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SUMMARY

L ARGE deformations in fluid-saturated geomaterials are central to numerous geotech-
nical applications, such as landslides and dam failures, pile installations, and under-

ground excavations. An in-depth understanding of the soil’s hydromechanical behaviour
during large-deformation processes is essential for quantitative predictions about such
geotechnical problems, which justifies the considerable importance that detailed nu-
merical simulations have been acquiring in this context. However, such simulations are
inevitably associated with significant conceptual and computational complexity, due to
the simultaneous presence of possibly very large soil deformations along with dynamic
effects. Under such conditions, the most common Lagrangian version of the Finite Ele-
ment Method (FEM) is known to suffer from the mesh distortion that is induced by large
deformations, which has a detrimental impact on the accuracy and stability of the corres-
ponding numerical results. The recently developed Material Point Method (MPM) offers
a viable solution to the problem by combining the advantages of both Lagrangian and
Eulerian methods, and has therefore received increasing attention within the numerical
modelling community.

In this thesis, the MPM has been adopted and further developed for the simulation of
dynamic large-deformation problems in fluid-saturated porous materials, with emphasis
on the stabilisation of the pore pressure field in the presence of low-order interpolation
functions. Particular attention has been placed on developing and verifying the proposed
stabilised MPM. As a starting point, an explicit version of the proposed coupled MPM,
based on the Generalised Interpolation Material Point (GIMP) method, is implemented.
Several numerical challenges, such as (i) the implementation of a single-point two-field
dynamic formulation, and (ii) the mitigation of pore pressure oscillations, are tackled and
discussed in detail. The resulting explicit GC-SRI-patch method includes the use of: (i)
selective reduced integration (SRI) for pore pressure evaluation at the central Gauss points
of individual background cells; (ii) patch recovery based on a Moving Least Squares Ap-
proximation (MLSA) for mapping pore pressure increments from central GPs to Material
Point (MPs); (iii) the Composite Material Point Method (MPM) for enhancing the recovery
of effective stresses. The analysis of various poroelastic dynamic consolidation problems
over a wide range of loading/drainage conditions demonstrates the effectiveness of the
explicit GC-SRI-patch method.

Due to the adoption of explicit time integration, the abovementioned (explicit) GC-
SRI-patch method, similar to most coupled MPM formulations from the literature, is only
conditionally stable, which imposes extreme limitations on the selection of the time step
size. As a consequence, the need for stable time integration restricts the applicability of
explicit coupled MPM modelling to problems of considerable size and/or duration. A
fully implicit stabilised GIMP using a single-point three-field (u–p–U form) formulation
is thus proposed, with pore pressure instabilities being remedied through the same MLSA-
based patch recovery. Relevant aspects regarding the numerical implementation of the

xv



xvi SUMMARY

implicit GIMP-patch method are discussed in detail. This novel method is shown to
produce accurate, stable, and oscillation-free results for coupled problems associated
with different inertial and deformation regimes, and is generally more efficient than the
explicit GC-SRI-patch method owing to the use of larger time steps.

Following the development of the implicit GIMP-patch method in a poroelastic fra-
mework, its extension to elastoplastic large-deformation problems is introduced. In
particular, in order to analyse coupled large-deformation problems in (nearly) incom-
pressible elastoplastic geomaterials, an anti-locking B algorithm is implemented. The
effectiveness of the implicit B GIMP-patch method in mitigating the detrimental effects of
volumetric locking is highlighted through several practical examples, including (i) a strip
footing undergoing both small and large settlements on an incompressible soil, (ii) the
failure of an earthen slope, and (iii) the bearing capacity of a strip footing near the crest
of a slope. The proposed method is proven to be a suitable tool for simulating the large-
deformation failure mechanisms in realistic fluid-saturated geotechnical problems and
the quantification of the unstable soil mass during the corresponding failure processes.

In summary, the work presented in this thesis is believed to make significant progress
on the applicability of stabilised MPM for large-deformation problems in fluid-saturated
geomaterials. The presented new developments will support more efficient and accurate
assessment of geohazards and soil-structure interaction in geotechnical engineering
practice.



SAMENVATTING

Grote vervormingen in vloeistofverzadigde geo-materialen staan centraal in talrijke geo-
technische vraagstukken, zoals aardverschuivingen en damdoorbraken, paalinstallerin-
gen en ondergrondse uitgravingen. Een gedegen inzicht in het hydromechanische gedrag
van de grond tijdens grote–vervorming processen is noodzakelijk voor kwantitatieve
voorspellingen bij zulke vraagstukken, hetwelk de aanzienlijke aandacht rechtvaardigt
die gedetailleerde numerieke simulaties hebben ontvangen in deze context. Het is echter
onvermijdbaar dat dit type simulatie gepaard gaat met aanzienlijke conceptuele en reken-
complexiteit, door de gelijktijdige aanwezigheid van mogelijk zeer grote vervormingen en
dynamische effecten. Onder deze omstandigheden is het bekend dat de meest gebruikte
Lagrangiaanse versie van de Eindige Elementen Methode (FEM) lijdt onder de grote
vervorming van het netwerk, wat een nadelige invloed heeft op de nauwkeurigheid en
stabiliteit van de numerieke resultaten. De onlangs ontwikkelde Materiaal Punt Methode
(MPM) biedt een werkbare oplossing voor dit probleem door de voordelen van zowel La-
grangiaanse als Eulerse methoden te combineren, en trekt daardoor de aandacht binnen
de numerieke modellerings gemeenschap.

In deze thesis wordt MPM toegepast en verder ontwikkeld voor de simulatie van dyna-
mische grote-vervorming-problemen in vloeistofverzadigde poreuze materialen, met de
nadruk op het stabiliseren van het waterspanningsveld in de aanwezigheid van lage-orde
interpolatiefuncties. Bijzondere aandacht is uitgegaan naar de ontwikkeling en verificatie
van de voorgestelde gestabiliseerde MPM. Als uitgangspunt is een expliciete versie van
de voorgestelde gekoppelde MPM, gebaseerd op de Generalised Interpolation Material
Point (GIMP) methode, geïmplementeerd. Meerdere numerieke uitdagingen, zoals (i)
de implementatie van een enkelpunts-tweevelden dynamische formulering, en (ii) het
tegengaan van oscillaties in waterspanningen, worden aangegaan en in detail besproken.
De resulterende CG-SRI-patch methode omvat het gebruik van: (i) Selectief Gereduceerde
Integratie (SRI) voor de evaluatie van waterspanningen op de centrale gausspunten (GPs)
van iedere achtergrondcel; (ii) Patch Recovery gebaseerd op een bewegende kleinstekwa-
dratenmethode (MLSA) voor het overzetten van waterspanningsincrementen van GPs
naar de materiaalpunten (MPs); (iii) de Composite Material Point Method (CMPM) voor
het verbeterd terugvinden van effectieve spanningen. De analyse van verscheidene por-
oelastische dynamische consolodatieproblemen over een grote variëteit aan belastings-
en drainagerandvoorwaarden bewijst de effectiviteit van de expliciete GC-SRI-patch
methode.

Ten gevolge van het toepassen van expliciete tijdsintegratie is de bovengenoemde
(expliciete) GC-SRI-patch methode, net als de meeste in de literatuur aangetroffen MPM-
formuleringen, slechts voorwaardelijk stabiel, hetgeen belangrijke beperkingen oplegt
aan de keuze van een tijdsstapgrootte. De noodzaak van stabiele tijdsintegratie beperkt
de toepasbaarheid van expliciete gekoppelde MPM voor problemen van significant for-
maat of tijdsduur. Een volledig impliciete gestabiliseerde GIMP, gebruikmakend van een
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enkelpunts-drievelden (u-p-U) formulering wordt hierom voorgesteld, waarin instabiliteit
van het waterspanningsveld worden tegengegaan middels eenzelfde MLSA-gebaseerde
patch recovery. Relevante aspecten met betrekking tot de numerieke implementatie van
de impliciete GIMP-patch methode worden in detail besproken. Er wordt aangetoond
dat deze nieuwe methode accurate, stabiele, oscillatievrije resultaten oplevert voor ge-
koppelde problemen in verscheidene traagheids- en vervormingsregimes, en is over het
algemeen efficiënter dan de expliciete GC-SRI-patch methode dankzij het gebruik van
grotere tijdsstappen.

Na de ontwikkeling van de expliciete GIMP-patch methode in een poroelastisch raam-
werk, wordt zij verder ontwikkeld voor toepassing op elastoplastische grote-vervorming-
problemen. Teneinde gekoppelde grote-vervorming-problemen in (nagenoeg) onsamen-
drukbare elastoplastische geo-materialen te kunnen analyseren, wordt een anti-locking B
algoritme geïmplementeerd. De effectiviteit van de impliciete B GIMP-patch methode in
het tegengaan van de nadelige effecten van volumetrische locking wordt benadrukt door
een aantal praktijkvoorbeelden, waaronder (i) een strokenfundering die zowel grote als
kleine zettingen op een onsamendrukbare ondergrond ondergaat, (ii) het bezwijken van
een aarden talud, en (iii) de draagkracht van een strokenfundering in de nabijheid van de
kruin van een talud. Het wordt aangetoond dat de voorgestelde methode een geschikt
gereedschap is voor het simuleren van bezwijkmechanismen bij grote vervormingen in
realistische vloeistofverzadigde geotechnische vraagstukken, en ook voor de kwantificatie
van de instabiele grondmassieven gedurende deze bezwijkprocessen. Samenvattend
kan worden gesteld dat het in deze thesis gepresenteerde werk wordt verondersteld een
significante bijdrage te leveren aan de toepasbaarheid van MPM voor grote-vervorming-
problemen in vloeistofverzadigde geo-materialen. De hier voorgestelde ontwikkelingen
zullen een verbeterde analyse van geotechnische risico’s en grond-bouwwerk interactie
in de geotechnische ingenieurspraktijk ondersteunen.
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2 1. INTRODUCTION

1.1. BACKGROUND

I N the field of geotechnical engineering, natural phenomena, such as landslides and
debris flows, often result in catastrophic events due to the sudden release and rapid

large movement of soil masses. Therefore, the reliable prediction of such events and
understanding the soil mechanical processes during these large deformation processes
are of particular importance for researchers and engineers for minimising their potential
consequences. However, numerical simulation of large deformations is known to be
particularly challenging when attempted through conventional, mesh-based Lagrangian
methods such as the Finite Element Method (FEM). In most cases of dealing with large
deformations, such methods can lead to aborted numerical simulations or misleading
results due to excessive mesh distortion (Lee & Bathe, 1993; Rajendran, 2010). As an
example, Figure 1.1 gives the solution of a typical geotechnical problem, involving a large
deformation slope collapse, as analysed using traditional FEM. Figure 1.1b illustrates that
severe mesh distortion occurs during the large deformation collapse process. This severe
mesh distortion makes the traditional FEM unsuitable for handling large deformation
problems unless special mesh treatments are performed.

(a) Initial undeformed mesh

(b) Final deformed configuration

Figure 1.1: Large deformation slope collapse analysis using traditional FEM

To remedy the mesh-distortion issue, various approaches, such as Arbitary
Lagrangian–Eulerian (ALE) (Hirt et al., 1974; Donea et al., 1982; Nazem et al., 2008; Bar-
low et al., 2016) and Coupled Eulerian–Lagrangian (CEL) modelling (Qiu et al., 2011;
Dutta et al., 2015; Wang et al., 2015), have been implemented. Alternatively, several
mesh-free/meshless methods have also been proposed, such as the Smoothed Particle
Hydrodynamics (SPH) method (Gingold & Monaghan, 1977; Monaghan, 1994; Randles &
Libersky, 1996; Liu & Liu, 2010; Pastor et al., 2014, 2018), the Material Point Method (MPM)
(Sulsky et al., 1994, 1995; Bardenhagen & Kober, 2004; Więckowski, 2004), the element-free
Galerkin method (Belytschko et al., 1995; Beissel & Belytschko, 1996; Häussler-Combe
& Korn, 1998; Zhang et al., 2008; Bourantas et al., 2021; Zhang et al., 2021), the Particle
Finite Element Method (PFEM) (Oñate et al., 2004; Monforte et al., 2017; Della Vecchia
et al., 2019; Yuan et al., 2020, 2021), and Optimal Transportation Meshfree (OTM) scheme
(Li et al., 2010, 2014; Navas et al., 2016, 2018). Each one of these methods features a
specific mix of advantages and drawbacks, and recent reviews on the subject of large
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deformation modelling can be found, for instance, in Soga et al. (2015), Chen et al. (2017),
and de Vaucorbeil et al. (2020). As MPM combines the advantages of both Lagrangian
and Eulerian methods, it has been gaining recognition as a robust approach for this
class of problem, and has been applied to soil discharging (Więckowski, 2004), landslides
(Andersen, 2009; Andersen & Andersen, 2010; Soga et al., 2015; Wang et al., 2018; Yerro
et al., 2019), the bearing capacity of footings (Kiriyama & Higo, 2020; Bisht et al., 2021;
Wang et al., 2021), anchor pull-out (Coetzee et al., 2005; Ceccato et al., 2020; Liang et al.,
2021), cone penetration (Beuth, 2012; Ceccato et al., 2016; Martinelli & Galavi, 2021) and
so on. It is also the approach investigated in this thesis.

The numerical analysis of large-deformation dynamic processes in fluid-saturated
porous media is extremely relevant to a number of geotechnical problems, as soil masses
are natural assemblies of different components and frequently considered as porous
media. Therefore, it is quite common, and even necessary in numerical simulations,
to include the interaction/coupling between the porous soil skeleton and pore water
during the large deformation process. Owing to the algorithmic similarities between
MPM and well-studied FEM, MPM seems to be extremely suitable for capturing hydro-
mechanical behaviour in large deformation analysis with the incorporation of a suitable
soil constitutive model.

However, on the one hand this coupling between two phases frequently adds con-
siderable complexities to the numerical implementation, as well as to the analysis of
practical applications, especially when dynamic effects are included. On the other hand,
when introducing MPM to two-phase coupled large deformation analysis, it performs
poorly in the presence of incompressibility constraints when based on low-order spatial
interpolation. This incompressibility constraint can lead to pore pressure instabilities
and an over-stiff response of soil skeleton in fluid-saturated soil media. In addition, most
current available MPM developments for coupled problems are based on explicit time
integration, which is conditionally stable and subjected to the need for extremely small
time steps to fulfill the stability condition in nearly or fully incompressible materials. This
stability requirement greatly prevents the large-scale application of coupled MPMs for
two-phase large deformation simulations.

In this research, the purpose is to develop stabilised MPM approaches for large de-
formation dynamic problems in fluid-saturated geomaterials. Both explicit and fully
implicit coupled MPMs, in conjunction with pore pressure stabilisation techniques and
anti-locking algorithms, are implemented to capture the dynamic hydro-mechanical
behaviour in two-phase large deformation analysis. It is acknowledged that a comprehen-
sive large deformation analysis framework should be able, simultaneously, to (i) solve the
relevant governing equations with respect to the current configuration, and (ii) describe
the possible occurrence of large strains (i.e., significant local variations of shape/size)
using suitable finite strain measures. However, in this study, the proposed stabilised
coupled MPM method does not account for the latter aspect, in that strains are measured
according to the simpler infinitesimal definition. Further extension to a finite strain
formulation will not jeopardise the effectiveness of the proposed approach in terms of
accuracy and/or representation of the stress field.
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1.2. AIMS AND OBJECTIVES

T HE overall aim of this thesis is to develop stabilised coupled MPM approaches for
simulating fully coupled, large deformation, dynamic problems in fluid-infiltrated

porous materials, which can be readily applied to simulate practical and challenging
geotechnical problems involving large deformations. This research progresses from
an explicit stabilised MPM to a fully implicit stabilised MPM, and from poroelastic to
elasto-plastic materials. In detail, the further objectives of this thesis are:

• To gain a better insight into the implementation of the fully coupled governing equa-
tions within the framework of the Generalised Interpolation Material Point (GIMP)
method using both two-field and three-field formulations;

• To develop stabilised schemes for pore pressure recovery and to incorporate anti-
locking algorithms for dealing with nearly incompressible fluid-infiltrated porous geo-
materials;

• To fully understand the difference in numerical implementations using explicit and
fully implicit time integration schemes;

• To validate both explicit and implicit stabilised coupled MPM approaches against
analytical/numerical solutions and evaluate their computational performances through
several numerical examples;

• To apply the proposed coupled GIMP method for the solution of geo-problems span-
ning weak to strong hydro-mechanical coupling and small to large deformations.

1.3. OUTLINE OF THE THESIS

T HE thesis contains 6 main chapters, and the outline for the remaining chapters is:

• Chapter 2: Describes some fundamentals of MPM and reviews the existing MPM
variants relevant to this thesis. This chapter also briefly summarises the equations
governing two-phase, fully coupled, problems from three different types of formulation,
and coupled numerical implementations using MPM are then reviewed and categorized
into different groups.

• Chapter 3: Elaborates an explicit stabilised MPM, based on GIMP with Selective Re-
duced Integration (SRI), for mitigating the numerical oscillations that occur in nearly
incompressible coupled problems. Particular attention is paid to the numerical imple-
mentation based on a single-point two-field velocity (v–w) formulation, the patch reco-
very of pore pressure increments using a Moving Least Squares Approximation (MLSA),
and the extension of the Composite Material Point Method (CMPM) for effective stress
recovery. The computational performance of the proposed explicit GC-SRI-patch me-
thod is verified through analysing various poroelastic consolidation problems, with an
emphasis on the representation of pore pressures in time and space.

• Chapter 4: Presents the implementation of a fully implicit stabilised GIMP-patch me-
thod using a three-field (u–p–U ) form for dynamic problems in two-phase poroelastic
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media. Emphasis is on the verification of its accuracy under different regimes of mate-
rial deformation (small versus large) and dynamic motion (slow versus fast). Special
attention is also devoted to highlighting the computational convenience of implicit
MPM modelling in comparison to the explicit MPM.

• Chapter 5: Extends the implicit GIMP-patch method for large deformation problems
to two-phase elastoplastic geomaterials. The FEM version of the B̄ approach for alle-
viating locking issues caused by the plastic incompressibility constraint is introduced
into the implicit GIMP-patch method, and a detailed numerical implementation of
the implicit B̄ GIMP-patch method is presented. Particular emphasis is placed on (i)
mitigating effective stress oscillations and (ii) solving several two-phase, coupled, large
deformation geotechnical problems incorporating the use of a Mohr-Coulomb strain
softening model.

• Chapter 6: Summarises the key conclusions of this thesis, and outlines some recom-
mendations for future investigation.
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2.1. FUNDAMENTALS OF MPM

T HE Material Point Method (MPM) is a well-developed numerical method, which was
first proposed by Sulsky et al. (1994) for solid mechanics. This method was derived

from the Particle-in-cell (PIC) method (Harlow, 1964), that was originally developed for
solving complex fluid mechanics problems. To overcome the excessive energy dissipation
of the PIC method, Brackbill & Ruppel (1986) and Brackbill et al. (1988) proposed the so-
called Fluid Implicit Particle (FLIP) method, with particles carrying all physical properties
for the numerical calculation. The FLIP method was later modified and reformulated for
numerical simulation in solid mechanics by Sulsky et al. (1994), and then the method
became known as the MPM for applications in upcutting and upsetting and Taylor impact
problems (Sulsky & Schreyer, 1996).

As a variant of traditional FEM, the MPM is viewed as a hybrid Eulerian–Lagrangian
approach, as it adopts two different discretisations (as shown in Figure 2.1): a fixed Eule-
rian background grid and moving Lagrangian particles. As an example, Figure 2.1 displays
the typical MPM discretisation of a representative problem with a reference configuration
domainΩ0 at time t and a current configuration domainΩ at time t +∆t . Note that the
background grid is used solely for solving the governing equations and remains unchan-
ged at the beginning of each computational step, while the MPs carry all state variables
and move through the background mesh to track the configuration of the problem do-
main. In this way, the MPM can effectively avoid the treatment of convection terms in
the Eulerian formulation and excessive mesh distortion in the Lagrangian formulation
(Sulsky et al., 1994), which is extremely suitable for large deformation analysis.

Domain boundary

Material point

Reference configuration

Current configuration

Ω

Ω0

Background mesh

Figure 2.1: MPM discretisation of a representative problem domain

For a more detailed description, Figure 2.2 gives a representative computational cycle
of the standard MPM for a considered time step increment ∆t . Slightly different from
the computational process of traditional FEM, the computational cycle of MPM includes
the following main steps (Sulsky et al., 1994; Soga et al., 2016; Wang, 2017): (a) mapping
information from material points to grid nodes; (b) solving the governing equations at the
grid nodes using UL-FEM; (c) upgrading the state variables of the MPs using the updated
nodal variables and resetting the background grid.
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(a) Mapping variables from MPs to nodes

(b) Solving governing equations at nodes and updating grid (c) Updating state variables from nodes to MPs and resetting
background grid

Figure 2.2: Illustration of the computational cycle of standard MPM for a time step increment ∆t

2.2. EXISTING MPM VARIANTS

T HIS section reviews the existing MPM variants that are available in literature and
briefly describes their main differences with standard MPM. Particular emphasis is

placed upon the recent developments in improving the accuracy of original MPM.

For standard MPM, a linear shape function, which is exactly the same as that adopted
in the linear FEM, has been used by choosing the Dirac delta function as a particle
characteristic function χmp (x) (Sulsky et al., 1994). Figure 2.3 gives the basic shape
function Ni (x) and its gradient ∇Ni (x) for standard MPM in the 1D case. Note that this
shape function is typically C 0 continuous, which leads to a discontinuous gradient at a
given node (for example at node i shown in Figure 2.3b). This discontinuity in the shape
function gradient can cause the so-called cell crossing issue (Bardenhagen & Kober, 2004)
as MPs move from one cell to another. As a consequence, this cell crossing issue can
lead to huge oscillation in the internal force calculation, which was recently studied by
González Acosta (2020).

To remedy the cell crossing issue, Bardenhagen & Kober (2004) proposed the Genera-
lized Interpolation Material Point (GIMP) Method by choosing a particle characteristic
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i -1 i i + 1

Elem-1 Elem-2

(a) MPM shape function Ni (x)

i -1 i i + 1

Elem-1 Elem-2 

(b) MPM shape function gradient ∇Ni (x)

Figure 2.3: Standard MPM shape function Ni (x) and its gradient ∇Ni (x) in 1D case

function (of finite extent), which defines contiguous MPs and a step function as follows:

χmp (x) =
{

1, if x ∈Ωmp

0, otherwise
(2.1)

where χmp is the “particle characteristic function”, andΩmp is the support domain of the
MP and assumed to be of size 2lp in each dimension. The values of 2lp can be computed
by dividing the grid cell size by the initial number of MPs along the considered direction.

Following this algorithm, the GIMP shape function is constructed by integrating linear
FEM shape functions Ni (x) over the MP support domainΩp (as shown in Figure 2.4). In
one dimension, the GIMP shape function Si ,mp and its gradient ∇Si ,mp are calculated as

Si ,mp = 1

Vmp

∫
Ωmp∩Ω

χmp (x)Ni (x)d x (2.2)

∇Si ,mp = 1

Vmp

∫
Ωmp∩Ω

χmp (x)∇Ni (x)d x (2.3)

over the problem domain Ω, where subscripts i and mp denote the i th grid node and
mp th MP, respectively. Figure 2.4 explicitly displays the GIMP shape function Si ,mp (x)
and its gradient ∇Si ,mp (x) in the 1D case. More specific equations and details are given
in Bardenhagen & Kober (2004) and are therefore not included in this thesis.

2lp
i -1 i i + 1

(a) GIMP shape function Si ,mp (x)

2lp

i-1 i i+1

(b) GIMP shape function gradient ∇Si ,mp (x)

Figure 2.4: GIMP shape function Si ,mp (x) and its gradient ∇Si ,mp (x) in the 1D case
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As illustrated in Figure 2.4b, the gradient of the GIMP shape function is C 1 continuous,
i.e., without discontinuity even at the cell edges. This gradual change in the shape function
gradient is found to greatly alleviate the cell crossing error and improve the numerical
performance of MPM (Sulsky et al., 1994). Note that, for the GIMP, it is assumed that the
MP support domain in 2D problems always remains as a rectangle and aligns with the
grid even for large deformation problems. However, this assumption is not always the
case, particularly for problem domains that undergo extremely large shear deformations
or large rotations. For the former case, the support domain of the MP may not remain as
a rectangle but become a quadrilateral during the shear deformation; whereas the MP
support domain can become misaligned with the background grid for the latter case. This
specific type of MP support domain may lead to the GIMP suffering from low accuracy
under extremely large deformation patterns.

To address the limitation of the GIMP for simulating problems with large shear de-
formation or rotation, Sadeghirad et al. (2011, 2013) proposed the convected particle
domain interpolation (CPDI) method, including the CPDI1 and CPDI2. In CPDI1 the MP
support domains are tracked as parallelograms in 2D analyses. As an enhanced extension
of CPDI1, the MP support domains in CPDI2 are tracked as quadrilaterals in the 2D case.
The CPDI2 is proven to remove the overlaps and gaps between the MP support domains,
and to be more accurate and efficient. As an example, only the MP support domain
updating scheme in CPDI2 is shown in Figure 2.5. More details about CPDI1 and CPDI2
can be found in Sadeghirad et al. (2011, 2013) and Nguyen et al. (2017).

Figure 2.5: MP support domain updating scheme (as linear quadrilaterals) in CPDI2 (Sadeghirad et al., 2013)

Another available method to solve the cell crossing issue is the combination of MPM
with B-splines basis functions, which is known as BSMPM (Steffen et al., 2008). This
method has been further studied by other researchers (Stomakhin et al., 2014; Tielen et al.,
2017; Gan et al., 2018; Bing et al., 2019). Figure 2.6 shows the B-spline shape functions
with modified boundary adopted in Steffen et al. (2008). Similar to the shape functions
of GIMP, these B-spline shape functions are at least C 1 continuous and have proven to
significantly reduce the typical cell crossing error that exists in the standard MPM.

Instead of constructing a new basic shape function, Zhang et al. (2011) proposed the
dual domain material point (DDMP) method by using identical shape functions as in
standard MPM Ni (x) (as shown in Figure 2.3a), but replacing the stepped shape function
gradient ∇S with a modified ∇S (DDMP) (as shown in Figure 2.7). Figure 2.7 gives the
comparison between the shape function gradient of the DDMP, standard MPM, and GIMP
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(a) Quadratic B-Spine (k = 3)

(b) Cubic B-Spine (k = 4)

Figure 2.6: B-spline shape functions with modified boundary in 1D case adopted in Steffen et al. (2008)

methods. The modified shape function gradient uses an enlarged influence domain
relative to the standard MPM and is proven to significantly improve the cell crossing error.

1

0.5

0

-0.5

-1

 i  - 2  i  - 1  i  i  + 1  i  + 2

S (MPM)

S (GIMP)

S (DDMP)

Figure 2.7: Comparison between shape function gradients of DDMP, standard MPM, and GIMP methods

Apart from the above mentioned MPM advances, several other improvements, such
as weighted least squares MPM (Wallstedt & Guilkey, 2011), Moving Least Square MPM
(Edwards & Bridson, 2012), and improved MPM (Sulsky & Gong, 2016) have been proposed
in order to improve both the accuracy and convergence of MPM.

Low-order shape functions are often preferred in MPM, so as to avoid the numerical
divergence possibly caused by the negative parts of higher-order polynomial shape func-
tions. The shape functions play an especially important role in MPM, as quadrature takes
place directly using the material point locations and often grid cells are only partially
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filled, so material points far away from the node (which usually take the negative part
of the shape function) can strongly influence the quadrature. Alternatively, the use of
higher-order interpolation functions, such as B-spline functions, which do not have the
negative parts that polynomial interpolation functions have, have also been considered.
However, 2D and 3D implementations using B-spline functions have not been well de-
veloped; meanwhile, the use of B-spline functions can lead to a significant increase in
computational costs, especially for two-phase coupled large deformation problems. For
this reason, this thesis focuses on the improvement of low-order coupled GIMP.

2.3. HYDRO-MECHANICAL COUPLED ANALYSIS USING MPM
2.3.1. TWO-PHASE COUPLED FORMULATIONS
In what follows, soil-like fully saturated porous media are considered. The density of the
soil–water mixture ρ is obtained from the individual phase densities as ρ = (1−n)ρs +
nρw , where subscripts w and s respectively denote water and soil phases, and n is the
volume porosity. Based on the well-established effective stress principle, the behaviour of
the solid skeleton is assumed to be governed by the effective stress σ′, defined, in vector
notation, as σ′ = σ+mp, where σ is the total stress, p is the pore water pressure, and
m is the vector representation of the Kronecker tensor. Bold symbols indicate matrices
and vectors; positive values are used for tensile total/effective stress components and
compressive pore pressures.

Following the previous work of Zienkiewicz and co-workers (Zienkiewicz et al., 1980,
1999), when modeling fully coupled hydro-mechanical problems, three main types of
formulation can be identified according to different adopted unknowns. The formulations
that govern the motion of a fully saturated porous medium are written as follows:

1. Three-field u–w–p form

STσ−ρü −ρw
(
ẇ +w∇Tw

)+ρb = 0 (2.4)

−∇p −R −ρw ü −ρw
(
ẇ +w∇Tw

)
/n +ρw b = 0 (2.5)

∇Tw +mε̇+ ṗ

Q
+n

ρ̇w

ρw
+ ṡ0 = 0 (2.6)

where S is a differential divergence operator, u is the absolute displacement of the
soil skeleton, w is the average (Darcy) velocity of the water phase relative to the
solid phase, b is an external body force, R is the drag force exchanged by the soil
skeleton and the pore water due to their relative motions, dots are used to indicate
time differentiation, ε̇ is the rate of strain, Q is a stiffness parameter defined as
1/Q = n/Kw +(1−n)/Ks , Kw and Ks are the bulk moduli of the water phase and soil
particles, respectively, and ṡ0 is the rate of soil volume expansion due to thermal
changes.

2. Two-field u–p form

When neglecting the apparently small terms in the three-field formulation, namely
the relative water acceleration ẇ and the associated convective term w∇Tw in the
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governing equations, the governing equations become the simplified two-field u–p
form:

STσ−ρü +ρb = 0 (2.7)

∇Tk
(−∇p −ρw ü +ρw b

)+mε̇+ ṗ

Q
+n

ρ̇w

ρw
+ ṡ0 = 0 (2.8)

where k is the permeability of the soil and its relationship with the drag force R is
defined by kR = w .

3. Two-phase u–U form

When neglecting only the convective term in the governing equation of the three-
field formulation and using the total displacement U to define the motion of the
water phase, the three-field formulation reduces to the two-phase u–U form, which
is written as:

STσ+Q (1−n)∇(∇Tu
)+Qn∇(∇TU

)− (1−n)ρü −ρw nÜ +ρb = 0 (2.9)

(1−n)Q∇(∇Tu
)+nQ∇(∇TU

)−nk−1 (U −u)−ρwU +ρw b = 0 (2.10)

In the above equations, the total water displacement U is defined by U = u +ur ,
where ur is the displacement of the water phase relative to the solid phase with
u̇r = w/n.

For a better comparison, Table 2.1 summarises the basic unknowns and treatment
regarding the relative water acceleration for three main types of governing equations in
water-saturated porous media. Only a very simple introduction to these three formu-
lations are provided here. More details can be found in Zienkiewicz et al. (1980, 1999),
and the adopted coupled formulations within the framework of MPM are also briefly
discussed in the following chapters for the completeness of description.

Table 2.1: Overview of three main types of coupled governing equations in water-saturated porous media

Governing equations Basic unknowns
Relative water acceleration terms

ẇ w∇Tw
Three-field u–w–p form u w p Included Included

Two-field u–p form u − p Neglected Neglected
Two-field u–U form u U − Included Neglected

2.3.2. COUPLED NUMERICAL IMPLEMENTATION USING MPM
In common with FEM poromechanical formulations (Zienkiewicz et al., 1980, 1999),
recent developments in MPM formulations for coupled problems can be categorised
with respect to: (i) different types of coupled formulation; (ii) different layers of MPs; (iii)
different time integration algorithms.



2.3. HYDRO-MECHANICAL COUPLED ANALYSIS USING MPM

2

17

• Using different types of coupled formulation

The MPM solution of dynamic two-phase problems has most often been tackled using
one of two alternative mathematical formulations: (i) the u–p formulation, or (ii) the v–w
formulation in which the velocities of the solid (v) and fluid (w) phases are considered
(in essence equivalent to the u–U form described by Zienkiewicz et al. (1980, 1999)). The
main difference between these two options lies in whether or not the relative acceleration
of the fluid with respect to the solid is taken into account – in fact, the relative acceleration
of the pore fluid is neglected in the u–p formulation. Although the u–p formulation
is known to be inaccurate for fast dynamic phenomena, a number of coupled MPM
implementations have been developed based on this approach (Zhang et al., 2009; Higo
et al., 2010; Zabala & Alonso, 2011; Abe et al., 2013; Zheng et al., 2013; Higo et al., 2015;
Zhao & Choo, 2020) due to its simplicity in numerical implementation. Conversely, the
accelerations of both the solid and fluid phases are exactly represented in formulations
of the v–w type, which are therefore applicable to any dynamic regime. In the light of
this consideration, several MPM implementations have been built on the v–w approach
(Zhang et al., 2007; Jassim et al., 2013; Bandara & Soga, 2015; Soga et al., 2015; Yerro et al.,
2015; Yerro, 2015; Ceccato et al., 2016; Liu et al., 2017; Yerro et al., 2017; González Acosta
et al., 2019).

• Using different layers of MPs

In the context of coupled MPM, both single-layer and two-layer approaches have
been explored, i.e., the use of one or two sets of material points (MPs) to describe the
response of distinct phases (Soga et al., 2015).

For the single-layer approach, as illustrated in Figure 2.8, each specific MP carries all
information for both the soil and water phases. When using a single-layer of MPs, the
position of an MP is updated following the movement of the solid phase. Even though this
approach only guarantees mass conservation of the solid phase, the lower computational
costs that are associated with the single-layer approach have motivated its most frequent
use in previous coupled MPM research (Zhang et al., 2009; Zabala & Alonso, 2011; Jassim
et al., 2013; Zheng et al., 2013; Ceccato et al., 2016; Lei et al., 2020; Zhao & Choo, 2020).

Conversely, as illustrated in Figure 2.9, two sets of MPs, i.e., a soil layer and a water
layer, have also been used in coupled MPM (Zhang et al., 2007; Abe et al., 2013; Bandara &
Soga, 2015; Liu et al., 2017; Tran & Sołowski, 2019; Kularathna et al., 2021). In the two-layer
approach, these two sets of MPs are respectively used for tracking the motion of the
solid and water phases. As two sets of MPs are used, it can easily guarantee the mass
conservation of both phases and capture the interaction between them. Nevertheless,
the presence of two layers of MPs leads to a significant increase in computational costs,
which limits the practical application of coupled MPM especially for large deformation
analyses in nearly or fully incompressible materials. Furthermore, special treatments
are required for modeling interface regions (i.e., the interface between free water and
soil–water mixture) in the two-layer approach (Soga et al., 2015).
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Figure 2.8: Coupled MPM implementation using single set of MPs to describe the response of both phases (Soga
et al., 2015)

Figure 2.9: Coupled MPM implementation using two sets of MPs to describe the response of both phases (Soga
et al., 2015)

• Using different time integration algorithms

For coupled MPM, the time integration algorithm is also a key factor for large defor-
mation analysis, as it can affect both the overall stability and efficiency of the numerical
scheme. However, most previous implementations of the coupled MPM have so far been
developed using explicit, conditionally stable time integration (Zhang et al., 2007, 2009;
Zabala & Alonso, 2011; Abe et al., 2013; Jassim et al., 2013; Zheng et al., 2013; Bandara &
Soga, 2015; Ceccato et al., 2016; Liu et al., 2017; Tran & Sołowski, 2019; Lei et al., 2020). To
allow the use of larger time steps and more convenient stability properties, semi-implicit
(Kularathna et al., 2021) and fully implicit (Zhao & Choo, 2020) MPMs have recently begun
to emerge in the literature.

For a better overview, Table 2.2 shows a brief summary of coupled MPM formulations
for fully saturated porous media.
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Table 2.2: Overview of existing MPM formulations for large-deformation problems in fully saturated porous
media

Reference Formulation MP layering Time integration algorithm
Zhang et al. (2007) u–U form Two-layers Explicit
Zhang et al. (2009) u–p form Single-layer Explicit

Zabala & Alonso (2011) u–p form Single-layer Explicit
Abe et al. (2013) u–p form Two-layers Explicit

Jassim et al. (2013) v–w form Single-layer Explicit
Zheng et al. (2013) u–p form Single-layer Explicit

Bandara & Soga (2015) v–w form Two-layers Explicit
Ceccato et al. (2016) v–w form Single-layer Explicit

Liu et al. (2017) v–w form Two-layers Explicit
Wang et al. (2018) v–w form Single-layers Explicit

Tran & Sołowski (2019) v–w form Two-layers Explicit
Lei et al. (2020) v–w form Single-layer Explicit

Zhao & Choo (2020) u–p form Single-layer Implicit
Kularathna et al. (2021) u–U form Single-layer Semi-implicit

2.3.3. NUMERICAL INCOMPRESSIBILITY CONSTRAINTS IN COUPLED MPM
Similarly to the case of coupled Finite Element Methods (FEMs), also MPMs perform
poorly in the presence of incompressibility constraints when built on low-order spatial
interpolation. With regard to fluid-saturated geomaterials, incompressible behaviour may
be associated with hindered pore water drainage and/or an isochoric (or nearly isochoric)
response of the solid skeleton (Bandara & Soga, 2015): while the former may introduce
well-known instabilities in the simulated pore pressure field, the latter may give rise to
an excessively stiff response of the system (volumetric locking) – it is worth recalling that
constitutive models for geomaterials produce only limited volumetric strain increments
when substantial plasticity is mobilised. However, most existing literature on coupled
MPM formulations concerns two-phase materials with compressible components. By
considering water to be more compressible, spurious oscillations can be reduced. In
addition, unsaturated conditions (such as in Wang et al. (2018)) are implicitly much
more compressible, and therefore result in less oscillations. Nonetheless, a large number
of previous studies have not explicitly mentioned the (near) incompressbility induced
oscillations, and only a few of them have dealt with the (near) incompressbility in coupled
MPM.

To suppress pore pressure instabilities in low-order coupled MPMs, several stabili-
sation approaches have been proposed, including fractional time stepping (Kularathna
et al., 2021), polynomial pressure projection (Zhao & Choo, 2020), and reduced integration
(Abe et al., 2013; Bandara & Soga, 2015; Wang et al., 2018), and volumetric strain averaging
(Jassim et al., 2013; Ceccato et al., 2016; Lei et al., 2020). On the other hand, locking-related
inaccuracies can be mitigated in two-phase coupled problems by means of techniques
initially developed for one-phase media. In the context of one-phase MPM modelling,
solutions based, e.g., on mixed variational principles (Mast et al., 2012; Iaconeta et al.,
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2019), fractional time stepping (Kularathna & Soga, 2017; Zhang et al., 2017), and F and B
methods (Coombs et al., 2018; Bisht et al., 2021) have already proven successful against
locking in one-phase large-deformation problems. In very few instances, such locking
remedies have also been implemented in coupled (standard) MPMs (Jassim et al., 2013;
Bandara & Soga, 2015), but exclusively in combination with explicit time integration.
Most recently, Kularathna et al. (2021) proposed a stable time-stepping scheme for the
MPM modelling of fluid-saturated porous media within the framework of the GIMP.

2.4. CONCLUDING REMARKS

V ARIOUS studies using MPM have been performed in previous research to study the
hydro-mechanical behaviour of large deformation problems in two-phase porous

media such as soils. Most of these studies have been carried out using explicit time
integration (conditionally stable) or considering a compressible porous medium (without
explicitly stating the algorithm for dealing with the incompressibility constraints). A brief
review of coupled analysis using MPM is summarised as follows:

• MPM has shown a promising capacity for modeling large deformation processes
in the geotecinical field, owing to its significant advantages in large deformation
simulation. Different advances have been reported, such as GIMP, CPDI, DDMP,
BSMPM, and so on, with the aim of improving the performance and accuracy of
standard MPM, and some of them have been implemented for two-phase coupled
analysis.

• Low-order MPMs are often preferred and investigated in large deformation analysis,
especially in fully saturated coupled analysis due to its simplicity in implementation
and lower computational cost. In addition, most recent coupled MPM studies have
been performed based on the v–w formulation, which includes soil–water relative
acceleration terms, to address dynamic applications.

• MPM performs poorly in the presence of incompressibility constraints when built
on low-order spatial interpolation (such as in standard MPM and GIMP). These
incompressibility constraints can lead to pore pressure instabilities and an over-stiff
response of the soil skeleton in fluid-saturated soils. Limited coupled MPM studies
have been reported to fully address the numerical issues caused by incompressibi-
lity constraints.

• Most currently available MPM developments for coupled problems still build on
explicit time integration, which is conditionally stable and subjected to extremely
small time steps to fulfill stability conditions for nearly or fully incompressible
materials.
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3
AN EXPLICIT STABILISED MPM FOR

HYDROMECHANICAL PROBLEMS IN

TWO-PHASE POROUS MEDIA

This chapter presents a single-point Material Point Method (MPM) for large deformation
problems in two-phase porous media such as soils. Many MPM formulations are known to
produce numerical oscillations and inaccuracies in the simulated results, largely due to
numerical integration and stress recovery performed at non-ideal locations, cell crossing
errors, and mass moving from one background grid cell to another. The same drawbacks
lead to even worse consequences in the presence of an interstitial fluid phase, especially
when undrained/incompressible conditions are approached. In this study, an explicit
stabilised MPM, based on the Generalised Interpolation Material Point (GIMP) method with
Selective Reduced Integration (SRI), is proposed to mitigate typical numerical oscillations
in (nearly) incompressible coupled problems. It includes two additional features to improve
stress and pore pressure recovery, namely (i) patch recovery of pore pressure increments based
on a Moving Least Squares Approximation, and (ii) two-phase extension of the Composite
Material Point Method for effective stress recovery. The combination of components leads
to a new method named GC-SRI-patch. After a detailed description of the approach, its
effectiveness is verified through analysing various consolidation problems, with emphasis
on the representation of pore pressures in time and space.

Parts of this chapter have been published in Zheng et al. (2021).
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3.1. INTRODUCTION

T HE core of MPM relates to the use of a background mesh to solve (the discrete version
of) the relevant governing equations, while MPs serve as quadrature points and can

freely move within the domain set by the mesh, see e.g., Sulsky et al. (1994, 1995). Low-
order shape functions are often preferred in MPM, so as to avoid the numerical divergence
possibly caused by the negative parts of higher-order polynomial shape functions. These
play an especially important role in MPM, as quadrature takes place directly using the
material point locations and often grid cells are only partially filled, so material points
far away from the node (which usually take the negative part of the shape function) can
strongly influence the quadrature. When applied to coupled hydromechanical problems,
however, low-order MPM may suffer from numerical instabilities, typically in the vicinity
of the so-called undrained-incompressible limit. Unstable/inaccurate results will nor-
mally be obtained under such conditions, due to MPM’s low-order interpolation functions
violating well-known inf-sup requirements, in a way similar to that widely observed for
finite element calculations (Brezzi & Bathe, 1990; Bathe, 2001). Alternatively, the use of
higher-order interpolation functions, such as B-spline functions, which do not have the
negative parts that polynomial interpolation functions have, has also been considered (St-
effen et al., 2008; Tielen et al., 2017; Gan et al., 2018; Tran et al., 2019). However, resorting
to higher-order interpolation directly leads to a larger number of material points (MPs)
(Zhao & Choo, 2020) and 2D or 3D implementations have not been developed. For this
reason, the present work focuses on the improvement of low-order, coupled MPM.

Most existing literature on coupled MPM formulations concerns two-phase materials
with compressible components. By considering water to be more compressible, spurious
oscillations can be reduced. In addition, unsaturated conditions (such as in Wang et al.
(2018)) implicitly are much more compressible, and therefore result in less oscillations.
Nonetheless, a few studies dealing with (nearly) incompressible problems and inf-sup-
related instabilities have already been published. For example, a fractional time stepping
method combined within an enhanced volumetric strain formulation was proposed
in Jassim et al. (2013) to mitigate pathological locking and spurious oscillations in the
pore pressure field. However, this time stepping method is not equally effective for all
possible drainage conditions, nor straightforward to implement into existing coupled
MPM codes. A stabilised implicit MPM has been recently developed by Zhao & Choo
(2020), in which the mass balance equation is augmented with a stabilising term to
make equal-order mixed interpolation stable under undrained conditions. Such a term
is derived using polynomial pressure projection in a way specific to the adopted time
integration algorithm.

In standard MPM, integration and recovery of strains, stresses and pore pressures
always occurs at the MPs. Reducing the number of integration points, and fixing the loca-
tion within individual grid cells (i.e. at so-called Gauss points as used in finite elements)
can be used for stabilisation purposes. The idea of benefiting in coupled-MPM from
reduced integration has been previously introduced, for instance, by Abe et al. (2013),
Bandara & Soga (2015), and Wang et al. (2018). Accordingly, pore pressures are evaluated
at the central Gauss points (GPs) of the background mesh (instead of at MPs), which has
been found to alleviate the aforementioned pore pressure instabilities. Additionally, as
reduced integration is exclusively performed to evaluate pore pressure variations, compu-
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ted results appear not to suffer from spurious hourglass modes (Chen et al., 2018). This
approach can be readily implemented into existing explicit MPM codes and is further
pursued in the present study.

It emerges from previous literature that pore pressures are most usually recovered from
GPs to MPs by assuming uniform pore pressure increments within each grid cell of the
background mesh. This determines the direct influence of grid cell size on MPM solutions,
and can sometimes lead to pore pressure discontinuities (at inter-cell boundaries) and
inaccuracies (at MPs). When MPs cross such grid cell edges, it can cause a sudden change
in pore pressure at the MPs, and, as a consequence, spurious variations of nodal internal
forces and stress oscillations, especially when a coarse background mesh is adopted. In
this respect, some authors tested reduced integration in the Generalised Interpolation
Material Point (GIMP) method (Bardenhagen & Kober, 2004) as a way to alleviate the
stress oscillations related to cell-crossing (Abe et al., 2013). More recently, GIMP has also
been introduced in the implicit MPM to mitigate cell-crossing inaccuracies in two-phase
problems built on the simplified u −p formulation – see the aforementioned work (Zhao
& Choo, 2020).

This chapter proposes an explicit stabilised MPM, named Generalised Interpolation
Material Point method with Selective Reduced Integration, based on the patch recovery
of pore pressure increments (GC-SRI-patch) and a complete dynamic formulation of the
v −w type. The GIMP method (Bardenhagen & Kober, 2004) contributes to reducing
(stress) oscillations promoted by grid crossing errors. To avert spurious pore pressures,
selective reduced integration (SRI) has also been introduced for pore pressure recovery
at central GPs. Patch recovery based on a Moving Least Squares Approximation (MLSA)
(similar to the moving least squares technique used in Tran et al. (2020) for improved
moving least square shape function construction) is proposed to map calculated pore
pressure increments from central GPs to MPs in order to increase the accuracy of the
results. As for the evaluation of effective stresses, the same approach adopted in the recent
(one-phase) Composite Material Point Method (CMPM) (González Acosta et al., 2017) is
herein extended to the proposed GC-SRI-patch to enhance stress recovery. This work is
limited to elastic constitutive behaviour of the solid skeleton, and focuses on exploring the
effectiveness of (the ingredients combined in) the proposed method. Further investigation
is necessary to guarantee stable/accurate solutions in the presence of material plasticity
(Coombs et al., 2018), as well as to explain fundamentally why the GC-SRI-patch approach
is beneficial against inf-sup related instabilities.

The content of the chapter is organised as follows. After providing the governing
hydromechanical equations (Section 3.2), the technical details regarding the numerical
formulation and implementation of the proposed GC-SRI-patch method are described in
Section 3.3. Section 3.4 presents 1D/2D numerical examples for the verification of the
proposed GC-SRI-patch method.

3.2. COUPLED FORMULATION FOR TWO-PHASE POROUS MEDIA

I N line with most MPM literature, this work builds on a velocity formulation of the
governing hydromechanical equations (Jassim et al., 2013; Wang et al., 2018; González

Acosta et al., 2019). In particular, a fully dynamic formulation is used, in which the total
velocities of the soil skeleton and pore water, vvv s and vvv w respectively, are used as primary
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variables. However, it should be noted that the relative discharge (Darcy) velocity www may
be used in lieu of vvv w , as explained, e.g., by Zienkiewicz et al. (1999).

3.2.1. GOVERNING EQUATIONS
Momentum balance for the whole two-phase mixture is fulfilled if

STσσσ− (1−n)ρs v̇vv s −nρw v̇vv w +ρbbb =000 (3.1)

where SSS is the differential operator defined for 2D problems (Zienkiewicz et al., 1999):

SSS =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 (3.2)

while vvv s and vvv w are the total (true) velocities of the soil and pore water, respectively, bbb
is a body acceleration term (e.g., gravity acceleration), and dots above symbols indicate
time differentiation. It is also worth noting that the relative discharge velocity www may be
obtained from the individual true velocities as www = n(vvv w −vvv s ).

A similar equilibrium equation can be formulated for the water phase only:

−∇pw −RRR −ρw v̇vv w +ρwbbb =000 (3.3)

where RRR represents the drag force exchanged by the solid and fluid phases during water
seepage, which is proportional to the relative discharge velocity www according to Darcy’s
law:

RRR = nρw g

k
(vvv w −vvv s ) (3.4)

where the hydraulic conductivity k is here assumed to be isotropic for simplicity, and g is
the gravitational acceleration.

For mass balance, the following equations ensure the conservation of solid and water
masses – under the assumptions of uniform densities and porosity, and incompressible
soil grains:

ṅ = (1−n)∇·vvv s (3.5)

ρw ṅ +nρ̇w +nρw∇·vvv w = 0 (3.6)

Density variations in a barotropic fluid obey the following relationship:

ρ̇w

ρw
=− ṗw

Kw
(3.7)

where Kw is the bulk modulus of the fluid. Substituting Eq. (3.5) into Eq. (3.6) and
combining with Eq. (3.7) allows the pore pressure rate to be obtained:

ṗw = Kw

n
[(1−n)∇·vvv s +n∇·vvv w ] (3.8)

The constitutive relationship between strain (ε̇̇ε̇ε) and effective stress (σ̇̇σ̇σ′) rates can be
expressed as (Zienkiewicz et al., 1999)

σ̇̇σ̇σ′ =DDD(ε̇̇ε̇ε− ε̇̇ε̇ε0) (3.9)
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where DDD is the tangent stiffness matrix of the solid skeleton, and ε̇̇ε̇ε0 is a strain rate term
related to, e.g., thermal effects. Since emphasis is hereafter on the development and
verification of the proposed GC-SRI-patch method, (i) isotropic linear elastic behaviour
of the solid phase and (ii) linearised/infinitesimal definition of strain rates are exclusively
considered. Fully general modelling of large deformations can be achieved by adop-
ting well-established finite strain measures (Holzapfel, 2000), though with no expected
detriment to the hydromechanical performance of the proposed method.

3.2.2. BOUNDARY AND INITIAL CONDITIONS
Considering a fully saturated porous domain Ω, its boundary surface Γ can be de-
composed into subsurfaces on which Dirichlet and/or Neumann boundary conditions
are imposed. Surface decomposition should be such that Γ = Γu ∪Γτ = Γp ∪Γw and
Γu ∩Γτ = Γp ∩Γw =;, so as to enable the enforcement of relevant conditions on the solid
and water velocities:

vvv s (xxx, t ) = ṽvv s (t ) on Γu(t) (3.10)

vvv w (xxx, t ) = ṽvv w (t ) on Γw(t) (3.11)

as well as on the (total) surface traction and water pressure:

σσσ(xxx, t ) ·GGG = τ̃ττ(t ) on Γτ(t) (3.12)

mmmpw (xxx, t ) ·GGG = p̃ppw (t ) on Γp(t) (3.13)

In Eqs. (3.12) – (3.13), GGG is a matrix containing components of the unit vector normal to
the boundary surface Γ (Zienkiewicz et al., 1999), while ṽvv s (t), ṽvv w (t), τ̃ττ(t) and p̃ppw (t) are
prescribed boundary values of the solid and water velocities, surface traction and pore
pressure, respectively.

The full set of initial conditions are

vvvα(xxx,0) = vvvα0(xxx) (α= w, s) (3.14)

σσσ(xxx,0) =σσσ0(xxx) and pw (xxx,0) = pw0(xxx) (3.15)

in which α equals s or w to indicate either the solid or water phase.

3.2.3. INTEGRAL WEAK FORMULATION
Standard manipulation of the governing equations and boundary conditions allows the
following integral/weak version of the momentum balance equations, Eqs. (3.1) and (3.3),
to be obtained (Zienkiewicz et al., 1999):∫

Ω
δvvvT · (∇·σσσ)dΩ−

∫
Ω
δvvvT · (1−n)ρsv̇vv sdΩ−∫

Ω
δvvvT ·nρw v̇vv w dΩ+

∫
Ω
δvvvT ·ρbbbdΩ+

∫
Γτ

δvvvT · τ̃ττdΓτ = 0
(3.16)

−
∫
Ω
δvvvT ·∇pw dΩ−

∫
Ω
δvvvT · nρwg

k
(vvvw −vvv s)dΩ−∫

Ω
δvvvT ·ρw v̇vv w dΩ+

∫
Ω
δvvvT ·ρwbbbdΩ+

∫
Γp

δvvvT · p̃ppwdΓp = 0
(3.17)

where δvvv is a vector of suitable test functions.
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3.3. THE GC-SRI-PATCH METHOD: FORMULATION AND IMPLE-
MENTATION

T HIS section provides technical details regarding the formulation and implementation
of the proposed GC-SRI-patch method. Emphasis is on the combined application

of lessons learned from previous studies, with a view to mitigating the deficiencies of
standard MPM with respect to cell crossing errors, pore pressure instabilities, and nume-
rical quadrature and stress/pore pressure recovery performed at non-ideal locations.

3.3.1. SPATIAL DISCRETISATION
Primary unknowns in the adopted velocity formulation (Jassim et al., 2013; González
Acosta et al., 2019) are the velocities of the solid (vvv s ) and water (vvv w ) phases. The same
shape functions are used to approximate the velocities of both phases, as well as the test
function vector δvvv :

vvvα =NNN (xxx)v̂vvα δvvv =NNN (xxx)δv̂vv (α= w, s) (3.18)

where v̂vvα and δv̂vv define vectors of nodal values. In regular MPM, NNN (xxx) contains linear
shape functions of the same kind as those used in FEM. It is known that regular MPM may
suffer from stress oscillations when MPs cross grid cell boundaries due to discontinuous
shape function gradients. GIMP was thus proposed (Bardenhagen & Kober, 2004) to
alleviate such oscillations, with shape functions Si (x) constructed by integrating linear
FEM shape functions Ni (x) over the MP support domainΩp.

After substituting the approximation (Eq. (3.18)) using GIMP shape functions SSS(xxx)
into Eqs. (3.16) and (3.17), the discrete versions of Eqs. (3.1) and (3.3) are:

MMM s
˙̂vvv s =−MMM w

˙̂vvv w +FFF tr ac
m +FFF bod y

m −FFF i nt
m (3.19)

MMM w
˙̂vvv w =FFF tr ac

w +FFF g r av
w −FFF i nt

w −FFF dr ag
w (3.20)

where MMM s , MMM w , and MMM w are global nodal mass matrices which are diagonalised through
“mass lumping- see, e.g., Kafaji (2013). In addition to s and w, the subscript m is used to
denote “soil-water mixture". The superscripts tr ac, bod y , i nt , and dr ag denote global
force terms associated with surface tractions, body forces, internal forces and soil–water
drag, respectively.

The global mass matrices in Eqs. (3.19) and (3.20) are obtained by assembling the
following local mass matrices associated with individual grid cells:

mmmw,i =
Nmp∑

mp=1
SSST

i (xxxmp )mw,mpSSSi (xxxmp ) =
Nmp∑

mp=1
SSST

i (xxxmp )ρw,mpVmpSSSi (xxxmp ) (3.21)

mmmw,i =
Nmp∑

mp=1
SSST

i (xxxmp )nmp mw,mpSSSi (xxxmp ) (3.22)

mmms,i =
Nmp∑

mp=1
SSST

i (xxxmp )(1−nmp )ms,mpSSSi (xxxmp ) (3.23)
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where subscript i defines the i th grid cell node, and Nmp is the number of MPs in the grid
cell whose spatial coordinates, mass, volume, density and porosity are denoted by xxxmp ,
mα,mp , Vmp , ρα,mp , and nmp , respectively (with α = s, w). The remaining force terms are
obtained as follows:

FFF tr ac
w,i =

Nbmp∑
mp=1

SSST
i (xxxmp )mmmp̃w,bmp (3.24)

FFF tr ac
m,i =

Nbmp∑
mp=1

SSST
i (xxxmp )τ̃ττm,bmp (3.25)

FFF bod y
w,i =

Nmp∑
mp=1

SSST
i (xxxmp )mw,mpbbb (3.26)

FFF bod y
m,i =

Nmp∑
mp=1

SSST
i (xxxmp )mm,mpbbb (3.27)

FFF i nt
w,i =

Nmp∑
mp=1

∇SSST
i (xxxmp )mmmp̃w,mpVmp =

Nmp∑
mp=1

BBB T
i (xxxmp )mmmp̃w,mpVmp (3.28)

FFF i nt
m =

Nmp∑
p=1

∇SSST
i (xxxmp )σ̃σσmpVmp =

Nmp∑
p=1

BBB T
i (xxxmp )σ̃σσmpVmp (3.29)

FFF dr ag
w,i =

Nmp∑
mp=1

nmp mw,mp g

k
SSSi (xxxmp )(ṽvv w,mp − ṽvv s,mp ) (3.30)

where Nbmp is the number of MPs near the domain boundary Γ on which the traction
forces are applied. In Eqs. (3.24) – (3.30), p̃w,bmp and τ̃ττm,bmp are the prescribed pore
pressure and traction force at MPs near the domain boundary, while p̃w,mp , σ̃σσmp , ṽvv w,mp ,
and ṽvv s,mp are the respective pore pressure, total stress, water velocity and solid skeleton
velocity at the MP locations. bbb and mm,mp = ρVmp are the body forces and mass of the
mixture at the MPs, while the compatibility matrices BBB i (xxxmp ) contain derivatives of the
shape functions in SSSi (xxxmp ).

3.3.2. TIME DISCRETISATION
An explicit algorithm is adopted to integrate Eqs. (3.19) and (3.20) in time. Considering a
generic time t , the accelerations of the water ( ˙̂vvv t

w,i ) and solid ( ˙̂vvv t
s,i ) phases at a node i can

be straightforwardly obtained as

˙̂vvv t
w,i = (MMM t

w,i )−1[FFF tr ac,t
w,i +FFF bod y,t

w,i −FFF i nt ,t
w,i −FFF dr ag ,t

w,i ] (3.31)

˙̂vvv t
s,i = (MMM t

s,i )−1[−MMM
t
w,i

˙̂vvv t
w,i +FFF tr ac,t

m,i +FFF bod y,t
m,i −FFF i nt ,t

m,i ] (3.32)

owing to the diagonality of the above lumped mass matrices. The nodal accelerations are
then used to update phase velocities over the time increment ∆t at the MP locations:
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v̂vv t+∆t
α,mp = v̂vv t

α,mp +∆t
Nn∑
i=1

Si (xxxmp ) ˙̂vvv t
α,i (α= w, s) (3.33)

where Nn is the total number of nodes in the problem domain, and subscripts mp and
i denote MPs and background mesh nodes, respectively. It should be noted that the
same shape functions Si (xxxmp ) are used to map kinematic information from MPs to nodes
in the background mesh and vice versa. After mapping the velocities at MPs v̂vv t+∆t

α,mp to

background nodes, the new nodal velocities v̂vv t+∆t
α,i are updated as

v̂vv t+∆t
α,i =

∑Nmp

mp=1 Si (xxxmp )mα,mp v̂vv t+∆t
α,mp

mα,i
(α= w, s) (3.34)

and the strain rates at MPs are evaluated as

˙̂εεεt
α,mp =

Nn∑
i=1

BBB i (xxxmp )v̂vv t+∆t
α,i (α= w, s) (3.35)

where BBB i (xxxmp ) is the shape function gradient. Finally, the strains, (effective) stresses, pore
pressures and porosity values are updated as

ε̂εεt+∆t
α,mp = ε̂εεt

α,mp +∆t ˙̂εεεt
α,mp (α= w, s) (3.36)

σ̂σσ′t+∆t
s,mp = σ̂σσ′t

s,mp +∆tDDD ˙̂εεεt
s,mp (3.37)

p̂ t+∆t
w,mp = p̂ t

w,mp +∆t
Kw

nmp
[(1−nmp )tr(˙̂εεεt

s,mp )+nmp tr(˙̂εεεt
w,mp )] (3.38)

nt+∆t
mp = 1−

1−nt
mp

J (xxxmp , t +∆t )
(3.39)

where J is the Jacobian of the deformation gradient tensor, i.e. J (xxxmp , t+∆t ) = 1+tr(ε̂εεt+∆t
s,mp ).

3.3.3. MITIGATING PORE PRESSURE INSTABILITIES IN MPM
Due to its apparent similarity to FEM, MPM suffers from inf-sup-related instabilities when
low-order (linear) interpolation is adopted. This can also be the case for hydromechanical
incompressible problems in porous media, giving rise to undesired oscillations in the
pore pressure field (Belytschko et al., 2013; Bathe, 2001; Chen et al., 2018).

Currently, a number of techniques, such as multi-field variational principles, fractional
step time integration, high-order interpolation and selective reduced integration are
employed in FEM (Li et al., 2003; Zienkiewicz et al., 2005; Bathe, 2006; White & Borja, 2008;
Belytschko et al., 2013; McGann et al., 2015; Pisanò & Pastor, 2011) in order to mitigate this
type of pore pressure instability. These techniques may also be applied to MPM. Herein,
the performance of the proposed method is improved by combining GIMP, which partially
enhances the order of the interpolation, with Selective Reduced Integration (GIMP-SRI)
of the pore pressures.

In its original conception (Bardenhagen & Kober, 2004), GIMP was used to integrate
stresses in one-phase media, resulting in a significant improvement due to reduced cell-
crossing errors. Nevertheless, in the two-phase case, large pore pressure oscillations
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remain inside grid cells even using GIMP. Further benefits can be achieved by adopting
reduced integration (GIMP-SRI) for pore pressure recovery, as illustrated in Figure 3.1.
However, instead of directly calculating incremental pore pressures at MPs, reduced
integration requires pore pressure increments to be computed at central integration GPs
in each grid cell (e.g. GP1, GP2, GP3, and GP4 in Figure 3.1) as

∆p t
w,g p =∆t

Kw

nt
g p

[
(1−nt

g p )tr(ε̇εεt
s,g p )+ng p tr(ε̇εεt

w,g p )
]

(3.40)

where ε̇εεt
s,g p and ε̇εεt

w,g p are volumetric strain rates of the solid/water phases, and nt
g p is a

weighted porosity. They are evaluated at the central GP position xxxg p by

ε̇εεt
α,g p =

Nn∑
i=1

BBB i (xxxg p )v̂vv t+∆t
α,i (α= w, s) (3.41)

and

nt
g p =

Nmp∑
mp=1

nt
mpV t

mp,e

Nmp∑
mp=1

V t
mp,e

(3.42)

where V t
mp,e is the intersection volume between the MP support domain and the current

grid cell where the considered GP is located. As reduced integration is only performed to
evaluate pore pressure variations, computed results are found not to suffer from spurious
hourglass modes (Chen et al., 2018).

Figure 3.1: MPs and integration GPs in MPM

After obtaining incremental pore pressures through Eq. (4.22) at the central GPs, the
key issue is to recover them back to the MPs. It is well-known that stresses calculated at the
centre of low-order rectangular elements in FEM are of high accuracy and convergence
order. As the calculation phase in MPM is a FEM calculation, with modified integration,
it can be concluded that this also holds for an MPM grid cell. Following Zienkiewicz &
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Zhu (1992a), it is here proposed to calculate the pore pressure increments at the MPs
by so-called patch recovery based on a moving least squares approximation (MLSA). As
shown in Figure 3.2, a patch of four quadrilateral cells can be identified for each internal
node i . Within such a patch, a rectangular area can be delimited around the node by
using the central GPs in the four grid cells. It is thus possible to introduce for the pore
pressure increments (∆pw ) the following polynomial approximation of order p in the
considered rectangular domainΩi (bounded by the red dashed lines in Figure 3.2):

Figure 3.2: Patch recovery of pore pressure increments from GPs to MPs using MLSA

∆pw (x, y) =QQQ(x, y)aaa (3.43)

where (x, y) is the location of GPs inΩi, while QQQ and aaa are vectors containing polynomial
shape functions and interpolation degrees-of-freedom. In general, different shape func-
tions may be chosen to approximate the incremental pore pressure field. In this study,
a linear version of QQQ(xi , yi ) = [1 xi yi ] is chosen, giving rise to the interpolation plane
in Figure 3.2 after the determination of the coefficients in aaa = [a0 a1 a2]T. Based on a
posteriori error estimator, the relative error at sampling GPs is calculated as

E(aaa) =
Ng p∑
i=1

[
∆p t

w,g p (xi , yi )−QQQ(xi , yi )aaa
]2

(3.44)

where Ng p is the total number of GPs in the approximation domainΩi, and (xi , yi ) are
the coordinates of the GPs. Minimising the error with respect to aaa leads to the following
linear system:

AAAaaa =bbb (3.45)

where AAA =
Ng p∑
i=1

QQQT(xi , yi )QQQ(xi , yi ) and bbb =
Ng p∑
i=1

QQQT(xi , yi )∆p t
w,g p (xi , yi ).

Finally, the pore pressure increments at the MPs located in the approximation domain
Ωi can be obtained as

∆p t
w,mp =QQQ(xmp , ymp )aaa (3.46)

and these can be used to derive the pore pressure at time t +∆t . For MPs near the domain
boundary, there are insufficient grid cells to form a complete patch. For these cases, the
pore pressure increments are determined by extending internal patches up to the MP
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position. Similar concepts for determining stresses at the boundary nodes in FEM can be
found in previous studies (Zienkiewicz & Zhu, 1992a,b; Zienkiewicz et al., 2005).

3.3.4. CMPM STRESS INTEGRATION/RECOVERY

In general, MPM also suffers from oscillations and inaccuracies due to performing nume-
rical integration and stress recovery at non-ideal (MP) locations. The recently developed
Composite Material Point Method (CMPM) (González Acosta et al., 2017, 2020), which
extends the solution domain for each grid cell through considering the influence of neigh-
bouring cells, can significantly alleviate stress oscillations and help to recover stresses for
one-phase problems.

In CMPM, new grid cell shape functions are established based on an extended in-
fluence domain (i.e., a patch) using Lagrangian interpolation. All nodal displacements
within this extended domain are used for stress recovery, which can lead to improved
stress values at MPs. The constructed shape functions are summarised in Appendix A,
while more details can be found in González Acosta et al. (2017, 2020). Here, CMPM is
firstly extended to the case of coupled two-phase problems and then exploited to improve
the recovery of effective stresses at MPs in selected verification examples.

3.3.5. NUMERICAL IMPLEMENTATION

Each step in the proposed GC-SRI-patch method is explicitly solved according to the
following sequence of sub-steps (see also the flow chart in Figure 3.3):

(1) initialise all variables at the nodes of the background mesh (Eqs. (3.21)–(3.30));

(2) calculate the water nodal accelerations ˙̂vvv t
w using the discrete equilibrium equation

for the water phase (Eq. (3.31));

(3) substitute the water nodal accelerations ˙̂vvv t
w into the discrete equilibrium equation

for the soil–water mixture and calculate the soil nodal accelerations ˙̂vvv t
s (Eq. (3.32));

(4) update both soil and water nodal velocities using explicit forward Euler integration;

(5) update the velocity and position of all MPs;

(6) update the nodal velocities for both the soil and water by mapping variables back
from the MPs;

(7) calculate the effective stresses at the MPs by using GIMP combined with CMPM
(Eq. (3.37));

(8) calculate the pore pressure at the GPs via Eq. (3.40), and then recover the pore
pressures at the MPs from the GPs using Eqs. (3.43)–(3.46);

(9) reset the background mesh and restart from (1) for the solution of the next calcula-
tion step.
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Figure 3.3: Numerical implementation of the coupled MPM algorithm

3.4. VERIFICATION EXAMPLES

T HIS section presents three (plane strain) verification examples confirming the suit-
ability of the proposed GC-SRI-patch method. In all examples the considered porous

medium (soil) is fully saturated, with a solid skeleton modelled as isotropic linear elastic.
Square background meshes are used in all cases, with each grid cell initially hosting four,
equally-spaced material points. Given the emphasis of this work on the development of
the GC-SRI-patch method, only relatively simple boundary conditions are considered
in these analyses; further work will be devoted in the future to tackling more complex
hydro-mechanical boundary conditions.

3.4.1. 1D CONSOLIDATION OF A SOIL COLUMN

The first example is Terzaghi’s 1D consolidation problem, which is commonly used
to verify numerical methods for coupled poromechanical problems (Bandara & Soga,
2015; Jeremić et al., 2008). Figure 3.4a illustrates the problem geometry and boundary
conditions. The width and height of the problem domain are 0.1 m and 1.0 m, respectively.
The pore water is allowed to drain through the top surface, whereas all other boundaries
are impermeable. The displacement boundary conditions are a fixed mesh base and
rollers at the two vertical boundaries allowing only vertical displacement.
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(a) Problem geometry (b) MPM discretisation

Figure 3.4: One dimensional consolidation test

The properties of the elastic soil skeleton and pore water are as follows: Young’s
modulus E = 1.0×103 kPa, Possison’s ratio ν= 0.0, soil grain density ρs = 2.65×103 kg/m3,
porosity n = 0.3, water bulk modulus Kw = 2.2×106 kPa, hydraulic conductivity k =
1.0×10−4 m/s, and water density ρw = 1.0×103 kg/m3.

A uniformly distributed static load pa , of either 1.0kPa or 200.0kPa (with no gravity
loading), has been applied to the top surface to test GC-SRI-patch’s performance for
small or large deformations, respectively. The MPM discretisation is shown in Figure
3.4b. The problem domain is discretised by ten 4-node quadrilaterial grid cells of size
0.1m×0.1m, while a time-step size of ∆t = 1.0×10−6 s has been used for time marching.
It should be noted that, instead of applying external tractions on the top layer of MPs,
they are directly applied on the movable top surface of the column (Vardon et al., 2019),
as illustrated in Figure 3.5. For each MP, the support domain is defined by 2lpx and 2lpy in
the horizontal and vertical directions, respectively. Thus, the location of the top boundary
can be determined by the coordinates of the uppermost layer of MPs combined with the
value of lpy . At each time step, the support domain of the MPs at time t +∆t is updated as

l t+∆t
px = l t

px

(
1+∆εt+∆t

xx

)
(3.47a)

l t+∆t
py = l t

py

(
1+∆εt+∆t

y y

)
(3.47b)

where ∆εt+∆t
xx and ∆εt+∆t

y y are the calculated incremental strains over the time step ∆t in
the x and y directions, respectively. After determining the position of the top surface, the
applied external distributed load τ̃m,t s is mapped from the top surface to the surrounding
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background nodes τ̃ττm,i using regular shape functions:

τ̃ττm,i =NNN i (xxx t s )τ̃m,t s
∆h

2
(3.48)

where xxx t s is the position of top surface, and ∆h is the grid size of the background square
mesh. It should be pointed out that a linear shape function NNN i (xxx t s ) is used here for the
mapping of the applied external load.

Figure 3.5: Movable top boundary determination for one dimensional analysis

SMALL DEFORMATION ANALYSIS

Figure 3.6 compares the GC-SRI-patch solution to the corresponding analytical solution
for different values of the (dimensionless) time factor Tv , defined as

Tv = cv t

H 2
v

(3.49)

where Hv is the drainage path length (here equal to the thickness of the soil layer), and cv

is the coefficient of consolidation defined by1

cv = k

γw ( 1
E + n

Kw
)

(3.50)

The small deformation analytical solution, reported by Terzaghi (1943), relies on
the assumption that the layer thickness (Hv ), hydraulic conductivity (k), and Young’s
modulus (E) of the soil layer remain constant during the consolidation process. For a
clearer comparison, a dimensionless pore pressure p and a dimensionless current layer
thickness H are introduced:

p = pw /pa , H = Hv /H0 (3.51)

1The stiffness modulus under confined one-dimensional compression (so-called “oedometric modulus”) coin-
cides with E for the considered case of ν= 0.0.
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(a) Excess pore pressure isochrones

(b) Average degree of consolidation

Figure 3.6: Comparison between GC-SRI-patch, GIMP and analytical consolidation solutions – small deforma-
tion analysis

The analytical solution for the considered initial/boundary conditions can be expressed
in terms of pore pressure as a function of dimensionless depth and time (as shown in
Figure 3.6a):

p(H ,Tv ) =
∞∑

m=1

2

M
sin(M H)e−M 2Tv (3.52)

where M = (m − 1
2 )π. The average degree of consolidation, as shown in Figure 3.6b is

defined as

Us = 1−
∞∑

m=1

2

M 2 e−M 2Tv (3.53)
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The results in Figure 3.6 confirm the excellent agreement between the analytical and
GC-SRI-patch solutions in terms of both excess pore pressure and average degree of
consolidation. The proposed smooth distributions of pore pressure further demonstrate
the advantage of the GC-SRI-patch even when using a relatively coarse background mesh.
In comparison, the GIMP solution shows piecewise constant pore pressures over each
cell. Similar results can also be found in Bandara & Soga (2015), where a much finer
background mesh is needed to obtain a satisfactory solution (note that in Bandara & Soga
(2015) a mesh ten times finer than in the present GC-SRI-patch case is used).

LARGE DEFORMATION ANALYSIS

The reference large deformation theory of soil consolidation was developed by Gibson
et al. (1967). Among other aspects, the presence of large deformations makes it no longer
appropriate to consider a constant Hv and k, as their values may change significantly
due to soil deformation and reduction in porosity (n). This aspect is captured in the
analytical solution presented in Xie & Leo (2004), which builds on Gibson’s theory and the
assumption of porosity-dependent hydraulic conductivity kt (n), given as:

kt (n) = k0

(
1−n0

1−n

)2

(3.54)

where k0 and n0 are the initial hydraulic conductivity and porosity, respectively, which
are the same as used above for the small deformation case. According to Xie and Leo’s
large deformation solution (Xie & Leo, 2004), the dimensionless pore pressure varies in
space and time as follows:

p(H ,Tv ) = 1

mvl pa
ln

{
1+ (emvl pa −1)

∞∑
m=1

2

M
sin(M H)e−M 2Tv

}
(3.55)

where mvl = 1/E is the 1D compressibility2 and pa is the applied external load.
The analytical and GC-SRI-patch solutions, which are both based on the relationship

in Equation (3.54), are compared in Figure 3.7. The numerical and analytical excess
pore pressure isochrones at different average degrees of consolidation Us , from Us = 0
to Us = 0.9, are compared in Figure 3.7a. In the presence of large deformations, Us is
obtained as

Us = St

S∞
(3.56)

where St is the top surface settlement at time t , calculated analytically as

St = H0(1−e−mvl pa )(1−
∞∑

m=1

2

M 2 e−M 2Tv ) (3.57)

and S∞ is the asymptotic value of St as Tv →∞:

S∞ = H0(1−e−mvl pa ) (3.58)

2In the reference analytical solution (Xie & Leo, 2004), mvl is assumed not to vary with soil porosity as a first
approximation.
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(a) Excess pore pressure isochrones

(b) Settlement of top surface

Figure 3.7: Comparison between GC-SRI-patch and analytical consolidation solutions – large deformation
analysis

The comparison in terms of top surface settlement is given in Figure 3.7b. Overall, Fi-
gure 3.7 shows that the GC-SRI-patch results compare well with the analytical large-
deformation solution, notwithstanding the simplified representation of the strain field
mentioned in Section 2.1. However, slight pore pressure oscillations are visible near the
top boundary in Figure 3.7a, which may be related to the external load being applied at
the top of the MPM domain and then transferred to the background mesh nodes using
shape functions.

It should be noted that, in the large deformation case, large pore pressure oscillations
(at MPs) near the top domain boundary lead the explicit GIMP simulation to abort after
significant displacement of the MPs. For comparison purposes, Figure 3.8 shows pore
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pressure profiles corresponding to Us = 0.15 for the GC-SRI-patch, GIMP, and analytical
solutions. The comparison further demonstrates the applicability of the explicit stabilised
GC-SRI-patch method proposed in this study.

Figure 3.8: Comparison between GC-SRI-patch, GIMP and analytical consolidation solutions – large deformation
analysis with Us = 0.15

3.4.2. PRESSURISED HOLLOW CYLINDER
In this benchmark, a two-phase hollow cylinder subjected to an internal pressure is stu-
died. The problem geometry and boundary conditions are shown in Figure 3.9. The inner
and outer cylinder radii are ri = 0.20m and re = 1.20m, respectively, giving a cylinder
wall thickness of 1.0m. The height of the cylinder H is equal to 1.0m, while the problem
domain is discretised using grid cells of dimensions ∆r = ∆y = 0.20m. The boundary
conditions are that the nodes at the top and bottom of the domain are only allowed
to move in the radial direction, while the nodes at the outer boundary are fully fixed.
The pore water is not allowed to flow in/out of the cylinder, so as to replicate (globally)
undrained conditions. The soil and water properties are the same as in Section 3.4.1.

The benchmark has been solved by applying an internal total pressure pi = 100kPa.
Since drainage is not allowed, the pressure applied to the cylinder is transferred onto the
(nearly incompressible) pore water. The near incompressibility also implies that the MPs
do not displace significantly from their original positions.

Figure 3.10 compares the normalised radial excess pore pressure distribution through
the cylinder wall obtained using MPM, GIMP and GC-SRI-patch. Because the location of
the MPs hardly change due to the pressurisation, the pore pressures obtained via MPM
and GIMP are almost identical. The results obtained using GC-SRI-patch correctly show
a constant pore pressure, equal to the applied pressure pi , through the cylinder wall.
In contrast, large pore pressure oscillations are observed in both the MPM and GIMP
solutions, with values near the pressurised boundary being significantly smaller than the
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(a) Problem geometry (b) Axisymmetric discretisation

Figure 3.9: Hollow cylinder subjected to internal pressurisation

Figure 3.10: Distribution of simulated excess pore pressure along the radial direction

applied pressure.

3.4.3. 2D SLUMPING BLOCK (SELF-WEIGHT CONSOLIDATION)
In this section, the 2D large-deformation consolidation of an elastic slumping block (of
width and height equal to 4m and 2m, respectively) under the sole action of gravity is
studied (Zhao & Choo, 2020). Taking advantage of symmetry, only the right half of the
domain is considered as shown in Figure 3.11a. Both the top and right boundaries are
unconstrained and freely draining, while the left and bottom boundaries are impermeable
and supported by rollers. No surface loads are applied, so that the consolidation process
is exclusively driven by gravity loading applied with a ramp-like time history to avoid
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dynamic oscillations (Figure 3.11b). The gravitational force gives rise to pore pressure
build-up, the dissipation of which promotes gradual deformation of the block.

(a) Problem domain (b) Applied gravity ramp

Figure 3.11: Layout of the 2D slumping block problem (self-weight consolidation)

The soil and water properties are: Young’s modulus E = 1.0×102 kPa, Possison’s ratio
ν= 0.3, soil grain density ρs = 2.65×103 kg/m3, initial porosity n = 0.4, water bulk modu-
lus Kw = 2.2×106 kPa, initial hydraulic conductivity k = 1.0×10−4 m/s, and water density
ρw = 1.0×103 kg/m3. The problem domain is discretised using 16×16, 4-node quadri-
laterial grid cells of size 0.125m×0.125m. Time-domain simulations were performed
with a time-step size equal to∆t = 1.0×10−6 s. For comparative purposes, standard MPM,
GIMP, and GC-SRI-patch methods were used to analyse the problem.

Figure 3.12 shows the excess pore pressure distributions at t = 0.05s obtained in the
MPM, GIMP and GC-SRI-patch analyses. Due to only limited displacement experienced
by the MPs up to that time, the MPM and GIMP analyses return very similar results. Howe-
ver, large pore pressure oscillations in a typical checkerboard pattern are visible in Figure
3.12a. Because of the lack of MP grid crossing during the short time considered, the obser-
ved oscillation may be attributed to incompressibility and related instabilities. The extent
of the oscillatory behaviour increases as the consolidation process evolves, and causes the
explicit GIMP simulation to abort soon after the end of the loading ramp. This confirms
the ineffectiveness of the low-order, non-stabilised GIMP scheme for incompressible
problems (González Acosta et al., 2019).

The excess pore pressure response resulting from the proposed GC-SRI-patch is
presented in Figure 3.12b. In contrast with the GIMP checkerboard pattern shown in
Figure 3.12a, the GC-SRI-patch solution appears to be oscillation-free with compressive
pore pressures everywhere. Due to the relatively quick gravity loading, water cannot
rapidly drain and the numerical simulation develops under approximately undrained
conditions. Therefore, the applied gravity loading is mostly translated into pore water
pressure increase, as can be observed in Figure 3.12b. Unlike a uniform pore pressure in
each grid cell, the pore pressures show a continuous distribution both within each grid
cell and at inter-cell boundaries. The visible smoothness of the pore pressure field further
confirms the suitability of the proposed GC-SRI-patch, even very near the undrained-
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(a) MPM/GIMP (b) GC-SRI-patch

Figure 3.12: Excess pore pressures at t = 0.05s obtained with MPM/GIMP and GC-SRI-patch

incompressible limit.

Additionally, Figure 3.13 shows the simulated excess pore pressure distributions at
different times during the self-weight consolidation, from t = 0.1s until t = 0.5s. As
observed in Ma et al. (2010) with regard to the GIMP method, if MPs are located at
the far sides of a cell, the masses of some nodes (typically those close to the domain
surface) may become small while shape function gradients and nodal forces may not.
As nodal accelerations are explicitly obtained by dividing total nodal forces by nodal
masses, large accelerations are obtained, which can in turn cause numerical instability.
To alleviate acceleration inaccuracies, a distribution coefficient algorithm to deal with
small nodal masses in MPM was proposed by Ma et al. (2010), and applied in this study
in combination with the proposed GC-SRI-patch method. Following the distribution
coefficient algorithm, a part of the force acting on a node with a small mass is transferred
to neighbouring nodes with a larger mass, so that mass and momentum conservation
laws continue to be fulfilled. However, in the author’s opinion, such an algorithm cannot
fully resolve acceleration inaccuracies near domain boundary nodes. Moreover, the
same issue is particularly problematic in two-phase coupled problems, as it leads to
spurious pore pressure oscillations in the presence of nearly incompressible pore water.
For this benchmark, it was observed that pore pressure increments ∆p t

w,g p at the GPs

were usually very small (i.e.,∆p t
w,g p ≤ 1×10−5 kPa), but occasionally very large values (i.e.,

∆p t
w,g p ≥ 1.0×10−3 kPa) occurred for some grid cells at the domain boundary, especially

those cells not containing MPs but influenced by the particle support domain within the
framework of GIMP. These spurious large increments are directly related to large nodal
accelerations caused by the small nodal mass issue that typically occurs near the domain
surface. These large pore pressure increments can lead to inaccurate pore pressure
recovery at a small number of surrounding MPs (less than 1% of the total number of MPs).
Without special treatment, these inaccurate pore pressures may propagate to the whole
problem domain and result in a misleading pore pressure distribution across all MPs. For
this reason, if the calculated pore pressure increment ∆p t

w,g p of a grid cell at the domain
boundary is larger in absolute value than a specified threshold ζd (for this benchmark,
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(a) t = 0.1s (b) t = 0.2s

(c) t = 0.3s (d) t = 0.4s

(e) t = 0.5s

Figure 3.13: Excess pore pressures at different times obtained with GC-SRI-patch (1024 MPs)

ζd = 1.0×10−3 kPa), then it is set to zero. Even though this treatment was rarely used in
this analysis and influenced only a small number of MPs, it was found to be generally
effective in suppressing spurious pore pressure oscillations originating from MPs near
the domain boundary.

Figures 3.13a – 3.13e show how pore water drainage takes place gradually through the
permeable boundaries of the block and promotes mechanical deformation of the solid
skeleton during consolidation. As is apparent in Figure 3.13a – 3.13c, the pore pressure
dissipation is not monotonic in time, an occurrence associated in 2D problems with the
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so-called Mandel-Cryer effect (Mandel, 1953; Cryer, 1963). The same characteristic is
more clearly illustrated in Figure 3.14, where the time evolution of the excess pore pressure
at two selected MPs (A and B) is plotted for both GIMP and GC-SRI-patch simulations.
Stable GIMP results are only available up to shortly after the end of the gravity ramp
loading. Conversely, GC-SRI-patch provides stable results for the entire duration of the
hydromechanical analysis. In addition, it can be observed that the results of GC-SRI-patch
with a much coarser mesh are quite similar to the solutions provided in Zhao & Choo

(2020). The deviatoric stress (defined as
√

1
2 ((σ1 −σ2)2 + (σ2 −σ3)2 + (σ3 −σ1)2), where

σ1, σ2 and σ3 are principal stresses) distributions shown in Figure 3.15 demonstrate the
applicability of CMPM in coupled problems, and further validate the performamce of the
proposed GC-SRI-patch.

(a) Reference MPs (b) GIMP vs GC-SRI-patch solutions

Figure 3.14: Time evolution of excess pore pressure at two reference MPs in the slumping block

Figure 3.16 displays the evolution in time, during and after the gravity ramp, of the
excess pore pressure at the middle section of the slumping block (i.e., along the column
of MPs highlighted in Figure 3.14a). It is worth noting that the proposed GC-SRI-patch
method captures correctly the gradual build-up of pore pressures during the ramp loading,
as well as the downward propagation of a pore pressure wave when the increase in gravity
is suddenly arrested at t = 0.1 s. Such propagation occurs simultaneously with global pore
pressure dissipation, and is a natural outcome of the complete dynamic formulation.

To determine the influence of space discretisation on the numerical solution, two
additional space discretisations are used to simulate the consolidation of the slumping
block (i.e., 400 and 2500 MPs initially placed on 100 and 625 square grid cells, respectively).
Figure 3.17 shows the calculated excess pore pressures at different times using GC-SRI-
patch for both cases. The GC-SRI-patch returns stabilised solutions for both additional
discretisations, with encouraging convergence performance upon mesh refinement –
compare to the results in Figure 3.13.

3.5. CONCLUSIONS

T HIS study has presented an explicit, stabilised two-phase material point method
named GC-SRI-patch for application in coupled poromechanical problems. The

Generalised Interpolation Material Point (GIMP) method with a single set of MPs was



3

48 3. EXPLICIT STABILISED COUPLED MATERIAL POINT METHOD

(a) t = 0.1s (b) t = 0.2s

(c) t = 0.3s (d) t = 0.4s

(e) t = 0.5s

Figure 3.15: Deviatoric stress distributions at different times obtained with GC-SRI-patch (1024 MPs)

adopted to alleviate cell-crossing errors and reduce the computational burden. To avert
pore pressure instabilities, a Selective Reduced Integration (SRI) was used for the calcu-
lation of pore pressure increments at central GPs, which are of high(er) accuracy and
convergence order. Such increments are then mapped to MPs using the proposed linear
patch based on a Moving Least Squares Approximation (MLSA). Further improvement of
effective stress recovery was achieved through the recently proposed Composite Material
Point Method (CMPM), here applied for the first time to coupled two-phase problems.
Other practical issues, including application of a surface traction on a movable boundary
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(a) During gravity ramp (b) After gravity ramp

Figure 3.16: Evolution in time of the excess pore pressure profile at the middle section of the slumping block
model – GC-SRI-patch solution

(a) 400MPs (Left: t = 0.1s; Right: t = 0.5s)

(b) 2500MPs (Left: t = 0.1s; Right: t = 0.5s)

Figure 3.17: Excess pore pressures at different times obtained with GC-SRI-patch

and the mitigation of ‘small mass’ issues near the domain boundaries, were also investi-
gated.

Numerical verification examples supported the conclusion that the proposed GC-SRI-
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patch method can effectively be used to analyse relevant hydromechanical processes over
a wide range of loading/drainage conditions. Instead of piecewise constant pore pressures
over each cell, the proposed pore pressures return continuous distributions both within
grid cells and at inter-cell boundaries, even in the presence of a coarse background grid.
In particular, pore pressure instabilities were greatly mitigated by the new method, as is
clearly demonstrated by the benchmark numerical solutions in terms of pore pressures
and effective stresses. Future work will be devoted to further testing more challenging
large-deformation analyses, more complex hydro-mechanical boundary conditions and
more sophisticated constitutive models for the soil skeleton.
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4
FORMULATION AND VERIFICATION

OF A FULLY IMPLICIT THREE-FIELD

MPM FOR DYNAMIC COUPLED

PROBLEMS

This chapter presents the formulation and implementation of a fully implicit stabilised
Material Point Method (MPM) for dynamic problems in two-phase porous media. In
particular, the proposed method is built on a three-field formulation of the governing
conservation laws, which uses solid displacement, pore pressure and fluid displacement as
primary variables (u–p–U formulation). Stress oscillations associated with grid-crossing
and pore pressure instabilities near the undrained/incompressible limit are mitigated by
implementing enhanced shape functions according to the Generalised Interpolation Mate-
rial Point (GIMP) method, as well as a patch recovery of pore pressures – from background
nodes to material points – based on the same Moving Least Square Approximation (MLSA)
approach investigated in Chapter 3 (Zheng et al., 2021a). The accuracy and computational
convenience of the proposed method are discussed with reference to several poroelastic
verification examples, spanning different regimes of material deformation (small versus
large) and dynamic motion (slow versus fast).

Parts of this chapter appear in Zheng et al. (2021b).

55



4

56 4. A FULLY IMPLICIT STABILISED COUPLED MATERIAL POINT METHOD

4.1. INTRODUCTION

M OST current coupled MPMs published so far, including the work of Zheng et al.
(2021a), adopt explicit time integration. Although the implementation of an ex-

plicit scheme is relatively straightforward, it may not fully suit the solution of (nearly)
incompressible coupled problems, due to the stringent time step restrictions that result
in the presence of a relatively stiff pore fluid (such as water in soil-like mixtures). However,
only very few instances of semi-implicit (Kularathna et al., 2021) and fully implicit (Zhao
& Choo, 2020) coupled schemes have been proposed to date, although it is well known
that, for uncoupled problems, the implicit version of MPM (Cummins & Brackbill, 2002;
Guilkey & Weiss, 2003; Sulsky & Kaul, 2004; Wang et al., 2016; Charlton et al., 2017; Coombs
et al., 2020; González Acosta et al., 2021) generally allows for larger time steps and can be
more stable. Hence, this is the approach followed in this study.

As standard MPM formulations (and its variant GIMP) often use low-order shape
functions over the background mesh for the relevant field variables (usually two), pore
pressure instabilities may arise in the vicinity of the so-called undrained–incompressible
limit. Similarly to that observed for two-phase FEM models, the violation of the well-
known inf-sup condition can result in undesired pore pressure oscillations and, overall,
inaccurate results (Brezzi & Bathe, 1990; Bathe, 2001). A typical countermeasure (often
applied in FEM) is to use different orders of interpolation for the primary variables –
e.g., in u–p-based two-phase models, the displacement field would require shape func-
tions of higher order than for the pore pressure (Taylor & Hood, 1973). However, the
computational convenience of equal/low-order interpolation in MPM has promoted the
development of MPMs that can suppress pore pressure instabilities by means of fractional
time stepping (Jassim et al., 2013), polynomial pressure projection (Zhao & Choo, 2020),
and reduced integration (Abe et al., 2013; Bandara & Soga, 2015; Wang et al., 2018; Zheng
et al., 2021a). Chapter 3 (Zheng et al., 2021a) proposed an explicit coupled MPM in which
numerical instabilities are substantially alleviated by combining selective reduced integra-
tion with a patch recovery of pore pressures based on Moving Least Square Approximation
(MLSA).

This chapter presents a new fully implicit, stabilised MPM for dynamic hydromechani-
cal problems. The proposed method builds on a three-field formulation of the underlying
coupled problem, and adopts the Generalised Interpolation Material Point (GIMP) me-
thod proposed by Bardenhagen & Kober (2004) to mitigate the spurious stress oscillations
associated in the original MPM with MP cell-crossing. The three-field formulation adopts
equal-order interpolation for the selected primary variables, i.e., solid displacement (u),
pore pressure (p), and fluid displacement (U ). The resulting u–p–U formulation enables
accurate analysis of slow as well as fast dynamic phenomena (Zienkiewicz & Shiomi,
1984), and has been successfully implemented/verified in FEM (Gajo et al., 1994; Arduino
& Macari, 2001; Jeremić et al., 2008; Staubach et al., 2020). In the context of FEM, the
u–p–U approach has also been shown to be a generally good remedy against undrained
pore pressure instabilities, although it is not always effective in 2D/3D problems when all
primary unknowns are interpolated with shape functions of the lowest order (Gajo et al.,
1994). Since similar issues have also been experienced in MPM/GIMP calculations, the
MLSA-based patch recovery proposed in Chapter 3 (Zheng et al., 2021a) is incorporated
in the implicit MPM presented herein, so as to improve the recovery of pore pressures to
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the MPs and mitigate the effects of hydro-mechanical instabilities. The resulting u–p–U
MPM enhanced with MLSA-based patch recovery is straightforward to implement in an
implicit coupled MPM code, and also efficient owing to the use of a single set of MPs to
represent both the solid and fluid phases – the alternative option of using two sets of MPs
has been explored, e.g., by Soga et al. (2015).

The remainder of this chapter focuses on the formulation and verification of the
proposed implicit MPM. Emphasis is on the verification of its accuracy under different
regimes of material deformation (small versus large) and dynamic motion (slow versus
fast). Special attention is also devoted to highlighting the computational convenience of
implicit MPM modelling in comparison to the explicit MPM.

4.2. u–p–U FORMULATION OF DYNAMIC HYDROMECHANICAL

PROBLEMS

T HE equations governing the dynamic motion of a fully saturated porous medium are
hereafter summarised following the work of Zienkiewicz and co-workers (Zienkiewicz

& Shiomi, 1984; Zienkiewicz et al., 1999). The momentum balance for the whole two-
phase mixture prescribes that

STσ−ρü −ρw ür +ρb = 0 (4.1)

where S is a differential divergence operator defined for 2D problems as (Zienkiewicz
et al., 1999)

S =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 (4.2)

while u, ur , and b denote the absolute displacement of the soil skeleton, the displacement
of the water phase relative to the solid phase, and an external body acceleration field,
respectively. Following Zienkiewicz & Shiomi (1984), the relative water displacement is
defined as ur = n (U −u), where U is the absolute displacement of the water phase.

To ensure the equilibrium of the mixture and its individual phases, the following
momentum balance equation for the pore water must also be fulfilled:

∇p −R −ρw ü −ρw
ür

n
+ρw b = 0 (4.3)

where R is the drag force exchanged by the soil skeleton and the pore water due to
their relative motion. R is proportional to the relative discharge velocity u̇r = n

(
U̇ − u̇

)
according to Darcy’s law:

R = nρw g

k

(
U̇ − u̇

)
(4.4)

in which the hydraulic conductivity k is assumed to be isotropic for simplicity, and g is
the gravitational acceleration. It should be noted that convective terms are neglected in
Equations (4.1) and (4.3) (Zienkiewicz et al., 1999).

The flow of pore water must also obey the following mass conservation equation:
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∇· u̇r +∇· u̇ + ṗ

Q
= 0 (4.5)

The stiffness constant Q in Equation (4.5) is defined as 1/Q = n/Kw + (1−n)/Ks , where
Kw and Ks are the bulk moduli of the water phase and soil particles, respectively.

The use of u, p, and U (in lieu of ur ) as primary variables in Equations (4.1), (4.3) and
(4.5) gives rise to a u–p–U dynamic coupled formulation. Therefore, each node in the
background mesh is associated with, for 2D plane strain problems, five unknown degrees
of freedom, i.e., two soil displacement components for the solid and the fluid phases and
one pore pressure variable.

Given the focus of this work on the first implementation/verification of a new implicit
MPM, the case of a linear elastic solid phase is exclusively considered in what follows.
Accordingly, the constitutive relationship between effective stress (σ̇′) and strain (ε̇) rates
can be expressed as

σ̇′ = De ε̇ (4.6)

where the elastic stiffness matrix of the solid skeleton (De ) is used in combination with a
linearised/infinitesimal definition of the strain rate (González Acosta et al., 2021; Tran
& Sołowski, 2019; Zheng et al., 2021a). It is known that the MPM suffers from numerical
oscillations when considering large deformation analysis (González Acosta et al., 2017,
2020; Zheng et al., 2021a). In this work, the main focus lies in the numerical implemen-
tation of an implicit time integration algorithm and the corresponding validation of its
hydromechanical performance. Fully general modelling of large deformations can be
achieved by adopting well-established finite strain measures (Holzapfel, 2000) – such an
extension would not be expected to heavily impact the hydromechanical performance of
the proposed method.

With reference to a fully saturated porous medium, the boundary conditions for
soil/water displacement and pore pressure are all of a Dirichlet type in the considered
three-field formulation:

u(x , t ) = ũ(t ) on Γu(t) (4.7a)

U (x , t ) = Ũ (t ) on ΓU (t) (4.7b)

p(x , t ) = p̃(t ) on Γp(t) (4.7c)

where ũ(t ), Ũ (t ), and p̃(t ) are the prescribed boundary values – possibly varying in time –
of the soil and water displacements, and pore pressures, respectively. Conversely, a (total)
surface traction is represented as a Neumann boundary condition:

σ(x, t ) ·Gτ = τ̃(t ) on Γτ(t) (4.8a)

where Gτ is a matrix containing components of the unit vector normal to the boundary
surface Γ (Zienkiewicz et al., 1999), and τ̃(t ) is a prescribed surface traction vector.

The modelling of impermeable boundaries requires the enforcement of nil (compo-
nents of) soil–water relative velocity (u̇r ) along certain spatial directions. Such a condition
is easily fulfilled in the verification examples presented in Section 4.4, where cases with im-
permeable boundaries that are also kinematically constrained are exclusively considered
(i.e., ux and/or y = 0): therefore, imposing ux and/or y =Ux and/or y = 0∀t also automatically
fulfills the impermeability requirement in terms of relative velocity.
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4.3. NUMERICAL IMPLEMENTATION OF IMPLICIT GIMP-PATCH

METHOD

T HIS section provides relevant technical details regarding the numerical formulation
and implementation of the implicit GIMP-patch method proposed in this study. In

particular, spatial discretisation, time integration, and mitigation of numerical instabili-
ties are discussed.

4.3.1. SPATIAL DISCRETISATION
The primary variables u, p, and U are first approximated using their nodal values (ū, p̄ ,
and Ū ) in the background mesh:

u = Nu ū, p = Np p̄ , U = NUŪ (4.9)

where Nu , Np , and NU are matrices containing shape functions of the same low order
(bilinear in 2D problems) for the interpolation of solid displacements, pore pressures,
and fluid displacements, respectively. Substituting the above approximations (Equation
(4.9)) into the weak forms of the governing equations ((4.1), (4.3) and (4.5)) leads to the
following discrete system of ordinary differential equations: Mu 0 0

0 0 0
0 0 MU

 ¨̄u
¨̄p
¨̄U

+
 C1 0 −C2

0 0 0
−CT

2 0 C3

 ˙̄u
˙̄p
˙̄U

+
 Ku −G1 0

−GT
1 P −GT

2
0 −G2 0

 ū
p̄
Ū

=
 f̄s

0
f̄w


(4.10)

where: Mu and MU are mass matrices for the soil and water phases; C1, C2, and C3 are
damping matrices physically associated with grain–fluid drag; Ku is the stiffness matrix of
the solid skeleton; P is a compressibility matrix determined by the bulk stiffness of the
solid grains and pore water; and G1 and G2 are two matrices describing the hydromecha-
nical coupling between the skeleton deformation and pore water flow. The expressions for
the matrices emerging from the spatial discretisation process are as follows (Zienkiewicz
& Shiomi, 1984):

Mu =
∫
Ω

NT
u (1−n)ρs NudΩ MU =

∫
Ω

NT
U nρwNU dΩ

C1 =
∫
Ω

NT
un2k−1NudΩ C2 =

∫
Ω

NT
un2k−1NU dΩ

C3 =
∫
Ω

NT
U n2k−1NU dΩ Ku =

∫
Ω

BT
uDeBudΩ (4.11)

G1 =
∫
Ω

BT
u m (1−n)Np dΩ G2 =

∫
Ω

BT
U mnNpdΩ

P =
∫
Ω

N T
p

1

Q
Np dΩ

where Bu and BU are compatibility matrices containing spatial derivatives of the shape
functions. The nodal force vectors in Equation (4.10), f̄s and f̄w , relate to external body
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forces and surface tractions:

f̄s =
∫
Γτ

NT
u τ̃(t )dΓτ+

∫
Ω

NT
u (1−n)ρsbdΩ (4.12a)

f̄w =
∫
Ω

NT
U nρw bdΩ (4.12b)

In regular MPM, Nu , NU and Np would feature the same (bi)linear shape functions
as in standard FEM. It is well known, however, that regular MPM may suffer from stress
oscillations when MPs cross grid cell boundaries due to discontinuous shape function
gradients. GIMP was proposed by Bardenhagen & Kober (2004) to reduce such oscillati-
ons, with the shape functions Si (x) being constructed by integrating linear FEM shape
functions Ni (x) over the MP support domainΩmp.

In the framework of GIMP, the matrices in Equation (4.10) are redefined for a specific
grid cell node as follows:

Mu,i =
Nmp∑

mp=1
ST

u,i (xmp )mu,mp Su,i (xmp ) =
Nmp∑

mp=1
ST

u,i (xmp )(1−n)ρs,mpVmp Su,i (xmp )

(4.13a)

MU ,i =
Nmp∑

mp=1
ST

U ,i (xmp )mU ,mp SU ,i (xmp ) =
Nmp∑

mp=1
ST

U ,i (xmp )nρw,mpVmp SU ,i (xmp ) (4.13b)

C1,i =
Nmp∑

mp=1
ST

u,i (xmp )n2k−1Su,i (xmp )Vmp (4.13c)

C2,i =
Nmp∑

mp=1
ST

u,i (xmp )n2k−1SU ,i (xmp )Vmp (4.13d)

C3,i =
Nmp∑

mp=1
ST

U ,i (xmp )n2k−1SU ,i (xmp )Vmp (4.13e)

Ku,i =
Nmp∑

mp=1
∇ST

u,i (xmp )De∇Su,i (xmp )Vmp =
Nmp∑

mp=1
BT

u,i (xmp )De Bu,i (xmp )Vmp (4.13f)

G1,i =
Nmp∑

mp=1
∇ST

u,i (xmp )m(1−n)Sp,i (xmp )Vmp =
Nmp∑

mp=1
BT

u,i (xmp )m(1−n)Sp,i (xmp )Vmp

(4.13g)

G2,i =
Nmp∑

mp=1
∇ST

U ,i (xmp )mnSp,i (xmp )Vmp =
Nmp∑

mp=1
BT

U ,i (xmp )mnSp,i (xmp )Vmp (4.13h)

Pi =
Nmp∑

mp=1
ST

p,i (xmp )
1

Q
Sp,i (xmp )Vmp (4.13i)

where the subscript i defines the i th grid cell node, xmp are the coordinates of the MPs,
and Nmp is the total number of MPs. Similarly, the external force vectors in Equation
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(4.12) are re-written as

f̄s,i =
Nbmp∑
mp=1

ST
u,i (xmp )τ̃(t )+

Nbmp∑
mp=1

ST
u,i (xmp )mu,mp b (4.14a)

f̄w,i =
Nbmp∑
mp=1

ST
u,i (xmp )mU ,mp b (4.14b)

The full set of governing equations after spatial discretisation can be globally repre-
sented in the following compact form:

Ma +Cv +Kd = f̄ (4.15)

where: M, C, and K are the generalised mass, damping, and stiffness matrices, respec-

tively; f̄ is a time-varying external load term; and a =
[

¨̄u, ¨̄p , ¨̄U
]T

, v =
[

˙̄u, ˙̄p , ˙̄U
]T

, and

d = [
ū, p̄ ,Ū

]T
are the generalised nodal displacement, velocity, and acceleration vectors,

respectively.

4.3.2. TIME INTEGRATION
The time integration of Equation (4.15) is performed using the well-established Newmark
algorithm (Newmark, 1959). It is worth recalling that, in MPM computations, the problem
domain is discretised into a set of MPs that carry relevant information (i.e., about mass,
volume, velocity, acceleration, strain, stress), while the underlying governing equations
are solved at the background grid cell nodes. Given the problem solution at the MPs for
an arbitrary time step n, the corresponding variables are first mapped to the grid nodes in
terms of nodal vectors of (generalised) acceleration an , velocity vn , and displacement dn ,
and then the global set of discrete governing equations are solved for the subsequent step
n +1. In compliance with Newmark’s time integration and the GIMP shape functions, the
nodal values of the following variables are calculated at step n as

mn
α,i =

Nmp∑
mp=1

Sα,i (xmp,n)mα,mp (α= u,U ) (4.16a)

v n
α,i =

Nmp∑
mp=1

Sα,i (xmp,n)mα,mp vα,mp

mn
α,i

(α= u,U ) (4.16b)

an
α,i =

Nmp∑
mp=1

Sα,i (xmp,n)mα,mp aα,mp

mn
α,i

(α= u,U ) (4.16c)

where: the subscript α indicates either the solid (α = u) or water (α = U ) phase; the
subscripts i and mp stand for the i th grid node and the mp th MP, respectively; the
superscript and subscript n is associated with the nth time step; and mα,i , vα,i , and aα,i

are the generalised nodal mass, velocity, and acceleration, respectively, which can be
used to determine the global vectors vn and an . Since the background mesh is reset to
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its original position at the end of each calculation step, the vector dn is always entirely
populated by nil entries (i.e., dn = 0).

The Newmark algorithm adopts two time integration parameters, γ and β, in the
corresponding recurrence relations for stepping from n to n +1 (Hughes, 1987):

an+1 = an +∆a (4.17a)

vn+1 = vn +∆t
[(

1−γ)
an +γan+1

]
(4.17b)

dn+1 = dn +vn∆t + ∆t 2

2

[(
1−2β

)
an +2βan+1

]
(4.17c)

in which ∆t = tn+1 − tn is the time step size. Substituting Equation (5.8c) into Equation
(5.8a) and Equation (5.8b), the recurrence relations for the acceleration an+1 and the
velocity vn+1 can be rewritten as

an+1 = f1

∆t 2 (dn+1 −dn)− f1

∆t
vn −

(
f1

2
−1

)
an (4.18a)

vn+1 = f2

∆t
(dn+1 −dn)− (

f2 −1
)

vn −
(

f2

2
−1

)
an∆t (4.18b)

where f1 = 1/β and f2 = γ/β. In the case of linear elastodynamics, Newmark time integra-
tion is unconditionally stable, non-dissipative, and second-order accurate when β= 0.25
and γ= 0.5, which is the sole parameter pair considered in the remainder of this study.
The final algebraic system of fully discretised equations, after substituting Equations
(4.18a)–(4.18b) into Equation (4.15), is

K∆dn+1 = f̄n+1 − f i nt
n +Mn

[
f1

∆t
vn +

(
f1

2
−1

)
an

]
+Cn

[(
f2 −1

)
vn +

(
f2

2
−1

)
an∆t

]
(4.19)

where K = f1

∆t 2 Mn + f2

∆t
Cn +Kn is an algorithmic dynamic stiffness matrix, and f i nt

n =[
f i nt

u,n , f i nt
p,n , f i nt

U ,n

]T
is the internal nodal force vector:

f i nt
u,i =

Nmp∑
mp=1

BT
u,i

(
xmp,n

)[
σ′

mp,n − (1−n)mpmp,n

]
Vmp,n (4.20a)

f i nt
p,i =

Nmp∑
mp=1

[
− (1−n)Sp,i (xmp,n)εu

vol ,mp −Sp,i (xmp,n)
pmp,n

Q
−nSp,i (xmp,n)εU

v,mp

]
Vmp,n

(4.20b)

f i nt
U ,i =−

Nmp∑
mp=1

BT
U ,i

(
xmp,n

)
nmpmp,nVmp,n (4.20c)

and εu
vol ,mp and εU

vol ,mp are the volumetric strain of the soil and water phases at the mp th

MP.
Even in the presence of linear constitutive equations, the solution of a large defor-

mation problem is intrinsically non-linear and must be carried out iteratively (Zhao &
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Choo, 2020). For this purpose, each time step is solved in combination with a Modified
Newton–Raphson iteration scheme (Zienkiewicz et al., 2005). Its algorithmic description
is provided in Algorithm 1, where the superscript k denotes the k th iteration within a given
time step out of a maximum number equal to kmax ,ψ(k)

n+1 is the vector of nodal residuals

at the k th iteration (‖ψ(k)
n+1‖ is its L2 norm), and ξ is the prescribed error tolerance – here

set equal to 1.0×10−6. When convergence is reached according to the prescribed error
tolerance, all relevant variables are updated at the MPs using computed nodal values:

amp,n+1 =
Nnode∑

i=1
Su,i (xmp,n)ai ,n+1 (4.21a)

vmp,n+1 =
Nnode∑

i=1
Su,i (xmp,n)vi ,n+1 (4.21b)

σ′
mp,n+1 =σ′

mp,n +De
Nnode∑
n=1

Bu,i (xmp,n)ūi ,n+1 (4.21c)

pmp,n+1 = pmp,n +
Nnode∑
n=1

Sp,i (xmp,n)p̄i ,n+1 (4.21d)

xmp,n+1 = xmp,n +
Nnode∑
n=1

Su,i (xmp,n)ūi ,n+1 (4.21e)

where Nnode is the total number of nodes.

4.3.3. MITIGATING NUMERICAL INSTABILITIES IN COUPLED MPM
Due to its similarity to FEM, MPM can suffer from numerical instabilities when low-
order interpolation is equally adopted for the all the primary variables. This is the case
for (nearly) incompressible hydromechanical problems in porous media, giving rise to
undesired oscillations in the pore pressure field (Belytschko et al., 2013; Bathe, 2001; Chen
et al., 2018). Although previous FEM experience has shown the beneficial effects of a three-
field u–p–U formulation, pore pressure instabilities may still arise in 2D/3D problems
when the same low-order interpolation is adopted for all field variables (Gajo et al., 1994).
To alleviate pore pressure instabilities in coupled MPM computations, a patch recovery
of pore pressure increments based on the Moving Least Square Approximation (MLSA)
has been proposed in Chapter 3 (Zheng et al., 2021a) in combination with an explicit
coupled MPM. The same patch recovery technique is also exploited within the implicit
MPM presented herein. Hence, an intermediate mapping stage is introduced, in which
nodal pore pressure increments are first mapped to central Gauss integration points (GPs),
instead of directly to the MPs. Such a GP-mapping operation is performed as follows:

∆pg p,n+1 =
Nn∑

n=1
Sp,i (xg p,n)p̄i ,n+1 (4.22)

where xg p indicates the position of a generic central GP in the background mesh. Note
that since this mapping is only performed to evaluate pore pressure increments, the
computed results are found not to suffer from spurious hourglass modes (Chen et al.,
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Algorithm 1: Modified Newton-Raphson iteration scheme for a single step

1 Assemble the algorithmic dynamic stiffness matrix K using the converged solution
at tn

K = f1

∆t 2 Mn + f2

∆t
Cn +Kn

2 while k ≤ kmax do
3 Initialise vectors of nodal (generalised) displacement d (k)

n+1, velocity v (k)
n+1, and

acceleration a(k)
n+1

d (k)
n+1 = d (k−1)

n+1 = 0, v (k)
n+1 = v (k−1)

n+1 , a(k)
n+1 = a(k−1)

n+1

with d (0)
n+1 = dn = 0, v (0)

n+1 = vn , and a(0)
n+1 = an

4 Update the acceleration and velocity predictors

a(k)
n+1 =

f1

∆t 2 (d (k)
n+1 −dn)− f1

∆t
vn − (

f1

2
−1)an

v (k)
n+1 =

f2

∆t
(d (k)

n+1 −dn)− ( f2 −1)vn − (
f2

2
−1)an∆t

5 Compute the nodal residual forceψ(k)
n+1

ψ(k)
n+1 = f̄n+1 − f i nt

n −Kd (k)
n+1 −Ma(k)

n+1 −Cv (k)
n+1

6 Solve the linear equation K∆d (k+1)
n+1 =ψ(k)

n+1 to obtain the displacement

increment ∆d (k+1)
n+1 and update the displacement vector d (k+1)

n+1

d (k+1)
n+1 = d (k)

n+1 +∆d (k+1)
n+1

7 if ‖ψ(k)
n+1‖ ≤ ξ‖ψ(0)

n+1‖ then
8 Update values at MPs, set tn = tn+1 and go to the next time step
9 else

10 Set k = k +1 and go to Step 3 for the next iteration
11 end
12 end
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Table 4.1: Hydromechanical properties of the soil–water mixture in the considered verification examples

Symbol Example 1 Example 2 Example 3 Example 4 Example 5 Unit

E 1.0×104 7.5×105 5.0×106 1.0×103 100 kPa
ν 0.2 0.2 0.0 0.2 0.3 –
ρw 1000 1000 1000 1000 1000 kg/m3

ρs 2650 3003 2667 2650 2650 kg/m3

n 0.3 0.3333 0.4 0.4 0.4 –
Kw 2.2×106 1.0×107 2.0×106 2.2×106 2.2×106 kPa
Ks 1.0×1010 1.0×1010 1.0×1010 1.0×1010 1.0×1010 kPa

k 1.0×10−4 see Table 2
1.0×10−3

1.0×10−4 1.0×10−4 m/s
1.0×10−5

2018). After obtaining incremental pore pressures at the central GPs through Equation
(4.22), their final recovery to the MPs is performed. Following Zienkiewicz & Zhu (1992),
the pore pressure increments are evaluated at the MPs through a patch recovery stage
based on a moving least squares approximation (MLSA).

4.4. NUMERICAL VERIFICATION EXAMPLES

T HIS section presents the result of several verification examples to support the suita-
bility of the proposed implicit GIMP-patch method. All numerical results have been

obtained through sequential computations on a computer equipped with an Intel Xeon
E5-1620, 16GB RAM and x64-based processor. The discrete system of equations (4.19) has
been solved in all cases using the robust, high-performance PARDISO solver (Schenk &
Gärtner, 2002) from the Intel Math Kernel Library, which can efficiently solve large sparse
linear systems.

4.4.1. 1D COUPLED PROBLEMS WITH SMALL DEFORMATIONS

EXAMPLE 1: CONSOLIDATION OF A SOIL COLUMN

The static, small-strain 1D consolidation of a linear elastic soil column is first considered
as a well-established verification example for coupled poromechanical problems (Jeremić
et al., 2008; Bandara & Soga, 2015). Figure 4.1a shows the geometry and associated
boundary conditions for the one-dimensional consolidation model. The width (w) and
initial height (H0) of the problem domain are 0.1m and 1.0m, respectively. The bottom
boundary has both solid and water displacements totally fixed, whereas only vertical u-U
displacements are allowed along the lateral boundaries. In this boundary configuration,
the drainage of pore water is only allowed through the top free surface. A vertical uniform
static load pa of 1.0kPa is instantaneously applied at the top surface.

The MPM discretisation of the system is shown in Figure 4.1b. The model is discretised
by means of 10 4-node quadrilateral grid cells (elements) of size 0.1m×0.1m, with each
cell initially hosting four equally-spaced MPs. The hydromechanical properties assumed
for the soil–water mixture are are listed in Table 4.1. Both the new implicit GIMP-patch
method and the explicit GC-SRI-patch method proposed in Chapter 3 have been tested
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(a) Problem geometry (b) MPM discretisation

Figure 4.1: One-dimensional consolidation model

against Terzaghi’s analytical solution (Terzaghi, 1943) for comparative purposes. The
GIMP-patch and GC-SRI-patch results have been obtained using time-step sizes ∆t of
1.0×10−3 s and 1.0×10−5 s, respectively.

Figure 4.2 compares the numerical and analytical solutions for different values of the
dimensionless time factor Tv , defined as

Tv = cv t

H 2
v

where Hv is the drainage path length (here equal to the thickness of the soil layer), and cv

is the coefficient of consolidation:

cv = k

ρw g (1/Ec +1/Q)

with Ec = E(1−ν)
(1−2ν)(1+ν) being the constrained 1D stiffness of the soil skeleton obtained as

a combination of the Young’s modulus E and Poisson’s ratio ν. The analytical solution
of the problem can be represented in terms of normalised pore pressure (P = p/pa) and
layer thickness (H = Hv /H0) for the aforementioned boundary/initial conditions:

P (H ,Tv ) =
∞∑

m=1

2

M
sin(M H)e−M 2Tv (4.23)

where M = (m − 1
2 )π. The corresponding average degree of consolidation Us assumes the

following expression:

Us = 1−
∞∑

m=1

2

M 2 e−M 2Tv (4.24)
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Figure 4.2: 1D small-deformation consolidation of an elastic soil column: comparison between analytical and
MPM (implicit GIMP-patch and explicit GC-SRI-patch) solutions

Figure 4.2 shows excellent agreement between the analytical and MPM solutions –
both for the implicit GIMP-patch and explicit GC-SRI-patch methods. More quantitatively,
Figure 4.3 displays how the relative pore pressure error (ep ) increases with the time step
size both for the implicit and explicit MPMs. For a given value of the time factor Tv , the
reference error measure ep is defined over the spatial domain as follows:

ep (Tv ) =

√
Nmp∑

mp=1

[
P∗

mp (Tv )−Pmp (Tv )
]2

Nmp
(4.25)

where P∗
mp (Tv ) and Pmp (Tv ) are the analytical and numerical pore pressure solutions at

the MP locations (normalised with respect to the maximum excess pore pressure, which
is equal to pa at any depth – Figure 4.1). It is apparent that ep grows with ∆t more slowly
for the implicit GIMP-patch method – in a similar way for the two Tv values considered.
It is also interesting to note that the implicit solution obtained with ∆t = 1.0×10−3 s is
characterised by a level of accuracy that the explicit method achieves with a ∆t around
100 times smaller. This expected finding confirms the computational convenience of
implicit modelling for transient problems of medium-large duration.

The gradual reduction in relative error ep upon grid refinement is shown for Tv = 0.5
in Figure 4.4 – for the proposed implicit GIMP-patch method in comparison to MPM
and GIMP solutions (i.e., without patch recovery of pore pressures). Due to the small
settlement experienced by the soil layer in the considered example, MPM and GIMP
solutions are practically coincident, and exhibit first-order convergence with respect to
the number of grid cells (i.e., the ratio between the soil layer thickness and grid cell size).
The implicit GIMP-patch method returns generally smaller ep values, with a convergence
rate decreasing from 2 to 1 as the problem domain is more finely discretised.

EXAMPLE 2: DYNAMIC CONSOLIDATION OF A SOIL COLUMN UNDER HARMONIC LOADING

The dynamic steady-state response of an elastic soil column to a harmonic surface load is
considered as a second verification case. Specifically, the same kind of system as in Figure
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Figure 4.3: Dependence of the relative pore pressure error ep on the step size for the considered implicit and
explicit MPMs (small deformation consolidation)
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Figure 4.4: Dependence of the relative pore pressure error ep on the grid cell size at Tv = 0.5 (small deformation
consolidation)

4.1 is analysed in combination with a time-varying surface load, pa = cos(ωt), where
ω is the angular frequency. This problem was first studied by Zienkiewicz et al. (1980),
who provided an analytical solution that has served numerous numerical verification
studies – even in the recent context of meshfree modelling (Navas et al., 2016, 2018). In
this case, the soil column width (w) and height (H0) are 0.2m and 10.0m, respectively,
and it has been discretised into 50 4-node quadrilateral grid cells (with a cell size equal to
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0.2m×0.2m). The relevant hydromechanical properties are listed in Table 4.1.
As discussed by Zienkiewicz et al. (1980), the dynamic steady-state response of the sy-

stem spans three possible regimes of hydro-mechanical coupling (Figure 4.5), depending
on the values of two relevant dimensionless factors, namelyΠ1 andΠ2:

Π1 =
kV 2

c

gβωH 2
0

, Π2 =
ω2H 2

0

V 2
c

where Vc = √
(Ec +Kw /n)/ρ is the compression wave velocity, Ec the constrained 1D

modulus defined above, and β = ρw /ρ. In Figure 4.5, zone I is associated with slow
hydromechanical phenomena, in which the role played by inertial effects is from limited
to negligible. The opposite end of the spectrum is represented byΠ1-Π2 combinations
in zone III, which is associated with fast dynamic consolidation and significant relative
accelerations between the solid and the water phases. Moderately fast processes take
place within the intermediate zone II, where the assumption of negligible relative solid–
fluid acceleration is normally acceptable. In order to verify the implicit GIMP-patch
method under different consolidation regimes, seven Π1-Π2 pairs (P1-P7) have been
considered – see Figure 4.5 and Table 4.2.
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Figure 4.5: Π1-Π2 pairs considered in the implicit GIMP-patch simulation of dynamic consolidation – cf.
Zienkiewicz et al. (1980)

Figure 4.6 compares analytical and GIMP-patch solutions in terms of steady-state
profiles of normalised pore pressure (P = p/pmax

a ). The numerical results for the seven si-
mulation cases in Figure 4.5 have been obtained using a time step size of ∆t = 1.0×10−4 s.
No explicit GC-SRI-patch solutions have been computed in this case, due to the signifi-
cant calculation time that the attainment of a harmonic steady state would require using
a time step size of the order of ∆t = 1.0×10−5 s. The numerical–analytical comparisons
in Figure 4.6 confirm the suitability of the proposed MPM over the whole range of dy-
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Table 4.2: Parameter specification for theΠ1-Π2 pairs indicated in Figure 4.5

Zones Points Π1 Π2 ω [ rad/s ] k [m/s]

I
P1 0.01 0.01 10.14 3.22×10−6

P2 1.00 0.01 10.14 3.22×10−4

P3 100.00 0.01 10.14 3.22×10−2

II
P4 0.01 10.00 1013.78 3.22×10−4

P5 1.00 0.10 101.38 3.22×10−3

III
P6 1.00 1.00 320.59 1.02×10−2

P7 10.00 0.10 101.38 3.22×10−2

namic consolidation speeds, including in the presence of significant solid–fluid relative
accelerations (zone III).
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(b) Moderately fast consolidation – zone (II) in Figure 4.5
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Figure 4.6: Performance of the GIMP-patch method under different dynamic consolidation regimes
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EXAMPLE 3: PROPAGATION OF A SHOCK PRESSURE WAVE

The ability of the implicit GIMP-patch method to reproduce 1D wave propagation along
an elastic soil column is assessed. The same kind of boundary conditions as described
in Section 4.4.1 have been considered for a soil column of width and height equal to
w = 2.5×10−3 m and H0 = 2.5m, respectively. The domain is constrained along the
lateral boundaries (ux = 0 and Ux = 0) and totally fixed at the bottom boundary (ui = 0
and Ui = 0) – as a result of such constraints, the drainage of pore water is only allowed
through the top free surface. The relevant hydromechanical properties of the soil–water
mixture are reported in Table 4.1 – note that the same values have been set for Ec and
Kw /n, so as to obtain an equal distribution of the external load over the solid and fluid
phases. Wave motion along the soil column is triggered by imposing a uniform vertical
load pa of 1.0kPa, which is instantaneously applied and then held constant at the top
of the soil column. To accurately capture the propagation of shock waves, a fine spatial
discretisation is necessary. For the case under consideration, the soil column has been
discretised into 1000 4-node quadrilateral grid cells with a cell size of 2.5×10−3 m.

For the selected material properties and applied loading conditions, two shock waves
are normally generated which propagate from the top to the bottom of the column. One
wave (called the undrained wave) features the synchronous motion of soil and water at the
same velocity, while the two phases move asynchronously in a second wave (the damped
wave) that propagates with a lower speed (Verruijt, 2009; Chmelnizkij et al., 2019). The
propagation velocities of the undrained (Vu) and damped (Vd ) waves can be respectively
calculated as

Vu =
√

Ec +Kw /n

ρ
= 2236m/s (4.26)

Vd =
√

Kw

ρw

√
nEc

(1−n)Kw +nEc
= 1118m/s (4.27)

To mobilise different hydromechanical coupling regimes, low and high values of
the hydraulic conductivity have been considered, i.e., k = 1.0×10−5 m/s and k =
1.0×10−3 m/s. Comparative MPM solutions have been obtained using both the implicit
and explicit MPMs considered so far. For the explicit method, the time step∆t needs to be
smaller than the critical time step∆tcr = l /Vu (Van Esch et al., 2011), which is 1.12×10−6 s
for the reference material properties in Table 4.1. In order to achieve satisfactory accuracy
in explicit calculations, a rather small time step size of ∆t = 6.0×10−7 s has been chosen,
while a larger time step of ∆t = 1.0×10−6 s has been set for the proposed implicit method.
In the latter case, such a choice is driven by accuracy rather than stability – a shock propa-
gation problem will always require fine time stepping for rapid dynamics to be accurately
captured.

Figure 4.7 illustrates both the explicit and implicit solutions in terms of normalised
excess pore pressure (P = p/pa) at a point 0.4 m below the top surface. In the case
of a higher hydraulic conductivity (Figure 4.7a), the presence of both the undrained
and damped waves can be observed despite the inevitable Gibbs oscillations (caused
by the fast load application). In particular, their arrival times at the reference depth
equal 1.79×10−4 s and 3.58×10−4 s, respectively, which is consistent with the theoretical
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Figure 4.7: Propagation of a shock pressure wave: comparison between analytical and MPM (implicit GIMP-
patch and explicit GC-SRI-patch) solutions

propagation speeds – cf. Equations (4.26) and (4.27). As the hydraulic conductivity
decreases, only the undrained wave remains visible, which is consistent with the results
in Figure 4.7b (Verruijt, 2009). Also in this second case, the first arrival of the undrained
wave complies with the theoretical propagation speed – arrival in 1.79×10−4 s; then,
due to wave reflection at the fixed bottom boundary, the undrained wave passes again
through the reference location at a time equal to 2.06×10−3 s and results in a doubling
of the pore pressure magnitude. The good agreement between numerical and analytical
solutions (Verruijt, 2009) further supports the overall applicability of the proposed implicit
method. The high frequency oscillations that are visible in Figure 4.7 could be significantly
alleviated by more gradual application of the external load, or by resorting to numerical
algorithms more specifically conceived for shock wave propagation problems (Pisanò &
Pastor, 2011; Blanc & Pastor, 2013).

4.4.2. EXAMPLE 4: LARGE-DEFORMATION 1D CONSOLIDATION OF A SOIL

COLUMN

The case of a two-phase elastic soil column undergoing large-deformation consolidation
(Gibson et al., 1967; Tran & Sołowski, 2019; Zheng et al., 2021a) is tackled here using the
proposed implicit GIMP-patch method. It should be pointed out that this numerical
example has previously been solved using explicit coupled MPMs by Tran and Sołowski
(Tran & Sołowski, 2019) and Zheng et al. (Zheng et al., 2021a). Both the proposed solutions
using the same time step size of ∆t = 1.0×10−6 s have been previously verified against
the consolidation solution provided by Xie and Leo (Xie & Leo, 2004) based on Gibson’s
large deformation theory (Gibson et al., 1967).

With reference to the same problem layout in Figure 4.1, an elastic soil column of
respective width (w) and height (H0) equal to 0.1m and 1.0m is considered. The problem
domain is discretised into 10 4-node quadrilateral grid cells of size 0.1m×0.1m, while
the relevant hydromechanical material properties of the mixture are given in Table 4.1.
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The boundary conditions are exactly the same as shown in Figure 4.1, and an instant
external loading pa = 200.0kPa is applied as a surface compression. The time step size ∆t
for the proposed implicit MPM is chosen as 1.0×10−4 s, which is 100 times larger than
that adopted for explicit calculations (Tran & Sołowski, 2019; Zheng et al., 2021a).
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Figure 4.8: Comparison between implicit GIMP-patch, explicit GC-SRI-patch and analytical consolidation
solutions – large deformation analysis

Figure 4.8 shows the comparison between the implicit GIMP-patch, explicit GC-SRI-
patch, and analytical solutions in terms of excess pore pressure and settlement of top
surface. It is clear that that the two MPM solutions compare well with each other and also
match with the analytical large-deformation solution. However, slight oscillations in pore
pressure can still be observed from both implicit and explicit solutions near the upper
domain surface. Such oscillations are arguably caused by the small nodal mass issue (Ma
et al., 2010) and cell crossing that frequently occur during the settlement of the column
top surface.

The behaviour of the implicit GIMP-patch method upon grid refinement is also exa-
mined in the presence of (1D) large deformations. As an example, Figure 4.9 displays the
dependence of the relative pore pressure error ep (computed using Equation (4.25)) on
the grid cell size at Us = 0.5 (i.e., 50 % of consolidation). Similarly to the small deformation
consolidation case (Figure 4.4), the order of convergence varies from 2 to 1 upon progres-
sive grid refinement. The reduction in the convergence order for this large deformation
consolidation problem can be attributed to the fact that a larger group of material points
will be crossing the cell edges, which can cause additional errors that weaken the benefit
of the proposed MLSA-based patch recovery. Similar observations and conclusions also
can be found in the previous work of Charlton et al. (Charlton et al., 2017).

4.4.3. EXAMPLE 5: 2D SLUMPING BLOCK
The 2D consolidation of an elastic slumping block is analysed as a final case – see also
Zhao & Choo (2020) and Chapter 3 (Zheng et al., 2021a). The width and depth of the block
are 4.0m and 2.0m, respectively. Taking advantage of symmetry, only the right half of
the problem domain is considered, as is shown in Figure 4.10 together with the domain
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Figure 4.9: Dependence of the relative pore pressure error ep on the grid cell size at Us = 0.5 (large deformation
consolidation)

boundary conditions and applied gravitational acceleration ramp. For comparison pur-
poses, the same material properties as adopted in Chapter 3 for the same problem have
been retained – see Table 4.1. The problem domain has been discretised using 16×16,
4-node quadrilateral grid cells of size 0.125m×0.125m. Implicit GIMP-patch simulations
have been performed using a time step size equal to ∆t = 1.0×10−3 s.

Figure 4.10: Layout of the 2D slumping block problems and corresponding application ramp for the gravitational
acceleration

To further highlight the stabilisation benefits of the patch recovery, the above problem
has been solved using two versions of the proposed implicit MPM, namely GIMP and
GIMP-patch – i.e., with the former using no patch recovery of pore pressures. Figure 4.11
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shows the excess pore pressure field at t = 0.18s resulting from both methods. Notwith-
standing the underlying three-field formulation, the implicit GIMP (with equal-order
interpolation) still produces a checkerboard pore pressure pattern when no patch reco-
very is performed, which is consistent with the observations of Gajo et al. (1994). Such a
pattern becomes increasingly pronounced as time elapses, and causes a sudden abortion
of the GIMP simulation at approximately t = 0.21s. In contrast, the numerical solution
obtained using the proposed MLSA-based patch recovery is completely oscillation-free
throughout the whole duration of the analysis.

(a) Implicit GIMP method
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(b) Implicit GIMP-patch method

Figure 4.11: Excess pore pressure distributions at t = 0.18s with implicit GIMP and GIMP-patch methods

Figure 4.12 displays the excess pore pressure fields obtained at different times (t = 0.1,
0.3, 0.5s) using both the implicit GIMP-patch and explicit GC-SRI-patch methods (with
a time step size of ∆t = 1.0×10−5 s). For further comparison, the time evolution of the
excess pore pressure at three selected points (P1, P2 and P3 in Figure 4.10) is also shown
in Figure 4.13. As expected, a build-up in pore pressure occurs during the gravitational
ramp, whereas the following pressure dissipation develops non-monotonically due to
the so-called Mandel–Cryer effect (Mandel, 1953; Cryer, 1963) – see Figures 4.12 and
4.13. Both methods provide very comparable solutions for the same problem, with
smooth/stable pore pressure fields obtained in both cases. Similar conclusions regarding
the mutual verification of the two methods are suggested by Figure 4.14 in terms of
the final displacement field (vector norm of the solid displacement at t = 0.5s). The
comparison with the results returned by the explicit method in Chapter 3 supports the
overall suitability of the proposed implicit GIMP-patch method, which can be used to
solve transient hydromechanical problems with large time steps.

4.4.4. CALCULATION TIME
To compare in more detail the computational performance of the two considered MPMs,
selected time steps (giving the same order of accuracy) and associated calculation times
(CT) are reported in Table 4.3 for verification examples 1, 4, and 5. Note that the implicit
and explicit time steps used for the 1D small-deformation consolidation benchmark
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(a) Implicit (left) and explicit (right) solutions at t = 0.1s

(b) Implicit (left) and explicit (right) solutions at t = 0.3s
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(c) Implicit (left) and explicit (right) solutions at t = 0.5s

Figure 4.12: Excess pore pressure field at different times obtained for a 2D slumping block using the implicit
GIMP-patch method (left) and explicit GC-SRI-patch method (right)

(Example 1 in Section 4.1.1) have been selected based on a dedicated sensitivity study
(see Figure 4.3) and re-adopted to solve the 2D slumping block problem (Example 5 in
Section 4.3). A coarser background mesh was employed for the 1D large-deformation
consolidation problem (Example 4, in Section 4.2), which enabled the use of larger time
steps in both the explicit and implicit analyses.

The benefit of the implicit method in terms of calculation time is readily apparent
in Table 4.3 and follows directly from the enabled use of large time steps. However, it is
worth noting that the relative difference in calculation time between the implicit and the
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Figure 4.13: Time evolution of the excess pore pressure at three different locations (points P1, P2, P3 in Fig. 4.10)
obtained for a 2D slumping block using the implicit GIMP-patch method and the explicit GC-SRI-patch method
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(b) Explicit GC-SRI-patch method

Figure 4.14: Solid displacement field obtained at t = 0.5s using the implicit GIMP-patch method and the explicit
GC-SRI-patch method

explicit codes tends to gradually decrease as the problem domain is discretised with a
larger number of MPs and grid cells (e.g., as in the 2D slumping block example). This
is due to the implicit solver (in this case, the PARDISO solver), which solves the full
system of equations. The PARDISO solver is based on a direct solver (Schenk & Gärtner,
2011), which has numerical factorisation as the major step in the solution, which for
2D problems has an order of complexity O

(
n3/2

)
(where n is the size of the vector of

unknowns). In the explicit method, the increase in time is simply proportional to the
number of unknowns. Therefore, as the size of the problem increases, the implicit method
becomes less advantageous. This aspect should be borne in mind when tackling relatively
large problems, which may require, e.g., parallel computing techniques for faster solution
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when using the implicit GIMP-patch method.

Table 4.3: Computational performance of the considered implicit and explicit MPMs in relation to the verification
examples 1, 4, and 5

Example
Implicit Explicit

∆t CT ∆t CT

1 1.0×10−3 s 9s 1.0×10−5 s 386s
4 5.0×10−3 s 17min 5.0×10−5 s 279min
5 1.0×10−3 s 5min 1.0×10−5 s 54min

4.5. CONCLUSIONS

T HIS chapter has presented a fully implicit, stabilised MPM for dynamic coupled
problems in porous media. The proposed method is based on a three-field u–p–

U formulation of the governing conservation laws and equal/low-order interpolation
of the three primary variables, namely solid displacement, pore pressure, and water
displacement. Combining enhanced GIMP interpolation functions with a Moving Least
Square Approximation (MLSA)-based patch recovery scheme for pore pressures has been
shown to produce accurate, stable and oscillation-free results over different inertial and
deformation regimes. In particular, five 1D/2D poroelastic examples have been used to
demonstrate the good performance of the implicit MPM in comparison with analytical
solutions (when available) and MPM solutions obtained through the explicit GC-SRI-
patch MPM method proposed in Chapter 3 (Zheng et al., 2021a).

The computational benefit of the implicit method is substantial and stems directly
from the possibility to use larger time steps. However, it has also been pointed out that
its relative advantage with respect to the explicit algorithm tends to reduce as problems
of increasing size are tackled. Future work will be devoted to boosting the computatio-
nal performance (e.g., via parallel computing), as well as to include more realistic soil
constitutive models for the solution of a wider class of large-deformation geotechnical
problems.
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5
IMPLICIT MPM SIMULATION OF

LARGE-DEFORMATION PROBLEMS IN

COUPLED ELASTOPLASTIC

GEOMATERIALS

The Material Point Method (MPM) has been gaining increasing popularity as an approp-
riate approach to the solution of coupled hydro-mechanical problems involving large
deformations. This chapter extends the implicit GIMP-patch method proposed in Chapter
4 (Zheng et al., 2021b) to tackle large-deformation problems in (nearly) isochoric elast-
oplastic geomaterials, particularly by remedying the numerical inaccuracies caused by
volumetric locking, such as spurious stress oscillations and, overall, an excessively stiff res-
ponse of the system at hand. To overcome these difficulties in two-phase coupled analyses,
the B approach of Hughes (1980) is incorporated into the implicit GIMP-patch method
developed in Chapter 4, which has already been successfully verified for coupled poroelastic
problems. Details regarding the formulation and implementation of the proposed method
are provided, while several benchmark problems are numerically analysed to evaluate its
performance in the presence of elastoplastic behaviour. The numerical results confirm the
suitability of the implicit B GIMP-patch method for the solution of geo-problems spanning
weak to strong hydro-mechanical coupling and small to large deformations.

Parts of this chapter appear in Zheng et al. (2022).
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5.1. INTRODUCTION

S IMILARLY to the case of coupled Finite Element Methods (FEMs), MPMs also perform
poorly in the presence of incompressibility constraints when built on low-order spatial

interpolation. With regard to fluid-saturated geomaterials, incompressible behaviour may
be associated with hindered pore water drainage and/or a (nearly) isochoric response of
the solid skeleton (Bandara & Soga, 2015): while the former may induce well-known insta-
bilities in the simulated pore pressure field, the latter may give rise to an excessively stiff
response of the system (volumetric locking) – it is worth recalling that constitutive models
for geomaterials produce only limited volumetric strain increments when substantial
plasticity is mobilised. To suppress pore pressure instabilities in low-order coupled MPMs,
several stabilisation approaches have been adopted, including fractional time stepping
(Jassim et al., 2013; Kularathna et al., 2021), polynomial pressure projection (Zhao &
Choo, 2020), and reduced integration (Abe et al., 2013; Bandara & Soga, 2015; Wang et al.,
2018; Zheng et al., 2021a,b). On the other hand, locking-related inaccuracies can be
mitigated in two-phase coupled problems by means of techniques initially developed
for one-phase media. In the context of one-phase MPM modelling, solutions based, e.g.,
on mixed variational principles (Mast et al., 2012; Iaconeta et al., 2019), fractional time
stepping (Kularathna & Soga, 2017; Zhang et al., 2017), and F and B methods (Coombs
et al., 2018; Bisht et al., 2021), have already proven successful against locking in one-phase
large-deformation problems. In very few instances, such locking remedies have also been
implemented in coupled (standard) MPMs (Jassim et al., 2013; Bandara & Soga, 2015),
but exclusively in combination with explicit time integration. Most recently, Kularathna
et al. (2021) proposed a stable time-stepping scheme for the MPM modelling of fluid-
saturated porous media within the framework of the Generalised Interpolation Material
Point (GIMP) method (which is a variant of standard MPM).

This chapter demonstrates the benefits of combining the well-known anti-locking B
approach (originally proposed by Hughes (1980) for incompressible FEM modelling) with
the fully implicit, three-field GIMP-patch method developed in Chapter 4 for coupled
large-deformation problems (Zheng et al., 2021b). The resulting method, named ‘implicit
B GIMP-patch’ method, is shown in this chapter to score two important goals: (i) it
can substantially alleviate (undrained) pore pressure instabilities, owing to a beneficial
combination of selective reduced integration and patch recovery based on a Moving Least
Square Approximation (MLSA) (see Chapter 3); (ii) it exploits the B approach to remedy
locking-related inaccuracies in the presence of a (nearly) isochoric plastic behaviour of
the solid skeleton.

To the author’s knowledge, the proposed combination of pressure stabilisation and
anti-locking techniques is here explored for the first time in the framework of a fully
implicit coupled MPM (within the framework of GIMP). The contents of the chapter are
organised as follows: after briefly summarising in Section 5.2 the fundamentals of the
earlier implicit GIMP-patch method (based on a u–p–U formulation of the reference
hydro-mechanical problem), technical details regarding the incorporation of the B me-
thod are covered in Section 5.3; in Section 5.4 the performance of the proposed method is
discussed with reference to a number of numerical verification examples.
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5.2. FORMULATION OF THE IMPLICIT GIMP-PATCH METHOD
In this section, the main equations governing the dynamics of saturated soil-like materials
based on the three-field u–p–U formulation are first reiterated; then, the discretisation
and stabilisation processes associated with the implicit GIMP-patch method are also
summarised. Note that only those equations essential to a full understanding of the
development in this chapter are presented. More details and further links to previous
literature have already been covered in Chapter 4.

5.2.1. GOVERNING EQUATIONS
For fully-saturated porous media, the momentum balance equations associated with the
whole two-phase mixture and the pore water phase read respectively as (Zienkiewicz &
Shiomi, 1984; Zienkiewicz et al., 1999)

STσ−ρü −ρw ür +ρb = 0 (5.1)

∇p −R −ρw ü −ρw
ür

n
+ρw b = 0 (5.2)

where S is a differential divergence operator, u is the absolute displacement of the soil
skeleton, ur is the displacement of the water phase relative to the solid phase and defined
by ur = n (U −u) (where U is the absolute displacement of the water phase), b is an
external body force, and R is the drag force exchanged by the soil skeleton and the pore
water due to their relative motion; dots are used to indicate time differentiation.

The pore water flow must satisfy the following mass conservation equation:

∇· u̇r +∇· u̇ + ṗ

Q
= 0 (5.3)

where the stiffness parameters Q, defined as 1/Q = n/Kw + (1−n)/Ks – Kw , and Ks are
the bulk moduli of the water phase and soil particles, respectively.

In addition to the above conservation laws, hydraulic and mechanical constitutive
relationships are also required, namely for the drag force R (= nρw g

k

(
U̇ − u̇

)
, with k and g

standing for soil permeability and gravitational acceleration, respectively) and the soil
skeleton behaviour. The latter is normally expressed by relating the rates of effective stress
(σ̇′) and strain (ε̇):

σ̇′ = Dep ε̇ (5.4)

where the elasto-plastic stiffness matrix of the solid skeleton (Dep ) is used in combina-
tion with a linearised definition of the strain rate (González Acosta et al., 2021; Tran &
Sołowski, 2019; Zheng et al., 2021a). It should be noted that this work focuses on the
implementation of the B approach in a coupled implicit MPM, and on its verification for
coupled elastoplastic problems – particularly with respect to the notorious numerical
oscillation issues that are often associated with MPM modelling (González Acosta et al.,
2017, 2020; Zheng et al., 2021a). Fully general modelling of large deformations can be
achieved by introducing well-established finite strain measures (Holzapfel, 2000) – such
an extension is not expected to heavily impact the hydromechanical performance of the
proposed method and will be pursued in future work.
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5.2.2. SPACE AND TIME DISCRETISATION
In the context of a three-field u–p–U formulation, the primary variables u (solid displace-
ment), p (pore pressure), and U (fluid displacement) are first approximated using their
nodal values (ū, p̄ , and Ū ) in the background mesh:

u = Nu ū, p = Np p̄ , U = NUŪ (5.5)

where Nu , Np , and NU are matrices containing shape functions of the same low order
(bilinear in 2D problems). Substituting the above approximations (Equation (5.5)) into
the weak form of the governing equations ((5.1), (5.2), and (5.3)) leads to the following
discrete system of ordinary differential equations: Mu 0 0

0 0 0
0 0 MU

 ¨̄u
¨̄p
¨̄U

+
 C1 0 −C2

0 0 0
−CT

2 0 C3

 ˙̄u
˙̄p
˙̄U

+
 Ku −G1 0

−GT
1 P −GT

2
0 −G2 0

 ū
p̄
Ū

=
 f̄s

0
f̄w


(5.6)

where: Mu and MU are mass matrices for the soil and water phases; C1, C2, and C3 are
damping matrices physically associated with grain–fluid drag (no Rayleigh damping
included); Ku is the stiffness matrix of the solid skeleton; P is a compressibility matrix
determined by the bulk stiffness of the solid grains and pore water; G1 and G2 are two
matrices describing the hydro-mechanical coupling between the skeleton deformation
and pore water flow; f̄s and f̄w are nodal force vectors associated with the solid and water
phases. The detailed expressions of these matrices emerge from the spatial discretisation
process, and are provided by Zienkiewicz & Shiomi (1984) and Zheng et al. (2021b) with
reference to FEM and MPM modelling, respectively.

Within the framework of MPM, the matrices in Equation (5.6) can be obtained through
the assembly of matrix contributions evaluated at the grid cell nodes after mapping from
the MPs. If the same bilinear shape functions (in 2D problems) as in low-order FEM are
used, then standard MPM results may suffer from spurious oscillations associated with
discontinuous shape function gradients, particularly in the event of MP cell-crossing
(Bardenhagen & Kober, 2004). To mitigate such oscillations, Bardenhagen & Kober (2004)
proposed the GIMP approach, which is based on shape functions constructed by integra-
ting linear shape functions Ni (x) over the MP support domainΩmp – the subscripts i and
mp indicate the i th node and mth MP.

Using GIMP shape functions and their gradients, the matrices in the discrete system
(5.6) can be obtained (more details can be found in Chapter 4). The whole equation set,
after space discretisation, can be represented in the following compact form:

Ma +Cv +Kd = f̄ (5.7)

where: M, C, and K are generalised mass, damping, and stiffness matrices, respectively; f̄

is a time-varying external load term; a =
[

¨̄u, ¨̄p , ¨̄U
]T

, v = [ ˙̄u, ˙̄p , ˙̄U ]T, and d = [ū, p̄ ,Ū ]T are

generalised nodal displacement, velocity, and acceleration vectors, respectively.
The ordinary differential system in Equation (5.7) can be implicitly integrated in

time using the well-established Newmark algorithm (Newmark, 1959). Using two time
integration parameters γ and β, the corresponding recurrence relations for stepping from
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n to n +1 are (Hughes, 1987):

an+1 = an +∆a (5.8a)

vn+1 = vn +∆t
[(

1−γ)
an +γan+1

]
(5.8b)

dn+1 = dn +vn∆t + ∆t 2

2

[(
1−2β

)
an +2βan+1

]
(5.8c)

in which ∆t = tn+1 − tn is the (constant) time step size. After substituting the above
recurrence relations into Equation (5.7), the following algebraic system of fully discretised
equations results:

K∆dn+1 = f̄n+1− f i nt
n +Mn

[
f1

∆t
vn +

(
f1

2
−1

)
an

]
+Cn

[(
f2 −1

)
vn +

(
f2

2
−1

)
an∆t

]
(5.9)

where K = f1

∆t 2 Mn + f2

∆t
Cn +Kn is an algorithmic dynamic stiffness matrix based on the

evaluations at the nth step of the generalised mass, damping, and stiffness matrices

(respectively, Mn , Cn , and Kn), f1 = 1/β and f2 = γ/β, and f i nt
n =

[
f i nt

u,n , f i nt
p,n , f i nt

U ,n

]T
is the

internal nodal force vector:

f i nt
u,i =

Nmp∑
mp=1

BT
u,i

(
xmp,n

)[
σ′

mp,n − (1−n)mpmp,n

]
Vmp,n (5.10a)

f i nt
p,i =

Nmp∑
mp=1

[
− (1−n)Sp,i (xmp,n)εu

vol ,mp −Sp,i (xmp,n)
pmp,n

Q
−nSp,i (xmp,n)εU

v,mp

]
Vmp,n

(5.10b)

f i nt
U ,i =−

Nmp∑
mp=1

BT
U ,i

(
xmp,n

)
nmpmp,nVmp,n (5.10c)

and Nmp is the total number of MPs; εu
vol ,mp and εU

vol ,mp are the volumetric strain of

the soil and water phases at the mp th MP; xmp,n and Vmp,n are the coordinate and
volume of mp th MP at step n, whileσ′

mp,n and pmp,n indicate the corresponding effective
stress and pore pressure values; and the subscripts/superscripts u, p and U , respectively,
indicate variables associated with the primary variables in the u–p–U formulation. In the
remainder of this study, a single pair of integration parameters, β= 0.25 and γ= 0.5, is
exclusively considered.

Since elasto-plastic large-deformation problems are intrinsically non-linear, the dis-
cretised system (5.9) must be solved iteratively. To this end, each time step is solved
through the Modified Newton–Raphson iteration scheme (Zienkiewicz et al., 2005). When
the state of equilibrium is reached, all relevant variables are updated at the MPs using the
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computed nodal values as follows:

amp,n+1 =
Nnode∑

i=1
Su,i (xmp,n)ai ,n+1 (5.11a)

vmp,n+1 =
Nnode∑

i=1
Su,i (xmp,n)vi ,n+1 (5.11b)

σ′
mp,n+1 =σ′

mp,n +Dep
Nnode∑
n=1

Bu,i (xmp,n)ūi ,n+1 (5.11c)

pmp,n+1 = pmp,n +
Nnode∑
n=1

Sp,i (xmp,n)p̄i ,n+1 (5.11d)

xmp,n+1 = xmp,n +
Nnode∑
n=1

Su,i (xmp,n)ūi ,n+1 (5.11e)

where Nnode is the total number of nodes, and ūi ,n+1 and p̄i ,n+1 are the nodal incremental
displacements and pore pressure at the (n +1)th step.

To alleviate pore pressure instabilities in coupled analyses, a patch recovery algorithm
based on a Moving Least Square Approximation (MLSA) has been introduced in the
implicit GIMP method in Chapter 4 (Zheng et al., 2021b), following the earlier explicit
implementation described in Chapter 3 (Zheng et al., 2021a). The implicit GIMP-patch
method was tested for poroelastic coupled problems in Chapter 4 and shown to produce
stable and oscillation-free solutions.

5.3. IMPLEMENTATION OF THE B LOCKING ANTIDOTE INTO THE

IMPLICIT GIMP-PATCH METHOD
In a similar manner to low-order FEMs, the accuracy of the coupled implicit GIMP-
patch method may also be negatively impacted by volumetric locking effects, which
are likely to manifest themselves when the soil skeleton deforms at (nearly) constant
volume (e.g., during plastic flow) and a full strain integration is adopted in the stress
analysis (Coombs et al., 2018). In this study, the original version of the B method for
low-order FEMs (Hughes, 1980) is implemented in the implicit GIMP-patch method to
remedy locking-related inaccuracies in elasto-plastic large-deformation problems. The
essence of the B approach is to evaluate the excessively stiff volumetric component of the
compatibility matrix (Bi ) via reduced quadrature, while full quadrature is still employed
for the complementary deviatoric part (Hughes, 1980). Accordingly, the compatibility
matrix Bi is first split at a given node i into deviatoric (Bdev

i ) and volumetric (Bvol
i )

components, so that Bi = Bdev
i +Bvol

i . In the case of plane strain conditions, the Bi and

Bvol
i matrices assume the following forms:

Bi =


∂Ni
∂x 0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

0 0

 , Bvol
i = 1

3


∂Ni
∂x

∂Ni
∂y

∂Ni
∂x

∂Ni
∂y

0 0
∂Ni
∂x

∂Ni
∂y

 , Bdev
i = Bi −Bvol

i (5.12)
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where Ni is the shape function associated with the i th node.
In the FEM B method, the original volumetric matrix Bvol

i is replaced by the following
‘improved’ version evaluated at the grid cell centres (gc):

B
vol
i = 1

3


∂Ni ,g c

∂x
∂Ni ,g c

∂y
∂Ni ,g c

∂x
∂Ni ,g c

∂y

0 0
∂Ni ,g c

∂x
∂Ni ,g c

∂y

 (5.13)

while the deviatoric matrix Bdev
i is directly calculated at the Gauss point (gp) locations.

As a result, the following global compatibility matrix Bi is obtained:

Bi = Bdev
i +B

vol
i =


2
3
∂Ni ,g p

∂x + 1
3
∂Ni ,g c

∂x − 1
3
∂Ni ,g p

∂y + 1
3
∂Ni ,g c

∂y

− 1
3
∂Ni ,g p

∂x + 1
3
∂Ni ,g c

∂x
2
3
∂Ni ,g p

∂y + 1
3
∂Ni ,g c

∂y
∂Ni ,g p

∂y
∂Ni ,g p

∂x

− 1
3
∂Ni ,g p

∂x + 1
3
∂Ni ,g c

∂x − 1
3
∂Ni ,g p

∂y + 1
3
∂Ni ,g c

∂y

 (5.14)

The same B approach has been previously incorporated into two-phase standard
MPM (Bandara & Soga, 2015) and one-phase GIMP (Bisht et al., 2021), in both cases
within an explicit time stepping scheme. It should be noted that such an implementation
can easily be performed for a standard MPM, since the centre of each grid cell can be
directly determined. In contrast, the B extension of GIMP is less straightforward – a
specific MP may in fact be influenced by multiple cells when its support domain lies
across more than one grid cell, which frequently happens during the movement of MPs.
Following the approach proposed by Coombs et al. (2018), only that portion of the MP
support domain lying within the domain of a grid cell is considered to contribute to the
volumetric behaviour of the cell itself.

In order to construct the GIMP shape function and its gradient, the shape function
Ni ,g c and its gradient ∇Ni ,g c take values at the centre of a grid cell, which remain con-
stant (Ni ,g c = 1

2 and ∇Ni ,g c =± 1
h , where h is the size of a quadrilateral cell in a regular

background mesh) through the entire cell. The one-dimensional GIMP shape function
Si ,g c is then computed as

Si ,g c = 1

Vmp

∫
Ωmp

1

2
dx (5.15)

Figure 5.1 shows the GIMP shape functions and their gradients sampled at the centre
of the grid cell. Using the GIMP shape function, the modified B̄i matrix can be written as

B̄i =


2
3
∂Si ,mp

∂x + 1
3
∂Si ,g c

∂x − 1
3
∂Si ,mp

∂y + 1
3
∂Si ,g c

∂y

− 1
3
∂Si ,mp

∂x + 1
3
∂Si ,g c

∂x
2
3
∂Si ,mp

∂y + 1
3
∂Si ,g c

∂y
∂Si ,mp

∂y
∂i ,mp

∂x

− 1
3
∂Si ,mp

∂x + 1
3
∂Si ,g c

∂x − 1
3
∂Si ,mp

∂y + 1
3
∂Si ,g c

∂y

 (5.16)
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After determining the modified B̄i matrix, the nodal stiffness and internal force matri-
ces in Equation (5.9) and the effective stress vector in Equation (5.11c) can be computed
by simply replacing the original B matrix with the modified B̄i matrix. Aside from the
inclusion of the B̄ matrix, all other steps regarding space and time discretisation are the
same as in the implicit GIMP-patch method proposed in Chapter 4 (Zheng et al., 2021b).

2lp
i -1 i i + 1

Grid cell center

Grid node

Material point

(a) GIMP shape function

2lp

i-1 i i+1

(b) GIMP shape function gradient

Figure 5.1: One-dimensional GIMP shape function and its gradient sampled at the centre of a grid cell

5.4. NUMERICAL VERIFICATION AND APPLICATION EXAMPLES
This section presents the numerical solutions obtained for several verification and appli-
cation examples using the proposed implicit B GIMP-patch method. In all examples, the
mechanical behaviour of the soil skeleton is reproduced by the Mohr-Coulomb model,
based on a model implementation that does not include a tension cut-off.

5.4.1. BEARING CAPACITY OF A STRIP FOOTING

Numerical studies regarding the undrained bearing capacity of rough strip footings have
often been performed by modelling the soil as a single-phase incompressible material
(total stress analysis), both under small- and large-deformation conditions. Such a re-
ference problem has recently been studied by Kiriyama & Higo (2020) and Bisht et al.
(2021) via single-phase MPM simulations. As a preliminary verification of the implicit
B GIMP-patch method, its single-phase, total stress performance is first verified with
respect to the bearing capacity problem shown in Figure 5.2 (the symmetry with respect
to the median plane has been exploited to reduce the computational cost). To comply
with the total stress approach, the inherently two-phase numerical model has been set
up to function as a one-phase system by (i) introducing a very large permeability, and
(ii) reducing the Mohr-Coulomb frictional model to its cohesive/isochoric version (i.e.,
the Tresca model, in which the cohesion c coincides with the undrained strength su) – all
material properties are listed in Table 5.1. As is usual in total stress limit load calculations,
the initial stress state of the soil is not influential and, therefore, there is no need to
account for its self-weight in the analysis (although a mass density is still assigned to the
MPs for the calculation of the inertial terms associated with the u–p–U formulation).

Both the footing (breadth B = 1 m) and the soil layer have been discretised using
4-node quadrilateral grid cells, with each cell initially hosting 2×2 equally-spaced MPs.
To enable meaningful comparison to static, one-phase solutions, the external load has
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Figure 5.2: Reference bearing capacity problem for a strip footing: computational domain and boundary
conditions

been applied at a sufficiently slow rate, so as to ensure negligible acceleration and excess
pore pressure generation. Both numerical simulations have been performed with a time
step size equal to∆t = 5.0×10−2 s, setting the same material parameters as those adopted
by Bisht et al. (2021) for fair comparison. The selected time step size and loading rate have
been verified to enable proper modelling of the inherently quasi-static process under
consideration using the fully dynamic MPM formulation developed in this study.

SMALL-DEFORMATION ANALYSIS

The small-deformation (SD) analysis of the problem in Figure 5.2 has been performed in
combination with a large ratio between the Young’s modulus and the cohesion (undrained
shear strength) of the soil, E/c = 10000, so as to achieve the bearing capacity limit –
q/c = 2+π≈ 5.14 – with only small settlement of the foundation. In this SD example the
external vertical pressure q has been directly applied on the grid nodes below the footing,
at a rate of 0.01kPa/s. Figure 5.3 shows the SD relationship between the normalised
load (q/c) and displacement (d/B) obtained for a grid cell size h equal to 0.25m. In
Figure 5.3, the implicit B GIMP-patch solution is compared to those solutions obtained
via the implicit GIMP-patch method developed in Chapter 4 (Zheng et al., 2021b) and the
explicit B GIMP by Bisht et al. (2021). It is apparent that the implicit GIMP-patch solution
severely overestimates the analytical capacity limit, while excellent agreement is observed
between the result obtained by the method proposed in this study and the result obtained
by Bisht et al. (2021). This outcome supports the anti-locking effectiveness of the implicit
B GIMP-patch method, with a computational convenience that is expected to be superior
to Bisht et al.’s method owing to the implicit time stepping scheme.

In more detail, Figure 5.4 displays the final distributions of the mean stress obtained
through the implicit GIMP-patch method, as computed using both its original and B
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Table 5.1: Material properties adopted for the footing and the (two-phase) soil for the total stress analysis of the
undrained bearing capacity problem in Figure 5.2

Property Symbol Unit SD analysis LD analysis
Young’s modulus (footing) E f [kPa] 10000 10000
Poisson’s ratio (footing) ν f [-] 0.3 0.3
Young’s modulus E [kPa] 1000 100
Poisson’s ratio ν [-] 0.49 0.49
Soil grain density ρs [kg/m3] 2600 2600
Water density ρw [kg/m3] 1000 1000
Friction angle φ [◦] 0 0
Dilation angle ψ [◦] 0 0
Cohesion c [kPa] 0.1 1.0
Initial porosity n [-] 0.4 0.4
Water bulk modulus Kw [kPa] 2.2×106 2.2×106

Soil grain bulk modulus Ks [kPa] 1.0×1010 1.0×1010

Permeability k [m/s] 1.0×10−1 1.0×10−1

Figure 5.3: SD relationship between normalised load (q/c) and displacement (d/B) for the undrained bearing
capacity problem in Figure 5.2

versions. Even for an SD analysis in which the displacements are negligible, Figure 5.4a
shows that the implicit GIMP-patch method generates spurious stress oscillations when
no anti-locking measures are undertaken. In contrast, the corresponding picture arising
from the B analysis shows the typical compression bulb under the foundation without
any undesired oscillations (Figure 5.4b).

To explore the influence of space discretisation in the implicit B GIMP-patch me-
thod, Figure 5.5 shows the load-displacement curves obtained with four different space
discretisations (h = 0.5m, 0.25m, 0.1m, and 0.05m). In all cases, the implicit B GIMP-
patch solution captures the undrained bearing capacity of the strip footing, with a clearly
converging trend towards Prandtl’s solution as finer background meshes are considered.
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Figure 5.4: SD mean stress distribution associated with the last calculation step of the analyses in Figure 5.3:
(a) implicit GIMP-patch method by Zheng et al. (2021a) vs (b) implicit B GIMP-patch method (this study). The
horizontal and vertical axes refer to distance non-dimensionalised with respect to the foundation width B
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Figure 5.5: SD mesh sensitivity of the implicit B GIMP-patch method for the undrained bearing capacity problem
in Figure 5.2 (including a zoom-in on the detail at bearing failure)

LARGE-DEFORMATION ANALYSIS

The static, undrained bearing capacity of a strip footing under large deformations (LD)
has previously been studied within a one-phase total stress framework using a variety of
numerical methods, including the Arbitrary Lagrangian-Eulerian (ALE) approach (Nazem
et al., 2006, 2009), sequential limit analysis (Da Silva et al., 2011), the remeshing and
interpolation technique with small strain (RITSS) (Wang et al., 2015), and MPM (Sołowski
& Sloan, 2015; Woo & Salgado, 2018; Iaconeta et al., 2019; Kiriyama & Higo, 2020; Bisht
et al., 2021). In what follows, the LD performance of the (coupled) implicit B GIMP-
patch method is assessed, following the same adopted strategy as in the previous SD
sub-section, i.e., with a sufficiently slow application of the external load (0.1kPa/s) and,



5

94 5. IMPLICIT STABILISED MPM APPLICATIONS IN ELASTOPLASTIC GEOMATERIALS

therefore, negligible pore pressure build-up. It is also worth mentioning that, within
the MPM framework, it is rather difficult to exactly enforce natural boundary conditions
such as surface tractions, due to the substantial displacement of MPs associated with
LD processes. Therefore, it has been preferred to model the footing in Figure 5.2 as a
solid of increasing unit weight, which easily enables the application of a desired vertical
pressure – as previously done by Kiriyama & Higo (2020). For comparison purposes, the
simulated load–displacement curve for the foundation has been obtained by calculating
the external pressure via the average contact force between the footing block and the
underlying (weightless) soil.

In Figure 5.6, the load-displacement curves obtained through the implicit B GIMP-
patch method, and grid cell sizes of h = 0.25m and 0.125m, are plotted. The LD solutions
from explicit B GIMP (Bisht et al., 2021), RITSS (Wang et al., 2015), and sequential limit
analysis (Da Silva et al., 2011) are also included for comparison – note that the soil
is modelled as a strictly rigid-plastic material in the case of sequential limit analysis
(Da Silva et al., 2011), whereas typical elasto-plastic behaviour is assumed in all other
numerical solutions. It can be observed that the implicit B GIMP-patch solution is in
good agreement with other LD results from the literature. The small differences between
the B GIMP-patch solutions and the others solutions are likely to be due to the use of
a relatively coarse/structured grid in this study, while locally refined meshes have been
adopted in the referenced studies.
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Figure 5.6: LD normalised load-displacement curves for the undrained bearing capacity problem in Figure 5.2

To further assess the LD performance of the implicit B GIMP-patch method, Figure 5.7
illustrates the distributions of the mean (effective) stress distribution and the deviatoric
plastic strain invariant εd

p =√
2/3eeep : eeep (with eeep being the deviatoric plastic strain tensor)

associated with a normalised settlement of the footing equal to d/B = 1. Also under LD
conditions, the mean stress field is mostly oscillation-free and exhibits a well-shaped
compression bulb – see Figure 5.7a. However, some small oscillations are still visible near
the bottom-right corner of the footing block, where substantial relocation of the MPs
takes place during LD settlement. Such a relocation can lead to a discontinuous support
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domain of MPs (see also Charlton (2018)) and, as a consequence, cause stress oscillations
(though not due to locking effects). In Figure 5.7b, large values of deviatoric plastic strain
appear around the foundation, which compare well with the quantitative observations of
Iaconeta et al. (2019) and Bisht et al. (2021).
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Figure 5.7: LD mean stress and deviatoric plastic strain distributions associated with the last calculation step
of the analyses in Figure 5.6 (grid cell size h = 0.125m). The horizontal and vertical axes refer to distance
non-dimensionalised with respect to the foundation width B

5.4.2. EARTHEN SLOPE FAILURE

In this section, the performance of the implicit B GIMP-patch method is evaluated with
respect to slope failure processes triggered by gravity. As is shown in Figure 5.8, the
reference slope comprises two soil layers that are henceforth referred to as ‘upper’ and
‘lower’ (foundation) layers – all material properties are listed in Table 5.2. The free surface
of the slope is unconstrained and freely draining, while the lateral and bottom boundaries
are impermeable and supported by rollers. In both example cases considered hereafter,
the problem domain has been discretised by means of four-node quadrilateral grid cells
of size 0.2m×0.2m, with each cell initially hosting four equally-spaced MPs; implicit time
integration has been performed with a time step size of ∆t = 5.0×10−2 s.

UNDRAINED ANALYSIS OF SLOPE FAILURE IN SOFTENING CLAY

Undrained slope failure is simulated by resorting to the same total stress approach adop-
ted in Section 5.4.1 – a Tresca-like soil behaviour has been introduced to obtain an
isochoric material response. It should be mentioned that an artificially large permeability
has been set for the clay, so as to enable total stress/one-phase modelling while using
a two-phase formulation – indeed, this simple expedient prevents the build-up of pore
pressures during one-phase undrained analyses. To reproduce the gradual reduction in
undrained strength during soil sliding, a simple cohesion degradation mechanism has
been incorporated into the constitutive law (Wang et al., 2018); specifically by prescribing
a linear reduction between the peak (cp ) and residual (cr ) shear strength values with
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Figure 5.8: Reference slope stability problem: computational domain and boundary conditions

Table 5.2: Soil properties associated with the reference slope in Figure 5.8

Property Symbol Clay slope Sand slope

Upper layer Lower layer Upper layer Lower layer

Young’s modulus E [kPa] 1000 1000 1000 1000
Poisson’s ratio ν [-] 0.49 0.49 0.3 0.3
Soil grain density ρs [kg/m3] 2650 2650 2650 2650
Water density ρw [kg/m3] 1000 1000 1000 1000
Friction angle φ [◦] 0 0 25 25
Initial dilation angle ψi ni [◦] 0 0 -5 -5
Critical dilation angle ψr [◦] 0 0 0 0
Dilation evolution parameter η [-] – – -25.0 -25.0
Peak cohesion cp [kPa] 6.4 20.0 3.0 20.0
Residual cohesion cr [kPa] 3.6 20.0 3.0 20.0
Deviatoric plastic strain for cr ε

r
p [-] 0.75 0.75 – –

Initial porosity n [-] 0.4 0.4 0.4 0.4
Water bulk modulus Kw [kPa] 2.2×106 2.2×106 2.2×106 2.2×106

Soil grain bulk modulus Ks [kPa] 1.0×1010 1.0×1010 1.0×1010 1.0×1010

Permeability k [m/s] 1.0×10−1 1.0×10−1 1.0×10−1 ∼ 1.0×10−6

accumulated plastic deviatoric strain εd
p , and cr being attained for a value of εd

p equal
to εr

p , with the latter being an additional material parameter. Note that a much larger
strength is assigned to the foundation layer (Table 5.2), in order to force slope failure to
occur within the upper layer. Furthermore, the investigation of possible grid-dependence
effects associated with strain-softening are out of the scope of this study. The size of the
computational domain is defined, with reference to Figure 5.8, by w1 = 4.0m, w2 = 2.0m,
w3 = 4.0m, h1 = 2.0m, and h2 = 1.0m, with the slope inclination being ϕ= 45◦.

Two slope failure analyses have been carried out using both the original and B versions
of the implicit GIMP-patch method, according to the following two steps: (i) generation
of the initial soil stresses by gradually applying gravity in combination with kinematic
constraints to prevent immediate slope deformation; (ii) free slope deformation and
failure under its own weight with a degrading cohesion (the peak cohesion in Table
5.2 has been purposely selected to render the 45◦ slope unstable). In contrast to the
footing problem in Section 5.4.1, the gravity-driven failure of a slope does not allow the
attainment of a limit response with exactly no pore pressure build-up, not even if a very
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large permeability value is used. Therefore, the pore pressure degrees-of-freedom have
been forcedly set to zero in the MPM code to study the anti-locking performance of the
implicit B GIMP strategy in a large-deformation problem involving material plasticity and
softening.

Figure 5.9 shows the mean (total) stress contours at four different time instants,
namely t = 0s, 1s, 3s, and 5s. Figure 5.9a confirms that severe stress oscillations are
returned by the implicit GIMP-patch method without a proper mitigation of volumetric
locking. Such oscillations become particularly apparent where plastic straining takes
place most intensely (i.e., near the interface between upper and lower layers – see Figure
5.10), and tend to become more severe over time. In contrast, the benefits of the B
technique are confirmed once again in Figure 5.9b, even in the presence of material
softening. Furthermore, Figure 5.10 also shows how locking can significantly affect the
slope failure mechanism: the implicit GIMP-patch method returns a completely ‘locked’
deformation pattern, whereas significant slope run-out is obtained with the B-enhanced
calculations. This confirms the possibly extreme consequences of volumetric locking,
and the practical importance of its remediation in large-deformation problems.
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Figure 5.9: Time evolution of mean stress in the soil during undrained slope failure in softening clay. Results
obtained through (a) implicit GIMP-patch method and (b) implicit B GIMP-patch method



5

98 5. IMPLICIT STABILISED MPM APPLICATIONS IN ELASTOPLASTIC GEOMATERIALS

0 2 4 6 8 10

3

2

1

0 0.04 0.08 0.20

Deviatoric plastic strain [-]

0.12 0.16

0 2 4 6 8 10

3

2

1

0 0.5 1.0 2.5

Deviatoric plastic strain [-]

1.5 2.0

0 2 4 6 8 10

3

2

1

0 0.01 0.02 0.05
Total displacement [m]

0.03 0.04

(a) implicit GIMP-patch method

0 0.4 0.8
Total displacement [m]

1.2 1.6

0 2 4 6 8 10

3

2

1

(b) implicit B GIMP-patch method

Figure 5.10: Final distributions of deviatoric plastic strain and total displacement associated with undrained
slope failure in softening clay. Results obtained through (a) implicit GIMP-patch method; (b) implicit B GIMP-
patch method

COUPLED ANALYSIS OF SLOPE FAILURE IN WATER-SATURATED SAND

In this example, the coupled analysis of a sandy slope collapsing under its self-weight is
tackled using the implicit B GIMP-patch method. The problem domain in Figure 5.8 is
defined by w1 = 4.0m, w2 = 2.0m, w3 = 5.0m, h1 = 2.0m, and h2 = 1.0m, and the slope
inclination is ϕ= 45◦.

Sand behaviour has been simply modelled through the standard, state-independent
Mohr-Coulomb model. To more realistically capture the contractive plastic response of
a loose sand, a negative initial dilation angle (ψi ni ) has been adopted at the beginning
of the analysis; upon plastic straining, the dilation angle evolves with deviatoric plastic
strain εd

p towards its (nil) critical state value (ψcr i t ) according to the following relationship
(Lei et al., 2020):

ψ=ψcr i t +
(
ψi ni −ψcr i t

)
e−ηε

d
p (5.17)

where η is a material parameter governing the variation of ψ with εd
p . The material pro-

perties chosen for this example are listed in Table 5.2 and include, for simplicity, constant
values of cohesion and frictional angle. Some small cohesion has been introduced for the
upper layer to enable smoother calculations under low mean effective stress; conversely,
an unrealistically large cohesion has been set for the foundation layer, with the sole goal
of containing the slope failure within the upper layer.

Figure 5.11 shows the contours of pore pressure and mean effective stress at four
different time instants, obtained with a soil permeability k of 1.0×10−4 m/s. The gradual
development of slope failure due to shear banding is also visible and the slope face
(indicated by the dashed line) is compared to the initial geometry (indicated by the dotted
line). During all phases of the slope failure, the implicit B GIMP-patch method returns
perfectly smooth, oscillation-free distributions of effective stress and pore water pressure.
In particular, as failure develops, positive (compressive) excess pore pressures build
up as high deviatoric plastic straining takes place, which is consistent with the choice
of a negative dilation angle for the soil. The excess pore pressure begins to gradually
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dissipate after about 1.25s, i.e., as the slope gradually approaches its final equilibrium
configuration.
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Figure 5.11: Time evolution of excess pore pressure and mean effective stress during slope failure in water-
saturated sand. Results obtained with soil permeability k = 1.0×10−4 m/s and initial dilatancy angleψi ni =−5◦

To appreciate the influence of soil permeability on the results of the coupled analysis,
the final configuration of the slope at t = 50.0s is shown in Figure 5.12 for three different k
values. As expected, the numerical model captures correctly that larger soil displacements
develop at the slope toe as the permeability is reduced. Such an occurrence is clearly due
to the build-up of larger pore pressures, and therefore to a more pronounced reduction
in mean effective stress and, proportionally, soil shear resistance. On a related note,
Figure 5.13 displays the time evolution of the excess pore pressure (difference between
the current/total pore pressure value and the hydrostatic pore pressure value at the start
of simulation) at a point initially located near the slope toe – point A in Figure 5.11a. The
figure confirms that larger pore pressure peaks are attained for lower permeability values,
with a slower pore pressure dissipation afterwards. The latter is a consequence of the
larger drag forces R that locally arise with low permeability, which in turn hinders the
relative displacement of the soil skeleton and pore water (see Section 5.2.1). On the other
hand, the oscillatory pore pressure dissipation trends obtained for low k values reflect the
more pronounced dynamic effects that are associated with a farther/faster soil run-out
(Figure 5.12).

The impact of the deviatoric–volumetric coupling on soil behaviour is numerically
investigated by considering different values of the initial dilation angle (ψi ni in Equation
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Figure 5.12: Configuration after slope failure (at t = 50.0s) in water-saturated sand for different values of soil
permeability, and associated contours of total pore pressure and deviatoric plastic strain. Results obtained with
initial soil dilatancy angle ψi ni =−5◦
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Figure 5.13: Time evolution of the excess pore pressure at the point A shown in Figure 5.11a (initially located
near the slope toe) for different values of soil permeability. Results obtained with soil initial dilatancy angle
ψi ni =−5◦

(5.17)), namely −5◦ (contractive soil), 0◦, and 5◦ (dilative soil), in combination with a soil
permeability of k = 1.0×10−4 m/s. The distributions of the total displacement and the
deviatoric plastic strain at the end of the simulation (t = 50.0s) are shown in Figure 5.14.
It is evident that the slope toe undergoes rather limited displacement when dilative soil
behaviour is considered, whereas considerable slope deformation takes place in the case
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of a contractive soil. Such occurrences mainly stem from the fact that much larger positive
excess pore pressures build up when the soil is contractive, which can lead to a significant
reduction in the mean effective stress across the soil domain, and therefore to a lower
resistance to shear loading. In contrast, negative excess pore pressures result during the
deviatoric plastic straining of a dilative soil, which ultimately limits the deformations
experienced by the slope as a consequence of an enhanced resistance to shear. These
observations are further supported by the excess pore pressure curves plotted in Figure
5.15 for the same point A (near the slope toe) as indicated in Figure 5.11a. The figure
confirms the qualitative expectations about the relationship between the value of ψi ni

and the sign of the resulting excess pore pressure (Navas et al., 2018).
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Figure 5.14: Configuration after slope failure (at t = 50.0s) in water-saturated sand for different values of the
initial soil dilatancy angle ψi ni , and associated contours of total displacement and deviatoric plastic strain.
Results obtained with soil permeability k = 1.0×10−4 m/s

5.4.3. BEARING CAPACITY OF A STRIP FOOTING NEAR A SLOPE

As a final application example, the implicit B GIMP-patch method is used to analyse the
bearing capacity of a rough strip footing near the crest of a cohesive–frictional, water-
saturated slope. The computational model and the associated boundary conditions
are displayed in Figure 5.16. The slope comprises two layers of fluid-saturated soil;
B = 1m is the breadth of the foundation, while λ ·B denotes the distance between the
footing edge and the slope crest. The relevant domain dimensions in Figure 5.16 are
w1 = 13.0B, w2 = 5.0B, w3 = 8.0B, h1 = 5.0B, and h2 = 1.0B – note that the a rather
large w1 has been chosen to avoid boundary effects for all the values of λ ·B considered
in the following. The strip footing has been modelled as a stiff elastic block with a
Young’s modulus E f = 10000kPa and a Poisson’s ratio ν f = 0.3, while the Mohr–Coulomb
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Figure 5.15: Time evolution of the excess pore pressure at the same point A indicated in Figure 5.11a (initially
located near the slope toe) for different values of the initial soil dilatancy angle ψi ni . Results obtained with soil
permeability k = 1.0×10−4 m/s

parameters of the soil are listed in Table 5.3. Numerical simulations have been performed
using a time step size of ∆t = 5×10−2 s and a loading rate of 20.0kPa/s. Both the footing
and the soil base have been discretised through 4-node quadrilateral grid cells of size
0.5m×0.5m, with each cell initially hosting 2×2 equally-spaced MPs. The main purpose of
this example case is to demonstrate the suitability of the proposed B GIMP-patch method
to study the interplay between the foundation failure and slope collapse mechanism as a
function of the footing-to-crest distance.

w1 w2 w3

h1

h2

φ

Upper soil layer 

Lower soil layer 

Im
p
er

m
ea

b
le

 b
o
u
n
d
ar

y

Free drainage surface

Impermeable boundary

Free drainage surface

B

λB

Figure 5.16: Reference footing–slope interaction problem: computational domain and boundary conditions
(not to scale)

Figure 5.17 shows how the footing-to-crest distance factor λ affects the large-
deformation response of the foundation under the vertical pressure q . The distance
between the footing edge and the slope crest has a significant influence on the bearing
capacity, which tends to increase for larger values of λ and converge to the case of a foun-
dation on level ground with no slope – see the strong similarity of the responses associated
with λ= 6 and λ=∞. The influence of the footing-to-crest distance becomes gradually
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Table 5.3: Soil properties associated with the footing–slope interaction problem in Figure 5.16

Property Symbol Unit Upper layer Lower layer
Young’s modulus E [kPa] 1000 1000
Poisson’s ratio ν [-] 0.3 0.3
Soil grain density ρs [kg/m3] 2650 2650
Water density ρw [kg/m3] 1000 1000
Friction angle φ [◦] 25 25
Initial dilation angle ψi ni [◦] -5 -5
Critical dilation angle ψr [◦] 0 0
Dilation evolution parameter η [-] -25.0 -25.0
Cohesion c [kPa] 20.0 50.0
Initial porosity n [-] 0.4 0.4
Water bulk modulus Kw [kPa] 2.2×106 2.2×106

Soil grain bulk modulus Ks [kPa] 1.0×1010 1.0×1010

Permeability k [m/s] 1.0×10−4 1.0×10−4

more evident as the foundation response enters the large-deformation regime, i.e., after
a settlement of about 0.1B . The lack of a well-defined capacity plateau may be due to
concurrent factors that gradually manifest themselves as large foundation settlement
takes place. Such factors include (i) the growing contribution to the total capacity offered
by the lower soil layer with larger cohesion (see Table 5.3) as well as (ii) the increase in
lateral surcharge, which results in enhanced overburden and confinement. These phe-
nomena are reproduced owing to the large-deformation nature of the performed MPM
simulations, and are quantitatively impacted by the specific setting of soil’s dilatancy
properties.
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Figure 5.17: Influence of the footing-to-crest distance on the large-deformation load–displacement response of
the foundation in Figure 5.16

Figure 5.18 shows contours of excess pore pressure and deviatoric plastic strain associ-
ated with a foundation settlement equal to 2B and different values of λ . As expected, the
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largest pore pressure values emerge in the vicinity of the footing, though with a smaller
magnitude as λ decreases and more effective water drainage through the slope surface
occurs. λ also affects the type of governing failure mechanisms. For a small footing-to-
crest distance (e.g., λ= 0−2 in Figure 5.18), the failure mechanism is dominated by the
development of a shear band through the slope, that is from the footing to the slope
toe – as a consequence, the footing experiences a significant in-plane rotation during
its collapse. In contrast, larger λ values determine a decreasing influence of the slope,
so that a clear vertical foundation failure is first observed prior to a general sideways
displacement of the soil towards the slope.
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Figure 5.18: Final excess pore pressure (left) and deviatoric plastic strain (right) distributions associated with
the footing–slope interaction problem in Figure 5.16. Results obtained with soil permeability k = 1.0×10−4 m/s
at a total footing settlement equal to 2B

5.5. CONCLUSIONS
This chapter has presented a numerical method for the analysis of large-deformation
hydro-mechanical problems in fluid-saturated elastoplastic geomaterials. The proposed
method belongs in the family of MPMs, and builds on the combination of the recently
proposed implicit GIMP-patch method and the B kinematic enhancement against volu-
metric locking. The need for such an enhancement is motivated by the spurious stress
oscillations and excessively stiff responses that are obtained when there is a lack of spe-
cific anti-locking measures, especially when a (nearly) isochoric behaviour of the soil
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skeleton is considered. Details about the formulation and implementation of the implicit
B GIMP-patch method have been provided starting from a three-field u–p–U formulation
of the coupled hydro-mechanical problem. The proposed B GIMP-patch method has
been evaluated through several 2D benchmark problems (footing bearing capacity, slope
failure, and footing–slope interaction), and found to be largely satisfactory in terms of
accuracy, stability, and anti-locking performance. Further applications to more complex
large-deformation coupled problems and soil constitutive relationships, including proper
treatment of finite-strain kinematics, will be tackled in future work.
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6.1. CONCLUDING REMARKS

T HE Material Point Method (MPM) has been gaining increasing popularity as a suitable
approach to the solution of coupled hydro-mechanical problems involving large

deformations. Most previous studies have presented coupled MPMs based on the v–
w formulation of the relevant governing equations, the use of low-order interpolation
functions, and explicit time integration (conditionally stable). Importantly, MPM has
been known to perform poorly in the presence of incompressibility constraints when
built on low-order spatial interpolation (such as standard MPM and GIMP) and in the
absence of special measures against pore pressure instabilities and volumetric locking.
Moreover, in nearly or fully incompressible porous materials, the use of explicit time
integration is inevitably associated with extremely small time steps, which seriously limits
the applicability of MPM to couple large deformation problems of significant duration.
Since only limited MPM work has so far been devoted to the mentioned numerical issues,
this work has built on the need to find viable and robust solutions within the framework
of coupled MPM modelling.

This thesis has contributed to the improvement of MPM modelling capabilities for
large-deformation dynamic problems in fluid-saturated geomaterials, with emphasis on
the development and verification of stabilised coupled MPM approaches, as well as on
their application to practical geotechnical problems. Three main developments have thus
been proposed in this thesis: (i) an explicit stabilised single-point two-field (v–w form)
GIMP method with Selective Reduced Integration (GC-SRI-patch), including the patch
recovery of pore pressure increments based on a Moving Least Square Approximation
(MLSA) and the two-phase extension of the Composite Material Point Method (CMPM)
for effective stress recovery; (ii) a fully implicit stabilised single-point three-field (u–p–U
form) GIMP method (GIMP-patch), which combines enhanced GIMP shape functions
with an MLSA-based patch recovery scheme for pore pressures; (iii) a fully implicit B
GIMP-patch method, which introduces the anti-locking B approach to the implicit GIMP-
patch method to tackle large-deformation problems in (nearly) isochoric elastoplastic
geomaterials, particularly by remedying the numerical inaccuracies caused by volumetric
locking.

The accuracy and computational performance of the proposed methods have been
demonstrated with reference to several verification examples and practical applications,
spanning different regimes of material deformation (small versus large) and dynamic
motion (slow versus fast). The main conclusions of this research are summarised in what
follows.

6.1.1. EXPLICIT STABILISED GC-SRI-PATCH METHOD
In Chapter 3, a single-point two-phase fully coupled GIMP method based on a dynamic
velocity formulation (v–w form) of the governing hydromechanical equations has been
developed in combination with explicit time integration. To achieve accurate recovery
of pore pressures at the material points (MPs) and mitigate pore pressure instabilities in
the vicinity of the undrained-incompressible limit, a patch recovery based on a Moving
Least Square Approximation (MLSA) has thus been proposed for mapping pore pressure
increments from Gauss Points (GPs), where a selective reduced integration (SRI) has been
adopted to evaluate the pore pressures at the centre of each background cell, to MPs.
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The CMPM has been introduced to recover effective stresses and strains at MPs using an
enlarged problem domain and shape functions of higher order. The resulting GC-SRI-
patch method, which combines GIMP, SRI with MLSA-based patch recovery, and CMPM,
has been proven to provide accurate solutions for a number of benchmark problems.
In particular, the improvements brought by the GC-SRI-patch method with respect to
the simpler GIMP method have been demonstrated for one-dimensional consolidation
examples (both small and large deformation analysis) and for the study of an axisymme-
tric hollow cylinder subjected to internal pressurisation. Instead of piecewise constant
pore pressures over each cell, the proposed method returns continuous pore pressure
distributions both within grid cells and at inter-cell boundaries. In particular, in the case
of 1D large deformation consolidation, the large pore pressure oscillations near the upper
domain boundary would lead GIMP simulations to abort after significant displacement
of the MPs, while the GC-SRI-patch method can more accurately reproduce relevant
analytical solutions. Furthermore, the applicability of the explicit stabilised GC-SRI-patch
method has been demonstrated through the simulation of a 2D slumping block problem.
It has been shown that the simulated excess pore pressures inside the poroelastic block
evolve smoothly in time and without the spurious oscillations that the explicit GIMP
method would return.

6.1.2. FULLY IMPLICIT STABILISED GIMP-PATCH METHOD

It is known that the explicit GC-SRI-patch method, similarly to most coupled MPM formu-
lations from the literature, is only conditionally stable, which imposes extreme limitations
on the selection of the time step size. As a consequence, the need for stable time integra-
tion restricts the applicability of explicit coupled MPM to problems of considerable size
and/or duration. To enable the use of larger time steps and more convenient stability
properties, a new, fully implicit, stabilised GIMP using a single-point three-field (u–p–U )
formulation has been introduced in Chapter 4. As for the explicit method presented in
Chapter 3, the implicit stabilised GIMP also adopts an MLSA-based patch recovery to ob-
tain accurate pore pressure fields when the undrained-incompressible limit is approached.
Relevant aspects regarding the numerical implementation of the implicit GIMP-patch
method have been discussed in detail, including the iterative solution scheme required
by the geometrical non-linearity even for linear poroelastic media.

The developed implicit GIMP-patch method has been tested with respect to bench-
mark problems including the dynamic consolidation of a soil column (both for small and
large deformations), the propagation of a shock pressure wave, and the slumping of a
2D poroelastic block. Special attention has been dedicated to comparing the computa-
tional performances of the implicit GIMP-patch method and the explicit GC-SRI-patch
method described in Chapter 3. It has been shown that the implicit GIMP-patch method
can provide accurate, stable, and oscillation-free results that are closely comparable to
relevant analytical solutions (where available) and also to numerical results obtained
using the explicit GC-SRI-patch method, over different inertial and deformation regimes.
The computational convenience of the implicit GIMP-patch method lies in the possibility
to use relatively large time steps – however, the superior efficiency with respect to the
explicit GC-SRI-patch method tends to gradually reduce as problems of increasing size
(number of degrees-of-freedom) are tackled.
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6.1.3. IMPLICIT B GIMP-PATCH METHOD: APPLICATION TO ELASTOPLASTIC

COUPLED PROBLEMS
To enable the implicit GIMP-patch analysis of coupled large-deformation problems also
in (nearly) incompressible elastoplastic geomaterials, the implementation of the anti-
locking B approach has been described in Chapter 5. The effectiveness of the B approach
has first been tested for the case of a strip footing undergoing both small and large
settlements on an incompressible soil (in this case, the original coupled formulation
has been set to work according to the one-phase total stress approach by using a very
large permeability and the isochoric Tresca plasticity model). To further demonstrate
the applicability of the proposed method to relevant geotechnical problems, two typical
coupled geotechnical applications have also been studied: (i) the failure of an earthen
slope and (ii) the bearing capacity of a strip footing near the crest of a slope. In particular,
the failure of slopes in (a) undrained softening clay and (b) water-saturated sand, as well
as the mechanisms of footing–slope interaction, have been discussed in detail. In all the
analysed cases, the implicit B GIMP-patch method has been shown to be accurate and
stable, and to successfully mitigate the detrimental effects of volumetric locking. In the
case of slope failure problems, the proposed method has proven to be a suitable tool for
the analysis of landsliding phenomena, including the quantification of the unstable soil
mass and its possible run-out distance upon slope instability.

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH

B OTH the explicit and the implicit coupled MPMs have been developed in this work
as tools for the modelling of large deformation dynamic problems in fluid-saturated

geomaterials. Their success and applicability may be further enhanced by considering
the following recommendations for future research. It is particularly recommended to:

• develop a more accurate boundary detection algorithm. Even when a fixed back-
ground mesh is used in MPM computations, the mesh nodes may not always
coincide with the domain boundaries. This may lead to an inaccurate represen-
tation of the domain boundaries, and therefore frequently cause substantial pore
pressure oscillations – especially in the vicinity of a free surface under relatively
complex boundary conditions (such as the enforcement of an external surface trac-
tion and/or inflow/outflow boundary conditions). While in this study the attention
has been limited to rather simple cases, more work should be devoted to enable the
enforcement of complex boundary conditions in combination with the occurrence
of large soil deformations;

• incorporate more advanced soil constitutive models. In this thesis, only the standard
Mohr–Coulomb model (in some instances with strain-softening) has been adopted
to investigate elasto-plastic large-deformation processes, since the main focus of
the study has been the development and validation of a stabilised MPM. It is clear
that more advanced soil constitutive models, including proper treatment of finite-
strain kinematics, are required in order to realistically capture the most complex
features of hydro-mechanical behaviour in large deformation analyses, e.g., in
relation to the coupled progressive/retrogressive failure of slopes and earthquake-
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induced liquefaction phenomena;

• develop robust contact algorithms in coupled MPM that account for soil–water–
structure interaction (SWSI), which is essential for the study of numerous large-
deformation geotechnical problems such as pile installation. So far, only very few
studies have been published on the inclusion of SWSI using MPM, especially for
two-phase large-deformation problems. Further research on large-deformation
dynamic problems including the presence of SWSI would be extremely interesting
and relevant to engineering practice;

• introduce more efficient parallel computing and develop a 3D version of the current
coupled MPM code. Even though the implicit time integration scheme can signi-
ficantly improve the efficiency of the explicit coupled MPM in large-deformation
analyses, the computational time will increase considerably as problems of larger
size are considered. It is thus recommended that more efficient parallel computing
should be introduced into the coupled MPM code developed herein, in order to
enable the faster solution of 2D problems and, eventually, to make the extension to
3D problems computationally viable;

• incorporate non-local mesh regularisation methods. Similarly to the case of FEM,
the results of coupled MPM simulations may strongly depend on the adopted
background mesh and suffer from pathological mesh-dependency in the presence
of strain-localisation phenomena (though not addressed in detail in this thesis).
The adoption of non-local regularisation techniques is therefore recommended as
a possible countermeasure, so as to obtain objective MPM solutions.

An interesting thread of future research will be to take further the achievements of
this dissertation towards their practical application to earthquake engineering problems.
It is anticipated that the computational techniques developed in this work for coupled
MPM modelling will positively impact the study of seismically-induced landslides and
dam failures, with an emphasis on combining large-deformation processes, possible
soil fluidisation (liquefaction) effects, and post-failure evolution of the system at hand.
Application to the analysis of foundation installation problems, such as vibratory pile
driving, is also a natural future development of this dissertation, in that it is closely related
to the ability of modelling the large-deformation dynamics of fluid-saturated soils.
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T HIS appendix summarises how shape functions are constructed in the Composite
Material Point Method (CMPM) proposed by González Acosta et al. (2017, 2020) to

improve stress calculations at MPs. As an extended support domain is used in CMPM,
new shape functions are required to envelop all the cells inside the extended supported
domain. Figure A.1 shows the C 2 shape functions for a central local grid cell in the 1D
case. Using Lagrange interpolation, each shape function N 2 envelops both the local grid
cell and its neighbour grid cells and is written as:

N 2
n(ξ) =

n∏
m=1; m 6= j

ξ−ξm

ξ j −ξm
(A.1)

Figure A.1: CMPM shape functions with C 2 continuity for a central local grid cell

where ξ is the nodal local coordinate in the extended domain, n is the total number
of nodes, ξ j is the local coordinate of the N 2

i shape function, and ξm defines the local
coordinate of the remaining nodes. The shape function for a cell with two neighbour cells
(i.e., MPs located in central grid cells) are computed by solving Equation (A.1):

N 2
i

N 2
j

N 2
k

N 2
l

=


− 1

48 (ξ3 −3ξ2 −ξ+3)
1

16 (ξ3 −ξ2 −9ξ+9)
1

16 (−ξ3 −ξ2 +9ξ+9)
1

48 (ξ3 +3ξ2 −ξ−3)

 (A.2)

The CMPM shape functions for a cell with only one neighbour cell (i.e., MPs located
in a boundary cell) can be written asN 1

i
N 1

j

N 1
k

=
 1

8 (ξ2 −4ξ+3)
1
4 (−ξ2 +2ξ+3)

1
8 (ξ2 +4ξ+3)

 (A.3)

and are shown in Figure A.2.
It should be mentioned that the above shape functions can only be used for a structu-

red background mesh. In 2D/3D problems, shape functions are computed by multiplying
the individual 1D functions in the different directions.
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Figure A.2: CMPM shape functions with C 1 continuity for a boundary local grid cell
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NOTATION

ACRONYMS
ALE Arbitary Lagrangian–Eulerian method

BSMPM B-spline Material Point Method

CEL Coupled Eulerian–Lagrangian method

CMPM Composite Material Point Method

CPDI Convected Particle Domain Interpolation method

DDMP Dual Domain Material Point method

FEM Finite Element Method

FLIP Fluid Implicit Particle method

GIMP Generalised Interpolation Material Point method

GPs Gauss Points

LD Large Deformation analysis

MLSA Moving Least Squares Approximation

MPM Material Point Method

MPs Material Points

OTM Optimal Transportation Meshfree method

PFEM Particle Finite Element Method

PIC Particle In Cell method

RITSS Remeshing and Interpolation Technique with Small Strain

SD Small Deformation analysis

SPH Smoothed Particle Hydrodynamics method

SRI Selective Reduced Integration

UL-FEM Updated Lagrangian Finite Element Method

GREEK SYMBOLS
β, γ Implicit time integration parameters

χmp Particle characteristic function

Ω Configuration of problem domain
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Ωmp Support domain of MP

ρ Soil–water mixture density

ρs Soil grain density

ρw Water density

σ Total stress

σ′ Effective stress

ε̇̇ε̇ε Strain rate

τ̃ττ Prescribed boundary values of surface traction

LATIN SYMBOLS
cv Coefficient of consolidation

J Jacobian of the deformation gradient tensor

Ks bulk modulus of the soil particles

Kw bulk modulus of the water phase

n Initial porosity

nt
g p Weighted porosity evaluated at the central GP position

Ng p Total number of GPs in the approximation domainΩi

Ni (x) Linear shape function

p Pore water pressure

Q Stiffness parameter defined as 1/Q = n/Kw + (1−n)/Ks

ṡ0 Rate of soil volume expansion due to thermal changes

Si ,mp (x) GIMP shape function

∇Si ,mp (x) Gradient of GIMP shape function

Us Average degree of consolidation

Vmp Volume of MP

aaa Vector containing interpolation degrees-of-freedom

b External body force

B Compatibility matrix containing spatial derivatives of the shape func-
tion

B Modified global compatibility matrix

C Damping matrix physically associated with grain–fluid drag

DDD Tangent stiffness matrix of the solid skeleton

f̄s Nodal force vector relating to external body force
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f̄w Nodal force vector relating to surface traction

G Matrix describing the hydromechanical coupling between the skeleton
deformation and pore water flow

Ku Stiffness matrix of the solid skeleton

mmm Kronecker tensor

M Diagonal mass matrix

P Compressibility matrix determined by the bulk stiffness of the solid
grains and pore water

p̃ppw Prescribed boundary values of pore pressure

QQQ Vector containing polynomial basis functions

R Drag force exchanged by the soil skeleton and the pore water

S Differential divergence operator

u Absolute displacement of the soil skeleton

ur Displacement of the water phase relative to the solid phase

U Total water displacement

vvv s Velocity of solid phase

vvv w Velocity of water phase

ṽvv s Prescribed boundary values of the solid velocity

ṽvv w Prescribed boundary values of the water velocity

w Average (Darcy) velocity of the water phase relative to the solid phase
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