(d) t = 25sec (e) t = 32sec (f) t = 42sec

Fig. 4: Avoiding an horizontal bar. The convex region for
the last link of the kinematic chain.

Fig. 5: Example for infeasible cases, that were excluded from
the test set in randomized scenario.

b) Randomized Obstacles: In this scenario, the robot
is placed in an unstructured environment with several static
obstacles. A global path for the base to reach the goal is
computed, but the path is blocked with randomly gener-
ated obstacles, uniformly distributed on the intervals x ∈
[2m, 5m], y ∈ [−2m, 2m], z ∈ [0m, 2m]. Only those ob-
stacles visible to the LiDAR sensors are available for the
global planner which generates a path in the 2D plane for the
base’s motion. Among the randomly generated cases, only
those that are feasible for an MPC trajectory optimizer are
considered. Two examples for infeasible cases are depicted
in Fig. 5.

A successful trajectory of the coupled MPC planner is
depicted in Fig. 6. A key advantage of our method is that
when the environment is densely populated with obstacles,
the solving times are not affected when using convex regions
to represent the free space, see Fig. 7. Explicitly formulating
sphere-sphere inequality constraints results in an increase

decoupled coupled
mean 219.65s 113.822s

std. deviation 24.21s 8.35s
min 199.27s 106.83s
max 270.25s 131.24s

TABLE III: Compared execution times coupled and decou-
pled approach for cases that were feasible for both methods.
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Fig. 6: Five obstacles avoidance, final configuration in red,
occupied voxels in the octomap are represented in orange.

(a) Obstacles as spheres (b) Convex regions

Fig. 7: Comparison solver performance for an increasing
number of obstacles.

of solving time as the environment becomes more densely
populated with obstacles. Note that convex region generation
becomes only beneficial as the number of obstacles exceeds
a critical value, in this case, for 50 obstacles. Furthermore,
parallelizing the locomotion and arm motion allows to reduce
the mean overall operational time by 48%, see Table III.

c) Dynamic Obstacle: Here, we evaluate dynamic col-
lision avoidance with a single moving obstacle for different
obstacle’s velocities. As dynamic object detection and ve-
locity estimation are out of the scope of this work, the state
of the obstacle is assumed to be known to the robot during
the entire process. In Fig. 9, the experiment is visualized.
The goal pose (light grey) is to be reached but a moving
sphere, conflicting the goal, must be avoided at all time. The
proposed MPC formulation’s reactivity is investigated using
the clearing distance dclear = mini

∥∥pdyn − pi
∥∥− ri − rdyn

d

and the distance to target, dtarget = ‖zdes − z‖, where zdes
is composed of the desired base and arm configuration.
Different velocities (vdyn

d ) and different heights (zobs) of
the moving obstacles were investigated. Fig. 8 shows that
our approach successfully avoids collision with dynamic
obstacles when moving towards the goal.

d) Real-World Experiment: We evaluated the presented
method in real-world scenarios in a simple pick & place
setup. Fig. 1 depicts the experimental scenario, where the
robot picks up an object on the left (pose in light green) and
moves to the target pose (pose in light red) without colliding
with the obstacle visualized in light blue. Intermediate poses
of the successful trajectory are visualized in Fig. 10. A video
of the experiment is attached to this work.

V. CONCLUSION

This work proposes a whole-body trajectory optimization
to navigate in unstructured and simplified dynamic envi-

(a) ‖vd‖ = 0.2m/s (b) ‖vd‖ = 0.5m/s

Fig. 8: Clearance from moving obstacle and distance to target
position for different obstacle velocities.

(a) t = 0sec (b) t = 1sec (c) t = 2sec (d) t = 3sec

Fig. 9: Motion avoiding moving obstacle (red) while attempt-
ing to reach target (light grey).

ronment safely. Evolution of the environment, i.e., dynamic
obstacles, were incorporated, and static collision avoidance
is realized by a union of convex regions describing the free
space. By representing the free space, rather than individual
obstacles, the number of inequality constraints is limited. The
scaling of the method for an increasing number of obstacles
and its ability to avoid collision with moving obstacles
were shown in randomized scenarios. Real-time applicability
was demonstrated on a 10-DoF’s mobile manipulator in a
Pick & Place test case. The proposed approach overcomes
the limitations of previous works and allows whole-body
trajectory optimization in dynamic environments.

Fig. 10: Trajectory in mock-up store avoiding obstacles, goal
configuration in light grey.
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