

Delft University of Technology

Data Assimilation in Discrete Event Simulations: A Rollback Based Sequential Monte
Carlo Approach

Xie, Xu; Verbraeck, Alexander; Gu, Feng

DOI
10.23919/TMS.2016.7918817
Publication date
2016
Document Version
Final published version
Published in
Proceedings of the Symposium on Theory of Modeling Simulation (TMS-DEVS)

Citation (APA)
Xie, X., Verbraeck, A., & Gu, F. (2016). Data Assimilation in Discrete Event Simulations: A Rollback Based
Sequential Monte Carlo Approach. In Proceedings of the Symposium on Theory of Modeling Simulation
(TMS-DEVS) (pp. 11:1-11:8). (TMS-DEVS '16). Society for Computer Simulation International (SCS).
https://doi.org/10.23919/TMS.2016.7918817
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/TMS.2016.7918817
https://doi.org/10.23919/TMS.2016.7918817

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Data Assimilation in Discrete Event Simulations – A
Rollback based Sequential Monte Carlo Approach

Xu Xie
Delft University of Technology

Delft, The Netherlands
x.xie@tudelft.nl

Alexander Verbraeck
Delft University of Technology

Delft, The Netherlands
a.verbraeck@tudelft.nl

Feng Gu
City University of New York

New York, United States
Feng.Gu@csi.cuny.edu

ABSTRACT
Data assimilation is an analysis technique which aims to
incorporate measured observations into a dynamic system
model in order to produce accurate estimates of the current
state variables of the system. Although data assimilation is
conventionally applied in continuous system models, it is also
a desired ability for its discrete event counterpart. However,
data assimilation has not been well studied in discrete event
simulations yet. This paper researches data assimilation prob-
lems in discrete event simulations, and proposes a rollback
based implementation of the Sequential Monte Carlo (SMC)
method – the rollback based SMC method. To evaluate the ac-
curacy of the proposed method, an identical-twin experiment
in a discrete event traffic case is carried out and the results are
presented and analyzed.

Author Keywords
Data Assimilation, Discrete event simulations, Sequential
Monte Carlo methods, Rollback.

ACM Classification Keywords
I.6.8 SIMULATION AND MODELING: Discrete event.

1. INTRODUCTION
Computer simulations have long been used for studying and
predicting the behavior of complex systems [11]. However,
accurate analysis and prediction of the behavior of complex
systems are difficult, because even complex models are still
lacking the ability to accurately describe such systems [6],
therefore, even elaborate complex models of systems produce
simulations that diverge from or fail to predict the real behav-
ior of those systems. This situation is accentuated in cases
where real-time dynamic conditions exist [6].

The availability of real-time observations from real systems
has increased along with the advances in sensor technology.
The increased availability of data allows for a new simulation
paradigm – dynamic data driven simulation, where a simula-
tion is continually influenced by the real time data streams for
better analysis and prediction of a system under study [11].
The core technique in dynamic data driven simulation is data
assimilation, in which observations are incorporated into a
dynamic system model to produce accurate estimates of cur-
rent states of the system [16].

SpringSim-TMS/DEVS 2016 April 3-6 Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

Data assimilation has been applied with success in many ap-
plications, such as weather forecasting [12], chemical data
assimilation [5], ocean data assimilation [3], etc. But in these
applications, systems are continuous and are conventionally
modeled as (partial) differential equations, and these differ-
ential equations are again computed using numerical meth-
ods, and thus approximated by difference equations [18]. Be-
sides continuous systems and models, a large number of dis-
crete event systems and models exist in practice, such as man-
ufacturing systems, queuing networks, etc. In discrete event
systems, entities are usually represented with discrete state
variables which evolve at discrete moments over continuous
time, and change their values due to the occurrence of partic-
ular events, and the system’s evolution depends on the inter-
actions of such events and their arrival times [10, 18]. Data
assimilation is also a desired ability in discrete event simula-
tions, especially in real-time applications of simulation mod-
els, where the model provides predictions based on the last
known state of the system it represents. We take a traffic sig-
nal control example to explain the necessities of assimilating
data in discrete event simulations. In [4, 14, 15], the authors
have presented how traffic signal control systems can be mod-
eled and simulated using discrete event methods; and in real-
ity, we often see the phenomenon that vehicles accumulate at
crossings in one direction, while in the orthogonal direction,
roads are almost empty with green lights on. Observations
of such a situation are very easy to collect by sensors (e.g.,
inductive loops). If we could assimilate these observations
into the discrete event traffic signal control model and dy-
namically adjust durations of phases of traffic lights, a better
performance (e.g., traffic flow) would be achieved.

However, data assimilation in discrete event simulations is
not well researched yet, and due to the highly nonlinear,
non-Gaussian properties, most data assimilation algorithms
cannot be applied in discrete event simulations. Sequential
Monte Carlo (SMC) methods seem to be a set of promising
methods which might be applicable in discrete event simula-
tions, since they are able to approximate arbitrary probability
densities and have little or no assumption about the properties
of the system model [2].

Applying SMC methods in discrete event simulations re-
quires a variety of capabilities of the simulation environment,
such as pausing or stopping the simulation, retrieving state
from or setting a new state to the simulation, etc. There-
fore, in this paper, we propose an implementation of SMC
methods in object oriented discrete event simulations – the
rollback based SMC method, which is based on the concept

of rollback. In this paper, rollback has its natural meaning
which means restoring the simulation to a previous state. In
the proposed method, particles are generated by recursively
rolling back the simulation. When there is no data, only one
simulation is kept running; while when data is available, the
simulation is first rolled back to a particle in the last data as-
similation, and then run to the current observation time. At
this moment, a particle is generated by retrieving the model
state. This procedure is repeated until the specified number
of particles are generated. After resampling, the particle with
the highest probability is assigned to the model, while other
particles are kept for the next assimilation. The simulation
assigned with the most probable particle is run again until the
next observation arrives.

An identical-twin experiment in a traffic case which is imple-
mented in a discrete event traffic simulation software is car-
ried out to evaluate the accuracy of the proposed method. The
results show that the simulation with the rollback based SMC
method can accurately estimate the location of the slower ve-
hicle on the road.

The remainder of the paper is organized as follows. Section 2
overviews the SMC methods, and clarifies the research gaps.
Section 3 presents the rollback based SMC method, and pro-
vides the implementation details. Experiments and results are
given in section 4. Conclusions are drawn in section 5.

2. RELATED WORK

2.1 Sequential Monte Carlo (SMC) Methods
To define the data assimilation problem, two models are re-
quired: one is the system model which describes the evolution
of the state with time, and the other is the measurement model
which relates the noisy observations to the state. The two
models are conventionally expressed as difference equations
[1, 7, 13]:

st = ft(st−1) + νt−1

mt = gt(st) + εt

where ft is a possibly nonlinear function of the state st−1,
νt−1 is the process noise. gt is possibly a nonlinear function
which maps the state to the measurement, εt is the measure-
ment noise.

The nonlinearity in the model and non-Gaussian property of
noise make conventional data assimilation methods inappli-
cable, such as Kalman filters [1], Extended Kalman filters [9].
However, Sequential Monte Carlo (SMC) methods gain pop-
ularity since they are able to approximate arbitrary probabil-
ity densities and have little or no assumption about the prop-
erties of the system model [2]. SMC methods, also called
particle filters, is a technique for implementing a recursive
Bayesian filter by Monte Carlo (MC) simulations [1]. The
key idea is to represent the required posterior distribution by a
set of random samples (also called particles) with associated
weights and to compute estimates based on these samples and
weights. As the number of samples becomes very large, this
MC characterization becomes an equivalent representation to
the usual functional description of the posterior distribution
[1, 7].

We are interested in obtaining the posterior distribution
p(s0:t|m1:t), where s0:t = {si, i = 0, . . . , t} is the set of all
states up to time t, and m1:t = {mi, i = 1, . . . , t} is the set
of all available observations up to the same time. The SMC
methods approximate p(s0:t|m1:t) by a random measure

χt = {si0:t, wi
t}Ni=1 (1)

where {si0:t, i = 1, . . . , N} is a set of support points with
associated weights {wi

t, i = 1, . . . , N}. The weights are nor-
malized such that

∑N
i=1 w

i
t = 1. Then we have

p(s0:t|m1:t) ≈
N∑
i=1

wi
tδ(s0:t − si0:t) (2)

where δ(·) is the Dirac delta function. Usually, direct sam-
pling from p(s0:t|m1:t) is intractable, therefore the sequential
importance sampling (SIS) algorithm is developed, in which
samples are drawn from an easily sampled distribution which
is called importance density, and weights are updated using

wi
t ∝

p(mt|sit)p(sit|sit−1)

π(sit|si0:t−1,m1:t)
wi

t−1 (3)

where π(sit|si0:t−1,m1:t) is the importance density. Readers
can refer to [1] and [7] for more details on the derivation of
the SIS algorithm. The SIS algorithm can be implemented by
performing the following two steps for every t:

1. draw particles sit ∼ π(st|si0:t−1,m1:t), i = 1, . . . , N , and
append them to si0:t−1 to form si0:t;

2. compute the weightswi
t according to equation (3), and nor-

malize the weights.

The importance density plays a very important role in the per-
formance of the SMC methods. In general, the closer the
importance density to that distribution, the better the approx-
imation [7]. If π(st|si0:t−1,m1:t) = π(st|sit−1,mt), then the
importance density becomes only dependent on st−1 and mt.
This is particularly useful in the common case when only a
filtered estimate of p(st|m1:t) is required at each time step.
In such scenarios, only sit need be stored, therefore, one can
discard the path si0:t−1 and history of observations m1:t−1.
The prior importance density which is given by p(st|sit−1)
[7] is a such density, and it implies particle weight updates by

wi
t ∝ p(mt|sit)wi

t−1 (4)

The simplified SIS algorithm is shown in Algorithm 1.

Algorithm 1: The SIS algorithm

Input: random measure at t− 1: χt−1 = {sit−1, w
i
t−1}Ni=1,

new observation mt

Output: random measure at t: χt = {sit, wi
t}Ni=1

for i = 1 : N do
draw particles sit ∼ p(st|sit−1,mt);
assign the particle a weight, wi

t, according to (4);
end

A major problem with the SIS algorithm is that the discrete
random measure degenerates quickly [1, 7]. In other words,
all the particles except for a very few are assigned negligible
weights. Degeneracy can be reduced by resampling, in which
particles are replicated in proportion to their weights [7]. A
complete implementation of the SMC methods based on the
SIS algorithm and resampling is presented in Algorithm 2.

Algorithm 2: The SMC methods

Input: random measure at t− 1: χt−1 = {sit−1, w
i
t−1}Ni=1,

new observation mt

Output: random measure at t: χt = {sit, wi
t}Ni=1

% the sampling step
for i = 1 : N do

draw particles s
′i
t ∼ p(st|sit−1,mt);

assign s
′i
t a weight: w

′i
t = p(mt|s

′i
t)wi

t−1;
end

normalize the weights: w
′′i
t =

w
′i
t∑N

j=1 w
′j
t

% the resampling step
c0 = 0;
for i = 1 : N do

ci = ci−1 + w
′′i
t

end
for i = 1 : N do

generate a random number r ∼ U [0, 1];
if cj−1 < r ≤ cj then

sit = s
′j
t ;

wi
t = 1

N ;
end

end

2.2 Data Assimilation in Discrete Event Simulations
In discrete event simulations, the behavior of discrete event
simulations is highly non-linear, non-Gaussian. The func-
tions to describe state evolution in discrete event simulations
are usually rule-based. These functions are essentially step
functions and can therefore not be linearized, because state
changes happen instantaneously at the event. The high non-
linearity of state transition functions in discrete event simula-
tions hampers the application of data assimilation algorithms
which are based on linear assumption (such as Kalman filters
[1]) or local linearization (such as Extended Kalman filters
[9]).

SMC methods seem to be a set of promising methods which
are applicable in discrete event simulations, since they are
able to approximate arbitrary probability densities and have
little or no assumption about the properties of the system
model [2].

In order to apply SMC methods in discrete event simulations,
several functionalities should be added to the discrete event
simulation environment. During data assimilation, we need
to repeatedly pause or stop the simulation, retrieve state from

or set new state to the simulation, etc. Therefore, in this pa-
per, we propose a novel, efficient SMC method – the roll-
back based SMC method, which is implemented in an object
oriented discrete event simulations. In the proposed method,
particles are generated by recursively rolling back the sim-
ulation. When there is no data, only one simulation is kept
running; while when data is available, the simulation is first
rolled back to a particle in the last data assimilation, and then
run to the current observation time. At this moment, a parti-
cle is generated by retrieving the model state. This procedure
is repeated until the specified number of particles are gener-
ated. After resampling, the particle with the highest proba-
bility is assigned to the model, while other particles are kept
for the next assimilation. The simulation assigned with the
most probable particle is run again until the next observation
arrives. The proposed method is elaborated in section 3.

3. ROLLBACK BASED SMC METHOD
The main idea of the rollback based SMC method is shown in
Figure 1. In our proposed method,N particles are recursively
generated by the rollback based sampling step. The phrase
roll back originally means reversing or undoing something.
In the simulation community, rollback is widely used in op-
timistic synchronization algorithm in parallel discrete event
simulations which means undoing the computations of pre-
viously processed events [8]. In parallel discrete event sim-
ulations, rollback is always associated with unsending mes-
sages because logical processes are “optimistically” executed
in parallel [8]. In our method, discrete event simulations are
not parallelized, therefore, rollback has its natural meaning
which means restoring the simulation to a previous state.

In a set of particles {sit, i = 1, . . . , N}, we always assume
that the first particle s1t has the highest probability. Assume
the initial state is distributed as p(s0). In the initialization,
N particles {si0, i = 1, . . . , N} are drawn from p(s0), but
only s10 is assigned to the model and the simulation starts to
run, i.e., only one simulation with the most probable state
is running. Assume at time t, measurement mt is collected,
and the particles at the last data assimilation time t − 1 are
{sit−1, i = 1, . . . , N}. The rollback based sampling step gen-
erates N particles {s′it , i = 1, . . . , N} as follows:

1. the first particle s
′1
t is already embedded in the simulation,

therefore, it can be generated by retrieving the current state
of the model;

2. the otherN −1 particles {s′it , i = 2, . . . , N} are generated
recursively as follows:

(a) roll back the current simulation to sit−1;

(b) run the simulation to time t, and s
′i
t is generated by

retrieving the model state.

Except sampling, the resampling step in the proposed method
is the same with that in the standard SMC methods, therefore,
it will not be repeated here. After resampling, the particle
with the highest probability is assigned to the model, while
other particles are kept for the next assimilation. The simu-
lation assigned with the most probable particle is run again
until the next observation arrives.

Figure 1: SMC methods based on simulation rollback.

In section 4, a discrete event traffic case is studied to prove the
effectiveness of the proposed algorithm. The traffic model is
built in OpenTrafficSim1, which is a Java based, open source,
discrete event simulation software to support research and de-
velopment of multi scale and multi modal traffic models.

In order to do rollback in OpenTrafficSim, the vehicle class
LaneBasedIndividualCar is extended to enable the
discrete event model to save and restore its state; the discrete
event simulator class DESSimulator is revised to be ca-
pable of setting its time backward. Besides, after the model
state and simulator time are rolled back, the model resched-
ules events on its simulator to reconstruct the future event
list. As shown in Figure 2, state saving & restoring and event
rescheduling are enabled by adding following methods:

• saveCurrentState: saves current model state;

• restoreState: restores model state to a specified state;

• getCurrentState: retrieve current model state;

• reSchedule: reschedule events.

The only change in the discrete event simulator is one added
function setSimulatorTimeBackTo, which enables the
simulator time to be set back and maintains the future event
list accordingly.

Figure 2: Class diagram.

1More information about OpenTrafficSim can be found in http:
//www.opentrafficsim.org/.

4. EXPERIMENTS AND RESULTS

4.1 Scenario Description
A two-lane circular road is shown in Figure 3a. The total
length of the road is 2000 meters, on whichNv = 80 vehicles
are driving in counterclockwise direction. Along the road,Ns

sensors are evenly installed (in Figure 3a, Ns = 8), and each
sensor has 100-meter detection range on each lane. Each sen-
sor can report two types of information every ∆T seconds: 1)
the number of vehicles in its detection range; 2) the average
speed of all vehicles in the detection range (if there is no vehi-
cle in the range, the speed is defined as the maximum allowed
speed of the road). Among all vehicles on the road, there is
one slower vehicle (vmax = 25km/h, which is 1/4 of the
normal vehicles’ maximum speed). Our objective is to lo-
cate the slower vehicle by incorporating measurements from
sensors into the discrete event microscopic traffic simulation
which is implemented in OpenTrafficSim.

4.2 Problem Formulation
System Model
The system state at time t is defined by a collection of all
vehicles’ state

St = {lit, vit, ait, vit,max}
Nv
i=1

where lit, v
i
t, a

i
t, v

i
t,max are the i-th vehicle’s location, veloc-

ity, acceleration and maximum speed (used for recognizing
the slower vehicle) at time t, and Nv is the number of ve-
hicles on the road. The system state evolves as simulation
proceeds

St = CircularRoadTrafficSim(St−1)

where CircularRoadTrafficSim is the discrete event mi-
croscopic traffic simulation implemented in OpenTrafficSim,
where driving behaviors, such as lane-changing, accelerating
or decelerating, are modeled by MOBIL and IDM++ [17].
The time step ∆T is the period between two consecutive mea-
surements, rather than the simulation step or time between
two consecutive events. System noise ν is added by randomly
selecting a normal vehicle around the slower vehicle (∆Lme-
ters before and after) and exchanging their maximum speed

http://www.opentrafficsim.org/
http://www.opentrafficsim.org/

(a) The two-lane circular road, sensors are evenly installed at
positions marked in red.

(b) Estimating the slow vehicle position by average speed in-
creases between two consecutive sensors.

Figure 3: Two-lane circular road.

(in our experiment, ∆L = 50m). The system model with
noise is thus formulated as

St = CircularRoadTrafficSim(St−1) + νt−1

Measurement Model
Measurements from sensors at time t are defined by

Mt = {nj,lt , n
j,r
t , v̄j,lt , v̄j,rt }

Ns
j=1

where nj,lt , nj,rt are number of vehicles on the left and right
lane respectively within the detection range of the j-th sensor
at time t; v̄j,lt , v̄j,rt are the average speeds of vehicles defined
similarly, and Ns is the number of sensors. The measurement
model MM

Mt = MM(St)

maps the system state St to measurement Mt by

nj,lt =

Nv∑
i=1

δj,li , nj,rt =

Nv∑
i=1

δj,ri

v̄j,lt =

{
1

nj,l
t

∑Nv

i=1 δ
j,l
i vit nj,lt > 0

Vm nj,lt = 0

v̄j,rt =

{
1

nj,r
t

∑Nv

i=1 δ
j,r
i vit nj,rt > 0

Vm nj,rt = 0

where Vm is the maximum allowed speed of the road. δj,li =
1 if vehicle i is on the left lane of the j-th sensor’s detection
range, otherwise δj,li = 0. Similar definition applies to δj,ri .

Error in measurements, ε, is assumed unbiased and modeled
as a Gaussian noise N (0, σ2) (in our experiment, we set σ =

1.0). The measurement model with noise is formulated as

Mt = MM(St) + εt

4.3 Weight Computation
Weight computation is a very important step in SMC methods
since it provides the measure to keep the optimal particles for
future steps. In this paper, the weight of the i-th particle is
computed by taking three types of information into consider-
ation:

• number of vehicles within each sensor’s detection range.
We define di = max{|nj,lt − n

′j,l
t |, |n

j,r
t − n

′j,r
t |}

Ns
j=1,

where n
′j,l
t , n

′j,r
t are numbers of vehicles on the left and

right lane respectively within the detection range of j-th
sensor in real traffic, while nj,lt and nj,rt are the correspond-
ing numbers in the i-th particle. The contribution of this
information to the weight is defined as

pi1 =
1√
2πσ

e−
d2i
2

• average speed of vehicles in each sensor’s detection range.
Similar to the way in dealing with the number of vehicles,
we assume vi as the maximum average speed difference
between the real traffic and the particle, and define its con-
tribution as

pi2 =
1√
2πσ

e−
v2
i
2

• the difference of slower vehicle locations between the real
traffic and the particle. Because we have no information
about the slower vehicle location in the real traffic, we need
to estimate the area the slower vehicle is probably in. A

slower vehicle can block vehicles behind it, hence, there
will be a sharp increase of average speed around the slow
vehicle. We calculate the speed increase between two con-
secutive sensors by

I lj =

{
v̄j+1,l
t − v̄j,lt j = 1, . . . , Ns − 1

v̄1,lt − v̄
Ns,l
t j = Ns

where v̄j,lt is the average speed of vehicles on the left lane
within the detection range of the j-th sensor. Assume j∗l
is the index of sensor which satisfies I lj∗l = max

j=1,...,Ns

I lj ,

therefore, the slower vehicle should be in the area j∗l

shown in Figure 3b (Ns = 8). But in order to be more
robust, we extend the area by adding two adjacent areas:
area j∗lb and area j∗lf , which is behind and in the front of
area j∗l, respectively. Suppose in the particle, the slower
vehicle is in area k, we define

pl =

{
0.9 k = j∗l

0.05 k = j∗lb or j∗lf

The same method applies to the data of the right lane, then
we can get j∗r, j∗rb , j∗rf and pr. The contribution to the
weight is therefore defined by

pi3 = (pl + pr)/2

The three contributions are linearly combined as pi = αpi1 +
βpi2 + γpi3, such that α + β + γ = 1. In our experiment,
we choose α = γ = 0.45, β = 0.1. Then the weight of the
i-th particle is accordingly updated by w

′i
t = wi

t−1p
i, and is

finally normalized by wi
t = w

′i
t /
∑N

j=1 w
′j
t .

4.4 Experiment Setup
The identical-twin experiment is adopted in this paper to
evaluate the effectiveness of the proposed method. In the
identical-twin experiment, a simulation which contains one
slower vehicle is first run and the corresponding data is
recorded. These simulation results are considered as “real”,
therefore, the observation data obtained here are regarded as
coming from the “real” system. Consequently, we estimate
the location of the slower vehicle from the observation data
using the proposed method and then check whether the esti-
mation is closed to the “real” location.

The run length of of the simulation is 480 seconds, and ob-
servations are fed every ∆T = 10 seconds. The number of
particles is chosen to be 100.

4.5 Experiment Results
The location of the slower vehicle in real traffic at t = 0 is
shown in red in Figure 4a, while in each particle, slower vehi-
cle is randomly chosen and located, which is shown in blue.
As simulation proceeds, more and more observations are fed
into the simulation, and Figure 4b shows the estimation of the
slower vehicle’s location at t = 450. We can see that the area
where the slower vehicle is possibly in has shrunk to a very
small area as more and more observations are assimilated.

(a) Location of the slower vehicle at t = 0.

(b) Location of the slower vehicle at t = 450.

Figure 4: Location of the slower vehicle; real location is
shown in red, while locations in particles are shown in blue.

At time t when data assimilation is carried out, the location
of the slower vehicle is estimated by

l̂t =
1

Np

Np∑
i=1

lit

where Np is the number of particles; lit is the location of
the slower vehicle in the i-th particle. Figure 5a shows the
real trajectory and the estimated trajectory. The error bar nar-
rows as more and more data is fed into the simulation , which
means we are more certain about the estimated location of the
slower vehicle.

We define estimation error in the i-th particle as

eit = |lit − lt|
where lt is the real location of the slower vehicle at time t.
The mean error, ēt, is defined by

ēt =
1

Np

Np∑
i=1

|lit − lt| =
1

Ns
eit

(a) Trajectory of the slower vehicle; real trajectory is shown in red, while
estimated trajectory and standard deviation are shown in blue.

(b) Estimation error; mean error is shown in red, while errors in particles
are shown as blue dots.

Figure 5: Trajectory of the slower vehicle and its estimation
error.

Figure 5b shows the evolution of estimation errors as simu-
lation proceeds. The result shows that the estimation error
converges quickly to a low level as observations from the real
system are assimilated over time, which proves that the pro-
posed method can accurately locate the slower vehicle.

5. CONCLUSION
Applying SMC methods in discrete event simulations re-
quires a variety of capabilities of the simulation environment,
such as pausing or stopping the simulation, retrieving state
from or setting a new state to the simulation, etc. In this pa-
per, we propose an rollback based implementation of SMC
methods in object oriented discrete event simulations, which
facilitates the application of SMC methods in discrete event
simulations. An identical-twin experiment in a discrete event
traffic case is carried out to evaluate the accuracy of the pro-
posed method. The results show that the simulation with
the rollback based SMC method can accurately estimate the

slower vehicle position on the road, and thus proves the ef-
fectiveness of the proposed method.

Acknowledgment
This research is mainly financed by the China Scholarship
Council (Grant NO. 201306110027), and two National Natu-
ral Science Foundations of China (Grant NO. 61374185 and
61403402, respectively).

REFERENCES
1. Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp,

T. A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Transactions on Sig-
nal Processing 50, 2 (2002), 174–188.

2. Bai, F., Gu, F., Hu, X., , and Guo, S. Particle routing in
distributed particle filters for large-scale spatial temporal
systems. IEEE Transactions on Parallel and Distributed
Systems (2015), to appear.

3. Carton, J. A., and Giese, B. S. A reanalysis of ocean
climate using simple ocean data assimilation (SODA).
Monthly Weather Review 136 (2008), 2999–3017.

4. Chi, S.-D., Lee, J.-O., and Kim, Y.-K. Discrete event
modeling and simulation for traffic flow analysis. In
IEEE International Conference on Systems, Man and Cy-
bernetics, vol. 1 (1995), 783–788.

5. Constantinescu, E. M., Sandu, A., Chai, T., and
Carmichael, G. R. Ensemble-based chemical data assim-
ilation. I: General approach. Quarterly Journal of the
Royal Meteorological Society 133, 626 (2007), 1229–
1243.

6. Darema, F. Dynamic data driven applications systems:
A new paradigm for application simulations and mea-
surements. In Computational Science - ICCS 2004,
M. Bubak, G. Albada, P. M. Sloot, and J. Dongarra, Eds.,
vol. 3038 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, 662–669.

7. Djurić, P. M., Kotecha, J. H., Zhang, J., Huang, Y., Ghir-
mai, T., Bugallo, M. F., and Miguez, J. Particle filtering.
IEEE Signal Processing Magazine 20, 5 (2003), 19–38.

8. Fujimoto, R. M. Parallel and Distributed Simulation Sys-
tems. Wiley New York, 2000.

9. Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B.
L. R., Bernstein, D., and Ridley, A. What is the ensemble
Kalman filter and how well does it work? In American
Control Conference (2006), 4448–4453.

10. Ho, Y.-C. Introduction to special issue on dynamics of
discrete event systems. Proceedings of the IEEE 77, 1
(1989), 3–6.

11. Hu, X. Dynamic data driven simulation. SCS M&S Mag-
azine II, 1 (2011), 16–22.

12. Huang, X.-Y., Xiao, Q., Barker, D. M., Zhang, X.,
Michalakes, J., Huang, W., Henderson, T., Bray, J., Chen,
Y., Ma, Z., Dudhia, J., Guo, Y., Zhang, X., Won, D.-J.,
Lin, H.-C., and Kuo, Y.-H. Four-dimensional variational

data assimilation for WRF: Formulation and preliminary
results. Monthly Weather Review 137, 1 (2009), 299–314.

13. Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C. Unified
notation for data assimilation : Operational, sequential
and variational. Journal of the Meteorological Society of
Japan, Special Issue on “Data Assimilation in Meteol-
ogy and Oceanography: Theory and Practice” 75, 1B
(1997), 181–189.

14. Kang, D., Kong, J., and Choi, B. K. DEVS modeling
of urban traffic systems (WIP). In Proceedings of the
2012 Symposium on Theory of Modeling and Simulation
- DEVS Integrative M&S Symposium (2012), 16:1–16:6.

15. Lee, J., and Chi, S. Using symbolic DEVS simulation
to generate optimal traffic signal timings. Simulation:

Transactions of the Society for Modeling and Simulation
International 81, 2 (2005), 153–170.

16. Nichols, N. K. Data assimilation: aims and basic
concepts. In Data Assimilation for the Earth System,
R. Swinbank, V. Shutyaev, and W. Lahoz, Eds., vol. 26
of NATO Science Series. Springer Netherlands, 2003, 9–
20.

17. Treiber, M., and Kesting, A. Traffic Flow Dynamics:
Data, Models and Simulation. Springer-Verlag Berlin
Heidelberg, 2013.

18. Wainer, G. A. Discrete-Event Modeling and Simulation:
A Practitioner’s Approach. CRC Press, 2009.

	1 Introduction
	2 Related Work
	2.1 Sequential Monte Carlo (SMC) Methods
	2.2 Data Assimilation in Discrete Event Simulations

	3 Rollback based SMC Method
	4 Experiments and Results
	4.1 Scenario Description
	4.2 Problem Formulation
	 System Model
	 Measurement Model

	4.3 Weight Computation
	4.4 Experiment Setup
	4.5 Experiment Results

	5 Conclusion

