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Abstract Using a gravitational field truncated at the 4th degree and order, the 1:1 ground-
track resonance is studied. To address the main properties of this resonance, a 1-degree of
freedom (1-DOF) system is firstly studied. Equilibrium points (EPs), stability and resonance
width are obtained. Different from previous studies, the inclusion of non-spherical terms
higher than degree and order 2 introduces new phenomena. For a further study about this
resonance, a 2-DOF model which includes a main resonance term (the 1-DOF system) and
a perturbing resonance term is studied. With the aid of Poincaré sections, the generation of
chaos in the phase space is studied in detail by addressing the overlap process of these two
resonances with arbitrary combinations of eccentricity (e) and inclination (i). Retrograde
orbits, near circular orbits and near polar orbits are found to have better stability against the
perturbation of the second resonance. The situations of complete chaos are estimated in the
e − i plane. By applying the maximum Lyapunov Characteristic Exponent (LCE), chaos is
characterized quantitatively and similar conclusions can be achieved. This study is applied to
three asteroids 1996 HW1, Vesta and Betulia, but the conclusions are not restricted to them.

Keywords Asteroid · Resonance width · Stability · Chaos · Poincaré sections · Equilibrium
Points (EPs) · Vesta · Betulia · 1996 HW1

1 Introduction

The commensurability (usually a ratio of simple integers) between the rotation period of
the primary body and the orbital period of the surrounding spacecraft or particle is called
ground-track resonance. Many investigations have been carried out about geosynchronous
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68 J. Feng et al.

orbit, which is in 1:1 resonance with Earth. For example, a 2-DOF Hamiltonian was modeled
by Delhaise and Henrard (1993) for the resonance near the critical inclination perturbed by
the inhomogeneous geopotential. Global dynamics were studied in terms of Poincaré maps
in the plane of inclination and argument of pericenter. Chaotic motions were expected close
to the separatrix of the resonance of the mean motion.

However, for ground-track resonances in a highly irregular gravitational field (mainly
small solar system bodies), the studies are limited. Scheeres (1994) studied the stability of
the 1:1 ground-track resonance with a uniformly rotating asteroid using a triaxial ellipsoid
model, and applied it to Vesta, Eros and Ida. Later on, he studied the effect of resonance
between the rotation rate of asteroid Castalia and the true anomaly rate of an orbiting particle
at periapsis with a 2nd degree and order gravitational field (Scheeres et al. 1996). This kind
of resonance was proven to be responsible for significant changes of orbital energy and
eccentricity, and provides a mechanism for an ejected particle to transfer into a hyperbolic
orbit or vice versa. By considering the 2nd degree and order gravitational field, Hu and
Scheeres (2004) showed that orbital resonance plays a significant role in determining the
stability of orbits. Further, by modelling the resonant dynamics in a uniformly rotating 2nd
degree and order gravitational field as a 1-DOF pendulum Hamiltonian (Olsen 2006), the
widths of the resonance were obtained in analytical expressions and also tested against
numerical simulations for five resonances. They were found to be independent of the rotation
rate and mass of the central body but strongly dependent on e and i . The retrograde orbits
have a smaller resonance region than the prograde ones. In a slowly rotating gravitational
field, the orbital stability was explained by the distance between the resonances but not by
the strength of a specific one using overlap criteria.

Recently, the resonant structure is further explored with the truncated model for the equa-
torial and circular cases, respectively. Delsate (2011) built the 1-DOF Hamiltonian of the
ground-track resonances for Dawn orbiting Vesta. The locations of the EPs and the reso-
nance width were obtained for several main resonances (1:1, 1:2, 2:3 and 3:2). The results
were checked against numerical tests. The 1:1 and 2:3 resonances were found to be the largest
and strongest one, respectively. The probability of capture in the 1:1 resonance and escape
from itwas found to rely on the resonant angle. Tzirti andVarvoglis (2014) extendedDelsate’s
work by introducing C30 into the 1:1 resonance, which resulted in 2-DOF dynamics. The
C30 term was found to create tiny chaotic layers around the separatrix but without significant
influence on the resonance width. With the ellipsoid shape model (Compère et al. 2012),
MEGNO (Mean Exponential Growth factor of Nearby Orbits) was applied as an indicator
to detect stable resonant periodic orbits and also 1:1 and 2:1 resonance structures under dif-
ferent combinations of the three semi-major axes of the ellipsoid. A 1-DOF resonant model
parametrized by e and i was obtained with a truncated ellipsoidal potential up to degree and
order 2.

For previous studies listed above, the limitations are either the gravitational field which
is truncated at degree and order 2 or the orbit which is restricted to a circular or polar case.
In this study, the harmonic coefficients up to degree and order 4 are taken into account for
studying the 1:1 resonance at different combinations of e and i , which results in a 2-DOF
model. More specifically, this paper is arranged as follows. Firstly, a 1-DOF Hamiltonian
is built to investigate the main properties of the 1:1 resonance. The location of EPs and
their stability are solved numerically for different combinations of e and i for Vesta, 1996
HW1 and Betulia. The resonance widths of the stable EPs are found numerically. Secondly, a
2-DOF Hamiltonian is introduced with the inclusion of a second resonance, which is treated
as a perturbation on the 1-DOFHamiltonian. Chaos is generated due to the overlap of the two
resonances. By applying Poincaré sections, for all three asteroids, the extent of the chaotic
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1:1 Ground-track resonance 69

region in the phase space is examined against the distance between the primary and second
resonances and their respective strengths. The roles that e and i play on the evolution of
chaos in the phase space are studied systematically. Finally, the maximal LCE (mLCE) of
the orbits in the chaotic seas are calculated for a quantitative study.

2 Dynamical modelling

2.1 Hamiltonian of the system

The gravity potential expressed in orbital elements (a, e, i,�, ω, M) is given byKaula (1966)
as

V = μ

r
+

∞∑

n≥2

n∑

m=0

n∑

p=0

∞∑

q=−∞

μRn
e

an+1 Fnmp(i)Gnpq(e)Snmpq(ω, M,�, θ) (1)

inwhichμ and Re are the gravitational constant and reference radius of the body, respectively.
r Is the distance from the point of interest to the center of mass of the body. F (i) and G(e)
are functions of inclination and eccentricity, respectively. The complete list of them up to
degree and order 4 can be found in Kaula (1966) and Chao (2005). In addition, n,m, p, q
are all integers, θ is the sidereal angle

Snmpq =
[

Cnm

−Snm

]n−m even

n−m odd
cos�nmpq +

[
Snm
Cnm

]n−m even

n−m odd
sin�nmpq ,

where �nmpq is Kaula’s phase angle, written as

�nmpq = (n − 2p) ω + (n − 2p + q) M + m (� − θ)

Given the Delaunay variables

l = M, g = ω, h = �

L = √
μa, G = L

√
(1 − e2), H = Gcosi

the Hamiltonian of the system can be written as

H = T − V + θ̇� (2)

in which T = −μ2/2L2 is the kinetic energy and θ̇ is the rotation rate of the asteroid and �

is the momentum conjugate to θ . Term ˙θ� appears due to the rotation of the asteroid (Delsate
2011). Resonances occur when the time derivative �̇nmpq ≈ 0. The 1:1 resonance is studied
in detail in the following sections.

2.2 1:1 Resonance

According to Kaula (1966), to study the 1:1 resonance, the resonant angle is introduced and
defined as σ = λ − θ , with the mean longitude λ = ω + M + �. This resonance occurs
at σ̇ ≈ 0, which means that the revolution rate of the orbit equals the rotation rate of the
asteroid. In addition, it should be noticed that the solution of this 1:1 resonance includes
the equilibrium points (EPs) that are commonly studied in a rotating (or body-fixed) frame,
which rotates with the asteroid and has its z-axis aligned with spin axis of the asteroid. The
angle σ represents the phase angle of the EPs in such a rotating frame.
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70 J. Feng et al.

The spherical harmonics that contribute to this resonance are listed in Appendix 1. To
introduce the resonant angle σ in the Hamiltonian and also to keep the new variables canon-
ical, a symplectic transformation is applied (Valk et al. 2009)

dσ L ′ + dθ ′�′ = dλL + dθ�

and a new set of canonical variables is obtained as

σ, L ′ = L , θ ′ = θ,�′ = � + L

After averaging over the fast variable θ ′, the Hamiltonian for the 1:1 resonance truncated at
the fourth order of e can be written as

H = H0 + H1 + H2 + o(e5)

where Hk(k = 0, 1, 2) is the Hamiltonian that includes terms from the kth order of e in
the G (e) function. The lowest order in H0,H1,H2 is respectively e0, e1, e2. In addition to
these terms, there are still e3 and e4 terms included in the three Hamiltonians. Therefore, the
remaining terms are o(e5). The expression of H0 is written as

H0 = − μ2

2L2 + θ̇ (�′ − L) − μ4R2

L6

[
C20

(
1 − e2

)(
− 3

2

) (
−1

2
+ 3s2

4

)

+ 3

4

(
1 − 5e2

2
+ 13e4

16

)
(1 + c)2 (C22 cos (2σ) + S22 sin (2σ))

]

− μ5R3

L8

[(
1 + 2e2 + 239e4

64

) (
−3

4
(1 + c) + 15

16
(1 + 3c) s2

)

× (C31 cos σ + S31 sin σ)

+ 15

8

(
1 − 6e2 + 423e4

64

)
(1 + c)3 (C33 cos (3σ) + S33 sin (3σ))

]

− μ6R4

L10

[
C40

(
1 − e2

)(
− 7

2

) (
3

8
− 15s2

8
+ 105s4

64

)

+
(
1 + e2 + 65e4

16

) (
−15

8
(1 + c)2 + 105

8

(
c + c2

)
s2

)

× (C42 cos (2σ) + S42 sin (2σ))

+ 105

16

(
1 − 11e2 + 199e4

8

)
(1 + c)4 (C44 cos (4σ) + S44 sin (4σ))

]
(3)

in which c = cos (i) , s = sin (i) and L is used hereafter instead of L ′ for convenience. In
terms of angular variables, it can be seen that H0 is only dependent on the angle σ . Since
θ ′ is implicit in H0, its conjugate �′ is a constant and can be dropped. Similarly, G and
H , which are related to e and i , are constant as g, h are absent in H0. Therefore at a given
combination of e and i , H0 is actually a 1-DOF system and is integrable. However, H1 and
H2 are functions of both σ and g and include angles jσ + kg( j = 1, 2, 3, k = ±1,±2), and
therefore are 2-DOF systems. Their expressions are given in Appendix 1 and they are both
zero at e = 0 or i = 0.

Since the origin of our selected body-fixed frame is located at the center of mass of
the asteroid and the axes are aligned with the principal moments of inertia of the asteroid,
the C21, S21 and S22 terms are all zero, leading to the fact that H1 actually start from the
μ5R3e ·C30/L8 term. However,H2 begins withμ4R2e2 · C22/L6 term. As e is not limited to
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1:1 Ground-track resonance 71

small values in current study, it is difficult to compare the magnitudes ofH1 andH2 directly.
As a result, numerical simulations is performed for wide ranges of e and i . It is found that
H1 ∈ O (

ε3/2
)
,H2 ∈ O(ε), where ε is the ordering parameter that indicates the relative

magnitudes ofH1,H2 toH0 respectively and ranges from 10−2 to 10−1 for the current study.
Therefore, H0 with resonant angle σ can be viewed as the primary resonance. H1 and H2

are the second resonances, which are expected to give rise to chaos.

3 Primary resonance

3.1 EPs and resonance width

Firstly, H0 is studied in detail. Its equilibria can be found by numerically solving

σ̇ = ∂H0

∂L
= 0, L̇ = −∂H0

∂σ
= 0 (4)

The linearized system is written as

[
dσ̇

d L̇

]
=

⎡

⎣
∂2H0
∂L∂σ

∂2H0
∂L2

− ∂2H0
∂σ 2 − ∂2H0

∂L∂σ

⎤

⎦
[
dσ

dL

]
.

The linear stability of an EP can be determined from the Jacobian matrix evalu-
ated at the EP. The resonant frequency can be approximated at a stable EP (σs, Ls) as√

∂2H0
∂L2 · ∂2H0

∂σ 2

∣∣∣
σs ,Ls

. Taking theHamiltonian value corresponding to an unstableEP (σu, Lu),

denoted as Hu , its level curve on the phase map is actually the separatrix that divides the
motion into libration and circulation regions (Morbidelli 2002). Along this curve, L passes
through its maximum Lmax and also minimum Lmin at σ = σs . The resonance width is then
calculated as �L = Lmax − Lmin and is therefore only valid for the stable EPs.

3.2 Numerical results

In this section, the EPs, their stability and the resonance width of asteroids Vesta, 1996 HW1
andBetulia are studied. They are selected because the first two asteroids are representatives of
regular and highly bifurcated bodies, respectively,whileBetulia has a triangular shape leading
to large 3rd degree and order harmonics. Their shape models together with dimensions are
given in Appendix 2. The 4th degree and order spherical harmonics of the three asteroids are
also listed in Appendix 2. It is noted here that all the angles except for inclination in this study
are represented in radians. First, the dynamics due to the 2nd degree and order harmonics
(C20 and C22), hereafter denoted asH0/2nd , is studied. After that, we proceed with including
other harmonic terms and investigate their effects on the phase portrait.

3.2.1 Vesta

As already mentioned in Sect. 2.2, the 1:1 resonance actually corresponds to the position of
the EPs in the rotating frame. Figure 1 gives the mean semi-major axis of the 1:1 resonance
in the e − i plane. The EPs with σ = 0 are unstable, while the ones with σ = π/2 are
stable. Due to the symmetry of the 2nd degree and order gravitational field, the location of
the EPs is symmetric with respect to i = 90◦ and is closer to Vesta when the orbit is polar.
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72 J. Feng et al.

Fig. 1 The contour plots of mean semi-major axis (in km) of the unstable (σ = 0) and stable (σ = π/2) 1:1
resonance (the EPs) in the e − i plane and the corresponding resonance width of stable EPs

Fig. 2 The phase portrait of the Hamiltonian of Vesta. Top row H0/2nd for e = 0, i = 0, 129.5◦, 171.9◦;
middle row H0 for e = 0, i = 0, 129.5◦, 143.2◦, 171.9◦; bottom row H0 for i = 0, e = 0.1, 0.3, 0.5. The
blue and red lines are the separatrix (or the values of the Hamiltonian) of the unstable EPs. The conversion
factor between L2 and a is L2/a = 17.3 km3/s2

It gradually moves further away from Vesta when the orbit approaches the equatorial plane
(either prograde or retrograde). The resonance width decreases with the increase of i , and
finally becomes zero when i arrives at π . This can be explained by the coefficient of the
resonant angle 2σ in Eq. (3), denoted as f22

f22 = −3μ4R2

4L6 ·
(
1 − 5e2

2
+ 13e4

16

)
· (1 + c)2 .

When i approaches 180◦, the term 1 + c becomes zero and f22 also comes to zero. For
a given value of i , the larger e the smaller f22 is and the resonance width also decreases
(Fig. 1). However, this phenomenon is weakened for larger i as its weight factor (1 + c)2

becomes smaller. This can clearly be observed from the contour map. In addition, our results
for orbits at e = 0, i = 0 or e = 0, i = 90◦ are identical to those obtained in Delsate’s study
(Delsate 2011).

To investigate the effects of higher-order terms, the Hamiltonian H0 given in Eq. (3) is
studied. Firstly, the phase portrait for some example orbits with different e and i is given in
Fig. 2. The four EPs are marked out as E1, E2, E3 and E4. The sub-plots A1, A2 and A3
are actually the phase portrait of H0/2nd for comparison, and the remaining ones are those
ofH0. It can be seen that due to the inclusion of 3rd and 4th order harmonics, the symmetry
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1:1 Ground-track resonance 73

Fig. 3 The phase portrait of the Hamiltonian of 1996 HW1. Top row H0/2nd for e = 0, i =
0, 108.9◦, 137.5◦, 171.9◦; middle row H0 for e = 0, i = 0, 120.3◦, 137.5◦, 171.9◦; bottom row H0 for
i = 0, e = 0.1, 0.2, 0.3, 0.4. The blue and red lines are the separatrix of the unstable EPs. The conversion
factor between L2 and a is L2/a = 5.8 × 10−7 km3/s2

with respect to σ = π is broken and the EPs have a shift from σ = 0 and σ = π/2 but are
still located in the near vicinity of them. For the subplots B1-B4, with the increase of i , the
two stable EPs gradually merge into one and the unstable EP around σ = π disappears, as a
result of the increasing strength of harmonic coefficients other than C22. The coefficient of
the C31 term in Eq. (3) (denoted as f31) is a first-order expression of 1 + c while for that of
C22 it is of the second order (1 + c)2:

f31 = −μ5R3

L8 ·
(
1 + 2e2 + 239e4

64

)
·
(

−3

4
(1 + c) + 15

16
(1 + 3c) s2

)
.

When i is large enough, the influence of C31 on the structure of the phase space exceeds
that of C22. Therefore the phase space is dominated by the phase angle σ of C31, and the
existence of only one stable EP can be easily understood. In addition, all four EPs disappear
when i approaches π , which is due to the fact that all the coefficients of kσ (k = 1, 2, 3, 4) in
Eq. (3) become zerowhen i = 180◦ because of the terms 1+c and s2, and the phase portrait is
filled with straight lines. The transit inclination (from four EPs to two EPs) is approximately
143◦ at e = 0 and slightly decreases to 126◦ at e = 0.5. This is explained by the fact that the
C31 dynamics is strengthened when e becomes larger, which is witnessed by the fact that the
large e promotes the merger of the two stable EPs shown in the C1–C3 sub-plots of Fig. 2. In
addition, the larger the eccentricity, the smaller the value of the resonance width as predicted
by the expression of f22. Similarly, the larger the inclination i , the larger the resonance width
as explained by the expression f31 of the dominant coefficient, i.e. C31. The exact σ values of
the EPs and the resonance width are given as a contour map in the e− i plane in Appendix 3.

3.2.2 1996 HW1

For 1996 HW1, the phase portrait of H0/2nd and H0 is given in Fig. 3. There are four
unstable EPs appearing in the equatorial plane (i = 0), which is consistent with previous
studies (Magri et al. 2011; Feng et al. 2015b). They are also marked as E1, E2, E3 and E4.
For small i , there is no region for libration and therefore all the EPs are unstable. It can be
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74 J. Feng et al.

Fig. 4 The phase portrait of theHamiltonian of Betulia including 4th degree and order harmonics.TopH0/2nd
for e = 0, i = 0, 66.2◦, 137.5◦, 171.9◦; middle H0 for e = 0, i = 0, 66.2◦, 137.5◦, 171.9◦; bottom H0 for
i = 0, e = 0.1, 0.21, 0.35, 0.5. The blue and red lines are the separatrix of the unstable EPs. The conversion
factor between L2 and a is L2/a = 1.1 × 10−5 km3/s2

seen that the instability of the four EPs is already determined by the dynamics ofH0/2nd . The
inclusion of other harmonics, however, causes a strong distortion of the phase space. Two
of the unstable EPs become stable at i ≈ 108.9◦ (Fig. 3A2) for H0/2nd and at i ≈ 120.3◦
(Fig. 3B2) for H0, indicating the destabilizing effects of the highly irregular gravitational
field and the stability of the retrograde motion in this highly perturbed environment. Then,
the two EPs merge into one at i ≈ 154.7◦ because of the C31 term, and finally disappear
due to the (1 + c) and s2 terms in f31. The phase portrait is also slightly influenced by e,
and similarly the larger eccentricity the larger effects it has on the phase portrait in terms of
resonance width, as shown in the subplots Fig. 3C1–C4.

The σ of the EPs and the resonance width are only obtained for the situation where
stable EPs exist and are given in Appendix 3. The semi-major axis of the stable EPs and the
unstable EPs are also given, indicated by as and au, respectively. Observe that after arriving
at the maximum value at i ≈ 128.9◦, the resonance width decreases and becomes zero when
i approaches 180◦. However, it is not affected by e, as the dynamics is mainly dominated by i
rather than e. Therefore themost interesting range for resonance iswithin 126◦ < i < 171.9◦,
and it will be further studied in the next section.

3.2.3 Betulia

The phase portrait of Betulia is given in Fig. 4. Only four EPs (E1, E2, E3 and E4) appear for
H0/2nd , while there are six EPs apparent in the equatorial plane forH0 due to the triangular
shape of this body. Among them, E2, E4 and E6 are stable and E1, E3 and E5 are unstable.
In Magri’s study (2007), six EPs were also obtained near the equatorial plane of Betulia,
but using a polyhedron gravitational field. However, in that paper the authors find E6 to
be unstable, whereas it appears to be stable according to our phase portrait (right stretched
island in Fig. 4B1). The second difference is that their EPs are in general slightly closer to
the body than ours. These distinctions primarily originate from the different gravitational
fields applied in their work and the current study. Although EP6 was not originally detected
as being unstable, however, the gravitational field truncated at degree and order 4 applied in
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1:1 Ground-track resonance 75

this study captures the major dynamical properties of the complete gravitational field for the
1:1 resonance, in terms of the number and approximate location of the EPs.

As shown in the sub-plots B1–B4 of Fig. 4, the phase portrait ofH0 changes significantly
with the increase of i . There are actually three EPs within the left main island, which are
illustrated as E2, E3 and E4 in the plot. Among them, E2 and E4 are stable, while E3 is
unstable and the most inner red line is its separatrix. From i ≈ 66.2◦, the unstable EP
disappears and the two stable ones start to merge, as shown in Fig. 4B3 with only two stable
EPs left. Similarly, when i gets close to 180◦, only one EP exists due to the dominant effect
of C31. In addition, because of the triangular shape of Betulia, the C31, S31 and S33 terms
are large compared to other asteroids, e.g. Vesta and 1996 HW1. Although S33 is one order
of magnitude smaller than C22, the coefficients of their phase angles 3σ and 2σ respectively
are comparable with each other for small e and i . As such, it is the S33 term that introduces
two more EPs and also makes the phase space asymmetric with respect to σ = π . With the
increase of both e and especially i , the influence of C31 becomes much stronger than that of
C22 and S33 and finally dominates the phase space as in the previous study cases. In addition,
the right island where EP6 is located is always slightly larger than the left one. In the next
section, the resonance width of Betulia is actually measured as the width of the larger one.
The exact values of σ of the EPs, the corresponding semi-major axes, and the resonance
width are also given in Appendix 3.

In summary, the effects of i, e and the spherical harmonics on the evolution of the phase
portrait of the 1:1 ground track resonance have been studied through the 1-DOF Hamiltonian
H0. Due to the 1+c term in the coefficients of all phase angles ofH0, the resonance width of
the retrograde orbits is found to be smaller than that of the prograde ones, which is consistent
with Olsen’s conclusion (2006). The eccentricity also affects the phase space in terms of
resonance width and the number of EPs. Although it is found that the stability of the EPs
is largely determined by the 2nd degree and order harmonics, especially for Vesta and 1996
HW1, the strength of C31 exceeds C22 and dominates the structure of the phase space when
i approaches 180◦. The large S33 term not only brings about more EPs but also introduces
significant asymmetry of the phase space with respect to σ = π .

4 Second resonance

For a more complete analysis of the 1:1 resonant dynamics, in addition to H0, H1 and H2

should also be considered, which introduce one more degree of freedom in the dynamics.
However, the inclusion of all terms in H1 and H2 is far from trivial. For this study, the
dominant term ofH1 andH2 is taken into account and is treated as a second resonance. The
dominant term, which has the largest amplitude, is given by

H2d = −μ4R2

L6 [F221G212(C22 cos (2σ − 2g) + S22 sin (2σ − 2g))] (5)

Therefore, the resulting 2-DOF Hamiltonian is written as

H2dof = H0 + H2d

Anew resonant angle 2σ −2g is introduced in the dynamics in addition to kσ(k = 1, 2, 3, 4).
A formal way to deal with this system is to treatH2d as a small perturbation to the integrable
system H2dof = H0 (Henrard 1990). However, in our study, the perturbation from H2d is
not necessarily to be small values, due to the large variations of e and i .
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76 J. Feng et al.

According to Chirikov (1979) and Morbidelli (2002), the dynamics of H2dof can be
studied by observing the overlap process of nearby resonances using Poincaré maps. To a
first approximation, each resonance is considered separately, namely only its own resonant
angle is taken into account and the other one is neglected. The first resonance Hreson1 is
actually H0, and the second resonance Hreson2 is defined as

Hreson2 = − μ2

2L2 − θ̇L − μ4R2

L6 F201G210C20 + H2d

= − μ2

2L2 − θ̇L − μ4R2

L6

(
1 − e2

)(
− 3

2

) (
−1

2
+ 3s2

4

)
C20

−μ4R2

L6

3

2

(
9e2

4
+ 7e4

4

)
s2 [C22 cos (2σ − 2g) + S22 sin (2σ − 2g)] (6)

which only includes one resonant angle 2σ − 2g. Their locations need to be solved first and
then the Poincaré maps of the single-resonance dynamics can be computed on a common
surface of section in the vicinity of their location. IfH2d is small, the separatrix ofHreson2 is
far away from that of Hreson1, and the two resonances are slightly influenced by each other.
Tiny chaotic layers are probably generated around the separatrix. Otherwise, if H2d is large
enough, the separatrix of the two resonances intersect, their dynamical domains overlap, and
each resonance is significantly influenced by the other one. The chaotic layers extend to
large-region chaos that dominates the phase space. Since Hreson1 is the dominant dynamics
of our 1:1 resonant model, the focus is put on how Hreson1 is influenced by Hreson2, which
can also be interpreted as how much the 1-DOF dynamics is affected by a perturbation.

4.1 The location and width of Hreson2

The location and width of Hreson1 have been obtained in Sect. 3. Since we want to apply
Poincaré sections to study the dynamics, the section of the map is first defined here as
g = π /2, ġ > 0 in the L − σ plane. Namely, when integrating the 2-DOF Hamiltonian,
when the solution crosses this section, its state is recorded on the L −σ plane. SinceHreson1

has 1-DOF, its Poincaré map is the same with its phase portrait in the phase space. The
location of Hreson2 on this section can be obtained by numerically solving

{
2σ̇ − 2ġ = 2∂Hreson2

∂L − 2∂Hreson2
∂G = 0

Hreson2 (σ0, g0, L∗,G∗) = Hseparatri x
(7)

in which σ0 = g0 = π/2. Hseperatri x is the Hamiltonian value of the separatrix of Hreson1

which is also the energy constant of the section. L∗ and G∗ represent the variables that
need to be solved. As Hreson2 itself is a 2-DOF system, the pendulum model cannot be
applied for approximating its resonance width. Therefore, based on the dynamical properties
of the Poincaré map, a full numerical estimation is used. By integrating from the initial
point (σ0, g0, L∗,G∗) over a proper time duration, a curve is obtained which is either the
upper or the lower part of the separatrix of Hreson2 on the section. If it is the upper part,
Lmax is directly obtained by taking record of the maximum point of the curve. Lmin is the
minimum of the lower border obtained by integrating from the point (σ0, g0, L∗ − δL ,G)

with a displacement from (σ0, g0, L∗,G∗) by δL depending on the dynamics studied and
vice versa. The curves acquired are the separatrix ofHreson2. Therefore, the width ofHreson2

is approximated by Lmax − Lmin , which is already good enough for the current study.
Given that the maxima and minima of Hreson1 and Hreson2 are denoted as Lmax1, Lmin1

and Lmax2, Lmin2, respectively, the relative locations of the two resonances can be character-
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Fig. 5 First and third rows: the separatrices of resonances Hreson1 (red) and Hreson2 (blue) on the section
g = π/2, ġ > 0; second and fourth rows: the phase space of the correspondingH2dof ; both for e = 0.1, i =
171.9◦, 170.7◦, 166.2◦, 158.7◦, 149◦, 143.2◦. Fifth and sixth rows: the separatrices of Hreson1 (red) and
Hreson2 (blue) and the correspondingH2dof for i = 168◦, e = 0.1, .3, .5

ized by Lmin1−Lmax2 and Lmin1−Lmin2. The former one, which is the distance between the
closer borders of the two resonances, is positive if the two resonances are totally separated
and becomes negative as the resonances start to overlap with each other. The latter one is
actually themeasurement of the extent of overlap of the two resonances. Its non-positive value
indicates that one resonance is completely within the other one. For different combinations
of e and i , the 2-DOF Hamiltonian H2dof is studied for 1996 HW1, Vesta and Betulia.

4.2 1996 HW1

Since 1996 HW1 has a limited inclination range (126◦ � i < 180◦) of libration motion of
Hreson1 (shown in Fig. 3), its second degree of freedom dynamics is studied first. In Fig. 5,
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the upper plots give the separatrices of the two resonances on the Poincaré maps, which are
the boundaries of their phase space. The bottom plots are the phase space of H2dof on the
same section, both for i changing from 171.9◦ to 143.2◦ at the example e = 0.1. Fig. 5
reflects the relationship of the distance between the two resonancesHreson1 andHreson2 and
the extent of chaotic region of H2dof .

4.2.1 The effect of i

For i = 171.9◦, even though the resonances do not overlap (but are close), tiny chaotic layers
appear in the vicinity of the separatrix ofH2dof . When there is a small overlap at i = 166.2◦,
the chaotic layer is extended but a large libration region still remains. With the increase of the
overlap from i = 166.2◦, a large part of the phase space is occupied by chaos. The regular
region shrinks to a limited area at the center of the phase space and meanwhile five islands
appear around it, which is due to the high-order resonances between Hreson1 and Hreson2.
With the further decrease of i to 158.7◦,Hreson2 is almost completely insideHreson1 and there
are only three small KAM tori left, indicating that the system is transiting to global chaos.
In addition, the original stable EP becomes unstable as the center part is already chaotic.
Although the dynamics is completely chaotic at i = 149◦, the chaos is still bounded by the
separatrix ofHreson1. However, finally at i = 143.2◦ the whole structure ofHreson1 could not
be kept and the continuity of phase space is broken. It is noticed that this break is consistent
with the break of the separatrix of Hreson2 at the same range of σ , implying a significant
perturbation of Hreson2 on the total dynamics. The break of Hreson2’s separatrix attributes
to the fact that the time derivative of g (namely ġ) changes its sign from positive to negative
after i crossing some specific value, and therefore it produces no crossings on the section
which is defined as ġ > 0. This phenomenon will be discussed in detail in the next section.

In summary, i has a significant influence on the 2-DOF dynamics at constant e. When i
decreases,Hreson2 is strengthened as it includes the term s2 (as seen inEq. 6) and its resonance
width increases. However, its location does not deviate much. ForHreson1, not only its width
is increasing but also its location is moving downward. Ultimately, the two resonances totally
overlap and have a strong interaction with each other. Nevertheless, the width of H2dof is
determined by Hreson1, because the Lmax and Lmin values of the former match the ones of
the latter, although the inner structure of the phase space has been totally affected.

4.2.2 The effect of e

To study the effect of e on the dynamics, the contourmap of the distance of the two resonances
and also the width of the second resonance are given on the e − i plane in Fig. 6. In the left
plot, the yellow region indicates the situation of non-overlap and slight overlap. In the middle
plot, the green and blue areas demonstrate the situation when Hreson2 moves totally inside
Hreson1 and the overlap between the two is complete. The right plot demonstrates that the
width of Hreson2 is also enlarged when e becomes large, which can be proven by the term
(9e2/4+7e4/4) inHreson2. Therefore, the largest distance ofHreson1 andHreson2 is observed
at the down-right corner andHreson2 approaches its highest location at the upper-left corner
in the left plot. In addition, as e increases and i decreases, Hreson2 becomes stronger (as
indicated by the resonance width) and has a significant influence on the dynamics ofHreson1.

Therefore, given a specific e and i , an estimation from this contour map can be made on
when small chaotic layers appear and when large chaotic seas are expected. As an example,
for e = 0.1, tiny chaotic layers are apparent at i = 171.9◦ when the two resonances start to
overlap; the last KAM tori disappear and the phase space is full with chaos around i = 158.2◦.
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Fig. 6 The distance betweenHreson1 andHreson2 measured as Lmin1 − Lmax2 (left) and Lmin1 − Lmin2
(middle), and the width ofHreson2 (right)

Fig. 7 The phase space of H2dof at e = 0.3 for i = 171.9◦, 170.7◦, 166.2◦, 158.7◦, 149◦, 143.2◦

For a more complete understanding, the phase space of H2dof at e = 0.3 with different
i is given in Fig. 7. As compared to Fig. 5, the upper plots of Fig. 7 show that the large e
distorts the main island, which originally has a circular or ellipsoidal shape. The chaos is
more abundant and the size of the main island reduces and a new phase structure is generated
at the bottom of the plot, due to the stronger influence of Hreson2. In addition, the lower
half of the chaos is thicker than the upper part, as it is more influenced by the perturbation
from Hreson2 which approaches Hreson1 from the bottom direction. In addition, the islands
appearing at the bottom area of the phase space can be explained by the direct interaction of
Hreson1 and Hreson2 in that region. Furthermore, the lower three plots are full of chaos.

For e = 0.3, i = 149◦, Hreson2 is already comparable with Hreson1 on the dynamics
of H2dof . Therefore, the center part of the phase space is not completely chaotic; a limited
regular (white) region appears which is actually part of the center island of Hreson2.

4.2.3 Bounded chaotic regions

Asmentioned in Sect. 4.2.1, tiny chaotic layers are generated in the vicinity of the separatrix.
Their boundaries can be estimated, which is the topic of this section.
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Fig. 8 The chaotic regions bounded by the separatrices (red lines) corresponding to the minimal and maximal
resonant width for e = 0.1, i = 171.9◦, 171.3◦; i = 171.9◦, e = 0.2, 0.3

For small perturbations, it is known fromMorbidelli (2002) that the chaotic region covers
areas spanned by the instantaneous separatrices for varying secular angles, which is g in
our study. Its boundaries are estimated from the separatrices corresponding to the minimal
and maximal resonant width. This is also known as the modulated-pendulum approxima-
tion. The small perturbation corresponds to the case of close approach and almost contact
betweenHreson1 andHreson2, and is therefore applicable to a situation with quite large incli-
nation values. For 1996 HW1, Fig. 8 illustrates this region at different eccentricities and
inclinations.

In each plot, the outer red lines represent the boundary corresponding to the Hamiltonian
value of Hseparatri x + H2d(g = 0) which is the maximum resonance width. The inner red
line is the inner boundary with the Hamiltonian value ofHseparatri x +H2d(g = π/2) which
is the minimum resonance width. For e = 0.1, i = 171.9◦, in which case the perturbation
from Hreson2 is weakest (shown in Fig. 5), the theory works perfectly since all chaos is
restricted to the region between the two red lines. When the inclination decreases to 171.3◦,
the chaos is still well bounded but a small portion of it at the bottom area is already outside
the red lines. For comparison, the cases of e = 0.2, i = 171.9◦ and e = 0.3, i = 171.9◦ are
studied, in which situation the perturbations of Hreson2 are not small anymore. The chaotic
region does not fit within the red lines well. The bottom part of the chaos is shifted upwards
and is therefore outside the inner red line, due to the distortion of the phase space.
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Fig. 9 First row the separatrices of resonancesHreson1(red) andHreson2 (blue) on the section g = π/2, ġ >

0; second row the phase space of the correspondingH2dof ; both for e = 0.1, i = 171.9◦, 160.4◦, 149◦; third
row the separatrices and phase space for e = 0.1, i = 129.2◦ (retrograde)

In summary, the chaotic layers are well estimated with the approximation theory for the
small perturbation cases (i close to π and small e). The strong perturbation ofHreson2 intro-
duced by large e not only broadens the chaotic region, but also reshapes the phase space.

4.3 Vesta

4.3.1 The effect of i

ForVesta, there is always a stable EP for different i and e. For the retrograde case, the distance
betweenHreson1 andHreson2 and the phase space ofH2dof for orbits with different i but the
same e = 0.1 is given in Fig. 9. For i = 171.9◦, the dynamics ofHreson1 is hardly influenced
since the two resonances are far apart and there is no interaction between them. With the
decreasing of i , a significant chaotic region around the separatrix appears, even when the
two resonances are just in contact (as seen at i = 160.4◦). WhenHreson2 completely evolves
insideHreson1, the phase space becomes totally chaotic, as indicated at i = 149◦. Further at
i = 129.2◦, the phase space becomes discontinuous and only scattered points are left without
any recognizable dynamical structure (similar to the case for 1996 HW1 at i = 143.2◦). The
reason will be explained later this section.

The situation is quite different for the prograde case, as shown in Fig. 10. It can be seen that
Hreson2 is completely insideHreson1 for all inclinations; also the width ofHreson2 increases
as the orbit gets more inclined. When the strength of Hreson2 is very weak at i = 11.5◦, a
very tiny chaotic layer is present around the separatrix of Hreson1. When Hreson2 becomes
stronger at i = 34.4◦, new islands inside the two main libration regions are generated, in
addition to the weak chaos. Finally, when Hreson2 is large enough at i = 45.8◦, the original
phase structure is broken and the two main islands are filled with chaos but are not connected
anymore. Although the two resonances overlap completely, the generation of chaos is still
closely related to the relative strengths of them. Combined with the above analysis, the extent
of chaos is determined by both the location of the two resonances and their relative strength.
The dynamics of H2dof is determined by the evolution (location, stability and strength) of
both Hreson1 and Hreson2 as well as their interaction.
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Fig. 10 First row the separatrices of resonances Hreson1 (red) and Hreson2 (blue) on the section
g = π/2, ġ > 0; Second row the phase space of the corresponding H2dof ; both for e = 0.1, i =
11.5◦, 34.4◦, 45.8◦ (prograde)

Fig. 11 The distance betweenHreson1 andHreson2 measured as Lmin1 − Lmax2 (left) and Lmin1 − Lmin2
(middle), and the width ofHreson2 (right) for the prograde (top) and retrograde (bottom) cases (i in radian)

4.3.2 The effect of e

Fig. 11 shows contourmaps that can be used to analyze the impact of e. For the retrograde case,
the effects of e and i on the evolution of the two resonances are similar to that of 1996 HW1,
as shown in the bottom plots of Fig. 11. The slight difference is that the maximum resonance
width of Hreson2 is at e = 0.5 and i ≈ 137.5◦ for Vesta rather than at the top-left corner for
1996 HW1, which can be explained by the non-linear property of the resonance width as a
function of e and i . For the prograde case, instead of Lmin1−Lmax2, Lmax1−Lmax2 is obtained
due to the fact that the two resonances already completely overlap. It is always positive for
Lmax1 − Lmax2 and negative for Lmin1 − Lmin2. It must be mentioned that when i = 0,
the width ofHreson2 is zero and the dynamics ofHreson1 is not affected. Therefore, we start
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Fig. 12 The phase space of H2dof at e = 0.5 for i = 171.9◦, 160.4◦, 149◦, 129.2◦, 11.5◦, 34.4◦, 45.8◦

our calculation from i = 0.6◦. The largest distances between the maximum and minimum
boundaries of the two resonances are both at the left-bottom corner of the contour map, and
the smallest distances between them at the right-top corner, which can be easily explained by
the corresponding weakest and strongest perturbing effect ofHreson2. In addition, the width
ofHreson2 achieves its largest value at the largest inclination but smallest eccentricity. It can
be noticed that the ranges of i stop at 51.6◦ and 128.9◦ for the prograde and retrograde orbits,
respectively, due to the break of the separatrix of Hreson2 at 51.6◦ � i � 128.9◦.

For a complete understanding, the phase space of H2dof at e = 0.5 is given in Fig. 12.
Similarly, compared to the phase space at e = 0.1 (shown in Figs. 9 and 10), the main
island is strongly distorted and the chaotic region is significantly extended, due to the strong
perturbation of Hreson2. For e = 0.5, i = 149◦, the regular region at the center of the phase
space again is actually part of the regular region ofHreson2, due to the comparable influence
of Hreson1 and Hreson2 on the dynamics of H2dof . Therefore, a large e gives rise to strong
perturbations on the dynamics.

4.3.3 Near polar region

For the near polar region, the dynamical structure shrinks and almost disappears on our
previously defined section, as can already be seen from the plots at i = 45.8◦ and i = 129.2◦
in Figs. 9 and 10. This is due to the fact that the secular rate of g (Kaula 1966)

ġ = − 3nR2C20

a2
(
1 − e2

)2 (4 − 5s2)

changes sign at the critical inclinations icri tical = 63.4◦ and 116.6◦. In particular, it is negative
for 63.4◦ < i < 116.6◦. Since this formula of ġ is obtained from averaging the leading C20

perturbation and our current model includes additional harmonics terms, the sign of ġ in our
study does not change sharply at icri tical but has a transition process. However, the exact
values of this transition are beyond the scope of this study. Some orbits may still have ġ > 0
while others already have ġ < 0, which explains the break of the separatrix of Hreson2 on
the section g = π/2, ġ > 0. Therefore, we can define a new section for the near polar orbits
with the only difference that ġ < 0.

Results are shown in Fig. 13. For the case of e = 0.1, no proper solution of (L∗,G∗) of
Hreson2 can be found on this new section; and its Poincaré map rather than the separatrix is
included. The two resonances have moderate overlap at the upper and lower boundaries of
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Fig. 13 First row the separatrices of resonances Hreson1 (red) and Hreson2 (blue) on the section
g = π/2, ġ < 0; second row the phase space of the corresponding H2dof ; both for e = 0.1, i =
68.8◦, 90◦, 108.9◦, 120.3◦

Hreson1, which brings about limited chaotic regions closely attached to the separatrix. When
Hreson2 reaches its strongest effect at i = 90◦, the chaos becomes more obvious and thick.
For i = 68.8◦ and 108.9◦, the chaos is visible but less abundant. For i = 120.3◦, in addition to
the chaos, islands are apparent in the circulation region ofHreson1, where the two resonances
have a strong modulation with each other. However, with the increase of e, (L∗,G∗) can
be found and the separatrix of Hreson2 can be obtained on the new section. The example of
i = 90◦ at e = 0.3, 0.5 is given in Fig. 14A–D. It can be seen that for e = 0.3, there is an
overlap between the separatrices of the two Hamiltonians, which leads to the expansion of
the chaos in the circulation region. When e reaches 0.5, the perturbing HamiltonianHreson2

becomes dominant, as can be seen from the width of the libration region in Fig. 14C, and
resultantly the Poincaré map is the phase space ofHreson2 with chaotic regions generated by
the perturbation ofHreson1. One more example is given for i = 100◦. For the small value of
e = 0.1, the circulation region is filled with chaos. The chaos extends and regular libration
region shrinks for e = 0.3. When e is large enough at 0.5, the phase space is occupied by the
perturbing Hamiltonian Hreson2.

Therefore, for near polar orbits the libration region of Hreson1 is hardly influenced by
Hreson2 for small eccentricities, in spite of the strong effects of the perturbations ofHreson2

at large eccentricities.

4.4 Betulia

For both prograde and retrograde orbits, Betulia has very similar properties as Vesta, con-
cerning the distance between the two resonances and the width of Hreson2.

4.4.1 The effect of i

The retrograde case is illustrated in Fig. 15. Differently from Fig. 9, the phase space is not
symmetric with respect to i = 90◦ anymore. When the two resonances are further apart at
i = 171.9◦, Hreson1 is hardly influenced. When they are almost in contact with each other
at i = 165◦, thick chaotic layers are present together with small islands in the phase space.
Before complete overlap, there is a small KAM-tori left at i = 153.6◦ and the center region
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Fig. 14 First row the separatrices of Hreson1 (red) and Hreson2 (blue) and the corresponding H2dof ; for
i = 90◦, e = 0.3, .5; Second and third rows the separatrices of Hreson1 (red) and Hreson2 (blue) and the
corresponding H2dof , respectively; for i = 100◦, e = 0.1, .3, .5

Fig. 15 First row the separatrices of resonances Hreson1 (red) and Hreson2 (blue) on the section
g = π/2, ġ > 0; second row the phase space of the corresponding H2dof ; both for e = 0.1, i =
171.9◦, 165◦, 153.6◦; third row the separatrices and phase space for e = 0.1, i = 132◦ (retrograde)

of the phase space is also distorted. After that at i = 132◦, the phase space is totally chaotic
and finally broken.

For the prograde case, the two resonances always totally overlap, as shown in Fig. 16.
When Hreson2 is tiny and weak at i = 11.5◦, the main structure of Hreson1 is kept, with
the difference that small chaotic regions appear near the separatrix and again new islands
are generated inside the right main island. As Hreson2 becomes stronger at i = 34.4◦, the
overlapping part of Hreson1 is completely chaotic. Similarly, for i = 45.8◦, the phase space
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Fig. 16 First row the separatrices of resonances Hreson1 (red) and Hreson2 (blue) on the section g =
π/2, ġ > 0; second row the phase spaceof the correspondingH2do f ; both for e = 0.1, i = 11.5◦, 34.4◦, 45.8◦
(prograde)

Fig. 17 First row the separatrices of resonancesHreson1 andHreson2 on the section g = π/2, ġ < 0; second
row the phase space of the correspondingH2dof ; both for e = 0.1, i = 68.8◦, 90◦, 108.9◦, 120.3◦

of Hreson1 is significantly broken and is left with large gap regions, even without complete
break of the separatrix of Hreson2. This indicates the strong perturbation of Hreson2 on the
dynamics and the highly non-linear property of H2dof .

For the near polar region, as illustrated in Fig. 17, Betulia has a similar property as Vesta,
considering that chaotic layers appear in the vicinity of the separatrix and also new islands
are generated in the circulation region. However, for Betulia the three regions are weakly
connected at i = 68.8◦. Furthermore, they become totally isolated at i = 90◦, due to the
stronger modulation ofHreson2 compared to that of Vesta (Fig. 13). Since the regular region
is open, the originally stable EPs of Hreson1 probably change into unstable. At i = 108.9◦
and 120.3◦, the circulation region is full of chaos, which implies that the perturbation of
Hreson2 and its interaction withHreson1 in this region are stronger, compared to the cases at
i = 68.8◦ and 90◦. Again, the general structure of the libration part of Hreson1 is kept.
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Fig. 18 The phase space of H2dof at e = 0.5 for i = 171.9◦, 165◦, 153.6◦, 132◦, 11.5◦, 34.4◦, 45.8◦

4.4.2 The effect of e

In addition, it is also found that e shows the same effect on the dynamics of Betulia as for
Vesta, both for the prograde and retrograde orbits. The mechanism is the same and is not
explained in detail here. However, the phase space ofH2dof at e = 0.5 is included in Fig. 18.
For the first plot at i = 171.9◦, the main island is highly distorted although still without
chaos. For i = 165◦, the distortion is more serious and large chaos appears. The phase space
with a small area of regular region in the center already shows the property of Hreson2 at
i = 153.6◦. For i = 11.5◦, 34.4◦, 45.8◦, the chaotic region is extended and new structures
are generated.

5 The maximal Lyapunov Characteristic Exponent of chaotic orbits

In addition to the above study about the extent of chaotic layers, the chaos can also be
characterized quantitatively by calculating the value of the maximal Lyapunov Characteristic
Exponent (mLCE), which is an indicator of the regular or chaotic properties of orbits (Skokos
2010). Its basic idea is tomeasure the distance between two orbits that start close, until infinite
time (t → ∞). It characterizes the average growth rate of a small perturbation of the solution
of a dynamical system and is defined as

λ = lim
t→∞

1

t

t∑

0

ln ‖υ(t)‖

in which υ(t) is the deviation vector with respect to the given orbit at time t . It is also
the solution of the corresponding variational equations of the dynamical system. If λ > 0,
the orbit is chaotic; if λ = 0, the orbit is regular. The numerical algorithm applied here
is the standard method originally developed by Benettin and Galgani (1979). Its detailed
implementation can be found in Skokos (2010). It has to be mentioned that for regular orbits
it might take a long time for λ to achieve zero. However, within a moderate time interval the
tendency to zero is already visible.

Since it is obvious that large e introduces stronger chaos and the chaos of the three different
asteroids is expected to be compared, themLCEof orbits selected from the chaotic and regular
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Fig. 19 The mLCE of regular and chaotic orbits from the Poincaré maps ofH2dof for 1996 HW1, Vesta and
Betulia

regions (if there is no chaos) on the maps from Figs. 5, 9, 10, 12 and 13 are given in Fig. 19.
These maps primarily indicate the effect of i on dynamics at e = 0.1. The total integration
time for them is different, but has been chosen such that a stable value of all the mLCE
values can be achieved. To make the results more visible, the mLCE values at the end of
the integrations are magnified and are shown respectively as insets in the plots of Vesta and
Betulia.

For the three asteroids, they share the same property that the more inclined the orbit,
the larger the mLCE value, indicating the stronger chaotic property. In addition, the mLCE
values of the retrograde orbits are generally smaller than those of the prograde ones. For
i = 171.9◦, there is no chaos on both the maps of Vesta and Betulia (shown in Figs. 5, 9).
This is demonstrated in the value for the mLCE illustrated as black at the bottom of the inset
whichwill finally tend to zero, the tendency ofwhich can already be identified. The difference
among the three asteroids can also be noticed. The resonant orbits around 1996 HW1 have
the largest mLCE (at magnitude 10−5), the ones for Betulia rank second (at magnitude 10−6),
while orbits around Vesta show the smallest mLCE (mostly at magnitude 10−7). This can
be explained by the different values of C20 and C22 induced from the irregular shape of the
body. The more irregular the gravitational field is, the larger the values of C20 and C22 and
the impact of Hreson2 are.
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6 Conclusions

In this study, a 2-DOF Hamiltonian of the 1:1 ground-track resonance of a gravitational
field up to degree and order 4 was built. The dominant part of the Hamiltonian, i.e. H0, was
first studied by finding the EPs and examining their stability for non-circular and non-polar
orbits of Vesta, 1996 HW1 and Betulia. ThisH0 was proven to largely capture the dynamical
characteristics of the 1:1 resonant dynamics for the three study cases. In particular, the
inclination i was found to play a significant role on the number of EPs: when i approaches π ,
there is only one stable EP left, due to the dominant strength of C31 over C22 on the structure
of the phase space. The 2nd degree and order harmonics largely determine the stability of the
EP, while the higher order terms either introduce new EPs and change the resonance width
or break the symmetry of the dynamics.

By applying Poincaré maps, the 2-DOF Hamiltonian H2dof was then investigated. Two
HamiltoniansHreson1 andHreson2 were defined in this 2-DOF model and their locations and
widths were determined numerically for different combinations of e and i .

With the overlap criteria, the extent of chaotic regions was qualitatively explained by the
distance between the two resonances as well as their resonance strength. For near-circular,
near-equatorial orbits, the dynamics ofHreson1 around the stable EP is hardly influenced by
the second resonance asHreson1 andHreson2 are further apart.When i gets further away from
the equatorial plane,Hreson2 becomes close to and almost interacts withHreson1. Small-scale
chaos was generated in the vicinity of the separatrix of H2dof , whose boundaries were well
estimated by the modulated-pendulum approximation. When the two resonances have an
obvious overlap for i getting close to the polar region, large chaos became apparent and new
islands came forth in the phase space. However, for the near polar case at small eccentricities,
the libration region of Hreson1 is hardly influenced and is stable against perturbation of
Hreson2. Though the structure of the phase space is largely determined by i , a large value
of e definitely gives rise to a strong perturbation of Hreson2, which makes the main island
distorted and the chaotic region extended. Therefore, the retrograde, near polar and near
circular orbits show the more stability against external perturbations.

In addition, the mLCEs of the chaotic and regular orbits were calculated, thereby confirm-
ing that the strongest chaos has to be expected in the vicinity of themost irregular gravitational
field, e.g., 1996 HW1 in this study.

The results and analyses in this paper provide us insight on the impact of eccentricity and
inclination, as well as the gravitational field, on the 1:1 ground track resonance. Through
the study of overlap of resonances, the generation and width of chaos in the phase space of
the 1:1 resonance can be estimated. For future study, the possibilities of capture into and
escape from the 1:1 resonance should be addressed, which helps to control the spacecraft
from chaotic motion during its transition through the resonance.
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Appendix 1

See Table 1.
The expressions of H1 and H2 are given as

H1 = −μ4R2

L6

[
F210G20−1 (C21 cos (σ + g) + S21 sin (σ + g))

+ F211G211 (C21 cos (σ − g) + S21 sin (σ − g))
]

− μ5R3

L8

[
F301G31−1 (C30 cos g + S30 sin g) + F302G321 (C30 cos g − S30 sin g)

]

− μ6R4

L8

[
F411G41−1 (C41 cos (σ + g) + S41 sin (σ + g))

+ F412G421 (C41 cos (σ − g) + S41 sin (σ − g)) + F430G40−1 (C43 cos (3σ + g)

+ S43 sin (3σ + g)) + F431G411 (C43 cos (3σ − g) + S43 sin (3σ − g))
]

(8)

H2 = −μ4R2

L6 [F221G212 (C22 cos (2σ − 2g) +S22 sin (2σ − 2g))]

− μ5R3

L8

[
F310G30−2 (C31 cos (σ + 2g) + S31 sin (σ + 2g))

+ F312G322 (C31 cos (σ − 2g) + S31 sin (σ − 2g))

+ F331G312 (C33 cos (3σ − 2g) + S33 sin (3σ − 2g))
]

− μ6R4

L10

[
F401G41−2 (C40 cos (2g) + S40 sin (2g))

+ F422G422 (C42 cos (2σ − 2g) + S42 sin (2σ − 2g))
]

(9)

Table 1 The primary zonal and
tesseral terms contributing to the
1:1 resonance

n 2 2 3 3 4 4 4

m 0 2 1 3 0 2 4

p 1 0 1 0 2 1 0

q 0 0 0 0 0 0 0

�nmpq 0 2σ σ 3σ 0 2σ 4σ

Appendix 2

See Fig. 20.
The tables below contain the values for the un-normalized spherical harmonic coefficients

to degree and order 4 for Vesta derived from Tricarico and Sykes (2010), 1996 HW1 (Feng
et al. 2015a) and Betulia derived fromMagri et al. (2011). Although there is an update of the
gravitational field of Vesta in Konopliv et al. (2014), the full 4 × 4 spherical harmonics are
not directly available from it. In addition, the difference between the two is quite small.
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Fig. 20 The shape models of Vesta (left), image credit: NASA/DAWN; 1996 HW1 (middle) (Magri et al.
2011) and Betulia (right) (Magri et al. 2007)

Vesta

C20 −6.872555 × 10−2 S31 1.825409 × 10−4 S41 −1.347130 × 10−4

C21 0 C32 −3.162892 × 10−4 C42 −3.152856 × 10−5

S21 0 S32 5.943231 × 10−5 S42 6.551679 × 10−5

C22 3.079667 × 10−3 C33 2.565757 × 10−5 C43 −3.113571 × 10−5

S22 0 S33 7.264998 × 10−5 S43 −2.689264 × 10−6

C30 6.286305 × 10−3 C40 9.6 × 10−3 C44 3.190457 × 10−6

C31 −7.982112 × 10−4 C41 6.394125 × 10−4 S44 5.514632 × 10−6

1996 HW1 (all Snm terms are zero)

C20 −1.21847 × 10−1 C31 −1.3964 × 10−2 C41 0
C21 0 C32 0 C42 −4.258 × 10−3

C22 5.8547 × 10−2 C33 2.547 × 10−3 C43 0
C30 0 C40 3.8779 × 10−2 C44 5.16 × 10−4

Betulia

C20 −1.476131 × 10−1 S31 −2.491845 × 10−3 S41 −5.428366 × 10−4

C21 0 C32 −5.879324 × 10−3 C42 −1.599034 × 10−3

S21 0 S32 2.931994 × 10−3 S42 5.556629 × 10−5

C22 1.711891 × 10−2 C33 3.182376 × 10−4 C43 1.775273 × 10−4

S22 0 S33 −3.910856 × 10−3 S43 2.49498 × 10−4

C30 9.543225 × 10−3 C40 4.2618 × 10−2 C44 −3.298214 × 10−5

C31 −2.738977 × 10−3 C41 −6.251823 × 10−4 S44 3.024807 × 10−5

Appendix 3

The location of EPs and resonance width at different combinations of e and i for Vesta, 1996
HW1 and Betulia.
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